TW201243808A - System and method for improving color and brightness uniformity of backlit LCD displays - Google Patents

System and method for improving color and brightness uniformity of backlit LCD displays Download PDF

Info

Publication number
TW201243808A
TW201243808A TW100120551A TW100120551A TW201243808A TW 201243808 A TW201243808 A TW 201243808A TW 100120551 A TW100120551 A TW 100120551A TW 100120551 A TW100120551 A TW 100120551A TW 201243808 A TW201243808 A TW 201243808A
Authority
TW
Taiwan
Prior art keywords
display
pixel
uniformity
backlight
correction
Prior art date
Application number
TW100120551A
Other languages
Chinese (zh)
Other versions
TWI482140B (en
Inventor
Zorawar S Bassi
Ashkan Alavi-Harati
Original Assignee
Geo Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/098,221 external-priority patent/US8442316B2/en
Application filed by Geo Semiconductor Inc filed Critical Geo Semiconductor Inc
Publication of TW201243808A publication Critical patent/TW201243808A/en
Application granted granted Critical
Publication of TWI482140B publication Critical patent/TWI482140B/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

Systems and methods for improving color and brightness uniformity of an image displayed on a backlit LCD are disclosed. In one example, a correction map is computed and applied to the LCD pixel values. In another example, the voltage settings of the backlight source components are also corrected in addition to the LCD pixel values. For efficient hardware implementation, corrections are applied using function representation of a grid data transformation relating measured values to corrected values. In one particular exemplary embodiment, the backlight source is provided by a plurality of LEDs. In another exemplary embodiment, the display consists of a plurality of OLEDs wherein the light source and the display panels coincide.

Description

201243808 六、發明說明: 【發明所屬之技術領域】 在此所述的實施例總的涉及電子圖像和視頻處理,更具體地說,涉及 背光LCD面板的色彩和亮度非均勻性的校正。 【先前技術】 發光二極體(LED)是由基於p-n結中的電子和空穴的自發性複合輻射 可見和不可見光(覆蓋電磁波頻譜的紅外到紫外範圍)的特殊材料製成。 通常將前向偏置電壓應用到P-n節以加速電子-空穴複合並產生足夠的亮 度。發射光的波長(以及色彩)取決於半導體帶隙的能量。早期的LED發 射低亮度的紅光。近期才出現具有大能量帶隙進以使得LED發射綠光的新 半導體材料,隨後出現了具有大能量帶隙進以使得LED發射藍光的新半導 體材料。此外,在LED的亮度和能效增加方面的進步促使了白LED的發明。 液晶顯示器(LCD)通常用於TV面板和電腦顯示器,使用液晶(LC) 的光調製特性。LC是傳送單元(transmissive dement)。他們僅能傳導而不能 直接發射光。因此,LCD面板自己不能產生光而需要外部照明機制才可見。 按照慣例,在LCD面板之後放置冷陰極螢光燈(CCFL)以提供照明。最近, 隨著HD TV和高頻視頻內容的進步,在電視產業中出現了 LED背光LCD 面板(LED backlit LCD panel)以取代CCFL背光LCD。有兩種LED背光技 術,白LED背光和紅/綠/藍(RGB) LED背光。白LED (在筆記本和膝上 型螢幕中廣泛使用)實際上是結合有黃磷光體的藍LED,用以提供白光感 知。在這種情況下,光譜曲線在綠色和紅色部分具有很大的中斷。RGD LED 由紅、綠和藍LED組成。可控制RGD LED產生不同的白色色溫(temperatures of white)。RGB LED可向螢幕提供巨大的色域。來自三個不同LED的背光 可產生與LCD像素自身中的色彩濾波器精密匹配的色彩光譜。這樣,可收 窄LCD色彩濾波器的帶通以使得每個色彩分量僅允許非常窄的譜帶通過 LCD。這可提高顯示器的功效,因爲當顯示白色時,極少量的光被阻斷。並 且實際的紅、綠和藍點可進一步顯現使得顯示器能夠重現更逼真的色彩。 這兩種類型的LED背光均可安排成陣列以照明螢幕。 201243808 相比白熾光源,LED表現出很多優點,包括更大的色域、更高的發光 效率、更深的黑電平(blacklevel)(更高的對比度)、更低的能耗(減少光 的浪費)、更長的使用壽命、改善的穩健性、更小的尺寸、更快的切換回應 和更佳的耐用性和可靠性。考慮到更低成本和能量、更低的環境影響(綠 色)和更薄的顯示器,產業上已經通過從舊的CCFL背光到更有效和靈活的 LED背光的快速轉變著手大力改良背光技術。美國專利6,888,529公開了這 樣的系統的示例,在該系列中RGB LED陣列或組(bank)由特定電路驅動 以將光提供給顯示器的每個像素。可通過直接通過該驅動電路控制各個色 彩分量以從源調節強度和色彩內容。 然而LED源仍有一些缺陷。最主要的缺陷是由於LED是離散光源,因 此其增加了色彩和亮度的不均勻性。由於LED製造過程以及LED老化(不 同的LED以不同的速率老化)的差異,其均勻性與CCFL背光相比顯著較 低。與少量(10階)的CCFL管相比,寬頻TV需要大量的(100階)LED 用於顯示,每個單個LED具有不同的亮度級。即使對這些光源進行揀選和 分級,在裝置和裝置之間這些光源仍能有高達+/-10%的亮度差異。此外, 三種單獨的紅、綠和藍光源的使用意味著顯示器的白點可像LED老化一樣 以不同的速率移動。白LED同樣會發生老化,白LED老化伴隨著幾百K的 色溫變化。白LED還面臨更高溫度的藍色偏移。結果,與傳統光源相比, 他們需要更準確的電流和熱管理,因此其構建更貴。實際上,如果不能獲 得一定級別的均勻性,生產的顯示器將會是廢品,這將給製造商帶來損失。 近年來,有機發光二級管(OLED )已經取代LCD在TV螢幕和其他顯 示器中使用。與LC單元不同,OLED是其中存在回應電流發光的有機半導 體化合物的發射型場致發光層的有源單元。該層是位於兩個電極之間的薄 膜,其中一個電極通常是透明的。該有機化合物是允許OLED直接用作顯.* 示器像素的小分子或聚合物。這樣,OLED顯示器無需背光運行。換句話說, 該背光和調製器面板是相同的。 通常,來自顯示器、LCD、OLED或其他器件的圖像是色彩和亮度的空 間變化圖案(spatial varying pattern)’其意在與輸入信號的圖案匹配。如果 輸入信號是空間恒定的,那麼期望顯示器對其的再現在色彩和亮度上也是 201243808 恒定的。這稱作色彩和亮度均勻性要求,這是顯示器的準確色彩再現的重 要要求。LCD面板具有幾個其他部件,包括用於朝著前方弓丨導和均勻分發 光的光導、散射器。雖然這些部件有助於改善均勻性,但是隨著面板厚度 曰趨減小的趨勢,他們的設計更加複雜化並將導致效率降低。需要色彩和 亮度調節的替代方法以更有效和經濟的方式克服上述缺陷。 已有某些現有技術的解決方案主要用於通過在感應或視覺化輸出信號 以後控制源電壓以改善背光品質。這些解決方案主要致力於背光面板而不 是實際觀察到圖像的LC面板的均勻性,因此其效果有限。例如, US2007/0200513公開了一種回應溫度和電壓變化來控制LED驅動的器件。 US 2006/0007097公開了 LED背光LCD設備的背光調節方法。輝度測量感測 器通過與薄膜器件一起設置在基板上,作爲面板上的像素與LCD面板集 成。這些現有技術並未致力於解決觀察者將要觀察到的非均勻性。此外, 並沒有提供調節信號的色度的解決方案。 本發明的一個或多個方面的目的在於提供用於改善LCD的色彩和亮度 均勻性的電子單元,該電子單元致力於同時調節背光源和LC光調製器。本 發明的全部方面涉及可不考慮光源應用的調製器。 在一個實施例中,LED提供背光。本發明不光致力於解決由於LED老 化導致的非均勻性,還通過具有較少的單元和容忍不滿足閾値並將被丟棄 的單元有助於製造商節省成本。該教導也可用於由多個CCPL管組成的傳統 的CCFL背光源。 在另一個實施例中,鐳射二極體(LD)用作背光源。當用於背光LCD 面板時,LD以LED類似的方式工作。其主要差別是光的生成。在此電子和 空穴的複合是激勵產生而不是自發產生的,這當然是通常鐳射發光的必須 條件。LD的波譜比LED要窄地多,從而可産生更明確限定的色彩。 在此光源部件和相關附圖主要示出了作爲典型實施例的直射LED背光 系統。然而,如其所述,只要顯示的光是有關的,本發明可以用於側光式 (edge-lit) LED,LD和CCFL以及OLED (LED爲直射LED的特殊情況)。 【發明內容】 201243808 在此所述的實施例在一個方面中提供了用於通過硏究來自顯示器的可 測量的物理輸出和有效地創建校正圖(correctionmap)以修正顯示器的像素 値,來改善背光液晶顯示器(LCD)的色彩和亮度均勻性的方法。此外,還 可在相同的方案中修正光源的部件的電壓控制。 在此所述的實施例在另一個方面中進一步提供了用於改善背光液晶顯 示器(LCD)的色彩和亮度均勻性的系統。所述系統包括用於在顯示器上顯 示多個參考輸入圖像的圖像生成器;用於測量顯示的圖像的均勻性的圖像 捕獲裝置,所述顯示的圖像的均勻性由物理可測量量表徵;用於從測量數 據生成全局顯示(globaldisplay)相應函數和創建校正網格數據圖以使得所 述回應函數變成橫跨所述顯示器的恒定値的處理器,以及用於將所述校正 網格數據圖轉換成函數形式並將所屬校正函數應用到輸入信號的第二處理 器。可使用不同的技術,如LED,CCFL和鐳射二極體組生成所述背光源》 在此所述的實施例在另一個方面中進一步提供了用於改善有機LED (0LCD )的色彩和亮度均勻性的系統和方法。這是特殊LED的例子,其中 所述背光源和所述顯示器本質上是一個集成單元,使亮度和色彩非均勻1 生 問題甚至更加相關。 【實施方式】 應瞭解,爲了使得讀者能透徹理解在此所述的典型實施例,對大量特 定細節進行了描述。 然而,本領域技術人員應該理解,在此所述的這些實施例和域實施可 以無需這些特定細節即可實現。在其他例子中,眾所周知的方法、程式和 部件並未詳細描述,以避免模糊在此所述的這些實施例和/或實施。此外, 該說明並不能視爲限制在此所述的這些實施例的範圍,而是描述在此所述 的各個實施例和域實施的結構和操作。201243808 VI. Description of the Invention: [Technical Field] The embodiments described herein relate generally to electronic image and video processing, and more particularly to correction of color and brightness non-uniformity of a backlit LCD panel. [Prior Art] Light-emitting diodes (LEDs) are made of a special material based on the spontaneous composite radiation of visible electrons and holes in the p-n junction, visible and invisible (covering the infrared to ultraviolet range of the electromagnetic spectrum). A forward bias voltage is typically applied to the P-n junction to accelerate electron-hole recombination and produce sufficient brightness. The wavelength (and color) of the emitted light depends on the energy of the semiconductor bandgap. Early LEDs emit low-intensity red light. New semiconductor materials with large energy band gaps to cause the LEDs to emit green light have recently appeared, followed by new semiconductor materials with large energy band gaps to cause the LEDs to emit blue light. In addition, advances in LED brightness and energy efficiency have led to the invention of white LEDs. Liquid crystal displays (LCDs) are commonly used in TV panels and computer monitors, using the light modulation characteristics of liquid crystal (LC). The LC is a transmissive dement. They can only transmit but not directly. Therefore, the LCD panel itself cannot produce light and requires an external illumination mechanism to be visible. Conventionally, a cold cathode fluorescent lamp (CCFL) is placed behind the LCD panel to provide illumination. Recently, with the advancement of HD TV and high-frequency video content, LED backlit LCD panels have emerged in the television industry to replace CCFL backlight LCDs. There are two LED backlighting technologies, white LED backlighting and red/green/blue (RGB) LED backlighting. White LEDs (used extensively in notebook and laptop screens) are actually blue LEDs combined with yellow phosphors to provide white light perception. In this case, the spectral curve has a large interruption in the green and red portions. The RGD LED consists of red, green and blue LEDs. The RGD LED can be controlled to produce different whites of temperature. RGB LEDs provide a huge color gamut to the screen. A backlight from three different LEDs produces a color spectrum that closely matches the color filter in the LCD pixel itself. In this way, the bandpass of the LCD color filter can be narrowed such that each color component allows only a very narrow band to pass through the LCD. This can improve the efficacy of the display because a very small amount of light is blocked when white is displayed. And the actual red, green and blue dots can be further visualized to enable the display to reproduce more realistic colors. Both types of LED backlights can be arranged in an array to illuminate the screen. 201243808 LEDs exhibit many advantages over incandescent sources, including greater color gamut, higher luminous efficiency, deeper black levels (higher contrast), lower power consumption (reduced light waste) ), longer life, improved robustness, smaller size, faster switching response and better durability and reliability. Considering lower cost and energy, lower environmental impact (green) and thinner displays, the industry has aggressively improved backlighting through the rapid transition from old CCFL backlights to more efficient and flexible LED backlighting. An example of such a system in which an RGB LED array or bank is driven by a particular circuit to provide light to each pixel of the display is disclosed in U.S. Patent No. 6,888,529. The intensity and color content can be adjusted from the source by controlling the individual color components directly through the drive circuit. However, LED sources still have some drawbacks. The main drawback is that since the LED is a discrete light source, it increases the unevenness of color and brightness. Due to the difference in LED manufacturing process and LED aging (different LEDs aging at different rates), the uniformity is significantly lower compared to CCFL backlights. Broadband TVs require a large number of (100th order) LEDs for display compared to a small number (10th order) CCFL tubes, each with a different brightness level. Even if these sources are sorted and graded, these sources can still have a brightness difference of up to +/- 10% between the device and the device. In addition, the use of three separate red, green, and blue light sources means that the white point of the display can move at different rates as the LED ages. White LEDs also age, and white LED aging is accompanied by a change in color temperature of a few hundred K. White LEDs also face a higher temperature blue offset. As a result, they require more accurate current and thermal management than traditional light sources, so they are more expensive to build. In fact, if a certain level of uniformity is not achieved, the display produced will be waste, which will cause damage to the manufacturer. In recent years, organic light-emitting diodes (OLEDs) have replaced LCDs for use in TV screens and other displays. Unlike LC cells, OLEDs are active cells in which an emissive electroluminescent layer of organic semiconductor compound that responsive to current luminescence is present. This layer is a film between two electrodes, one of which is typically transparent. The organic compound is a small molecule or polymer that allows the OLED to be used directly as a display pixel. In this way, the OLED display does not require backlight operation. In other words, the backlight and modulator panel are identical. Typically, an image from a display, LCD, OLED, or other device is a spatial varying pattern of color and brightness that is intended to match the pattern of the input signal. If the input signal is spatially constant, then it is expected that the display will be rendered constant in color and brightness for 201243808. This is referred to as color and brightness uniformity requirements, which are important requirements for accurate color reproduction of the display. The LCD panel has several other components, including a light guide, diffuser for guiding the light toward the front and distributing the light evenly. While these components help to improve uniformity, as the thickness of the panels tends to decrease, their designs become more complex and will result in reduced efficiency. Alternative methods that require color and brightness adjustment overcome the above deficiencies in a more efficient and cost effective manner. Some prior art solutions have been used primarily to improve backlight quality by controlling the source voltage after sensing or visualizing the output signal. These solutions focus on the uniformity of the backlight panel rather than the LC panel in which the image is actually observed, so the effect is limited. For example, US 2007/0200513 discloses a device that controls LED driving in response to temperature and voltage variations. US 2006/0007097 discloses a backlight adjustment method for an LED-backlit LCD device. The luminance measuring sensor is disposed on the substrate together with the thin film device as a pixel on the panel and integrated with the LCD panel. These prior art techniques are not dedicated to addressing the non-uniformities that the observer will observe. In addition, there is no solution to adjust the chromaticity of the signal. It is an object of one or more aspects of the present invention to provide an electronic unit for improving the color and brightness uniformity of an LCD that is directed to simultaneously adjusting the backlight and the LC light modulator. All aspects of the invention relate to modulators that do not consider the application of the light source. In one embodiment, the LED provides backlighting. The present invention not only addresses the non-uniformity due to LED aging, but also helps manufacturers save costs by having fewer cells and tolerating units that do not meet the threshold and will be discarded. This teaching can also be applied to a conventional CCFL backlight consisting of multiple CCPL tubes. In another embodiment, a laser diode (LD) is used as the backlight. When used in backlit LCD panels, the LD operates in a similar manner to LEDs. The main difference is the generation of light. Here, the recombination of electrons and holes is generated by excitation rather than spontaneously, which is of course a necessary condition for laser light emission. The spectrum of the LD is much narrower than that of the LED, resulting in a more clearly defined color. The direct light LED backlight system as an exemplary embodiment is mainly shown in this light source part and related drawings. However, as described, the present invention can be applied to edge-lit LEDs, LDs and CCFLs, and OLEDs (LEDs are special cases of direct LEDs) as long as the displayed light is relevant. SUMMARY OF THE INVENTION 201243808 Embodiments described herein provide, in one aspect, improved backlighting by examining measurable physical output from a display and efficiently creating a correction map to correct pixel defects of the display. A method of color and brightness uniformity of a liquid crystal display (LCD). In addition, the voltage control of the components of the light source can be modified in the same scheme. Embodiments described herein further provide in a further aspect a system for improving the color and brightness uniformity of a backlit liquid crystal display (LCD). The system includes an image generator for displaying a plurality of reference input images on a display; an image capture device for measuring uniformity of the displayed images, the uniformity of the displayed images being physically Measured quantity characterization; a processor for generating a global display corresponding function from the measurement data and creating a corrected grid data map such that the response function becomes a constant 横跨 across the display, and for correcting the correction The grid data map is converted into a functional form and the associated correction function is applied to the second processor of the input signal. The backlights can be generated using different technologies, such as LEDs, CCFLs, and laser diode sets. The embodiments described herein further provide, in another aspect, improved color and brightness uniformity of organic LEDs (0LCDs). Sexual systems and methods. This is an example of a special LED in which the backlight and the display are essentially an integrated unit that makes the brightness and color non-uniformity problems even more relevant. [Embodiment] It will be appreciated that a number of specific details have been described in order to provide a thorough understanding of the exemplary embodiments described herein. However, those skilled in the art will appreciate that the embodiments and domain implementations described herein can be implemented without these specific details. In other instances, well-known methods, procedures, and components are not described in detail to avoid obscuring the embodiments and/or implementations described herein. In addition, the description is not to be considered as limiting the scope of the embodiments described herein, but rather to the structures and operations of the various embodiments and domain embodiments described herein.

圖1示出了典型了 LCD系統’其從色彩和亮度來看處於高級(high level) ’並可被看作光源(也可稱爲背光面板)1〇或11,以及光調製器16 顯示器。該背光面板,.如圖1-A所示,由多個紅、綠和藍(RGB) LED 12 ’該面板稱爲LED·面板°在低成本消費型顯示器中,3 RGB 201243808 LED通常被單個白LED取代。或’該光源可由如圖i_b中示出的多個ccFL 管13或鐳射二極體(未示出)組成❶光源發出的光具有強度分佈14,該強 度分佈14取決於光源的類型、單元數量等,並通常由製造者提供。光調製 器是LCD面板16,爲液晶層。當在其前方加入RGB濾波器層時,該液晶 層由形成RGB像素18的LC陣列組成。光源10和光調製器16是可變部件。 光源可通過應用不同的電壓給LED 12改變(調製),且該光調製器可通過 應用不同的輸入(數位圖像)信號給LC像素18改變。在LCD顯示器系統 中存在附力卩的固定部件,如通常是固定的光導和光散射器,他們可看作是 光源的一部分。偏振光閥、濾色鏡甚至可選感測器都可以是固定的,並看 作是光調至器的一部分。 圖1是進一步可用於平板顯示器,該平板顯示器並不具備背光面板, 如OLED ’在此光調製器面板中的有機化合物自身發射不同量的光以回應輸 入信號。在以下的討論中,該典型實施例可通過將背光面板設置成一致來 進行處理。 圖2示出了兩種常用類型的LED背光機構。一個是直射LED背光20, 在此LED是面向前方並且是在觀察方向直射照亮LCD面板。該LED面板 也可是側光式背光30,在此LED是垂直於觀察方向的。需要附加光學器件, 如反射棱鏡以將發射光朝著LCD面板改向。這使得側光式背光更有利於減 少系統厚度。在圖2的典型實施例中,LED定位於面板的底部朝向上方。 然而,在實踐中,LED可位於兩邊,底部和頂部或任意一側。在這兩種典 型情況下,LED示出爲三個(RGB)組,以產生白光,雖然該示出的方法 也可用于白LED。 均勻性被定義成回應平臺輸入信號組的橫跨顯示器的亮度和色彩差 異。平臺信號或電平是1,在此給全部像素(x,y)分配恒定的數字RGB値: (R(x,y),G(x,y),B(x,y))=(R〇,GO,BO),對於所有的(x,y) (1) 在此,R(x,y)是指像素位置U,y)的R (紅)分量値,G(x,y)和B(x,y)分別 是指像素位置(x,y)的G (綠)分量値和B (藍)分量値。該像素位置(x,y) 是整數値,意指列X和行y,以及顯示器的解析度W X Η的範圍’在此W 是水準解析度且Η是垂直解析度: 8 201243808 〇 <= X <= (W-1)且 0 <= y <= (H-l) (2) 然而,在此處公開的數學公式中,(x,y)被允許包括任何實數。像素色彩 値(R0, GO, B0)是[0,2bn-l]中的整數取値,在此bn是顯示器的位深度,例如 8 ’ 10等。在內部計算(internalcomputation)中,可允許色彩値爲任何實數 値,且當作爲信號輸入到顯示器中時,可調節到允許的整數範圍。 亮度和色彩的均勻性可以可測量物理量的形式定義。定義各種不同的 可測量量來描述亮度和色彩。最廣泛使用的是國際發光照明委員會(CIE) XYZ三刺激値,從該三刺激値可計算其他的相關量。該Y分量是輝度値, 在本領域中表示爲L,其通常稱作亮度或強度,並具有單位堪/ m2 (cd/m2)。 對獲得均勻顯示來說,最小化輝度差異是最關鍵的。X和Z分量是正 確定義色彩所需的附加色彩量,他們的測量單位也是cd/m2。用於顯示的色 彩,具有分解的輝度,以色度値的形式比XYZ的形式更易理解。色度分量 (xc,yc)是以下公式戶斤給出的衍生量(derivedquantity):Fig. 1 shows a typical LCD system 'which is at a high level' in terms of color and brightness and can be regarded as a light source (also referred to as a backlight panel) 1 or 11 and a light modulator 16 display. The backlight panel, as shown in Figure 1-A, consists of multiple red, green, and blue (RGB) LEDs 12 'This panel is called an LED panel. In a low-cost consumer display, 3 RGB 201243808 LEDs are usually single Replace with white LED. Or the light source may be composed of a plurality of ccFL tubes 13 or laser diodes (not shown) as shown in FIG. i_b. The light emitted by the light source has an intensity distribution 14, which depends on the type of the light source and the number of units. Etc. and usually provided by the manufacturer. The light modulator is an LCD panel 16 which is a liquid crystal layer. When an RGB filter layer is added in front of it, the liquid crystal layer is composed of an LC array forming RGB pixels 18. Light source 10 and light modulator 16 are variable components. The light source can be changed (modulated) by applying a different voltage to the LED 12, and the light modulator can be changed to the LC pixel 18 by applying a different input (digital image) signal. There are fixed components attached to the LCD display system, such as the usually fixed light guide and light diffuser, which can be considered part of the light source. Polarizers, color filters, and even optional sensors can be fixed and viewed as part of the light modulator. Figure 1 is further applicable to flat panel displays that do not have a backlight panel, such as an OLED. The organic compound in the light modulator panel itself emits a different amount of light in response to the input signal. In the following discussion, the exemplary embodiment can be processed by setting the backlight panels to be uniform. Figure 2 shows two common types of LED backlight mechanisms. One is a direct LED backlight 20, where the LED is facing forward and is illuminated directly in the viewing direction to illuminate the LCD panel. The LED panel can also be an edge-lit backlight 30 where the LED is perpendicular to the viewing direction. Additional optics, such as reflective prisms, are needed to redirect the emitted light toward the LCD panel. This makes the edge-lit backlight more advantageous for reducing system thickness. In the exemplary embodiment of Figure 2, the LEDs are positioned upwardly at the bottom of the panel. However, in practice, the LEDs can be located on either side, at the bottom and at the top or on either side. In both typical cases, the LEDs are shown in three (RGB) groups to produce white light, although the method shown can also be used for white LEDs. Uniformity is defined as the brightness and color difference across the display in response to the platform input signal set. The platform signal or level is 1, where a constant number of RGB 分配 is assigned to all pixels (x, y): (R(x, y), G(x, y), B(x, y)) = (R 〇, GO, BO), for all (x, y) (1) Here, R(x, y) refers to the R (red) component 値, G(x, y) and the pixel position U, y) B(x, y) refers to the G (green) component 値 and B (blue) component 値 of the pixel position (x, y), respectively. The pixel position (x, y) is an integer 値, meaning column X and row y, and the range of resolution WX 显示器 of the display 'here W is the level resolution and Η is the vertical resolution: 8 201243808 〇<= X <= (W-1) and 0 <= y <= (Hl) (2) However, in the mathematical formula disclosed herein, (x, y) is allowed to include any real number. The pixel color 値(R0, GO, B0) is an integer in [0, 2bn-l], where bn is the bit depth of the display, such as 8'10. In internal calculations, the color 値 can be allowed to be any real number and can be adjusted to the allowed integer range when input as a signal into the display. The uniformity of brightness and color can be defined in the form of a measurable physical quantity. Define a variety of different measurable quantities to describe brightness and color. The most widely used is the International Illumination Commission (CIE) XYZ Tristimulus, from which other related quantities can be calculated. The Y component is a luminance 値, denoted L in the art, which is commonly referred to as brightness or intensity and has a unit kan / m 2 (cd/m 2 ). Minimizing the difference in luminance is the most critical for achieving a uniform display. The X and Z components are the additional amount of color required for positively defined colors, and their unit of measure is also cd/m2. The color used for display, with decomposed luminance, is easier to understand in terms of chroma 値 than XYZ. The chrominance component (xc, yc) is the derivative quantity given by the following formula:

XX

' ~ X + Y+Z z〇 =i-Xc-yc 因爲在色彩科學中,(x,y)通常用於色度値,該c下標是包含在符號內以 區分色度値和空間像素座標。Z-色度zc不是引數因此並不使用。在CIE色 度圖上將色彩色度値作爲座標標示,並定義色彩的純色層面,並將亮度或 輝度的分量去耦。這樣XYZ和xcycY可看作完全定義任何顯示的色彩的亮 度和純色方面的兩個正交系統。因此,XYZ通常是測定量,xcycY通常是用 於描述顏色的量。顯示器中RGB原色的典型的色度値(xc,yc),對於R鄰近 (0.640,0.330),對於 G 鄰近(0.300,0.600),對於 B 鄰近(0.150.0.060)。純白的色 度(或灰電平)也可稱爲色溫或-點。大多數色彩測量器械報告XYZ値和 色度値。 因此,在該空間均勻性或非均勻性中,對於在特定電平(平臺信號) 測量的分量]\4={又1^(^;}可定義成: ⑷ % 均句性=100*(1 - (Mmax - Mmin)/Mmax) 201243808 % 非均勻性=100 - % Uniformity 在此,Mmax和Mmin是在特定的電平、橫跨顯示器中全部像素(也就 是全部(x,y))的測量的分量的最大値和最小値。特別地,給出輝度(亮度) 均勻性如下: % 輝度均勻性=1〇〇*(1 - (Ymax - Ymin)/Ymax) %輝度非均勻性=100 * (Ymax - Ymin)/Ymax @ 在實踐中,與每個像素形成對比,可通過在像素子集測量Μ來計算均 勻性。此處使用的術語均勻性和非均勻性應理解爲它們僅爲兩種不同的觀 點。 對於任何平臺信號,理想的均勻顯示器將具有相同的橫跨全部像素的 測量ΧΥΖ値。這將是橫跨全部電平的100%均勻,這在實踐中是不可能獲得 的。校正技術的目標是改善均勻性使其處於可接受的限度內。例如,在消 費型顯示器中’對於純白(對於8位,級R0=G0=B0=255),>=70%的灰度 均勻度通常看作是足夠的。在其他分量中的均勻性並不考慮。本方法提供 以有效方式提供獲得橫跨多級的更高的均勻性的工具,其對於專業顯示器 來說是必須的,並且可用於提高消費型顯示器的標準。此外,對輝度和色 度的均勻性都進行了處理。因爲色溫或白點是色度値的子集。一旦色度處 理完成後,色溫和白點校正自動完成。 —旦非均勻性被量化並獲得後,他們可電子校正。未決的專利申請 11/649,765描述了一種用於應用色彩和幾何校正的硬體系統。圖3示出了色 彩校正系統100並且其部件在此結合引用。 LCD顯示器中的非均勻性的來源可分類成兩組:a)來源於背光面板(光 源)中的非均勻性;b)來源於LC面板(光調製器)中的非均勻性。這意味 著非均勻性校正可通過調節背光面板或LC面板的變數控制來進行,或者在 最常見的例子中,通過調節背光面板和LC面板的變數控制來處理。 在LCD背光的典型情況中,背光面板的可變控制是應用到LED的電 壓。其他的部件,如散射器是固定的並且不可變的。我們將這些電壓表示 爲向量 201243808 其中’ Vi是第i個LED的電壓,L是LED的總數量。如果將公共電 壓應用到全部的LED上,那麼全部的分量將具有相同的値。該槪念和數學 式將應用到具有i個管的CCFL和LD背光面板。 LC面板的可變控制是單個像素數位RGB値,其爲輸入數位信號自 身。以下符號將可交替地使用以指示像素値: (R(x,y),G(x,y),B(x,y)),或 - ⑺ C (x,y)=(G(x,y),G(x,y),G(x,y)),{1,2,3}={R,G,B} 如果使用平臺電平’接著像素位置相關性將下降: (R,G,B), M "C =(C.,C2,C3) ⑻ 圖4示出了本發明的一個實施例,其中表明並在此解釋了用於非均勻 性校正方法4〇的步驟。在第一步驟4丨,在—個或多個背光(電壓)設置{朽 測重顯示器的均勻性以響應一個或多個平臺信號組必,所述顯示器的均勻 性由任何—個或多個可測量物理量Mi e {χ,γ,ζ,χΐ}表徵。42中該測量的數 據表示爲: (9) ,刖所述,由於非均勻性,測量値取決於像素位置(x,y)、背光源的該 平^號ί賴麵號f。搬每讎光設置,麵量步驟中,全部的光源 分里通常設置成公共値。贼只有亮琴搬正,臟讎麵Μ= γ將被 臟。懸均勻顯示’ μ,雛所有的像素雛是恒定的,並獨立於(x,y)。 非均勻性校正的目的是將該一般可變數變麵取決於輸入信號和背光電壓 的空間恒定値圮: (1〇) 從步驟42測量的數據,在步驟43重建顯示器對任意RGB信號的回 201243808 應。該回應在步驟44中表示爲函數,該函數將要用來計算該校正。每個物-理量具有其自身的回應,允許測量數據寫作如下函數: 岣=0,%(?/) (11) 在重新校準階段45,確定具有均勻測量所需的信號ί和電壓〆的校 正。其尋找恒量的解決方案: (12) 在此’ f是新信號或新像素値,這是由於(X,y)中的非均勻性變化,並 還依賴於輸入像素値。户是LED的新電壓設置,其也可取決於像素値。然 而,如將要示出的’可使得户像素値獨立。該解決方案本質上是在多個變 數中計算倒數: {(?'/}=矿(死) (13) 因此,非均勻性校正可寫作: 0/'}的計算是在已知爲網格點的參數空間中的座標子集完 成的。例如,(x,y)可爲1920x1080解析度顯示器中17x17像素位置子集。其 中有用於此的各種理由: 1) 測量數據可僅在離散點可用。 2) 爲了加速處理,僅測量點子集。 3) 非均勻性差異是平滑的且可從點子集準確測量。 4) 該測量點通常被認爲與LED幾何對應,因此使用更小的子集,因 爲LED的數量比像素解析度小得多。 九 5) 準確計算反解(以變數形式)是不可能的,並且必須數位地完成, 因此通過使用點的子集顯著減少計算時間。 這樣,在步驟46,該計算提供校正網格數據。在校正重建階段47,將 步驟46中獲得的校正網格數據轉換成函數形式,這樣其可應用到全部的像 素位置和色彩値。與等式(11)類似,在步驟48可獲得校正函數: 12 201243808 - &=Pc(x,y,^) V; = Fv (1,^,8) (15) 該函數Fv在第i個LED、給定其初始電壓和輸入像素値以提供新 電壓電平。該校正函數F。是指如像素校正圖或像素圖的縮寫,校正函數Fv 是指如背光校正圖或背光圖的縮寫。校正函數的格式可由將該校正應用到 顯示器的硬體確定。通用硬體有效格式在美國專利7,324,706中有所描述, 在此使用多項式表面函數形式(polynomial surface functional form)來表示數 據點組。 在最終步驟49,可使用硬體電路將該校正圖應用到輸入信號和背光控 制。該硬體評價該地圖並發送新像素値給顯示器控制器,發送新電壓値給 背光控制器。未決的專利申請11/649,765描述了用於在像素圖級應用色彩校 正的硬體系統100 (圖3)。由於高效的函數形式可在低成本FPGA中實施類 似的系統。對於背光調節,相同的硬體可用於評價背光圖並提供新電壓値 給 LED。 非均勻性校正方法40的步驟提供了高效準確的校正LCD顯示器中亮 度和色彩非均勻性的方法。圖5示出了本發明的實施例的槪圖,如採用該 方法的典型系統。該系統包括捕獲裝置52 ,如捕獲並提供參考圖像51的可 測量特徵的色度計,該參考圖像51通常是平臺電平,由輸入圖像生成器58 創建並在LCD面板50上顯示。處理單元(可以是嵌入式處理器或在電腦上 獨立運行的軟體)54針對該待定値分析該測量値並生成校正網格數據,該 校正網格數據包括可校正非均勻性的新像素値圖和LED電壓設置。硬體處 理器56,如專利申請11/649,765中描述的一個,實施和應用該校正到輸入 圖像並遞交到顯示器50。在此非常詳細地介紹該系統的每個部件的功能。 物理量41的測量通常是使用色度計或分光輻射度計執行的。這些裝 置52形成兩種形式:亮度計類型和2D成像照相機類型。分光輻射度計通 常是在給定點或像素測量物理量的點亮度計。可測量特定像素或可測量特 定像素的定義鄰域中的平均値。分光輻射度計是非常準確的裝置,並通常 在校準色度計中使用。色度計可作爲點亮度計或2D成像照相機使用,在該 13 201243808 點亮度計中,可在單個點或在該單個點附近執行測量。在後一形式中,在 2D(x,y)位置空間中同時測量極大量的像素。用戶可指定測量的像素位置。 通常點的規則網格’表示爲N,行乘R列,是從2D照相機影像中提取並用 於計算的。與點亮度計類似,該照相機在測量像素的小定義鄰域上執行平 均。在優選實施例中,將2D成像照相機類型的色度計用於測量,因爲通過 定義,非均勻性是在2D(x,y)位置的測量。另外,色度計的像素鄰域平均處 理使得其自身能良好地表徵非均勻性,因爲視覺感知並不檢測單個像素(除 了 “斷裂(broken) ”像素),而是在鄰域像素上平均。點亮度計能用作點 的2D網格的準確測量。然而,這需要在整個顯示器上物理移動點亮度計, 並且除非測量少量的點,否則這將浪費時間。可使用多個點亮度計,但是 這將是昂貴的。無論如何’該方法與任何特定測量儀器無關,僅需要測量 在X和y方向上採樣的數據點的網格。2D和點色度計能測量所有的相關物 理量’如XYZ三刺激値。在以下的典型討論中,該術語照相機是指2D色 度計。 該測量過程進一步需要選擇一組將要輸入顯示器的平臺參考信號51 (也可稱作信號電平或電平)。可使用商業上可獲的工具,如測試圖樣發生 器製造或提供所需電平組。將要測量的電平的數量和他們的對應像素値, 取決於幾個因素,包括: 1) 非均勻性所在的電平將要表徵。在最常見的例子中,在純白RGB = (255,255,255)計算和校正非均勻性,其中需要測量更少量的電平》 2) 校正的類型,這是僅需要亮度校正、僅需要色彩校正或是同時需要 亮度和色彩校正。 3) 校正的準確性。如果所需的均勻性是非常高的,需要捕獲更多的電 ψ 0 ·, 4) 顯示器非均勻性特性。取決於顯示器的非均句性有多差,如果在純 白僅校正亮度,可能需要很多電平。 5) 整個校正過程的速度。在製造環境中,取決於生產產率,速度是最 重要的因素。測量很多電平可能是不切實際的。 這些因素不僅確定參考電平,還影響在測量階段後的步驟中使用的方 201243808 法和優化。 通過使用色彩疊加原則,可在數量上較大程度地降低參考電平。在 XYZ値方面’該原則規定在附加色彩系統(如LCD)中兩個獨立色彩源的 組合產生的色彩具有的三刺激値爲兩個源的三刺激値之和。在等式中 新色彩=色彩1 +色彩2 色彩 1: (HZ,),色彩 2: (K,z2) 2 2 2 (16) (x,y,Z) = (x1+x2^+y2}z,+z2) LCD上顯示的圖像由3個獨立色彩分量r,g和B組成。該疊加原則 意味著任何色彩(R,G,B)的三刺激値可通過增加R、G和B分量的三刺激値 來計算: ^(RyG,B) = (I?) Z(R,〇,B) = + ZG + Ζβ 因此,顯示器的非均勻性可通過測量純紅、純綠和純藍的電平來完全 表徵,純意味著易[J除了其他分量(像素値〇 )。任何組合色彩,包括灰電平, 可通過單個分量(R,G,Β)的合適和來獲得。使得Nc,C={R,G,B},表示分量c 的純電平量。在最常見的校正橫跨全部像素色彩値的亮度和色彩的例子 中,接下來要測量的電平: 純紅電平:(及,G, 5)=(必,0,0),ί = 1.. 純綠電平:(足 G,5) = (0, ,〇),/ = ,1 …乂 (18) 純藍電平:(足G,5) = (0,0,),灸=1 ..為 &指示位量·(如8)。在實踐中,當剔除兩個分量產生純色(通過設置 15 201243808 像素値爲ο),通過剔除的液晶和他們的濾波器,從背光中連續漏光。這通 過小但是不可忽略的數量破壞等式(18)。該漏光是指如黑電平補償。當全 部的像素都設置成0時(R=G=B=0)測量漏出的光量。爲了校正黑電平補償, 作爲疊加原則的測試,也測量純灰電平,在此(R=G=B) 〇實際上,如果僅完 成輝度校正,通常僅足以測量純灰電平。因此,純灰度的Μ量可增加到參 考電平用於測量 (19) 〇<W, <2b" -1 %指示分配給每個色彩分量用於純灰電平的公共像素値,在最常見的 情形中,將要測量的電平組,總結如: 測量信號電平: (20) 尽)},{(%,%,%)}}' ~ X + Y+Z z〇=i-Xc-yc Because in color science, (x, y) is usually used for chroma 値, the c subscript is included in the symbol to distinguish between chrominance and spatial pixels. coordinate. Z-chrominance zc is not an argument and is therefore not used. The color chromaticity 値 is used as a coordinate on the CIE chromaticity diagram, and the solid color plane of the color is defined, and the luminance or luminance components are decoupled. Thus XYZ and xcycY can be viewed as two orthogonal systems that fully define the brightness and solid color of any displayed color. Therefore, XYZ is usually a measured amount, and xcycY is usually used to describe the amount of color. The typical chromaticity 値(xc,yc) of the RGB primary colors in the display is adjacent to R (0.640, 0.330), adjacent to G (0.300, 0.600), and adjacent to B (0.150.0.060). Pure white color (or gray level) can also be called color temperature or - point. Most color measuring instruments report XYZ値 and chromaticity 値. Therefore, in this spatial uniformity or non-uniformity, for the component measured at a specific level (platform signal)]\4={also 1^(^;} can be defined as: (4) % uniformity = 100* ( 1 - (Mmax - Mmin)/Mmax) 201243808 % Non-uniformity = 100 - % Uniformity Here, Mmax and Mmin are at a specific level, across all pixels in the display (ie all (x, y)) The maximum 値 and minimum 测量 of the measured components. In particular, the luminance (brightness) uniformity is given as follows: % luminance uniformity = 1 〇〇 * (1 - (Ymax - Ymin) / Ymax) % luminance non-uniformity = 100 * (Ymax - Ymin)/Ymax @ In practice, in contrast to each pixel, uniformity can be calculated by measuring Μ in a subset of pixels. The terms uniformity and non-uniformity used herein are understood to mean that they are only Two different perspectives. For any platform signal, an ideal uniform display will have the same measurement 横跨 across all pixels. This will be 100% uniform across all levels, which is not possible in practice. The goal of calibration techniques is to improve uniformity to within acceptable limits. For example, In consumer displays, 'for pure white (for 8 bits, level R0 = G0 = B0 = 255), > = 70% gray uniformity is generally considered sufficient. Uniformity in other components is not considered. The method provides an efficient way to provide a tool that achieves higher uniformity across multiple levels, which is necessary for professional displays and can be used to improve the standards of consumer displays. Furthermore, uniformity of luminance and chromaticity Sex is processed because the color temperature or white point is a subset of the color 値. Once the chromaticity processing is completed, the color temperature and white point correction are automatically completed. Once the non-uniformity is quantified and obtained, they can be electronically corrected. A hardware system for applying color and geometric correction is described in the pending patent application 11/649,765. Figure 3 shows a color correction system 100 and its components are incorporated herein by reference. Sources of non-uniformity in LCD displays can be classified In two groups: a) non-uniformity derived from the backlight panel (light source); b) non-uniformity derived from the LC panel (light modulator). This means that the non-uniformity correction can be made by adjusting the variable control of the backlight panel or the LC panel, or in the most common example by adjusting the variable control of the backlight panel and the LC panel. In the typical case of an LCD backlight, the variable control of the backlight panel is the voltage applied to the LED. Other components, such as the diffuser, are fixed and immutable. We represent these voltages as vectors 201243808 where 'Vi is the voltage of the ith LED and L is the total number of LEDs. If a common voltage is applied to all LEDs, then all components will have the same enthalpy. This mourning and mathematics will be applied to CCFL and LD backlight panels with i tubes. The variable control of the LC panel is a single pixel digital RGB, which is the input digital signal itself. The following symbols will be used alternately to indicate the pixel 値: (R(x, y), G(x, y), B(x, y)), or - (7) C (x, y) = (G(x, y), G(x, y), G(x, y)), {1, 2, 3} = {R, G, B} If the platform level is used' then the pixel position correlation will decrease: (R, G, B), M " C = (C., C2, C3) (8) Figure 4 shows an embodiment of the invention in which the steps for the non-uniformity correction method 4A are indicated and explained herein. In a first step 4, the uniformity of the display is reset in one or more backlights (voltages) in response to one or more platform signal groups, the uniformity of the display being by any one or more The physical quantity Mi e {χ, γ, ζ, χΐ} can be measured. The measured data in 42 is expressed as: (9), 刖, due to non-uniformity, the measurement 値 depends on the pixel position (x, y), the backlight of the backlight, and the face number f. In the setting of each light setting, all the light source points are usually set to public 値. The thief only has a bright piano, and the dirty 雠 Μ = γ will be dirty. Hanging evenly shows 'μ, all the chicks are constant and independent of (x, y). The purpose of the non-uniformity correction is to vary the general variable number depending on the spatial constant of the input signal and the backlight voltage: (1〇) From the data measured in step 42, in step 43 reconstruct the display back to any RGB signal 201243808 should. The response is represented in step 44 as a function that will be used to calculate the correction. Each object-quantity has its own response, allowing the measurement data to be written as follows: 岣=0,%(?/) (11) In the recalibration phase 45, determine the signal ί and voltage 所需 required for uniform measurement Correction. It looks for a constant solution: (12) where 'f is a new signal or a new pixel 値, which is due to non-uniformity variations in (X, y) and also depends on the input pixel 値. The user is the new voltage setting of the LED, which can also depend on the pixel 値. However, as will be shown, the pixels can be made independent. The solution essentially computes the reciprocal in multiple variables: {(?'/}=mine (dead) (13) Therefore, the non-uniformity correction can be written as: 0/'} is calculated as a grid The subset of coordinates in the parameter space of the point is completed. For example, (x, y) can be a subset of 17x17 pixel positions in the 1920x1080 resolution display. There are various reasons for this: 1) Measurement data can be used only at discrete points . 2) To speed up processing, only point subsets are measured. 3) The non-uniformity difference is smooth and can be accurately measured from the subset of points. 4) This measurement point is generally considered to correspond to the LED geometry, so a smaller subset is used because the number of LEDs is much smaller than the pixel resolution. IX 5) Accurate calculation of the inverse solution (in the form of variables) is not possible and must be done digitally, thus significantly reducing computation time by using a subset of points. Thus, at step 46, the calculation provides corrected grid data. In the correction reconstruction phase 47, the corrected grid data obtained in step 46 is converted into a functional form such that it can be applied to all pixel positions and color chirps. Similar to equation (11), a correction function can be obtained at step 48: 12 201243808 - &=Pc(x,y,^) V; = Fv (1,^,8) (15) The function Fv is at the ith LEDs, given their initial voltage and input pixel 値 to provide a new voltage level. This correction function F. It refers to an abbreviation such as a pixel correction map or a pixel map, and the correction function Fv refers to an abbreviation such as a backlight correction map or a backlight map. The format of the correction function can be determined by the hardware that applies the correction to the display. A general hardware effective format is described in U.S. Patent 7,324,706, which uses a polynomial surface functional form to represent a set of data points. In a final step 49, the calibration map can be applied to the input signal and backlight control using a hardware circuit. The hardware evaluates the map and sends a new pixel to the display controller to send a new voltage to the backlight controller. The pending patent application 11/649,765 describes a hardware system 100 (Fig. 3) for applying color correction at the pixel level. A similar system can be implemented in a low cost FPGA due to the efficient function form. For backlight adjustment, the same hardware can be used to evaluate the backlight and provide a new voltage to the LED. The steps of the non-uniformity correction method 40 provide a highly efficient and accurate method of correcting for brightness and color non-uniformity in an LCD display. Fig. 5 shows a schematic view of an embodiment of the present invention, such as a typical system employing the method. The system includes a capture device 52, such as a colorimeter that captures and provides measurable features of the reference image 51, which is typically a platform level, created by the input image generator 58 and displayed on the LCD panel 50. . A processing unit (which may be an embedded processor or software running independently on a computer) 54 analyzes the measurement 针对 for the to-be-determined 値 and generates corrected grid data including a new pixel map of correctable non-uniformity And LED voltage settings. The hardware processor 56, as described in one of the patent applications 11/649,765, implements and applies the correction to the input image and submits it to the display 50. The function of each component of the system is described in great detail here. The measurement of the physical quantity 41 is typically performed using a colorimeter or a spectroradiometer. These devices 52 come in two forms: a luminance meter type and a 2D imaging camera type. A spectroradiometer is typically a point luminance meter that measures physical quantities at a given point or pixel. The average 値 in a defined neighborhood of a particular pixel or measurable specific pixel can be measured. Spectroradiometers are very accurate devices and are commonly used in calibration colorimeters. The colorimeter can be used as a point luminance meter or a 2D imaging camera in which measurements can be performed at or near a single point. In the latter form, a very large number of pixels are simultaneously measured in the 2D (x, y) position space. The user can specify the pixel location of the measurement. Usually the regular grid of points 'represented as N, row by R column, is extracted from the 2D camera image and used for calculation. Similar to a point luminance meter, the camera performs an average over a small defined neighborhood of measurement pixels. In a preferred embodiment, a 2D imaging camera type colorimeter is used for the measurement because by definition, the non-uniformity is a measurement at the 2D (x, y) position. In addition, the pixel neighborhood averaging of the colorimeter allows itself to characterize non-uniformity well, since visual perception does not detect a single pixel (except for "broken" pixels), but rather averages on neighboring pixels. The point luminance meter can be used as an accurate measure of the 2D grid of points. However, this requires physically moving the point luminance meter across the display, and this will waste time unless a small number of points are measured. Multiple point luminance meters can be used, but this would be expensive. In any case, the method is independent of any particular measuring instrument and only needs to measure the grid of data points sampled in the X and y directions. The 2D and point colorimeter can measure all relevant physical quantities' such as XYZ tristimulus. In the typical discussion below, the term camera refers to a 2D colorimeter. The measurement process further requires selecting a set of platform reference signals 51 (also referred to as signal levels or levels) to be input to the display. Commercially available tools, such as test pattern generators, can be used to provide or provide the desired level set. The number of levels to be measured and their corresponding pixels 取决于 depends on several factors, including: 1) The level at which the non-uniformity is to be characterized. In the most common example, pure white RGB = (255, 255, 255) is calculated and corrected for non-uniformity, where a smaller amount of level needs to be measured. 2) Type of correction, which requires only brightness correction, only color correction or both Brightness and color correction are required. 3) Accuracy of calibration. If the required uniformity is very high, more electrons need to be captured. 0,, 4) Display non-uniformity characteristics. Depending on how uneven the non-uniformity of the display is, if you only correct the brightness in pure white, you may need a lot of levels. 5) The speed of the entire calibration process. In a manufacturing environment, speed is the most important factor depending on the production yield. Measuring many levels may be impractical. These factors not only determine the reference level, but also the method 201243808 method and optimization used in the steps following the measurement phase. By using the color superposition principle, the reference level can be reduced to a large extent in number. In terms of XYZ値, this principle stipulates that the color produced by the combination of two independent color sources in an additional color system (such as LCD) has a tristimulus that is the sum of the three sources of tristimulus. In the equation new color = color 1 + color 2 color 1: (HZ,), color 2: (K, z2) 2 2 2 (16) (x, y, Z) = (x1 + x2^ + y2} z, +z2) The image displayed on the LCD consists of three independent color components r, g and B. This superposition principle means that the tristimulus of any color (R, G, B) can be calculated by increasing the tristimulus R of the R, G, and B components: ^(RyG,B) = (I?) Z(R,〇 , B) = + ZG + Ζβ Therefore, the non-uniformity of the display can be fully characterized by measuring the levels of pure red, pure green and pure blue, pure means easy [J in addition to other components (pixels). Any combination of colors, including gray levels, can be obtained by the appropriate sum of individual components (R, G, Β). Let Nc, C = {R, G, B}, represent the pure level of component c. In the most common example of correcting the brightness and color across all pixel colors, the next level to measure: Pure Red Level: (and, G, 5) = (Must, 0, 0), ί = 1. Pure green level: (foot G, 5) = (0, , 〇), / = , 1 ... 乂 (18) Pure blue level: (foot G, 5) = (0,0,), Moxibustion = 1.. is & indicating the amount of position (such as 8). In practice, when the two components are stripped to produce a solid color (by setting 15 201243808 pixels to ο), the rejected liquid crystals and their filters are continuously leaked from the backlight. This destroys equation (18) by a small but non-negligible number. This light leakage refers to, for example, black level compensation. The amount of light leaked is measured when all of the pixels are set to 0 (R = G = B = 0). In order to correct the black level compensation, as a test of the superposition principle, the pure gray level is also measured, where (R = G = B) 〇 In fact, if only the luminance correction is completed, it is usually only sufficient to measure the pure gray level. Therefore, the amount of pure gray scale can be increased to the reference level for measurement (19) 〇 < W, < 2b " -1 % indicates the common pixel 分配 assigned to each color component for pure gray level, In the most common cases, the level groups to be measured are summarized as follows: Measurement signal level: (20) End)}, {(%,%,%)}}

i = = \".NG\k = \···ΝΒ·,1 = \..,NW 實際上,可根據上面討論的因素測量更小的子集。 除了不同電平的數據,也需要在不同背光電壓設置的測量數據。原則 上,每個LED的電壓降單獨變化,且測量三刺激點擴展函數(PSF )。這樣, PSF是指單個LED在(X,y)空間中光的擴展。在實踐中,改變各個LED並確 定三刺激値在電壓和(X,y)空間中的變化是非常難並且耗時的。作爲替代, 對於全部的LED,可將電壓設置改變到公共値,且測量三刺激量以確定電 壓相關性。這本質上忽略PSF中包含的(X,y)相關性。不同的電壓設置由以 下內容指示: 測量電壓設置: (21)i = = \".NG\k = \·······1 = \..,NW In fact, a smaller subset can be measured based on the factors discussed above. In addition to different levels of data, measurement data is also required at different backlight voltage settings. In principle, the voltage drop of each LED varies individually and the tristimulus point spread function (PSF) is measured. Thus, PSF refers to the expansion of light in a (X, y) space by a single LED. In practice, it is very difficult and time consuming to change individual LEDs and determine the three stimuli in the voltage and (X, y) space. Alternatively, for all LEDs, the voltage setting can be changed to a common 値 and the three stimuli can be measured to determine the voltage dependence. This essentially ignores the (X,y) correlation contained in the PSF. The different voltage settings are indicated by the following: Measurement voltage settings: (21)

Vsi,i = l...Nv 在第 i 設置:= 對於給定電壓,將相同的設置應用到全部LED。該公共電壓Vsi是指 如公共或初始背光設置。這需看作如背光控制,其確定全部電壓的公共狀 201243808 態(common state )。這樣的控制通常在顯示器OSD中提供。在(21)中, 電壓設置成與控制相等,但是該控制通常爲歸一化量,與LED電壓直接成 比例。可改變該LED電壓以在非均与性區域內提供更高或更低的光強(輝 度),如將在以下所述。可也改變他們以調節RGB LED的色彩均勻性。然 而在實踐中,這是不可靠的,因爲色度校正更精細,要求更精確的控制。 因此,彩色校正可以由像素圖進行更好的處理。在實踐中,在電壓變化方 面,RGB LED可看作與白LED處於同一地位的單元。我們使用這來簡化下 列等式,雖然該方法容易擴展以具有單獨的RGB電壓控制。 爲了生成背光校正圖,必須知曉PSF函數,其規定了來自單個LED 的光在(X, y)空間內展開。單個LED將照亮很多像素且通過背光校正圖改變 其電壓降,將會影響很多像素。可通過開啓單個LED到其最大値和捕獲(X,y) 中的強度變化,在背光面板測量PSF函數。該PSF也可通過合適的數學模 型(如高斯)模擬。或,在沒有PSF函數的情況下,可使用迭代方法來計 算背光校正圖。將討論這兩種情況。在一個實施例中,PSF是給定的(提供 的,估計的或是直接測量的)。在另一實施例中,PSF是未知的。在RGB LED 背光的典型例子中,來自三個LED的光組合以形成具有廣闊光譜分佈、入 射到LC.面板上的白光。如果單個LED並沒有被單獨調節以改變白光的色 度,單個PSF,與白LED PSF類似,可用於描述3 LED的聯合作用。這與 從電壓調節觀點將它們看作一體類似。 對於圖5中示出的具體系統,該測量通過以下步驟執行··輸入圖像生 成器58在給定背光(電壓)設置下、輸入在(20)中的每個電平給顯示器 50 ’並使得照相機52捕獲顯示器輸出。如圖5所示,照相機52放置在顯示 器50的前面,定位成盡可能大地捕獲整個顯示器到其感測器上。該照相機 儀用戶一樣準確觀察顯示器,這樣照相機提供的非角勻性測量匹配可被用 戶感知的非均勻性測量。這意味著當圖像是被用戶的視覺系統感知時,本 發明在最終點校正整個顯示器系統的非均勻性,而不去考慮非均勻性的來 源(LED,散射器、LC面板等等)。校正在顯示器的輸出的最終圖像在獲得 高品質顯示晕#常關鍵的。重複該過程用於(21)的全部背光設置。 對於照相機捕獲的圖像,本質上可提取該物理量用於全部像素。雖然 17 201243808 照相機的解析度限制能夠準確測量的像素數量,但該數量是遠大於通常獲 取的數據點的數量的。全部的色度計裝備有用於提取數據用於任何用戶指 定網格點組的軟體。數據可用於全部像素,但是小得多的子集通常用於計 算,因爲均勻性是光滑改變的函數(smoothly varying function),其在大量像 素上改變並且不基於每個像素成分(Pixel basis)。獲得測量數據的像素位 置,取Ny行乘N*列的規則網格,可表示爲: 在測量的α列,6行的像素:(Ά ),a = 1...%,Z? = 1…义 (22) 在一個典型設置中,出於說明的目的,使用輻射成像有限公司(Radiant Imaging Inc)的2D色度計PM-1423F。測量數據42,部分的以不同的圖表顯 示。全部的三刺激値量都使用單位cd/m2。圖ό示出了在默認背光設置爲0、 對於電平(192,192,192)(也就是中-高灰電平)、測量的橫跨顯示器的ΧΥΖ三 刺激値(Υ也稱作輝度L·)。該顯示器是1920x1080解析度,χ座標範圍是 [0,1920],且y座標範圍是[0,1080]。顯示器的原點是左上方,其X座標水準 增加到右方,且y座標垂直增加到底部。該電壓設置是“歸一化”(也就 是線性成比例和移位元)-16到+16的無單位範圍,其-16對應於近〇伏。圖 7示出了相同數據的3D圖表。圖8示出了在相同電平橫跨螢幕的色度値(xc, yc)的2D等高線圖。爲了使該圖表更加清楚,該等高線被去除。對於全部的 電平,可以獲得2D/3D圖表。圖10示出了背光設置爲0、8W (灰度)、橫 跨螢幕的7x7像素位置的子集(網格點)的R,G和B電平的輝度(Y)値 的圖表。(在計算中實際上使用更大數量的網格點,但是在圖表中爲了清楚 起見,僅示出較小的子集)。如圖9所示,該網格點位置,從中央開始在χ 和y相等間隔,疊加到顯示器的圖像上。在該典型數據中,該電平取(對 於8位元顯示): ·· · . 測JJ1 電平:{32,64,96,128, 160,192, 224,255} (23) 對於給定電平,在不同像素的測量値可看作彼此垂直移置(displaced) (也就是’像素的Y不同)。如果沒有非均勻性,對於給定電平,全部像素 點將是一致昀。圖11和丨2示出了用於三刺激値X和Z的相同寧據。應注 意’ X ’ Y和Z的最高貢獻分別來自於R,G和B分量,如從三刺激回應分 201243808 佈曲線圖所預料的。另外,數據平均跟隨冪定律函數形式(power law functional form)。如從不同的圖表戶斤見,在亮度和色彩中,該顯示器具有橫 跨所有電平的非均勻性,表徵爲XYZ或中的變化。在中-灰電平 (192,1双192),輝度和色彩中的均勻性以及對應的非均勻性,在表1中示出。 表1 -校正前的均勻性統計數據 物珲暈 %均勻性 %非均勻性 平均 三刺激値X 57.56 42.44 37.53 cd/m2 三刺激値Y (輝度) 58.73 41.27 40.58 cd/m2 三刺激値Z 52.07 47.93 52.12 cd/m2 **色度心 93.85 6.15 0.2882 **色度W 91.03 8.97 0.3119 三刺激値中的非均勻性是非常大的,橫跨顯示器的輝度僅58.73%均 勻。色度座標的非均勻數量是易誤解的(因此,**標記),並像是建議色彩 是均勻的。因爲色度値是〜0.3階(order),即使在非均勻性顯著時,從等式 (4)計算的%均勻値偏大。對於色度,0.02階的變化可見。因此,考慮三 刺激値更加準確,在此X和Z中的非均勻性將導致色彩中的可感知的顯著 的非均勻性。在類似的方式中,可在全部測量電平計算非均勻値。特定的 測量顯示器在輝度和色彩中具有極大量的非均勻性,其以LCD顯示器爲代 表。在此,來自示例實驗的數據用於參照圖5詳細描述本發明的各個實施 例。 改變背光電壓設置,在同一 7x7像素位置、對於灰電平192和255的 三刺^値,示例結果可分別從圖13和14的圖表中可見^該電壓控制可設置 到[0Λ 16]。如(21)中所討論的,將相同的設置應用ΐί全部的LED。對於 給定設置的像素位置,再將非均勻性看作是垂直移置的三朿撇値。與橫跨 像素値的差異不同(圖10-12),電壓空間中的差異看來是非常線性的。這 是LCD背光單元的公共行爲,並且可用於簡化回應計算。圖15示出了輝度 Y的差異,其作爲像素値(用於純灰電平)和背光設置的函數-這些點由網 201243808 格(mesh)連接。像素空間中的功率形式(powerform)和來自電壓空間的 線性清楚可見。 物理測量完成後,下一步是重建顯示器回應43和確定回應函數44。 這本質上意指轉換離散測量網格數據42到函數形式(11 ),這樣可爲全部電 平、全部LED電壓設置和全部像素位置計算校正。首先定義不同回應函數 44,每個物理量XYZ,具有獨立回應函數44 (i=X,Y,Z): (24) 回應函數44可解耦到兩個分量。如圖1中所示’從LCD顯示器上的 構造(architecture),背光面板10和LC面板16連續作用。背光面板10爲 光源,產生前向入射(front incident)到LC面板16上的光’接著’採用像 素値修正這些光,最後的回應是來自背光的光和像素修正的乘積。這意味 著,該回應可寫成背光回應斤和像素回應矿的乘積’其中前者取決於電壓 而後者取決於電平:Vsi,i = l...Nv In the ith setting:= For a given voltage, apply the same settings to all LEDs. The common voltage Vsi is referred to as a common or initial backlight setting. This needs to be seen as a backlight control that determines the common state of the full voltage 201243808 (common state). Such control is typically provided in the display OSD. In (21), the voltage is set equal to the control, but the control is usually a normalized amount, which is directly proportional to the LED voltage. The LED voltage can be varied to provide a higher or lower intensity (luminance) in the non-uniform region, as will be described below. They can also be changed to adjust the color uniformity of the RGB LEDs. However, in practice, this is unreliable because the chromaticity correction is more subtle and requires more precise control. Therefore, color correction can be better handled by the pixmap. In practice, RGB LEDs can be viewed as units in the same position as white LEDs in terms of voltage variations. We use this to simplify the equation below, although this method is easy to extend to have separate RGB voltage control. In order to generate a backlight correction map, it is necessary to know the PSF function, which stipulates that light from a single LED is spread out in the (X, y) space. A single LED will illuminate many pixels and change its voltage drop through the backlight correction map, which will affect many pixels. The PSF function can be measured in the backlight panel by turning on the intensity variation of a single LED to its maximum chirp and capture (X, y). The PSF can also be modeled by a suitable mathematical model such as Gaussian. Or, without the PSF function, an iterative method can be used to calculate the backlight correction map. These two situations will be discussed. In one embodiment, the PSF is given (provided, estimated, or directly measured). In another embodiment, the PSF is unknown. In a typical example of an RGB LED backlight, the light from the three LEDs combine to form a white light with a broad spectral distribution that is incident on the LC. panel. If a single LED is not individually tuned to change the chromaticity of the white light, a single PSF, similar to the white LED PSF, can be used to describe the combined effect of the 3 LEDs. This is similar to treating them as one from the point of view of voltage regulation. For the particular system illustrated in Figure 5, the measurement is performed by the following steps: • The input image generator 58 inputs each level in (20) to the display 50' at a given backlight (voltage) setting and Camera 52 is caused to capture the display output. As shown in Figure 5, camera 52 is placed in front of display 50 and positioned to capture the entire display as much as possible onto its sensor. The camera user views the display as accurately as the camera provides such non-angular uniformity measurements that the user can detect non-uniformity measurements that are perceived by the user. This means that when the image is perceived by the user's visual system, the present invention corrects the non-uniformity of the entire display system at the final point, without regard to sources of non-uniformity (LEDs, diffusers, LC panels, etc.). Correcting the final image at the output of the display is often critical in obtaining high quality display halo #. This process is repeated for all backlight settings of (21). For images captured by the camera, this physical quantity can essentially be extracted for all pixels. Although the resolution of the 17 201243808 camera limits the number of pixels that can be accurately measured, the number is much larger than the number of data points that are typically acquired. All colorimeters are equipped with software for extracting data for any user-specified grid point group. Data can be used for all pixels, but a much smaller subset is typically used for calculations because uniformity is a smoothly varying function that changes over a large number of pixels and is not based on each pixel component. Obtain the pixel position of the measurement data, take the rule grid of Ny row by N* column, which can be expressed as: In the measured α column, the pixels of 6 rows: (Ά), a = 1...%, Z? = 1 ... (22) In a typical setup, Radiant Imaging Inc's 2D colorimeter PM-1423F was used for illustrative purposes. The measurement data 42 is partially displayed in a different chart. All three stimuli were measured in units of cd/m2. Figure ό shows the default backlight setting to 0, for the level (192, 192, 192) (that is, the medium-high gray level), the measured stimuli across the display Υ (also known as luminance L) ·). The display is 1920x1080 resolution, the χ coordinate range is [0,1920], and the y coordinate range is [0,1080]. The origin of the display is the upper left, the X coordinate level is increased to the right, and the y coordinate is increased vertically to the bottom. The voltage setting is a "normalized" (i.e., linear proportional and shifted element) -16 to +16 unitless range, with -16 corresponding to near 〇. Figure 7 shows a 3D chart of the same data. Figure 8 shows a 2D contour plot of the chrominance 値(xc, yc) across the screen at the same level. In order to make the chart clearer, the contour is removed. For all levels, a 2D/3D chart can be obtained. Figure 10 shows a graph of the luminance (Y) R of the R, G and B levels of a subset (grid point) of the 7x7 pixel position of the backlight set to 0, 8 W (grayscale). (A larger number of grid points are actually used in the calculation, but only a smaller subset is shown in the chart for clarity). As shown in Fig. 9, the grid point position is equally spaced from 中央 and y from the center and superimposed on the image of the display. In this typical data, this level is taken (for 8-bit display): ··· · Measure JJ1 level: {32,64,96,128, 160,192, 224,255} (23) For a given level, in different pixels Measurements can be seen as being vertically displaced from each other (ie, 'the pixel's Y is different'). If there is no non-uniformity, all pixels will be consistent for a given level. Figures 11 and 2 show the same evidence for the three stimuli 値X and Z. It should be noted that the highest contributions of 'X' Y and Z are derived from the R, G and B components, respectively, as predicted from the tristimulus response score 201243808. In addition, the data average follows a power law functional form. As can be seen from the different charts, in brightness and color, the display has non-uniformities across all levels, characterized by changes in XYZ or medium. At medium-gray levels (192, 1 pair 192), uniformity in luminance and color, and corresponding non-uniformities, are shown in Table 1. Table 1 - Uniformity statistics before calibration. Halo% uniformity % Non-uniformity Average tristimulus 57X 57.56 42.44 37.53 cd/m2 Tristimulus 値Y (luminance) 58.73 41.27 40.58 cd/m2 Tristimulus 値Z 52.07 47.93 52.12 cd/m2 ** Chromatic Heart 93.85 6.15 0.2882 ** Chromaticity W 91.03 8.97 0.3119 The non-uniformity in the triple stimuli is very large, and the luminance across the display is only 58.73% uniform. The non-uniform number of chromaticity coordinates is misleading (hence, ** mark) and suggests that the color is uniform. Since the chromaticity 値 is ~0.3 order, even when the non-uniformity is significant, the % uniform enthalpy calculated from the equation (4) is large. For chromaticity, a change of 0.02 steps is visible. Therefore, considering the three stimuli is more accurate, the non-uniformity in X and Z here will result in a perceptible significant non-uniformity in the color. In a similar manner, non-uniform chirps can be calculated at all measurement levels. A particular measurement display has a very large amount of non-uniformity in luminance and color, which is represented by an LCD display. Here, the data from the example experiments are used to describe various embodiments of the present invention in detail with reference to FIG. Changing the backlight voltage setting, at the same 7x7 pixel position, for the gray levels 192 and 255, the sample results can be seen from the graphs of Figures 13 and 14, respectively. The voltage control can be set to [0Λ16]. As discussed in (21), the same settings are applied to all LEDs. For a given set of pixel locations, the non-uniformity is treated as a three-way vertical shift. Unlike the difference across the pixel ( (Figure 10-12), the difference in voltage space appears to be very linear. This is a common behavior of LCD backlight units and can be used to simplify response calculations. Figure 15 shows the difference in luminance Y as a function of pixel 値 (for pure gray level) and backlight settings - these points are connected by the mesh 201243808 mesh. The power form in the pixel space and the linearity from the voltage space are clearly visible. After the physical measurement is completed, the next step is to reconstruct the display response 43 and determine the response function 44. This essentially means converting the discrete measurement grid data 42 to a functional form (11) so that corrections can be calculated for all levels, all LED voltage settings, and all pixel locations. First, different response functions 44 are defined, each physical quantity XYZ, having an independent response function 44 (i = X, Y, Z): (24) The response function 44 can be decoupled to two components. As shown in Fig. 1 'from the architecture on the LCD display, the backlight panel 10 and the LC panel 16 continue to function. The backlight panel 10 is a light source that produces a front incident light onto the LC panel 16 'and then' corrects the light with pixels ,, the final response being the product of the light from the backlight and the pixel correction. This means that the response can be written as the product of the backlight response and the pixel response mine, where the former depends on the voltage and the latter depends on the level:

Ft (X, = Ft (x, y, h x Ftp (X, y, 6 (25) 此外,(25)的乘積形式意味著可在固定電壓硏究該回應’接著在電 壓參數中功能性連接這些固定電壓的回應。該連接可在校正階段做出。這 樣,在給定電壓’每個數據集所需的回應如下: 为每個設置計算的€〇,少,6,〆 (26) lit外,通過利用每個像素在LCD顯示器中單獨運作並且不受鄰近像素 的影響的事實,可進一步縮減。在給定像素的校正僅取決於在該像素的回 應,此,可爲全部像素單獨計算該回應和校正。回應的(x,y)相關性可隨 著:對在每個測量像素位置計算的下列步驟的理解而降低: 厂((5),計算每個測量像素位置(xfl,h)和每個置 (27) 接下來,可採用疊加原則來進一步簡化回應形式。根據等式(17)任 何RGB色彩的XYZ回應是R,G和B的分量回應和。使得β爲測量量 ,_e{U,幻的回應函數44,這是應用純電平;’£{/^,5}的結果。接著(27) 20 201243808 意味著:Ft (X, = Ft (x, y, hx Ftp (X, y, 6 (25) In addition, the product form of (25) means that the response can be studied at a fixed voltage] and then functionally connected in the voltage parameters Fixed voltage response. This connection can be made during the calibration phase. Thus, the response required for each data set at a given voltage is as follows: Calculated for each setting, less, 6, 〆 (26) lit By reducing the fact that each pixel operates alone in the LCD display and is unaffected by neighboring pixels, the reduction can be further reduced. The correction at a given pixel depends only on the response at that pixel, which can be calculated separately for all pixels. Response and Correction. The (x,y) correlation of the response can be reduced with an understanding of the following steps calculated at each measurement pixel location: Factory ((5), calculate each measurement pixel position (xfl, h) And each set (27) Next, the superposition principle can be used to further simplify the form of response. The XYZ response of any RGB color according to equation (17) is the sum of the components of R, G and B. Let β be the measured quantity, _e {U, phantom response function 44, which is applied pure level; '£{/^, 5} The results are then (27) 20 201 243 808 means:

Ft (¾ = FtR (R) + (G) + FtB (β), i e {X, Y, Z} -紅分量回應函數 綠分量回應函數 (28) if -藍分量回應函數 這樣簡化了回應函數44的確定以尋找9函數疗,其遵循圖10-12中第 2-第4圖表所描述的數據。這些回應在固定的背光設置並且可稱作像素回 應,因爲他們依賴像素色彩電平。在僅需要灰電平(W=R=G=B)的輝度校正 中,(28)簡化爲單個函數:Ft (3⁄4 = FtR (R) + (G) + FtB (β), ie {X, Y, Z} - Red component response function green component response function (28) if - blue component response function simplifies response function 44 The determination is to look for a 9-function treatment that follows the data described in Figures 2-12 of Figure 10-12. These responses are set in a fixed backlight and can be called pixel responses because they rely on pixel color levels. In the luminance correction requiring gray level (W=R=G=B), (28) is reduced to a single function:

Fy(^) = Frw(W),^=(W,W,W) (29) 函數(29)將遵循圖10的第一圖表中的灰電平數據。僅灰電平的輝度 校正是LCD顯示器中非均勻性校正的公共需求,特別是當關注速度和成本 的時候。在本發明的統一方法中,僅輝度校正是在相同的方案中處理。與 灰電平Y回應類似,X和Z的函數爲定義的π),然而這些在實踐 中很少使用。如上所述,在像素相關性後,將電壓相關性納入考慮。這需 要背光(電壓)相關性,也就是,該函數表示圖13-14中在特定電平的數據。 該背光回應可表示爲: X = FJ (Π -背光設置的X回應 y = < (Π -背光設置的Y回應 (30) Z =砑(1〇 -背光設置的z回應 雖然像素回應是在固定電壓,但是背光回應確是在固定色彩電平。對 於最常見的校正’僅使用純白的背光回應(圖14)或使用少量的灰電平的 背光回應。與像素回應類似,該背光回應是在每個像素位置(〜,%)確定的。 回應函數44到(28 )的簡化取決於疊加等式(Π )的有效性。給定疊 加誤差,漏光產生的黑電平是破壞該等式的一個因素。偏差(discrepancy) 的可能來源是顯示器RGB原色或照相機濾波器與理想狀態間的差異。因 此,在計算回應之前,調節這些實際差異是非常重要的。爲了調節黑階或 其他因寒,在每倜電平,將r,G和B的XYZ測量値的和與同一灰階 (r=G=B=W)的XYZ測量値進行比較,這些由於非理想行爲產生的差別’叫 21 201243808 做△疊加(ms,…),爲: AXs=Xw-(Xr+Xg+Xb) = ^W ~{Yr+^G+Yb) (31) = Z妒-(Zfi + ZG + Zfl) 在平均多個測量像素以後,圖16中可見三刺激値的差別。總的來說, 除了高電平的Y和Z以外,與理想特性的偏差是非常小的。當計算純R,G 和B回應時,其他的2像素分量是剔除的(設置爲〇),然而光仍然從剔除 的液晶中漏出。在增加這三個回應之後,與計算對應的灰電平的例子相比, 漏光(也稱作黑電平)被不正確地增加了 ό倍。對於輝度γ,純灰度實際 上比和的値更大,這是可以理解的,因爲全部的波道(channel)同時爲〇 ’ 記錄的強度可能稍高。爲了校正疊加錯配,通過該△調節測量數據以確保R ’ G,B和W數據的匹配。該校正可寫作: 以校正的) = 忑(校正的) = Z,+ _rz(AZs (32) Ύ'/χι =Σ^< = R,g,bFy(^) = Frw(W), ^=(W, W, W) (29) The function (29) will follow the gray level data in the first graph of Fig. 10. Gray-only luminance correction is a common requirement for non-uniformity correction in LCD displays, especially when it comes to speed and cost. In the unified method of the present invention, only luminance correction is processed in the same scheme. Similar to the gray level Y response, the functions of X and Z are defined π), however these are rarely used in practice. As mentioned above, voltage correlation is taken into account after pixel correlation. This requires backlight (voltage) correlation, that is, the function represents data at a particular level in Figures 13-14. The backlight response can be expressed as: X = FJ (Π - backlight set X response y = < (Π - backlight set Y response (30) Z = 砑 (1〇 - backlight set z response although the pixel response is in Fixed voltage, but the backlight response is indeed at a fixed color level. For the most common corrections, use only a pure white backlight response (Figure 14) or a small gray level backlight response. Similar to the pixel response, the backlight response is Determined at each pixel position (~, %). The simplification of the response functions 44 to (28) depends on the validity of the superposition equation (Π). Given the superposition error, the black level produced by the light leakage is destroying the equation. One factor. The possible source of discrepancy is the difference between the display RGB primaries or the camera filter and the ideal state. Therefore, it is important to adjust these actual differences before calculating the response. In order to adjust the black level or other cold At each 倜 level, the sum of the XYZ measurement r of r, G, and B is compared with the XYZ measurement 同一 of the same gray level (r=G=B=W), and the difference due to non-ideal behavior is called 21 201243808 Do △ superposition (m s,...), is: AXs=Xw-(Xr+Xg+Xb) = ^W ~{Yr+^G+Yb) (31) = Z妒-(Zfi + ZG + Zfl) After averaging multiple measurement pixels The difference between the three stimuli 可见 can be seen in Figure 16. In general, the deviation from the ideal characteristic is very small except for the high level Y and Z. When calculating the pure R, G and B responses, the other 2 The pixel component is culled (set to 〇), however the light still leaks out of the rejected liquid crystal. After adding these three responses, the light leakage (also called black level) is compared to the example of calculating the corresponding gray level. It is incorrectly increased by a factor of 。. For luminance γ, the pure gradation is actually larger than the sum of 和, which is understandable because the total channel may be 〇' the intensity of the recording may be slightly higher. In order to correct the superposition mismatch, the measurement data is adjusted by this △ to ensure the matching of the R ' G, B and W data. The correction can be written as: corrected) = 忑 (corrected) = Z, + _rz (AZs (32) Ύ'/χι =Σ^< = R,g,b

i i I r-因數確定疊加校正在R,G和B分量中的擴展,並可是可編程的。 將他們全部設爲〇意味著不對疊加誤差進行校正。例如,可採用下列擴展:The i i I r-factor determines the extension of the superposition correction in the R, G and B components and can be programmable. Setting them all to 〇 means that the overlay error is not corrected. For example, the following extensions can be used:

rXR = ^rXG ~rXB VYR ~ rYG ^ rra = (33) rZR = rZG ~ ^^rXB = ^ Λ'- 該擴展是基於下列事實,X和z分別朝著R和B更爲加權(more weighted),而Y更關於G對稱。圖17中示出對於三刺激値Z,具有應用的 黑電平補償校正的數據。可能的是,該校正導致XYZ負値-這些可約等於〇 或可採用替換的擴展來避免負値。以下將採用其來完成校正(33)。 已定義了各種回應,可使用數據建模的方法來計算函數44。與本發明 22 201243808 相關的兩個主要方法是:數據擬合或內插;以及使用已知數學模型來表示 數據。然而,應理解,任何數據建模方法都可以使用。 在第一方法中,通過回應函數44擬合和內插該數據點。擬合是優選 的,因爲它更不容易收到測量誤差的影響。如果已知數據是非常準確的’ 可使用內插。在當前的典型討論中,“最小二乘法擬合”方法用於建模數 據。商業套裝軟體可用於執行最小二乘法擬合。擬合常用的基是多項式基。 在本發明的示例性說明中,對數據做立體(三次)多項式擬合’但是在等 式中次數是通用的(表示爲d)。擬合方法的變形是使用一系列的擬合函數; 也就是,回應由不同的擬合局部表示。分段線性函數僅僅是例子。因爲在 給定電平的校正是局部的(可認爲變化較小)’最好地表示該回應的函數可 在不同電平修正。不需要使用全局函數。對於一電平(如255),第一多項 式效果最佳,但對於另一電平(如192),可使用不同的多項式。 第二方法採用基於已知顯示器特1生的特定模型。如果僅少量數據點可 用或該數據點是不可靠的時,該方法特別有用。對於LCD顯示器,強度被 認爲按照冪定律作用。這使得可在最紅、綠、藍或白時、從少至一個測量 電平估計響應函數44。如果在最白W™» (255)的輝度是Y- ’那麼,可使用 冪定律函數估計回應函數(29):rXR = ^rXG ~rXB VYR ~ rYG ^ rra = (33) rZR = rZG ~ ^^rXB = ^ Λ'- The extension is based on the fact that X and z are more weighted towards R and B, respectively. And Y is more symmetrical about G. The data with the applied black level compensation correction for the triple stimulus 値Z is shown in FIG. It is possible that this correction results in XYZ negative 値 - these can be approximately equal to 〇 or alternative extensions can be used to avoid negative 値. This will be used to complete the correction (33). Various responses have been defined and the function 44 can be calculated using a method of data modeling. The two main methods associated with the present invention 22 201243808 are: data fitting or interpolation; and using known mathematical models to represent the data. However, it should be understood that any data modeling method can be used. In the first method, the data points are fitted and interpolated by a response function 44. Fitting is preferred because it is less susceptible to the effects of measurement errors. If the data is known to be very accurate, 'interpolation can be used. In the current typical discussion, the “least squares fit” method is used to model the data. The business suite software can be used to perform a least squares fit. The commonly used basis for fitting is a polynomial basis. In the exemplary illustration of the invention, a stereo (cubic) polynomial fit is performed on the data 'but the number of times in the equation is general (denoted as d). The deformation of the fitting method is to use a series of fitting functions; that is, the responses are represented by different fitting parts. Piecewise linear functions are just examples. Since the correction at a given level is local (which can be considered to be less variable), the function that best represents the response can be corrected at different levels. There is no need to use global functions. For a level (such as 255), the first polynomial works best, but for another level (such as 192), different polynomials can be used. The second method employs a specific model based on the known display. This method is especially useful if only a small number of data points are available or if the data points are unreliable. For LCD displays, the intensity is considered to be in accordance with the power law. This makes it possible to estimate the response function 44 from as little as one measurement level in the red, green, blue or white. If the luminance at the whitest WTM» (255) is Y-', then the power law function can be used to estimate the response function (29):

(w Y F^W)^ (34) \frmax / 冪値,稱作伽馬r,約爲2.2。實際系統偏移等式(34),因此如果準 確的數據可用,優選使用擬合。然而’由於速度和有限測量的限制,等式 (34)或類似數學模型通常是最佳的解決方案。在(34)中,在所有像素的 Υπ-的差異中固有非均勻性。可增力_變黑電平補償Υ〇到(34)中的模型, 這給出與W=&5和W=0匹配的模型。 ^ 這兩種方法也可組合使用。可校正一個電平,使用擬合可獲得更好的 結果,且在另一電平,冪定律是最佳的。 假定有足夠的數據可用,可實施第一方法的三次擬合以確定回應函數 • 44。對於典型實施例的7x7像素位置,這些已經在圖18中、在輝度(三刺 23 201243808 激値γ)的測量數據的上方圖示出了。灰度回應函數位於該第一圖表上, 紅回應函數位於下一圖表上,以順時針的順序如此等等。回應函數44可寫 作: F⑽ π(Β)=ΣίΑ, (35) 這些函數可在每個測量像素位置(χα,_η)計算。類似地,背光回應函數 通過擬合圖13-14中的數據生成。電平255的該三刺激値ΧΥΖ的背光回應 在圖19中示出。因爲該相關性是線性的,可使用線性多項式。該回應函數 可寫作:(w Y F^W)^ (34) \frmax / Power 値, called gamma r, is about 2.2. The actual system offset equation (34), so if accurate data is available, it is preferred to use a fit. However, equation (34) or similar mathematical models are usually the best solution due to speed and limited measurement limitations. In (34), inhomogeneity is inherent in the difference of Υπ- of all pixels. The model can be boosted _ black level compensated to (34), which gives a model that matches W=&5 and W=0. ^ These two methods can also be combined. One level can be corrected, a better result can be obtained using the fit, and at another level, the power law is optimal. Assuming that enough data is available, a three-fit fit of the first method can be implemented to determine the response function • 44. For the 7x7 pixel position of the exemplary embodiment, these have been shown above in Figure 18 for the measurement data for luminance (three thorns 23 201243808 値 γ). The grayscale response function is located on the first chart, the red response function is on the next chart, in a clockwise order, and so on. The response function 44 can be written as: F(10) π(Β)=ΣίΑ, (35) These functions can be calculated at each measurement pixel position (χα, _η). Similarly, the backlight response function is generated by fitting the data in Figures 13-14. The backlight response of the three stimuli 电平 at level 255 is shown in FIG. Since the correlation is linear, a linear polynomial can be used. The response function can be written as:

Fvx{V) = axvxV^axvo F;(V) = aYvlV + ary〇 (36)Fvx{V) = axvxV^axvo F;(V) = aYvlV + ary〇 (36)

Fzy(V) = azy]V + 4〇 量屹是線性擬合係數。這些回應也可在全部的測量像素位置計算。 圖18中示出的全局回應全部是像素値的嚴格單調函數(隨著像素値 的增加而增加),具有數學正倒數。然而,全局單調函數可以是不可能的, 因爲底層數據(underlyingdata)不是單調的。對於LCD顯示器,這確實會 發生,特別是在低電平或高電平時,數據可能不是單調的。捕獲數據中的 困難也將導致非單調數據。圖17中的Z三刺激數據示出了這樣的非單調 性。根據與函數値相關的非單調程度,可使得計算校正變得困難並導致錯 誤結果。如果非單調性成爲問題,將有可能的解決方案。一個是與全局地 定義回應函數相反,在RGB空間中局部地定義回應函數,在此其是單調的, 接著解決在已校正的電平的鄰域^校正。假如校正値在該單調鄰域內,這 是可接受的。第二可能的解決方案是,移位和縮放該全局回應函數以使其 單調。如果移位/縮放不會使得回應顯著偏離真實値,這是可接受的。例如 對於R取Z三刺激値,使得回應的全局最大和全局最小値表示爲Zmx和Zmin, 分別在Rzmax和Rzmin出現.。由下式給出移位元和縮放的回應函數”: 24 (37)201243808Fzy(V) = azy]V + 4〇 〇 is a linear fit coefficient. These responses can also be calculated at all measurement pixel locations. The global response shown in Figure 18 is all a strictly monotonic function of the pixel ( (increasing as the pixel 値 increases) with a mathematical positive reciprocal. However, a global monotonic function may not be possible because the underlying data is not monotonic. This does happen for LCD displays, especially when low or high, the data may not be monotonic. Difficulties in capturing data will also result in non-monotonic data. The Z tristimulus data in Fig. 17 shows such non-monotonicity. Depending on the degree of non-monotonicity associated with the function 値, computational correction can be made difficult and result in erroneous results. If non-monotonicity becomes a problem, there will be a possible solution. One is to define the response function locally in the RGB space, as opposed to globally defining the response function, where it is monotonic, and then resolves the neighborhood correction at the corrected level. This is acceptable if the correction is within the monotonic neighborhood. A second possible solution is to shift and scale the global response function to make it monotonic. This is acceptable if the shift/scaling does not cause the response to significantly deviate from the real flaw. For example, for R to take the Z-stimulus, the global maximum and global minimum 回应 of the response are expressed as Zmx and Zmin, respectively, at Rzmax and Rzmin. The shifting element and the scaled response function are given by:" 24 (37)201243808

Pzr(R) = F RPzr(R) = F R

+ 及 2min+ and 2min

J β ⑼=z— (及max ) = Zmax 在該例子中,R-=255 ,最大8位位値。這假定在全局最大/最小値之 間沒有局部最大/最小値,通常情況也是這樣的。在〇和^-函數(3”可 通過如下歸一化到z〇和乙的値: FZ\R)= Γ ζ,-Ζο ] f IT ( p 及 Z max 及 Z min ^^max ~~^min j V \ D 、八 max /J β (9)=z—(and max ) = Zmax In this example, R-=255 and the maximum 8 bits are 値. This assumes that there is no local maximum/minimum 在 between global max/min 値, which is usually the case. In 〇 and ^-function (3" can be normalized to z〇 and B by: FZ\R) = Γ ζ, -Ζο ] f IT ( p and Z max and Z min ^^max ~~^ Min j V \ D , eight max /

+ Z0+ Z0

JJ

FzR(〇) = Z0 (38) 有些時候,這在計算中用於將R=〇處的數據引到〇。在下文中,如果 需要的話,可構思執行任何非單調性的調節並使用相同的符號。 回應函數(35)和(36)對於全部電平和背光設置全面表徵顯示器。 下一步驟,該重校準階段45,將使用這些回應來構建校正網格46。該校正 網格46在每個測量點提供一組新的RGB値,這將導致物理量或回應在(x,y) 中恒定,也就是在整個顯示器上是均勻的。測量値將僅取決於電平^和背光 設置〆(見等式⑽)。 該均勻値查找是從測量數據計算的。最常見的選擇是取平均値,最小 値或最大値。使M*表示在像素位置(〜λ)的任何測量量{X,Y,Z,x#} ’接著 可將所需均勻量寫作: 1 Ν, Ν, —-—ϋ NxxNyj^ti 平均値:忍= (39) 最小値:M =min({Me],a = l".A^,6 = l."A^) 最大値:Λί = max({M0*},a = = 1..JVy) 爲每個電平&(尺和電壓沪計算這些量,然而爲了使該符號簡 單,並未明白地顯示該相關性。在示出的例子中,將使用平均値和最小値。 條符號(barnotation)详,F,之4,叉}將表示通過校正尋找的均勻値。 •對於固定電壓,重校準步驟45說明如下。假設固定電平(或 25 2〇1243808 對於灰電平的輝度校正,(?=(妒见趵),基於位置找出新像素値5 = ' (或W),這將產生與位置無關的均勻響應。應注意,正在校正的電平無需是 已被測量(18)的電平,因爲在(35)中已經計算全部RGB値的回應。在 數學術語中,需要求解非線性等式的下列系統: I)全體電平的輝度+色彩校正 R' = R + Ar, G' = G + Ac, B' = B + Ab (40) π)僅灰電平的輝度校正: W-^W' γ=Σί〇^'η (41) (42) (43) (x,y)空間相關性是固有的,其中係數取決於(x,y),也就是,對於 每個像素位置(xa,h) ’求解上述系統。新値(R’,G’,B’)被認爲不是顯著 不同於(R,G,B)的。符號(W~)表示像素値的改變,在該方面,等式系統 可以是用該符號表示並且求解。對於LCD,報告輝度和色度(XcycY)而不是 XYZ是標準操作。這兩種描述是等同的並且可通過等式(3)在兩者之間轉 換。類似地,以形式的運算式是: Σΐ,Σ1〇^(〇ηΣΣ^Σ1〇<„(〇λFzR(〇) = Z0 (38) Sometimes this is used in calculations to bring data at R=〇 to 〇. In the following, it is conceivable to perform any non-monotonic adjustments and use the same symbols, if desired. Response functions (35) and (36) fully characterize the display for all level and backlight settings. In the next step, the recalibration phase 45, these responses will be used to construct the correction grid 46. The correction grid 46 provides a new set of RGB turns at each measurement point, which will cause the physical quantity or response to be constant in (x, y), i.e., uniform across the display. The measurement 値 will only depend on the level ^ and the backlight setting 〆 (see equation (10)). This uniform 値 lookup is calculated from the measured data. The most common choice is to take the average 値, the minimum 値 or the maximum 値. Let M* denote any measured quantity {X, Y, Z, x#} at the pixel position (~λ). Then you can write the required uniform amount: 1 Ν, Ν, —- ϋ NxxNyj^ti Average 値: Tolerance = (39) Minimum 値: M = min({Me), a = l".A^,6 = l."A^) Maximum 値:Λί = max({M0*}, a = = 1.. JVy) These quantities are calculated for each level & (foot and voltage Shanghai, however, in order to make the symbol simple, the correlation is not clearly shown. In the illustrated example, the average 値 and minimum 将 will be used. The barnotation details, F, 4, and fork} will represent the uniform enthalpy found by the correction. • For a fixed voltage, the recalibration step 45 is explained below. Assume a fixed level (or 25 2 〇 1243808 for gray level luminance) Correction, (?=(妒见趵), find a new pixel based on position 値5 = ' (or W), which will produce a position-independent uniform response. It should be noted that the level being corrected need not be measured ( 18) level, since all RGB値 responses have been calculated in (35). In mathematical terms, the following systems for solving nonlinear equations are required: I) Total level luminance + color correction R' = R + Ar, G' = G + Ac, B' = B + Ab (40) π) Only the gray level of the luminance correction: W-^W' γ=Σί〇^'η (41) (42 (43) (x, y) spatial correlation is inherent, where the coefficient depends on (x, y), that is, for each pixel position (xa, h) 'solve the above system. New 値 (R', G', B') is considered not to be significantly different from (R, G, B). The symbol (W~) represents a change in pixel ,, in which case the equation system can be represented and solved by the symbol. LCD, reporting luminance and chrominance (XcycY) instead of XYZ is a standard operation. These two descriptions are equivalent and can be converted between the two by equation (3). Similarly, the expression in the form is: ,Σ1〇^(〇ηΣΣ^Σ1〇<„(〇λ

Pc (44) ϋ=ΣΙΣΙΛλ^υ 在此,m=l,2,3指數(index)分別對應於R,G和B,C; W,c; = CT 且C; =5',,且使用(3)類似定義氏,幻到(39)。在使用平均數的情況下, 26 (45)201243808 —個具有 ·ί:Σ- ίΐ=Ι w xabPc (44) ϋ=ΣΙΣΙΛλ^υ Here, m=l, 2, 3 indices correspond to R, G and B, C; W, c; = CT and C; = 5', and use (3) Similar to the definition, the magic to (39). In the case of using the average, 26 (45)201243808 one has · ί:Σ- ΐ ΐ Ι w xab

Xc Nx 父 Ny 〇=' b=\ Xab + Yab 十 Zab •’ — Yab 、,— (45)的右手側的運算式可看作色度値的回應函數,然而,他們並不 遵循分量RGB色度形式的疊加(增加)原則。因此’在此介紹的方法(其 中回應函數是以XYZ的形式和後來§十算的色度定義)是更有效和易處理的 方法。等式(41)和(44)定義了三個非線性等式的系統,該系統需要對 求解。一旦對全部位置、電平和電壓做出計算,這將給出校正網格 46 〇 可直接以ΧΥΖ三刺激値的形式寫出替換公式((41)和(43 )的)。首 先定義回應函數的反函數: // // // c = R,G,B (46)Xc Nx Parent Ny 〇=' b=\ Xab + Yab Ten Zab •' — Yab,, — (45) The right-hand side of the expression can be seen as the response function of the chrominance ,, however, they do not follow the component RGB color The principle of superposition (increase) of degrees. Therefore, the method described here (where the response function is defined in the form of XYZ and later § ten) is a more efficient and manageable method. Equations (41) and (44) define a system of three nonlinear equations that need to be solved. Once the calculations are made for all positions, levels and voltages, this will give the correction grid 46 写 The substitution formula ((41) and (43)) can be written directly in the form of ΧΥΖ 値 値. First define the inverse function of the response function: // // // c = R, G, B (46)

有回應函數(35)的反函數,且可通過取反(35)計算或通過擬合RGB 電平作爲測量XYZ的函數,替代測量XYZ作爲RGB電平的函數。同樣適 用符號(〇R,G,B): A :在電平〇你)分量c的測量观 A :为了均勻性在電平C分量C的所需对| 4:在電平c=Frc(c份量c的測量r値 G :为了均匀性在電平c分量c的所需r値 (47) zc :在電平c = Fzc (C汾量C的測量Z値 Z沁为了均匀性在電平C分量C的所需Z値 等式(41)的系統變成: 27 201243808 X = X'R+X'G+XfB Ϋ = Υ^+Υ'+Υ;There is an inverse function of the response function (35), which can be calculated as a function of the RGB level by inverting (35) calculations or by fitting the RGB level as a function of the measurement XYZ. The same applies to the symbol (〇R, G, B): A: at level 〇 you) the measurement of component c: A for uniformity at the level C component C required pair | 4: at level c = Frc ( c part of the measurement of c r値G: for uniformity at the level c component c required r 値 (47) zc: at the level c = Fzc (C 汾 quantity C measurement Z 値 Z 沁 for uniformity in electricity The system of the required C値 equation (41) for the flat C component C becomes: 27 201243808 X = X'R+X'G+XfB Ϋ = Υ^+Υ'+Υ;

Z = Z'R+Z'G+Z'B 〇=/;σ'Λ)-//(Ζ'Λ) 〇 = fGxdfGy(r,G) (48) 〇H)H) 〇=fBxm-fs(y'B) 這是9個未知(XW0)的9個非線性等式的系統。最後6祖等式強 加該限制(實際獨立變數仍是RGB) ’因此反回應必須是相等。求解(48), 給出新的RGB値爲: R'=fHxm=frAy\)=fRz(z\) G'=f〇x{x〇) = f^rG) = f^Z'G) B'=fBxm = f^rB) = fBz(rB) 與(48)類似,也可獲得以色度座標的形式的等式。因爲該公式隱藏 RGB相關性,優選換做與(41)和(43)共同使用。然而,應注意,兩者 是等同的。 等式(41)描述了 3個變數中3個非線性等式的系統,並且可使用已 知的非線性數位優化程式求解。然而,對於即時計算,這不容易實施。通 過使用合適的線性類比,可將(41)轉換成可快速求解的線性系統。回到 (41)需要對正在校正的每個電平求解。期望新値是在正在校正的電平的 鄰區。特別的,(△«,‘△«)將很小,且在△中回應函數將局部類比爲線性函 數。這樣,對於校正電平(R,G,B),展開該回應如下: = Χ 〇α^(-^ + ΔΛ)η 1 + «-^]=Ση=〇α».Λ +^R^n=〇a^R n 咖,)=+〜)η * ΣΐΛβ”(ι+»苦)=+ 作·)=Σ:〇々5+Δβ)””卜计 Σ:。 接著等式(41)變成等式的·3χ3線性系統: 28 201243808Z = Z'R+Z'G+Z'B 〇=/;σ'Λ)-//(Ζ'Λ) 〇= fGxdfGy(r,G) (48) 〇H)H) 〇=fBxm-fs (y'B) This is a system of nine unknown equations of unknown (XW0). The last 6 ancestors impose this limit (the actual independent variable is still RGB) so the counter-responses must be equal. Solve (48) and give the new RGB値 as: R'=fHxm=frAy\)=fRz(z\) G'=f〇x{x〇) = f^rG) = f^Z'G) B '=fBxm = f^rB) = fBz(rB) Similar to (48), an equation in the form of a chromaticity coordinate can also be obtained. Since this formula hides RGB correlation, it is preferred to use it in conjunction with (41) and (43). However, it should be noted that the two are equivalent. Equation (41) describes a system of three nonlinear equations in three variables and can be solved using a known nonlinear digital optimization program. However, for instant computing, this is not easy to implement. By using a suitable linear analogy, (41) can be converted into a linear system that can be solved quickly. Back to (41) you need to solve for each level being corrected. It is expected that the new enthalpy is in the neighborhood of the level being corrected. In particular, (Δ«, ‘Δ«) will be small, and the response function will be locally analogized to a linear function in Δ. Thus, for the correction level (R, G, B), the response is expanded as follows: = Χ 〇α^(-^ + ΔΛ)η 1 + «-^]=Ση=〇α».Λ +^R^n =〇a^R n 咖,)=+~)η * ΣΐΛβ”(ι+»苦)=+作·)=Σ:〇々5+Δβ)””Σ计Σ: Then equation (41) The 3χ3 linear system that becomes the equation: 28 201243808

A χΔ = b (51) 其中:A χΔ = b (51) where:

(52) fx-x] Σί〇<^ Σ:-^-'η Σί〇<Β^η) Ϋ-Υ ? ^XYZ = Z-y^ Σί〇αΥ〇^ . Σΐ〇αΙηΒη-'η 7-Z \Δ Δ) X-〇<Rn-ln Σί〇α〇^η-'η Σί〇<Β"\ 這通過逆矩陣Α求解,給出新RGB値如下: 也可計算基於等式(44)的色度的線性類比,在此(44)變成: 4^χΔ = 6.(52) fx-x] Σί〇<^ Σ:-^-'η Σί〇<Β^η) Ϋ-Υ ? ^XYZ = Zy^ Σί〇αΥ〇^ . Σΐ〇αΙηΒη-'η 7- Z \Δ Δ) X-〇<Rn-ln Σί〇α〇^η-'η Σί〇<Β"\ This is solved by the inverse matrix ,, giving the new RGB値 as follows: It can also be calculated based on the equation ( 44) The linear analogy of the chromaticity, where (44) becomes: 4^χΔ = 6.

xyY (54) 在此XyY (54) here

Axe=xcAxe=xc

XX

X + Y + Z δλ =yc- γ Χ + Υ + Ζ ΑΥ=Ϋ-Υ / 二7 + Γ + Ζ,/„ = 广V w =足X + Y + Z δλ = yc- γ Χ + Υ + Ζ ΑΥ = Ϋ - Υ / 2 7 + Γ + Ζ, / „ = wide V w = foot

i=XJ,Z 4= Σΐ。(所广1 «,4 = ΣΐΧ” ㈣"_1«i=XJ, Z 4= Σΐ. (广广1 «, 4 = ΣΐΧ" (4) "_1«

'-Axcx/2、 -Aycx/2 fS=S+L· g'-Axcx/2, -Aycx/2 fS=S+L· g

(53) 29 (55) 201243808(53) 29 (55) 201243808

\ldac+X)IR-IXRI (IAxc + X)Ig-IxgJ (/Axc Axyy= (IAxc+Y)Ir-IyrI (I/Sxc+Y)IG-IYaI (IAxc+Y)IB - IyBI\ldac+X)IR-IXRI (IAxc + X)Ig-IxgJ (/Axc Axyy= (IAxc+Y)Ir-IyrI (I/Sxc+Y)IG-IYaI (IAxc+Y)IB - IyBI

{ J 4和&中的全部量是已知的,並且通過逆矩陣再次獲得該解:The total amount in { J 4 and & is known, and the solution is obtained again by the inverse matrix:

(56) (R) S'=S+L· g Λ 不管是基於(53)的解ΧΥΖ還是基於(56)的解χ。#都可用。由 於實際上氏,叉)和從(足F,Z)計算的色度値通常將不是相同的,獲得的RGB 値將稍有不同。 推得的等式提供亮度和色彩的全校正。如果對於灰電平,僅亮度要 被校正,這對於很多消費型顯示器常常是足夠的,那麼將簡化重校準步驟 44以僅求解(43)。這是單個變數中的單個非線性等式且可使用標準多項 式開方演算法求解。或,可擬合W作爲Y的函數,這是與(46)類似的反 回應/; ,並通過評估/;(『,)直接讀取W,値。需要注意單一性並找 出定義域外的解。如果回應是如在(34)中,可獲得進一步的簡化,接著, 可獲得重校準步驟44的顯式公式: 對於速度至關重要且數據有限的場景,等式(57)提供了校正灰電 平輝度的快速模擬解。 可在每個像素位置(xa,h)爲每個電平計算(56)的解。對於每個校 正電平,這在(X, y)空間中提供了一組網格點,'卩&故校正網格46,其表示爲: ((R&k,G心,(π) 下標是指這是在位置、輸入色彩(電平)f的校正RGB 値。對於純電平輝度校正,類似地具有校正網格: 201243808 (59) {Κα„} (59)中的下標W指示灰電平(W,W,W)。對於每個校正電平,(x, y)空間上的每個分量(RGB)將圖示爲2D表面。在實踐中,大多數(>9〇%) 的亮度和色彩校正集中在校正灰電平。這樣圖6-8中的說明是用於灰電平, 也就是(192,1双192)。對於相同的LED顯示器,圖20和21示出了對於31x31 均勻空間點’在灰電平192和195的校正R,G和B網格。該R表面具有‘〇’ 標記’G表面沒有標記,B表面具有標記‘·’。平均値將用作均勻性計算。 電平192的表面形狀與圖7中示出的XYZ表面相比,我們看出RGB表面本 質上與XYZ表面“反轉”。 在至此描述的典型實施例中,全部的計算都在應用到全部光源部件 (例如,單個LED)的固定背光設置中執行,也叫做公共或初始背光設置。 因此’該校正是純像素校正,沒有任何數位信號値被修正。如果這足以獲 得所需的均勻性,那麼無需調節背光電壓。對於電平192 (圖20),這是足 夠的,因爲全部的新像素値是位於8位元[0···255]範圍內的。然而,對於電 平255 ’如圖21所示,純像素校正需要許多遠離中央的像素,這些像素具 有位於8位元(>255)範圍外的數値。這對應於顯示器沒有那麼亮的區域。因 爲’對於8位顯示器(這些値將削減到255)這是不可能的,通過僅調節高 灰電平的像素値實現均勻性校正是不可能的。一個解決方案是在(39)中 對均勻量取最小値。如果使用χ#Υ處理,那麼僅需要輝度Υ的最小値。這 將使得像素値降低以匹配那些更低亮度的像素。如果亮度損耗不大的話, 該解決方案是可接受的。然而如果平均亮度維持在高灰電平,必須要調節 背光。類似的問題也可能發生在低灰電平,特別是0電平,在此校正網格 可發送某些小於0的像素値,對於LCD顯示,這又是不可能的。這將對應 於顯示器上更亮的區域。在這一情形下,可能的解決方案是以增加黑電平 爲代價在(39)中取最大値。增加黑電平不是優選的,因爲其會降低對比 度。另一可能是在校正中忽略黑電平,但這也不是理想的方案。然而,由 於採用單個LED控制,黑電平和校正可通過調暗LED獲得。將LED從255 和0對€举進行調解將產生背光校正,在此LED具有其自己的電壓修正- 31 201243808 “電壓校正網格”。如果單個LED是不可調的,僅可實現全局背光調節, 那麼電壓校正可基於爲獲得均勻性在電平255或〇所需的最大改變(考慮所 有範圍外的像素)。首先考慮局部LED控制的一般情況。 在背光調節的例子中,需要進行在此具體描述的背光校正。該校正 是在特定電壓電平V做出的,其也稱作輸入或全局背光設置,或簡要 (simply)背光設置,也可爲某些歸一化單位。將公共電壓V應用到全部像 素。在背光設置V,爲灰電平255和0確定像素校正(58或59作爲模擬値)。 如果沒有像素値在範圍外,那麼背光校正是一致的,也就是電壓並沒有從V 進行修正。應注意,這將取決於從(39)使用了什麼均勻性度量。從計算 値(58),識別那些RGB分量値位於範圍外的點。這些點被標記爲(以8 位元値爲例): 电平(?=(0,0,0): (4,%) e {(x0,少A),a = 1”JVX,6 = 1...义} 这样下列点中的一个或多个点<〇,G‘- <0,%A- <〇 p _ 电平ί = (255,255,255): (;cf,少f) e {〇ca,h),a = 1..JVJ = 1···'} 这样下列点中的一个或多个任意点:>255,%? >255,%ft- >255 在計算式(60)中也使用所需的均勻性電平,對於電平〇和255,分 別標記爲F°,F255,對於其他量,也是這樣標記。電平0和255的位置通常 不相同(coincide)。 接著,對於(60)中識別的像素,背光回應函數(36)(在圖19中 示出),用於確定所需的電壓。可通過求解下列方程給出所需電壓:(56) (R) S'=S+L· g 不管 Whether based on (53) or based on (56). # are available. The chrominance 计算 calculated from the actual, fork) and from (foot F, Z) will usually not be the same, and the resulting RGB 値 will be slightly different. The derived equation provides full correction of brightness and color. If for the gray level, only the brightness is to be corrected, which is often sufficient for many consumer displays, then the recalibration step 44 will be simplified to solve only (43). This is a single nonlinear equation in a single variable and can be solved using a standard polynomial square root algorithm. Or, you can fit W as a function of Y, which is a similar reaction to (46) /; and directly read W, 通过 by evaluating /; (『,). Need to pay attention to unity and find solutions outside the domain. If the response is as in (34), further simplification can be obtained, and then an explicit formula for recalibration step 44 can be obtained: For scenarios where speed is critical and data is limited, equation (57) provides correction for grayscale A fast simulation of flat luminance. The solution of (56) can be calculated for each level at each pixel location (xa, h). For each correction level, this provides a set of grid points in the (X, y) space, '卩& thus the correction grid 46, which is expressed as: ((R&k, G heart, (π) The subscript refers to the corrected RGB 値 at the position, input color (level) f. For pure level luminance correction, similarly has the correction grid: 201243808 (59) {Κα„} (59) W indicates the gray level (W, W, W). For each correction level, each component (RGB) in the (x, y) space will be illustrated as a 2D surface. In practice, most (> 9亮度%) brightness and color correction focus on correcting gray level. The instructions in Figure 6-8 are for gray level, ie (192, 1 double 192). For the same LED display, Figure 20 and 21 shows a corrected R, G, and B grid for the 31x31 uniform spatial point ' at gray levels 192 and 195. The R surface has a '〇' mark with a 'G surface without a mark and a B surface with a mark '·'.値 will be used as a uniformity calculation. The surface shape of level 192 is compared to the XYZ surface shown in Figure 7, and we see that the RGB surface is essentially "reversed" with the XYZ surface. In the example, all calculations are performed in a fixed backlight setting applied to all light source components (eg, a single LED), also known as a common or initial backlight setting. So 'the correction is pure pixel correction, no digital signal is corrected If this is sufficient to achieve the desired uniformity, then there is no need to adjust the backlight voltage. For level 192 (Figure 20), this is sufficient because all new pixels are in the range of 8-bit [0···255] However, for level 255' as shown in Figure 21, pure pixel correction requires many pixels away from the center, which have a number 値 outside the range of 8 bits (> 255). This corresponds to the display not so Bright area. Because 'this is not possible for 8-bit displays (these will be cut to 255), it is impossible to achieve uniformity correction by adjusting only the pixels of high gray level. One solution is at (39 In the case of uniformity, the minimum 値 is taken. If χ#Υ is used, then only the minimum 辉 of the luminance Υ is needed. This will cause the pixel 値 to be lowered to match those pixels with lower brightness. If the brightness loss is not The solution is acceptable, however, if the average brightness is maintained at a high gray level, the backlight must be adjusted. Similar problems can occur at low gray levels, especially at 0 levels, where the correction grid can be Sending some pixels smaller than 0 is not possible for LCD displays. This will correspond to a brighter area on the display. In this case, the possible solution is at the expense of increasing the black level. The maximum 値 is taken in (39). Increasing the black level is not preferred because it reduces the contrast. Another possibility is to ignore the black level in the correction, but this is not the ideal solution. However, due to the single LED control, Black level and correction can be obtained by dimming the LED. Coordinating the LEDs from 255 and 0 will produce backlight correction, where the LED has its own voltage correction - 31 201243808 "Voltage Correction Grid". If a single LED is not adjustable and only global backlight adjustment is possible, the voltage correction can be based on the maximum change required to achieve uniformity at level 255 or ( (considering all pixels outside the range). First consider the general situation of local LED control. In the example of backlight adjustment, backlight correction as described in detail herein is required. This correction is made at a specific voltage level V, which is also referred to as an input or global backlight setting, or a brief backlight setting, or some normalized unit. The common voltage V is applied to all pixels. In the backlight setting V, pixel correction is determined for gray levels 255 and 0 (58 or 59 as analog 値). If no pixels are out of range, the backlight correction is consistent, ie the voltage is not corrected from V. It should be noted that this will depend on what uniformity metric is used from (39). From the calculation 値 (58), identify those points where the RGB components are outside the range. These points are marked as (in the case of 8-bit 値): Level (?=(0,0,0): (4,%) e {(x0, less A), a = 1"JVX,6 = 1... meaning} such one or more of the following points <〇, G'- <0,%A- <〇p _ level ί = (255,255,255): (;cf, less f) e {〇ca,h),a = 1..JVJ = 1···'} One or more of the following points: >255,%? >255,%ft- >255 The required level of uniformity is also used in equation (60), for levels 〇 and 255, respectively, labeled F°, F255, and for other quantities, as well. The positions of levels 0 and 255 are usually different ( Next, for the pixel identified in (60), the backlight response function (36) (shown in Figure 19) is used to determine the desired voltage. The required voltage can be given by solving the following equation:

At(^,^): Y°=FYy(V)At(^,^): Y°=FYy(V)

At(xf^f):F255 =F/(F) ,· (61) 電壓的增加將導致輝度的增加,並且色度的變化很小,因此我們在 確定新電壓電平時僅考慮Y値。其解,表示爲,巧5},是 32 201243808 y〇 _At(xf^f): F255 =F/(F) , · (61) An increase in voltage will result in an increase in luminance and a small change in chrominance, so we only consider Y値 when determining the new voltage level. The solution, expressed as, Qiao 5}, is 32 201243808 y〇 _

V〇 — j ~ aVQab Vab ~ ~~T QV\ab f255 _ Y (62) ^S=—T ^ av\ob 注意到回應函數取決於像素位置,且我們已經增加了附加標記到函 數係數上以指明這一點。當分別求解4和^時,電平〇和255的背光回應 也需要用到。如果電平0和255的位置相同(這是很少見的),可取平均値 或其他組合,這取決於校正的特殊性(如在0的校正更重要,或在255最小 化亮度損失等等)。全套電壓調節爲: 修正電壓:{&} 在吣W): 在(Of): 原F F-^+F_f ab ab (63) 對於某些(ά,ΐ) ’如果(xa?,K) = (xf )使用以下中的一個:b 2 對於大多數校正,兩組位置不需要相同。匕的位置已經納入電平0 和255的考慮,並寫作(\-,片),並去除〇和255下標了。 値(63)提供了特定像素位置所需的電壓設置。通常,這不需要與 LED位置相對應。像素解析度數値遠大於LED解析度,也就是,LED的數 量。單個LED,結合散射效應,點亮很多像素。LED電壓爲Vi, i=l...L (見 (6 ))-使得這些LED的位置爲(xu,yu),i=l· · 1。通過主要平均最靠近LED 位置的全部匕來給LED分配電壓値。根據平均的類型,可獲得電壓校正的 不同“平滑”。討論了少許這樣的穷法。 對於每個調節的電壓位置(½,片)、最接近的LED,採用簡單的平均 方法並分配心給它。LED可從不同的位置獲得多個分配(assignment),表 示爲乂。從位置,片)W = i.·凡分配給LED i的電壓標記爲 ^心}。使用的最後電壓是這些的平均値’給出下列校正: 33 (64) 201243808V〇— j ~ aVQab Vab ~ ~~T QV\ab f255 _ Y (62) ^S=—T ^ av\ob Note that the response function depends on the pixel position, and we have added additional markers to the function coefficients to Indicate this. When solving 4 and ^ respectively, the backlight response of level 〇 and 255 is also needed. If the positions of levels 0 and 255 are the same (this is rare), average 値 or other combinations may be used depending on the particularity of the correction (eg correction at 0 is more important, or at 255 minimizes loss of brightness, etc.) ). The full set of voltage adjustments are: Correction voltage: {&} at 吣W): at (Of): original F F-^+F_f ab ab (63) For some (ά, ΐ) 'if (xa?, K) = (xf ) Use one of the following: b 2 For most corrections, the two sets of positions do not need to be the same. The position of the 匕 has been incorporated into the levels 0 and 255, and is written (\-, slice), and removed 〇 and 255 subscripts.値(63) provides the voltage settings required for a particular pixel location. Usually, this does not need to correspond to the LED position. The pixel resolution is much larger than the LED resolution, that is, the number of LEDs. A single LED, combined with the scattering effect, illuminates many pixels. The LED voltage is Vi, i=l...L (see (6)) - such that the position of these LEDs is (xu, yu), i = l · · 1. The LED is assigned a voltage 通过 by averaging the total 最 which is closest to the LED position. Depending on the type of averaging, different "smoothing" of the voltage correction can be obtained. A little such a poor law was discussed. For each adjusted voltage position (1⁄2, slice), the closest LED, use a simple averaging method and assign it to it. The LED can obtain multiple assignments from different locations, denoted as 乂. From position, slice) W = i. · The voltage assigned to LED i is labeled ^Heart}. The final voltage used is the average 这些' of these giving the following corrections: 33 (64) 201243808

Vt ->K i = ^-L 1 Ny, ^Vi >1Vt ->K i = ^-L 1 Ny, ^Vi >1

Ke 不被以上影響的LED將保持其原電壓値v。如果像素位置(\,Λ)採 樣達到LED的解析度級別且定位成與LED位置相似,那麼來自各個(½,片) 的分配數量將本質上爲1。在這種情況下’在爲每個LED選擇最接近的& 時,上述平均變得非常重要,也就是沒有和。實際上’在背光校正的計算 中,採樣的像素位置可與LED位置的某些子組保持較小的對應(small corresponding with)。這可加速計算。(64)上的變形是根據到LED的距離 分配權重〜‘‘ V; = —Ϋα,Κ (65) NVi % v,} %權重取決於|(χ»(Ά-)| 對於每個匕-,替代拾取最近的LED,可取具有合適權重的最近的η個 LED-這本質上是(65)的變形。 可從LED的角度計算電壓❶對於每個LED,在某一距離內,取合適 的心的加權和:The LED that Ke is not affected by will maintain its original voltage 値v. If the pixel position (\,Λ) sample reaches the resolution level of the LED and is positioned similar to the LED position, then the number of allocations from each (1⁄2, slice) will be essentially one. In this case, the above average becomes very important when selecting the closest & for each LED, that is, there is no sum. In fact, in the calculation of backlight correction, the sampled pixel locations may be small corresponding with certain subsets of LED positions. This speeds up the calculation. The deformation on (64) is based on the distance to the LED to assign weights ~'' V; = - Ϋα, Κ (65) NVi % v,} % weight depends on | (χ»(Ά-)| For each 匕 - Instead of picking up the nearest LED, it is possible to take the nearest n LEDs with the appropriate weight - this is essentially a variant of (65). The voltage can be calculated from the angle of the LED ❶ for each LED, within a certain distance, take the appropriate Weighted sum of hearts:

心Σ«⑷A ά<,ύ α ⑷權重取決於 d = ||(Wi,.)-(wA-)| (66) 這些方法全部是不同類型的平均。 稍有不同的方法是在(X,y)上內插或擬合値的平滑函數。這給出 2D電壓表面(可在(气,%)評估)以在第1個1^0確定電壓。如果該函數 表示爲巧抑),其具有: F =心(无,少):擬合或内插到,少〆品) V>=FwixLnyu) (67) 擬合比內插更加優選,因爲其包括平滑。 34 201243808 計算該校正電壓値⑽,用於特定起始背光設置v。每個背光設置將 具有使用上述步驟計算的不同校正電壓組。通常地,該計算在(21)中的 電壓値組中完成,且在電平間內插校正。也可能將相同的相對校正用於全 部背光設置。背光設置匕,Z = 1··.乂的校正電壓組可使用更早的向量符號來表 示 校正前:甙}—校正后:(¾ 'V;: vsi ,f;= V;2 Μ Μ Λ. η. Λ…Ny (68) 在此,%表示對於在(\為)的第j個led,背光設置r = L,從(64) -(67)中的一個方法獲得的校正電壓。這樣,該校正等於對於初始電壓 h 4,在第j個LED處G K的變化。如果有RGB LED,這三個將應用 相同的校正,確保背光校正僅調節亮度且並不引入赝色(colorartifacts)。 理論上,背光校正也可隨著輸入像素電平而改變。然而,範圍外條 件(out of range condition)(60)主要是由最大和最小灰電平確定的。由於 單調響應(monotonic responses),色彩電平將位於一範圍中,該範圍由該 範圍內的最高和最低電平提供。其他電平不需要單獨考慮以測試範圍外條 件。這樣,雖然電平0和255用於確定其自身的校正,但是電壓校正與色彩 電平獨立。這意味著,對於均勻性校正,在固定的背光設置,可一次調節 電壓且在輸入像素値變化時,電壓不再變化(除非全局背光改變)。接著, 像素校正(58)可獨自管理所需的內容相關性變化。具有獨立於色彩電平 的背光校正的好處是均勻性校正將不會與其他LCD顯示器特徵(如局部調 暗、高動態範圍成像)相互干擾。這些特徵全部是內容(色彩電平)相關 的,且與非均勻性校正(如果該非均勻性校正是色彩相關的話)競爭。 典型實施例中的背光討論集中在LED能單獨調節的例子中,也就是 直射背光配置的例子中。然而,如前所述,該方法也可用於可單獨控制的 CCFL管或側射式LED 〇主要的變化是調節LED或管將影響更大數量的像 35 201243808 素,且這需要在平均中納入考慮。如果局部調節是複雜的’其可能是處於 、 基於側射式背光或管的背光中,可使用全局校正値广,可能的選擇是:The palsy «(4)A ά<, ύ α (4) weight depends on d = ||(Wi,.)-(wA-)| (66) These methods are all different types of averaging. A slightly different approach is to interpolate or fit the smoothing function of 値 on (X, y). This gives a 2D voltage surface (which can be evaluated at (gas, %)) to determine the voltage at the 1st 1^0. If the function is expressed as simplistic, it has: F = heart (none, less): fit or interpolate, less defective) V>=FwixLnyu) (67) Fit is more preferable than interpolation because it Includes smoothing. 34 201243808 Calculate this correction voltage 値(10) for a specific initial backlight setting v. Each backlight setting will have a different set of correction voltages calculated using the above steps. Typically, this calculation is done in the set of voltages in (21) and the interpolation is interpolated between levels. It is also possible to use the same relative correction for all backlight settings. The backlight setting 匕, Z = 1··. 校正 correction voltage group can use the earlier vector symbol to indicate before correction: 甙}—after correction: (3⁄4 'V;: vsi, f;= V; 2 Μ Μ Λ η. Λ...Ny (68) Here, % means that for the jth LED at (\ is), the backlight is set to r = L, and the correction voltage obtained from one of (64) - (67) is obtained. This correction is equal to the change in GK at the jth LED for the initial voltage h 4. If there are RGB LEDs, the three will apply the same correction, ensuring that the backlight correction only adjusts the brightness and does not introduce colorartifacts. In theory, backlight correction can also vary with input pixel levels. However, the out of range condition (60) is primarily determined by the maximum and minimum gray levels. Due to monotonic responses, The color level will be in a range that is provided by the highest and lowest levels in the range. Other levels do not need to be considered separately to test out-of-range conditions. Thus, although levels 0 and 255 are used to determine their own Correction, but the voltage correction is independent of the color level. For uniformity correction, in a fixed backlight setting, the voltage can be adjusted once and the voltage does not change when the input pixel changes (unless the global backlight changes). Next, the pixel correction (58) can manage the desired content on its own. Correlation changes. The benefit of backlight correction independent of color levels is that uniformity correction will not interfere with other LCD display features such as local dimming, high dynamic range imaging. These features are all content (color levels) Relevant, and compete with non-uniformity correction (if the non-uniformity correction is color dependent). The backlight discussion in the exemplary embodiment focuses on the example where the LEDs can be individually adjusted, that is, in the example of a direct backlight configuration. As mentioned earlier, this method can also be used for individually controllable CCFL tubes or side-fired LEDs. The main change is that adjusting the LED or tube will affect a larger number of images, and this needs to be considered on average. If local adjustment is complex 'may be in, based on a side-lit backlight or tube backlight, global correction can be used Yan Guang, the possible choices are:

,平均値G Ρ = ·最大値kr (69) ‘最小値〜 該選擇再次由校正的特徵規定。 應瞭解,大量的變化是可能的,且取決於校正需求和上述因素(計 算速度、正在校正的電平數量等等),不同的組合將提供適合不同標準的 最佳結果。特別地,如果需要最小均勻量的極快速輝度校正的話,背光校 正可被整個略過。 由於LHD (CCFL是更有限的)的有限解析度,背光校正(68 )提供 用於亮度均勻性的粗略校正。僅背光校正不足以獲得高水準的均勻性,特 別地,其不能提供色彩均勻性校正。粗略還意味著LED的變化比像素値的 變化更顯著。這是指一旦依照(68)調節LED,需要使用(35)重新計算 像素校正。爲了使得該過程快速有效,在背光校正計算之前的第一像素校 正,可作爲使用近似値(34)的、對於少量點的、僅測量電平0和255的粗 略估計(rough estimate) 〇—旦計算出背光校正並調節LED,接著將使用 (35),以更多的電平做出更詳細的計算(detailed calculated)。如果需要 的話,可在進行到詳細計算之前,重複近似像素校正和背光校正以確保『全 部位於範圍內。 本發明的重要益處是其在同一框架中統一了需要校正的全部關鍵部 件,也就是背光光源和像素。這兩個部件以相互依賴的方式影響均勻性, 因此必須同時處理以獲得最佳結果》 , 此處介紹的用於生成背光校正的方法並不依賴於已知的PSF LED和/ 或任何散射體。其使用一個或多個簡單的迭代確定背光校正,接著確定精 確匹配像素校正。這在實踐中非常有益,因爲PSF和散射器效應非常難以 精確確定。本方法對於製造流程也非常具有實用性,在此通常由不同的供 應商提供的各個光學/電子部件(LED,散射器、覆層)的細節也不需要知 36 201243808 曉。該校正也可在某些背光控制可用的領域中應用-大多數顯示器允許全局 背光設置控制。 在一個實施例中’在PSF可用的較少見情況下,可使用數學方法。 雖然在實踐中,上述介紹的更“經驗”的方法更有價値,但其在此用公式 表示。依照等式(25),該回應分成背光分量和像素分量: (7〇) 對於背光校正’僅考慮輝度回應。電壓相關性僅在背光回應疔(^少/) 中出現。回應分量<卜,3^)獨立于電壓-這與全回應你,〆)不相同,全回 應是基於固定背光色設置的測量數據。特別地,50c,;;/)隨著電壓變化,而 是恒定的’該分量〇,;;,(?)將稱作基本像素回應,該基本像素回 應可如在(35)中表示,以下給出其表示:, average 値G Ρ = ·maximum 値kr (69) ‘min 値~ This selection is again specified by the calibrated feature. It should be understood that a large number of variations are possible, and depending on the calibration requirements and the above factors (calculation speed, number of levels being calibrated, etc.), different combinations will provide the best results for different standards. In particular, backlight correction can be skipped entirely if a minimum uniform amount of very fast luminance correction is required. Due to the limited resolution of LHD (CCFL is more limited), backlight correction (68) provides a coarse correction for brightness uniformity. Only backlight correction is insufficient to achieve a high level of uniformity, and in particular, it does not provide color uniformity correction. Roughly also means that the change in LED is more pronounced than the change in pixel 値. This means that once the LED is adjusted in accordance with (68), the pixel correction needs to be recalculated using (35). In order to make this process fast and efficient, the first pixel correction before the backlight correction calculation can be used as a rough estimate of the measurement levels 0 and 255 for a small number of points using the approximate 値(34). The backlight correction is calculated and the LEDs are adjusted, and then (35) will be used to make a more detailed calculation at more levels. If necessary, repeat the approximate pixel correction and backlight correction before proceeding to the detailed calculation to ensure that all are within range. An important benefit of the present invention is that it unifies all of the critical components that need to be corrected, i.e., backlight sources and pixels, in the same framework. These two components affect uniformity in an interdependent manner and must therefore be processed simultaneously for optimal results. The method described herein for generating backlight correction does not rely on known PSF LEDs and/or any scatterers. . It uses one or more simple iterations to determine backlight correction, and then determines the exact match pixel correction. This is very beneficial in practice because the PSF and diffuser effects are very difficult to determine accurately. This method is also very practical for the manufacturing process, where the details of the various optical/electronic components (LEDs, diffusers, claddings) typically provided by different suppliers are not required. This correction can also be applied in certain areas where backlight control is available - most displays allow for global backlight setting control. In one embodiment, a mathematical approach can be used in the less common case where PSF is available. Although in practice, the more "experience" approach described above is more expensive, it is expressed here as a formula. According to equation (25), the response is divided into a backlight component and a pixel component: (7〇) For backlight correction, only the luminance response is considered. The voltage dependence appears only in the backlight response ^ (^ less /). The response component <b, 3^) is independent of the voltage - this is not the same as the full response, 〆), and the full response is based on the measurement data of the fixed backlight color setting. In particular, 50c, ;; /) as the voltage changes, but a constant 'this component 〇,;;, (?) will be called the basic pixel response, the basic pixel response can be expressed as in (35), the following Give its representation:

Fy(^)^lX^L(x,yXcmy (? = (<^〇(尺明 (71) 這仍將確定定義回應的係數^^力。通過將該係數寫作的函數 更清楚地表示空間相關性。 現回到疔(Xj/),使得爲第i個LED的歸一化PSF ’包括散 射器或任何其他部件的影響。這是,乃是在像素面板的PSF入射’其經 過散射器等,此時僅第i個LED是點亮的。現在,假設是已知的。 具有電壓的第i個LED對背光回應的貢獻是: Κ^^^Ρχχ,γ) (72) 這假定電壓相關性是線性的,如LCD,顯示器所期望、並在圖19中示 出的。該背光回應是全部LED的和: FY = ^{ViPi{x,y) (73) 接著,全回應變爲: 37 201243808 ^(x^//) = £:;^.(x^)x£=lX;=〇a:(^)(Cj« (74) 這表示在任何像素位置(x,y)和任何LED電壓値,任何RGB輸入的完 整輝度回應。如上所述,這很少是推理的已知量。 依據分量回應(35),可從上述測量數據確定固定電壓値的全回應, 爲。包含該上標#指明這是在特定電壓計算的。該測量回應必須 等於(74),並給出下列約束方程式:Fy(^)^lX^L(x,yXcmy (? = (<^〇(()) This will still determine the coefficient of the defined response ^^ force. The function written by the coefficient more clearly represents the space Correlation. Now go back to 疔(Xj/), so that the normalized PSF for the ith LED includes the effect of the diffuser or any other component. This is, the PSF incident on the pixel panel 'passes through the diffuser Etc. At this time, only the ith LED is lit. Now, the assumption is known. The contribution of the ith LED with voltage to the backlight response is: Κ^^^Ρχχ, γ) (72) This assumes the voltage The correlation is linear, as the LCD, the display expects, and is shown in Figure 19. The backlight response is the sum of all LEDs: FY = ^{ViPi{x,y) (73) Next, the full response becomes : 37 201243808 ^(x^//) = £:;^.(x^)x£=lX;=〇a:(^)(Cj« (74) This means at any pixel position (x,y) and Any LED voltage 値, the complete luminance response of any RGB input. As mentioned above, this is rarely a known amount of reasoning. According to the component response (35), the full response of the fixed voltage 确定 can be determined from the above measurement data. The superscript # indicates that this is Specific responses calculated voltage must be equal to the measurement (74) and providing the following constraint equation:

Fy (x, y, ί, Ρ) = Fy (χ, y, ί) Σ# 你,βχΣΐ=ιΣ:=Χ»㈣(cm)”=El=iELxfa,>o(cj” (75) 係數重寫爲’以兩出他們取決於位置(χ, y)和應用電壓沪。 在每個位置’存在單獨的等式(75),並且該等式(75)需要獨立求解。除 了係數外,在(75)中全部的量是已知的。對於全部的杰,都需要 保持該等式,這僅是在每個(CJ”項的係數都相等時才是可能的。這給出 siLkW的解如下:Fy (x, y, ί, Ρ) = Fy (χ, y, ί) Σ# you, βχΣΐ=ιΣ:=Χ»(4)(cm)”=El=iELxfa,>o(cj” (75) coefficient Rewritten as 'to the two out of them depending on the position (χ, y) and the applied voltage Shanghai. There is a separate equation (75) at each position, and the equation (75) needs to be solved independently. In addition to the coefficients, All of the quantities in (75) are known. For all Jay, it is necessary to maintain this equation, which is only possible if the coefficients of each (CJ) term are equal. This gives siLkW The solution is as follows:

Kn(x,y)-^nix- (76) 在確定後,全回應(74)爲已知函數,且可用於解決背光校 正。 原則上,(74)提供了像素和背光校正的解決方案,該校正彳包括X 和Ζ三刺激回應)是下列方程的解: (77) ^=T:m^y>Tm^lA^y\cmY 1=Σ,ZL,Zl〇«i (^^xcj" 其約束爲:Kn(x,y)-^nix- (76) After the determination, the full response (74) is a known function and can be used to solve the backlight correction. In principle, (74) provides a solution for pixel and backlight correction, which includes X and Ζ three stimulus responses) is the solution to the following equation: (77) ^=T:m^y>Tm^lA^y\ cmY 1=Σ,ZL,Zl〇«i (^^xcj" Its constraints are:

0<Cm <24" -1,W7 = 1...3 V^[V,-S,V^Sli = \...NL 38 (78) 201243808 - 該第一約束表示,像素値位於範圍[〇,255]內,且第二約束表示電壓値 的解也位於相同的有效範圍內。等式(77)是等式的非線性系統,且在每 個位置(\,_η)作爲獨立等式存在。這樣,我們具有3><义><\+义變數中的 3 X % X 非線性等式系統,該3 X % X \來自每個位置的不同Cw値。這是將 要求解的複雜系統,特別是在時間約束的條件下。替換地,以上介紹的有 效的兩步方法也可在此應用。首先’在輝度約束的基礎上爲灰電平〇和255 計算(56)的解(或採用(57)爲近似値)。這些可表示爲G和。在這 些位置,G和Cf落在有效範圍外,具有限幅的(ciipped) 和c : c:<o^c°m=o0<Cm <24" -1,W7 = 1...3 V^[V,-S,V^Sli = \...NL 38 (78) 201243808 - The first constraint indicates that the pixel is located in the range [〇, 255], and the second constraint indicates that the solution of the voltage 値 is also within the same effective range. Equation (77) is a nonlinear system of the equation and exists as an independent equation at each position (\, _η). Thus, we have a 3 X % X nonlinear equation system in 3 <<><<\> variables, which come from different Cw値 for each position. This is a complex system that will require solutions, especially under time constraints. Alternatively, the effective two-step method described above can also be applied here. First, the solution of (56) is calculated for the gray level 〇 and 255 on the basis of the luminance constraint (or (57) is approximate 値). These can be expressed as G and. At these locations, G and Cf fall outside the valid range, with ciipped and c: c:<o^c°m=o

Cf >255 二 C: =255 (79) 如果這些値在範圍內,那麼不需要限幅。指示考慮這些限幅的値作 爲G和G55。接著’通過求解下式子,將這些調節値用於求解校正LED電 壓π値: 严5=S,ye(x,)« (so) 如前所知,可爲每個初始背光設置^計算獨立的π値組;回望這一 點,在計算C和C5時,將公共電壓應用到全部的LED中。使用(68)中 的相同符號,爲初始設置4 (在此’ j是設置指數,丨是LED指數)寫入校 正電壓: 接著,可從下式計算校正背光電壓: Σί=1 Δ7<^< (Z!m=l Σμ=0 amn (Χο»}>b )(C° )n jf' -^NL ^ ^ ^ ^ a = l…Νχ,SJ i-1 與(77)不同’酿這是等式的線性系統,其更易於求解。每個位 置(,4)存在-對這樣的等式,因此心被取代,給邮變數心(應 39 201243808 注意,每個第j個設置分別處理)中的等式線性系統。先前提到 的標準方法,同時處理背光校正和像素校正在等式(82)中是非常清楚的。 僅(82)中的兩個等式中的一個可使用’例如如果在255的校正更爲嚴格, 那麼僅第二等式可使用。 對於LCD,可使用其他優化以使得求解(82)更爲簡單。點的數量, 以及等式的數量可減少,這樣變數的數量將比等式的數量多。這確保通 常有解存在。這一簡化總是可能的,因爲LED尋找的粗略亮度改良在很大 區域內變化。如果變數和等式的數量是相同的,那麼一個具有矩形矩陣系 統。可使該位置與LED對應,這通過減少鄰近LED的相關作用簡化該矩陣。 在特定位置的LED的作用可限制到最近的LED 〇這使得(82)進入:‘塊對 角”(“block-diagonal)型格式(以來自僅3個LED的作用爲例):Cf >255 II C: =255 (79) If these defects are in range, then no clipping is required. Instructed to consider these limits as G and G55. Then, by solving the following equation, these adjustments are used to solve the corrected LED voltage π値: Strict 5=S, ye(x,)« (so) As previously known, each initial backlight can be set independently. The π値 group; looking back at this, when calculating C and C5, the common voltage is applied to all the LEDs. Using the same symbol in (68), write the correction voltage for the initial setting 4 (where 'j is the set index, 丨 is the LED index): Next, the corrected backlight voltage can be calculated from: Σί=1 Δ7<^&lt ; (Z!m=l Σμ=0 amn (Χο»}>b )(C° )n jf' -^NL ^ ^ ^ ^ a = l...Νχ, SJ i-1 is different from (77) This is a linear system of equations that is easier to solve. Each position (, 4) exists - for such an equation, so the heart is replaced, giving the mail variable heart (should be 39 201243808 note that each jth setting is separate Equation linear system in processing. The standard method previously mentioned, simultaneous processing of backlight correction and pixel correction is very clear in equation (82). Only one of the two equations in (82) can be used. 'For example, if the correction at 255 is more stringent, then only the second equation can be used. For LCDs, other optimizations can be used to make the solution (82) simpler. The number of points, and the number of equations can be reduced, so that The number of variables will be greater than the number of equations. This ensures that there is usually a solution. This simplification is always possible because the LED is looking rough. The brightness improvement varies over a large area. If the number of variables and equations are the same, then a system with a rectangular matrix can make this position correspond to the LED, which simplifies the matrix by reducing the correlation of adjacent LEDs. The role of the LED can be limited to the nearest LED 〇 which allows (82) to enter: 'block-diagonal' format (takes the effect from only 3 LEDs as an example):

«Η «12 «13 0 0 0 Λ、 Μ 卜] «21 α22 αη 0 0 0 Λ Δ;2 b2 «3. «32 «33 0 0 0 Λ △>3 h 0 0 “43 α44 «45 0 Λ = 0 0 «53 «54 α55 0 Λ Δ;5 0 0 fl63 α64 «65 0 Λ K Μ Μ Μ Μ Μ Μ 〇J 1 mJ 、mJ (83) 可使用眾所周知的數學方法求解這一系統。所需的校正越粗略,可 做出的簡化越多。僅最近的LED可用於極大地簡化(82 )。 如上所示,當PSF爲已知時,可簡化背光校正計算以求解(82)中 的系統。在實踐中,PSF計算是非常複雜且通常是難以實現的,在該情況下, 迭代法提供更快的、可實現的替代方案來確定背光校正。 在重校準階段45的末期,像素校正和背光校正是已知的。該像素校 正6作爲一組校正像素値,用於點ka)的整個柵格上的電平(¾公共背光 設置4。背光校正户作爲取決於公共背光設置^的校正LED電壓組提供》 該數據槪述如下: 201243808 像素校正: S = (R,G,B) = (¾ 背光校正: 1X1 K.1 (84)«Η «12 «13 0 0 0 Λ, Μ 卜] «21 α22 αη 0 0 0 Λ Δ;2 b2 «3. «32 «33 0 0 0 Λ △>3 h 0 0 "43 α44 «45 0 Λ = 0 0 «53 «54 α55 0 Λ Δ;5 0 0 fl63 α64 «65 0 Λ K Μ Μ Μ Μ Μ Μ 〇 J 1 mJ , mJ (83) This system can be solved using well-known mathematical methods. The coarser the correction required, the more simplifications that can be made. Only the most recent LEDs can be used to greatly simplify (82). As shown above, when the PSF is known, the backlight correction calculation can be simplified to solve the problem in (82). In practice, PSF calculations are very complex and often difficult to implement, in which case the iterative method provides a faster, achievable alternative to determine backlight correction. At the end of the recalibration phase 45, pixel correction And backlight correction is known. The pixel correction 6 is used as a set of correction pixels 値 for the level on the entire grid of points ka) (3⁄4 common backlight setting 4. The backlight correction is as dependent on the common backlight setting ^ Correcting the LED voltage group is provided. The data is described as follows: 201243808 Pixel Correction: S = (R, G, B) = (3⁄4 Light correction: 1X1 K.1 (84)

η 指數j指示開始的公共背光設置。 重建的下一階段將該網格數據轉換成函數形式48 〇對於像素校正, 這爲全部電平、全部像素位置和背光設置提供新的像素値。對於該背光校 正,這將在任何給定的公共背光言受置提供新LED電壓値。構建函數形式本 質上是指使用某些擬合或內插方法將處於不同空間的離散點的數據轉換到 連續函數。這與從一組點構建(35)中的回應類似。函數形式也取決於下 一和最後應用階段的硬體。具有非常有效的硬體執行的通用形式,已經在 7,324,706中介紹了。在此介紹和槪括了通式。 全部獨立變數的範圍被劃分成區域,並且在每個區域中將單獨的函 數擬合或內插到數據(84)中。與回應函數類似,擬合是優選的,且使用 多項式基。像素校正首先考慮。以像素位置開始,將像素空間(X,y)劃分成 2D小塊(patch),且在每個小塊上的將多項式擬合到 網格點。函數的連續性確保橫跨小塊。該小塊數量和擬合可調,這樣多項 式非常精確地表示網格點。如果每個小塊上網格點的數量等於多項式係數 的數量,那麼擬合變成內插函數。多種軟體程式可用於擬合和內插(例如 MATLAB樣條工具箱)°(x,y冲擬合的結果是下列函數形式: r R^=Tt〇T^Lxmyn : 巧㈣=ΣίοΣίΑ〆/ (85) 在此,dx和dy是X和y中的多項式次數。應注意(x,y)的擬合消除了Μ '指數,且將離散相關性變成了連續相關性。電平和背光設置上的離散相關 41 201243808 性依舊保持不變。使用爲不同電平計算的校正網格(58)在像素値空間(RGB) 中完成下一擬合,所述不同電平是均勻的。RGB空間還劃分成小塊’且在 每個小塊上擬合多項式。在此,小塊實際上是3D立方,因爲RGB空間是 3D的。擬合結果是函數形式: 印,从=(86) 公共次數(common degree) d用作RGB擬合。對於G和Β可找到類 似的形式。通過僅考慮灰電平,對於均勻性校正的最常見例子,(86)可 簡化成: R'jix^R) = T,^:JLtaUxmynR, (87) 我們使用(88)來簡化該符號。這僅有的離散相關性保持是位於背 光設置上。通過將背光控制劃分成1D小塊並在每個這些小塊上擬合在此消 除。追給出· R\x,y,R,V) = Σ;Ι〇Σ"〇Σ!:〇Σί〇^^>ηΛ^* G'(x,y,G,V) = ΣΖ〇Σί〇Σί〇Σΐ〇α^χ^η^ (88) B\x,y,B,V) = ΣΐΧ,Σΐ^:-^χ^ηΒ,ν" V在(90)中再次用於背光控制,該背光控制可能在某些歸一化單 元中。等式(88)以通式的形式寫出,但是通過使用線性多項式(d=1)或其 他優化,實際上,可將其更加簡化。又,如果相同校正用於全部背光^胃, 那麼(88 )中的V相關性被消除。 數 背光校正函數以同一方式打開。使用(68)中計算的數據將該電;Μ 數據擬合爲背光控制函數,i爲LED挂 ''…Nl (89) W) = Y^〇ajvJ^ i 該函數取値需要滿足: ν;(ν,) = νβ, j = \...Nv, 42 (90) 201243808 該背光校正應該被看成給出校正LED電壓以回應背光設置或控制, 其可爲開始公共電壓或某些與公共電壓相關的歸一化量。等式(88 )和(89 ) 給出最終的像素校正圖和用於均勻性校正過程的該背光校正圖。他們重寫 如下: ^ JC(XM=Σ;Ι〇Σ:=〇Σΐ:〇Σ::〇^^>η^^ κ=^(η=Σ·The η index j indicates the initial common backlight setting. The next stage of reconstruction converts the grid data into a functional form 48. For pixel correction, this provides a new pixel for all levels, all pixel locations, and backlight settings. For this backlight correction, this will provide a new LED voltage 値 at any given common backlight. The constructor form essentially refers to the conversion of data from discrete points in different spaces to a continuous function using some fitting or interpolation methods. This is similar to the response from a set of point builds (35). The form of the function also depends on the hardware of the next and last application phases. A general form with very efficient hardware implementation has been introduced in 7,324,706. The general formula is introduced and included here. The range of all independent variables is divided into regions, and individual functions are fitted or interpolated into data (84) in each region. Similar to the response function, the fit is preferred and a polynomial basis is used. Pixel correction is first considered. Starting at the pixel position, the pixel space (X, y) is divided into 2D patches, and the polynomial is fitted to the grid points on each tile. The continuity of the function ensures that it spans small pieces. The number of patches and the fit are adjustable so that the polynomial represents the grid points very accurately. If the number of grid points on each tile is equal to the number of polynomial coefficients, the fit becomes an interpolation function. A variety of software programs are available for fitting and interpolation (eg MATLAB Spline Toolbox) ° (The result of the x, y-fitting is the following functional form: r R^=Tt〇T^Lxmyn: Q(4)=ΣίοΣίΑ〆/ ( 85) Here, dx and dy are the number of polynomials in X and y. It should be noted that the fit of (x, y) eliminates the Μ 'index and turns the discrete correlation into a continuous correlation. Level and backlight settings The discrete correlation 41 201243808 is still unchanged. The next fit is done in pixel pupil space (RGB) using a correction grid (58) calculated for different levels. The different levels are uniform. The RGB space is also divided. Make a small block' and fit the polynomial on each small block. Here, the small block is actually 3D cube because the RGB space is 3D. The result of the fitting is a functional form: print, from = (86) public times ( Common degree) d is used as an RGB fit. A similar form can be found for G and Β. By considering only the gray level, for the most common example of uniformity correction, (86) can be simplified to: R'jix^R) = T,^:JLtaUxmynR, (87) We use (88) to simplify the symbol. This only discrete correlation remains on the backlight setting. By dividing the backlight control into 1D tiles and fitting on each of these tiles is eliminated here. Chasing · R\x,y,R,V) = Σ;Ι〇Σ"〇Σ!:〇Σί〇^^>ηΛ^* G'(x,y,G,V) = ΣΖ〇Σί〇 Σί〇Σΐ〇α^χ^η^ (88) B\x,y,B,V) = ΣΐΧ,Σΐ^:-^χ^ηΒ, ν" V is used again in backlight control in (90), Backlight control may be in some normalization units. Equation (88) is written in the form of a general formula, but by using a linear polynomial (d = 1) or other optimization, it can be more simplified. Also, if the same correction is used for all backlights, the V correlation in (88) is eliminated. The number backlight correction function opens in the same way. Use the data calculated in (68) to fit the electricity; Μ data to the backlight control function, i is the LED hang ''...Nl (89) W) = Y^〇ajvJ^ i The function needs to satisfy: ν; (ν,) = νβ, j = \...Nv, 42 (90) 201243808 This backlight correction should be viewed as giving a corrected LED voltage in response to backlight settings or controls, which can be used to initiate a common voltage or some common Voltage dependent normalized amount. Equations (88) and (89) give the final pixel correction map and the backlight correction map for the uniformity correction process. They are rewritten as follows: ^ JC(XM=Σ;Ι〇Σ:=〇Σΐ:〇Σ::〇^^>η^^ κ=^(η=Σ·

、dL \vj *mntk *mntk *mntk 2B *mntk (91) i = LNt (91)中的第一運算式需要被理解爲在右側的、評估的分量形式的 (component-wise)(例如單獨用於R,G和B)。這爲係數組方面 的校正提供了非常緊湊的形式,該成„^.}可方便地存儲並且可在硬體中評 估多項式。 最後階段49包括使用合適的硬體平臺將校正圖應用到LCD顯示器 上。由於高度緊湊的表示,可使用FPGA輕易地應用該圖。FPGA設計基本 上由乘法器和加法器組成,所述乘法器和加法器評估用於輸入RGB信號和 背光控制的上述函數。未決的專利申請11/649,765描述了一種在FPGA或 ASIC中執行的硬體架構1〇〇,用於在固定背光設置中應用像素校正。該架 構可用於背光圖的評估以及背光控制上像素圖的附加函數相關性。對於在 具體實施例(圖6-8)中使用的顯示器,基於系統100的FPGA用於應用校 正°該三刺激値XYZ和使用在此描述的方法均勻性校正後在相同電平 (192 ’ 192 ’ 192)下的色度圖表在圖21-22中示出。與圖6和8中的對應圖 表相电’均勻性的改善清楚可見。表2中示出了校正以後的統計數據。 表2-校正前的非均勻性統計數據 物理量 %均勻性 %非均勻性 平均値 %均勻性增加 %非均勻性降 低 三刺激値X 90.88 9.12 37.77 cd/m2 57.87 78.50 三刺激値Y (輝 .度)… 91.31 8.69 41.00 cd/m2 55.48 78.95 43 201243808 三刺激値Z 87.35 12.65 52.49 cd/m2 67.75 73.61 98.45 1.55 0.2878 4.90 74.78 **色度y。 96.48 3.52 0.3124 5.99 60.80 最後兩列給出了均勻性和非均勻性中的百分比變化。在校正以後均 勻性顯著改善了,輝度從58.73%均勻性上升到91.31%均勻性。這對應著均 勻性上升了 58%,也就是>1.5X。相等地,非均勻性看起來下降了 79%。類 似的改進也可從X和Z三刺激量看出,特別地,Z均勻性增加了 1.67倍, 這是色度均勻性的關鍵。色度座標也示出了非均勻性的較大減少,更重要 地,(&,y。)中的△模擬爲(%非均勻性X平均値)現在小於0.01,使得感知的 色度均勻性橫越顯示器。爲了進一步驗證這一點,在感知CIE L*u*v*空間 計算距離,其是色彩區別的可感知性測量。<1的距離被看作是不可感 知的(雨種色彩將看起來是一樣的),在此,22附近的値被看作是可感知 的,雖然應注意,這是大槪的。在實踐中,該範圍外的色彩差別可能或可 能不能被感知。爲了獲得的估計,生成下列“可感知表面”。對於每個 像素(假定在(X。, y。)),計算<v的L*u*v*値和全部其他像素之間的 這些Δ^ν値,總共WxH (顯示器解析度),全部平均並分配給像素㈨,y。)。 對於全部像素,重複該過程,並總計爲全部可能像素對組合計算距離。這 在(X,y)空間中提供表面,指示像素和其他像素之間的平均可感知色彩 距離。校正前後的表面在圖24中示出。示出値爲2的平面以作參考。 在校正前,多個像素具有接近4的値,在此,在校正以後,全部像素都S1。 圖24清楚地示出了採用該校正後色彩均勻性的改進。已經使用(39)中的 平均度量用於該校正,可預料平均値不會改變。這可通過將表格1和2中 的第三列進行比較驗證,這進一步提供了對(50)中的線性類比的支援。 等式(91)的校正的緊湊特性,也就是僅需要存儲係數&„〆},意 味著任何可以影響均勻性的外部變數都可通過存儲與這些變數相關的特定 係、數組校正。在圖25中所示的例子,可計算該校正用於不同環境光電平或 不同溫度62。當環境光改變時,可將合適的係數組64載入到處理器66且 應用到顯示器68。環境光係數組的計算如前所述地精確,其區別僅在於測 44 201243808 量値。另一常見外部變數是光源部件的環境溫度,特別是LH)回應已知隨 著溫度改變。可計算不同校正並將其應用到不同環境溫度。這些校正的計 算如上,但是現在在特定監控的溫度作出。 本發明提供了極大改進背光LCD顯示器中亮度和色彩均勻性的準確 有效的方法。因爲該校正是在顯示器的輸出完成的,也就是觀眾看到的, 其校正全部源的非均勻性。通過採用三刺激値,可精確考慮觀察者所感知 的均勻性。該具體方法爲統一框架中的像素和光源提供校正圖。各個實施 例提供了不同的優化,這些優化可用於基於特定標準(如計算速度、校正 類型等)使該方法簡單化。 雖然上述描述提供了實施例的例子,應當理解,在不脫離上述實施例 的精神和操作原則的'清況下,上述實施例的某些特徵和域功能是可以修改 的。因此,以上對本發明的優選實施例的描述的目的是爲了舉例說明及描 述,本領域技術人員應當瞭解,可在不脫離後附的申請專利範圍所定義的 本發明的保護範圍的情況下,對其作出任何修改和變化。 【圖式簡單說明】 爲了更好地理解在此所述的這些實施例和域相關實施,以及更清楚地 顯示它們是怎樣生效的,可參考僅以示例的方式示出的附圖,在這些附圖 中示出了至少一個典型實施例和/或相關實施,附圖中: 圖1示出了直射LED照明(1-A)和CCFL照明(1-B)源的LCD面 板背光。雖然LED示出爲RGB,白LED也可用。對於OLED,背光和顯示 面板是一樣的; 圖2.,示出了兩種類型的LED背光,直射和側光式; 圖3示出了示範性現有技術色彩和亮度校正系統; 圖4示出了本發明中用於色彩和亮度非均勻性校正的步驟; 圖5示出了本發明中色彩和亮度非均勻性校正系統的槪視圖; 圖ό是在示範性實驗中、在校正前測量的灰電平192的三個刺激値 (stimulus valu6 )· ΧΥΖ 的 2D 等局線圖; 45 201243808 圖7是在示範性實驗中、在校正前測量的灰電平192的像素位置的函 數的三個刺激値XYZ的3D等高線圖; 圖8是在示範性實驗中、在校正前測量的灰電平192色度値(xc,yc)的 2D等高線圖; 圖9示出了爲所述示範性實驗選擇的顯示器上的7x7網格點圖; 圖10是用於純灰、紅、綠和藍電平(Blue level)的、圖9的網格點的 測量的三刺激値Y的圖表; 圖11是用於純灰、紅、綠和藍電平的、圖9的網格點的測量的三刺 激値X的圖表; 圖12是用於純灰、紅、綠和藍電平的、圖9的網格點的測量的三刺 激値Z的圖表; 圖13是作爲灰電平192的背光電壓設置的函數的、圖9的測量的三刺 激値XYZ的圖表。該電壓値處於歸一化範圍內; 圖14是作爲灰電平255 (純白色)的背光電壓設置的函數的、圖9的 測量的三刺激値XYZ的圖表。該電壓値處於歸一化範圍內; 圖15是作爲背光電壓設置和灰電平信號的函數的三刺激値γ (亮度) 的3D圖表; 圖16是測量的灰電平和從對應的測量的RGB級的和計算的三刺激値 之間的差別(△); 圖17是具有包括的疊加校正的三刺激値Z的圖表; 圖18是用於三刺激値Y (亮度)的計算的像素回應函數的圖表; 圖19是用於灰電平255 (純白色)的、用於XYZ三朿繼値的計算的 背光回應函數的圖表。該電壓値處於歸—化範圍內; 圖20是作爲像素位置菌數的、用於灰電平192的校正RGB値的3D 圖表;每個R、G和B是標示爲單獨的平面’其右上方示出有說明;, dL \vj *mntk *mntk *mntk 2B *mntk (91) i = LNt (91) The first expression needs to be understood as the component-wise (on the right side) of the evaluation (for example, alone) In R, G and B). This provides a very compact form of correction for the coefficient set, which can be conveniently stored and can be evaluated in hardware. The final stage 49 involves applying the correction map to the LCD display using a suitable hardware platform. This diagram can be easily applied using an FPGA due to the highly compact representation. The FPGA design basically consists of a multiplier and an adder that evaluates the above functions for inputting RGB signals and backlight control. Patent application 11/649,765 describes a hardware architecture implemented in an FPGA or ASIC for applying pixel correction in a fixed backlight setup. The architecture can be used for evaluation of backlight images and addition of pixel maps on backlight control. Function Correlation. For displays used in the specific embodiment (Figs. 6-8), the system 100 based FPGA is used to apply the correction. The tristimulus 値 XYZ and the same level are corrected using the method described herein. The chromaticity diagram at (192 '192 '192) is shown in Figures 21-22. The improvement in uniformity with the corresponding graphs in Figures 6 and 8 is clearly visible. Table 2 shows Statistical data after correction. Table 2 - Non-uniformity statistics before calibration Physical quantity % Uniformity % Non-uniformity Average 値 % Uniformity increased % Non-uniformity reduction Tristimulus 90 X 90.88 9.12 37.77 cd/m2 57.87 78.50 Stimulation 値Y (Hui.degree.) 91.31 8.69 41.00 cd/m2 55.48 78.95 43 201243808 Triple stimuli 87Z 87.35 12.65 52.49 cd/m2 67.75 73.61 98.45 1.55 0.2878 4.90 74.78 **Color y. 96.48 3.52 0.3124 5.99 60.80 Last two columns The percentage change in uniformity and non-uniformity is given. After the correction, the uniformity is significantly improved, and the luminance increases from 58.73% uniformity to 91.31% uniformity. This corresponds to a uniformity increase of 58%, that is, > 1.5X. Equally, the non-uniformity seems to drop by 79%. Similar improvements can be seen from the X and Z tristimulus, in particular, the Z uniformity is increased by 1.67 times, which is the key to chroma uniformity. The chromaticity coordinates also show a large reduction in non-uniformity, and more importantly, the △ simulation in (&, y.) is (% non-uniformity X average 値) is now less than 0.01, making the perceived chromaticity Uniformity across To further verify this, the distance is calculated in the perceived CIE L*u*v* space, which is the perceptibility measure of the color difference. The distance of <1 is considered imperceptible (the rain color will look It is the same), here, the 値 near 22 is considered to be perceptible, although it should be noted that this is a big one. In practice, color differences outside this range may or may not be perceived. In order to obtain an estimate, the following "perceptible surface" is generated. For each pixel (assuming (X., y.)), calculate the Δ^ν値 between L*u*v*値 of the <v and all other pixels, for a total of WxH (display resolution), all Average and assign to pixels (9), y. ). This process is repeated for all pixels and totals the distance calculated for all possible pixel pair combinations. This provides a surface in the (X,y) space that indicates the average perceived color distance between the pixel and the other pixels. The surface before and after the correction is shown in FIG. A plane with 値 2 is shown for reference. Prior to correction, a plurality of pixels have a chirp near 4, where all pixels are S1 after correction. Figure 24 clearly shows an improvement in color uniformity after the correction is employed. The average metric in (39) has been used for this correction and it is expected that the average 値 will not change. This can be verified by comparing the third column in Tables 1 and 2, which further provides support for the linear analogy in (50). The compact nature of the correction of equation (91), that is, only the storage coefficient & 〆 ,, means that any external variable that can affect uniformity can be corrected by storing the specific system, array associated with these variables. The example shown in 25 can be calculated for different ambient light levels or different temperatures 62. When ambient light changes, a suitable set of coefficients 64 can be loaded into processor 66 and applied to display 68. Ambient Light Coefficient The calculations for the group are accurate as described above, the only difference being the measurement of the amount of the 2012 43808. Another common external variable is the ambient temperature of the light source components, especially the LH) response is known to vary with temperature. Different corrections can be calculated and It is applied to different ambient temperatures. These corrections are calculated as above, but are now made at a specific monitored temperature. The present invention provides an accurate and efficient method of greatly improving brightness and color uniformity in a backlit LCD display because the correction is on the display The output is completed, that is, what the viewer sees, which corrects the non-uniformity of all sources. By using the three-stimulus, the observation can be accurately considered. Perceived uniformity. This specific method provides correction maps for pixels and light sources in a unified framework. Various embodiments provide different optimizations that can be used to make the method simple based on specific criteria (eg, computational speed, correction type, etc.) While the above description provides examples of the embodiments, it should be understood that certain features and domain functions of the above-described embodiments may be modified without departing from the spirit and the principles of operation of the embodiments described above. The description of the preferred embodiments of the present invention is intended to be illustrative and illustrative, and it is understood by those skilled in the art that the invention can be made without departing from the scope of the invention as defined by the appended claims. Modifications and Variations [Simplified Description of the Drawings] In order to better understand the embodiments and domain-related implementations described herein, and to more clearly show how they are effective, reference may be made to the accompanying drawings. In the drawings, at least one exemplary embodiment and/or related embodiments are illustrated, in which: Figure 1 shows LCD panel backlights for direct LED illumination (1-A) and CCFL illumination (1-B) sources. Although LEDs are shown as RGB, white LEDs are also available. For OLEDs, the backlight and display panel are the same; Figure 2. Two types of LED backlights, direct and side-lit; Figure 3 shows an exemplary prior art color and brightness correction system; Figure 4 illustrates the steps for color and brightness non-uniformity correction in the present invention; Figure 5 is a side elevational view of the color and brightness non-uniformity correction system of the present invention; Figure 3 is a diagram of three stimuli (stimulus valu6) of the gray level 192 measured prior to calibration in an exemplary experiment. 2D contour map; 45 201243808 Figure 7 is a 3D contour plot of three stimuli 値 XYZ as a function of pixel position of gray level 192 measured prior to correction in an exemplary experiment; Figure 8 is in an exemplary experiment 2D contour map of gray level 192 chromaticity 値(xc, yc) measured before correction; Figure 9 shows a 7x7 grid point map on the display selected for the exemplary experiment; Figure 10 is for Measurement of the grid points of Figure 9 at pure gray, red, green and blue levels (Blue level) Figure 3 is a graph of measured tristimulus 値X for the grid points of Figure 9 for pure gray, red, green, and blue levels; Figure 12 is for pure gray, red , green and blue level, graph of the measured tristimulus 値Z of the grid points of Figure 9; Figure 13 is the measured tristimulus 値 XYZ of Figure 9 as a function of the backlight voltage setting of the gray level 192 chart. This voltage 値 is within the normalized range; Figure 14 is a graph of the measured tri-stimulus 値 XYZ of Figure 9 as a function of the gray level 255 (pure white) backlight voltage setting. The voltage 値 is in the normalized range; Figure 15 is a 3D graph of tristimulus 値 γ (brightness) as a function of backlight voltage setting and gray level signal; Figure 16 is the measured gray level and RGB from the corresponding measurement The difference between the level and the calculated tristimulus △ (Δ); Fig. 17 is a graph of the tristimulus 値Z with the superimposed correction included; Fig. 18 is the pixel response function for the calculation of the tristimulus 値Y (brightness) Figure 19 is a graph of the backlight response function for the calculation of XYZ triads for gray level 255 (pure white). The voltage 値 is within the normalization range; Figure 20 is a 3D graph of corrected RGB 用于 for gray level 192 as a pixel position number; each R, G, and B is labeled as a separate plane 'its upper right The party shows a description;

圖21是作爲像素位置函數的、用於灰電平255的校正RGB値的3D 酸;每個R、G和B是標雜; 圖22是在校正後、測纛的灰電平192的三刺激値的2D等高線圖; 圖23是在校正後、測量的灰電平192的色度値(xc,yc)的2D等1^線圖; 46 201243808 - 圖24是校正前後、橫跨像素位置計算的、給定可感知的色彩差別測 量時的ΔΕ*ιιν値。還示出了具有高於可感知和低於不可感知的値的恒定値 “2”表面,在右上方示出了 3個表面的說明;以及 圖25示出了適合環境光和溫度的存儲校正係數選擇。 應瞭解,爲了說明的簡化和清楚,圖中示出的單元並不需要按規定比 例繪製。例如,相對其他單元,某些單元的尺寸可能被誇大以使其更加清 楚。此外’被認爲合適的是,在圖中,附圖標記可重複以指代對應或類似 的單元。 【主要元件符號說明】 LCD面板50 參考圖像51 捕獲裝置52 處理單元54 硬體處理器56 輸入圖像生成器58 光源10或11 LED 12 光調製器16 直射LED背光20 側光式背光30 物理量41 47Figure 21 is a 3D acid for correcting RGB turns of gray level 255 as a function of pixel position; each R, G, and B is a standard; Figure 22 is a third of the measured gray level 192 after correction. 2D contour map of the stimuli 图; Fig. 23 is a 2D line diagram of the chromaticity 値(xc, yc) of the measured gray level 192 after the correction; 46 201243808 - Fig. 24 is the position before and after the correction, across the pixel position Calculated, given a perceived difference in ΔΕ*ιιν値. Also shown is a constant 値 "2" surface with a higher than perceived and below imperceptible ,, with a description of 3 surfaces at the top right; and Figure 25 shows a storage correction for ambient light and temperature Coefficient selection. It should be understood that the elements shown in the figures are not required to For example, the dimensions of some units may be exaggerated to make them clearer than other units. Further, it is considered to be appropriate that in the figures, reference numerals may be repeated to refer to corresponding or similar elements. [Main component symbol description] LCD panel 50 Reference image 51 Capture device 52 Processing unit 54 Hardware processor 56 Input image generator 58 Light source 10 or 11 LED 12 Light modulator 16 Direct LED backlight 20 Side-lit backlight 30 Physical quantity 41 47

Claims (1)

201243808 七、申請專利範圍: 1、 一種用於通過多個光源部件改善液晶顯示器背光的色彩和亮度均 勻性的方法,所述方法包括: 爲全部光源部件設置至少一個公共背光電壓; 對於所述至少一個背光電壓設置的每一個,顯示多個參考輸入圖像, 所述參考輸入圖像具有對於至少一個信號電平,橫跨所述顯示器的、預定 的平臺RGB像素値; 在所述顯示器上選定的網格點組測量顯示器均勻性以回應所述多個 參考輸入圖像,所述均勻性由至少一個三刺激値、輝度和色度分量表徵; 從測量的均勻性數據生成顯示回應函數,所述顯示回應函數爲所述顯 示器的每個像素的R,G和B分量的回應和; 計算像素校正網格數據圖,所述像素校正網格數據圖在每個所述至少 一個信號電平產生全部像素的恒定均勻性値; 將所述像素校正網格數據圖轉換成一組係數表示的函數形式·,和 將像素校正函數應用到輸入信號和顯示器,用於全部像素位置和色彩 値。 2、 根據申請專利範圍第1所述的方法,其中所述回應函數進一步取 決於背光電壓設置,且所述校正網格數據包括應用到背光源部件的背光校 正圖。 3、 根據申請專利範圍第2項所述的方法,其中所述像素圖在所述背 光校正的應用之後重新生成,且迭代所述背光和像素校正直到獲得所需的 均勻度。 4、 根據申請專利範圍第2項所述的方法,其中所述背光回應函數表 示成線性函數。 ·; 5、 根據申請專利範圍第2項所述的方法,其中所述背光校正是使用 每個光源部件的三刺激點擴散函數(PSF)獲得。 6、 根據申請專利範圍第5項所述的方法,其中所述PSF是作爲光源 部件的規範提出的。 7、 根據申請_丨】範圍第5項所述的方法,其中所述psf是使用數學 48 201243808 模型近似取得的。 8、 根據申請專利範圍第5項所述的方法,其中所述psf是直接測量 的。 9、 根據申請專利範圍第1項所述的方法,其中所述參考輸入圖像是 僅用於亮度校正的多個純灰電平。 10、 根據申請專利範圍第1項所述的方法,其中每個所述光源部件是 發光二極體(LED)。 11、 根據申請專利範圍第1項所述的方法,其中所述光源部件是冷陰 極螢光燈(CCFL)管。 12、 根據申請專利範圍第1項所述的方法,其中所述光源部件是鍾射 二極體(LD)。 13、 根據申請專利範圍第1項所述的方法,其中所述參考輸入圖像是 純紅、純綠和純藍電平的多個電平。 14、 讎_專利範圍第13項所述的方法,其中所述參考輸入圖像進 —步包括多個純灰電平,執行所述多個純灰電平以補償膽分量的LCD黑 電平偏移。 15、 讎申sra專利範圍第1項所述的方法,其中使用多垣式擬合到測 量網格點獲得該顯示器回應函數。 16、 讎•翻麵第15麵麵施,其中所述多項式是三麵 數。 17 '根1撕獅雄,其中漏刚腿測量網 格點數據獲得所述顯市器回應函數。 18、根據申請專利範圍第丨j;目阶 —杜·侧-項所述的法’其中通纖娜定律建模 所述函數估計所述顯不器回應函數。 —1項腿的方法,其中所述回麵數是擬合 到所===部多項式,這樣所述局部擬合是單調函數。 一瓣卜卜例縮放=使所、Ά齡15項所述的方法,其中將所述回應函數移位 兀和按比例縮放以使所述函數單調。 21、根據申請專利範圍第1項日㈣的七# 1項所述的方法,其中所述回應函數的恒定 49 201243808 均勻性値是設置成平均測量値的。 22、 根據申請專利範圍第1項所述的方法,其中對於高信號電平,在 校正的像素値位於允許的比特範圍之上時,所述回應函數的恒定均勻性値 是設置成最小測量値。 23、 根據申請專利範圍第1項所述的方法,其中對於低信號電平,在 校正的像素値位於允許的比特範圍之下時,所述回應函數的恒定均勻性値 是設置成最大測量値。 24、 根據申請專利範圍第1項所述的方法,其中對於數個像素校正圖, 多個所述係數組是對應於數個環境溫度的設置計算和存儲的。 25、 根據申請專利範圍第1項所述的方法,其中對於數個像素校正圖, 多個所述係數組是對應於數個環境光的設置計算和存儲的。 26、 一種用於改善背光液晶顯示器的色彩和亮度均勻性的電子系統, 其中所述系統包括: 由像素陣列組成的顯示器面板,每個所述像素由可控數位RGB値表 徵; 由多個光源部件組成的背光源面板’每個所述光源部件由可調電壓控 制表徵; 用於在顯示器上顯示多個參考輸入圖像的圖像生成器單元; 用於在顯示器上選定的網格點組測量顯示器均勻性以回應所述多個 參考輸入圖像的圖像捕獲和測量單元,所述均勻性由三刺激値、輝度和色 度分量中的至少一個表徵; 第一處理構件,用於從測量的均勻性數據生成顯示回應函數,並計算 像素校正網格數據圖,所述像素校正網格數據圖在每個所述至少—個信^ 電平產生全部像素的恒定均勻性値;以及 第二處理構件’用於將所述像素校正網格數據圖轉換成由一組係數表 示的函數形式;和將像素校正函數應用到輸入信號和顯示器,用於全部像 素位置和色彩値。 27、 根據申請專利範圍第26項所述的系統’其中所述回應函數還取決 於所述背光電壓設置,且所述校正網格數據包括應用於所述背光電壓控帛fJ 201243808 - 的背光校正。 28、 根據申請專利範圍第26項所述的系統,其中每個所述光源部件是 發光二極體(LED)。 29、 根據申請專利範圍第27項所述的系統,其中所述LED部件設置 在直射背光架構中。 3〇、根據申請專利範圍第27項所述的系統,其中所述LED部件設置 在側射式背光架構中。 31、 根據申請專利範圍第26項所述的系統,其中所述光源部件是冷陰 極螢光燈(CCFL)管。 32、 根據申請專利範圍第26項所述的系統,其中所述光源部件是鐳射 二極體(LD)〇 33、 根據申請專利範圍第26項所述的系統,其中所述第一處理構件和 第二處理構件是集成到一個處理器中的。 34、 根據申請專利範圍第26項所述的系統,其中所述第—處理構件是 在電腦系統上運行的軟體工具。 35、 根據申請專利範圍第26項所述的系統,其中所述第二處理構件集 成到顯示器中。 36、 根據申請專利範圍第26項所述的系統,其中所述捕獲設備是二維 (2D)照相機。 37、 根據申請專利範圍第26項所述的系統,其中所述捕獲設備是點亮 度計。 38、 一種用於改善有機LED顯示器(OLED)的色彩和亮度均勻性的 電子系統,所述系統包括: 由像素陣列組成的顯示器面板,每個所述像素爲OLED部件並由可控 數位RGB値表徵; 用於在顯示器上顯示多個參考輸入圖像的圖像生成器單元; 用於在顯示器上選定的網格點組測量顯示器均勻性以回應所述多個 參考輸圖像的圖像捕攆和測量單元’所述均勻性由至少一個三刺激値、 輝度和色度分量表徵; 51 201243808 第一處理構件,用於從測量的均勻性數據生成顯示回應函數,並計算 像素校正網格數據圖,所述像素校正網格數據圖在每個所述至少一個信號 電平產生全部像素的恒定均勻性値;以及 第二處理構件,用於將所述像素校正網格數據圖轉換成一組係數表示 的函數形式;和將像素校正函數應用到輸入信號和顯示器,用於全部像素 位置和色彩値° 39、 根據申請專利範圍第38項所述的系統,其中所述第一處理構件和 所述第二處理構件集成在一個顯示器中。 40、 根據申請專利範圍第38項所述的系統,其中所述第二處理構件集 成在所述顯示器中。 41、 根據申請專利範圍第38項所述的系統,其中所述捕獲設備是二維 (2D)照相機。 42、 根據申請專利範圍第38項所述的系統,其中所述捕獲設備是點亮 度計。 43、 一種用於改善有機LED顯示器(OLED)的色彩和亮度均勻性的 方法,其中所述方法包括: 在顯示器上顯示多個參考輸入圖像,所述參考輸入圖像具有對於至少 .一個信號電平來說、預定的平臺RGB像素値; 在顯示器上選定的網格點組測量顯示器均勻性以回應所述多個參考 輸入圖像,所述均勻性由至少一個三刺激値、輝度和色度分量表徵; 從測量的均勻性數據生成顯示回應函數,所述顯示回應函數爲所述顯 示器的每個像素的R,G和B分量的回應和; 計算像素校正網格數據圖,所述像素校正網格數據圖在每個所述至少 ' 一個信號電平產生全部像素的恒定均勻性値; 將所述像素校正網格數據圖轉換成一組係數表示的函數形式;以及 將像素校正函數應用到輸入信號和顯示器’用於全部像素位置和色彩 44、 根據申請專利範圍第43項所述的方法,其中所述參考輸入圖像僅 僅是亮度校正的多個純灰度電平。 52 201243808 45、 根據申請專利範圍第43項所述的方法,其中所述參考輸入圖像是 純紅、純綠和純藍電平的多個電平。 46、 根據申請專利範圍第45項所述的方法,其中所述參考輸入圖像進 一步包括多個純灰電平’執彳了所述多個純灰電平以補償RGB分量的LCD黑 電平偏移。 47、 根據申請專利範圍第43項所述的方法,其中使用多項式擬合到測-量網格點獲得該顯示器回應函數。 48、 根據申請專利範圍第47項所述的方法,其中所述多項式是三次函 數。 49、 根據申請專利範圍第43項所述的方法,其中通過內插所述測量網 格點數據獲得所述顯示器回應函數。 50、 根據申請專利範圍第43項所述的方法,其中通過按照冪定律建模 所述函數估計所述顯示器回應函數。 51、 根據申請專利範圍第43項所述的方法,其中所述回應函數是擬合 到所述測量網格點鄰域的多個局部多項式,這樣所述局部擬合是單調函數。 52、 根據申請專利範圍第47項所述的方法,其中將所述回應函數移位 元和按比例縮放以使所述函數單調。 53、 根據申請專利範圍第43項所述的方法,其中所述回應函數的恒定 均勻性値是設置成平均測量値的。 54、 根據申請專利範圍第43項所述的方法,其中對於高信號電平,在 校正的像素値位於允許的比特範圍之上時,所述回應函數的恒定均勻性値 是設置成最小測量値。 55、 根據申請專利範圍第43項所述的方法,其中對於低信號電平’在 校正的像素値位於允許的比特範圍之下時,所述回應函數的恒定均勻性値 是設置成最大測量値。 56、 根據申請專利範圍第43項所述的方法,其中對於數個像素校正 圖,多個所述係數組是對應於數個環境溫度的設置計算和存儲的。 57、 根據申請專利範圍第43項所述的方法,其中對於數個像素校正 圖,多個所述係數組是對應於數個環境光的設置計算和存儲的。 53201243808 VII. Patent Application Range: 1. A method for improving color and brightness uniformity of a liquid crystal display backlight by a plurality of light source components, the method comprising: providing at least one common backlight voltage for all light source components; Each of a backlight voltage setting displays a plurality of reference input images having a predetermined platform RGB pixel 横跨 across the display for at least one signal level; selected on the display a set of grid points to measure display uniformity in response to the plurality of reference input images, the uniformity being characterized by at least one tristimulus 辉, luminance, and chrominance components; generating a display response function from the measured uniformity data, The response function is a response sum of the R, G, and B components of each pixel of the display; a pixel corrected grid data map is generated, the pixel corrected grid data map being generated at each of the at least one signal level Constant uniformity of all pixels; converting the pixel corrected grid data map into a set of coefficients · Forms, and the pixel correction function is applied to the input signal and a display for the position and color of all the pixels Zhi. 2. The method of claim 1, wherein the response function is further dependent on a backlight voltage setting, and wherein the corrected grid data comprises a backlight correction map applied to the backlight component. 3. The method of claim 2, wherein the pixmap is regenerated after the application of the backlight correction, and the backlight and pixel correction are iterated until the desired uniformity is obtained. 4. The method of claim 2, wherein the backlight response function is expressed as a linear function. 5. The method of claim 2, wherein the backlight correction is obtained using a tristimulus point spread function (PSF) of each light source component. 6. The method of claim 5, wherein the PSF is proposed as a specification for a light source component. 7. The method of claim 5, wherein the psf is approximated using a mathematical 48 201243808 model. 8. The method of claim 5, wherein the psf is directly measured. 9. The method of claim 1, wherein the reference input image is a plurality of pure gray levels for luminance correction only. 10. The method of claim 1, wherein each of the light source components is a light emitting diode (LED). 11. The method of claim 1, wherein the light source component is a cold cathode fluorescent lamp (CCFL) tube. 12. The method of claim 1, wherein the light source component is a clockless diode (LD). 13. The method of claim 1, wherein the reference input image is a plurality of levels of pure red, pure green, and pure blue levels. The method of claim 13, wherein the reference input image further comprises a plurality of pure gray levels, and the plurality of pure gray levels are performed to compensate for the LCD black level of the bile component. Offset. 15. The method of claim 1, wherein the display response function is obtained using a multi-turn fit to the measurement grid point. 16. 雠• Turn the 15th face, where the polynomial is three-sided. 17 'root 1 tears the lion, where the leaky leg measurement grid point data obtains the display market response function. 18. The function according to the scope of the patent application 丨j; the order-du-side-term of the method wherein the function is estimated by the function of the model. A method of 1 leg, wherein the number of back faces is fitted to the === partial polynomial such that the local fit is a monotonic function. A method as described in item 15, wherein the response function is shifted and scaled to monotonize the function. 21. The method of claim 7, wherein the response function is constant 49 201243808 Uniformity 値 is set to an average measurement 値. 22. The method of claim 1, wherein for a high signal level, the constant uniformity of the response function is set to a minimum measurement when the corrected pixel 値 is above the allowed bit range. . 23. The method of claim 1, wherein for a low signal level, the constant uniformity of the response function is set to a maximum measurement when the corrected pixel 値 is below the allowed bit range. . 24. The method of claim 1, wherein for a plurality of pixel correction maps, the plurality of coefficient sets are calculated and stored corresponding to settings of a plurality of ambient temperatures. 25. The method of claim 1, wherein for a plurality of pixel correction maps, the plurality of coefficient sets are calculated and stored corresponding to settings of a plurality of ambient lights. 26. An electronic system for improving color and brightness uniformity of a backlit liquid crystal display, wherein the system comprises: a display panel comprised of a pixel array, each of said pixels being characterized by a controllable digital RGB ;; a backlight panel composed of components' each of the light source components is characterized by an adjustable voltage control; an image generator unit for displaying a plurality of reference input images on the display; a grid point group for selection on the display Measured display uniformity in response to an image capture and measurement unit of the plurality of reference input images, the uniformity being characterized by at least one of tristimulus 辉, luminance, and chrominance components; a first processing component for The measured uniformity data generates a display response function and calculates a pixel corrected grid data map that produces a constant uniformity of all pixels at each of said at least one signal level; a second processing component 'for converting the pixel corrected grid data map into a functional form represented by a set of coefficients; and a pixel correction function And a display input signal is used for all pixel positions and colors Zhi. 27. The system of claim 26, wherein the response function is further dependent on the backlight voltage setting, and the corrected grid data comprises backlight correction applied to the backlight voltage control fJ 201243808 - . 28. The system of claim 26, wherein each of said light source components is a light emitting diode (LED). The system of claim 27, wherein the LED component is disposed in a direct backlight architecture. The system of claim 27, wherein the LED component is disposed in a side-emitting backlight architecture. The system of claim 26, wherein the light source component is a cold cathode fluorescent lamp (CCFL) tube. 32. The system of claim 26, wherein the light source component is a laser diode (LD), the system of claim 26, wherein the first processing component and The second processing component is integrated into one processor. The system of claim 26, wherein the first processing component is a software tool that runs on a computer system. The system of claim 26, wherein the second processing member is integrated into the display. The system of claim 26, wherein the capture device is a two-dimensional (2D) camera. 37. The system of claim 26, wherein the capture device is a illuminometer. 38. An electronic system for improving color and brightness uniformity of an organic LED display (OLED), the system comprising: a display panel comprised of a pixel array, each of the pixels being an OLED component and controlled by digital RGB Characterizing; an image generator unit for displaying a plurality of reference input images on a display; measuring grid uniformity for selecting a set of grid points on the display to respond to image capture of the plurality of reference input images撵 and measurement unit 'the uniformity is characterized by at least one tristimulus 辉, luminance and chrominance component; 51 201243808 First processing means for generating a display response function from the measured uniformity data and calculating pixel corrected grid data The pixel correction grid data map produces a constant uniformity of all pixels at each of the at least one signal level; and a second processing component for converting the pixel corrected grid data map into a set of coefficients The form of the function represented; and the application of the pixel correction function to the input signal and display for all pixel positions and colors 39 39, root The system of claim 38, wherein the first processing member and the second processing member are integrated in a single display. 40. The system of claim 38, wherein the second processing member is integrated in the display. The system of claim 38, wherein the capture device is a two-dimensional (2D) camera. 42. The system of claim 38, wherein the capture device is a illuminometer. 43. A method for improving color and brightness uniformity of an organic LED display (OLED), wherein the method comprises: displaying a plurality of reference input images on a display, the reference input image having at least one signal Level, predetermined platform RGB pixels 値; selected grid point groups on the display measure display uniformity in response to the plurality of reference input images, the uniformity being at least one of three stimuli, luminance, and color Character component representation; generating a display response function from the measured uniformity data, the display response function being a response sum of the R, G, and B components of each pixel of the display; calculating a pixel corrected grid data map, the pixel Correcting a grid data map to produce a constant uniformity of all pixels at each of said at least one signal level; converting said pixel corrected grid data map into a functional form of a set of coefficient representations; and applying a pixel correction function to Input signal and display 'for all pixel locations and colors 44, according to the method described in claim 43 of the patent application, wherein Reference plurality of the input image is merely a pure gray level luminance correction. The method of claim 43, wherein the reference input image is a plurality of levels of pure red, pure green, and pure blue levels. 46. The method of claim 45, wherein the reference input image further comprises a plurality of pure gray levels 'performing the plurality of pure gray levels to compensate for LCD black levels of RGB components Offset. 47. The method of claim 43, wherein the display response function is obtained using a polynomial fit to the measurement grid point. 48. The method of claim 47, wherein the polynomial is a cubic function. 49. The method of claim 43, wherein the display response function is obtained by interpolating the measured grid point data. 50. The method of claim 43, wherein the display response function is estimated by modeling the function according to a power law. The method of claim 43, wherein the response function is a plurality of local polynomials fitted to the neighborhood of the measurement grid point such that the local fit is a monotonic function. 52. The method of claim 47, wherein the response function is shifted and scaled to monotonize the function. 53. The method of claim 43, wherein the constant uniformity 値 of the response function is set to an average measurement 値. 54. The method of claim 43, wherein for a high signal level, the constant uniformity 所述 of the response function is set to a minimum measurement when the corrected pixel 値 is above the allowed bit range. . 55. The method of claim 43, wherein the low uniformity 値 of the response function is set to a maximum measurement for a low signal level 'when the corrected pixel 値 is below the allowed bit range 値. 56. The method of claim 43, wherein for a plurality of pixel correction maps, the plurality of coefficient sets are calculated and stored corresponding to settings of a plurality of ambient temperatures. 57. The method of claim 43, wherein for a plurality of pixel correction maps, the plurality of coefficient sets are calculated and stored corresponding to settings of a plurality of ambient lights. 53
TW100120551A 2011-04-29 2011-06-13 System and method for improving color and brightness uniformity of backlit lcd displays TWI482140B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/098,221 US8442316B2 (en) 2007-01-05 2011-04-29 System and method for improving color and brightness uniformity of backlit LCD displays

Publications (2)

Publication Number Publication Date
TW201243808A true TW201243808A (en) 2012-11-01
TWI482140B TWI482140B (en) 2015-04-21

Family

ID=45484000

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120551A TWI482140B (en) 2011-04-29 2011-06-13 System and method for improving color and brightness uniformity of backlit lcd displays

Country Status (2)

Country Link
CN (1) CN102332242B (en)
TW (1) TWI482140B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614483B (en) * 2013-10-28 2018-02-11 鴻海精密工業股份有限公司 Method and system for detecting luminance of a light source
TWI697870B (en) * 2017-10-31 2020-07-01 大陸商武漢精測電子集團股份有限公司 Image acceleration processing system suitable for LCM automatic optical inspection

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967443B8 (en) * 2012-10-26 2016-10-05 京东方科技集团股份有限公司 A kind of Transparence Display device method of testing and equipment
CN102930842A (en) * 2012-10-30 2013-02-13 南京中电熊猫液晶显示科技有限公司 Color track compensating method of liquid crystal display
US9541494B2 (en) * 2013-12-18 2017-01-10 Tektronix, Inc. Apparatus and method to measure display quality
CN104599650A (en) * 2015-01-06 2015-05-06 宏祐图像科技(上海)有限公司 Intelligent de-Mura modulation method without losing video image brightness
US9626775B1 (en) 2015-11-12 2017-04-18 Qualcomm Incorporated White point calibration and gamut mapping for a display
US9659388B1 (en) 2015-11-12 2017-05-23 Qualcomm Incorporated White point calibration and gamut mapping for a display
US10685607B2 (en) 2016-11-02 2020-06-16 Innolux Corporation Adjustment method for display de-Mura
CN108020956B (en) * 2016-11-02 2020-09-04 群创光电股份有限公司 Display device
KR20180052089A (en) * 2016-11-09 2018-05-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Operation method of electronic device
FR3071033B1 (en) * 2017-09-12 2021-11-19 Valeo Vision PROCEDURE FOR OBTAINING A LUMINOUS DEVICE WHOSE OFF ASPECT IS DIFFERENT FROM THE ON ASPECT
CN107728976B (en) * 2017-09-22 2021-02-09 海信视像科技股份有限公司 Picture adjusting method and device
TWI635481B (en) * 2017-10-30 2018-09-11 佳世達科技股份有限公司 Display and color correction method
CN107845363B (en) * 2017-11-23 2019-11-26 维沃移动通信有限公司 A kind of display control method and mobile terminal
CN109584768B (en) * 2018-11-30 2020-09-01 深圳市华星光电半导体显示技术有限公司 Method for acquiring color temperature of image
US10950194B1 (en) * 2019-10-04 2021-03-16 Solomon Systech (Shenzhen) Limited Display panel with distributed driver network
CN111312130B (en) * 2020-02-28 2023-07-21 云谷(固安)科技有限公司 Array substrate detection method and system
CN113178165B (en) * 2021-03-26 2022-03-18 卡莱特云科技股份有限公司 LED display screen correction method and device in HDR mode
US11804187B2 (en) 2021-06-25 2023-10-31 Apple Inc. Displays with reduced color non-uniformity
CN116472575A (en) * 2021-11-18 2023-07-21 瑞仪光电(苏州)有限公司 Display device, method for establishing current correction value and current correction system
CN114141206B (en) * 2021-12-10 2023-05-09 Tcl华星光电技术有限公司 Backlight correction method, related device and storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243059B1 (en) * 1996-05-14 2001-06-05 Rainbow Displays Inc. Color correction methods for electronic displays
TW480879B (en) * 2000-01-06 2002-03-21 Dynascan Technology Corp Method to compensate for the color no uniformity of color display
WO2004047058A2 (en) * 2002-11-21 2004-06-03 Koninklijke Philips Electronics N.V. Method of improving the output uniformity of a display device
US7404645B2 (en) * 2005-06-20 2008-07-29 Digital Display Innovations, Llc Image and light source modulation for a digital display system
TWI307801B (en) * 2006-02-24 2009-03-21 Delta Electronics Inc Backlight module and illuminant device
US7696964B2 (en) * 2006-06-09 2010-04-13 Philips Lumileds Lighting Company, Llc LED backlight for LCD with color uniformity recalibration over lifetime
US20080068293A1 (en) * 2006-09-19 2008-03-20 Tvia, Inc. Display Uniformity Correction Method and System
CN101996614B (en) * 2009-08-25 2014-11-05 康佳集团股份有限公司 Full-screen color correction method for LED display and implementation system thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614483B (en) * 2013-10-28 2018-02-11 鴻海精密工業股份有限公司 Method and system for detecting luminance of a light source
TWI697870B (en) * 2017-10-31 2020-07-01 大陸商武漢精測電子集團股份有限公司 Image acceleration processing system suitable for LCM automatic optical inspection

Also Published As

Publication number Publication date
CN102332242A (en) 2012-01-25
CN102332242B (en) 2015-12-09
TWI482140B (en) 2015-04-21

Similar Documents

Publication Publication Date Title
TW201243808A (en) System and method for improving color and brightness uniformity of backlit LCD displays
US8442316B2 (en) System and method for improving color and brightness uniformity of backlit LCD displays
JP5833741B2 (en) Dual LCD display, controller for dual LCD display, method for generating drive signals for dual LCD display color LCD panel and achromatic LCD panel, and multiple color panels for dual LCD display color LCD panel How to determine the drive value
US9489725B2 (en) Method and device for expanding a dynamic range of display device
JP4509159B2 (en) Transmission type liquid crystal display device
JP5122927B2 (en) Image display device and image display method
JP5666163B2 (en) Light source driving method
JP2014519051A5 (en)
KR101161522B1 (en) Image display device
CN111243533B (en) Global light compensation in various displays
TWI435307B (en) Dynamic range display device for processing and displaying imagery
JP6611494B2 (en) Image display apparatus and control method thereof
JP7302484B2 (en) Image processing device, display device, image processing method
KR20120119717A (en) Image display device and color correction method thereof
KR102119091B1 (en) Display device and driving method thereof
JP6039234B2 (en) Display device and control method thereof
KR20160092125A (en) Display apparatus
KR20180034207A (en) Image Display Device And Method Of Displaying Image
KR20100033731A (en) Method for driving light source blocks, control board for performing the method and display apparatus having the control board
Burini et al. Image dependent energy-constrained local backlight dimming
JP2013015630A (en) Image display device, image display method, and image processing device
Seetzen et al. Self-calibrating wide color gamut high-dynamic-range display
JP2005172799A (en) Light leakage compensation method for display device
JP5681541B2 (en) Liquid crystal display
KR20080021472A (en) Automatic system and method for generating correction data