TW201243449A - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
TW201243449A
TW201243449A TW101111622A TW101111622A TW201243449A TW 201243449 A TW201243449 A TW 201243449A TW 101111622 A TW101111622 A TW 101111622A TW 101111622 A TW101111622 A TW 101111622A TW 201243449 A TW201243449 A TW 201243449A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
plate
birefringent layer
display device
crystal display
Prior art date
Application number
TW101111622A
Other languages
Chinese (zh)
Inventor
Akira Sakai
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW201243449A publication Critical patent/TW201243449A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/04Number of plates greater than or equal to 4
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/06Two plates on one side of the LC cell

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides a liquid crystal display device with a circularly polarized VA mode, which can reduce costs and has excellent productivity, as well as an excellent gradation viewing angle from an intermediate gradation to a high gradation at a 45 DEG heading. According to the present invention, the liquid crystal display device is provided, in the following order, with: a first polarizer; a first λ/4 plate, a liquid crystal cell; a second λ/4 plate having an Nz coefficient different from that of the first λ/4 plate, and a second polarizer. If the heading of the absorption axis of the second polarizer is defined as 0 DEG, then with respect to the absorption axis of the second polarizer, the in-plane slow axis of the second λ/4 plate forms a substantially 45 DEG angle, the in-plane slow axis of the first λ/4 plate forms a substantially 135 DEG angle, and the absorption axis of the first polarizer forms a substantially 90 DEG angle. The display brightness is changed by changing the liquid crystal molecules in a liquid crystal layer from a substantially vertical alignment to a tilted alignment with respect to a substrate surface. The liquid crystal layer has four domains in which the liquid crystal molecules have a tilted alignment at a heading of 12.5 DEG to 32.5 DEG, 102.5 DEG to 122.5 DEG, 192.5 DEG to 212.5 DEG, and 282.5 DEG to 302.5 DEG, respectively.

Description

201243449 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種液晶顯示裝置。更詳細而言,本發明 係關於一種使用有圓偏光板之VA(Vertical Alignmen,垂直 配向)模式之液晶顯示裝置。 - 【先前技術】 液晶顯示裝置作為以電腦或電視機為首之各種資訊處理 裝置之顯示裝置而得以廣泛應用。尤其是TFT(Thin Film 〇 Transistor,薄膜電晶體)方式之液晶顯示裝置(以下亦稱為 「TFT-LCD」(LCD,Liquid Crystal Display,液晶顯示 器))廣泛普及,並期待進一步擴大市場,伴隨於此,要求 更進一步提昇晝質。以下,以TFT-LCD為例進行說明,但 本發明並不限定於TFT-LCD,而可應用於所有液晶顯示裝 置,例如亦可應用於單純矩陣方式、電漿定址方式等之液 晶顯示裝置。 ^ 截止目前,於TFT-LCD中最廣泛使用之方式為,將具有 正介電各向異性之液晶於相互對向之基板間水平配向的所 謂TN(Twisted Nematic,扭轉向列)模式。TN模式之液晶顯 . 示裝置之特徵在於,與其中一基板鄰接之液晶分子之配向 方向相對於與另一基板鄰接之液晶分子之配向方向而扭轉 90°。此種TN模式之液晶顯示裝置雖已確立價格低廉之製 造技術,且於產業上已成熟,但難以實現較高之對比度。 相對於此,已知有將具有負介電各向異性之液晶於相互 對向之基板間垂直配向的所謂VA模式之液晶顯示裝置。 163390.doc 201243449 於VA模式之液晶顯示裝置中,於不施加電壓時,由於液 晶分子係配向於相對於基板面大致垂直之方向,故液晶單 元幾乎不表現雙折射性及旋光性,從而光係幾乎不改變其 偏光狀態地通過液晶單元。因此,藉由於液晶單元之上下 將一對偏光元件(直線偏光元件)配置為其吸收軸相互正交 (以下亦稱為「正父偏光元件」),而可於不施加電壓時實 現大致完全之黑顯示。於施加閾值電壓以上之電壓時(以 下僅簡記為施加電壓時),液晶分子傾斜而大致平行於基 板,表現較大之雙折射性,從而可實現白顯示。因此,此 種VA模式之液晶顯示裝置可容易地實現極高之對比度。 於此種VA模式之液晶顯示裝置中,若施加電壓時之液 晶分子之傾斜方向為單向,則液晶顯示裝置之視野角特性 會產生不對稱性,因此廣泛使用有如下模式,即,例如藉 由像素電極之結構上之改進、或於像素内設置突起物等配 向控制機構之方法,而將液晶分子之傾斜方向於像素内分 割為複數個的配向分割型VA模式。再者,液晶分子之傾 斜方位不同之各區域亦稱為區域,配向分割型之Μ模式 亦稱為 MVA模式(Multi_D〇main 如―AHgnment,多^ 型垂直配向模式)。 於祕模式中,自最大化白顯示狀態之穿透率之觀點出 發,通常係設定為偏光元件之抽方位與施加電壓時之液曰 分子之傾斜方位呈45。之角纟。其原因在於:於 : 凡件間央人有雙㈣介質時之穿透率在偏光元件之轴盘雙 折射介質之遲相轴所呈之角為。(單位:時係與 I63390.doc 201243449201243449 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device using a VA (Vertical Alignment) mode having a circular polarizing plate. - [Prior Art] The liquid crystal display device is widely used as a display device of various information processing devices including a computer or a television. In particular, TFT (Thin Film 〇 Transistor) liquid crystal display devices (hereinafter also referred to as "TFT-LCD" (LCD, Liquid Crystal Display)) are widely used, and it is expected to further expand the market. Therefore, it is required to further improve the quality of the enamel. Hereinafter, the TFT-LCD will be described as an example. However, the present invention is not limited to the TFT-LCD, and can be applied to all liquid crystal display devices, and can be applied to, for example, a liquid crystal display device such as a simple matrix method or a plasma addressing method. ^ Up to now, the most widely used method in TFT-LCDs is a so-called TN (Twisted Nematic) mode in which liquid crystals having positive dielectric anisotropy are horizontally aligned between mutually opposing substrates. The liquid crystal display device of the TN mode is characterized in that the alignment direction of the liquid crystal molecules adjacent to one of the substrates is reversed by 90° with respect to the alignment direction of the liquid crystal molecules adjacent to the other substrate. Although such a TN mode liquid crystal display device has established a low-cost manufacturing technology and is mature in the industry, it is difficult to achieve a high contrast ratio. On the other hand, a so-called VA mode liquid crystal display device in which liquid crystal having negative dielectric anisotropy is vertically aligned between mutually opposing substrates is known. 163390.doc 201243449 In the VA mode liquid crystal display device, when no voltage is applied, since the liquid crystal molecules are aligned substantially perpendicular to the substrate surface, the liquid crystal cell hardly exhibits birefringence and optical rotation, and thus the light system The liquid crystal cell is passed through almost without changing its polarization state. Therefore, since the pair of polarizing elements (linear polarizing elements) are disposed above and below the liquid crystal cell such that their absorption axes are orthogonal to each other (hereinafter also referred to as "female polarizing element"), it is possible to achieve substantially complete voltage application. Black display. When a voltage equal to or higher than the threshold voltage is applied (hereinafter simply referred to as voltage application), the liquid crystal molecules are inclined and substantially parallel to the substrate, exhibiting a large birefringence, thereby realizing white display. Therefore, such a VA mode liquid crystal display device can easily achieve extremely high contrast. In such a VA mode liquid crystal display device, when the tilt direction of the liquid crystal molecules when the voltage is applied is unidirectional, the viewing angle characteristics of the liquid crystal display device are asymmetrical, and thus the following modes are widely used, that is, for example, The alignment direction of the liquid crystal molecules is divided into a plurality of alignment division type VA modes by the improvement of the structure of the pixel electrodes or the alignment control means such as the protrusions provided in the pixels. Furthermore, the regions in which the tilting directions of the liquid crystal molecules are different are also referred to as regions, and the mode of the split-divided type is also called the MVA mode (Multi_D〇main such as "AHgnment, multi-type vertical alignment mode"). In the secret mode, from the viewpoint of maximizing the transmittance of the white display state, it is usually set such that the drawing direction of the polarizing element and the tilting orientation of the liquid helium molecule when the voltage is applied are 45. The corner is 纟. The reason is as follows: The penetration rate of the double (four) medium in the middle of the part is the angle of the retardation axis of the birefringent medium of the polarizing element. (Unit: Department and I63390.doc 201243449

Sin2(2a)成比例。於典型之MVA模式中,液晶分子之傾斜 方位可分割為45。、135。、225。、3 15。四個區域。即便於此 種分割為四個區域之MVA模式中,亦大多會於區域彼此之 間之邊界或配向控制機構附近觀察到紋影(SchHere)配向或 朝向並不期望之方向之配向,從而成為穿透率損失之原 ' 因。 為解決此種問題,正在研究使用有圓偏光板之VA模式 〇 之液晶顯示裝置(例如參照專利文獻1)。根據此種液晶顯示 裝置,由於在相互正交之左右圓偏光板間夾入有雙折射介 質時之穿透率並不取決於偏光元件之軸與雙折射介質之遲 相軸所呈之角’故即便液晶分子之傾斜方位不為45。、 135°、225°、315。,只要能控制液晶分子之斜度,便可確 保所需之穿透率。因此,例如可為於像素中央配置圓形突 起物而使液晶分子向所有方位傾斜者,或亦可為完全不控 制傾斜方位而使液晶分子向隨機之方位傾斜者。再者,本Sin2 (2a) is proportional. In a typical MVA mode, the tilting orientation of the liquid crystal molecules can be divided into 45. , 135. 225. 3 15 Four areas. That is to say, in the MVA mode which is easy to divide into four regions, the alignment of the SchHere or the direction of the undesired direction is observed in the vicinity of the boundary between the regions or the alignment control mechanism, thereby becoming worn. The original cause of the loss of permeability. In order to solve such a problem, a liquid crystal display device using a VA mode of a circular polarizing plate has been studied (for example, see Patent Document 1). According to such a liquid crystal display device, since the birefringence medium is sandwiched between the right and left circular polarizing plates which are orthogonal to each other, the transmittance does not depend on the angle between the axis of the polarizing element and the retardation axis of the birefringent medium. Therefore, even if the tilt angle of the liquid crystal molecules is not 45. , 135°, 225°, 315. As long as the slope of the liquid crystal molecules can be controlled, the required transmittance can be ensured. Therefore, for example, a circular protrusion may be disposed in the center of the pixel to tilt the liquid crystal molecules toward all directions, or the liquid crystal molecules may be tilted in a random orientation without completely controlling the tilt orientation. Again, this

Ο 說明書中,亦將使用有圓偏光板之VA模式稱為圓偏光VA 模式或圓偏光模式。相對於此,亦將使用有直線偏光板之 VA模式稱為直線偏光VA模式或直線偏光模式。又,眾所 -周知,圓偏光板典型地係藉由直線偏光板與λ/4板之組合 而構成。 進而,已知,由於圓偏光具有於鏡面等反射時左右之掌 性交替之性質,故例如當於鏡面上配置左圓偏光板而使光 入射時,穿透圓偏光板而轉換為左圓偏光之光藉由於鏡面 反射而轉換為右圓偏光,而該右圓偏光無法穿透上述左圓 163390.doc 201243449 偏光板’因此’結果使圓偏光板具有抗反射之光學功能。 已知’此種圓偏光板之抗反射之光學功能由於可防止於室 外等明亮環境中觀察顯示裝置時之不需要之反射,故具有 改善以VA模式液晶顯示裝置為首之顯示裝置於明亮環境 中之對比度的效果。此處,上述所謂不需要之反射,認為 主要係指存在於顯示裝置内部之透明電極或TFT元件之金 屬配線等所引起之反射。若不防止該不需要之反射,則即 便為於較暗之環境中可實現大致完全之黑顯示之顯示裝 置’於明亮環境中觀察時,顯示裝置之黑顯示時之光量亦 增大’結果導致對比度降低。 如上所述’雖使用有圓偏光板之圓偏光VA模式可獲得 改善穿透率之效果及防止不需要之反射之效果,但於先前 之圓偏光VA模式之液晶顯示裝置中,斜視角中之對比度 較低’無法獲得充分之視野角特性,於此方面存在改善之 餘地。對此’提出有各種使用雙折射層(相位差膜)改良視 野角特性之技術。例如,於專利文獻i中揭示有下述(A)方 法於專利文獻2中揭示有下述(B)方法,於專利文獻3中 揭示有下述(C)方法,於專利文獻4中揭示有下述(D)方 法’於非專利文獻1中揭示有下述(E)方法。 (A)使用2張滿足nx>ny>nz之關係之λ/4板的方法。 (Β)組&使用2張滿足nx>ny>nz之關係之χ/4板及1張或2 張滿足nx<ny$nz之關係之第二種雙折射層的方法。 (C)組合使用2張滿足nx>nz>ny之關係之λ/4板及滿足 nx=ny>nz之關係之雙折射層的方法。 163390.doc 201243449 (d)於(c)方法中進而組合使用1張或2張滿足nx>nz>ny之 關係之λ/2板的方法。 (Ε)組合使用2張單軸性λ/4板(滿足nx>ny=nz之關係之所 謂人板)、滿足nx=ny>nz之關係之雙折射層及滿足nx>nz>ny • 之關係之雙折射層的方法。 、 然而,於上述(A)、(B)及(C)方法中,視野角特性亦尚存 改善之餘地。又,於上述(C)、(D)及(E)方法中,需要製造 困難且高成本之滿足nx>nz>ny之關係(滿足0<Νζ<1之關係) 〇 的雙轴性相位差膜,於該方面存在改善之餘地。 因此,本發明者為解決上述問題而進行了各種研究,並 提出了下述(F)方法(參照專利文獻5)。 (F)組合使用2張人/4板、滿足ηχ=ηΥ>ηζ之關係之第三種雙 折射層、滿足nx>ny之nz之關係之第一種雙折射層及滿足 nx<nySnz之關係之第二種雙折射層的方法。 然而,於上述(F)方法中’雖藉由對2張λ/4板之Nz係數 (表示雙轴性之參數)進行最佳設計而視野角特性之提昇得 以實現,但於使用有2張滿足nxh^nzW^1·0)之關係之 通用雙轴性λ/4板的設計條件下’視野角特性存在改善之 - 餘地。 因此,本發明者進一步進行了研究’結果發現’於將2 張λ/4板(第一及第二λ/4板)製成滿足ηχ>η>^ηζ之關係之雙 軸性λ/4板之後’將其Nz係數調整為大致相同’並於第一 λ/4板與第一偏光元件之間以及第二λ/4板與第二偏光元件 之間的至少一者配置滿足ηχ<η0ηζ2關係之雙折射層’藉 163390.doc 201243449 此可簡便地製造能於較廣之視角範圍内獲得較高之對比度 的圓偏光VA模式之液晶顯示裝置,並於先前申請有專利 (參照專利文獻6、7)。 如此,本發明者針對圓偏光VA模式之視野角特性之提 昇進行了各種研究,上述各對策為了抑制對比度之視野角 相關性而減少斜視角中之黑顯示時之漏光量,換言之係 抑制低灰階(低亮度)下之視野角相關性。因此,本發明者 進而反覆進行研究’結果發現,於圓偏光VA模式中,於 將經正交偏光配置之偏光元件之吸收轴之方位定義為方位 0°及方位90°時,尤其係方位45。中之中間灰階(中亮度)至 尚灰階(高亮度)下之視野角特性劣於直線偏光VA模式。 即,可知於方位45。中,不僅低灰階中之視野角特性(以下 亦稱為「對比度視野角」)不充分,中間灰階至高灰階中 之視野角特性(以下「亦稱為灰階視野角」)亦不充分。再 者,灰階視野角可根據於橫軸為輸入灰階、縱軸為標準化 之輸出亮度(穿透率)之圖表中,表示藉由特定方位之測定 所獲得之輸入灰階與輸出亮度之值之關聯的線(亦稱為 「伽馬(γ)曲線」)、與藉由其他方位之測定所獲得的伽馬 曲線一致之程度,而判斷良否,通常於顯示特性上較佳為 正面方向(相對於顯示畫面為法線方向)之7曲線與其他方向 之γ曲線儘量一致。 進而,本發明者發現,因對比度視野角之降低與灰階視 野角之降低係於相同方位發生,從而於自低灰階跨及高灰 階之較廣之灰階範圍内於正面方向與其他方向之間產生伽 163390.doc 201243449 馬曲線之不一致,故而液晶顯示裝置之觀察者認為方位 45°之顯示品質極差,另一方面,若對比度視野角降低之 方位與灰階視野角降低之方位不一致,則綜合性顯示品質 之水平將得以改善。 並且,本發明者發現,藉由設置液晶分子於12 5。〜32.5。 方位傾斜配向之區域、液晶分子於1〇2 5。〜122·5。方位傾斜 配向之區域、液晶分子於192.5。〜212 5。方位傾斜配向之區 域、及液晶分子於282.5。〜302.5。方位傾斜配向之區域,可 提高圓偏光VA模式中方位45。上之中間灰階至高灰階中之 灰階視野角,並於先前申請有專利(參照專利文獻8)。 又,關於圓偏光板之製造方法,提出有使用相對於縱向 (machine direction)而於斜向具有面内遲相軸之λ/4板,藉 由連續捲繞技術製作偏光板之方法(例如參照非專利文獻 2)。根據該方法’可將λ/4板之Νζ係數控制於丨i〜2.〇之 間。 先前技術文獻 專利文獻 專利文獻1:曰本專利特開2002-40428號公報 專利文獻2:曰本專利特開2009-37049號公報 專利文獻3:日本專利特開2003-207782號公報 專利文獻4 :曰本專利特開2003-186017號公報 專利文獻5:國際公開案第2009/125515號 專利文獻6:國際公開案第2010/087058號 專利文獻7:國際公開案第2010/137372號 163390.doc 201243449 專利文獻8:國際公開案第2011/013399號 專利文獻9 :日本專利特開2008-146003號公報 非專利文獻 非專利文獻1 :葛志兵(音譯)(Zhibing Ge),另有6名,「用 於移動液晶顯示器之廣視角圓偏光器(Wide-View Circular Polarizers for Mobile Liquid Crystal Displays)」, IDRC08,2008年,p.266-268 非專利文獻2 : M.廣田(M.Hirota),另有4名,「包括面内傾 斜遲相軸之延遲膜(Retardation Films with In-Plane Oblique Slow-Axis)」,IDW,08,2008年,ρ·1733-1736 非專利文獻3 :高崎宏著,「結晶光學」,森北出版,1975 年,p. 146-1 63 【發明内容】 發明所欲解決之問題 如上所述,圓偏光板典型為直線偏光板與λ/4板之組 合。於該情形時,必需將直線偏光板之吸收軸與λ/4板之 面内遲相軸所呈之角設定為大致45°。因此,近年來,自 提高生產性之觀點出發,研發有藉由連續捲繞技術將傾斜 延伸之λ/4板、單軸延伸之偏光元件及保護膜(例如 TAC(Triacetyl Cellulose,三乙醯纖維素)膜)相互貼合之方 法來作為圓偏光板之製造方法。又,市售有Nz係數設定為 大致1.6之λ/4板及包含該λ/4板之圓偏光板。 然而,於λ/4板之Nz係數較大之情形時,存在難以藉由 連續捲繞技術製造圓偏光板之情形。例如,即便藉由非專 163390.doc -10- 201243449 利文獻2中所記載之技術,亦難以製造包含Nz係數大於2.〇 之λ/4板之圓偏光板。因此,於λ/4板之]^2係數較大之情形 時,存在圓偏光板之生產性降低且製造成本增加之可能 性。又,於使用連續捲繞技術製作包含Νζ係數較大之λ/4 板之圓偏光板之情形時,亦存在其品質降低之可能性。 、 於專利文獻8之技術中,亦存在根據液晶層之相位差、 第三種雙折射層之有無、第三種雙折射層之相位差等條 0 件,而將第一及第二λ/4板之Νζ係數設定為較大之情形。 於該情形時,若第一及第二λΜ板之Νζ係數相互大致相 同,則上下2張圓偏光板存在發生生產性降低、製造成本 增加及品質降低之情況之可能性。例如,當藉由分批處理 (單片處理)製作上下2張圓偏光板時,生產性明顯降低。 又,圓偏光板之品質降低會導致圓偏光VA模式之液晶顯 示裝置之視野角特性降低。 又,於專利文獻8之技術中,於不設置第三種雙折射層 ◎ 之情形時,必需藉由調整第一及第二λ/4板之Νζ係數而進 行液晶層之補償。進而,通常於液晶單元之觀察面側之圓 偏光板上設置各種表面處理層,因此,於液晶層之相位差 變更之情形時’必需根據液晶層之相位差值及表面處理層 之種類而分別重製上下2張圓偏光板。由此,無法少品種 且大量地生產,成本及生產性兩方面不容樂觀。又,亦可 成為妨礙量產化之原因。因此’於專利文獻8之技術中, 於實現成本削減及生產性提昇方面存在改善之餘地。再 者’本說明書中,亦將設置於液晶單元之觀察面側之圓偏 163390.doc -11 - 201243449 光板稱為觀察面侧圓偏光板,亦將設置於液晶單元之背面 側之圓偏光板稱為背面側圓偏光板。 本發明係鑒於上述現狀研究而成者,其目的在於提供— 種可削減成本、生產性優異、且方位45。上之中間灰階至 高灰階中之灰階視野角優異的圓偏光VA模式液晶顯示裝 置。 解決問題之技術手段 本發明者針對可削減成本、生產性優異、且方位45。中 之灰階視野角優異之圓偏光VA模式液晶顯示裝置進行了各 種研究’結果著眼於配置於經正交偏光配置之一對偏光元 件(第一及第二偏光元件)之間的雙折射層之相位差條件。 並且發現’將圓偏光VA模式中所需之2張λ/4板(第一及第 二λ/4板)製成滿足ηχ>η^ηζ2關係之(於本說明書中將 「滿足nx>ny2nz之關係之雙折射層」定義為第一種雙折射 層)雙軸性λ/4板之後,使其等之Nz係數互不相同,並進而 設置液晶分子於12.5。〜32.5。方位傾斜配向之區域、液晶分 子於102.5。〜122.5。方位傾斜配向之區域、液晶分子於 192.5°〜212.5°方位傾斜配向之區域、及液晶分子於 282.5°〜302.5°方位傾斜配向之區域,藉此可提高圓偏光VA 模式中方位45。上之中間灰階至高灰階中之灰階視野角。 又,可藉由使用與控制為nx>nz>ny(0<Nz<l)之雙轴性相位 差膜不同,且具有適當之固有雙折射之材料而以簡便之方 法製造上述第一種雙折射層。進而發現,即便於將第一及 第二λ/4板之Nz係數之總和設定為較大之情形時,亦可使 163390.doc -12- 201243449 用生產性較高之方法(例如使用連續捲繞技術之方法)製造 包含Nz係數更小之λ/4板之圓偏光板。又,亦可將市售之 圓偏光板用作包含Νζ係數更小之λ/4板之圓偏光板。並且 發現,由於可分別調節第一及第二λ/4板之νζ係數,故可 相對於液晶層之相位差之變更、表面處理層之種類變更等 ' 設計變更而極為靈活地應對。若更具體地說明,例如於液 晶層之相位差變更之情形時,藉由僅調整其中一 λ/4板之 0 Νζ係數即可進行液晶層之補償。又,於此種情形時,亦可 藉由僅調整其中一 λ/4板之Νζ係數,並進而於包含該λ/4板 之圓偏光板上設置具有適當之相位差之第三種雙折射層, 而進行液晶層之補償。即,僅藉由進行其中一圓偏光板之 設计變更,便可應對液晶層之相位差之變更。以上之結果 為,想到可完美地解決上述課題,從而達成本發明。 即,本發明之某態樣為一種液晶顯示裝置(以下亦稱為 本發明之液晶顯示裝置),其於將滿足ηχ>咐岐關係之 〇 雙折射層定義為第一種雙折射層時,依序具備:第一偏光 兀件;第- λ/4板’其面内相位差經調整為λ/4 ;液晶單 凡’其包含相互對向之一斜* j-c a + 對基板及夾入於該一對基板間之 - 液晶層;第二k/4板,发JL古: ,、具有不同於s玄第一 λ/4板之Nz係 - 數’且面内相位差經調暫盏. η垃 碉I為λ/4,及第二偏光元件;且上 述第一及第二λ/4板為第—接德 ^種雙折射層,於將第二偏光元 件之吸收轴之方位定義Α η。卩主 _ ^ 為0時,該第二λ/4板之面内遲相軸 呈大致45。之角度,該第— λ/4板之面内遲相軸呈大致135。 之角度,该第一偏光元件 1干义及收軸呈大致9〇。之角度,該 163390.doc -13- 201243449 液晶顯示裝置係藉由使液晶層中之液晶分子自相對於基板 面大致垂直配向之狀態變化為傾斜配向之狀態而使顯示亮 度變化者’且該液晶層具有液晶分子於12·5。〜32 5。方位傾 斜配向之區域、液晶分子於102·5。〜122 5。方位傾斜配向之 區域、液晶分子於192.5。〜212 5。方位傾斜配向之區域、及 液晶分子於282.5。〜302.5。方位傾斜配向之區域。 再者,於本說明書中,所謂「方位」,係表示與液晶單 兀之基板面平行之方向上之朝向,取〇〜36〇。,未考慮與液 晶單元之基板面法線方向之傾斜角。與液晶單元之基板面 法線方向之傾斜角稱為「極角」。極角取〜。圖1係圖 不將第一偏光元件之吸收軸之方位設為X轴、將相對於Χ 轴於面内方向上正交之軸設為¥軸、且將相對於X轴於面 外方向上正交之軸設為ζ軸時的、相對於液晶分子之傾斜 配向之朝向Α〇的方位角#及極角VA In the manual, the VA mode with a circular polarizer is also called the circular polarization VA mode or the circular polarization mode. On the other hand, the VA mode using the linear polarizing plate is also referred to as a linear polarization VA mode or a linear polarization mode. Further, as is well known, a circular polarizing plate is typically constructed by a combination of a linear polarizing plate and a λ/4 plate. Further, it is known that since circularly polarized light has a property of alternating the left and right palms when reflecting on a mirror surface or the like, for example, when a left circular polarizing plate is disposed on a mirror surface to cause light to enter, a circular polarizing plate is penetrated and converted into a left circularly polarized light. The light is converted into a right circular polarized light by specular reflection, and the right circular polarized light cannot penetrate the above left circle 163390.doc 201243449 Polarizing plate 'so the result is that the circular polarizing plate has an anti-reflective optical function. It is known that the optical function of the anti-reflection of such a circular polarizing plate can prevent the reflection of the display device from being observed in a bright environment such as an outdoor environment, thereby improving the display device including the VA mode liquid crystal display device in a bright environment. The effect of contrast. Here, the above-mentioned unnecessary reflection is mainly referred to as reflection by a transparent wiring or a metal wiring of a TFT element existing inside the display device. If the unwanted reflection is not prevented, even if the display device that can achieve a substantially complete black display in a dark environment is viewed in a bright environment, the amount of light in the black display of the display device increases. The contrast is reduced. As described above, although the effect of improving the transmittance and preventing the unwanted reflection can be obtained by using the circularly polarized VA mode having a circular polarizing plate, in the liquid crystal display device of the previous circularly polarized VA mode, in the oblique viewing angle Low contrast 'Unable to obtain sufficient viewing angle characteristics, there is room for improvement in this area. Various techniques for improving the viewing angle characteristics using a birefringent layer (retardation film) have been proposed. For example, Patent Document 1 discloses the following (A) method. Patent Document 2 discloses the following method (B), and Patent Document 3 discloses the following (C) method, and Patent Document 4 discloses The following (D) method is disclosed in Non-Patent Document 1 by the following method (E). (A) A method of using two λ/4 plates satisfying the relationship of nx > ny > nz. (Β) Group & Two methods of satisfying the relationship of nx > ny > nz and one or two sheets of the second birefringent layer satisfying the relationship of nx < ny NZ are used. (C) A method of using two λ/4 plates satisfying the relationship of nx > nz > ny and a birefringent layer satisfying the relationship of nx = ny > nz in combination. 163390.doc 201243449 (d) In the method (c), one or two methods of λ/2 plates satisfying the relationship of nx > nz > ny are further used in combination. (Ε) Two uniaxial λ/4 plates (so-called human plates satisfying the relationship of nx > ny = nz), a birefringent layer satisfying the relationship of nx = ny > nz, and nx > nz > The method of the birefringent layer of the relationship. However, in the above methods (A), (B) and (C), there is still room for improvement in viewing angle characteristics. Further, in the above methods (C), (D) and (E), it is necessary to manufacture a biaxial phase difference which is difficult to manufacture and which satisfies the relationship of nx > nz > ny (satisfying the relationship of 0 < Νζ < 1) 〇 Membrane, there is room for improvement in this regard. Therefore, the inventors of the present invention have conducted various studies to solve the above problems, and have proposed the following (F) method (see Patent Document 5). (F) a combination of two persons/four plates, a third birefringent layer satisfying the relationship of ηχ=ηΥ>ηζ, a first birefringent layer satisfying the relationship of nx>ny and a relationship satisfying nx<nySnz The second method of birefringent layer. However, in the above (F) method, although the Nz coefficient (parameter indicating biaxiality) of two λ/4 plates is optimally designed, the improvement of the viewing angle characteristic is achieved, but two sheets are used. Under the design conditions of the universal biaxial λ/4 plate satisfying the relationship of nxh^nzW^1·0), there is room for improvement in the viewing angle characteristics. Therefore, the inventors further conducted a study of "results found" in making two λ/4 plates (first and second λ/4 plates) into a biaxial λ/4 satisfying the relationship of ηχ>η> After the board 'adjusts its Nz coefficient to be substantially the same' and at least one of the first λ/4 plate and the first polarizing element and between the second λ/4 plate and the second polarizing element satisfies ηχ<η0ηζ2 The birefringent layer of the relationship 'By 163390.doc 201243449 This makes it easy to manufacture a liquid crystal display device of a circularly polarized VA mode which can obtain a high contrast ratio in a wide viewing angle range, and has been patented in the prior application (refer to Patent Document 6) , 7). As described above, the inventors of the present invention have conducted various studies on the improvement of the viewing angle characteristic of the circularly polarized VA mode, and each of the above measures reduces the amount of light leakage in the black display in the oblique viewing angle in order to suppress the contrast angle dependence of the contrast, in other words, suppresses the low gray. View angle dependence at the order (low brightness). Therefore, the inventors of the present invention have repeatedly conducted research. As a result, it has been found that in the circularly polarized VA mode, when the orientation of the absorption axis of the polarization element arranged by the orthogonal polarization is defined as the orientation 0° and the orientation 90°, especially the orientation 45 . The viewing angle characteristics in the middle gray scale (middle brightness) to the still gray level (high brightness) are inferior to the linear polarization VA mode. That is, it can be seen that the orientation is 45. In addition, not only the viewing angle characteristics in the low gray level (hereinafter also referred to as "contrast viewing angle") are insufficient, but also the viewing angle characteristics in the middle gray level to the high gray level (hereinafter referred to as "gray level viewing angle"). full. Furthermore, the grayscale viewing angle can be expressed in the graph of the output grayness (transmission rate) in which the horizontal axis is the input gray scale and the vertical axis is the normalized output, and the input gray scale and the output luminance obtained by the measurement of the specific orientation are shown. The value of the line associated with the value (also known as the "gamma (gamma) curve"), which is consistent with the gamma curve obtained by the measurement of other orientations, is judged to be good or not, and is usually preferably positive in the display characteristics. The 7 curve (relative to the display screen in the normal direction) is as close as possible to the gamma curve in other directions. Furthermore, the inventors have found that the decrease in the contrast viewing angle and the decrease in the grayscale viewing angle occur in the same orientation, and thus in the front direction and other in the wider grayscale range from the low grayscale span and the high grayscale. Between the directions, the 535390.doc 201243449 horse curve is inconsistent, so the observer of the liquid crystal display device thinks that the display quality of the orientation 45° is extremely poor, and on the other hand, if the contrast viewing angle is lowered, the orientation and the grayscale viewing angle are lowered. Inconsistent, the level of comprehensive display quality will be improved. Further, the inventors have found that liquid crystal molecules are provided at 12 5 . ~32.5. The region of the azimuth oblique alignment and the liquid crystal molecules are at 1〇25. ~122·5. Azimuth tilt The area of alignment and liquid crystal molecules are at 192.5. ~212 5. The region of the azimuth tilt alignment and the liquid crystal molecules are at 282.5. ~302.5. The azimuth tilt alignment area improves the orientation 45 in the circularly polarized VA mode. The gray-scale viewing angle in the middle gray scale to the high gray scale is patented in the prior application (refer to Patent Document 8). Further, as a method for producing a circularly polarizing plate, there is proposed a method of producing a polarizing plate by a continuous winding technique using a λ/4 plate having an in-plane retardation axis in an oblique direction with respect to a machine direction (for example, reference) Non-patent document 2). According to this method, the Νζ coefficient of the λ/4 plate can be controlled between 丨i and 2. CITATION LIST Patent Literature Patent Literature 1: JP-A-2002-23449 Patent Document 2: Japanese Patent Laid-Open No. Hei. No. Hei. Patent Document 5: International Publication No. 2009/125515 Patent Document 6: International Publication No. 2010/087058 Patent Document 7: International Publication No. 2010/137372 No. 163390.doc 201243449 Patent Document 8: International Publication No. 2011/013399 Patent Document 9: Japanese Patent Laid-Open No. 2008-146003 Non-Patent Document Non-Patent Document 1: Ge Zhibing (Zhibing Ge), 6 others, "for Wide-View Circular Polarizers for Mobile Liquid Crystal Displays, IDRC08, 2008, p.266-268 Non-Patent Document 2: M. Hirota, 4 Name, "Retardation Films with In-Plane Oblique Slow-Axis", IDW, 08, 2008, ρ·1733-1736 Non-Patent Document 3: Takasaki Hiroshi, "Crystalization Optics", Senbei Published, 1975, p. 146-1 63 [Disclosure] Problems to be Solved by the Invention As described above, a circularly polarizing plate is typically a combination of a linear polarizing plate and a λ/4 plate. In this case, it is necessary to set the angle formed by the absorption axis of the linear polarizing plate and the in-plane slow axis of the λ/4 plate to be approximately 45°. Therefore, in recent years, from the viewpoint of improving productivity, the development has a λ/4 plate which is obliquely extended by a continuous winding technique, a uniaxially extending polarizing element, and a protective film (for example, TAC (Triacetyl Cellulose). A method in which a film is bonded to each other as a method of manufacturing a circularly polarizing plate. Further, a commercially available λ/4 plate having an Nz coefficient of approximately 1.6 and a circularly polarizing plate including the λ/4 plate are commercially available. However, in the case where the Nz coefficient of the λ/4 plate is large, there is a case where it is difficult to manufacture a circularly polarizing plate by a continuous winding technique. For example, it is difficult to manufacture a circularly polarizing plate comprising a λ/4 plate having an Nz coefficient greater than 2.〇, even by the technique described in Non-patent 163390.doc -10- 201243449. Therefore, in the case where the coefficient of the λ/4 plate is large, there is a possibility that the productivity of the circularly polarizing plate is lowered and the manufacturing cost is increased. Further, when a circular polarizing plate including a λ/4 plate having a large enthalpy coefficient is produced by a continuous winding technique, there is a possibility that the quality is lowered. In the technique of Patent Document 8, there are also 0 pieces according to the phase difference of the liquid crystal layer, the presence or absence of the third birefringent layer, and the phase difference of the third birefringent layer, and the first and second λ/ The coefficient of the 4 plate is set to be large. In this case, if the enthalpy coefficients of the first and second λ plates are substantially the same, the upper and lower circular polarizing plates may have a decrease in productivity, an increase in manufacturing cost, and a decrease in quality. For example, when two circular polarizing plates are produced by batch processing (single sheet processing), productivity is remarkably lowered. Further, the deterioration of the quality of the circularly polarizing plate causes a decrease in the viewing angle characteristic of the liquid crystal display device of the circularly polarized VA mode. Further, in the technique of Patent Document 8, when the third birefringent layer ◎ is not provided, it is necessary to compensate the liquid crystal layer by adjusting the Νζ coefficients of the first and second λ/4 plates. Further, since various surface treatment layers are usually provided on the circularly polarizing plate on the observation surface side of the liquid crystal cell, when the phase difference of the liquid crystal layer is changed, it is necessary to separately determine the phase difference of the liquid crystal layer and the type of the surface treatment layer. Reproduce two circular polarizers. As a result, there is no shortage of varieties and a large amount of production, and both cost and productivity are not optimistic. Moreover, it may also be a cause of hindering mass production. Therefore, in the technique of Patent Document 8, there is room for improvement in achieving cost reduction and productivity improvement. In addition, in the present specification, the circular 163390.doc -11 - 201243449 light plate disposed on the observation surface side of the liquid crystal cell is also referred to as a viewing surface side circular polarizing plate, and a circular polarizing plate disposed on the back side of the liquid crystal cell. It is called a back side circular polarizer. The present invention has been made in view of the above-described status quo, and an object of the present invention is to provide a cost-reducing and excellent productivity and an orientation of 45. A circularly polarized VA mode liquid crystal display device having an excellent gray-scale viewing angle in the middle gray scale to the high gray scale. MEANS FOR SOLVING THE PROBLEMS The present inventors have been able to reduce costs and productivity, and have an orientation of 45. A circularly polarized VA mode liquid crystal display device having excellent gray-scale viewing angle is subjected to various studies. The result focuses on a birefringent layer disposed between one of the orthogonal polarizing arrangements and the polarizing element (first and second polarizing elements). Phase difference condition. And found that 'the two λ/4 plates (the first and second λ/4 plates) required in the circular polarization VA mode are made to satisfy the relationship of ηχ>η^ηζ2 (in the present specification, "satisfying nx> ny2nz The birefringent layer of the relationship is defined as the first birefringent layer) after the biaxial λ/4 plate, so that the Nz coefficients thereof are different from each other, and the liquid crystal molecules are further set at 12.5. ~32.5. The area of the azimuth oblique alignment and the liquid crystal molecules are at 102.5. ~122.5. The azimuth oblique alignment region, the region where the liquid crystal molecules are obliquely aligned at 192.5° to 212.5°, and the region where the liquid crystal molecules are obliquely aligned at 282.5° to 302.5°, thereby improving the orientation 45 in the circularly polarized VA mode. The gray-scale view angle in the middle gray scale to the high gray scale. Further, the first double can be manufactured in a simple manner by using a material different from the biaxial retardation film controlled to nx > nz > ny (0< Nz < l) and having appropriate intrinsic birefringence. Refraction layer. Further, it has been found that even when the sum of the Nz coefficients of the first and second λ/4 plates is set to be large, 163390.doc -12-201243449 can be used in a more productive method (for example, using a continuous volume). A method of winding a technique is to manufacture a circular polarizing plate comprising a λ/4 plate having a smaller Nz coefficient. Further, a commercially available circular polarizing plate can also be used as a circular polarizing plate including a λ/4 plate having a smaller enthalpy coefficient. Further, it has been found that since the νζ coefficients of the first and second λ/4 plates can be individually adjusted, it is possible to respond flexibly to the design change with respect to the change in the phase difference of the liquid crystal layer and the type change of the surface treatment layer. More specifically, for example, when the phase difference of the liquid crystal layer is changed, the compensation of the liquid crystal layer can be performed by adjusting only the 0 Νζ coefficient of one of the λ/4 plates. Moreover, in this case, the third birefringence having an appropriate phase difference can also be set by adjusting only the Νζ coefficient of one of the λ/4 plates and further on the circular polarizing plate including the λ/4 plate. Layer, and compensation for the liquid crystal layer. That is, the change in the phase difference of the liquid crystal layer can be dealt with only by designing one of the circular polarizers. As a result of the above, it has been thought that the above problems can be satisfactorily solved, and the present invention has been achieved. That is, a certain aspect of the present invention is a liquid crystal display device (hereinafter also referred to as a liquid crystal display device of the present invention), in which a birefringent layer satisfying the relationship of ηχ>咐岐 is defined as the first birefringent layer. Sequentially: the first polarizing element; the -λ/4 plate's in-plane phase difference is adjusted to λ/4; the liquid crystal is singular, which contains one of the opposite directions *jc a + on the substrate and sandwiched Between the pair of substrates - the liquid crystal layer; the second k/4 plate, the JL ancient: , has a different Nz series - number than the first λ / 4 plate of the s Xuan and the in-plane phase difference is temporarily adjusted η拉碉I is λ/4, and a second polarizing element; and the first and second λ/4 plates are first-connected birefringent layers, and the orientation of the absorption axis of the second polarizing element is defined Α η. When the main _ ^ is 0, the in-plane slow axis of the second λ/4 plate is approximately 45. From the angle, the in-plane slow axis of the first λ/4 plate is approximately 135. From the angle, the first polarizing element 1 has a dry and a retracted axis of approximately 9 turns. In view of the above, the 163390.doc -13-201243449 liquid crystal display device displays the brightness change by changing the state in which the liquid crystal molecules in the liquid crystal layer are substantially perpendicularly aligned with respect to the substrate surface to the state of the oblique alignment. The layer has liquid crystal molecules at 12.5. ~32 5. The area in which the orientation is obliquely aligned and the liquid crystal molecules are at 102·5. ~122 5. The region of the azimuth oblique alignment and the liquid crystal molecules are at 192.5. ~212 5. The area of the azimuth tilt alignment and the liquid crystal molecules are at 282.5. ~302.5. The area of the azimuth tilt alignment. In the present specification, the "orientation" means an orientation in a direction parallel to the substrate surface of the liquid crystal cell, and is taken up to 36 〇. The inclination angle with respect to the normal direction of the substrate surface of the liquid crystal unit is not considered. The angle of inclination with respect to the normal direction of the substrate surface of the liquid crystal cell is referred to as "polar angle". The polar angle is taken ~. 1 is a view in which the orientation of the absorption axis of the first polarizing element is not set to the X axis, the axis orthogonal to the in-plane direction with respect to the Χ axis is set to the ¥ axis, and the axis is outward in the out-of-plane direction with respect to the X-axis. When the orthogonal axis is set as the ζ axis, the azimuth angle # and the polar angle with respect to the tilting direction of the liquid crystal molecules

本發明之液晶顯示裝置係藉由所謂MVA模式(多域型VA 模式)而進行顯示。於MVA模式中,例如藉由設置用於對 液晶層施加電|之像素電極及/或共用電極中所形成之狹 縫(電極切口邛)、及像素内所形成之介電質突起物等配向 控制機構’而將施加電壓時之液晶分子之傾斜方位於像素 内分割為複數個。藉此,可提高液晶分子之傾斜方位之對 稱性’從而可提高液晶顯示裝置之視野角特性。又,本發 明之液晶顯示裝置亦藉由所謂圓偏光va模式進行顯示。 無需如典型之使用有直線偏光板之魏模式般設置 光疋件之軸方位與施加«時之液晶分子之傾斜方位 163390.doc •14· 201243449 呈45°之角度來最大化白顯示狀態之穿透率。因此,即便 形成液晶分子於12.5。〜32.5°方位傾斜配向之區域、液晶分 子於102.5。〜122.5。方位傾斜配向之區域、液晶分子於 192.5°〜212.5°方位傾斜配向之區域、及液晶分子於 282.5°〜302.5°方位傾斜配向之區域,於原理上亦係如藉由 直線偏光模式進行顯示之情形般,白顯示狀態之穿透率不 會降低。The liquid crystal display device of the present invention is displayed by a so-called MVA mode (multi-domain type VA mode). In the MVA mode, for example, by providing a slit (electrode slit) formed in a pixel electrode and/or a common electrode for applying a liquid to a liquid crystal layer, and a dielectric protrusion formed in the pixel, The control mechanism' divides the tilt of the liquid crystal molecules when the voltage is applied into a plurality of pixels. Thereby, the symmetry of the tilt orientation of the liquid crystal molecules can be improved, whereby the viewing angle characteristics of the liquid crystal display device can be improved. Further, the liquid crystal display device of the present invention is also displayed by a so-called circularly polarized va mode. It is not necessary to set the axial orientation of the optical element and the tilting orientation of the liquid crystal molecules when applying the linear polarizing plate as in the typical Wei mode. 163390.doc •14·201243449 At an angle of 45° to maximize the white display state. Transmittance. Therefore, even liquid crystal molecules are formed at 12.5. ~32.5° azimuth oblique alignment area, liquid crystal molecules at 102.5. ~122.5. The region of the azimuth oblique alignment, the region where the liquid crystal molecules are obliquely aligned at 192.5° to 212.5°, and the region where the liquid crystal molecules are obliquely aligned at 282.5° to 302.5°, in principle, are displayed by linear polarization mode. Generally, the penetration rate of the white display state does not decrease.

DD

G 於本發明之液晶顯示裝置中,所謂區域,係指對液晶層 施加電壓所伴隨之液晶分子之傾斜方位大致相同之像素内 之區域。包含極角不同之液晶分子之區域彼此之間,若傾 斜方位大致相同,則係包含於同一區域内。 本發明之液晶顯示裝置只要包括上述第一偏光元件、第 - λ/4板、液晶單元、第二λ/4板及第二偏光元件作為構成 要素,則不特別受其他構件限定,但自於較廣之視角範圍 内實現較高之對比度之觀點出發,可較佳地使用如下形 態,即,⑴於上述第一 λ/4板與上述第一偏光元件之間進 而包括第二種雙折射層,且上述第二種雙折射層之面内進 相軸相對於上述第一偏光元件之吸收軸大致正交之形離. ⑺進而包括上述第一 λ/4板與上述第一偏光元件之間:第 :個第二種雙折射層、及上述第二板與上述第二偏光 凡件之間之第二個第二種雙折射層,且上述第一個第二種 雙折射層之面内進相軸相對於上述第一偏光元件之吸收軸 大致正交,上述第二個第二種雙折射層之面内進相轴相對 於上述第二偏光元件之吸收軸大致正交之形態。 163390.doc 15 201243449 再者,於本說明書中所謂「偏光元件」,係指具有將自 然光(無偏光)、部分偏光或偏光變為直線偏光,即自自然 光(無偏光)、部分偏光或偏光掠出直線偏光之功能的元 件,與偏光膜同義。再者,於本說明書中,包含偏光元件 之偏光板之對比度並非必需無限大,亦可為5〇〇〇以上(較 佳為10000以上卜所謂「雙折射層」,係指具有光學各向 異性之層,與相位差膜、相位差板、光學各向異性層、雙 折射介質等同義。自充分發揮本發明之液晶顯示裝置之作 用效果之觀點出發,本說明書中之「雙折射層」係指下述 之面内相位差R及厚度方向相位差Rth之絕對值之至少一者 具有10 nm以上之值者,較佳為指具有2〇 nm以上之值者。 又,如上所述,於本說明書中,所謂「第一種雙折射層」 係指滿足nx>npnz之關係之雙折射層,所謂「第二種雙折 射層」係指滿足nxcny^nz之關係之雙折射層。狀及叮係表 不相對於波長為550 nm之光的面内方向之主折射率,犯係 表不相對於波長為550 nm之光的面外方向(厚度方向)之主 折射率。進而,所謂各向同性膜,係指面内相位差R及厚 度方向相位差Rth之絕對值均具有1〇 nm以下之值者,較佳 為指具有5 nm以下之值者。 於本說明書中’「面内相位差R」係於將雙折射層(其中 亦包含液晶單元或λ/4板)之面内方向之主折射率定義為心 及ny,將面外方向(厚度方向)之主折射率定義為ηζ,且將 雙折射層之厚度定義為d時,由R=|nx_ny|xd定義之面内相 位差(单位:nm、絕對值)。相對於此,「厚度方向相位差 163390.doc -16- 201243449In the liquid crystal display device of the present invention, the term "region" refers to a region in a pixel in which the tilt angle of the liquid crystal molecules is substantially the same as the voltage applied to the liquid crystal layer. The regions including the liquid crystal molecules having different polar angles are included in the same region if the tilting directions are substantially the same. The liquid crystal display device of the present invention is not particularly limited by other members as long as it includes the first polarizing element, the first λ/4 plate, the liquid crystal cell, the second λ/4 plate, and the second polarizing element as components. From the viewpoint of achieving a high contrast ratio in a wide viewing angle range, it is preferable to use (1) between the first λ/4 plate and the first polarizing element and further including a second birefringent layer. And the in-plane phase axis of the second birefringent layer is substantially orthogonal to the absorption axis of the first polarizing element. (7) further comprising the first λ/4 plate and the first polarizing element : a second birefringent layer, and a second second birefringent layer between the second plate and the second polarizing member, and the inward surface of the first second birefringent layer The phase infeed axis is substantially orthogonal to the absorption axis of the first polarizing element, and the in-plane axis of the second second birefringent layer is substantially orthogonal to the absorption axis of the second polarizing element. 163390.doc 15 201243449 In addition, in the present specification, the term "polarized element" means that natural light (unpolarized light), partial polarized light or polarized light is converted into linearly polarized light, that is, self-natural light (no polarized light), partially polarized light or polarized light. A component that functions as a linear polarizer is synonymous with a polarizing film. Furthermore, in the present specification, the contrast of the polarizing plate including the polarizing element is not necessarily infinite, and may be 5 Å or more (preferably 10,000 or more), which means "birefringent layer", which means optical anisotropy. The layer is equivalent to the retardation film, the retardation film, the optically anisotropic layer, and the birefringent medium. From the viewpoint of sufficiently exerting the effect of the liquid crystal display device of the present invention, the "birefringent layer" in the present specification is It is assumed that at least one of the absolute values of the in-plane retardation R and the thickness direction retardation Rth described below has a value of 10 nm or more, and preferably has a value of 2 〇 nm or more. In the present specification, the "first birefringent layer" means a birefringent layer satisfying the relationship of nx > npnz, and the "second birefringent layer" means a birefringent layer satisfying the relationship of nxcny^nz. The 叮 表 表 表 表 表 表 表 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 Isotropic film The absolute value of the internal phase difference R and the thickness direction phase difference Rth has a value of 1 〇 nm or less, and preferably has a value of 5 nm or less. In the present specification, 'the in-plane phase difference R' is The principal refractive index of the in-plane direction of the birefringent layer (which also includes the liquid crystal cell or the λ/4 plate) is defined as a heart and ny, and the principal refractive index of the out-of-plane direction (thickness direction) is defined as ηζ, and the birefringent layer is When the thickness is defined as d, the in-plane phase difference (unit: nm, absolute value) defined by R = |nx_ny|xd. In contrast, "thickness direction phase difference 163390.doc -16- 201243449

Rth」係由Rth=(nz-(nx+ny)/2)xd定義之面外(厚度方向)相 位差(單位:nm)。所謂「λ/4板(其中亦包含面内相位差係 調整為λ/4之λ/4板。)」,係指至少相對於波長為55〇打瓜之 光為大致1/4波長(確切為137.5 nm,只要大於I15 nm且小 . 於160 nm即可)之具有光學各向異性之雙折射層,與λ/4相 ' 位差膜、λ/4相位差板同義。 「面内遲相轴(進相軸)」係於將上述面内主折射率nx、 〇 町中之較大者重新定義為ns’且將較小者重新定義為“ 時,與主折射率ns(nf)對應之介電主軸之方向(χ軸或y軸方 向)。進而,「Nz係數」係表示由Nz=(ns_nz)/(ns nf)定義之 雙折射層之雙軸性之程度之參數。再者,只要未特別言 明,則於本說明書中主折射率或相位差之測定波長係設為 550 nm。又,即便為具有相同Nz係數之雙折射層若雙折 射層之平均折射率=(nx+ny+nz)/3不同,則會因折射角之影 響使雙折射層之有效相位差相對於自斜向之入射而不同, 〇 從而導致設計方針變得複雜。為避免該問題,於本說明書 中只要未特別言明,則均係將各雙折射層之平均折射率統 一為1.5而算出Nz係數。對於實際平均折射率不為15之雙 •折射層,亦係假定平均折射率為15而進行換算。又,對 .於厚度方向相位差Rth亦進行相同之處理。 於上述(2)之形態中,雖可分別適當設定上述第一個第 一種雙折射層之Nz係數及上述第二個第二種雙折射層之 Nz係數,但較佳為上述第—個第二種雙折射層之Nz係數 與上述第二個第二種雙折射層之Nz係數相互大致相同。 163390.doc -17- 201243449 又’雖可分別適當設定上述第—個第二種雙折射層之面内 相位差及上述第二個第二種雙折射層之面内相位差,但較 佳為上述第一個第二種雙折射層之面内相位差與上述第二 個第二種雙折射層之面内相位差相互大致相同。以下,於 本說明書中,僅言及第二個第二種雙折射層之他係數及面 内相位差分別與第一個第二種雙折射層之Nz係數及面内相 位差大致相同之形態。 於本說明書中,所謂 人/斗板之Nz係數與第二χ/4板 之Nz係數不同」,係'表示Νζ係數之差為〇1以上之情形,較 佳為0.3以上。所謂「第一個第二種雙折射層之係數與 第二個第二種雙折射層之心係數大致相同」,係表示Nz係 數之差未達0·1之情形,較佳為未達〇.〇5。所謂「第一個第 二種雙折射層之面内相位差與第二個第二種雙折射層之面 内相位差大致相同」,係表示面内相位差之差未達2〇⑽之 情形’較佳為未達10 nm。 所謂「第二λ/4板之面内遲相軸呈大致45。之角度」,係 指第二人/4板之面内遲相軸與第二偏光元件之吸收軸所呈 之角為4〇〜5〇。即可’尤佳為45。。即便於第二λ/4板之面内 遲相軸。第一偏光几件之吸收軸之相對角度並非絕對為 “。之情形時,亦可藉由第一 λ/4板之面内遲相軸與第二人/4 板之面内遲相轴大致正交’而獲得充分之防止相對於基板 ==¾線方向漏光的效果。另一方面就抗反射功能或 β率之提昇方面而言,可藉由上述相對角度為45。而獲 付顯者之效果。所謂「該第一λ/4板之面内遲相轴呈大致 163390.doc 18· 201243449 角度」,係指位於大致45。之方位之第二λ/4板之面内 遲相轴輿箆—1 /」, 、 λ/4板之面内遲相軸所呈之角度為88〜92。即 叮 尤佳為9〇〇。所ΐ宵「隹 你| 所明 弟一偏光元件之吸收轴呈大致90。 之角度」’係指第二偏光元件之吸收轴與第一偏光元件之 吸收軸所呈之角度為88〜92。即可,尤佳為90。。所謂「(第 或第一個)第二種雙折射層之面内進相軸相對於(第一或 第一)偏光兀件之吸收轴大致正交」,係指第二種雙折射層Rth" is an out-of-plane (thickness direction) phase difference (unit: nm) defined by Rth = (nz - (nx + ny) / 2) xd. The "λ/4 plate (which also includes the λ/4 plate whose in-plane phase difference is adjusted to λ/4.)" means that the light is at least 1/4 wavelength with respect to the wavelength of 55 瓜 melon. The optically anisotropic birefringent layer of 137.5 nm, which is larger than I15 nm and smaller than 160 nm, is synonymous with the λ/4 phase 'difference film and the λ/4 phase difference plate. The "in-plane retardation axis (phase advance axis)" is defined by redefining the larger of the in-plane principal refractive indices nx and 〇 为 as ns' and redefining the smaller one as the main refractive index. Ns(nf) corresponds to the direction of the dielectric main axis (χ axis or y-axis direction). Further, the "Nz coefficient" indicates the degree of biaxiality of the birefringent layer defined by Nz = (ns_nz) / (ns nf) The parameters. Further, unless otherwise specified, the measurement wavelength of the main refractive index or the phase difference in the present specification is 550 nm. Further, even if the birefringent layer having the same Nz coefficient has an average refractive index = (nx + ny + nz) / 3 of the birefringent layer, the effective phase difference of the birefringent layer is relative to the self due to the influence of the refraction angle. The oblique incidence is different, which leads to a complicated design policy. In order to avoid this problem, unless otherwise stated in the specification, the Nz coefficient is calculated by uniformly calculating the average refractive index of each birefringent layer to 1.5. For a double-refractive layer whose actual average refractive index is not 15, it is also assumed to be converted by an average refractive index of 15. Further, the same processing is performed for the phase difference Rth in the thickness direction. In the aspect of the above (2), the Nz coefficient of the first first birefringent layer and the Nz coefficient of the second second birefringent layer may be appropriately set, respectively, but the first one is preferably The Nz coefficient of the second birefringent layer and the Nz coefficient of the second second birefringent layer are substantially identical to each other. 163390.doc -17- 201243449 'Also, the in-plane phase difference of the first second birefringent layer and the in-plane phase difference of the second second birefringent layer may be appropriately set, respectively, but it is preferably The in-plane phase difference of the first second birefringent layer is substantially the same as the in-plane phase difference of the second second birefringent layer. Hereinafter, in the present specification, only the form in which the coefficient and the in-plane phase difference of the second second birefringent layer are substantially the same as the Nz coefficient and the in-plane phase difference of the first second birefringent layer are described. In the present specification, the Nz coefficient of the human/bucket plate is different from the Nz coefficient of the second χ/4 plate, and the term 'is a case where the difference between the Νζ coefficients is 〇1 or more, and preferably 0.3 or more. The phrase "the coefficient of the first second birefringent layer is substantially the same as the coefficient of the second second birefringent layer" means that the difference between the Nz coefficients is less than 0.1, preferably less than 〇 .〇5. The "in-plane phase difference of the first second birefringent layer is substantially the same as the in-plane phase difference of the second second birefringent layer", which means that the difference in the in-plane phase difference is less than 2 〇 (10). 'It is preferably less than 10 nm. The "in-plane slow axis of the second λ/4 plate is approximately 45." means that the angle between the in-plane slow axis of the second person/four plate and the absorption axis of the second polarizing element is 4 〇~5〇. You can't be 45. . That is, the in-plane slow phase axis of the second λ/4 plate is facilitated. The relative angle of the absorption axes of the first polarized pieces is not absolutely "in the case of the surface of the first λ/4 plate and the in-plane phase of the second person/four plate. Orthogonally, it is sufficient to prevent light leakage with respect to the substrate direction ==3⁄4. On the other hand, in terms of the improvement of the anti-reflection function or the β-rate, the above relative angle is 45. The effect is that "the in-plane slow axis of the first λ/4 plate is approximately 163390.doc 18·201243449 angle", which means that it is located at approximately 45. In the plane of the second λ/4 plate of the orientation, the phase of the slow phase axis of the late phase axis 1-1/, λ/4 plate is 88~92. That is, 尤 is especially good for 9〇〇. Therefore, "the angle of the absorption axis of a polarizing element is substantially 90. The angle" means that the absorption axis of the second polarizing element and the absorption axis of the first polarizing element are at an angle of 88 to 92. It can be, especially 90. . The "in-plane advancing axis of the (second or first) second birefringent layer is substantially orthogonal to the absorption axis of the (first or first) polarizing element" means the second birefringent layer

ο 之面内進相軸與偏光元件之吸收軸所呈之角度為88〜92。即 可,尤佳為90。。 如下所述,自利用第二種雙折射層控制顯示光之偏光狀 態之變化,從而於較廣之視角範圍内減少黑顯示狀態之漏 光而實現較高之對比度之觀點出發,上述(1)之形態較佳為 除包含第二種雙折射層、第一λ/4板(第一種雙折射層)、液 晶單元及第二λ/4板(第一種雙折射層)以外,於第一偏光元 件與第二偏光元件之間不包含雙折射介質之形態。又,自 減少用於液晶顯示裝置之雙折射層之數量而降低成本之觀 點出發,較佳為除包含第一偏光元件、第二種雙折射層、 第一 λ/4板(第一種雙折射層)、液晶單元、第二λ/4板(第— 種雙折射層)及第二偏光元件以外’於液晶顯示裝置中不 包含雙折射介質之形態。另一方面,除包含第一偏光元 件、第二種雙折射層、第一λ/4板(第一種雙折射層)、液晶 單元、第二λ/4板(第一種雙折射層)及第二偏光元件以外, 亦可於液晶顯示裝置中附加雙折射介質’例如’亦可將面 内相位差係調整為λ/2之λ/2板附加至液晶顯示裝置中,以 163390.doc -19- 201243449 調整雙折射層等之油具八Λ 背予之波長分散性。又,上述(2)之形態較佳為 除包含第一個第-上a 第一種雙折射層、第一 λ/4板(第一種雙折射 層)液曰曰單7^、第二λ/4板(第一種雙折射層)及第二個第 二種雙折射層以外,於第—偏光元件與第二偏光元件之間 不匕3又折射介質之形態。自減少用於液晶顯示裝置之雙 折射層之數量而降低成本之觀點出發,更佳為除包含第— 偏光元件、第-個第二種雙折射層、第—λ/4板(第一種雙 折射層)、液晶單元、第二λ/4板(第一種雙折射層)、第二 第種雙折射層及第二偏光元件以外,於液晶顯示装置 中不包含雙折射介質之形態。與上述⑴之形態—樣,除包 含第-偏光S件、第—個第二種雙折射層、第—λ/4板(第 一種雙折射層)、液晶單元、第二λ/4板(第一種雙折射 層)第一種雙折射層及第二偏光元件以外,亦可於液晶 顯示裝置中附加雙折射介質,例如,亦可將面内相位差係 調整為λ/2之λ/2板附加至液晶顯示裝置中,以調整雙折射 層等之波長分散性。 又,本發明者發現,根據方位之不同妨礙完全之黑顯 示之原因便不同,並發現,藉由於第一及第二λ/4板之間 配置滿足ηχ与ny>nz之關係之雙折射層(於本說明書,將 「滿足nx与ny>nz之關係之雙折射層」定義為第三種雙折 射層)’可進行相對於複數個方位之相位差補償。於設置 第二種雙折射層之形態中,首先,藉由調整第三種雙折射 層之相位差值,可將方位0。中之相位差補償之條件最佳 化,繼而,藉由適當配置第二種雙折射層之相位差值,而 163390.doc -20- 201243449 不改變方位〇。中之相位差補償之最佳化條件地將方位45。 中之相位差補償之條件最佳化,藉此可於更廣之方位中減 少斜向上之黑顯示狀態之漏光。其結果,可於方位及極角 兩方面實現較廣之視角範圍内之較高之對比度。進而,可 藉由使用與控制為nx>nz>ny(0<Nz<l)之雙軸性相位差膜不 同’且具有適當之固有雙折射之材料而以簡便之方法製造 第三種雙折射層。 〇 即’本發明之液晶顯示裝置亦可於上述第一 λ/4板與上 述液晶單元之間以及上述液晶單元與上述第二λ/4板之間 之至少一者’進而包括至少一層第三種雙折射層。於第一 λ/4板及第二λ/4板之Νζ係數之平均值未達2.00之情形時, 尤其可較佳地使用上述第三種雙折射層。上述第三種雙折 射層較佳為與液晶單元鄰接配置。此處,所謂「鄰接配 置」’係指於第三種雙折射層與液晶單元之間未設置雙折 射介質’亦包含例如於第三種雙折射層與液晶單元之間配 〇 置有各向同性膜之形態。又,於設置複數個第三種雙折射 層之情形時’較佳為複數個第三種雙折射層中之至少一層 與液晶單元鄰接配置,且各第三種雙折射層彼此之間相互 •鄰接配置的形態。 再者’所謂第三種雙折射層中之nxf:5ny,亦可換言為 lnx_ny丨与〇,具體而言係表示面内相位差R叫nx-ny|xd未達 2〇 nm之清形,較佳為未達1〇 nm。因此,第三種雙折射層 亦包括滿足nx=ny>nz之關係之雙折射層。上述第三種雙折 射層無論係包括多層抑或僅包括一層,只要係配置於較上 163390.doc -21- 201243449 述第一 λ/4板及上述第二λ/4板更内侧(液晶單元側),且其 厚度方向相位差之總和相同,則液晶顯示裝置之透射光強 度之特性於原理上完全相同。又,於液晶顯示裝置實際上 不包括第三種雙折射層之情形時,亦假想係具有厚度方向 相位差為零之第三種雙折射層,而於原理上無任何問題。 因此,以下只要未特別言明,則於本說明書中,作為本發 明之液晶顯示裝置,僅言及於上述第一 λ/4板與上述液晶 單元之間配置有一層第三種雙折射層之液晶顯示裝置,從 而簡化說明。 作為上述偏光元件,典型地可舉出使具有二色性之碘錯 合物等各向異性材料吸附配向於聚乙烯醇(PVA,P〇ly Alcohol)膜上而成者。通常,為了確保機械強度或耐濕熱 性,會於PVA膜之兩側層壓三乙醯纖維素(TAC)膜等保護 膜而加以應用,但只要未特別言明,則於在本說明書中稱 為「偏光元件」時,僅指不包含保護膜而具有偏光功能之 兀件。再者,第一及第二偏光元無論哪一者為偏光器(背 面側之偏光元件)或分析器(觀察面側之偏光元件),液晶顯 示裝置之透射光強度之特性於原理上亦完全相同。即,亦 可將上述第一及第二個第一種雙折射層之任—者設置於上 述液晶單元之觀察面側。 但通常而言,觀察面侧圓偏光板必需根據實際應用及來 自使用者之要求而製造僅表面處理層不同之複數個〇種, 故期望為相較於背面側圓偏光板而生產性更高之巧草之構 成。另一方面,由於背面側圓偏光板通常無需表面處理, 163390.doc -22- 201243449 故僅製造-個品種即可。因此,即便背面侧圓偏光板之構 成稿微複雜,對進行量產之影響亦相對較小^雲於該情 ,較佳為將Nz係數更大之人/4板(=更難以利用生產性較 • 高之製造方法製造之λΜ板)配置於液晶單元之背面側,且 將Νζ係數更小之λ/4板(=更易於利用生產性較高製造方法 - 之製造之人/4板)配置於液晶單元之觀察面側。自相同之觀 點出發,較佳為將第二種雙折射層與^^係數更大之人/4板 ◎-同配置於液晶單元之背面側。又,更佳為將第三種雙折 射層僅配置於液晶單元之背面側。 於包含第三種雙折射層之構成中,於液晶層之相位差 (△nd)變更之情形時,通常係調整第三種雙折射層之相位 差來應對。然而,於該第三種雙折射層設置於觀察面側圓 偏光板上之情形時,加上因上述表面處理之不同而引起之 品種增加之問題,進一步加劇品種增加之問題。因此,第 三種雙折射層尤佳為配置於背面側圓偏光板上。例如於 〇 應對5種表面處理及4種液晶層相位差之情形時,若將第三 種雙折射層配置於觀察面側圓偏光板上,則觀察面側圓偏 光板為5x4=20個品種,背面側圓偏光板為!個品種,因此 需要合a十21個00種之圓偏光板。另一方面,若將第三種雙 折射層配置於背面側圓偏光板上,則觀察面側圓偏光板為 5個品種,背面側圓偏光板為4個品種,因此僅準備合計9 個品種之圓偏光板即可。 自此種觀點出發,上述第一及第二個第一種雙折射層中 Νζ係數較大者較佳為配置於上述液晶單元之背面側。又, 163390.doc •23· 201243449 於上述第一λ/4板之Nz係數大於上述第二λ/4板之Nz係數之 情形時,本發明之液晶顯示裝置較佳為於上述第二偏光元 件之觀察面側進而包括表面處理層。於上述(1)之形態中, 上述第二種雙折射層較佳為配置於上述液晶單元之背面 側,此時,更佳為上述第一 λ/4板之Nz係數大於上述第二 λ/4板之Nz係數,且上述第二種雙折射層及上述第一λ/4板 係配置於上述液晶單元之背面側。又,於上述(1)之形態 中,上述至少一層第三種雙折射層較佳為配置於上述液晶 單元之背面側,此時,更佳為上述第一 λ/4板之Nz係數大 於上述第二λ/4板之Nz係數,且上述第二種雙折射層、上 述第一 λ/4板及上述至少一層第三種雙折射層係配置於上 述液晶單元之背面側。於上述(2)之形態中,上述至少一層 第三種雙折射層較佳為配置於上述液晶單元之背面側,此 時,更佳為上述第一λ/4板之Nz係數大於上述第二λ/4板之 Nz係數,且上述第一 λ/4板及上述至少一層第三種雙折射 層係配置於上述液晶單元之背面側。 以下,只要未特別言明,則於本說明書中僅言及第一偏 光元件為偏光器之液晶顯示裝置,從而簡化說明。 上述液晶單元係包括相互對向之一對基板及夾入於該一 對基板間之液晶層者。本發明之液晶單元係作為藉由將液 晶層中之液晶分子配向為大致垂直於基板面而進行黑顯示 的垂直配向(Vertical Alignment : VA)模式之一種之Multi-domain VA(MVA) 模式 之液晶 單元。 MVA 模式 亦可將 Continuous Pinwheel Alignment(CPA,連續焰火狀配向)模 163390.doc -24- 201243449 式、Patterned VA(PVA,圖案化垂直配向)模式、Biased VA(BVA,偏向垂直配向)模式、Reverse TN(RTN,反向扭 轉向列)模式及In Plane Switching-VA(IPS-VA,共平面切 換-垂直配向)模式等組合。於本說明書中所謂「將液晶分 子配向為大致垂直於基板面」,係指液晶分子之平均預傾 角為80。以上即可。 本發明之液晶顯示裝置於第一偏光元件與第二偏光元件 之間包括面内相位差係調整為λ/4之第一個第一種雙折射 層(第一 λ/4板)及面内相位差係調整為λ/4之第二個第一種 雙折射層(第二λ/4板),雖亦可進而包括第二種雙折射層及/ 或第三種雙折射層,但自實現進一步削減成本之觀點出 發,較佳為於第一偏光元件與第二偏光元件之間不設置第 三種雙折射層。於不包含第三種雙折射層之形態中,於變 更液晶層之相位差(And)之情形時,較佳為調整Νζ係數更 大之λ/4板之Νζ係數。藉此,對於液晶層之相位差互不相 同之複數種液晶單元,可共用包含Νζ係數更小之λ/4板(= 更易於利用生產性較高之製造方法製造之λ/4板)之圓偏光 板。 可分別適當設定上述第一 λ/4板之Νζ係數及上述第二λ/4 板之Νζ係數,但較佳為大於1。又,更佳為上述第一 λ/4板 及上述第二λ/4板之其中一者之Νζ係數為2以上,且上述第 一 λ/4板及上述第二λ/4板之另一者之Νζ係數為1以上且未 達2。藉此,可使用生產性尤為優異之技術(例如非專利文 獻2中所記載之技術)製作Νζ係數更小之λ/4板。又,由於 163390.doc -25- 201243449 可使用將Nz係數設定為大致1.6之市售之λ/4板(通用品)作 為Νζ係數更小之λ/4板,因此於上述(1)之形態中,可使用 市售之圓偏光板作為包含Nz係數更小之λ/4板之圓偏光 板。又,市售有經實施互不相同之表面處理之複數種圓偏 光板。如此’藉由將其中一 λ/4板之Nz係數設定為1以上且 未達2,可大幅削減包含該λ/4板之圓偏光板之成本,且明 顯提高其生產性。又,藉由將其中一 λ/4板之Nz係數設定 為1以上且未達2,並將另一 λ/4板之Nz係數設定為2以上, 可容易地將第一及第二λ/4板之Nz係數之平均值Nzq設定為 下述較佳之範圍。再者,於包含Nz係數更大之λ/4板之圓 偏光板之製造中’有時無法使用連續捲繞技術等生產性較 高之製造技術。然而’其影響僅涉及觀察面側或背面側之 圓偏光板,相較於影響涉及兩側之圓偏光板之情形,其影 響極小。 於上述形態(1)中’第一 λ/4板與第二種雙折射層之組合 亦可為不介隔黏著劑(介隔接著劑)地積層而成之積層體, 但較佳為介隔黏著劑地積層而成之積層體。如上所述,作 為本發明之液晶顯示裝置之較佳形態,可舉出第一 λ/4板 及第一種雙折射層設置於液晶單元之背面側,且第一 λ/4 板之Nz係數大於第二λ/4板之Νζ係數之形態。於該形態 中,存在難以使用適於連續捲繞技術之傾斜延伸法製造第 λ/4板之情形。因此,自將其影響抑制於最小程度之觀 點出發,該形態較佳為利用以下方法製作。即,藉由連續 一澆技術使用接著劑將第二種雙折射層貼附於第一偏光 163390.doc •26- 201243449 元件。使用傾斜延伸法以外之方法(例如拉幅機橫單軸延 伸法、縱橫雙軸延伸法等)製作第—λ/4板。繼而,使用黏 著劑將第一λ/4板貼附於第一偏光元件上之第二種雙折射 層。亦可藉由分批處理進行該貼附處理。再者,若採用分 批處理,則擔憂生產性降低。然、而,本發明之液晶顯示裝 ' 置由於具有例如可使用市售品之圓偏光板作為包含第二 λ/4板之圓偏光板之、可靈活應對設計變更等其他較多之 0 優點’故可充分彌補分批處理之缺點。進而,若以於包含 Νζ係數更大之λ/4板(=更難以利用生產性較高之製造方法 製造之λ/4板)之圓偏光板之製造中採用分批處理為前提, 則亦具有可使用傾斜延伸法以外之方法而容易地製作該 λ/4板之優點。 於上述形態(2)中,Νζ係數更大之λ/4板(以下亦稱為高Νζ 之λ/4板)與距高Νζ2λ/4板更近之第二種雙折射層(以下亦 稱為高Νζ側雙折射層)之組合雖亦可為不介隔黏著劑(介隔 〇 接著劑)地積層而成之積層體,但較佳為介隔黏著劑地積 層而成之積層體。如上所述,作為本發明之液晶顯示裝置 之較佳形態,可舉出將高Νζ之λ/4板配置於液晶單元之背 ' 面側之形態。於該形態中,存在難以使用適於連續捲繞技 - 術之傾斜延伸法製造高Nzi λ/4板之情形。因此,自將其 影響抑制於最小程度之觀點出發,該形態較佳為利用以下 方法製作。即,藉由連續捲繞技術,使用接著劑將高 雙折射層貼附於第一或第二偏光元件。使用傾斜延伸法以 外之方法(例如拉幅機橫單袖延伸法、縱橫雙軸延伸法等) 163390.doc •27- 201243449 製作高NzU/4板。繼而,使用黏著劑將高Ν^λ/4板㈣ 於第-或第:偏光元件上之咖側雙折射層。亦可藉由分 批處理進行該貼附處理。 於上述形態⑺中,自進一步提高生產性之觀點出發, NZ係數更小之λΜ板(以下亦稱為低Nz之W板)較佳為藉由 以下方法積層於距低Νζ^/4板更近之第二種雙折射層(以 下亦稱為低Νζ側雙折射層)上。即,藉由連續播繞技術, 使用接著劑將低Νζ側雙折射層貼附於第一或第二偏光元 件。使用傾斜延伸法製作低Ν^λ/4板。繼而,使用連續 捲繞技術將低ΝΖ2λ/4板貼附於第一或第二偏光元件上之 低Νζ側錢射層。低Nzu/4板之貼附既可使用黏著劑, 亦可使用接著劑。 第一 λ/4板及/或第二λ/4板與第三種雙折射層之組合較佳 為不介隔黏著劑地積層而成之積層體。此種積層體例如可 藉由如下方法製作,即,利用接著劑與共擠壓法等之擠出 製膜同時積層之方法,或使積層體中之其中一雙折射層包 含聚合物膜,並藉由塗佈而將包含液晶性材料或非液晶性 材料之另一雙折射層形成或轉印於該聚合物膜上,藉此積 層之方法等。尤其由於大多情況係藉由塗佈聚醢亞胺等非 液晶性材料或膽固醇狀液晶等液晶性材料之方法來製作第 一種雙折射層,故後者之使用塗佈或轉印之方法可較佳地 用於第一 λ/4板及/或第二λ/4板與第三種雙折射層之積層體 之製作。 以下,對本發明之液晶顯示裝置中之第二種及第三種雙 163390.doc -28 · 201243449 折射層之作用進行說明。作為一例,考慮依序積層有第一 一 2苐—種雙折射層、第一 λ/4板(第一種雙折射 層)第—種又折射層、液晶單元、第二λ/4板(第-種雙折 射層)及第二偏光元件的、符合上述形態⑴之本發明之圓 偏光VA模式液晶顯示裝置(Α)。 於液晶顯示裝置㈧中’相對於第一偏光元件而自正面 方向入射之光藉由第一偏光元件轉換為直線偏光,並於維The angle between the inner phase axis and the absorption axis of the polarizing element is 88 to 92. That is, it is especially good. . As described below, since the second birefringent layer is used to control the change in the polarization state of the display light, thereby reducing the light leakage in the black display state over a wider viewing angle range and achieving a higher contrast ratio, the above (1) Preferably, the form is first except that the second birefringent layer, the first λ/4 plate (the first birefringent layer), the liquid crystal cell, and the second λ/4 plate (the first birefringent layer) are included. The form of the birefringent medium is not included between the polarizing element and the second polarizing element. Moreover, from the viewpoint of reducing the number of birefringent layers used for the liquid crystal display device and reducing the cost, it is preferable to include the first polarizing element, the second birefringent layer, and the first λ/4 plate (the first type The refractive layer), the liquid crystal cell, the second λ/4 plate (the second birefringent layer), and the second polarizing element do not include a birefringent medium in the liquid crystal display device. On the other hand, in addition to the first polarizing element, the second birefringent layer, the first λ/4 plate (the first birefringent layer), the liquid crystal cell, and the second λ/4 plate (the first birefringent layer) In addition to the second polarizing element, a birefringent medium 'for example' may be added to the liquid crystal display device, and a λ/2 plate having an in-plane retardation adjusted to λ/2 may be added to the liquid crystal display device to 163390.doc -19- 201243449 Adjust the wavelength dispersion of the oil-reducing layer of the birefringent layer. Further, the form of the above (2) is preferably a first birefringent layer including a first first-upper a, a first λ/4 plate (first birefringent layer), a liquid rafting unit 7^, and a second In addition to the λ/4 plate (the first birefringent layer) and the second second birefringent layer, the form of the medium is refracted between the first polarizing element and the second polarizing element. From the viewpoint of reducing the number of birefringent layers used for the liquid crystal display device and reducing the cost, it is more preferable to include the first polarizing element, the second second birefringent layer, and the first λ/4 plate (the first type) The birefringent layer), the liquid crystal cell, the second λ/4 plate (first birefringent layer), the second first birefringent layer, and the second polarizing element do not include a birefringent medium in the liquid crystal display device. In addition to the form of the above (1), in addition to the first-polarized S piece, the first second birefringent layer, the -λ/4 plate (first birefringent layer), the liquid crystal cell, and the second λ/4 plate (First Birefringent Layer) In addition to the first birefringent layer and the second polarizing element, a birefringent medium may be added to the liquid crystal display device. For example, the in-plane retardation system may be adjusted to λ/2. The /2 plate is attached to the liquid crystal display device to adjust the wavelength dispersion of the birefringent layer or the like. Further, the inventors have found that the reason for obstructing the complete black display differs depending on the orientation, and it is found that the birefringent layer satisfying the relationship between ηχ and ny>nz is disposed between the first and second λ/4 plates. (In the present specification, "a birefringent layer satisfying the relationship between nx and ny" is defined as a third birefringent layer"', and phase difference compensation with respect to a plurality of directions can be performed. In setting the second birefringent layer, first, the orientation 0 can be adjusted by adjusting the phase difference of the third birefringent layer. The condition of the phase difference compensation is optimized, and then, by appropriately configuring the phase difference of the second birefringent layer, 163390.doc -20-201243449 does not change the orientation 〇. The optimization of the phase difference compensation in the condition will be azimuth 45. The condition of the phase difference compensation is optimized, thereby reducing the light leakage in the obliquely black display state in a wider orientation. As a result, a higher contrast ratio in a wider range of viewing angles can be achieved in both the azimuth and the polar angle. Further, a third birefringence can be produced in a simple manner by using a material different from the biaxial retardation film controlled to nx >nz>ny (0<Nz<l) and having appropriate intrinsic birefringence. Floor. That is, the liquid crystal display device of the present invention may further include at least one layer between the first λ/4 plate and the liquid crystal cell and at least one of the liquid crystal cell and the second λ/4 plate. A birefringent layer. In the case where the average of the Νζ coefficients of the first λ/4 plate and the second λ/4 plate is less than 2.00, the third birefringent layer described above can be preferably used. Preferably, the third birefringent layer is disposed adjacent to the liquid crystal cell. Here, the "adjacent arrangement" means that no birefringent medium is provided between the third birefringent layer and the liquid crystal cell, and includes, for example, a third birefringent layer and a liquid crystal cell. The shape of the same film. Further, in the case where a plurality of third birefringent layers are provided, it is preferable that at least one of the plurality of third birefringent layers is disposed adjacent to the liquid crystal cell, and each of the third birefringent layers is mutually connected to each other. The configuration of the adjacent configuration. Furthermore, nxf in the so-called third birefringent layer: 5ny, in other words, lnx_ny丨 and 〇, specifically, the in-plane phase difference R is called nx-ny|xd, which is less than 2〇nm. It is preferably less than 1 〇 nm. Therefore, the third birefringent layer also includes a birefringent layer satisfying the relationship of nx = ny > nz. The above-mentioned third birefringent layer includes a plurality of layers or only one layer, as long as it is disposed on the inner side of the first λ/4 plate and the second λ/4 plate (the liquid crystal cell side) of the upper 163390.doc -21 - 201243449 The sum of the phase differences in the thickness direction is the same, and the characteristics of the transmitted light intensity of the liquid crystal display device are identical in principle. Further, in the case where the liquid crystal display device does not actually include the third birefringent layer, it is also assumed that the third birefringent layer having a phase difference in the thickness direction is zero, and there is no problem in principle. Therefore, in the present specification, as the liquid crystal display device of the present invention, only a liquid crystal display in which a third birefringent layer is disposed between the first λ/4 plate and the liquid crystal cell will be described. Device to simplify the description. The polarizing element is typically one in which an anisotropic material such as an iodine complex having dichroic properties is adsorbed and applied to a polyvinyl alcohol (PVA, P〇ly Alcohol) film. Usually, in order to ensure mechanical strength or moist heat resistance, a protective film such as a triacetyl cellulose (TAC) film is laminated on both sides of the PVA film, but it is referred to in the present specification unless otherwise specified. In the case of "polarizing element", it means only a member that does not include a protective film and has a polarizing function. Furthermore, any one of the first and second polarizers is a polarizer (a polarizing element on the back side) or an analyzer (a polarizing element on the side of the observation surface), and the characteristics of the transmitted light intensity of the liquid crystal display device are completely in principle. the same. Namely, any of the first and second first birefringent layers may be provided on the observation surface side of the liquid crystal cell. However, in general, the observation side circular polarizing plate must be made of a plurality of different types of surface treatment layers depending on the actual application and the requirements from the user, so that it is expected to be more productive than the back side circular polarizing plate. The composition of the grass. On the other hand, since the back side circular polarizer usually does not require surface treatment, only 163390.doc -22- 201243449 can be manufactured. Therefore, even if the composition of the back side circular polarizing plate is slightly complicated, the influence on mass production is relatively small. In this case, it is preferable to use a person with a larger Nz coefficient/4 plates (= more difficult to utilize productivity) λ/4 plate which is disposed on the back side of the liquid crystal cell and has a smaller Νζ coefficient (= Manufactured by a manufacturer with higher productivity - 4 plates) It is disposed on the observation surface side of the liquid crystal cell. From the same viewpoint, it is preferable to arrange the second birefringent layer and the person/4 plate having a larger coefficient to be disposed on the back side of the liquid crystal cell. Further, it is more preferable to arrange the third double-folding layer only on the back side of the liquid crystal cell. In the configuration including the third birefringent layer, when the phase difference (?nd) of the liquid crystal layer is changed, the phase difference of the third birefringent layer is usually adjusted to cope with it. However, when the third birefringent layer is disposed on the side circular polarizing plate of the observation surface, the problem of an increase in variety due to the difference in surface treatment described above is further aggravated. Therefore, the third birefringent layer is preferably disposed on the back side circular polarizing plate. For example, when five kinds of surface treatments and four kinds of liquid crystal layers are in phase difference, if the third birefringent layer is disposed on the observation surface side circular polarizing plate, the observation side circular polarizing plate is 5x4=20 varieties. , the back side of the circular polarizer is! For each variety, it is necessary to have a dozen of 00 kinds of circular polarizers. On the other hand, when the third birefringent layer is disposed on the back side circular polarizing plate, the observation surface side circular polarizing plate has five varieties, and the back side circular polarizing plate has four varieties. Therefore, only nine varieties are prepared in total. The circular polarizing plate can be used. From this point of view, it is preferable that the first and second first birefringent layers have a larger Νζ coefficient on the back side of the liquid crystal cell. Further, 163390.doc • 23· 201243449 when the Nz coefficient of the first λ/4 plate is greater than the Nz coefficient of the second λ/4 plate, the liquid crystal display device of the present invention is preferably the second polarizing element. The observation side further includes a surface treatment layer. In the above aspect (1), the second birefringent layer is preferably disposed on the back side of the liquid crystal cell. In this case, it is preferable that the Nz coefficient of the first λ/4 plate is larger than the second λ/ The Nz coefficient of the four plates, and the second birefringent layer and the first λ/4 plate are disposed on the back side of the liquid crystal cell. Further, in the aspect of the above (1), the at least one third birefringent layer is preferably disposed on the back side of the liquid crystal cell. In this case, it is preferable that the Nz coefficient of the first λ/4 plate is larger than the above. The Nz coefficient of the second λ/4 plate, and the second birefringent layer, the first λ/4 plate, and the at least one third birefringent layer are disposed on the back side of the liquid crystal cell. In the above aspect (2), the at least one third birefringent layer is preferably disposed on the back side of the liquid crystal cell. In this case, it is preferable that the Nz coefficient of the first λ/4 plate is greater than the second The Nz coefficient of the λ/4 plate, and the first λ/4 plate and the at least one layer of the third birefringent layer are disposed on the back side of the liquid crystal cell. Hereinafter, unless otherwise stated, only the liquid crystal display device in which the first polarizing element is a polarizer will be described in the present specification, and the description will be simplified. The liquid crystal cell includes a pair of substrates facing each other and a liquid crystal layer sandwiched between the pair of substrates. The liquid crystal cell of the present invention is a multi-domain VA (MVA) mode liquid crystal which is a type of vertical alignment (VA) mode in which liquid crystal molecules in a liquid crystal layer are aligned to be substantially perpendicular to a substrate surface. unit. MVA mode can also be Continuous Pinwheel Alignment (CPA, continuous flame-like alignment) mode 163390.doc -24- 201243449, Patterned VA (PVA, patterned vertical alignment) mode, Biased VA (BVA, biased vertical alignment) mode, Reverse TN (RTN, reverse twist nematic) mode and In Plane Switching-VA (IPS-VA, coplanar switching - vertical alignment) mode. In the present specification, "aligning the liquid crystal molecules to be substantially perpendicular to the substrate surface" means that the average pretilt angle of the liquid crystal molecules is 80. More than that. The liquid crystal display device of the present invention includes a first first birefringent layer (first λ/4 plate) and in-plane with an in-plane retardation adjusted to λ/4 between the first polarizing element and the second polarizing element. The second first type of birefringent layer (second λ/4 plate) whose phase difference is adjusted to λ/4 may further include a second birefringent layer and/or a third birefringent layer, but From the viewpoint of further reducing the cost, it is preferable that a third birefringent layer is not provided between the first polarizing element and the second polarizing element. In the case where the third birefringent layer is not included, in the case of changing the phase difference (And) of the liquid crystal layer, it is preferable to adjust the Νζ coefficient of the λ/4 plate having a larger Νζ coefficient. In this way, a plurality of liquid crystal cells having different phase differences of the liquid crystal layers can be used in combination with a λ/4 plate having a smaller enthalpy coefficient (= λ/4 plate which is more easily manufactured by a highly productive manufacturing method). Circular polarizer. The Νζ coefficient of the first λ/4 plate and the Νζ coefficient of the second λ/4 plate may be appropriately set, respectively, but is preferably greater than 1. Moreover, it is more preferable that one of the first λ/4 plate and the second λ/4 plate has a Νζ coefficient of 2 or more, and the other of the first λ/4 plate and the second λ/4 plate The coefficient of the enthalpy is 1 or more and less than 2. Thereby, a λ/4 plate having a smaller enthalpy coefficient can be produced by a technique which is particularly excellent in productivity (for example, the technique described in Non-Patent Document 2). Further, since 163390.doc -25-201243449, a commercially available λ/4 plate (general product) having an Nz coefficient of approximately 1.6 can be used as the λ/4 plate having a smaller enthalpy coefficient, and thus in the form of the above (1) Among them, a commercially available circular polarizing plate can be used as a circular polarizing plate including a λ/4 plate having a smaller Nz coefficient. Further, a plurality of kinds of circular polarizing plates which are subjected to surface treatments which are different from each other are commercially available. Thus, by setting the Nz coefficient of one of the λ/4 plates to 1 or more and less than 2, the cost of the circularly polarizing plate including the λ/4 plate can be drastically reduced, and the productivity can be remarkably improved. Further, by setting the Nz coefficient of one of the λ/4 plates to 1 or more and less than 2, and setting the Nz coefficient of the other λ/4 plate to 2 or more, the first and second λ/ can be easily performed. The average value Nzq of the Nz coefficients of the four plates is set to the preferred range described below. Further, in the manufacture of a circular polarizing plate including a λ/4 plate having a larger Nz coefficient, it is sometimes impossible to use a highly productive manufacturing technique such as a continuous winding technique. However, the influence only involves the observation of the circular polarizer on the side of the face or the back side, which has a minimal effect compared to the case of a circular polarizer involving both sides. In the above aspect (1), the combination of the first λ/4 plate and the second birefringent layer may be a laminate formed by laminating an adhesive (intervening agent), but it is preferably A laminate formed by laminating adhesive. As described above, as a preferred embodiment of the liquid crystal display device of the present invention, the first λ/4 plate and the first birefringent layer are disposed on the back side of the liquid crystal cell, and the Nz coefficient of the first λ/4 plate is as described above. A form larger than the Νζ coefficient of the second λ/4 plate. In this form, there is a case where it is difficult to manufacture the λ/4 plate by the oblique stretching method suitable for the continuous winding technique. Therefore, from the viewpoint of suppressing the influence to a minimum, the form is preferably produced by the following method. That is, the second birefringent layer is attached to the first polarized layer by means of a continuous casting technique using an adhesive to the first polarized light 163390.doc • 26-201243449 component. The first λ/4 plate is produced by a method other than the oblique stretching method (for example, a tenter transverse uniaxial stretching method, a vertical and horizontal biaxial stretching method, or the like). Then, the first λ/4 plate is attached to the second birefringent layer on the first polarizing element using an adhesive. This attachment process can also be performed by batch processing. Furthermore, if batch processing is employed, there is a concern that productivity is lowered. However, the liquid crystal display device of the present invention has a large number of advantages such as a circular polarizing plate which can be used as a commercially available product as a circular polarizing plate including a second λ/4 plate, and can flexibly cope with design changes and the like. 'Therefore, it can fully compensate for the shortcomings of batch processing. Further, if batch processing is employed in the manufacture of a circularly polarizing plate including a λ/4 plate having a larger enthalpy coefficient (= λ/4 plate which is more difficult to manufacture by a highly productive manufacturing method), There is an advantage that the λ/4 plate can be easily fabricated by a method other than the oblique stretching method. In the above form (2), a λ/4 plate having a larger Νζ coefficient (hereinafter also referred to as a λ/4 plate of a high Νζ) and a second birefringent layer closer to the Νζ 2λ/4 plate (hereinafter also referred to as The combination of the high bismuth birefringent layer may be a laminate which is formed by laminating an adhesive (intercalating agent), but is preferably a laminate in which an adhesive is laminated. As described above, a preferred embodiment of the liquid crystal display device of the present invention includes a configuration in which a λ/4 plate of a high Νζ is disposed on the back side of the liquid crystal cell. In this form, there is a case where it is difficult to manufacture a high Nzi λ/4 plate using a tilt stretching method suitable for continuous winding technology. Therefore, from the viewpoint of suppressing the influence to a minimum, the form is preferably produced by the following method. That is, the high birefringence layer is attached to the first or second polarizing element by an adhesive using a continuous winding technique. Use the method other than the tilt extension method (for example, the tenter horizontal single sleeve extension method, the vertical and horizontal double-axis extension method, etc.) 163390.doc •27- 201243449 Create a high NzU/4 board. Then, an adhesive is used to apply a high Ν^λ/4 plate (four) to the coffee-side birefringent layer on the first or third: polarizing element. This attachment process can also be performed by batch processing. In the above aspect (7), from the viewpoint of further improving the productivity, the λ plate having a smaller NZ coefficient (hereinafter also referred to as a low Nz W plate) is preferably laminated by a lower method to a lower plate. The second birefringent layer (hereinafter also referred to as a low-side birefringent layer) is in the vicinity. That is, the low-side birefringent layer is attached to the first or second polarizing element by an adhesive using a continuous spreading technique. A low Ν^λ/4 plate was produced using the oblique extension method. Then, a low-twist 2λ/4 plate is attached to the low-side side money-emitting layer on the first or second polarizing element using a continuous winding technique. Adhesives can be used for the attachment of low Nzu/4 plates, or adhesives can be used. The combination of the first λ/4 plate and/or the second λ/4 plate and the third birefringent layer is preferably a laminate which is laminated without interposing an adhesive. Such a laminate can be produced, for example, by a method in which an adhesive is laminated simultaneously with an extrusion film by a co-extrusion method or the like, or one of the birefringent layers in the laminate is included in a polymer film, and A method of laminating or transferring another birefringent layer containing a liquid crystalline material or a non-liquid crystal material onto the polymer film by coating. In many cases, the first birefringent layer is produced by coating a liquid crystal material such as a non-liquid crystal material such as polyimine or a liquid crystal material such as a cholesteric liquid crystal, so that the latter method of coating or transferring can be used. It is preferably used for the fabrication of a laminate of a first λ/4 plate and/or a second λ/4 plate and a third birefringent layer. Hereinafter, the action of the second and third double 163390.doc -28 · 201243449 refractive layers in the liquid crystal display device of the present invention will be described. As an example, consider sequentially stacking a first one-two birefringent layer, a first λ/4 plate (first birefringent layer), a first refracting layer, a liquid crystal cell, and a second λ/4 plate ( The circularly polarized VA mode liquid crystal display device of the present invention according to the above aspect (1) of the first type of birefringent layer and the second polarizing element. In the liquid crystal display device (8), light incident from the front direction with respect to the first polarizing element is converted into linear polarized light by the first polarizing element, and

持偏光狀態之狀態下穿透第二種雙折射層,且藉由第一 λΜ板而自直線偏光轉換為圓偏光’並於維持偏光狀態之 狀態下穿透第二種雙折射層及液晶單元,且藉由與上述第 λ/4板處於正父關係之第二λ/4板而自圓偏光再次轉換為 與剛穿透上述第一偏光元件後相同之偏光狀態之直線偏 光,並藉由與上述第一偏光元件正交之第二偏光元件而阻 斷直線偏光,藉此獲得良好之黑顯示。即,第二種及第三 種雙折射層之目的並非係對自正面方向入射之光轉換偏光 狀態。 再者,上述說明係對藉由追蹤每當穿透各層時而變化之 偏光狀態來獲得黑顯示之情形進行了說明,但更直觀而言 亦可藉由如下說明而理解。即,在液晶顯示裝置(Α)中, 於正面方向,(1)由於第一及第二偏光元件間所包含之第一 及第二λ/4板相互大致正交,且相互之相位差大致相同 (λ/4),故藉由相互抵消相位差而實質上被無效化,(2)由 於第一及第二偏光元件間所包含之第二種雙折射層之進相 軸與第一偏光元件之吸收軸大致正交,故實質上被無效 163390.doc 29· 201243449 化’進而’(3)由於上述第一及第二偏光元件間所包含之第 三種雙折射層及液晶單元於正面方向相位差大致為零,故 實質上被無效化,進而’(4)由於上述第一及第二偏光元件 相互大致正交而構成所謂正交偏光元件,故可獲得正交偏 光元件之良好之黑顯示(亦可為完全之黑顯示)。 另一方面,液晶顯示裝置(A)若假定於斜向上無第二種 及第三種雙折射層所引起之偏光狀態之轉換,則會因下述 三個理由導致相對於第一偏光元件而自斜向入射之光未藉 由第二偏光元件阻斷,從而無法獲得完全之黑顯示。即, 第一種及第二種雙折射層之目的在於對主要自斜向入射之 光之偏光狀態進行轉換(亦可僅轉換自斜向入射之光之偏 光狀態),從而進行視野角補償。 如上所述,本發明之液晶顯示裝置中之第二種及第三種 上之良好之黑顯示之狀態Passing through the second birefringent layer in a state of being polarized, and converting from linear polarization to circular polarization by the first λ plate and penetrating the second birefringent layer and the liquid crystal cell while maintaining the polarization state And converting from the circularly polarized light to the linear polarized light of the same polarized state as that immediately after penetrating the first polarizing element by the second λ/4 plate in a positive-female relationship with the λ/4 plate described above, and by The second polarizing element orthogonal to the first polarizing element blocks linear polarization, thereby obtaining a good black display. That is, the purpose of the second and third birefringent layers is not to switch the polarization state of light incident from the front direction. Furthermore, the above description has been made on the case where the black display is obtained by tracking the polarization state which changes every time the layers are penetrated, but it is more intuitively understood by the following description. That is, in the liquid crystal display device, in the front direction, (1) the first and second λ/4 plates included between the first and second polarizing elements are substantially orthogonal to each other, and the phase difference between them is substantially The same (λ/4) is substantially invalidated by canceling the phase difference, and (2) the phase axis and the first polarization of the second birefringent layer included between the first and second polarizing elements Since the absorption axis of the element is substantially orthogonal, it is substantially ineffective. (3) Since the third birefringent layer and the liquid crystal cell included between the first and second polarizing elements are on the front side Since the directional phase difference is substantially zero, it is substantially invalidated, and further, (4) since the first and second polarizing elements are substantially orthogonal to each other to form a so-called orthogonal polarizing element, a good orthogonal polarizing element can be obtained. Black display (can also be a full black display). On the other hand, if the liquid crystal display device (A) assumes that there is no conversion of the polarization state caused by the second and third birefringent layers in the oblique direction, it may be caused with respect to the first polarizing element for the following three reasons. The light incident from the oblique direction is not blocked by the second polarizing element, so that a complete black display cannot be obtained. Namely, the purpose of the first and second birefringent layers is to convert the polarization state of the light which is mainly incident from the oblique direction (it is also possible to convert only the polarization state of the light incident obliquely), thereby performing the viewing angle compensation. As described above, the state of the black display of the second and third types in the liquid crystal display device of the present invention

163390.doc 雙折射層能夠於維持正面方向上 下,於斜向上亦獲良好之黑顯示, •30· 201243449 90°)ll〇、第一人/4板(遲相軸方位^^”20、VA模式液晶單 凡130、第二λ/4板(遲相軸方位45。)140及第二偏光元件(吸 收轴方位0。)150且不包含第二種及第三種雙折射層之、構 成最為簡單之圓偏光VA模式液晶顯示裝置1〇〇。再者,圖 2中’第一及第二偏光元件110、15〇中所描繪之箭頭係表 不其吸收軸之方位,第一及第二χ/4板12〇、140中所描繪 之箭頭係表示其遲相軸之方位,VA模式液晶單元130中所 0 描繪之橢球係表示其折射率橢球之形狀。 首先考慮正面方向之黑顯示,相對於第一偏光元件丨1() 而自正面方向入射之光藉由第一偏光元件11〇轉換為直線 偏光,並藉由第一λ/4板120而自直線偏光轉換為圓偏光, 且於維持偏光狀態之狀態下穿透液晶單元130,並藉由與 上述第一 λ/4板120處於正交關係之第二χ/4板140而自圓偏 光再次轉換為與剛穿透第一偏光元件11〇後相同之偏光狀 態之直線偏光’且藉由與第一偏光元件11()正交之第二偏 〇 光元件150而阻斷直線偏光,藉此獲得良好之黑顯示。換 言之,在液晶顯示裝置100中,於正面方向,(i)由於上述 第一及第二偏光元件110、150間所包含之第一及第二入/4 板120、140相互正交,且相互之相位差相同(λ/4),故藉由 . 相互抵消相位差而被無效化,(2)由於上述第一及第二偏光 元件110、15 0間所包含之液晶早元130於正面方向相位差 為零’故實質上被無效化,進而,(3)由於上述第一及第二 偏光元件110、150相互正交而構成所謂正交偏光元件,故 可獲得完全之黑顯示。 163390.doc -31- 201243449 繼而考慮斜向之黑顯示,因下述視野角妨礙原因(1)〜(3) 而無法獲得完全之黑顯示。 (1) 上述第一及第二λ/4板120、140並不相互正交,或相 互之相位差不同,故未被無效化。 (2) 上述液晶早元130之相位差不為零,故未被無效化。 (3) 上述第一及第二偏光元件110、15〇未相互正交,故未 構成正交偏光元件。 一面參照圖3,一面進一步詳細說明上述視野角妨礙原 因(1)〜(3)。如圖3(a)中模式性所示,於正面方向(相對於基 板面為法線方向),第一 λ/4板120之遲相軸121與第二λ/4板 140之遲相軸141相互正交’相對於此,於方位〇。中之斜 向’第一λ/4板120之遲相轴121與第二λ/4板140之遲相轴 1並不相互正父’因此未相互抵消相位差’從而亦未被 無效化。又,如圖3(b)中模式性所示,於正面方向,第一 λ/4板120之遲相轴121與第二λ/4板140之遲相軸141相互正 父’相對於此,於方位45。中之斜向,雖第一及第二χ/4板 120、140係遲相轴121與遲相轴141相互正交,但相互之相 位差不相同,因此未相互抵消相位差。相位差係由雙折射 (折射率差)χ厚度決定’其原因在於,有效雙折射於正面 方向及斜向不同’且亦取決於方位。因相同理由,於正面 方向為零之VA模式液晶單元130之相位差於任意斜向不為 零°其原因在於,有效雙折射僅於正面方向為零,相位差 亦為零。進而’如圖3(c)中模式性所示,於正面方向,第 偏光元件110之吸收軸u丨與第二偏光元件丨5 〇之吸收轴 163390.doc •32· 201243449 151相互正交’相對於此,於方位45。中之斜向,第一偏光 元件110之吸收軸111與第二偏光元件150之吸收轴151並不 相互正交。 如上所說明,最小構成之圓偏光VA模式液晶顯示裝置 100因上述三個視野角妨礙原因(丨)〜(3)而無法於斜向獲得 完全之黑顯示。反而言之,若能進行針對該等妨礙原因之 處理,即進行光學補償’則亦可於斜向獲得更佳之黑顯 0 示。再者,多數情形下,係複合化地觀測上述視野角妨礙 原因(1)及(2)。因此,亦可採用於對其等進行光學補償之 情形時,亦將視野角妨礙原因(1)及(2)整體最佳化而非個 別最佳化之方法。 並且上述液晶顯示裝置(A)係設計為基於如以下詳述 之設計方針對上述視野角妨礙原因〜(3)同時進行光學補 償。具體而言,首先,於將第一及第二λ/4板製成滿足 ηχ>η於ηζ之關係之雙轴性λ/4板(第一種雙折射層)之後,使 〇 其等之Νζ係數互不相同,其次,於第一 λ/4板與第一偏光 兀件之間配置滿足nx<nySnz之關係之雙折射層(第二種雙 折射層),繼而,視需要於第一及第二λ/4板之間配置滿足 nx与ny>nz之關係之雙折射層(第三種雙折射層),藉此實現 光學補償。 此處,對雙折射層之設計方針進行說明。本發明者為了 簡便且有效地進行上述視野角妨礙原因之光學補償而進行 了各種研究,結果著眼於根據方位之不同而必需進行光學 補償之因素則不同。並且發現,如下述表】所示,於方位 163390.doc -33- 201243449 0°上,無需針對視野角妨礙原因(3)進行偏光元件之光學補 償,且發現,於該方位上僅針對視野角妨礙原因(1)進行 λ/4板之光學補償及針對視野角妨礙原因(2)進行液晶單元 之光學補償即可。 [表1] 方位 光學補償之必要性 (1)λ/4 板 (2)液晶單元 (3)偏光元件 0° 需要 需要 不需要 45。 需要 需要 需要 進而,本發明者想到:藉由使用有龐加萊球(Poincare Sphere)之偏光狀態圖解及電腦模擬,對第一及第二λ/4板 之Νζ係數之平均值Nzq以及液晶單元之厚度方向相位差Rlc 進行最佳調整,進而,視需要於第一及第二λ/4板之間配 置滿足nx=ny>nz之關係之第三種雙折射層,並亦對其厚度 方向相位差R3進行最佳調整,藉此,可於方位0°中,同時 且有效地對上述視野角妨礙原因(1)及(2)進行光學補償。 於本說明書中,將如上述般以方位0°中之光學補償為目的 而選擇第一及第二λ/4板之Νζ係數之平均值Nzq '液晶單元 之厚度方向相位差Rlc以及第三種雙折射層之厚度方向相 位差R3之最佳值的製程稱為第一步驟。 並且,本發明者想到:於該第一步驟之後,於第一 λ/4 板與第一偏光元件之間,將滿足nx<ny$nz之關係之第二種 雙折射層配置為其面内進相軸相對於該第一偏光元件之吸 收軸大致正交,並對其Νζ係數Nz2及面内相位差R2進行最 163390.doc -34- 201243449 佳調整,#此’可於方位45。中,㈣且有效地對上述視 野角妨礙原因⑴、⑺及(3)進行光學補償。於本說明書 中,將如上述般於第一步驟之後以方位45〇中之光學補償 為目的而選擇第二種雙折射層之Nz係數Nz2及面内相位差 R2之最佳值的製程稱為第二步驟。 由於第二步驟中所追加之第二種雙折射層之面内進相軸 係配置為相對於鄰接之第一偏光元件之吸收軸大致正交,163390.doc The birefringent layer can maintain the positive direction up and down, and also has a good black display in the oblique direction. • 30· 201243449 90°) ll〇, first person / 4 boards (late phase axis orientation ^^) 20, VA The mode liquid crystal single 130, the second λ/4 plate (late phase axis orientation 45) 140 and the second polarizing element (absorption axis orientation 0.) 150 and does not include the second and third birefringent layers. The simplest circularly polarized VA mode liquid crystal display device is 1. In addition, the arrows depicted in the first and second polarizing elements 110, 15A in Fig. 2 indicate the orientation of the absorption axis, first and second. The arrows depicted in the χ/4 plates 12〇, 140 indicate the orientation of the slow axis, and the ellipsoid depicted by 0 in the VA mode liquid crystal cell 130 indicates the shape of the index ellipsoid. In black, the light incident from the front direction with respect to the first polarizing element 丨1() is converted into linear polarized light by the first polarizing element 11 ,, and converted from linear polarized light to a circle by the first λ/4 plate 120. Polarizing, and penetrating the liquid crystal cell 130 in a state of maintaining a polarization state, and by the above A λ/4 plate 120 is in the second χ/4 plate 140 in an orthogonal relationship and is again converted from circularly polarized light to a linearly polarized light of the same polarized state as immediately after penetrating the first polarizing element 11 且 and by the first The second polarizing element 150 orthogonal to the polarizing element 11 () blocks linear polarization, thereby obtaining a good black display. In other words, in the liquid crystal display device 100, in the front direction, (i) due to the first The first and second input/four plates 120 and 140 included between the second polarizing elements 110 and 150 are orthogonal to each other and have the same phase difference (λ/4), so that they are invalidated by mutually canceling the phase difference. (2) Since the liquid crystal early element 130 included between the first and second polarizing elements 110 and 150 is zero in the front direction, the phase difference is substantially invalidated, and (3) due to the first The second polarizing elements 110 and 150 are orthogonal to each other to form a so-called orthogonal polarizing element, so that a complete black display can be obtained. 163390.doc -31- 201243449 Then consider the black display in the oblique direction, because the following viewing angle obstructs the cause ( 1) ~(3) It is impossible to obtain a complete black display. (1) Since the second λ/4 plates 120 and 140 are not orthogonal to each other or have different phase differences from each other, they are not invalidated. (2) Since the phase difference of the liquid crystal cell 130 is not zero, it is not invalidated. (3) Since the first and second polarizing elements 110 and 15 are not orthogonal to each other, they do not constitute a crossed polarizing element. The above-described viewing angle obstruction causes (1) to (3) will be described in more detail with reference to Fig. 3 . As shown schematically in FIG. 3(a), in the front direction (normal to the substrate surface), the slow phase axis of the first λ/4 plate 120 and the second λ/4 plate 140 are retarded. 141 are mutually orthogonal 'relative to this, in the orientation 〇. The retardation axis 121 of the first λ/4 plate 120 and the slow phase axis 1 of the second λ/4 plate 140 are not mutually positive and therefore do not cancel each other out of phase difference and thus are not invalidated. Further, as schematically shown in FIG. 3(b), in the front direction, the slow phase axis 121 of the first λ/4 plate 120 and the retardation axis 141 of the second λ/4 plate 140 are opposite to each other' , at azimuth 45. In the middle direction, although the first and second χ/4 plates 120 and 140 are opposite to each other, the slow phase axis 121 and the slow phase axis 141 are different from each other, and thus the phase difference is not canceled each other. The phase difference is determined by the birefringence (refractive index difference) ’ thickness. The reason is that the effective birefringence is different in the front direction and the oblique direction, and also depends on the orientation. For the same reason, the phase difference of the VA mode liquid crystal cell 130 which is zero in the front direction is not zero in any oblique direction because the effective birefringence is only zero in the front direction and the phase difference is also zero. Further, as shown schematically in FIG. 3(c), in the front direction, the absorption axis u丨 of the first polarizing element 110 and the absorption axis 163390.doc •32·201243449 151 of the second polarizing element 丨5 相互 are orthogonal to each other' In contrast, the orientation is 45. In the oblique direction, the absorption axis 111 of the first polarizing element 110 and the absorption axis 151 of the second polarizing element 150 are not orthogonal to each other. As described above, the circularly polarized VA mode liquid crystal display device 100 of the smallest configuration cannot obtain a complete black display obliquely due to the above three viewing angles obstructing the causes (丨) to (3). Conversely, if the processing for such obstructive reasons can be performed, that is, optical compensation is performed, a better black display can be obtained in the oblique direction. Further, in many cases, the above-mentioned viewing angles are observed in combination to interfere with the causes (1) and (2). Therefore, it is also possible to use a method in which the viewing angle interferes with the causes (1) and (2) as a whole, rather than individually optimizing, in the case of optical compensation for the same. Further, the liquid crystal display device (A) is designed to simultaneously perform optical compensation for the above-mentioned viewing angle obstruction cause - (3) based on the design as described in detail below. Specifically, first, after the first and second λ/4 plates are made into a biaxial λ/4 plate (the first birefringent layer) satisfying the relationship of ηχ>η to ηζ, The Νζ coefficients are different from each other, and secondly, a birefringent layer (second birefringent layer) satisfying the relationship of nx < nySnz is disposed between the first λ/4 plate and the first polarizing element, and then, as needed A birefringent layer (a third birefringent layer) satisfying the relationship of nx and ny > nz is disposed between the second λ/4 plate, thereby achieving optical compensation. Here, the design policy of the birefringent layer will be described. The inventors of the present invention conducted various studies in order to easily and efficiently perform optical compensation for the above-mentioned viewing angle obstruction, and as a result, attention has been paid to factors that require optical compensation depending on the orientation. And found that, as shown in the following table, at the orientation 163390.doc -33-201243449 0°, it is not necessary to perform optical compensation of the polarizing element for the viewing angle obstruction reason (3), and it is found that only the viewing angle is in this orientation. Reasons for obstruction (1) Optical compensation of the λ/4 plate and optical compensation of the liquid crystal cell may be performed for the cause of the viewing angle obstruction (2). [Table 1] Azimuth Necessity of optical compensation (1) λ/4 plate (2) Liquid crystal cell (3) Polarizing element 0° Required Required No 45. Needs need further, the inventors have thought of: by using the Poincare Sphere (Poincare Sphere) polarization state diagram and computer simulation, the average value Nzq of the first and second λ/4 plates and the liquid crystal cell The thickness direction phase difference Rlc is optimally adjusted, and further, a third birefringent layer satisfying the relationship of nx=ny>nz is disposed between the first and second λ/4 plates as needed, and the thickness direction thereof is also The phase difference R3 is optimally adjusted, whereby the above-mentioned viewing angle obstruction causes (1) and (2) can be optically compensated simultaneously and effectively in the orientation 0°. In the present specification, the average value Nzq of the first and second λ/4 plates is selected as the above, and the thickness direction phase difference Rlc of the liquid crystal cells and the third type are selected for the purpose of optical compensation in the orientation of 0°. The process of the optimum value of the thickness direction phase difference R3 of the birefringent layer is referred to as the first step. Moreover, the inventors have thought that after the first step, a second birefringent layer satisfying the relationship of nx <ny$nz is disposed in-plane between the first λ/4 plate and the first polarizing element. The phase-increasing axis is substantially orthogonal to the absorption axis of the first polarizing element, and the Νζ coefficient Nz2 and the in-plane phase difference R2 are optimally adjusted to 163390.doc -34-201243449, which can be at azimuth 45. (4) Effectively compensate optically for the above-mentioned visual angle obstruction causes (1), (7), and (3). In the present specification, the process of selecting the optimum value of the Nz coefficient Nz2 and the in-plane phase difference R2 of the second birefringent layer for the purpose of optical compensation in the orientation 45 之后 after the first step as described above is referred to as The second step. Since the in-plane phase axis of the second birefringent layer added in the second step is disposed substantially orthogonal to the absorption axis of the adjacent first polarizing element,

故實質上並未改變方位〇。方向上之光學特性(亦可完全不 改變)gp,於第二步驟之後’藉由第一步驟而獲得之最 佳化狀態亦仍然得以保存係本發明之液晶顯示裝置之光學 補償製程之特徵。如此’可完全獨立地研究第—步驟與第 二步驟,從而使雙折射層之設計變得容易。 藉由使用有龐加萊球之圖解,如下述般說明上述第一步 驟第-步驟之光學補償原理之詳細内容。利用魔加萊球 ^想法’係、作為對於通過雙折射層而變化之偏光狀態之追 蹤有用之方法而於結晶光學等領域廣為人知(例如參照非 專利文獻3)。 於魔加萊球中,上半球表示右旋偏光,下半球表示左旋 偏光赤道表不直線偏光’上下兩極表示右圓偏光及左圓 偏光。相對於球之中心而處於對稱關係之兩種偏光狀態由 於橢圓率角之絕對值相等且極性相反而形成為正交偏光 雔 龐加萊球上之雙折射層之效果:將表示即將通過 雙折射層前之偏光狀態之點’轉換為讀加萊球上之遲相 163390.doc -35· 201243449 模^更準確地換言之,係雙折射層所具有之兩個固有振動 ' 卞較陵之偏光狀態之龐加萊球上之點之位置) ^ 於逆時針方向旋轉移動由(2π)χ(相位差)/(波 早位· rad)決定之角度程度所得之點(以進相軸為中心 而於順時針方向旋轉移動 亦相同 自斜向觀察時之旋轉中心及旋轉角度係由其觀察角度下 遲相轴(或進相軸)及相位差決定。雖省略詳細說明,但 射*彳如可藉由解開菲涅耳之波面法線方程式而獲得雙折 ' 固有振動模式之振動方向及波向量來計算。自斜 日向觀察時之遲相軸取決於觀察角度及Nz係數,自斜向觀察 夺之相位差取決於觀察角度、Nz係數及面内相位差R(或厚 度方向相位差Rth)。 (第—步驟之補償原理) 二首先考慮自正面方向觀察圖2之圓偏光VA模式液晶顯 、置1 00時之偏光狀態。;^該條件下’ ^利用龐加萊球 iSl-S2平面而圖示自背光(於圖2中未圖示,係位於第一 “元件之下方)出射之光每當穿透各偏光元件11〇、 150、各雙折射層12〇、14〇及液晶單元m時之偏光狀態, 、—圖4所示。再者,表示各偏光狀態之點雖實際位於龐 加萊球面上,但係將其等投影圖示於S1-S2平面。又,以〇 表不偏光狀態之點,以x圖示表示雙折射層之遲(進) 相轴之點。 —首先’剛穿透第-偏光元件11〇之後之偏光狀態於龐加 —上位於點P0,且與由點E表示之第二偏光元件可吸 163390.doc -36 - 201243449 收之偏光狀態即第二偏光元件150之消光位(吸收轴方位)一 致。繼而,藉由穿透第一人/4板120,位於點p〇之偏光狀態 以由魔加萊球上之點Qi表示之第一 λ/4板12〇之遲相軸為中 〜而文到特定角度之旋轉轉換,從而到達至點ρ 1。此時之 疑轉方向係自點Q 1朝原點〇(龐加萊球之中心點)觀察為逆 時針方向。 繼而,穿透VA模式液晶單元130,但因VA模式液晶單元 0 U〇於正面方向相位差為零,故偏光狀態無變化。最後, 藉由穿透第二λΜ板mo,而以由點Q2表示之第二λ/4板14〇 之遲相軸為中心受到特定角度之旋轉轉換,從而到達至點 Ρ2 ’且該點Ρ2與第二偏光元件15〇之消光位ε一致。如此, 圖2之液晶顯示裝置1〇〇當自正面方向觀察時,可阻斷來自 背光之光’從而獲得良好之黑顯示。 進而考慮於第二偏光元件15〇之吸收軸方位〇。中從自法 線方向傾斜60。之方向(以下亦稱為極6〇。)觀察圖2之圓偏光 〇 VA模式液晶顯示裝置100時之偏光狀態。於該條件下,若 利用龐加萊球之S1-S2平面圖示自背光出射之光每當穿透 各偏光元件110、150、各雙折射層120、14〇及液晶單元 130時之偏光狀態,則如圖5所示。 首先,剛穿透第一偏光元件丨1〇之後之偏光狀態於龐加 萊球上位於點P0,且與由表示之第二偏光元件15〇可吸 收之偏光狀態即第二偏光元件丨5〇之消光位(吸收轴方位)一 致。繼而,藉由穿透第一人/4板12(),位於點p〇之偏光狀態 以由龐加萊球上之點Q1表示之第一λ/4板12〇之遲相軸為中 163390.doc -37- 201243449 心而受到特定角度之旋轉轉換,從而到達至fip卜此^ 旋轉方向係自點Q1朝原點〇觀察為逆時針方向。 繼而,藉由穿透VA模式液晶單元13〇,*以由龐加萊球 上之點L表示之液晶單元13()之遲相軸為中心受到特定角度 之旋轉轉換,從而到達至點Ρ2β此時之旋轉方向係自^ 朝原點。觀察為逆時針方向。最後,#由穿透第二人,4板 ,而以由點Q2表示之第二λ/4板14〇之遲相軸為中心受 到特定角度之旋轉轉換,從而到達至刚,且該點ρ3與第 二偏光元件150之消光位料-致。如&,圖2之液晶顯示 裝置100虽自方位〇。極60。觀察時,無法阻斷來自背光之 光0 再者,於圖4及圖5中,點Ρ1〜Ρ3之位置取決於第一 板 120之Νζ係數Nzql、第二λ/4板14〇之Νζ係數^^^及液晶單 凡130之厚度方向相位差Ric,於圖4及圖5中圖示有Therefore, the orientation has not changed substantially. The optical characteristics in the direction (which may not change at all) gp, after the second step, the optimum state obtained by the first step is still preserved as a feature of the optical compensation process of the liquid crystal display device of the present invention. Thus, the first step and the second step can be studied completely independently, thereby making the design of the birefringent layer easy. The details of the optical compensation principle of the first step of the above first step are explained by using the diagram of the Poincare sphere. In the field of crystallography and the like, it is known as a method for tracking the polarization state which changes by the birefringent layer (see, for example, Non-Patent Document 3). In the magical Calais ball, the upper hemisphere indicates right-handed polarized light, and the lower hemisphere indicates that the left-handed polarized light is not linearly polarized. The upper and lower poles indicate right-circular polarized light and left-circular polarized light. The two polarization states in a symmetrical relationship with respect to the center of the sphere are formed as the effect of the birefringent layer on the orthogonal polarized Poincare sphere due to the equal absolute values of the ellipticity angles and opposite polarities: The point of the polarization state before the layer is converted to the late phase on the reading Calais 163390.doc -35· 201243449 The mold ^ more accurately, in other words, the two natural vibrations of the birefringent layer 卞Position of the point on the Poincare sphere) ^ Rotate counterclockwise to move the point determined by the angle of (2π) χ (phase difference) / (wave early position rad) (centered on the phase axis) In the clockwise direction, the rotation center and the rotation angle are also determined by the slow phase axis (or the phase advance axis) and the phase difference at the observation angle. Although the detailed description is omitted, the shot is as follows. The vibration direction and wave vector of the biaxial 'natural vibration mode are obtained by solving the Fresnel wave normal equation. The slow phase axis from the oblique observation depends on the observation angle and the Nz coefficient, and observes from the oblique direction. Capture the phase The difference depends on the observation angle, the Nz coefficient, and the in-plane phase difference R (or the thickness direction phase difference Rth). (Compensation principle of the first step) Second, first consider the circularly polarized VA mode liquid crystal display of Figure 2 from the front direction. 00 o'clock polarized state.; ^ Under this condition ' ^ use Poincaré ball iSl-S2 plane and the illustration from the backlight (not shown in Figure 2, is located below the first "component") The polarization state when the polarizing elements 11 150, 150 and the birefringent layers 12 〇, 14 〇 and the liquid crystal cell m are penetrated, as shown in Fig. 4. Further, the points indicating the respective polarization states are actually located in Poincaré. On the spherical surface, the projections are shown in the S1-S2 plane. In addition, the point of the non-polarized state is indicated by x, and the point of the late (in) phase axis of the birefringent layer is indicated by x. The polarizing state after penetrating the first-polarizing element 11〇 is at the point P0 on the top of the Pangga-up, and the second polarizing element represented by the point E is 133390.doc-36 - 201243449. The extinction position of 150 (absorption axis orientation) is consistent. Then, by penetrating the first person / 4 board 120 The polarization state at the point p〇 is converted to a point ρ 1 by the rotation of the slow phase axis of the first λ/4 plate 12 表示 indicated by the point Qi on the magical ball. At this time, the suspected direction is observed from the point Q 1 toward the origin point (the center point of the Poincare sphere) as a counterclockwise direction. Then, the VA mode liquid crystal unit 130 is penetrated, but the VA mode liquid crystal unit 0 U is on the front side. The direction phase difference is zero, so there is no change in the polarization state. Finally, by penetrating the second λ plate mo, the rotation is rotated at a specific angle centering on the slow phase axis of the second λ/4 plate 14 表示 indicated by the point Q2. The conversion is such that it reaches the point Ρ 2 ' and the point Ρ 2 coincides with the extinction position ε of the second polarizing element 15 。. Thus, the liquid crystal display device 1 of Fig. 2 can block the light from the backlight when viewed from the front direction to obtain a good black display. Further, the absorption axis orientation 第二 of the second polarizing element 15〇 is considered. Tilt from the normal line by 60. The direction (hereinafter also referred to as pole 6 〇.) The polarization state of the VA mode liquid crystal display device 100 of Fig. 2 is observed. Under this condition, if the S1-S2 plane of the Poincare sphere is used, the polarization state of the light emitted from the backlight when penetrating each of the polarizing elements 110, 150, the respective birefringent layers 120, 14 and the liquid crystal cell 130 is shown. , as shown in Figure 5. First, the polarization state immediately after the first polarizing element 丨1〇 is located at the point P0 on the Poincare sphere, and the second polarizing element 丨5〇 which is the polarization state absorbable by the second polarizing element 15 表示The extinction position (absorption axis orientation) is the same. Then, by penetrating the first person/4 plate 12(), the polarization state at the point p〇 is the λ390 of the first λ/4 plate 12〇 indicated by the point Q1 on the Poincare sphere. .doc -37- 201243449 The heart is rotated by a specific angle, so as to reach the fip. The direction of rotation is observed counterclockwise from the point Q1 toward the origin. Then, by penetrating the VA mode liquid crystal cell 13A, * is rotated by a specific angle centered on the slow phase axis of the liquid crystal cell 13 () indicated by the point L on the Poincare sphere, thereby reaching the point β2β The direction of rotation is from ^ to the origin. The observation is counterclockwise. Finally, # is penetrated by the second person, 4 plates, and is rotated by a specific angle centered on the slow phase axis of the second λ/4 plate 14〇 indicated by the point Q2, thereby reaching the point immediately, and the point ρ3 And the matte level of the second polarizing element 150. For example, <, the liquid crystal display device 100 of Fig. 2 is self-aligned. Extreme 60. When observing, the light from the backlight cannot be blocked. Furthermore, in FIGS. 4 and 5, the position of the points Ρ1 to Ρ3 depends on the Νζ coefficient Nzql of the first plate 120 and the Νζ coefficient of the second λ/4 plate 14〇. ^^^ and the thickness direction phase difference Ric of the liquid crystal 130, which are illustrated in FIG. 4 and FIG.

Nzql-Nzq2=2.0、Rlc=32〇 nm2形態作為一例。為易於理 解偏光狀態之轉換,各點之位置係大致表示,嚴格而言有 時亦並不準確。又,為明瞭地表示圖,對於點p 1之轉 換未圖不有表不軌跡之箭頭。再者,VA模式液晶單元 之Rlc典型為320 nm左右,但通常可於270〜400 nm之範圍 内進行調整。例如’有時為增大穿透率而將R1CS為大於 m 第 及弟一 λ/4板120、140之Nzql、Nzq2通常於 1_〇〜2.9之範圍内進行調整。例如,於使用將Rlc設定於4〇〇 nm左右之VA模式液晶單元之情形時且未設置第三種雙折 射層之形態中’較佳為使用Nz係數之平均值彼此調整為 163390.doc -38- 201243449 2.9之2張1/4板。 繼而,考慮如圖6所示般依序積層有第一偏光元件(吸收 軸方位90。)210、第一λ/4板(遲相軸方位135。)220、第三種 雙折射層235、VA模式液晶單元230、第二λ/4板(遲相轴方 位45。)240及第二偏光元件(吸收軸方位〇。)25〇之、包含第 三種雙折射層之圓偏光VA模式液晶顯示裝置200。再者, 圖6中’弟一及弟二偏光元件210、250中所描繪之箭頭係 表示其吸收轴之方位,第一及第二人/4板220、240中所描 繪之箭頭係表示其遲相軸之方位,VA模式液晶單元230及 第三種雙折射層235中所描繪之橢球係表示其折射率橢球 之形狀。 首先’考慮自正面方向觀察圖6之圓偏光VA模式液晶顯 示裝置200時之偏光狀態。於該條件下,若利用龐加萊球 之S1-S2平面圖示自背光(於圖6未圖示,係位於第一偏光 元件210之下方)出射之光每當穿透各偏光元件21〇、25〇、 〇 各雙折射層22〇、240、235及液晶單元230之偏光狀態,則 如圖7所示。 首先,剛穿透第一偏光元件210之後之偏光狀態於龐加 萊球上位於點Ρ0,且與由點Ε表示之第二偏光元件25〇可吸 .收之偏光狀態即第二偏光元件250之消光位(吸收軸方位)一 致。繼而,藉由穿透第一 λ/4板220,位於點Ρ〇之偏光狀態 以由龐加萊球上之點Q1表示之第一 λ/4板22〇之遲相軸為中 心而受到特定角度之旋轉轉換,從而到達至點ρι。此時之 旋轉方向係自點Q1朝原點〇觀察為逆時針方向。 163390.doc •39- 201243449 繼而,穿透第三種雙折射層235及VA模式液晶單元 230,但因第三種雙折射層235及VA模式液晶單元230於正 面方向相位差均為零,故偏光狀態無變化。最後,藉由穿 透第二λΜ板24〇,而以由點Q2表示之第二λ/4板240之遲相 軸為中心受到特定角度之旋轉轉換,從而到達至點Ρ2,且 該點Ρ2與第二偏光元件250之消光位Ε—致。如此,圖6之 液晶顯示裝置200當自正面方向觀察時,與圖2之液晶顯示 裝置100—樣,可阻斷來自背光之光,從而獲得良好之黑 顯示。 進而考慮於第二偏光元件210之吸收軸方位〇。中自傾斜 60°之方向觀察圖6之圓偏光VA模式液晶顯示裝置200時之 偏光狀態。於該條件下,若利用龐加萊球之S1_S2平面圖 示自背光出射之光每當穿透各偏光元件21〇、250、各雙折 射層220、240、23 5及液晶單元23 0時之偏光狀態,則如圖 8 -1所示。 百先,剛穿透第一偏光元件210之後之偏光狀態於龐加 萊球上位於點P0,且與由點E表示之第二偏光元件25〇可吸 收之偏光狀態即第二偏光元件2 5 〇之消光位(吸收轴方位)_ 致。繼而,藉由穿透第一 λ/4板22〇,位於點P〇之偏光狀態 以由龐加萊球上之點Q1表示之第一λ/4板22〇之遲相軸為中 心而受到特定角度之旋轉轉換,從而到達至點ρι。此時之 旋轉方向係自點Qi朝原點〇觀察為逆時針方向。 繼而,藉由穿透第三種雙折射層235,而以由龐加萊球 上之點R3表示之第三種雙折射層235之遲相軸為中心受到 163390.doc 201243449 特定角度之旋轉轉換,從而到達至點P 2。此時之旋轉方向 係自點R3朝原點Ο觀察為逆時針方向。繼而,藉由穿透VA 模式液晶單元230,而以由龐加萊球上之點L表示之液晶單 元230之遲相轴為中心受到特定角度之旋轉轉換,從而到 達至點P3。此時之旋轉方向係自點L朝原點Ο觀察為逆時 針方向。最後,藉由穿透第二λ/4板240,而以由點Q2表示 之第二λ/4板240之遲相轴為中心受到特定角度之旋轉轉 換,從而到達至點Ρ4,且該點Ρ4與第二偏光元件250之消 光位Ε—致。如此,圖6之液晶顯示裝置200當自方位0°、 極60°之斜向觀察時,與自正面方向觀察時一樣,可阻斷 來自背光之光。 再者,於圖7及圖8-1中,點Ρ1-Ρ4之位置取決於第一 λ/4 板220之Νζ係數Nzql、第二λ/4板240之Νζ係數Nzq2、第三 種雙折射層235之厚度方向相位差R3及液晶單元230之厚度 方向相位差Rlc,於圖7及圖8-1中圖示有Nzql=Nzq2=2.0、 R3=-61 nm、Rlc = 3 20 nm之形態作為一例。為易於理解偏 光狀態之轉換,各點之位置係大致表示,嚴格而言有時亦 並不準確。又,為明瞭地表示圖,對於點P1〜P4之轉換未 圖示有表示軌跡之箭頭。 並且,本發明者經研究,結果明確:對應第一 λ/4板220 之Νζ係數Nzql及第二λ/4板240之Νζ係數Nzq2,存在第三 種雙折射層235之最佳相位差值R3。 此處,將藉由電腦模擬而調查第一 λ/4板220之Νζ係數 Nzql及第二λ/4板240之Νζ係數Nzq2與第三種雙折射層23 5 163390.doc -41 · 201243449 之厚度方向相位差R3之最佳值之關係所得之結果示於表2 及圖9。於圖8-1之使用有龐加萊球之圖解中,係分為利用 第三種雙折射層235之厚度方向相位差R3之Pl->P2轉換、 及利用VA模式液晶單元230之厚度方向相位差RlciP1—p2 轉換而圖示點P1—P3之偏光狀態轉換。然而,該等兩種轉 換僅說轉中心相同且旋轉方向相反,而旋轉方向係由厚产 方向相位差之符號決定’旋轉角度係由厚度方向相位差之 絕對值決定。因此,上述兩種轉換即便想作是「第三種雙 折射層235+VA模式液晶單元230」之利用「總厚度方向相 位差R3+Rlc」之直接PI—P3轉換亦為相同。換言之,只要 R3+Rlc相同’則液晶顯示裝置之光學特性不會因VA模式 液晶單元230之厚度方向相位差Ric而異。因此,於表2中 表示藉由電腦模擬算出R3+R1C之最佳值之結果。又,為簡 單起見,此處雖設第一 λ/4板220之Nz係數Nzql與第二λ/4 板240之Νζ係數Nzq2相同(Nzql=Nzq2=Nzq)而進行電腦模 擬’但本發明者發現’如以下所說明般,即便於第一入/4 板220之Nz係數Nzql與第二λ/4板240之Nz係數Nzq2互不相 同之情形時,亦可想作是Nzql及Nzq2之各者與其平均值 Nzq相等’而根據該Nzq算出第三種雙折射層235之最佳相 位差值R3,從而可直接參照表2及圖8之結果。如根據表2 及圖9可知’若平均值Nzq與最佳Rlc+R3之關係處於 1.0SNZqS2.9之範圍’則下式(A)充分地得出近似。圖9中所 示之實線係表示下式(A)。The form of Nzql-Nzq2=2.0 and Rlc=32〇 nm2 is taken as an example. In order to easily understand the transition of the polarization state, the position of each point is roughly indicated, and sometimes it is not accurate in some cases. Further, in order to clearly show the figure, there is no arrow indicating the trajectory for the conversion of the point p1. Further, the Rlc of the VA mode liquid crystal cell is typically about 320 nm, but can usually be adjusted within the range of 270 to 400 nm. For example, Nzql and Nzq2, where R1CS is greater than m, and R1CS is greater than m, and λ/4 plates 120 and 140 are usually adjusted in the range of 1_〇 to 2.9. For example, in the case of using a VA mode liquid crystal cell in which Rlc is set to about 4 〇〇 nm and in the form in which the third birefringent layer is not provided, it is preferable to adjust the average value of the Nz coefficients to 163390.doc - 38- 201243449 2.9 of 2 sheets of 1/4. Then, it is considered to sequentially laminate a first polarizing element (absorption axis orientation 90) 210, a first λ/4 plate (latial phase axis orientation 135.) 220, a third birefringent layer 235, as shown in FIG. VA mode liquid crystal cell 230, second λ/4 plate (latial phase axis orientation 45) 240 and second polarizing element (absorption axis orientation ).) 25 圆 circularly polarized VA mode liquid crystal including a third birefringent layer Display device 200. Furthermore, the arrows depicted in the "Dipole 1 and 2" polarizing elements 210, 250 in Fig. 6 indicate the orientation of the absorption axis, and the arrows depicted in the first and second persons/4 plates 220, 240 indicate The orientation of the slow phase axis, the ellipsoid system depicted in the VA mode liquid crystal cell 230 and the third birefringent layer 235 represents the shape of the index ellipsoid. First, the polarization state when the circularly polarized VA mode liquid crystal display device 200 of Fig. 6 is viewed from the front direction is considered. Under this condition, if the S1-S2 plane of the Poincare sphere is used, the light emitted from the backlight (not shown in FIG. 6 below the first polarizing element 210) penetrates each of the polarizing elements 21〇. The polarization state of each of the birefringent layers 22A, 240, 235 and the liquid crystal cell 230 is shown in FIG. First, the polarized state immediately after penetrating the first polarizing element 210 is located at a point Ρ0 on the Poincare sphere, and the second polarizing element 25, which is indicated by the point Ε, is absorbing the polarized state, that is, the second polarizing element 250. The extinction position (absorption axis orientation) is the same. Then, by penetrating the first λ/4 plate 220, the polarization state at the point 受到 is specified centered on the slow phase axis of the first λ/4 plate 22 表示 indicated by the point Q1 on the Poincare sphere. The rotation of the angle is converted to reach the point ρι. At this time, the direction of rotation is observed counterclockwise from the point Q1 toward the origin. 163390.doc •39- 201243449 Then, the third birefringent layer 235 and the VA mode liquid crystal cell 230 are penetrated, but since the third birefringent layer 235 and the VA mode liquid crystal cell 230 have a phase difference of zero in the front direction, There is no change in the polarization state. Finally, by penetrating the second λ-plate 24〇, the rotation is converted by a specific angle centering on the slow phase axis of the second λ/4 plate 240 indicated by the point Q2, thereby reaching the point Ρ2, and the point Ρ2 It is the same as the extinction position of the second polarizing element 250. Thus, the liquid crystal display device 200 of Fig. 6 can block the light from the backlight when viewed from the front direction, as in the liquid crystal display device 100 of Fig. 2, thereby obtaining a good black display. Further, the absorption axis orientation 第二 of the second polarizing element 210 is considered. The polarized state of the circularly polarized VA mode liquid crystal display device 200 of Fig. 6 was observed from the direction of inclination of 60°. Under this condition, if the light emitted from the backlight is used to penetrate the polarizing elements 21, 250, the respective birefringent layers 220, 240, 23 5 and the liquid crystal cells 23 0 using the S1_S2 plane of the Poincare sphere. The polarized state is shown in Figure 8.1. The first polarizing element is a polarization state in which the polarizing state immediately after penetrating the first polarizing element 210 is located at the point P0 on the Poincare sphere, and the second polarizing element 25 is represented by the point E, that is, the second polarizing element 2 5消 消 extinction position (absorption axis orientation) _ Zhi. Then, by penetrating the first λ/4 plate 22, the polarization state at the point P 受到 is centered on the slow phase axis of the first λ/4 plate 22 表示 indicated by the point Q1 on the Poincare sphere. The rotation of a specific angle is converted to reach the point ρι. At this time, the direction of rotation is observed counterclockwise from the point Qi toward the origin. Then, by penetrating the third birefringent layer 235, the rotation is converted by a specific angle of 163390.doc 201243449 centered on the slow phase axis of the third birefringent layer 235 indicated by the point R3 on the Poincare sphere. And thus reach point P2. The direction of rotation at this time is observed counterclockwise from the point R3 toward the origin Ο. Then, by penetrating the VA mode liquid crystal cell 230, the rotation is converted by a specific angle centering on the slow phase axis of the liquid crystal cell 230 indicated by the point L on the Poincare sphere, thereby reaching the point P3. At this time, the direction of rotation is observed from the point L toward the origin Ο in the counterclockwise direction. Finally, by penetrating the second λ/4 plate 240, the rotation is converted by a specific angle centering on the slow phase axis of the second λ/4 plate 240 indicated by the point Q2, thereby reaching the point Ρ4, and the point The extinction position of the second polarizing element 250 is the same as that of the second polarizing element 250. Thus, the liquid crystal display device 200 of Fig. 6 can block light from the backlight as viewed from the front direction when viewed from the oblique direction of 0° and 60°. Furthermore, in FIGS. 7 and 8-1, the position of the point Ρ1-Ρ4 depends on the Νζ coefficient Nzql of the first λ/4 plate 220, the Νζ coefficient Nzq2 of the second λ/4 plate 240, and the third birefringence. The thickness direction phase difference R3 of the layer 235 and the thickness direction phase difference Rlc of the liquid crystal cell 230 are shown in FIGS. 7 and 8-1 in the form of Nzql=Nzq2=2.0, R3=-61 nm, and Rlc=3 20 nm. As an example. In order to easily understand the transition of the polarization state, the position of each point is roughly indicated, and sometimes it is not accurate in principle. Further, in order to clearly show the map, arrows indicating the trajectory are not shown for the transition of the points P1 to P4. Moreover, the inventors have studied and found out that the optimum phase difference value of the third birefringent layer 235 exists in the corresponding coefficient zNzq1 of the first λ/4 plate 220 and the Νζ coefficient Nzq2 of the second λ/4 plate 240. R3. Here, the Νζ coefficient Nzq1 of the first λ/4 plate 220 and the Νζ coefficient Nzq2 of the second λ/4 plate 240 and the third birefringent layer 23 5 163390.doc -41 · 201243449 will be investigated by computer simulation. The results obtained by the relationship between the optimum values of the thickness direction retardation R3 are shown in Table 2 and Fig. 9. In the illustration of the Poincare sphere used in Fig. 8-1, it is divided into Pl->P2 conversion using the thickness direction phase difference R3 of the third birefringent layer 235, and the thickness of the liquid crystal cell 230 using the VA mode. The directional phase difference RlciP1 - p2 is converted and the polarization state transition of the plotted points P1 - P3 is performed. However, the two conversions only say that the center of rotation is the same and the direction of rotation is opposite, and the direction of rotation is determined by the sign of the phase difference in the direction of the yield. The angle of rotation is determined by the absolute value of the phase difference in the thickness direction. Therefore, even if the above two kinds of conversions are intended to be "the third birefringent layer 235 + VA mode liquid crystal cell 230", the direct PI-P3 conversion using the "total thickness direction phase difference R3 + Rlc" is also the same. In other words, as long as R3 + Rlc is the same, the optical characteristics of the liquid crystal display device do not differ depending on the thickness direction phase difference Ric of the VA mode liquid crystal cell 230. Therefore, Table 2 shows the results of calculating the optimum value of R3+R1C by computer simulation. Moreover, for the sake of simplicity, although the Nz coefficient Nzql of the first λ/4 plate 220 is the same as the Νζ coefficient Nzq2 of the second λ/4 plate 240 (Nzql=Nzq2=Nzq), the computer simulation is performed. It has been found that, as explained below, even if the Nz coefficient Nzql of the first/fourth board 220 and the Nz coefficient Nzq2 of the second λ/4 board 240 are different from each other, it can be considered as Nzql and Nzq2. Each of them is equal to the average value Nzq', and the optimum phase difference value R3 of the third birefringent layer 235 is calculated from the Nzq, so that the results of Table 2 and FIG. 8 can be directly referred to. As can be seen from Table 2 and Fig. 9, the following equation (A) is sufficiently approximated if the relationship between the average value Nzq and the optimum Rlc+R3 is in the range of 1.0 SNZqS2.9. The solid line shown in Fig. 9 represents the following formula (A).

Rlc+R3 = 169 nmxNzq-81 nm (A) 163390.doc -42· 201243449 自於較廣之視角範圍内實現對比度較高之液晶顯示之觀 點出發,作為第三種雙折射層235之厚度方向相位差R3與 上述VA模式液晶單元230之黑顯示時(未對液晶層施加電壓 時)之厚度方向相位差Rlc之和的R3+Rlc,最佳為表2及圖9 中所示之最佳值,但只要為不會大幅降低斜視角下之對比 度之範圍,則亦可稍微偏離於最佳值。自充分發揮本發明 之液晶顯示裝置之作用效果之觀點出發,較佳為最佳值 士5 0 nm之範圍。 [表2]Rlc+R3 = 169 nmxNzq-81 nm (A) 163390.doc -42· 201243449 As the thickness direction phase of the third birefringent layer 235 from the viewpoint of realizing a liquid crystal display having a high contrast in a wide viewing angle range R3+Rlc which is the sum of the thickness direction phase difference Rlc of the difference R3 and the VA mode liquid crystal cell 230 in the black display (when no voltage is applied to the liquid crystal layer) is optimally the optimum values shown in Table 2 and FIG. However, as long as the range of contrast under oblique viewing angle is not greatly reduced, it may be slightly deviated from the optimum value. From the viewpoint of sufficiently exerting the effect of the liquid crystal display device of the present invention, it is preferably in the range of an optimum value of 50 nm. [Table 2]

Nzq Rlc+R3(nm) 1.00 88 1.10 105 1.20 122 1.30 140 1.40 157 1.50 174 1.60 191 1.70 208 2.00 259 2.30 309 2.40 325 2.50 342 2.90 406 ❹ 此處,對如下情形之理由進行說明:即便於第一 λ/4板 220之Νζ係數Nzql與第二λ/4板240之Νζ係數Nzq2互不相同 之情形時,亦可藉由使用假定Nzql及Nzq2之各者與其平 均值Nzq相等而算出之第三種雙折射層235之最佳相位差值 163390.doc -43- 201243449 R3 ’來阻斷自方位〇。、極6〇。之斜向觀察時之漏光,從而 獲得優異之視野角特性。 圖 8-1 係圖示如上述般 Nzqi=Nzq2=2.0、R3=-61 nm、 Rlc=320 nm之形態。並且,圖8-2係圖示Nzql=3.0、 Nzq2 —1.0、R3=-61 nm、Rlc=320 nm之形態’圖 8_3係圖示 Nzql=2.5、Nzq2=1.5、R3=-61 nm、Rlc=320 nm之形態, 圖 8-4係圖示 Nzql = l.〇、Nzq2=3.0、R3=-61 nm、Rlc=320 nm之形態’圖 8-5係圖示Nzql = 1.5、Nzq2=2.5、R3=-61 nm、Rlc=320 nm之形態,且其等之Nzql與Nzq2之平均值 Nzq均與圖8-1之情形一樣,為2.0。如觀察圖而明確般, 於任一形態中,點P4均與第二偏光元件250之消光位E — 致’該等液晶顯示裝置於自方位〇。、極60。之斜向觀察之 情形時,亦與自正面方向觀察時一樣,可阻斷來自背光之 光。 如圖8-6概括所示’第一χ/4板220之遲相轴Q1係以Nzql 為2.0之情形為基準,若Nzql小於2.0則更靠近S2轴側,若 大於2_0則更靠近“軸側。並且,第二人/4板240之遲相軸 Q2係以Nzq2為2_0之情形為基準,若Nzq2大於2.0則更靠近 S1軸側’若小於2.0則更靠近S2轴側。因此,以 Nzql=Nzq2=Nzq=2.0之設計為基準,於以ANzq程度較小地 設定Nzql之情形時,以ANzq程度較大地設定Nzq2,藉此 可使P0—P1轉換之旋轉中心與P3—P4轉換之旋轉中心於相 同方向適當位移,從而保持ZP1 POP3大致相同,結果為, 與Nzql=NZq2=Nzq=2.0之情形一樣,可使點P4與偏光元件 163390.doc -44- 201243449 250之消光位e 一致。與該情形相反’以Nzq1=Nzq2= Nzq=2.0之設計為基準’於以ANzq程度較大地設定Nzql之 情形時,以ANzq程度較小地設定Nzq2,藉此可使PO—>P1 轉換之旋轉中心與P3 ->P4轉換之旋轉中心於相同方向適當 位移,結果為,與Nzq1=Nzq2=Nzq=2.0之情形一樣,可使 點P4與偏光元件250之消光位E一致。 藉由以上方法,即便於第一λ/4板220之Nz係數Nzql與第 二λ/4板240之Nz係數Nzq2互不相同之情形時,亦可藉由使 用假定Nzql及Nzq2之各者與其平均值Nzq相等而算出之第 三種雙折射層235之最佳相位差值R3 ’來阻斷自方位〇°、 極60。之斜向觀察時之漏光’從而獲得優異之視野角特 性。再者,若將Nz係數Nzql與Nz係數Nzq2分別獨立處 理,則相位差條件之設計將變得極為複雜。因此,可使用 平均值Nzq算出最佳相位差值R3之意義極大。 (第二步驟之補償原理) 首先考慮於將第一偏光元件210之吸收轴方位90°及第二 偏光元件250之吸收轴方位〇°二等分之方位(方位45°)中’ 自傾斜60。之方向觀察完成第一步驟之圖6之液晶顯示裝置 200之情形。如上所述’於第一步驟中’液晶顯示裝置2〇〇 係根據第一 λ/4板220之Nz係數Nzql、第二λ/4板240之Nz係 數Nzq2而選擇液晶單元230之厚度方向相位差Rlc及第三種 雙折射層235之厚度方向相位差R3之最佳值,從而進行方 位0。中之光學補償。於該條件下,若利用龐加萊球之S1_ S2平面圖示自背光出射之光每當穿透各偏光元件210、 163390.doc -45- 201243449 250、各雙折射層220、240、235及液晶單元230時之偏光 狀態,則如圖10所示。 首先’剛穿透第一偏光元件21〇之後之偏光狀態於龐加 萊球上位於點P0 ’其與由點E表示之第二偏光元件250可吸 收之偏光狀態即第二偏光元件250之消光位(吸收轴方位)不 一致。於方位45。之斜向,由於第一及第二偏光元件21〇、 250並不相互正交,故啟示需進行光學補償。繼而,藉由 穿透第一 λ/4板220,位於點P〇之偏光狀態以由龐加萊球上 之點Q1表示之第一 λ/4板220之遲相轴為中心而受到特定角 度之旋轉轉換,從而到達至點ρι。此時之旋轉方向係自點 Q1朝原點Ο觀察為逆時針方向。 繼而,藉由穿透第三種雙折射層235,而以由龐加萊球 上之點R3表示之第三種雙折射層235之遲相軸為中心受到 特定角度之旋轉轉換’從而到達至點p2。此時之旋轉方向Nzq Rlc+R3(nm) 1.00 88 1.10 105 1.20 122 1.30 140 1.40 157 1.50 174 1.60 191 1.70 208 2.00 259 2.30 309 2.40 325 2.50 342 2.90 406 此处 Here, the reasons for the following cases are explained: even in the first λ When the Νζ coefficient Nzql of the /4 plate 220 and the Νζ coefficient Nzq2 of the second λ/4 plate 240 are different from each other, the third type calculated by using each of the assumptions Nzql and Nzq2 is equal to the average value Nzq. The optimal phase difference of the birefringent layer 235 is 163390.doc -43- 201243449 R3 'to block the self-alignment. Very extreme. Leakage when viewed obliquely, resulting in excellent viewing angle characteristics. Fig. 8-1 shows a form in which Nzqi = Nzq2 = 2.0, R3 = -61 nm, and Rlc = 320 nm as described above. 8-2 is a diagram showing the form of Nzql=3.0, Nzq2-1.0, R3=-61 nm, and Rlc=320 nm. FIG. 8_3 shows that Nzql=2.5, Nzq2=1.5, R3=-61 nm, Rlc. =320 nm, Figure 8-4 shows the form of Nzql = l.〇, Nzq2=3.0, R3=-61 nm, and Rlc=320 nm. Figure 8-5 shows Nzql = 1.5 and Nzq2=2.5 The form of R3=-61 nm and Rlc=320 nm, and the average value Nzq of Nzql and Nzq2 thereof is 2.0 as in the case of FIG. 8-1. As is clear from the observation, in either form, the point P4 is coincident with the extinction position E of the second polarizing element 250 in the self-aligning direction of the liquid crystal display device. Extreme 60. In the case of oblique observation, the light from the backlight can be blocked as in the case of viewing from the front. As shown in Fig. 8-6, the slow phase axis Q1 of the first χ/4 plate 220 is based on the case where Nzql is 2.0. If Nzql is less than 2.0, it is closer to the S2 axis side. If it is greater than 2_0, it is closer to the axis. Further, the retardation axis Q2 of the second person/four plate 240 is based on the case where Nzq2 is 2_0, and if Nzq2 is larger than 2.0, it is closer to the S1 axis side. If it is less than 2.0, it is closer to the S2 axis side. The design of Nzql=Nzq2=Nzq=2.0 is used as a reference. When Nzql is set to a small extent with ANzq, Nzq2 is set to a large extent with ANzq, thereby converting the rotation center of P0-P1 conversion and P3-P4. The center of rotation is appropriately displaced in the same direction, thereby keeping ZP1 POP3 substantially the same. As a result, as in the case of Nzql=NZq2=Nzq=2.0, the point P4 can be made coincident with the extinction position e of the polarizing element 163390.doc-44-201243449250. Contrary to this case, when Nzql is set to a large extent with the degree of ANzq with the design of Nzq1=Nzq2=Nzq=2.0, Nzq2 is set to a small extent with ANzq, whereby PO_>P1 can be converted. The center of rotation and the center of rotation of the P3 -> P4 transformation are appropriately displaced in the same direction, and as a result, Similarly to the case where Nzq1=Nzq2=Nzq=2.0, the point P4 can be made coincident with the extinction position E of the polarizing element 250. By the above method, even the Nz coefficient Nzql of the first λ/4 plate 220 and the second λ/4 plate When the Nz coefficients Nzq2 of 240 are different from each other, it is also possible to block by using the optimum phase difference R3' of the third birefringent layer 235 calculated by assuming that each of Nzql and Nzq2 is equal to the average value Nzq. The self-direction 〇°, the pole 60. The light leakage when viewed obliquely' thus obtains excellent viewing angle characteristics. Furthermore, if the Nz coefficient Nzql and the Nz coefficient Nzq2 are separately processed, the design of the phase difference condition becomes extremely Therefore, the meaning of the optimum phase difference value R3 can be calculated using the average value Nzq. (Compensation principle of the second step) First, the absorption axis orientation of the first polarizing element 210 is 90° and the second polarizing element 250 is considered. Absorbing axis orientation 〇° halved position (azimuth 45°) in the direction of self-tilting 60. The liquid crystal display device 200 of Fig. 6 which completed the first step is observed. As described above, 'in the first step' The display device 2 is based on the first λ/4 plate 220 The Nz coefficient Nzq1 and the Nz coefficient Nzq2 of the second λ/4 plate 240 select the optimum value of the thickness direction phase difference Rlc of the liquid crystal cell 230 and the thickness direction phase difference R3 of the third birefringent layer 235, thereby performing the orientation 0. In this condition, if the S1_S2 plane of the Poincare sphere is used, the light emitted from the backlight penetrates each of the polarizing elements 210, 163390.doc-45-201243449 250, and each birefringent layer 220. The polarization state of 240, 235, and liquid crystal cell 230 is as shown in FIG. First, the polarization state immediately after the first polarizing element 21 is penetrated on the Poincare sphere at the point P0', and the polarization state of the second polarizing element 250, which is represented by the point E, is the extinction state of the second polarizing element 250. The position (absorption axis orientation) is inconsistent. At azimuth 45. In the oblique direction, since the first and second polarizing elements 21, 250 are not orthogonal to each other, it is suggested that optical compensation is required. Then, by penetrating the first λ/4 plate 220, the polarization state at the point P 受到 is subjected to a specific angle centering on the slow phase axis of the first λ/4 plate 220 indicated by the point Q1 on the Poincare sphere. The rotation is converted to reach the point ρι. At this time, the direction of rotation is observed counterclockwise from the point Q1 toward the origin. Then, by penetrating the third birefringent layer 235, the rotation is converted by a specific angle centering on the slow phase axis of the third birefringent layer 235 indicated by the point R3 on the Poincare sphere. Point p2. Direction of rotation

。繼而,藉由穿透VA. Then, by penetrating VA

步驟之液晶顯示裝置200於方位45。 163390.doc 係自點R3朝原點〇觀察為逆時針方向 模式液晶單元230,而以由龐加萊球. 之光。即, 中未進行光 -46- 201243449 學補償。 再者,於圖10中’點P1〜P4之位置取決於第一λ/4板22〇 之Νζ係數Nzql、第二λ/4板240之ΝΖ係數Nzq2、第三種雙 折射層235之厚度方向相位差R3及液晶單元23〇之厚度方向 相位差 Rlc,於圖 10 圖示有 Nzql=Nzq=2.0、R3 = -61 nm、The liquid crystal display device 200 of the step is at an orientation 45. 163390.doc is observed from the point R3 toward the origin 为 as a counterclockwise mode liquid crystal cell 230, and by the light of the Poincare sphere. That is, the light is not compensated for -46- 201243449. Furthermore, in FIG. 10, the positions of the points P1 to P4 depend on the first coefficient λ/4 plate 22 Νζ coefficient Nzq1, the second λ/4 plate 240 ΝΖ coefficient Nzq2, and the thickness of the third birefringent layer 235. The direction phase difference R3 and the thickness direction phase difference Rlc of the liquid crystal cell 23〇 are shown in FIG. 10 as Nzql=Nzq=2.0, R3=-61 nm,

Rlc=320 nm之形態作為一例。為易於理解偏光狀態之轉 換,各點之位置係大致表示,嚴格而言有時亦並不準確。 又,為明瞭地表示圖,對於點P1〜P4之轉換未圖示有表示 軌跡之箭頭。 繼而,考慮如圖11所示般依序積層有第一偏光元件(吸 收軸方位90。)310、第二種雙折射層(進相軸方位0。)315、The form of Rlc=320 nm is taken as an example. In order to easily understand the transition of the polarization state, the position of each point is roughly indicated, and sometimes it is not accurate. Further, in order to clearly show the map, arrows indicating the trajectory are not shown for the transition of the points P1 to P4. Then, it is considered that a first polarizing element (absorption axis orientation 90) 310 and a second birefringence layer (phase axis azimuth 0) 315 are sequentially stacked as shown in FIG.

第一 λ/4板(遲相軸方位135。)32〇、第三種雙折射層335、VA 模式液晶單元330、第二λ/4板(遲相轴方位45。)34〇及第二 偏光元件(吸收軸方位〇。)350之、包含第二種雙折射層之圓 偏光VA模式液晶顯示裝置3〇〇。第二種雙折射層係為了進 〇 行方位45。中之光學補償而追加至圖ό之構成者。再者,圖 11中,第一及第二偏光元件310、350中所描繪之箭頭係表 示其吸收軸之方位,第一及第二人/4板320、340中所描繪 之箭頭係表示其遲相軸之方位,第二種雙折射層315中所 描繪之箭頭係表示其進相軸之方位,VA模式液晶單元 及第三種雙折射層335中所插繪之橢球係表示其折射率橢 球之形狀。 首先,考慮自正面方向觀察圖丨丨之圓偏光^模式液晶 顯’、裝置300時之偏光狀態。若利用魔加萊球之平面 163390.doc -47· 201243449 對圖示自背光(於圖11中未圖示,係位於第—偏光元件31〇 之下方)出射之光每當穿透各偏光元件31〇、35〇、各雙折 射層320、340、335、31 5及液晶單元33〇時之偏光狀態, 則如圖12所示。 首先,剛穿透第一偏光元件310之後之偏光狀態於龐加 萊球上位於點P0,且與由點E表示之第二偏光元件35〇可吸 收之偏光狀態即第二偏光元件350之消光位(吸收轴方位)一 致。繼而’穿透第二種雙折射層315,但位於點抑之偏光 狀態即便以由龐加萊球上之點R2表示之第二種雙折射層 3 15之進相軸為中心受到特定角度之旋轉轉換,偏光狀態 亦不會自點P0發生變化。繼而,藉由穿透第一λ/4板32〇 ’ 位於點Ρ0之偏光狀態以由魔加萊球上之點Q 1表示之第一 λ/4板320之遲相軸為中心而受到特定角度之旋轉轉換,從 而到達至點Ρ1。此時之旋轉方向係自點Q1朝原點〇觀察為 逆時針方向。 繼而’穿透第三種雙折射層335及VA模式液晶單元 330 ’但因第三種雙折射層335及VA模式液晶單元33〇於正 面方向相位差均為零,故偏光狀態無變化。最後,藉由穿 透第二λ/4板340,而以點Q2表示之第二λ/4板340之遲相軸 為中心受到特定角度之旋轉轉換,從而到達至點Ρ2。該點 Ρ2與第二偏光元件350之消光位ε—致。如此,圖u之液晶 顯示裝置300當自正面方向觀察時,與圖2之液晶顯示裝置 100 —樣,可阻斷來自背光之光,從而獲得良好之黑顯 >|ν ° 163390.doc -48- 201243449 繼而考慮於方位45。中自傾斜60。之方向觀察圖11之圓偏 光VA模式液晶顯示裝置3〇〇時之偏光狀態。於該條件下, 若利用魔加萊球之S1-S2平面圖示自背光出射之光每當穿 透各偏光元件310、350、各雙折射層320、340、335、315 及液晶單元330時之偏光狀態,則如圖13所示。 . 首先,剛穿透第一偏光元件310之後之偏光狀態於龐加 萊球上位於點P0,且與由點£表示之第二偏光元件35〇可吸 0 收之偏光狀態即第二偏光元件350之消光位(吸收軸方位)不 一致。繼而,藉由穿透第二種雙折射層315,而以由龐加 萊球上之點R2表示之第二種雙折射層315之進相軸為中心 觉到特定角度之旋轉轉換,從而到達至點p丨。此時之旋轉 方向係自點R2朝原點〇觀察為順時針方向。再者,點以雖 存在於龐加萊球之南半球上(S3<0),但為了易於觀察圖, 於圖13中係以與其他點(存在於北半球或赤道上之點)相同 之方式圖示。繼而,藉由穿透第一λ/4板32〇,位於點以之 〇 偏光狀態以由龐加萊球上之點Q1表示之第一λ/4板320之遲 相軸為中心而受到特定角度之旋轉轉換,從而到達至點 Ρ2。此時之旋轉方向係自點Q1朝原點〇觀察為逆時針方 向。 繼而’藉由穿透第三種雙折射層335,而以由龐加萊球 上之點R3表示之第三種雙折射層335之遲相軸為中心受到 特定角度之旋轉轉換,從而到達至點p3。此時之旋轉方向 係自點R3朝原點Ο觀察為逆時針方向。繼而,藉由穿透^ 模式液晶單元330,而以由龐加萊球上之點[表示之液晶單 163390.doc -49- 201243449 凡330之遲相轴為中心受到特定角度之旋轉轉換,從而到 達至點P4。此時之旋轉方向係自點[朝原點〇觀察為逆時 針方向。最後,藉由穿透第二人/4板34〇,而以由點q2表示 之第一 λ/4板340之遲相軸為中心受到特定角度之旋轉轉 換從而到達至點Ρ5。該點!>5與第二偏光元件35〇之消光 位Ε—致。如此,圖丨丨之液晶顯示裝置3〇〇當自方位45。、 極60。之斜向觀察時,亦與自正面方向觀察時一樣,可阻 斷來自背光之光。 最後考慮於方位0。中自傾斜6〇。之方向觀察圖u之圓偏 光VA模式液晶顯示裝置3〇〇時之偏光狀態。於該條件下, 若利用魔加萊球之S1_S2平面圖示自背光出射之光每當穿 透各偏光元件310、350、各雙折射層32〇、34〇、335、315 及液晶單元330時之偏光狀態,則如圖14所示。 —首先’剛穿透第-偏光元件31〇之後之偏光狀態於魔加 萊球上位於點P0,且與由點£表示之第二偏光元件35〇可吸 收之偏光狀態即第二偏光元件35〇之消光位(吸收轴方位)一 致繼而,穿透第一種雙折射層315,但位於點p〇之偏光 狀態即便以由龐加萊球上之點尺2表示之第二種雙折射層 315之進相軸為中心受到特定角度之旋轉轉換,偏光狀態 亦不會自點⑼發生變化。繼而,藉由穿透第-1/4板32〇, 位於點P0之偏光狀態以由龐加萊球上之點Q1表示之第一 λ/4板320之遲相軸為中心而受到特定角度之旋轉轉換,從 而到達至點P1。此時之旋轉方向係、自點Ql朝原點〇觀察為 逆時針方向。 163390.doc -50- 201243449 繼而’藉由穿透第三種雙折射層335,而以由龐加萊球 上之點R3表示之第三種雙折射層335之遲相軸為中心受到 特定角度之旋轉轉換,從而到達至點?2。此時之旋轉方向 係自點R3朝原點〇觀察為逆時針方向。繼而,藉由穿透va 模式液晶單元330,而以由魔加萊球上之點L表示之液晶單 元330之遲相轴為中心受到特定角度之旋轉轉換,從而到 達至點P3。此時之旋轉方向係自點L朝原點〇觀察為逆時 針方向。最後,藉由穿透第:λ/4板34〇,巾以由點Q2表示 之第二λ/4板340之遲相軸為中心受到特定角度之旋轉轉 換,從而到達至點Ρ4。該點Ρ4與第二偏光元件35〇之消光 位Ε—致。如此,圖丨丨之液晶顯示裝置3〇〇即便自方位〇。、 極60。之斜向觀察,亦與自正面方向觀察時一樣,可阻斷 來自背光之光’從而獲得良好之黑顯示。 如此,完成第二步驟之圖11之液晶顯示裝置3〇〇於正面 方向、方位0。之斜向及方位45。之斜向,均可阻斷來自背 光之光’從而獲得良好之黑顯示。 再者,於圖12、圖13及圖14中,點Ρ1〜Ρ5之位置取決於 第一 λ/4板320之Νζ係數Nzql、第二λ/4板34〇之Νζ係數 Nzq2、第三種雙折射層335之厚度方向相位差r3、液晶單 元330之厚度方向相位差ric、以及第二種雙折射層SB之 Νζ係數Nz2及面内相位差R2,於圖12、圖π及圖14中圖示 有 Nzql=NZq2=2.0、R3=-61 nm、R1C=320 nm、Nz2=-〇.3〇 、R2=l 18 nm之形態作為一例。為易於理解偏光狀態之轉 換’各點之位置係大致表示’嚴格而言有時亦並不準確。 163390.doc -51- 201243449 又,為明瞭地表示圖,對於點P1-P5之轉換未圖示有表示 軌跡之箭頭。 並且,本發明者經研究,結果明確:對應第一 λ/4板320 之Νζ係數Nzql、第二λ/4板340之Νζ係數Nzq2,存在第二 種雙折射層315之最佳Nz係數Nz2及相位差值R2。 此處,將藉由電腦模擬而調查第一 λ/4板320之Νζ係數 Nzql、第二λΜ板34〇之Νζ係數Nzq2、以及第二種雙折射層 315之Νζ係數Nz2及面内相位差R2之最佳值之關係所得之 結果示於表3、圖15及圖16中。又,為簡單起見,此處係 使第一 λ/4板320之Νζ係數Nzql與第二λ/4板340之Νζ係數 Nzq2相同(Nzql=Nzq2=Nzq)而進行電腦模擬,且本發明者 發現,即便於第一 λ/4板320之Νζ係數Nzql與第二λ/4板340 之Νζ係數Nzq2互不相同之情形時,亦可藉由考慮Nzql及 Nzq2之各者與其平均值Nzq相等,而根據該Nzq算出第二 種雙折射層315之Νζ係數Nz2及面内相位差R2之最佳值, 從而可直接參照表3、圖15及圖16之結果。由於其原因與 使用圖7-6等而說明之情形相同,故省略其說明。如根據 表3、圖15及圖16而明確般,雖平均值Nzq與最佳Nz2、R2 之關係通常並不簡單,但若為1.0SNzqS2.9之範圍,則下 式(B)及(C)充分地與其近似。圖15及圖16中所示之實線係 表不兩式。The first λ/4 plate (late phase axis orientation 135.) 32 〇, the third birefringent layer 335, the VA mode liquid crystal cell 330, the second λ/4 plate (late phase axis orientation 45) 34 〇 and the second A circularly polarized VA mode liquid crystal display device 3 comprising a second birefringent layer of a polarizing element (absorption axis orientation 〇). The second birefringent layer is intended to be oriented 45. The optical compensation in the middle is added to the figure. Furthermore, in FIG. 11, the arrows depicted in the first and second polarizing elements 310, 350 indicate the orientation of the absorption axis, and the arrows depicted in the first and second persons/4 plates 320, 340 indicate The orientation of the slow phase axis, the arrow depicted in the second birefringent layer 315 indicates the orientation of the phase axis, and the ellipsoids interposed in the VA mode liquid crystal cell and the third birefringent layer 335 indicate the refraction. Rate the shape of the ellipsoid. First, consider the polarization state of the circular polarization mode liquid crystal display and the device 300 when the image is viewed from the front. If the plane of the magical Calais ball is used, 163390.doc -47·201243449, the light emitted from the backlight (not shown in the figure below, which is located below the first-polarizing element 31〇) is used to penetrate the polarizing elements. The polarization state of 31 〇, 35 〇, each of the birefringent layers 320, 340, 335, and 31 5 and the liquid crystal cell 33 is as shown in FIG. First, the polarized state immediately after penetrating the first polarizing element 310 is located at the point P0 on the Poincare sphere, and the polarized state absorbable by the second polarizing element 35 indicated by the point E is the extinction of the second polarizing element 350. The position (absorption axis orientation) is the same. Then, 'the second birefringent layer 315 is penetrated, but the polarized state at the point is subjected to a specific angle centering on the phase axis of the second birefringent layer 3 15 indicated by the point R2 on the Poincare sphere. With the rotation conversion, the polarization state does not change from the point P0. Then, by the penetrating state of the first λ/4 plate 32 〇 ' at the point Ρ 0 to be centered on the slow phase axis of the first λ/4 plate 320 indicated by the point Q 1 on the magical ball, The rotation of the angle is converted to reach point Ρ1. At this time, the direction of rotation is observed counterclockwise from the point Q1 toward the origin. Then, the third birefringent layer 335 and the VA mode liquid crystal cell 330' are penetrated. However, since the third birefringent layer 335 and the VA mode liquid crystal cell 33 have a phase difference of zero in the front direction, the polarization state does not change. Finally, by penetrating the second λ/4 plate 340, the rotation of the specific angle is centered on the slow phase axis of the second λ/4 plate 340 indicated by the point Q2, thereby reaching the point Ρ2. This point Ρ2 is equal to the extinction position ε of the second polarizing element 350. Thus, when viewed from the front direction, the liquid crystal display device 300 of FIG. 9 can block the light from the backlight as in the liquid crystal display device 100 of FIG. 2, thereby obtaining a good black display>|ν ° 163390.doc - 48- 201243449 Then consider the orientation 45. The middle is tilted 60. The direction of polarization of the circularly polarized VA mode liquid crystal display device of Fig. 11 is observed in the direction of Fig. 11. Under this condition, if the light emitted from the backlight is used to penetrate the polarizing elements 310, 350, the respective birefringent layers 320, 340, 335, 315 and the liquid crystal unit 330 by using the S1-S2 plane of the Magic Calais ball. The polarized state is as shown in FIG. First, the polarized state immediately after penetrating the first polarizing element 310 is located at the point P0 on the Poincare sphere, and the second polarizing element 35, which is indicated by the point £, can absorb the polarized state, that is, the second polarizing element. The extinction position of the 350 (absorption axis orientation) is inconsistent. Then, by penetrating the second birefringent layer 315, a rotation of a specific angle is sensed centering on the phase axis of the second birefringent layer 315 indicated by the point R2 on the Poincare sphere, thereby reaching To point p丨. At this time, the direction of rotation is observed from the point R2 toward the origin 为 in the clockwise direction. Furthermore, although it exists in the southern hemisphere of the Poincaré ball (S3<0), in order to facilitate the observation, it is shown in Fig. 13 in the same manner as other points (the points existing in the northern hemisphere or the equator). Show. Then, by penetrating the first λ/4 plate 32 〇, the polarization state at the point is specifically centered on the slow phase axis of the first λ/4 plate 320 indicated by the point Q1 on the Poincare sphere. The rotation of the angle is converted to reach point Ρ2. At this time, the direction of rotation is observed from the point Q1 toward the origin 为 in the counterclockwise direction. Then, by penetrating the third birefringent layer 335, the rotation is converted by a specific angle centering on the slow phase axis of the third birefringent layer 335 indicated by the point R3 on the Poincare sphere, thereby reaching Point p3. The direction of rotation at this time is observed counterclockwise from the point R3 toward the origin Ο. Then, by penetrating the liquid crystal cell 330, the rotation is converted by a specific angle from the point on the Poincare sphere [represented by the liquid crystal single 163390.doc -49-201243449 Arrived to point P4. At this time, the direction of rotation is from the point [observed as the counterclockwise direction toward the origin point 。. Finally, by penetrating the second person/4 plate 34A, the rotation of the specific angle is reached centering on the slow phase axis of the first λ/4 plate 340 indicated by the point q2 to reach the point Ρ5. That point! >5 and the extinction position of the second polarizing element 35〇. Thus, the liquid crystal display device 3 of the figure is from the orientation 45. , pole 60. When viewed obliquely, it also blocks light from the backlight as it is viewed from the front. Finally consider the orientation 0. The middle is tilted 6 inches. In the direction of the circular VA mode liquid crystal display device of Fig. u, the state of polarization is observed. Under this condition, if the light emitted from the backlight is used to penetrate the polarizing elements 310, 350, the respective birefringent layers 32, 34, 335, 315 and the liquid crystal unit 330 by using the S1_S2 plane of the Magic Calais ball. The polarized state is as shown in FIG. - firstly 'the polarization state immediately after the penetration of the first-polarizing element 31〇 is at the point P0 on the magical ball, and the second polarizing element 35, which is the second polarizing element 35, which is absorbed by the second polarizing element 35, is the second polarizing element 35. The extinction position (absorption axis orientation) of the crucible is uniform, and then penetrates the first birefringent layer 315, but the polarized state at the point p〇 is even the second birefringent layer represented by the ruler 2 on the Poincare sphere. The phase advance axis of 315 is rotated at a specific angle from the center, and the polarized state does not change from point (9). Then, by penetrating the 1/4th plate 32, the polarization state at the point P0 is subjected to a specific angle centering on the slow phase axis of the first λ/4 plate 320 indicated by the point Q1 on the Poincare sphere. The rotation is converted to reach point P1. At this time, the direction of rotation is observed in the counterclockwise direction from the point Q1 toward the origin. 163390.doc -50- 201243449 then 'by a third angle centered on the retardation axis of the third birefringent layer 335 represented by the point R3 on the Poincare sphere by penetrating the third birefringent layer 335 Rotate the conversion to reach the point? 2. The direction of rotation at this time is observed counterclockwise from the point R3 toward the origin 〇. Then, by penetrating the va mode liquid crystal cell 330, the rotation is converted by a specific angle centering on the slow phase axis of the liquid crystal cell 330 indicated by the point L on the magical ball, thereby reaching the point P3. At this time, the direction of rotation is observed from the point L toward the origin 〇 in the counterclockwise direction. Finally, by penetrating the λ/4 plate 34, the towel is rotated by a specific angle around the slow phase axis of the second λ/4 plate 340 indicated by the point Q2, thereby reaching the point Ρ4. This point Ρ4 is equal to the extinction position of the second polarizing element 35〇. In this way, the liquid crystal display device 3 of the figure is even if it is self-aligned. , pole 60. Observed obliquely, as in the case of viewing from the front, the light from the backlight can be blocked to obtain a good black display. Thus, the liquid crystal display device 3 of Fig. 11 which has completed the second step is in the front direction and the orientation 0. Oblique and azimuth 45. In the oblique direction, the light from the backlight can be blocked to obtain a good black display. Furthermore, in FIGS. 12, 13, and 14, the positions of the points Ρ1 to Ρ5 depend on the Νζ coefficient Nzql of the first λ/4 plate 320, the Νζ coefficient Nzq2 of the second λ/4 plate 34〇, and the third type. The thickness direction phase difference r3 of the birefringent layer 335, the thickness direction phase difference ric of the liquid crystal cell 330, and the second coefficient Bz of the second birefringent layer SB and the in-plane phase difference R2 are shown in FIG. 12, FIG. The form of Nzql=NZq2=2.0, R3=-61 nm, R1C=320 nm, Nz2=-〇.3〇, and R2=l 18 nm is shown as an example. In order to easily understand the transition of the polarization state, the position of each point is roughly indicated. 'Strictly speaking, it is sometimes inaccurate. 163390.doc -51- 201243449 In addition, for the sake of clarity, the arrows indicating the trajectories are not shown for the transition of the points P1 - P5. Moreover, the inventors have studied and found that the optimum Nz coefficient Nz2 of the second birefringent layer 315 exists corresponding to the Νζ coefficient Nzq1 of the first λ/4 plate 320 and the Νζ coefficient Nzq2 of the second λ/4 plate 340. And the phase difference R2. Here, the Νζ coefficient Nzql of the first λ/4 plate 320, the Νζ coefficient Nzq2 of the second λ plate 34〇, and the Νζ coefficient Nz2 of the second birefringent layer 315 and the in-plane phase difference are investigated by computer simulation. The results obtained by the relationship of the optimum values of R2 are shown in Table 3, Figure 15, and Figure 16. Moreover, for the sake of simplicity, the computer simulation is performed by making the Νζ coefficient Nzq1 of the first λ/4 plate 320 the same as the Νζ coefficient Nzq2 of the second λ/4 plate 340 (Nzql=Nzq2=Nzq), and the present invention It is found that even when the first coefficient λ/4 plate 320 has a Νζ coefficient Nzq1 and the second λ/4 plate 340 has a different coefficient Nzq2, it can be considered by considering each of Nzql and Nzq2 and its average value Nzq. Equally, the optimum value of the second coefficient Bz of the second birefringent layer 315 and the in-plane phase difference R2 is calculated based on the Nzq, so that the results of Table 3, FIG. 15 and FIG. 16 can be directly referred to. Since the reason is the same as that described using Figs. 7-6 and the like, the description thereof will be omitted. As is clear from Table 3, FIG. 15 and FIG. 16, the relationship between the average value Nzq and the optimum Nz2 and R2 is usually not simple, but if it is in the range of 1.0 SNzqS2.9, the following formulas (B) and (C) ) fully approximate it. The solid lines shown in Figs. 15 and 16 are different.

Nz2=-0.63 xNzq2+0.56xNzq+0.40 (B) R2=43 nm><Nzq2-226 nm><Nzq+370 nm (C) 自於較廣之視角範圍内實現對比度較高之液晶顯示之觀 163390.doc -52- 201243449 點出發’上述第二種雙折射層315之Nz2及R2最佳為表3、 圖15及圖16中所示之最佳值,但只要為不會較大地降低斜 視角中之對比度之範圍,則亦可稍微偏離於最佳值。自充 分發揮本發明之液晶顯示裝置之作用效果之觀點出發,Nz2=-0.63 xNzq2+0.56xNzq+0.40 (B) R2=43 nm><Nzq2-226 nm><Nzq+370 nm (C) A liquid crystal display having a higher contrast ratio from a wider viewing angle range View 163390.doc -52- 201243449 Point departure 'Nz2 and R2 of the above second birefringent layer 315 are optimally the best values shown in Table 3, Figure 15 and Figure 16, but as long as they are not greatly reduced The range of contrast in the oblique viewing angle may also deviate slightly from the optimum value. From the viewpoint of sufficiently exerting the effects of the liquid crystal display device of the present invention,

Nz2較佳為最佳值士〇8〇之範圍。R2較佳為最佳值±5〇 之 範圍。再者,若將Nz係數NzqmNz係數Nzq2分別獨立處 理’則相位差條件之設計將變得極為複雜。因此,可使用 0 平均值Nzq算出第二種雙折射層315之最佳Nz2、R2之意義 極大。 又,根據表3及圖I5 ’於Nzq<1.40之範圍内,Nz2之最佳 值為0<Νζ2<1之範圍。表現該範圍内之Nz係數之雙折射層 係滿足nx>nz>ny之關係之雙轴性相位差膜,因此不適合第 一種雙折射層,而為較第二種雙折射層更難以製造且高成 本之膜。再者’就可解決該點之方面而言’較佳為滿足 l,40$Nzq。本發明者針對Nzq<14〇之範圍,對更低成本且 〇 簡便地於較廣之視角範圍内實現對比度較高之液晶顯示之 方法進行了研究。其結果發現’於Nzq<l .40之範圍内,若 使用Nz2=〇、R2=138 nm之第二種雙折射層替代滿足表3、 ’圖15及圖16中所示之最佳nz2、R2之雙折射層,則可充分 發揮相同之作用效果。例如,於NZq=i ·〇〇、1. j 〇、1 2〇、 1.30之各例中,若嘗試固定為Nz2=〇而計算最佳R2,則無論 Nzq為何值,最佳R2均為138ηπ^自充分發揮本發明之液晶 顯示裝置之作用效果之觀點出發,較佳為滿足·〇8〇$νζ2^) (最佳值-0.80以上且〇(=最佳值)以下之範圍),且滿足88 163390.doc -53- 201243449 nm$R2$l 88 nm(最佳值 13 8 nm±50 nm之範圍)。 [表3]Nz2 is preferably in the range of the best value of 〇8〇. R2 is preferably in the range of the optimum value ± 5 。. Furthermore, if the Nz coefficient NzqmNz coefficient Nzq2 is independently processed ', the design of the phase difference condition becomes extremely complicated. Therefore, the optimum Nz2 and R2 of the second birefringent layer 315 can be calculated using the 0 average value Nzq to be extremely significant. Further, according to Table 3 and Figure I5', in the range of Nzq < 1.40, the optimum value of Nz2 is 0 < Νζ 2 < The birefringent layer exhibiting the Nz coefficient in the range satisfies the biaxial retardation film of the relationship of nx > nz > ny, and thus is not suitable for the first birefringent layer, and is more difficult to manufacture than the second birefringent layer. High cost film. Furthermore, it is better to satisfy l, 40$Nzq in terms of solving this point. The present inventors have studied the method of realizing a liquid crystal display having a relatively high contrast ratio in a wider range of viewing angles at a lower cost and in a range of Nzq <14. As a result, it was found that in the range of Nzq <l.40, if the second birefringent layer of Nz2=〇 and R2=138 nm is used, the best nz2 satisfying Table 3, 'Fig. 15 and FIG. 16 is satisfied. The birefringent layer of R2 can fully exert the same effect. For example, in each of NZq=i ·〇〇, 1. j 〇, 1 2〇, 1.30, if the optimal R2 is calculated by fixing Nz2=〇, the optimal R2 is 138ηπ regardless of the value of Nzq. From the viewpoint of sufficiently exerting the effect of the liquid crystal display device of the present invention, it is preferable to satisfy 〇8〇$νζ2^) (optimum value -0.80 or more and 〇(=optimal value) or less), and Meet 88 163390.doc -53- 201243449 nm$R2$l 88 nm (optimal value 13 8 nm ± 50 nm range). [table 3]

Nzq Nz2 R2(nm) 1.00 0.35 186 1.10 0.25 169 1.20 0.15 154 1.30 0.10 148 1.40 -0.05 134 1.50 -0.15 127 1.60 -0.30 118 1.70 -0.45 111 2.00 -1.00 94 2.30 -1.65 81 2.40 -1.90 78 2.50 -2.15 75 2.90 -3.20 66 本發明者亦針對上述(2)之形態,亦即將第二種雙折射 層配置於液晶單元之兩側之形態以相同方式進行了研究, 結果發現,對應第一及第二λ/4板之Nz係數之平均值Nzq, 存在第一及第二個第二種雙折射層之最佳Nz係數Nz2及相 位差值R2。 此處,將藉由電腦模擬而調查第一 λ/4板之Nz係數 Nzql、第二λΜ板之Nz係數Nzq2、以及第一及第二個第二 種雙折射層之Nz係數Nz2及面内相位差R2之最佳值之關係 所得之結果示於表4、圖17及圖18。又,為簡單起見,此 處係使第一λ/4板之Nz係數Nzql與第二λ/4板之Nz係數Nzq2 相同(Nzql=Nzq2=Nzq)而進行電腦模擬,且非本發明者發 163390.doc •54· 201243449Nzq Nz2 R2(nm) 1.00 0.35 186 1.10 0.25 169 1.20 0.15 154 1.30 0.10 148 1.40 -0.05 134 1.50 -0.15 127 1.60 -0.30 118 1.70 -0.45 111 2.00 -1.00 94 2.30 -1.65 81 2.40 -1.90 78 2.50 -2.15 75 2.90 -3.20 66 The present inventors have also studied the form of the above (2), that is, the configuration in which the second birefringent layer is disposed on both sides of the liquid crystal cell, and found that the first and second λ are corresponding. The average value Nzq of the Nz coefficients of the /4 plate has the optimum Nz coefficient Nz2 and the phase difference R2 of the first and second second birefringent layers. Here, the Nz coefficient Nzql of the first λ/4 plate, the Nz coefficient Nzq2 of the second λ plate, and the Nz coefficient Nz2 of the first and second second birefringent layers and the in-plane are investigated by computer simulation. The results obtained by the relationship between the optimum values of the phase differences R2 are shown in Table 4, Figure 17, and Figure 18. Moreover, for the sake of simplicity, the Nz coefficient Nzql of the first λ/4 plate is the same as the Nz coefficient Nzq2 of the second λ/4 plate (Nzql=Nzq2=Nzq), and the computer simulation is performed, and the inventor is not invented. 163390.doc •54· 201243449

Ο 現,即便於第一λ/4板之Νζ係數Nzql與第二λ/4板之Νζ係數 Nzq2互不相同之情形時,亦可藉由考慮Nzql及Nzq2之各 者與其平均值Nzq相等,而根據該Nzq算出第一及第二個 第二種雙折射層之Nz係數Nz2及面内相位差R2之最佳值, 從而可直接參照表4、圖17及圖18之結果。由於其原因與 使用圖7-6等而說明之情形相同,故省略其說明。如根據 表4、圖17及圖18而明確般,雖平均值Nzq與最佳Nz2、R2 之關係通常並不簡單,但若為丨.OSNzqUJ之範圍,則下 式(D)及(E)充分地與其近似。圖17及圖18中所示之實線係 表不兩式。,, even if the first coefficient λ/4 plate N coefficient Nzql and the second λ/4 plate Νζ coefficient Nzq2 are different from each other, it can be considered that each of Nzql and Nzq2 is equal to its average value Nzq, Based on the Nzq, the optimum values of the Nz coefficient Nz2 and the in-plane phase difference R2 of the first and second second birefringent layers are calculated, and the results of Table 4, FIG. 17, and FIG. 18 can be directly referred to. Since the reason is the same as that described using Figs. 7-6 and the like, the description thereof will be omitted. As is clear from Table 4, FIG. 17 and FIG. 18, although the relationship between the average value Nzq and the optimum Nz2 and R2 is usually not simple, if it is the range of 丨.OSNzqUJ, the following formulas (D) and (E) Fully similar to it. The solid lines shown in Figs. 17 and 18 are different.

Nz2=-0.87xNzq2+2.15xNzq R2=25 nmxNzq2-159 nm><Nzq+311 nm (E) 自於較廣之視角範圍内實現對比度較高之液晶顯示之觀 點出發,第一及第二個第二種雙折射層之各者之Nz2&R2 最佳為表4、圖17及圖18中所示之最佳值,但只要為不會 較大地降低斜視角中之對比度之範圍,則亦可㈣偏離於 最佳值。自充分發揮本發明之液晶顯示裝置之作用效果之 觀點出發,Nz2較佳為最佳值边8()之範圍。R2較佳為最佳 值⑽nm之範圍。料,第—個第二種雙折射層之似與 第二個第二種雙折射層之Nz2,只要兩者之差未達,則 可彼此另行獨立地滿足上述範圍。又,第—個第二種雙折 射層之R2與第二個第二種雙折射層之R2,只要兩者之差 未達20 nm,則可彼此另行獨立地滿足上述範圍。又,若 將Nz係數Nzql與Nz係數Nzq2分別獨立處理,則相位差= 163390.doc -55- 201243449 件之設計將變得極為複雜。因此,可使用平均值Nzq算出 第一及第二個第二種雙折射層之最佳Nz2、R2之意義極 大。 又,根據表4及圖17,於Nzq<2.00之範圍内,Nz2之最佳 值為0<Νζ2<1之範圍。表現該範圍内之Nz係數之雙折射層 係滿足nx>nz>ny之關係之雙軸性相位差膜,因此不適合第 二種雙折射層,而為較第二種雙折射層更難以製造且高成 本之膜。再者,就可解決該點之方面而言,較佳為滿足 2.00SNzq。本發明者針對Nzq<2.00之範圍,對更低成本且 簡便地於較廣之視角範圍内實現對比度較高之液晶顯示之 方法進行了研究。其結果發現,於Nzq<2.00之情形時,若 使用Nz2=0之第二種雙折射層來替代滿足表4、圖17及圖18 中所示之最佳Nz2、R2之雙折射層,則於不使用經控制為 nx>nz>ny(0<Nz<l)之雙軸性相位差膜之範圍内,可有效改 善視野角特性。將對應於各個Nzq之最佳R2記作R2'而示於 表4及圖19。自充分發揮本發明之液晶顯示裝置之作用效 果之觀點出發,較佳為滿足-0.80^Νζ2^0(最佳值-0.80以上 且0(=最佳值)以下之範圍),且滿足5 nmSR2S133 nm(最佳 值士40 nm之範圍)。 163390.doc -56- 201243449 [表4]Nz2=-0.87xNzq2+2.15xNzq R2=25 nmxNzq2-159 nm><Nzq+311 nm (E) From the viewpoint of achieving a higher contrast liquid crystal display in a wider viewing angle range, the first and second The Nz2&R2 of each of the second birefringent layers is optimally the optimum values shown in Table 4, FIG. 17 and FIG. 18, but as long as the range of contrast in the oblique viewing angle is not greatly reduced, Can (4) deviate from the optimal value. From the viewpoint of sufficiently exerting the effect of the liquid crystal display device of the present invention, Nz2 is preferably in the range of the optimum value side 8 (). R2 is preferably in the range of the optimum value (10) nm. The N 2 2 of the second second birefringent layer and the second second birefringent layer may satisfy the above range independently of each other as long as the difference between the two is not reached. Further, R2 of the first second birefringent layer and R2 of the second second birefringent layer may satisfy the above range independently of each other as long as the difference between the two is less than 20 nm. Further, if the Nz coefficient Nzql and the Nz coefficient Nzq2 are independently processed, the design of the phase difference = 163390.doc -55 - 201243449 will become extremely complicated. Therefore, the optimum Nz2 and R2 of the first and second second birefringent layers can be calculated using the average value Nzq to be extremely significant. Further, according to Table 4 and Fig. 17, in the range of Nzq < 2.00, the optimum value of Nz2 is 0 < Νζ 2 < The birefringent layer exhibiting the Nz coefficient in the range satisfies the biaxial retardation film of the relationship of nx > nz > ny, and thus is not suitable for the second birefringent layer, and is more difficult to manufacture than the second birefringent layer. High cost film. Furthermore, in terms of solving this point, it is preferable to satisfy 2.00 SNzq. The present inventors have studied the method of realizing a liquid crystal display having a relatively high contrast ratio in a wide range of viewing angles at a lower cost and in a simple manner for the range of Nzq <2.00. As a result, it was found that, in the case of Nzq < 2.00, if the second birefringent layer of Nz2 = 0 is used instead of the birefringent layer satisfying the optimum Nz2, R2 shown in Table 4, Fig. 17, and Fig. 18, The viewing angle characteristics can be effectively improved without using a biaxial retardation film controlled to nx > nz > ny (0< Nz < l). The best R2 corresponding to each Nzq is denoted as R2' and is shown in Table 4 and Fig. 19. From the viewpoint of sufficiently exerting the effect of the liquid crystal display device of the present invention, it is preferable to satisfy -0.80^Νζ2^0 (the optimum value is -0.80 or more and 0 (=optimal value) or less), and the 5 nm SR2S133 is satisfied. Nm (the best value is in the range of 40 nm). 163390.doc -56- 201243449 [Table 4]

Nzq Nz2 R2(nm) R2'(nm) 1.0 0.65 180 45 1.1 0.60 162 53 1.2 0.60 158 60 1.3 0.55 147 65 1.4 0.50 138 71 1.5 0.40 123 75 1.6 0.35 118 80 1.7 0.25 108 84 2.0 -0.05 89 93 2.3 -0.40 77 2.4 -0.55 73 2.5 -0.70 69 2.6 -0.80 68 2.7 -1.00 64 2.8 -1.40 59 2.9 -2.45 49Nzq Nz2 R2(nm) R2'(nm) 1.0 0.65 180 45 1.1 0.60 162 53 1.2 0.60 158 60 1.3 0.55 147 65 1.4 0.50 138 71 1.5 0.40 123 75 1.6 0.35 118 80 1.7 0.25 108 84 2.0 -0.05 89 93 2.3 - 0.40 77 2.4 -0.55 73 2.5 -0.70 69 2.6 -0.80 68 2.7 -1.00 64 2.8 -1.40 59 2.9 -2.45 49

Ο 將本發明之液晶顯示裝置及本發明之液晶顯 衣置之較 佳形態之代表性者示於以下。 (附記1) 一種液晶顯示裝置,其於將滿足nx>ny^nZ之關係之警 折 射層定義為第一種雙折射層時,依序包括:第—偏光元 件;第一 λ/4板,其面内相位差係調整為χ/4 ;液晶單元, 其具有相互對向之一對基板及夾入於該一對基板間之液晶 層;第二λΜ板’其具有不同於該第一 λΜ板之Νζ係數,且 面内相位差係調整為λ/4 ;及第二偏光元件;且上述第一 163390.doc -57- 201243449 及第二λ/4板為第一種雙折射層’於將第二偏光元件之吸 收軸之方位定義為〇。時,該第二人/4板之面内遲相轴呈大致 45。之角度’該第一λ/4板之面内遲相軸呈大致135。之角 度,該第一偏光元件之吸收軸呈大致9〇。之角度,該液晶 顯示裝置係藉由使液晶層中之液晶分子自相對於基板面大 致垂直配向之狀態變化為傾斜配向之狀態而使顯示亮度變 化’且該液晶層包括液晶分子於12 5。〜32 5。方位傾斜配向 之區域、液晶分子於1〇2.5。〜122.5。方位傾斜配向之區域、 液晶分子於192.5。〜212.5。方位傾斜配向之區域、及液晶分 子於282.5。〜302.5。方位傾斜配向之區域。 (附記2) 如附記1之液晶顯示裝置,其中上述第一λ/4板及上述第 二λ/4板之其中一者2Νζ係數為2以上,且上述第一λ/4板 及上述第二λ/4板之另一者之Νζ係數為1以上且未達2。 (附記3) 如附記1或2之液晶顯示裝置,其中上述第一及第二入/4 板中Νζ係數較大者係配置於上述液晶單元之背面侧。 (附記4) 如附記1至3中任一項之液晶顯示裝置,其中上述第一 λ/4板之Νζ係數大於上述第二λ/4板之Νζ係數,且於上述第 二偏光元件之觀察面側進而包括表面處理層。 C附記5) 如附記1至4中任一項之液晶顯示裝置,其中於將滿足 ηΧ<ηγηΖ之關係之雙折射層定義為第二種雙折射層時於 163390.doc -58- 201243449 上述第-λ/4板與第-偏光元件之間進而包括帛二種雙折 射層’且該第二種雙折射層之面内進相轴相對㈣第—偏 光元件之吸收轴大致正交。 (附記6) 如附記5之液晶顯示裝置,其中上述第二種雙折射層係 配置於上述液晶單元之背面侧。 (附記7) 如附記6之液晶顯示裝置,其中上述第一 λ/4板之Νζ係數 大於上述第二W4板之Νζ係數,且上述第二種雙折射層及 上述第一 λ/4板係配置於上述液晶單元之背面側。 (附記8) 如附記5至7中任一項之液晶顯示裝置,其中於將滿足 nx与ny2nz之關係之雙折射層定義為第三種雙折射層時, 於上述第一 λ/4板與上述液晶單元之間以及上述液晶單元 與上述第二λ/4板之間之至少一者,進而包括至少一層第 三種雙折射層。 (附記9) 如附記8之液晶顯示裝置’其中上述至少一層第三種雙 折射層係配置於上述液晶單元之背面側。 (附記10) 如附記8之液晶顯示裝置’其中上述第一 λ/4板之Νζ係數 大於上述第二λ/4板之Νζ係數,且上述第二種雙折射層、 上述第一 λ/4板及上述至少一層第三種雙折射層係配置於 上述液晶單元之背面側。 163390.doc -59- 201243449 (附記11) 如附記8至10中任一項之液晶顯示裝置,其中於將上述 第一及第二λ/4板之Nz係數之平均值定義為Nzq,將上述液 晶單元之黑顯示時之厚度方向相位差定義為Rlc,且將上 述至少一層第三種雙折射層之厚度方向相位差之總和定義 為R3時,滿足下式(1)〜(3), 1.0<Nzq<2.9 (1) (169 nmxNzq-81 nm)-50 nm<Rlc+R3 (2)代表 Representative examples of the liquid crystal display device of the present invention and the liquid crystal display of the present invention are shown below. (Supplementary Note 1) A liquid crystal display device which, when defining a police refractive layer satisfying the relationship of nx > ny^nZ, as the first birefringent layer, includes: a first polarizing element; a first λ/4 plate, The in-plane phase difference is adjusted to χ/4; the liquid crystal cell has a pair of substrates facing each other and a liquid crystal layer sandwiched between the pair of substrates; and the second λ-plate has a difference from the first λΜ The Νζ coefficient of the plate, and the in-plane phase difference is adjusted to λ/4; and the second polarizing element; and the first 163390.doc -57-201243449 and the second λ/4 plate are the first birefringent layer The orientation of the absorption axis of the second polarizing element is defined as 〇. At the time, the in-plane slow axis of the second person/4 plate is approximately 45. The angle 'the in-plane slow axis of the first λ/4 plate is approximately 135. The angle of the absorption of the first polarizing element is approximately 9 Å. In view of the above, the liquid crystal display device changes the display luminance by changing the state in which the liquid crystal molecules in the liquid crystal layer are substantially vertically aligned from the substrate surface to the state of the oblique alignment, and the liquid crystal layer includes the liquid crystal molecules at 125. ~32 5. The area of the azimuth oblique alignment and the liquid crystal molecules are at 1 〇2.5. ~122.5. The region of the azimuth oblique alignment, the liquid crystal molecules at 192.5. ~212.5. The area of the azimuth tilt alignment and the liquid crystal molecules are at 282.5. ~302.5. The area of the azimuth tilt alignment. (Supplementary Note 2) The liquid crystal display device of the first aspect, wherein one of the first λ/4 plate and the second λ/4 plate has a 2Νζ coefficient of 2 or more, and the first λ/4 plate and the second The other one of the λ/4 plates has a Νζ coefficient of 1 or more and less than 2. (Supplementary Note 3) The liquid crystal display device according to the first or second aspect, wherein the first and second/fourth plates have a larger twist factor in the back side of the liquid crystal cell. (Supplementary note 4) The liquid crystal display device according to any one of the preceding claims, wherein the first λ/4 plate has a Νζ coefficient greater than a Νζ coefficient of the second λ/4 plate, and is observed by the second polarizing element The face side in turn includes a surface treatment layer. The liquid crystal display device according to any one of the preceding claims, wherein the birefringent layer satisfying the relationship of ηΧ <ηγηΖ is defined as the second birefringent layer at 163390.doc -58- 201243449 The λ/4 plate and the first polarizing element further include two birefringent layers ′ and the in-plane axis of the second birefringent layer is substantially orthogonal to the absorption axis of the (four) first polarizing element. (Supplementary Note 6) The liquid crystal display device of the fifth aspect, wherein the second birefringent layer is disposed on a back side of the liquid crystal cell. (Supplementary note 7) The liquid crystal display device of the sixth aspect, wherein the first λ/4 plate has a Νζ coefficient greater than a Νζ coefficient of the second W4 plate, and the second birefringent layer and the first λ/4 plate It is disposed on the back side of the liquid crystal cell. (Attachment 8) The liquid crystal display device according to any one of the items 5 to 7, wherein the birefringent layer satisfying the relationship of nx and ny2nz is defined as the third birefringent layer, and the first λ/4 plate is At least one of the liquid crystal cells and between the liquid crystal cell and the second λ/4 plate further includes at least one layer of a third birefringent layer. (Supplementary Note 9) The liquid crystal display device of the eighth aspect, wherein the at least one layer of the third birefringent layer is disposed on the back side of the liquid crystal cell. (Supplementary note 10) The liquid crystal display device of the eighth aspect, wherein the first λ/4 plate has a Νζ coefficient greater than the λ coefficient of the second λ/4 plate, and the second birefringent layer, the first λ/4 The plate and the at least one layer of the third birefringent layer are disposed on the back side of the liquid crystal cell. The liquid crystal display device according to any one of claims 8 to 10, wherein the average value of the Nz coefficients of the first and second λ/4 plates is defined as Nzq, The thickness direction phase difference at the time of black display of the liquid crystal cell is defined as Rlc, and when the sum of the thickness direction phase differences of the at least one third type of birefringent layer is defined as R3, the following formulas (1) to (3), 1.0 are satisfied. <Nzq<2.9 (1) (169 nmxNzq-81 nm)-50 nm<Rlc+R3 (2)

Rlc+R3<(169 nmxNzq-81 nm)+50 nm (3)。 (附記12) 如附記11之液晶顯示裝置,其中於將上述第二種雙折射 層之Nz係數定義為Nz2,且將面内相位差定義為R2時,滿 足下式(4)〜(7), (-0.63 xNzq2+0.56 xNzq+0.40)-0.80<Nz2 (4)Rlc+R3<(169 nmxNzq-81 nm)+50 nm (3). (Supplementary Note 12) The liquid crystal display device according to the ninth aspect, wherein the Nz coefficient of the second birefringent layer is defined as Nz2, and the in-plane phase difference is defined as R2, the following formulas (4) to (7) are satisfied. , (-0.63 xNzq2+0.56 xNzq+0.40)-0.80<Nz2 (4)

Nz2<(-0.63xNzq2 + 0.56xNzq+0.40)+0.80 (5) (43 nmxNzq2-226 nmxNzq+370 nm)-50 nm<R2 (6) R2<(43 nmxNzq2-226 nmxNzq+370 nm)+50 nm (7)。 (附記13) 如附記12之液晶顯示裝置,其中滿足1.40$Nzq。 (附記14) 如附記8至11中任一項之液晶顯示裝置,其中於將上述 第一及第二λ/4板之Nz係數之平均值定義為Nzq,將上述第 二種雙折射層之Nz係數定義為Nz2,且將面内相位差定義 為R2時,滿足Nzq<1.40,滿足-0.80£Νζ2<0,且滿足88 163390.doc -60- 201243449 nm$R2:Sl 88 nm。 (附記15) 如附記5至7中任一項之液晶顯示裝置,其中於將滿足 nx与ny>nz之關係之雙折射層定義為第三種雙折射層時, 於上述第一 λ/4板與上述液晶單元之間以及上述液晶單元 與上述第二λ/4板之間不包括第三種雙折射層。 (附記16) 如附記15之液晶顯示裝置,其中於將上述第一及第二 λ/4板之Νζ係數之平均值定義為Nzq,且將上述液晶單元之 黑顯示時之厚度方向相位差定義為Rlc時,滿足下式(1)、 ⑻及(9), 1.0<Nzq<2.9 (1) (169 nmxNzq-81 nm)-50 nm<Rlc (8)Nz2<(-0.63xNzq2 + 0.56xNzq+0.40)+0.80 (5) (43 nmxNzq2-226 nmxNzq+370 nm)-50 nm<R2 (6) R2<(43 nmxNzq2-226 nmxNzq+370 nm)+50 nm (7). (Supplementary Note 13) The liquid crystal display device of Attachment 12, in which 1.40 $ Nzq is satisfied. (Supplementary note 14) The liquid crystal display device according to any one of the preceding claims, wherein the average of the Nz coefficients of the first and second λ/4 plates is defined as Nzq, and the second birefringent layer is The Nz coefficient is defined as Nz2, and when the in-plane phase difference is defined as R2, Nzq<1.40 is satisfied, -0.80£Νζ2<0 is satisfied, and 88 163390.doc -60-201243449 nm$R2:Sl 88 nm is satisfied. (Supplementary Note 15) The liquid crystal display device according to any one of the items 5 to 7, wherein the birefringent layer satisfying the relationship of nx and ny > nz is defined as the third birefringent layer, and the first λ/4 is A third birefringent layer is not included between the plate and the liquid crystal cell and between the liquid crystal cell and the second λ/4 plate. (Supplementary note 16) The liquid crystal display device of claim 15, wherein the average value of the Νζ coefficients of the first and second λ/4 plates is defined as Nzq, and the thickness direction phase difference when the black cells of the liquid crystal cells are displayed is defined When Rlc is satisfied, the following formulas (1), (8), and (9), 1.0 < Nzq < 2.9 (1) (169 nm x Nzq - 81 nm) - 50 nm < Rlc (8)

Rlc<(169 nmxNzq-81 nm)+50 nm (9)。 (附記17) 如附記16之液晶顯示裝置,其中於將上述第二種雙折射 層之Νζ係數定義為Nz2,且將面内相位差定義為R2時,滿 足下式(4)〜(7), (-0.63xNzq2 + 0.5 6xNzq+0.40)-0.80<Nz2 (4)Rlc<(169 nmxNzq-81 nm)+50 nm (9). (Supplementary Note 17) The liquid crystal display device according to supplementary note 16, wherein the enthalpy coefficient of the second birefringent layer is defined as Nz2, and the in-plane phase difference is defined as R2, the following formulas (4) to (7) are satisfied. , (-0.63xNzq2 + 0.5 6xNzq+0.40)-0.80<Nz2 (4)

Nz2<(-0.63 xNzq2+0.56><Nzq+0.40)+0.80 (5) (43 nmxNzq2-226 nmxNzq+370 nm)-50 nm<R2 (6) R2<(43 nmxNzq2-226 nmxNzq+370 nm)+50 nm (7) 0 (附記18) 如附記17之液晶顯示裝置,其中滿足1.40^Nzq。 163390.doc -61 - 201243449 (附記19) 如附記15或16之液晶顯示裝置’其中於將上述第—及第 二λ/4板之Nz係數之平均值定義為Nzq,將上述第二種雙折 射層之Nz係數定義為Nz2,且將面内相位差定義為尺2時, 滿足 Nzq<1.40 ’ 滿足-〇.8〇sNz2^),且滿足 88 nmSR2$188 nm ° (附記20) 如附記8至14中任一項之液晶顯示裝置,其中於將上述 第一及第二λ/4板之Nz係數之平均值定義為Nzq時,滿足 Nzq<2.00。 (附記21) 如附記15至19中任一項之液晶顯示裝置,其中於將上述 第一及第二λ/4板之Nz係數之平均值定義為Nzq時,滿足 2.0〇SNzq。 (附記22) 如附s己1至4中任一項之液晶顯示裝置,其中於將滿足 ηχ<ηγηζ之關係之雙折射層定義為第二種雙折射層時,進 而包括上述第一 λ/4板與第一偏光元件之間之第一個第二 種雙折射層、以及上述第二λ/4板與第二偏光元件之間之 第二個第二種雙折射層,且該第一個第二種雙折射層之面 内進相軸相對於該第一偏光元件之吸收軸大致正交,該第 二個第二種雙折射層之面内進相軸相對於該第二偏光元件 之吸收軸大致正交。 (附記23) 163390.doc •62- 201243449 如附記22之液晶顯示裝置,其中上述第二個第二種雙折 射層之Nz係數及面内相位差分別與上述第一個第二種雙折 射層之Nz係數及面内相位差大致相同。 (附記24) . 如附記22或23之液晶顯示裝置,其中於將滿足 nx与n^nz之關係之雙折射層定義為第三種雙折射層時, 於上述第一λ/4板與上述液晶單元之間以及上述液晶單元 與上述第二λ/4板之間之至少一者,進而包括至少一層第 三種雙折射層。 (附記25) 如附記24之液晶顯示裝置,其中上述至少一層第三種雙 折射層係配置於上述液晶單元之背面側。 (附記26) 如附記25之液晶顯示裝置,其中上述第一 λ/4板之^^係 數大於上述第二λ/4板之Nz係數,且上述第一λ/4板及上述 Q 至少一層第三種雙折射層係配置於上述液晶單元之背面 侧。 (附記27) 如附記24至26中任一項之液晶顯示裝置,其中於將上述 第一及第二λ/4板之Nz係數之平均值定義為Nzq,將上述液 晶單兀之黑顯示時之厚度方向相位差定義為Rlc ’且將上 述至少一層第三種雙折射層之厚度方向相位差之總和定義 為R3時,滿足下式 1.0<Nzq<2.9 ⑴ 163390.doc -63 - 201243449 (169 nmxNzq-81 nm)-50 nm<Rlc+R3 (2)Nz2<(-0.63 xNzq2+0.56><Nzq+0.40)+0.80 (5) (43 nmxNzq2-226 nmxNzq+370 nm)-50 nm<R2 (6) R2<(43 nmxNzq2-226 nmxNzq+370 nm ) +50 nm (7) 0 (Supplementary Note 18) The liquid crystal display device of Attachment 17, which satisfies 1.40^Nzq. 163390.doc -61 - 201243449 (Supplementary Note 19) The liquid crystal display device of Annex 15 or 16 wherein the average of the Nz coefficients of the above-mentioned first and second λ/4 plates is defined as Nzq, the second type of double The Nz coefficient of the refractive layer is defined as Nz2, and when the in-plane phase difference is defined as the ruler 2, Nzq<1.40 ' satisfies -〇.8〇sNz2^) and satisfies 88 nmSR2$188 nm ° (attachment 20). The liquid crystal display device according to any one of the preceding claims, wherein, when the average value of the Nz coefficients of the first and second λ/4 plates is defined as Nzq, Nzq < 2.00 is satisfied. The liquid crystal display device according to any one of the preceding claims, wherein the average value of the Nz coefficients of the first and second λ/4 plates is defined as Nzq, and 2.0 〇 SNzq is satisfied. (Supplementary Note 22) The liquid crystal display device of any one of 1 to 4, wherein when the birefringent layer satisfying the relationship of ηχ <ηγηζ is defined as the second birefringent layer, the first λ/ a first second birefringent layer between the fourth plate and the first polarizing element, and a second second birefringent layer between the second λ/4 plate and the second polarizing element, and the first The in-plane axis of the second birefringent layer is substantially orthogonal with respect to the absorption axis of the first polarizing element, and the in-plane axis of the second second birefringent layer is opposite to the second polarizing element The absorption axes are substantially orthogonal. (Supplementary note 23) 163390.doc. The method of claim 22, wherein the Nz coefficient and the in-plane phase difference of the second second birefringent layer are respectively different from the first second birefringent layer. The Nz coefficient and the in-plane phase difference are substantially the same. (Supplementary Note 24). The liquid crystal display device according to supplementary note 22 or 23, wherein the birefringent layer satisfying the relationship between nx and n^nz is defined as the third birefringent layer, the first λ/4 plate and the above At least one of the liquid crystal cells and between the liquid crystal cell and the second λ/4 plate further includes at least one layer of a third birefringent layer. (Supplementary Note 25) The liquid crystal display device according to supplementary note 24, wherein the at least one layer of the third birefringent layer is disposed on a back side of the liquid crystal cell. (Supplementary note 26) The liquid crystal display device of claim 25, wherein a coefficient of the first λ/4 plate is greater than an Nz coefficient of the second λ/4 plate, and the first λ/4 plate and the Q layer are at least one layer Three types of birefringent layers are disposed on the back side of the liquid crystal cell. (Supplementary Note 27) The liquid crystal display device according to any one of Claims 24 to 26, wherein the average value of the Nz coefficients of the first and second λ/4 plates is defined as Nzq, and the black color of the liquid crystal cell is displayed When the thickness direction phase difference is defined as Rlc ' and the sum of the thickness direction phase differences of the at least one layer of the third birefringent layer is defined as R3, the following formula 1.0 < Nzq < 2.9 (1) 163390.doc -63 - 201243449 ( 169 nmxNzq-81 nm)-50 nm<Rlc+R3 (2)

Rlc+R3<(169 nm><Nzq-81 nm)+50 nm (3)。 (附記28) 如附記27之液晶顯示裝置,其中上述第二個第二種雙折 射層之Nz係數及面内相位差分別與上述第一個第二種雙折 射層之Nz係數及面内相位差大致相同,且於將上述第一及 第二個第二種雙折射層之Nz係數定義為Nz2,且將面内相 位差定義為R2時,滿足下式(10)〜(13), (-0.87xNzq2+2.15 xNzq-0.76)-0.80<Nz2 (10)Rlc+R3<(169 nm><Nzq-81 nm) + 50 nm (3). (Supplementary note 28) The liquid crystal display device of claim 27, wherein the Nz coefficient and the in-plane phase difference of the second second birefringent layer and the Nz coefficient and the in-plane phase of the first second birefringent layer, respectively The difference is substantially the same, and when the Nz coefficient of the first and second second birefringent layers is defined as Nz2, and the in-plane phase difference is defined as R2, the following formulas (10) to (13) are satisfied, ( -0.87xNzq2+2.15 xNzq-0.76)-0.80<Nz2 (10)

Nz2<(-0.87xNzq2+2.15xNzq-0.76)+0.80 (11) (25 nmxNzq2-159 nmxNzq+311 nm)-40 nm<R2 (12) R2<(25 nm><Nzq2-159 nm><Nzq+311 nm)+40 nm (13)。 (附記29) 如附記24至27中任一項之液晶顯示裝置,其中上述第二 個第二種雙折射層之Nz係數及面内相位差分別與上述第一 個第二種雙折射層之Nz係數及面内相位差大致相同,且於將 上述第一及第二λ/4板之Nz係數之平均值定義為Nzq,將上述 第一及第二個第二種雙折射層之Nz係數定義為Nz2,且將面 内相位差定義為R2時,滿足Nzq<2.00,滿足-0.80$Nz2S0, 且滿足 5 nm$R2;^ 13 3 nm 〇 (附記30) 如附記22或23之液晶顯示裝置,其中於將滿足 nx与ny2nz之關係之雙折射層定義為第三種雙折射層時, 於上述第一 λ/4板與上述液晶單元之間以及上述液晶單元 163390.doc -64- 201243449 與上述第二λ/4板之間不包括第三種雙折射層。 (附記31) 如附記30之液晶顯示裝置,其中於將上述第一及第二 λ/4板之Νζ係數之平均值定義為Nzq,且將上述液晶單元之 黑顯示時之厚度方向相位差定義為Rlc時,滿足下式(1)、 ' ⑻及(9), 1.0<Nzq<2.9 (1) (169 nmxNzq-81 nm)-50 nm<Rlc (8) ζ)Nz2 <(-0.87xNzq2+2.15xNzq-0.76)+0.80 (11) (25 nmxNzq2-159 nmxNzq+311 nm)-40 nm<R2 (12) R2<(25 nm><Nzq2-159 nm><<> Nzq + 311 nm) + 40 nm (13). (Supplementary Note 29) The liquid crystal display device of any one of the second to fourth aspect, wherein the Nz coefficient and the in-plane phase difference of the second second birefringent layer are respectively different from the first second birefringent layer The Nz coefficient and the in-plane phase difference are substantially the same, and the Nz coefficient of the first and second second birefringent layers is defined by defining an average value of the Nz coefficients of the first and second λ/4 plates as Nzq Defined as Nz2, and when the in-plane phase difference is defined as R2, it satisfies Nzq<2.00, satisfies -0.80$Nz2S0, and satisfies 5 nm$R2; ^ 13 3 nm 〇 (Note 30) Liquid crystal display as shown in Note 22 or 23 a device in which a birefringent layer satisfying a relationship of nx and ny2nz is defined as a third birefringent layer, between the first λ/4 plate and the liquid crystal cell, and the liquid crystal cell 163390.doc -64-201243449 A third birefringent layer is not included between the second λ/4 plate described above. (Supplementary note 31) The liquid crystal display device of claim 30, wherein the average value of the Νζ coefficients of the first and second λ/4 plates is defined as Nzq, and the thickness direction phase difference when the black cells of the liquid crystal cells are displayed is defined When Rlc is satisfied, the following formulas (1), '(8), and (9), 1.0<Nzq<2.9 (1) (169 nmxNzq-81 nm)-50 nm<Rlc (8) ζ) are satisfied.

Rlc<(169 nmxNzq-81 nm)+50 nm (9) ° (附記32) 如附記3 1之液晶顯示裝置,其中上述第二個第二種雙折 射層之Νζ係數及面内相位差分別與上述第一個第二種雙折 射層之Νζ係數及面内相位差大致相同,且於將上述第一及 第二個第二種雙折射層之Νζ係數定義為Νζ2,且將面内相 位差定義為R2時,滿足下式(10)〜(13), ❹ (-0.87xNzq2+2.15 xNzq-0.76)-0.80<Nz2 (10)Rlc<(169 nmxNzq-81 nm)+50 nm (9) ° (Supplementary Note 32) The liquid crystal display device according to supplementary note 3, wherein the second coefficient of the second birefringent layer and the in-plane phase difference are respectively The first second birefringent layer has substantially the same Νζ coefficient and the in-plane phase difference, and defines the Νζ coefficient of the first and second second birefringent layers as Νζ2, and the in-plane phase difference When defined as R2, the following formulas (10) to (13) are satisfied, ❹ (-0.87xNzq2+2.15 xNzq-0.76)-0.80<Nz2 (10)

Nz2<(-0.87xNzq2+2.15xNzq-0.76)+0.80 (11) (25 nm><Nzq2-159 nmxNzq+311 nm)-40 nm<R2 (12) . R2<(25 nmxNzq2-159 nmxNzq+311 nm)+40 nm (13)。 (附記33) 如附記30或31之液晶顯示裝置,其中上述第二個第二種 雙折射層之Νζ係數及面内相位差分別與上述第一個第二種 雙折射層之Νζ係數及面内相位差大致相同,且於將上述第 一及第二λ/4板之Νζ係數之平均值定義為Nzq,將上述第一 163390.doc -65- 201243449 及第二個第二種雙折射層之Nz係數定義為Nz2,且將面内 相位差定義為R2時’滿足Nzq<2.〇〇,滿足_〇.8〇$Nz2s〇, 且滿足 5 nm$R2$133 nm。 (附記34) 如附記24至29中任一項之液晶顯示裝置,其中於將上述 第一及第二λ/4板之Nz係數之平均值定義為Nzq時,滿足 Nzq<2.〇〇 〇 (附記35)Nz2<(-0.87xNzq2+2.15xNzq-0.76)+0.80 (11) (25 nm><Nzq2-159 nmxNzq+311 nm)-40 nm<R2 (12) . R2<(25 nmxNzq2-159 nmxNzq+311 Nm) +40 nm (13). (Supplementary note 33) The liquid crystal display device according to supplementary note 30 or 31, wherein a Νζ coefficient and an in-plane phase difference of the second second birefringent layer are respectively different from a first coefficient and a surface of the first second birefringent layer The internal phase differences are substantially the same, and the average value of the first and second λ/4 plates is defined as Nzq, and the first 163390.doc -65 - 201243449 and the second second birefringent layer are The Nz coefficient is defined as Nz2, and when the in-plane phase difference is defined as R2, 'satisfying Nzq<2.〇〇, satisfying _〇.8〇$Nz2s〇, and satisfying 5 nm$R2$133 nm. (Supplementary note 34) The liquid crystal display device according to any one of claims 24 to 29, wherein when the average value of the Nz coefficients of the first and second λ/4 plates is defined as Nzq, Nzq<2. (Note 35)

如附•己30至33中任一項之液晶顯示裝置,其中於將上 第—及第二λ/4板之Nz係數之平均值定義為N叫時,滿 2.〇〇SNz;q 〇 各形態亦可於不脫離本發明《主旨之範圍内進行 :、’且合。進而’將兩個以上之較佳形態相互組合而成之 態亦為較佳形態之一。 發明之效果 根據本發明,可提供一種能削減成本、生產性優異、The liquid crystal display device of any one of 30 to 33, wherein the average value of the Nz coefficients of the upper first and second λ/4 plates is defined as N, full 2. 〇〇 SNz; q 〇 Each form may also be carried out without departing from the scope of the invention. Further, a state in which two or more preferred embodiments are combined with each other is also one of preferable embodiments. Advantageous Effects of Invention According to the present invention, it is possible to provide a cost-saving and excellent productivity.

之中間灰階至高灰階中之灰階視野角優異的: 於室外用、式液晶顯示裝置。該液晶顯示裝置可較佳地〗 、卜用標牌顯示器等顯示裝置。 【實施方式】 (雙折射層) 作為本發明中所使用之雙折 並無特別限例如,可使材枓或光學性負 晶性材料… 合物媒而成者、心 料之配向固定而成者、包括 匕枯無機材料之薄板等。十 I63390.doc -66 - 201243449 =雙折=層之形成方法並無特職定,可根據設計條件適 田選擇最八生羞性之方法。於為包括聚合物膜之雙折射層 之情形時,例如可使用溶劑洗注法、溶態擠壓法等。亦可 . 使用藉由共擠壓法而同時形成複數個雙折射層之方法。只 要呈現所需之相位差,則既可無延伸,亦可實施延伸。延 伸方法亦不作特別限定,除使用輥間拉伸延伸法、親間壓 縮延伸法、拉幅機橫單軸延伸法、傾斜延伸法、縱橫雙轴 ◎ 延伸法以外,還可使用於熱收縮性膜之收縮力之作用下進 行延伸之特殊延伸法等。又,於為包括液晶性材料之雙折 射層之情形時,例如可使用於已實施配向處理之基材膜上 塗佈液晶性材料並進行配向固定之方法等。只要呈現所需 之相位差,則亦可為不對基材膜進行特別之配向處理之方 法、或於配向固定後自基材膜剥離而轉印加工至其他膜之 方法等。進而,亦可使用不固定液晶性材料之配向之方 法。又,於為包括非液晶性材料之雙折射層之情形時亦 〇 可使用與包括液晶性材料之雙折射層相同之形成方法。對 於第一及第二λ/4板,由於係為了構成圓偏光板而與偏光 元件呈大致45。之相對角度地積層,故較佳為使用相對於 捲筒膜之縱向而於斜向延伸配向之傾斜延伸法。尤其對於 Νζ係數更小之λ/4板,較佳為採用傾斜延伸法。另一方 面’對於Νζ係數更大之λ/4板,較佳為儘可能採用傾斜延 伸法,於無法採用該法時,可適當選擇上述其他方法。以 下’按雙折射層之種類而進一步具體地說明。 (第一種雙折射層:第一及第二λ/4板) 163390.doc •67· 201243449 作為第—種雙折射層,可適當使用對包含ϋ有雙折射為 正之材料作為成分之膜進行延伸加卫而成者等。作為固有 雙折射為正之材料’例如可舉出聚碳酸酯、聚砜、聚醚 硬聚對苯—曱酸乙二醋、聚乙烯、聚乙烯醇、降冰片 稀、三乙醯纖維素、二乙醯纖維素等。 (第二種雙折射層) 作為第二種雙折射層’可適當使用對包含固有雙折射為 負之材料作為成分之膜進行延伸加卫而成者、於熱收縮性 膜之收縮力之仙下對包含固有雙折射為正之材料作為成 分之膜進行延伸加卫而成者I尤其自製造方法之簡便化 之觀點出# ’較佳為對包含固有雙折射為負之材料作為成 分之膜進行延伸加工而成者。作為固有雙折射為負之材 料’例如可舉出包含丙烯酸系樹脂及苯乙烯系樹脂之樹脂 組合物、聚苯乙烯、聚乙烯萘、聚乙烯聯苯、$乙烯。比 啶、聚甲基丙烯酸曱酯、聚丙烯酸甲酯、Ν取代馬來醯亞 胺共聚物、具有芴骨架之聚碳酸酯、三乙醯纖維素(尤其 是乙醯化度較小者)等。尤其自光學特性、生產性及耐熱 性之觀點出發,較佳為包含丙烯酸系樹脂及苯乙烯系樹脂 之樹脂組合物。關於此種包含樹脂組合物作為成分之膜之 製造方法’例如揭示於專利文獻9中。 (第三種雙折射層) 作為第三種雙折射層,可適當使用對包含固有雙折射為 正之材料作為成分之膜進行縱橫雙軸延伸加工而成者、塗 佈膽固醇狀(對掌性向列)液晶或盤型液晶等液晶性材料而 163390.doc -68- 201243449 成者、塗佈包含聚醯亞胺或聚醯胺等之非液晶性材料而成 者等。 (偏光元件) 作為偏光元件,例如可適當使用使具有二色性之填錯合 物等各向異性材料吸附配向於聚乙烯醇(PVA)膜上而成者 等。 (液晶單元)The gray-scale viewing angle of the middle gray scale to the high gray scale is excellent: for outdoor use type liquid crystal display devices. The liquid crystal display device can preferably be a display device such as a sign display. [Embodiment] (Birefringent layer) The birefringence used in the present invention is not particularly limited. For example, it can be formed by fixing the material or the optical negative crystal material. , including thin sheets of inorganic materials. Ten I63390.doc -66 - 201243449=Double fold=layer formation method There is no special position, and the method of selecting the most sinfulness can be selected according to the design conditions. In the case of including a birefringent layer of a polymer film, for example, a solvent washing method, a solution extrusion method, or the like can be used. A method of simultaneously forming a plurality of birefringent layers by a co-extrusion method can also be used. As long as the desired phase difference is present, there can be no extension or extension. The stretching method is also not particularly limited, and can be used for heat shrinkage in addition to the roll stretching method, the inter-compression stretching method, the tenter transverse uniaxial stretching method, the oblique stretching method, and the vertical and horizontal double-axis ◎ stretching method. A special extension method for stretching under the action of the contraction force of the film. Further, in the case of a birefringent layer comprising a liquid crystal material, for example, a method of applying a liquid crystal material to a substrate film subjected to an alignment treatment and performing alignment fixation may be employed. As long as the desired phase difference is exhibited, it may be a method in which the base film is not subjected to a special alignment treatment, or a method in which the substrate film is peeled off from the base film after the alignment is fixed, and the film is transferred to another film. Further, a method of not fixing the alignment of the liquid crystal material can be used. Further, in the case of including a birefringent layer of a non-liquid crystalline material, the same formation method as that of the birefringent layer including the liquid crystalline material can be used. The first and second λ/4 plates are substantially 45 with respect to the polarizing element in order to constitute the circular polarizing plate. Since the layers are laminated at a relative angle, it is preferable to use an oblique stretching method in which the oblique direction is aligned with respect to the longitudinal direction of the roll film. Especially for the λ/4 plate having a smaller Νζ coefficient, it is preferable to use the oblique stretching method. On the other hand, for the λ/4 plate having a larger Νζ coefficient, it is preferable to use the oblique stretching method as much as possible. When the method cannot be used, the above other methods can be appropriately selected. The following description will be further specifically described by the type of the birefringent layer. (First Birefringent Layer: First and Second λ/4 Plates) 163390.doc •67· 201243449 As the first birefringent layer, a film containing a material having a positive birefringence as a component can be suitably used. Extend and defend the founder and so on. Examples of the material having a positive intrinsic birefringence include, for example, polycarbonate, polysulfone, polyether hard polyparaphenylene phthalate, polyethylene, polyvinyl alcohol, borneol, triacetyl cellulose, and Acetyl cellulose and the like. (Second Birefringent Layer) As the second birefringent layer, a film containing a material having a negative intrinsic birefringence as a component can be suitably used, and the shrinkage force of the heat-shrinkable film can be suitably used. The method of extending and curing a film containing a material having a positive intrinsic birefringence as a component is particularly advantageous from the viewpoint of simplification of the manufacturing method. It is preferable to carry out a film containing a material having a negative intrinsic birefringence as a component. Extended processing. The material which is negative in the intrinsic birefringence is exemplified by a resin composition containing an acrylic resin and a styrene resin, polystyrene, polyethylene naphthalene, polyethylene biphenyl, and ethylene. Bipyridine, polymethyl methacrylate, polymethyl acrylate, hydrazine-substituted maleimide copolymer, polycarbonate with fluorene skeleton, triacetyl cellulose (especially those with less acetylation) . In particular, a resin composition containing an acrylic resin and a styrene resin is preferred from the viewpoint of optical properties, productivity, and heat resistance. A method for producing such a film comprising a resin composition as a component is disclosed, for example, in Patent Document 9. (Third Birefringent Layer) As the third birefringent layer, a film containing a material having a positive birefringence as a component can be suitably used for longitudinal and transverse biaxial stretching, and a cholesteric shape is applied. Liquid crystal material such as liquid crystal or disk type liquid crystal, and 163390. doc-68-201243449, a non-liquid crystal material containing a polyimine or polyamine, or the like. (Polarizing element) As the polarizing element, for example, an anisotropic material such as a mis-filled material having dichroism can be suitably used to be adsorbed on a polyvinyl alcohol (PVA) film. (liquid crystal cell)

液晶單元係將液晶分子之傾斜方向於像素内分割為複數 個之配向分割型VA模式,即所謂MVA模式(Muhi_d〇main VA .多域型va模式),並藉由將液晶層中之液晶分子配向 為垂直於基板面而進行黑顯示。χ,作為液晶單元之驅動 形式,除TFT方式(主動矩陣方式)以外,亦可為單純矩陣 方式(被動矩陣方式)、電漿定址方式等。作為液晶單元之 構成’例何舉出藉由於分別%成有電極之一對基板間夾 持液晶層並向各電極間施加電壓而進行顯示者。 (表面處理層) 作為表面處理層,主要可舉出以下三種+種為用以 防止損傷之硬塗層’第二種為用以賦予防眩性之柯⑽ —’防眩)層,第三種為用以降低表面反射之抗反射 層。作為抗反㈣’可舉出反射率較低之AR(Anti ―⑽,抗反射)層、反射率高於AR層之释ow Region ’低反射)層及反射率極低之蛾眼層等。再者, 表面處理層通常係形成於透明 咬月〈保遵膜(例如TAC膜;)上。 又,亦可積層複數個表面處理層 層作為此種積層體,例如 163390.doc -69 - 201243449 可舉出於LR層上積層有AG層之AGLR(Anti Glare-Low Reflection,防眩-低反射)層、於AR層上積層有AG層之 AGAR(Anti Glare-Anti Reflection,防眩-抗反身ί)層等。觀 察面侧圓偏光板較佳為使用帶表面處理層之保護膜、偏光 元件以及第一及第二λ/4板中Νζ係數較小者而藉由連續捲 繞技術加以製作。 (R、Rth、Νζ係數、nx、ny、ηζ之測定方法) 使用雙旋延遲器(Dual-rotating retarder)方式之偏光計 (Axometrics公司製造,商品名:Axo-scan)進行測定。面 内相位差R係自雙折射層之法線方向而實測。主折射率 nx、ny、ηζ、厚度方向相位差Rth及Νζ係數係藉由從雙折 射層之法線方向、自法線方向傾斜-50°〜50°之各斜向測定 相位差,從而藉由公知之折射率橢球式之曲線擬合而算 出。傾斜方位係與面内遲相軸正交之方位。又,nx、ny、 ηζ、Rxz及Νζ取決於作為曲線擬合之計算條件而提供之平 均折射率=(nx+ny+nz)/3,將各雙折射層之平均折射率統一 為1.5而進行計算。對於實際平均折射率不為1.5之雙折射 層,亦係將平均折射率假定為1.5而換算。 (液晶顯示裝置之對比度-視野角特性之測定方法) 使用視野角測定裝置(艾爾迪姆(ELDIM)公司製造,商品 名:EZContrastl 60)進行測定。光源係使用夏普公司製造 之液晶電視搭載(商品名:LC37-GH1)之背光。測定方位 45。、極60°之斜向中之白顯示及黑顯示之亮度,並將其比 設為CR(45、60)。又,測定方位0。、極60°之斜向中之白 163390.doc -70- 201243449 顯示及黑顯示之壳度,並將其比設為CR(〇、6〇)。 以下揭不實施例,進一步詳細說明本發明,但本發明並 不僅限定於該等實施例。 實施例1〜3、7及比較例3 本發明之實施例1〜3、7之液晶顯示裝置及比較例3之液 晶顯示裝置係如圖20所示般依序積層背光(未圖示)、第一 偏光元件410、第二種雙折射層415、第一 λ/4板(第一種雙 折射層)420、VA模式液晶單元43〇、第二λ/4板44〇及第二 偏光元件450而獲得之圓偏光VA模式液晶顯示裝置4〇〇。 即,圖20之液晶顯示裝置4〇〇與圖η之液晶顯示裝置3〇〇之 不同點在於不包含第三種雙折射層。於實施例丨〜3、7中, 第一 λ/4板420之Nz係數與第二λ/4板44〇iNz係數互不相 同,但於比較例3中’第一 λ/4板420之Nz係數與第二λ/4板 440之Νζ係數係設定為相同。再者,圖2〇中,第一及第二 偏光元件410、450中所描繪之前頭係表示其吸收轴之方 位,第一及第二λ/4板420、44〇中所描繪之箭頭係表示其 遲相軸之方位,第二種雙折射層41 5中所描繪之箭頭係表 示其進相轴之方位’ VA模式液晶單元430中所描繪之橢球 係表示其折射率橢球之形狀。 液晶單元430包括薄膜電晶體(TFT)基板、彩色濾光片 (CF,Color Filter)基板及夾持於其等之間之液晶層。於 TFT基板及彩色濾光片基板之液晶層側之表面分別設置有 垂直配向膜,且於各垂直配向膜之下層(基板側)設置有電 極。藉由TFT基板之電極及彩色濾光片基板之電極對液晶 I63390.doc -71· 201243449 層施加所需之電壓,從而控制液晶分子之配向。液晶層包 含具有負介電各向異性之液晶分子。因此,於未對液晶層 施加電壓之狀態(斷開狀態)下,液晶分子相對於垂直配向 膜之表面大致垂直地配向,於對液晶層施加閾值電壓以上 之電壓之狀態(導通狀態)下’液晶分子相對於垂直配向膜 之表面朝向水平方向地傾倒。由於第一偏光元件4ι〇及第 二偏光元件450之吸收軸以相互正交(正交偏光配置)之方式 配置,故液晶顯示裝置400係於斷開狀態下進行黑顯示。 液晶單元430係所謂的MVA模式(多域型VA模式)之液晶 單元’且於像素内具有四個區域。藉由四個區域中之傾斜 方位於自正面觀察顯示面時處於相互大致正交之關係,而 可有效抵消傾斜方位之非對稱性。於圓偏光乂八模式中, 由於是使圓偏光入射至液晶單元43〇而進行顯示因此僅 限於在正面方向(相對於顯示畫面為法線方向)上液晶分子 之傾斜方位不會影響液晶單元之穿透率,但於斜向中,液 晶分子之傾斜方位會對液晶單元之穿透率造成影響。因 此,藉由控制四個區域中之傾斜方位,可提高斜向中之灰 階視野角。 於液晶單元430中,如圖21所示,於各像素内形成有包 含液晶为子於22.5。方位傾斜配向之區域、液晶分子於 112.5°方位傾斜配向之區域D2、液晶分子於2〇25。方位傾 斜配向之區域1)3、及液晶分子於292.5。方位傾斜配向之區 域D4而成的4個區域。為提高視野角特性,亦可如圖“所 示般,將4個區域分別分割為可施加不同電壓之2個區域。 163390.doc -72- 201243449 於圖22中,雖於像素内形成有總計8個區域,但對於包含 極角不同之液晶分子之區域彼此之間只要傾斜方位大致相 同’則亦含在同一區域内,因此區域之數量為4個。即, 區域D1 -1及D1 -2雖液晶分子之極角不同但傾斜方位共同為 22.5。,區域D2-1及D2-2雖液晶分子之極角不同但傾斜方 位共同為112.5。’區域D3-1及D3-2雖液晶分子之極角不同 但傾斜方位共同為202.5。,區域D4-1及D4-2雖液晶分子之 極角不同但傾斜方位共同為292.5。。 〇 又’亦可將像素之區域數量增加至4個以上。例如,液 晶單元430亦可為1個像素包括複數個副像素者,於該情形 時,亦可將如上述之四種區域作為1組而逐一設置於各副 像素内。 於液晶單元430中’液晶分子之傾斜方位之控制係藉由 TFT基板及CF基板之至少一者中所形成之配向控制機構而 進行。作為配向控制機構並無特別限定,例如可舉出Τρτ 〇 基板之上述電極上所形成之狹縫與CF基板之垂直配向膜之 下層(基板側)上所形成之呈線狀延伸之介電質突起的組 合。此時,各區域中之液晶分子之傾斜方位可藉由調整狹 縫之延伸方位及介電質突起之延伸方位而控制,亦可藉由 調整第一偏光元件410等與其他構件之貼合之朝向而胃控 制。 再者,液晶分子之傾斜方位有時會根據設置於TFT基板 及CF基板上之電極或配線之影響所產生之電場、或tft基 板及CF基板之液晶層側之表面形狀等,而自所期望之方位 163390.doc •73· 201243449 偏離。於本發明之液晶顯示裝置中,若包括液晶分子於 22.5°方位傾斜配向之區域D1、液晶分子於112.5。方位傾斜 配向之區域D2、液晶分子於202.5。方位傾斜配向之區域 D3、及液晶分子於292.5。方位傾斜配向之區域D4的四個區 域形成於像素内,則亦可如圖2 3所示般將因配向不良而產 生之區域D5、D6及D7亦包含於像素内。 實施例4〜6 本發明之實施例4〜6之液晶顯示裝置係如圖24所示般依 序積層背光(未圖示)、第一偏光元件51〇、第一個第二種雙 折射層5 15、第一 λ/4板(第一種雙折射層)52〇、第三種雙折 射層535、MVA模式之液晶單元530、第二λ/4板54〇、第二 個第二種雙折射層545及第二偏光元件550而獲得之圓偏光 VA模式液晶顯示裝置5〇〇。即,圖24之液晶顯示裝置5〇〇 與圖11之液晶顯示裝置3〇〇之不同點在於包含兩個第二種 雙折射層方面。於實施例4〜6中,第一λ/4板52〇iNz係數 與第二λ/4板540之Νζ係數互不相同。液晶單元53〇具有與 實施例1之液晶單元430相同之構成,且包括液晶分子於 22.5°方位傾斜配向之區域、液晶分子於112 5。方位傾斜配 向之區域、液晶分子於202.5。方位傾斜配向之區域、及液 晶分子於292.5。方位傾斜配向之區域的四個區域係形成於 各像素内。再者,圖24中,第一及第二偏光元件51〇、55〇 中所描繪之箭頭係表示其吸收軸之方位,第—及第二入/4 板520、540中所描繪之箭頭係表示其遲相軸之方位,第一 及第二個第二種雙折射層515、545中所描繪之箭頭係表示 163390.doc -74- 201243449 其進相軸之方位,液晶單元530及第三種雙折射層535中所 描繪之橢球係表示其折射率橢球之形狀。 比較例1 比較例1之液晶顯示裝置係如圖25所示般依序積層背光 (未圖示)、第一偏光元件610、第一 λ/4板(第一種雙折射 層)620、MVA模式之液晶單元630、第二λ/4板640、第二種 雙折射層645及第二偏光元件650而獲得之圓偏光VA模式 液晶顯示裝置600。於比較例1中,第一 λ/4板620之Νζ係數 與第二λ/4板640之Νζ係數係設定為相同。液晶單元630具 有與實施例1之液晶單元430相同之構成,且包括液晶分子 於22.5°方位傾斜配向之區域、液晶分子於112.5°方位傾斜 配向之區域、液晶分子於202.5°方位傾斜配向之區域、及 液晶分子於292.5°方位傾斜配向之區域的四個區域係形成 於各像素内。再者,圖25中,第一及第二偏光元件610、 650中所描繪之箭頭係表示其吸收軸之方位,第一及第二 λ/4板620、640中所描繪之箭頭係表示其遲相軸之方位, 第二種雙折射層645中所描繪之箭頭係表示其進相軸之方 位,液晶單元630中所描繪之橢球係表示其折射率橢球之 形狀。 比較例2 比較例2之液晶顯示裝置係如圖26所示般依序積層背光 (未圖示)、第一偏光元件710、第一個第二種雙折射層 715、第一λ/4板(第一種雙折射層)720、MVA模式之液晶單 元730、第三種雙折射層735、第二λ/4板740、第二個第二 163390.doc -75- 201243449 種雙折射層745及第二偏光元件75㈣獲得之圓偏光_ 式液晶顯示裝置700。於比較例2令,第一λ/4板72〇之^^係 數與第二λ/4板740之Νζ係數係設定為相同。液晶單元73〇 具有與實施例1之液晶單元430相同之構成,且包括液晶分 子於22.5。方位傾斜配向之區域、液晶分子於ιΐ25。方位傾 斜配向之區域、液晶分子於202.5。方位傾斜配向之區域、 及液晶分子於292.5。方位傾斜配向之區域的四個區域係形 成於各像素内。再者,圖26中,第一及第二偏光元件 710、750中所描繪之箭頭係表示其吸收軸之方位,第一及 第二λ/4板720、740中所描繪之箭頭係表示其遲相軸之方 位,第一及第二個第二種雙折射層715、745中所描繪之箭 頭係表示其進相軸之方位,液晶單元730及第三種雙折射 層735中所描繪之橢球係表示其折射率橢球之形狀。The liquid crystal cell divides the tilt direction of the liquid crystal molecules into a plurality of alignment division type VA modes in the pixel, that is, a so-called MVA mode (Muhi_d〇main VA. multi-domain type va mode), and by liquid crystal molecules in the liquid crystal layer The alignment is black display perpendicular to the substrate surface. In other words, in addition to the TFT method (active matrix method), the driving method of the liquid crystal cell may be a simple matrix method (passive matrix method) or a plasma addressing method. As an example of the configuration of the liquid crystal cell, it is shown that the liquid crystal layer is sandwiched between the substrates by one of the electrodes, and a voltage is applied between the electrodes. (Surface Treatment Layer) As the surface treatment layer, the following three types are mainly hard-coat layers for preventing damage, and the second type is a Ke (10)-'anti-glare layer for imparting anti-glare properties, and third. The anti-reflection layer is used to reduce surface reflection. Examples of the anti-inverse (four)' include an AR (Anti ― (10), anti-reflection) layer having a low reflectance, a owe region ‘low reflection layer having a higher reflectance than the AR layer, and a moth eye layer having a very low reflectance. Further, the surface treatment layer is usually formed on a transparent bite film (for example, a TAC film;). Further, a plurality of surface treatment layers may be laminated as such a laminate. For example, 163390.doc -69 - 201243449 may be cited as an AGLR (Anti Glare-Low Reflection) with an AG layer laminated on the LR layer. The layer, the AGAR (Anti Glare-Anti Reflection) layer of the AG layer is laminated on the AR layer. The observation side circular polarizing plate is preferably produced by a continuous winding technique using a protective film with a surface treatment layer, a polarizing element, and a smaller one in the first and second λ/4 plates. (Measurement Method of R, Rth, Νζ Coefficient, nx, ny, ηζ) The measurement was performed using a dual-rotating retarder type polarimeter (manufactured by Axometrics, trade name: Axo-scan). The in-plane phase difference R is measured from the normal direction of the birefringent layer. The main refractive index nx, ny, ηζ, the thickness direction phase difference Rth, and the Νζ coefficient are measured by the phase difference from the normal direction of the birefringent layer and the inclination from the normal direction by -50° to 50°. It is calculated by curve fitting of a well-known refractive index ellipsoid. The tilt orientation is the orientation orthogonal to the in-plane slow phase axis. Further, nx, ny, ηζ, Rxz, and Νζ are average refractive indices provided by the calculation conditions of the curve fitting = (nx + ny + nz) / 3, and the average refractive index of each birefringent layer is unified to 1.5. Calculation. For a birefringent layer having an actual average refractive index of not 1.5, the average refractive index is also assumed to be 1.5. (Method for Measuring Contrast-Viewing Angle Characteristics of Liquid Crystal Display Device) Measurement was carried out using a viewing angle measuring device (manufactured by ELDIM Co., Ltd., trade name: EZ Contrastl 60). The light source is a backlight of a liquid crystal television (trade name: LC37-GH1) manufactured by Sharp Corporation. Determine the orientation 45. The brightness of the white display in the oblique direction of 60° and the brightness of the black display are set to CR (45, 60). Also, the orientation 0 is measured. The white of the oblique 60° is 163390.doc -70- 201243449 The shell of the black display is displayed, and the ratio is set to CR (〇, 6〇). The present invention will be further described in detail by the following examples, but the invention is not limited to the examples. Embodiments 1 to 3, 7 and Comparative Example 3 The liquid crystal display devices of Embodiments 1 to 3 and 7 of the present invention and the liquid crystal display device of Comparative Example 3 are sequentially laminated with a backlight (not shown) as shown in FIG. a first polarizing element 410, a second birefringent layer 415, a first λ/4 plate (first birefringent layer) 420, a VA mode liquid crystal cell 43A, a second λ/4 plate 44A, and a second polarizing element A circularly polarized VA mode liquid crystal display device 4 obtained in 450. That is, the liquid crystal display device 4 of Fig. 20 is different from the liquid crystal display device 3 of Fig. 7 in that the third birefringent layer is not included. In the embodiments 丨~3, 7, the Nz coefficient of the first λ/4 plate 420 and the second λ/4 plate 44〇iNz coefficient are different from each other, but in the comparative example 3, the 'first λ/4 plate 420 The Nz coefficient is set to be the same as the second coefficient of the second λ/4 plate 440. Furthermore, in FIG. 2A, the front heads depicted in the first and second polarizing elements 410, 450 indicate the orientation of the absorption axis, and the arrows depicted in the first and second λ/4 plates 420, 44A are Indicates the orientation of the slow axis, and the arrow depicted in the second birefringent layer 41 5 indicates the orientation of the phase axis. The ellipsoid depicted in the VA mode liquid crystal cell 430 represents the shape of the index ellipsoid. . The liquid crystal cell 430 includes a thin film transistor (TFT) substrate, a color filter (CF) substrate, and a liquid crystal layer sandwiched therebetween. A vertical alignment film is disposed on the surface of the TFT substrate and the color filter substrate on the liquid crystal layer side, and an electrode is provided on the lower layer (substrate side) of each of the vertical alignment films. The alignment of the liquid crystal molecules is controlled by applying a desired voltage to the liquid crystal I63390.doc-71·201243449 layer by the electrodes of the TFT substrate and the electrodes of the color filter substrate. The liquid crystal layer contains liquid crystal molecules having a negative dielectric anisotropy. Therefore, in a state where no voltage is applied to the liquid crystal layer (off state), the liquid crystal molecules are aligned substantially perpendicularly to the surface of the vertical alignment film, and a state in which a voltage of a threshold voltage or more is applied to the liquid crystal layer (on state) is ' The liquid crystal molecules are tilted horizontally with respect to the surface of the vertical alignment film. Since the absorption axes of the first polarizing element 4 ι and the second polarizing element 450 are arranged to be orthogonal to each other (orthogonal polarization arrangement), the liquid crystal display device 400 performs black display in the off state. The liquid crystal cell 430 is a so-called liquid crystal cell of the MVA mode (multi-domain type VA mode) and has four regions in the pixel. The asymmetry of the tilting orientation can be effectively offset by the fact that the tilting directions of the four regions are in a substantially orthogonal relationship with each other when viewed from the front side. In the circular polarization mode, since the circularly polarized light is incident on the liquid crystal cell 43〇, the display is limited to the liquid crystal cell in the front direction (the normal direction with respect to the display screen). Penetration rate, but in the oblique direction, the tilting orientation of the liquid crystal molecules affects the transmittance of the liquid crystal cell. Therefore, by controlling the tilting orientation in the four regions, the grayscale viewing angle in the oblique direction can be improved. In the liquid crystal cell 430, as shown in Fig. 21, a liquid crystal is formed in each pixel to be 22.5. The region of the azimuth oblique alignment, the liquid crystal molecules are obliquely aligned in the 112.5° direction, and the liquid crystal molecules are at 2〇25. The orientation is obliquely aligned to the region 1) 3 and the liquid crystal molecules are at 292.5. Four areas in which the azimuth is inclined to the area D4. In order to improve the viewing angle characteristics, as shown in the figure, the four regions can be divided into two regions to which different voltages can be applied. 163390.doc -72- 201243449 In Fig. 22, a total is formed in the pixel. 8 regions, but for regions containing liquid crystal molecules having different polar angles, as long as the tilt directions are substantially the same as each other, they are also contained in the same region, so the number of regions is four. That is, regions D1 -1 and D1 -2 Although the polar angles of the liquid crystal molecules are different, the tilt orientations are 22.5 in common. Although the polar angles of the liquid crystal molecules are different in the regions D2-1 and D2-2, the tilt orientations are 112.5. The regions D3-1 and D3-2 are liquid crystal molecules. The polar angles are different but the tilting orientation is 202.5. The regions D4-1 and D4-2 have different polar angles of the liquid crystal molecules but the tilting orientation is 292.5. The 〇 and ' can also increase the number of pixels to more than four. For example, the liquid crystal unit 430 may be one pixel including a plurality of sub-pixels. In this case, the four regions as described above may be disposed one by one in each sub-pixel. In the liquid crystal unit 430 Control of tilt orientation of liquid crystal molecules The alignment control mechanism is formed by at least one of a TFT substrate and a CF substrate. The alignment control mechanism is not particularly limited, and examples thereof include a slit formed on the electrode of the substrate and a CF substrate. a combination of linearly extending dielectric protrusions formed on the lower layer (substrate side) of the vertical alignment film. At this time, the tilt orientation of the liquid crystal molecules in each region can be adjusted by adjusting the extension orientation and dielectric of the slit The orientation of the protuberances is controlled by the extending direction of the protuberances, and the stomach can be controlled by adjusting the orientation of the first polarizing element 410 and the like. Further, the tilting orientation of the liquid crystal molecules may be set on the TFT substrate and the CF substrate. The electric field generated by the influence of the upper electrode or the wiring, or the surface shape of the liquid crystal layer side of the tft substrate and the CF substrate, etc., deviates from the desired orientation 163390.doc • 73· 201243449. In the liquid crystal display device of the present invention If the liquid crystal molecules are included in the 22.5° azimuth oblique alignment region D1, the liquid crystal molecules are at 112.5. The azimuthal oblique alignment region D2 and the liquid crystal molecules are at 202.5. Azimuth tilt alignment The region D3 and the liquid crystal molecules are formed in the pixel at 292.5. The four regions of the azimuth oblique alignment region D4 are also included in the region D5, D6, and D7 due to poor alignment as shown in FIG. Embodiments 4 to 6 The liquid crystal display devices of Embodiments 4 to 6 of the present invention sequentially stack a backlight (not shown), a first polarizing element 51, and a first second as shown in FIG. Birefringent layer 5 15, first λ/4 plate (first birefringent layer) 52 〇, third birefringent layer 535, MVA mode liquid crystal cell 530, second λ/4 plate 54 〇, second A circularly polarized VA mode liquid crystal display device 5 obtained by the second birefringent layer 545 and the second polarizing element 550. That is, the liquid crystal display device 5 of Fig. 24 is different from the liquid crystal display device 3 of Fig. 11 in that it includes two second birefringent layer aspects. In the fourth to sixth embodiments, the coefficient of the first λ/4 plate 52〇iNz and the coefficient of the second λ/4 plate 540 are different from each other. The liquid crystal cell 53A has the same configuration as that of the liquid crystal cell 430 of the first embodiment, and includes a region in which liquid crystal molecules are obliquely aligned in a 22.5° direction, and liquid crystal molecules are at 112 5 . The area of the azimuth tilt alignment and the liquid crystal molecules are at 202.5. The area of the azimuth tilt alignment and the liquid crystal molecules are at 292.5. Four regions of the azimuth oblique alignment region are formed in each pixel. Further, in Fig. 24, the arrows drawn in the first and second polarizing elements 51A, 55B indicate the orientation of the absorption axis, and the arrows depicted in the first and second/input plates 520, 540 are Indicates the orientation of the slow axis, and the arrows depicted in the first and second second birefringent layers 515, 545 represent the orientation of the phase axis, liquid crystal cell 530 and third, 163390.doc -74 - 201243449 The ellipsoid depicted in the birefringent layer 535 represents the shape of its index ellipsoid. Comparative Example 1 A liquid crystal display device of Comparative Example 1 sequentially laminated a backlight (not shown), a first polarizing element 610, a first λ/4 plate (first birefringent layer) 620, and MVA as shown in FIG. A circularly polarized VA mode liquid crystal display device 600 obtained by a mode liquid crystal cell 630, a second λ/4 plate 640, a second birefringent layer 645, and a second polarizing element 650. In Comparative Example 1, the Νζ coefficient of the first λ/4 plate 620 and the Νζ coefficient of the second λ/4 plate 640 are set to be the same. The liquid crystal cell 630 has the same configuration as the liquid crystal cell 430 of the first embodiment, and includes a region in which the liquid crystal molecules are obliquely aligned at a direction of 22.5°, a region in which the liquid crystal molecules are obliquely aligned at an azimuth of 112.5°, and a region in which the liquid crystal molecules are obliquely aligned at a direction of 202.5°. And four regions in which the liquid crystal molecules are obliquely aligned in the azimuth of 292.5° are formed in each pixel. Further, in Fig. 25, the arrows drawn in the first and second polarizing elements 610, 650 indicate the orientation of the absorption axis, and the arrows depicted in the first and second λ/4 plates 620, 640 indicate The orientation of the slow phase axis, the arrow depicted in the second birefringent layer 645 indicates the orientation of the phase axis, and the ellipsoid depicted in the liquid crystal cell 630 indicates the shape of its index ellipsoid. Comparative Example 2 The liquid crystal display device of Comparative Example 2 sequentially laminated a backlight (not shown), a first polarizing element 710, a first second birefringent layer 715, and a first λ/4 plate as shown in FIG. (first birefringent layer) 720, MVA mode liquid crystal cell 730, third birefringent layer 735, second λ/4 plate 740, second second 163390.doc -75- 201243449 birefringent layer 745 And a circularly polarized liquid crystal display device 700 obtained by the second polarizing element 75 (four). In Comparative Example 2, the coefficient of the first λ/4 plate 72 is set to be the same as the coefficient of the second λ/4 plate 740. The liquid crystal cell 73A has the same configuration as that of the liquid crystal cell 430 of Embodiment 1, and includes liquid crystal molecules at 22.5. The region of the obliquely oriented alignment and the liquid crystal molecules are at ιΐ25. The area of the oblique tilting alignment and the liquid crystal molecules are at 202.5. The region of the azimuth oblique alignment and the liquid crystal molecules are at 292.5. The four regions of the region of the azimuth oblique alignment are formed in each pixel. Further, in Fig. 26, the arrows drawn in the first and second polarizing elements 710, 750 indicate the orientation of the absorption axis, and the arrows depicted in the first and second λ/4 plates 720, 740 indicate The orientation of the slow phase axes, the arrows depicted in the first and second second birefringent layers 715, 745 indicate the orientation of the phase axes thereof, as depicted in the liquid crystal cell 730 and the third birefringent layer 735. The ellipsoid indicates the shape of its index ellipsoid.

關於各例之偏光元件、雙折射層及液晶單元之材料名、 軸角度、面内相位差R、厚度方向相位差Rth或Rlc及^^2係 數’如下述表5、ό所示。表中,各雙折射層之軸由面内遲 相軸之方位角定義,偏光元件之軸由吸收軸之方位角定 義。再者’關於第二種雙折射層,雖面内進相軸於設計上 較為重要’但於表中,與其他雙折射層一樣,第二種雙折 射層之軸由面内遲相軸之方位角定義。第二種雙折射層之 面内進相轴正交於第二種雙折射層之面内遲相軸。又,表 中係使用以下簡寫符號來表示各雙折射層之材料名。 ΝΒ :降冰片烯 PI(Polyimide):聚醯亞胺 163390.doc -76- 201243449 TAC :三乙醯纖維素 A .包含丙烯酸系樹脂及苯乙烯系樹脂之樹脂組合物 進而’表中’ Nz係數平均值係定義為第一 λ/4板之^^係 數與第二λ/4板之Νζ係數之平均值。 ’ (評估結果) 測定各例之液晶顯示裝置之對比度_視野角特性,並將 方位〇。、極角60。下之對比度[CR(〇、6〇)]及方位45。、極角 ❹ 60°下之對比度[CR(45,6〇)]整理於下述表5、6中再者, 所謂「方位X。、極角γ。下之對比度」,係指於在X。方位中 將視角自法線方向傾倒γ。之方向所測定之對比度。即,極 角係表示正面方向與視角方向所呈之角。又,將各例之(1) 方位0。、極角〇。、(2)方位0。、極角6〇。及(3)方位45。、極角 6〇下之伽馬曲線示於圖27〜3 6中。伽馬曲線係以灰階值為 橫轴、以標準化之亮度為縱軸而表示電壓相對於施加至液 晶層之穿透率之變化者。由於各例之液晶顯示裝置之顯示 Q 模式為正常顯黑’故黑顯示對應於灰階值0,白顯示對應 於灰階值256,灰階值越大則施加至液晶層之電壓便越 大。亮度之標準化係將灰階值為256時之亮度設為1.〇而針 對各測定方向完成。通常將自不同測定方向獲得之複數個 伽馬曲線彼此之間進行對比,以此作為表示根據觀察液晶 顯示裝置之方向之不同而顯示晝面之視覺以何種程度不同 之指標’伽馬曲線彼此之間越接近,顯示晝面之視覺便越 一致0 本發明之實施例1~7之液晶顯示裝置之cr(〇、60)及 163390.doc -77· 201243449 CR(45、60)均與比較例卜3之CR(0、60)及CR(45、60)同 等。又’實施例1〜7之液晶顯示裝置之伽馬曲線與比較例 1〜3之液晶顯示裝置之伽馬曲線相同。實施例1〜7之液晶顯 示裝置於目視評估中,斜視角中之顯示品質亦優異。 又,於實施例1〜7中,由於第一 λ/4板之Nz係數與第二 λ/4板之Nz係數互不相同,故包含NZ係數較小之第一 χ/4板 之圓偏光板之生產性優異,且可削減成本。尤其由於可使 用藉由傾斜延伸而製作之通用品之λ/4板作為Νζ係數經調 節為大致1.6之λ/4板,故包含Νζ係數經調節為大致1.6之 λ/4板之實施例於生產上之優點極大。 進而,於實施例1〜7中,由於Νζ係數較小之第一 λ/4板係 配置於液晶單元之觀察面側,故可提高為應對不同表面處 理要求而易於導致品種增加之觀察面侧(第二偏光元件側) 之偏光板之生產性。 又,於實施例1〜3、7中,第二種雙折射層係配置於液晶 單儿之背面側(背光側),相較於實施例4〜ό,實施例1〜3、 7由於觀察面侧(第二偏光元件側)之偏光板之構成更簡單, 故生產性更高。 於實施例4〜6中,第三種雙折射層係配置於液晶單元之 月面侧(背光側),相較於比較例2 ,實施例4〜6由於觀察面 =(第—偏光兀件側)之偏光板之構成更簡單,故生產性更 1¾ 0 於比較例卜3之液晶顯示裝置中’第一及第二λ/4板之Nz 係數均相對較大,從而有時難以製作第一及第二λ/4板。 如以上所說明,根據本發明之液晶顯示裝置,可於斜視 163390.doc -78- 201243449 角中確保極為優異之顯示品質,並獲得製造上之各種優 [表5]The material names, the axial angles, the in-plane retardation R, the thickness direction retardation Rth, or the Rlc and the coefficient of the liquid crystal cell of the polarizing element, the birefringent layer, and the liquid crystal cell of each example are shown in Table 5 and 下述 below. In the table, the axis of each birefringent layer is defined by the azimuth of the in-plane retardation axis, and the axis of the polarizing element is defined by the azimuth of the absorption axis. Furthermore, with regard to the second birefringent layer, although the in-plane phase axis is more important in design, but in the table, like the other birefringent layers, the axis of the second birefringent layer is the in-plane retardation axis. Azimuth definition. The in-plane axis of the second birefringent layer is orthogonal to the in-plane slow axis of the second birefringent layer. Further, in the table, the material names of the respective birefringent layers are indicated by the following abbreviations. ΝΒ: norbornene PI (Polyimide): polyimine 163390.doc -76- 201243449 TAC : triethylene fluorene cellulose A. Resin composition containing acrylic resin and styrene resin and then 'in the table' Nz coefficient The average value is defined as the average of the coefficient of the first λ/4 plate and the Νζ coefficient of the second λ/4 plate. (Evaluation result) The contrast_viewing angle characteristics of the liquid crystal display devices of the respective examples were measured, and the orientation was 〇. The polar angle is 60. Contrast [CR (〇, 6〇)] and azimuth 45. The polar angle ❹ 60° contrast ratio [CR(45,6〇)] is arranged in Tables 5 and 6 below. The "azimuth X., polar angle γ. contrast under" refers to the X . In the azimuth, the angle of view is tilted from the normal direction by γ. The contrast measured in the direction. That is, the polar angle indicates the angle between the front direction and the viewing direction. Further, the (1) orientation of each example is 0. , the polar horns. , (2) Azimuth 0. The polar angle is 6 inches. And (3) azimuth 45. The gamma curve at the polar angle of 6 〇 is shown in Figures 27 to 36. The gamma curve represents the change in voltage with respect to the transmittance applied to the liquid crystal layer with the gray scale value as the horizontal axis and the normalized luminance as the vertical axis. Since the display Q mode of the liquid crystal display device of each example is normal black display, the black display corresponds to the grayscale value of 0, and the white display corresponds to the grayscale value of 256. The larger the grayscale value, the greater the voltage applied to the liquid crystal layer. . The standardization of the brightness is set to 1. When the grayscale value is 256, the brightness is set to 1. Usually, a plurality of gamma curves obtained from different measurement directions are compared with each other as an index indicating how different degrees of vision of the kneading surface are displayed according to the direction in which the liquid crystal display device is observed. The closer the difference is, the more consistent the visual display is. 0 The liquid crystal display devices of Embodiments 1 to 7 of the present invention are compared with cr (〇, 60) and 163390.doc -77· 201243449 CR (45, 60). The CR (0, 60) and CR (45, 60) of the example 3 are equivalent. Further, the gamma curves of the liquid crystal display devices of Examples 1 to 7 were the same as those of the liquid crystal display devices of Comparative Examples 1 to 3. In the visual evaluation of the liquid crystal display devices of Examples 1 to 7, the display quality in the oblique viewing angle was also excellent. Further, in the first to seventh embodiments, since the Nz coefficient of the first λ/4 plate and the Nz coefficient of the second λ/4 plate are different from each other, the circular eccentric light of the first χ/4 plate having a small NZ coefficient is included. The board is excellent in productivity and can reduce costs. In particular, since a λ/4 plate of a general product manufactured by oblique extension can be used as a λ/4 plate whose Νζ coefficient is adjusted to be approximately 1.6, an embodiment including a λ/4 plate whose Νζ coefficient is adjusted to approximately 1.6 is used. The advantages of production are enormous. Further, in the first to seventh embodiments, since the first λ/4 plate having a small enthalpy coefficient is disposed on the observation surface side of the liquid crystal cell, it is possible to improve the observation surface side which is likely to cause an increase in variety in response to different surface treatment requirements. The productivity of the polarizing plate (on the side of the second polarizing element). Further, in Examples 1 to 3 and 7, the second birefringent layer was disposed on the back side (backlight side) of the liquid crystal cell, and compared with Example 4 to ό, Examples 1 to 3 and 7 were observed. The polarizing plate on the surface side (the second polarizing element side) is simpler in composition, and thus has higher productivity. In Examples 4 to 6, the third birefringent layer was disposed on the meniscus side (backlight side) of the liquid crystal cell, compared to Comparative Example 2, Examples 4 to 6 due to the observation surface = (first-polarized element) The configuration of the polarizing plate of the side is simpler, so the productivity is further improved. In the liquid crystal display device of Comparative Example 3, the Nz coefficients of the first and second λ/4 plates are relatively large, and thus it is sometimes difficult to produce the first One and two λ/4 plates. As described above, the liquid crystal display device according to the present invention can ensure extremely excellent display quality in the squint 163390.doc -78 - 201243449 corner, and obtain various advantages in manufacturing [Table 5].

光學構件名 材料 名 軸角 度[°] 相位差[nm] Nz係數 Nz係數 平均值 評估結果 R Rth或 Rlc CR(45、60) CR(0、60) 實施例1 第二偏光元件 0 2.09 57 174 第二λ/4板 ΝΒ 45 138 1.10 VA模式液晶單元(22.5° ' 112.5° ' 202.5° ' 292.5°) 290 第一 λ;4板 ΝΒ 135 138 3.08 第二種雙折射層 A 90 85 •1.21 第一偏光元件 90 實施例2 第二偏光元件 0 2.09 58 175 第二λ/4板 ΝΒ 45 138 1.65 VA模式液晶單元(22.5°、 112.5° ' 202.5° ' 292.5°) 290 第一λ/4板 ΝΒ 135 138 2.53 第二種雙折射層 A 90 85 -1.21 第一偏光元件 90 實施例3 第二偏光元件 0 2.08 58 174 第二W4板 ΝΒ 45 138 1.98 VA模式液晶單元(22.5°、 112.5°、202,5°、292.5。) 290 第一λ/4板 ΝΒ 135 138 2.18 第二種雙折射層 A 90 85 -1.21 第一偏光元件 90 實施例4 第二偏光元件 0 2.15 58 175 第二個第二種雙折射層 A 0 85 -0.10 第二W4板 ΝΒ 45 138 1.10 VA模式液晶單元(22.5°、 112.5。、202.5。、292.5。) 320 第三種雙折射層 TAC 2 -52 第一 λ/4板 ΝΒ 135 138 3.20 第一個第二種雙折射層 A 90 85 -0.10 第一偏光元件 90 實施例5 第二偏光元件 0 2.14 58 175 第二個第二種雙折射層 A 0 85 0.10 第二V4板 NB 45 138 1.65 VA模式液晶單元(22.5°、 112.5°、202,5°、292.5°) 320 第三種雙折射層 TAC 2 -52 第一λ/4板 NB 135 138 2.65 第一個第二種雙折射層 A 90 85 -0.10 第一偏光元件 90 實施例6 第二偏光元件 0 2.13 59 176 第二個第二種雙折射層 A 0 85 -0.10 第二λ/4板 NB 45 138 1.98 VA模式液晶單元(22.5°、 112.5。、202.5。、292.5。) 320 第三種雙折射層 TAC 2 -52 第一 V4板 NB 135 138 2.28 第一個第二種雙折射層 A 90 85 •0.10 第一偏光元件 90 實施例7 第二偏光元件 0 2.05 52 176 第二λ/4板 NB 45 138 1.65 VA模式液晶單元(22.5°、 112.5。、202.5。、292.5。) 310 第一 V4板 NB 135 138 2.45 第二種雙折射層 A 90 105 -0.45 第一偏光元件 90 79- 163390.doc 201243449 [表6] 光學構件名 材料名 軸角 度[°] 相位差[nm] Nz係 數 Nz係數 平均值 評估結果 R Rth或 Rlc CR(45'60) CR(0、60) 比較例1 第二偏光元件 0 2.08 58 175 第二種雙折射層 A 0 85 -1.21 第二Μ板 NB 45 138 2.08 VA模式液晶單元(22.5°、 112.5°'202.5°' 292.5°) 290 第一 λ/4板 NB 135 138 2.08 第一偏光元件 90 比較例2 第二偏光元件 0 2.13 60 176 第二個第二種雙折射層 A 0 85 -0.10 第二λ/4板 NB 45 138 2.13 第三種雙折射層 TAC 2 52 VA模式液晶單元(22.5° ' 112.5° ' 202.5° ' 292.5°) 320 第一 λ/4板 NB 135 138 2.13 第一個第二種雙折射層 A 90 85 -0.10 第一偏光元件 90 比較例3 第二偏光元件 0 2.00 52 176 第二W4板 NB 45 138 2.00 VA模式液晶單元(22.5° ' 112.5°' 202.5°' 292.5°) 310 第一 λ/4板 NB 135 138 2.00 第二種雙折射層 A 90 105 -0.45 第一偏光元件 90 再者,各實施例之液晶顯示裝置由於在液晶單元之兩側 具有包括直線偏光板(偏光元件)與λ/4板之組合之圓偏光 板,故均以圓偏光VA模式進行顯示。圓偏光VA模式除了 可獲得改善穿透率之效果以外,還可獲得抗反射之效果, 故對於對比度之提高較為有效。圓偏光VA模式之抗反射 功能係藉由圓偏光板之作用,使一旦自液晶顯示裝置之周 圍入射至液晶顯示裝置内而於液晶顯示裝置内反射之光, 即所謂内部反射所產生之反射光,不出射至液晶顯示裝置 外。因此,根據圓偏光VA模式,於液晶單元内之黑矩 陣、配線、電極等之表面反射之光不易出射至液晶顯示裝 置外,尤其可防止於周圍較明亮之狀況(明亮環境)下液晶 顯示裝置之對比度降低。 另一方面,作為使明亮環境中之液晶顯示裝置之對比度 -80- 163390.doc 201243449 降低之反射光,除上述之内部反射所產生之反射光以外, 還可舉出不自液晶顯示裝置之周圍入射至液晶顯示裝置内 而於液晶顯示裝置之表面反射之光,即所謂表面反射所產 生之反射光。於圓偏光VA模式之液晶顯示裝置中抑制内 部反射所產生之反射光之結果為,表面反射所產生之反射 * 光之量對顯示畫面之視認性產生顯著影響。因此,藉由對 圓偏光VA模式之液晶顯示裝置實施降低表面反射所產生 〇 之反射光之對策’可於明亮環境中獲得極高之對比度,使 觀察顯示畫面之觀察者切實感受到顯示品質之顯著提昇。 作為用於抑制表面反射之抗反射膜(層),可舉出將折射 率不同之複數個膜積層而形成之抗反射膜、於表面形成有 微細之突起及凹坑之抗反射膜。尤其係作為後者之抗反射 膜之一種的「蛾眼(Moth Eye)膜」’其具有於表面設置有多 個較可見光之波長(380〜780 nm)小之突起的結構,從而可 於表面反射之抑制方面發揮極為優異之效果。如圖37(a)所 Q 不,由於入射至蛾眼膜之光係經由設置於表面之微細之突 起361而到達至膜基材部362,故位於空氣層與膜基材部之 間的突起與空氣層混存之區域(圖中之A_b間區域)可視 為’具有構成膜之材料之折射率(於為樹脂膜之情形時為 1.5左右)與空氣之折射率(1〇)之中間折射率的區域。即, 如圖37(b)所示’該區域之折射率對應於突起及空氣層之體 積比之變化,於短於可見光之波長之距離内,自與膜之表 面接觸之空氣之折射率起連續地逐漸增大至構成膜之材料 之折射率為止。其結果,入射至蛾眼膜之光不將空氣-膜 163390.doc -81 - 201243449 間之界面識別為折射率不同之界面,從而可大幅抑制於界 面產生之光之反射。藉由蛾眼膜,例如可使可見光之表面 反射率為0.15%左右。 蛾眼膜若配置於折㈣不同之界面則可發揮降低反射率 之效果’例如於圖U所示之構成中,於較第二偏光元件 350更内部產生之内部反射可藉由包括第二偏光元件别及 第二λ/4板340之組合之圓偏光板而抑制。因此,例如於在 圖11之構成中附加蛾眼膜之情形時,係如圖38所示之蛾眼 膜360般’配置於較第二偏光元件35〇更靠顯示面側(觀察 面側)。於在較第二偏光元件35()更靠顯示面侧配置保護板 等構件而存在複數個界面之情料,亦可針對每個界面設 置蛾眼膜,且較佳為至少配置於露出於液晶顯示裝置之外 部之面。 作為蛾眼膜之具體例,可舉出以約2〇〇⑽之頂點間距離 於表面形成有多個高度為約2〇〇咖之大致圓雖形狀之突起 的樹脂膜。 作為蛾眼膜之製造方法,可舉出將刻於模具之夺米尺寸 (1〜测㈣之凹凸按壓至塗佈於基板上之樹脂材料而轉 印形狀的技術’即所謂奈米壓印技術。作為於奈米壓印技 術中使樹脂材料硬化之方法,可舉出熱奈米壓印技術、紫 外線⑼traviolet,uv)奈米壓印技術等。uv奈米壓印技術 係於透明基板上形成紫外線硬化樹脂之薄膜,並於該薄模 上按壓模具,其後照射紫外線,藉此於透明基板上形成具 有模具之反轉形狀之蛾眼結構的薄膜。 、 163390.doc •82- 201243449 砝為了藉由不米壓印技術大量且價格低廉地製造具有蛾眼 構之薄臈,相較於分批處理,較佳為使用連續捲繞處 理。根據連續捲繞處理,可使用模具輥連續製造具有蛾眼 構之薄膜4乍為此種模具輕,可舉出藉由陽極氧化法於 經研磨之圓柱狀或圓筒狀紹管之外周面形成有奈米尺寸之 凹坑者。根朗極氧化法,可於表面無規且大致均句地形 成不米尺寸之凹坑’從而可於模具輥之表面形成適於連續 生產之無接縫之(無縫之)蛾眼結構。 上述實施形態中之各形態亦可於不脫離本發明之主旨之 範圍内進行適當組合。進而,將兩個以上之較佳形態相互 組合而成之形態亦為較佳形態之一。 本申請案係以2011年3月31曰申請之曰本專利申請2〇ιι_ 嶋128號為基礎,且主張基於巴黎公約及移交國之法規之 優先權者。該中請之整個内容係作為參照而併人本申請案 中。 【圖式簡單說明】 圖1係說明相對於液晶分子之傾斜配向之朝向A〇的方位 角沴及極角Θ之圖。 圖2係表示不包含第二種及第三種雙折射層之、包括最 簡單之構成的圓偏光VA模式液晶顯示裝置之構成之立體 分解圖。 圖3(a)係針對於正面方向正交之第—λ/4板之遲相袖及第 二λ/4板之遲相軸,自正面方向觀察時之模式圖(上卜及自 方位0。之斜向觀察時之模式圖(下)e (b)係針對於正面方向 163390.doc -83- 201243449 正交之第一 λΜ板之遲相軸及第二λ/4板之遲相轴,自正面 方向觀察時之模式圖(上)、及自方位45。之斜向觀察時之模 式圖(下)。(勹係針對於正面方向正交之第一偏光元件之吸 收軸及第二偏光元件之吸收軸,自正面方向觀察時之模式 圖(上)' 及自方位45。之斜向觀察時之模式圖(下)。 圖4係針對圖2之圓偏光VA模式液晶顯示裝置,將自正 面方向觀察時之、透射光之偏光狀態每當通過各構件時而 變化之情形投影表示於龐加萊球之S1_S2平面之圖。 圖5係針對圖2之圓偏光VA模式液晶顯示裝置,將自方 位〇。、極60。之斜向觀察時之、透射光之偏光狀態每當通 過各構件時而變化之情形投影表示於龐加萊球之平 面之圖。 圖6係表示包含第三種雙折射層之圓偏光va模式液晶顯 示裝置之構成之立體分解圖。 圖7係針對圖6之圓偏光VA模式液晶顯示裴置 (Nzql=Nzq2=2_〇、R3=_61 nm、Rlc=32〇 nm之形態),將自 正面方向觀察時之、透射光之偏光狀態每當通過各構件時 而變化之情形投影表示於龐加萊球之S1-S2平面之圖。 圖8-1係針對圖6之圓偏光VA模式液晶顯示裝置 (Nzql Nzq2-2.〇、RXl nm、Rlc=320 nm之形態),將自 方位〇。、極60。之斜向觀察時之、透射光之偏光狀態每當 通過各構件時而變化之情形投影表示於龐加萊球之Sli2 平面之圖。 圖8-2係針對圖6之圓偏光VA模式液晶顯示裝置 163390.doc •84· 201243449 (NZql = 3.〇、Nzq2吐〇、R3t6l nm、η:· 之形 態),將自方位0。、極60。之斜向觀察時之、透射光之偏光 狀態每當通過各構件時而變化之情形投影表示於龐加萊球 之S1-S2平面之圖。 圖8-3係針對圖6之圓偏光VA模式液晶顯示裝置 (Nzq卜2.5、Nzpy.S、R3=_61 nm、Rlc=32〇 nm 之形 態”將自方位0。、極60。之斜向觀察時之、透射光之偏光 Ο 狀態每當通過各構件時而變化之情形投影表示於龐加萊球 之S1-S2平面之圖。 圖Optical member name Material name Axis angle [°] Phase difference [nm] Nz coefficient Nz coefficient average evaluation result R Rth or Rlc CR (45, 60) CR (0, 60) Example 1 Second polarizing element 0 2.09 57 174 Second λ/4 plate ΝΒ 45 138 1.10 VA mode liquid crystal cell (22.5° ' 112.5° ' 202.5° ' 292.5°) 290 First λ; 4 plate ΝΒ 135 138 3.08 Second birefringent layer A 90 85 • 1.21 A polarizing element 90 Embodiment 2 Second polarizing element 0 2.09 58 175 Second λ/4 plate ΝΒ 45 138 1.65 VA mode liquid crystal cell (22.5°, 112.5° ' 202.5° ' 292.5°) 290 First λ/4 plate ΝΒ 135 138 2.53 Second birefringent layer A 90 85 -1.21 First polarizing element 90 Example 3 Second polarizing element 0 2.08 58 174 Second W4 plate ΝΒ 45 138 1.98 VA mode liquid crystal cell (22.5°, 112.5°, 202 , 5°, 292.5.) 290 First λ/4 plate 135 135 138 2.18 Second birefringent layer A 90 85 -1.21 First polarizing element 90 Example 4 Second polarizing element 0 2.15 58 175 Second second Birefringent layer A 0 85 -0.10 Second W4 plate 45 138 1.10 VA mode liquid crystal cell (22.5°, 112.5., 202.5., 292.5.) 320 Third birefringent layer TAC 2 -52 First λ/4 plate 135 135 138 3.20 First second birefringent layer A 90 85 -0.10 First polarizing element 90 Embodiment 5 Second polarizing element 0 2.14 58 175 Second second birefringent layer A 0 85 0.10 Second V4 board NB 45 138 1.65 VA mode liquid crystal cell (22.5°, 112.5°, 202, 5°, 292.5°) 320 Third birefringent layer TAC 2 -52 First λ/4 plate NB 135 138 2.65 First second birefringent layer A 90 85 -0.10 First polarizing element 90 Example 6 Second polarizing element 0 2.13 59 176 Second second birefringent layer A 0 85 -0.10 Second λ/4 plate NB 45 138 1.98 VA mode liquid crystal cell (22.5°, 112.5. 202.5. 292.5. 320 third birefringent layer TAC 2 -52 first V4 plate NB 135 138 2.28 first second birefringent layer A 90 85 •0.10 first polarizing element 90 embodiment 7 second polarizing element 0 2.05 52 176 Second λ/4 plate NB 45 138 1.65 VA mode liquid crystal cell (22.5°, 112.5., 202.5., 292.5.) 310 First V4 plate NB 135 138 2.45 Second birefringent layer A 90 105 -0.45 First polarized light Element 90 79- 163390.doc 201243449 [Table 6] Optical member name Material name Axis angle [°] Phase difference [nm] Nz coefficient Nz coefficient average evaluation result R Rth or Rlc CR (45'60) CR (0, 60 Comparative Example 1 Second polarizing element 0 2.08 58 175 Second birefringent layer A 0 85 -1.21 Second slab NB 45 138 2.08 VA mode liquid crystal cell (22.5°, 112.5° '202.5°' 292.5°) 290 A λ/4 plate NB 135 138 2.08 First polarizing element 90 Comparative example 2 Second polarizing element 0 2.13 60 176 Second second birefringent layer A 0 85 -0.10 Second λ/4 plate NB 45 138 2.13 Three birefringent layers TAC 2 52 VA mode liquid crystal cell (22.5° ' 11 2.5° ' 202.5° ' 292.5°) 320 First λ/4 plate NB 135 138 2.13 First second birefringent layer A 90 85 -0.10 First polarizing element 90 Comparative example 3 Second polarizing element 0 2.00 52 176 Second W4 board NB 45 138 2.00 VA mode liquid crystal cell (22.5° ' 112.5°' 202.5°' 292.5°) 310 First λ/4 plate NB 135 138 2.00 Second birefringent layer A 90 105 -0.45 First polarized light Element 90 Further, since the liquid crystal display device of each of the embodiments has a circular polarizing plate including a combination of a linear polarizing plate (polarizing element) and a λ/4 plate on both sides of the liquid crystal cell, the liquid crystal display device is displayed in a circularly polarized light VA mode. In addition to the effect of improving the transmittance, the circularly polarized VA mode can also obtain an anti-reflection effect, which is effective for improving the contrast. The anti-reflection function of the circularly polarized VA mode is a light that is reflected in the liquid crystal display device when it is incident on the liquid crystal display device from the periphery of the liquid crystal display device by the action of the circular polarizing plate, that is, the reflected light generated by the so-called internal reflection. , does not emit outside the liquid crystal display device. Therefore, according to the circularly polarized VA mode, light reflected on the surface of the black matrix, the wiring, the electrode, or the like in the liquid crystal cell is not easily emitted to the outside of the liquid crystal display device, and in particular, the liquid crystal display device can be prevented from being bright in the surrounding environment (bright environment). The contrast is reduced. On the other hand, as the reflected light which reduces the contrast of the liquid crystal display device in a bright environment -80-163390.doc 201243449, in addition to the reflected light generated by the internal reflection described above, it is also possible not to be surrounded by the liquid crystal display device. Light that is incident on the surface of the liquid crystal display device and is reflected by the surface of the liquid crystal display device, that is, reflected light generated by surface reflection. As a result of suppressing the reflected light generated by the internal reflection in the liquid crystal display device of the circularly polarized VA mode, the reflection due to the surface reflection * the amount of light significantly affects the visibility of the display screen. Therefore, by implementing a countermeasure for reducing the reflected light generated by the surface reflection in the liquid crystal display device of the circularly polarized VA mode, an extremely high contrast can be obtained in a bright environment, and the observer who observes the display screen can actually feel the display quality. Significantly improved. The antireflection film (layer) for suppressing surface reflection includes an antireflection film formed by laminating a plurality of films having different refractive indices, and an antireflection film having fine protrusions and pits formed on the surface. In particular, the "Moth Eye film" which is one of the latter anti-reflection films has a structure in which a plurality of protrusions having a smaller wavelength (380 to 780 nm) than visible light are provided on the surface, so that the surface can be reflected. The suppression is extremely excellent. As shown in Fig. 37 (a), the light incident on the moth eye film reaches the film base portion 362 via the fine projections 361 provided on the surface, so that the projection is located between the air layer and the film base portion. The region mixed with the air layer (the region between A_b in the figure) can be regarded as 'intermediate refractive index of the refractive index of the material constituting the film (about 1.5 in the case of the resin film) and the refractive index (1 〇) of the air. The area of the rate. That is, as shown in Fig. 37 (b), the refractive index of the region corresponds to the change in the volume ratio of the protrusion and the air layer, and the refractive index of the air in contact with the surface of the film is within a distance shorter than the wavelength of visible light. The gradual increase gradually increases to the refractive index of the material constituting the film. As a result, the light incident on the moth eye film does not recognize the interface between the air-films 163390.doc -81 - 201243449 as an interface having a different refractive index, so that the reflection of light generated at the interface can be greatly suppressed. By the moth eye film, for example, the surface reflectance of visible light is about 0.15%. If the moth eye film is disposed at a different interface of the fold (four), the effect of reducing the reflectance can be exhibited. For example, in the configuration shown in FIG. U, the internal reflection generated inside the second polarizing element 350 can include the second polarized light. The combination of the component and the second λ/4 plate 340 is suppressed by the circular polarizing plate. Therefore, for example, in the case where the moth eye film is added to the configuration of FIG. 11, the moth eye film 360 as shown in FIG. 38 is disposed on the display surface side (viewing surface side) of the second polarizing element 35A. . In a case where a member such as a protective plate is disposed on the display surface side of the second polarizing element 35 (), a plurality of interfaces may be present, and a moth eye film may be provided for each interface, and at least the liquid crystal is preferably exposed to the liquid crystal. The outside of the display unit. Specific examples of the moth eye film include a resin film having a plurality of protrusions having a shape of a substantially circular shape having a height of about 2 Å at a distance of about 2 〇〇 (10). As a method of producing the moth eye film, a technique of transferring the shape of the rice which is engraved in the mold (1 to 4 (4) is applied to the resin material applied to the substrate to transfer the shape] is a so-called nano imprint technique. Examples of the method for hardening the resin material in the nanoimprint technique include a thermal imprint technique, an ultraviolet (9) travilet, and a uv) nanoimprint technique. The uv nanoimprint technique is to form a film of an ultraviolet curable resin on a transparent substrate, and press the mold on the thin mold, and then irradiate ultraviolet rays, thereby forming a moth eye structure having a reverse shape of the mold on the transparent substrate. film. 163390.doc •82- 201243449 砝 In order to manufacture a thin scorpion with a moth eye by a large number of inexpensive embossing techniques, it is preferred to use a continuous winding process as compared to batch processing. According to the continuous winding treatment, the film having the moth-eye structure can be continuously produced by using a mold roll. The mold is light, and the outer surface of the cylindrical or cylindrical tube can be formed by anodization. There are pits of nano size. The Genlang polar oxidation method can form a non-seam (floating) moth-eye structure suitable for continuous production on the surface of the mold roll by randomly and uniformly forming a pit of a non-meter size on the surface. The respective embodiments of the above-described embodiments may be combined as appropriate without departing from the spirit and scope of the invention. Further, a form in which two or more preferred embodiments are combined with each other is also one of preferable embodiments. This application is based on the patent application 2〇ιι_嶋128, filed on March 31, 2011, and claims the priority based on the Paris Convention and the regulations of the country of transfer. The entire content of the request is for reference and in the application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing an azimuth angle 沴 and a polar angle 朝向 with respect to the direction A of the oblique alignment of liquid crystal molecules. Fig. 2 is a perspective exploded view showing the configuration of a circularly polarized VA mode liquid crystal display device including the simplest configuration, which does not include the second and third birefringent layers. Fig. 3(a) is a schematic diagram of the late phase sleeve of the -λ/4 plate and the second phase of the second λ/4 plate orthogonal to the front direction, viewed from the front direction (above and self-orientation 0) The mode diagram (below) e (b) is for the front direction 163390.doc -83- 201243449 Orthogonal phase of the first λ Μ plate and the second λ / 4 plate of the slow phase axis The pattern diagram (top) when viewed from the front direction and the pattern diagram (bottom) when viewed from the oblique direction of the orientation 45. (勹 is the absorption axis of the first polarizing element orthogonal to the front direction and the second The absorption axis of the polarizing element, the mode diagram (top) when viewed from the front direction, and the mode diagram when the self-orientation 45 is obliquely observed (bottom). FIG. 4 is a circularly polarized VA mode liquid crystal display device of FIG. The state of the polarized state of the transmitted light when viewed from the front direction is projected on the S1_S2 plane of the Poincare sphere as it passes through each member. Fig. 5 is a circularly polarized VA mode liquid crystal display device of Fig. 2. , the self-direction 〇., the pole 60. When viewed obliquely, the transmitted light is polarized. The case where each member changes from time to time is projected on the plane of the Poincare sphere. Fig. 6 is an exploded perspective view showing the configuration of a circularly polarized va mode liquid crystal display device including a third birefringent layer. 6 circular polarized VA mode liquid crystal display device (Nzql=Nzq2=2_〇, R3=_61 nm, Rlc=32〇nm form), when viewed from the front direction, the transmitted light polarization state passes each The case where the component changes from time to time is shown in the S1-S2 plane of the Poincare sphere. Fig. 8-1 is the circularly polarized VA mode liquid crystal display device of Fig. 6 (Nzql Nzq2-2.〇, RXl nm, Rlc= The shape of 320 nm), which is observed from the azimuth 〇., the pole 60. The oblique state of the transmitted light changes as it passes through each member, and is projected on the Sli2 plane of the Poincare sphere. 8-2 is a circular polarized VA mode liquid crystal display device of FIG. 6 163390.doc •84·201243449 (NZql = 3.〇, Nzq2 spitting, R3t6l nm, η:·), and the self-orientation is 0. The polarized state of the transmitted light changes as it passes through the members when viewed obliquely. The shape projection is shown in the S1-S2 plane of the Poincare sphere. Fig. 8-3 is the circularly polarized VA mode liquid crystal display device of Fig. 6 (Nzq Bu 2.5, Nzpy.S, R3 = _61 nm, Rlc = 32 〇) The form of nm "will be from the azimuth 0., the pole 60. When viewed obliquely, the polarization of the transmitted light 投影 state changes as it passes through each member. The projection is represented on the S1-S2 plane of the Poincare sphere. Figure

8-4係針對圖6之圓偏光VA 模式液晶顯示裝置8-4 is a circularly polarized VA mode liquid crystal display device for FIG.

Rlc=320 nm 之形 (Nzql = l.〇、Nzq2=3.0、R3=_61 nm 態),將自方位0。、極60。之斜向觀察時之、透射光之偏光 狀態每當通過各構件時而變化之情形投影表示於魔加萊球 之S1-S2平面之圖。 圖8-5係針對圖6之圓偏光VA模式液晶顯示裝置The shape of Rlc=320 nm (Nzql = l.〇, Nzq2=3.0, R3=_61 nm state) will be from the orientation 0. Extreme 60. The state in which the polarized state of the transmitted light changes as it passes through the respective members is projected on the S1-S2 plane of the Magical Ball. 8-5 is a circularly polarized VA mode liquid crystal display device of FIG.

(Nzql = 1.5、Nzq2=2.5、R3=_61 nm、Rlc=320 nm 之形 態),將自方位0。、極60。之斜向觀察時之、透射光之偏光 狀態每當通過各構件時而變化之情形投影表示於龐加萊球 之S1-S2平面之圖。 圖8-6係針對圖6之圓偏光VA模式液晶顯示裝置,將自方 位0。、極60。之斜向觀察時之、第一及第二λ/4板之遲相軸 根據Νζ係數而變化之情形投影表示於龐加萊球之81_82平 面之圖。 圖9係針對圖6之圓偏光νΑ模式液晶顯示裝置而表示第 163390.doc •85· 201243449 一及第二λ/4板之Nz係數之平均值Nzq與第三種雙折射層之 厚度方向相位差R3之最佳值之關係的圖表。 圖10係針對圖6之圓偏光VA模式液晶顯示裝置,將自方 位45。、極60。之斜向觀察時之、透射光之偏光狀態每當通 過各構件時而變化之情形投影表示於龐加萊球之s丨· s 2平 面之圖。 圖11係表示包含第二種及第三種雙折射層之圓偏光VA 模式液晶顯示裝置之構成之立體分解圖。 圖12係針對圖n之圓偏光VA模式液晶顯示裝置 (Nzql=Nzq2=2.0 > R3=-61 nm > Rlc=320 nm > Nz2=-〇.3〇 , R2 = 118 nm之形態)’將自正面方向觀察時之、透射光之偏 光狀態每當通過各構件時而變化之情形投影表示於龐加萊 球之S1-S2平面之圖。 圖13係針對圖 (Nzql=Nzq2=2.0 > R3=-61 nm > Rlc=320 nm > ΝζΙ-οΓο^ R2 = l18 nm之形態),將自方位45。、極6〇。之斜向觀察時(Nzql = 1.5, Nzq2 = 2.5, R3 = _61 nm, Rlc = 320 nm), will be from the azimuth 0. Extreme 60. The state in which the polarized state of the transmitted light changes as it passes through the respective members is projected on the S1-S2 plane of the Poincare sphere. Fig. 8-6 is a circularly polarized VA mode liquid crystal display device of Fig. 6, which will be self-aligned to zero. Extreme 60. The oblique phase axes of the first and second λ/4 plates when viewed obliquely are projected on the 81_82 plane of the Poincare sphere as a function of the Νζ coefficient. 9 is a graph showing the average Nzq of the Nz coefficients of the first and second λ/4 plates and the thickness direction of the third birefringent layer for the circularly polarized νΑ mode liquid crystal display device of FIG. A graph of the relationship between the best values of the difference R3. Figure 10 is a perspective view of the circularly polarized VA mode liquid crystal display device of Figure 6, taken from a 45 position. Extreme 60. The state in which the polarized state of the transmitted light changes as it passes through the respective members when viewed obliquely is projected on the s丨·s 2 plane of the Poincare sphere. Figure 11 is a perspective exploded view showing the configuration of a circularly polarized VA mode liquid crystal display device including second and third birefringent layers. Figure 12 is a view of the circularly polarized VA mode liquid crystal display device of Figure n (Nzql = Nzq2 = 2.0 > R3 = -61 nm > Rlc = 320 nm > Nz2 = -〇.3〇, R2 = 118 nm) 'The state in which the polarized state of the transmitted light changes as it passes through the respective members when viewed from the front direction is projected on the S1-S2 plane of the Poincare sphere. Fig. 13 is for the graph (Nzql = Nzq2 = 2.0 > R3 = -61 nm > Rlc = 320 nm > ΝζΙ - οΓο^ R2 = l18 nm), and the self-orientation is 45. Very extreme. Observed obliquely

之、透射光之偏光狀態每當通過各構件時而變化之情形於 影表示於魔加萊球之S1-S2平面之圖。 X 圖14係針對圖U之圓偏光以模式液晶顯示裝 (Nzql=Nzq2=2.0 ' R3=-61 nm ' Rlc=320 nm ' z 2 ~ . 3 〇、 R2 = 118 nm之形態),將自方位〇。、極6〇。 <斜向觀察時 之、透射光之偏光狀態每當通過各構件時 ^ I化之情形招· 影表示於龐加萊球之S1-S2平面之圖。 圖15係針對圖11之圓偏光VA模式液晶顯 衣罝而表示 163390.doc • 86 - 201243449 第一及第二λ/4板之Nz係數之平均值Nzq與第二種雙折射層 之Nz係數Nz2之最佳值之關係的圖表。 圖16係針對圖11之圓偏光VA模式液晶顯示裝置而表示 第一及第二λ/4板之Nz係數之平均值Nzq與第二種雙折射層 之面内相位差R2之最佳值之關係的圖表。 圖17係表示第一及第二λ/4板之Nz係數之平均值Nzq與第 一及第二個第二種雙折射層之Nz係數Nz2之最佳值之關係 的圖表。 圖18係表示第一及第二λ/4板之Nz係數之平均值Nzq與第 一及第二個第二種雙折射層之面内相位差R2之最佳值之關 係的圖表。 圖19係表示於Nzq<2.00之範圍内使用Nz2=0之第二種雙 折射層時之、第一及第二λ/4板之Nz係數之平均值Nzq與第 一及第二個第二種雙折射層之面内相位差R2之最佳值之關 係的圖表。 圖20係表示包含第二種雙折射層而不包含第三種雙折射 層之圓偏光VA模式液晶顯示裝置之構成之立體分解圖。 圖2 1係表示實施例1之液晶單元中所形成之區域之例之 模式圖。 圖22係表示實施例1之液晶單元中所形成之區域之例之 模式圖。 圖23係表示實施例1之液晶單元中所形成之區域之例之 模式圖。 圖24係表示包含兩個第二種雙折射層之圓偏光VA模式 163390.doc -87- 201243449 液晶顯示裝置之構成的立體分解圖。 圖25係表示包含一個第二種雙折射層之圓偏光VA模式 液晶顯示裝置之構成的立體分解圖。 圖26係表示包含兩個第二種雙折射層之圓偏光VA模式 液晶顯示裝置之構成的立體分解圖。 圖27係表示測定實施例1之液晶顯示裝置而獲得之伽馬 曲線之圖表。 圖28係表示測定實施例2之液晶顯示裝置而獲得之伽馬 曲線之圖表。 圖2 9係表不測定實施例3之液晶顯不裝置而獲得之伽馬 曲線之圖表。 圖3 0係表示測定實施例4之液晶顯示裝置而獲得之伽馬 曲線之圖表。 圖3 1係表示測定實施例5之液晶顯示裝置而獲得之伽馬 曲線之圖表。 圖32係表示測定實施例6之液晶顯示裝置而獲得之伽馬 曲線之圖表。 圖33係表示測定實施例7之液晶顯示裝置而獲得之伽馬 曲線之圖表。 圖34係表示測定比較例1之液晶顯示裝置而獲得之伽馬 曲線之圖表。 圖35係表示測定比較例2之液晶顯示裝置而獲得之伽馬 曲線之圖表。 圖36係表示測定比較例3之液晶顯示裝置而獲得之伽馬 163390.doc -88- 201243449 曲線之圖表。 圖37(a)係表示蛾眼膜之剖面之放大模式圖, 蛾眼膜與空氣層之界面中之折射率之變化之說明 圖38係表示於圖μ圓偏光VA模式液晶顯示 加有蛾眼膜之構成之立體分解圖。 【主要元件符號說明】 (b)係表示 圖。 裝置中附The state in which the polarized state of the transmitted light changes as it passes through the respective members is shown in the S1-S2 plane of the Magic Calais ball. X Figure 14 is a pattern of liquid crystal display for the circular polarized light of Figure U (Nzql = Nzq2 = 2.0 ' R3 = -61 nm ' Rlc = 320 nm ' z 2 ~ . 3 〇, R2 = 118 nm), from Azimuth. Very extreme. <The state of polarization of transmitted light when viewed obliquely is reflected in the S1-S2 plane of the Poincare sphere whenever it passes through each member. Figure 15 is a graph showing the average Nzq of the Nz coefficients of the first and second λ/4 plates and the Nz coefficient of the second birefringent layer for the circularly polarized VA mode liquid crystal display of Figure 11; 163390.doc • 86 - 201243449 A chart of the relationship between the best values of Nz2. 16 is a view showing the optimum value of the average value Nzq of the Nz coefficients of the first and second λ/4 plates and the in-plane retardation R2 of the second birefringent layer for the circularly polarized VA mode liquid crystal display device of FIG. Relationship chart. Fig. 17 is a graph showing the relationship between the average value Nzq of the Nz coefficients of the first and second λ/4 plates and the optimum value of the Nz coefficient Nz2 of the first and second second birefringent layers. Fig. 18 is a graph showing the relationship between the average value Nzq of the Nz coefficients of the first and second λ/4 plates and the optimum value of the in-plane phase difference R2 of the first and second second birefringent layers. Figure 19 is a graph showing the average Nzq of the Nz coefficients of the first and second λ/4 plates when using the second birefringent layer of Nz2 = 0 in the range of Nzq < 2.00 and the first and second second A graph showing the relationship between the optimum values of the in-plane retardation R2 of the birefringent layer. Figure 20 is a perspective exploded view showing the configuration of a circularly polarized VA mode liquid crystal display device including a second birefringent layer and not including a third birefringent layer. Fig. 2 is a schematic view showing an example of a region formed in the liquid crystal cell of the first embodiment. Fig. 22 is a schematic view showing an example of a region formed in the liquid crystal cell of the first embodiment. Fig. 23 is a schematic view showing an example of a region formed in the liquid crystal cell of the first embodiment. Figure 24 is a perspective exploded view showing the configuration of a liquid crystal display device of a circularly polarized VA mode 163390.doc -87 - 201243449 comprising two second birefringent layers. Figure 25 is a perspective exploded view showing the configuration of a circularly polarized VA mode liquid crystal display device including a second birefringent layer. Figure 26 is a perspective exploded view showing the configuration of a circularly polarized VA mode liquid crystal display device including two second birefringent layers. Fig. 27 is a graph showing the gamma curve obtained by measuring the liquid crystal display device of Example 1. Fig. 28 is a graph showing the gamma curve obtained by measuring the liquid crystal display device of Example 2. Fig. 2 is a graph showing the gamma curve obtained by not measuring the liquid crystal display device of Example 3. Fig. 30 is a graph showing the gamma curve obtained by measuring the liquid crystal display device of Example 4. Fig. 3 is a graph showing the gamma curve obtained by measuring the liquid crystal display device of Example 5. Fig. 32 is a graph showing the gamma curve obtained by measuring the liquid crystal display device of Example 6. Figure 33 is a graph showing the gamma curve obtained by measuring the liquid crystal display device of Example 7. Fig. 34 is a graph showing the gamma curve obtained by measuring the liquid crystal display device of Comparative Example 1. Fig. 35 is a graph showing the gamma curve obtained by measuring the liquid crystal display device of Comparative Example 2. Fig. 36 is a graph showing the gamma 163390.doc -88 - 201243449 curve obtained by measuring the liquid crystal display device of Comparative Example 3. 37(a) is an enlarged schematic view showing a cross section of a moth eye film, and a description of a change in refractive index at an interface between a moth eye film and an air layer. FIG. 38 is a view showing a circularly polarized VA mode liquid crystal display with a moth eye. An exploded view of the composition of the membrane. [Explanation of main component symbols] (b) is a diagram. Attached to the device

100 圓偏光VA模式液晶顯示裝置 110 第一偏光元件 111 第一偏光元件之吸收軸 120 第一 λ/4板 121 第一 λ/4板之遲相軸 130 VA模式液晶單元 140 第二λ/4板 141 第二λ/4板之遲相軸 150 第二偏光元件 151 第二偏光元件之吸收轴 200 圓偏光VA模式液晶顯示裝置 210 第一偏光元件 220 第一 λ/4板 230 VA模式液晶單元 235 第三種雙折射層 240 第二λ/4板 250 第二偏光元件 300 圓偏光VA模式液晶_示裝置 163390.doc -89- 201243449 310 第一偏光元件 315 第二種雙折射層 320 第一 λ/4板 330 VA模式液晶單元 335 第三種雙折射層 340 第二λ/4板 350 第二偏光元件 360 蛾眼膜 361 突起 362 膜基材部 400 圓偏光VA模式液晶顯示裝置 410 第一偏光元件 415 第二種雙折射層 420 第一 λ/4板 430 VA模式液晶單元 440 第二λ/4板 450 第二偏光元件 500 圓偏光VA模式液晶顯示裝置 510 第一偏光元件 515 第一個第二種雙折射層 520 第一 λ/4板 530 VA模式液晶單元 535 第三種雙折射層 540 第二λ/4板 163390.doc -90- 201243449100 circularly polarized VA mode liquid crystal display device 110 First polarizing element 111 Absorbing axis 120 of the first polarizing element First λ/4 plate 121 Delay axis of the first λ/4 plate 130 VA mode liquid crystal cell 140 Second λ/4 Plate 141 second λ/4 plate slow phase axis 150 second polarizing element 151 second polarizing element absorption axis 200 circularly polarized VA mode liquid crystal display device 210 first polarizing element 220 first λ/4 plate 230 VA mode liquid crystal cell 235 third birefringent layer 240 second λ/4 plate 250 second polarizing element 300 circularly polarized VA mode liquid crystal_display device 163390.doc -89- 201243449 310 first polarizing element 315 second birefringent layer 320 first λ/4 plate 330 VA mode liquid crystal cell 335 third birefringent layer 340 second λ/4 plate 350 second polarizing element 360 moth eye film 361 protrusion 362 film base portion 400 circularly polarized VA mode liquid crystal display device 410 first Polarizing element 415 Second birefringent layer 420 First λ/4 plate 430 VA mode liquid crystal cell 440 Second λ/4 plate 450 Second polarizing element 500 Circularly polarized VA mode liquid crystal display device 510 First polarizing element 515 A second birefringent layer 520 of the first λ / 4 plate 530 VA LC cell 535 birefringent layer 540 of the second λ / 4 plate 163390.doc -90- 201243449

545 550 600 610 620 630 640 645 650 700 710 715 720 730 735 740 745 750 D1 D2 D3 D4 第二個第二種雙折射層 第二偏光元件 圓偏光VA模式液晶顯示裝置 第一偏光元件 第一 λ/4板 VA模式液晶單元 第二λ/4板 第二種雙折射層 第二偏光元件 圓偏光VA模式液晶顯示裝置 第一偏光元件 第一個第二種雙折射層 第一 λ/4板 VA模式液晶單元 第三種雙折射層 第二λ/4板 第二個第二種雙折射層 第二偏光元件 液晶分子於22.5°方位傾斜配向之區域 液晶分子於112.5°方位傾斜配向之區域 液晶分子於202.5°方位傾斜配向之區域 液晶分子於292.5°方位傾斜配向之區域 163390.doc -91-545 550 600 610 620 630 640 645 650 700 710 715 720 730 735 740 745 750 D1 D2 D3 D4 Second second birefringent layer second polarizing element circularly polarized VA mode liquid crystal display device first polarizing element first λ / 4-plate VA mode liquid crystal cell second λ/4 plate second birefringent layer second polarizing element circularly polarized VA mode liquid crystal display device first polarizing element first second birefringent layer first λ/4 plate VA mode Liquid crystal cell, third birefringent layer, second λ/4 plate, second second birefringent layer, second polarizing element, liquid crystal molecules, 22.5° azimuth, oblique alignment, liquid crystal molecules, 112.5° azimuth, oblique alignment, liquid crystal molecules 202.5° azimuth oblique alignment of the liquid crystal molecules in the 292.5° azimuth tilt alignment area 163390.doc -91-

Claims (1)

201243449 七、申請專利範圍: 1. 一種液晶顯示裝置,其於將滿足nx>ny^nz之關係之雙折 射層定義為第一種雙折射層時, 依序具備: 第.一偏光元件; 第一 λ/4板,其面内相位差經調整為λ/4 ; 液晶單元,其包含相互對向之一對基板及夾入於該 一對基板間之液晶層; 第二λ/4板,其具有不同於該第一 λ/4板之Νζ係數, 且面内相位差經調整為χ/4 ;及 第二偏光元件;且 上述第及第一 λ/4板為第'一種雙折射層, 於將第二偏光元件之吸收轴之方位定義為〇。時, 該第二λ/4板之面内遲相軸呈大致45。之角度, 該第一 λ/4板之面内遲相軸呈大致135。之角度, 該第一偏光元件之吸收轴呈大致9〇。之角度, 該液晶顯示裝置係藉由使液晶層中之液晶分子自相 對於基板面大致垂直配向之狀態變化為傾斜配向之狀 態而使顯示亮度變化者,且 該液晶層具有液晶分子於12.5。〜32.5。方位傾斜配向 之區域、液晶分子於102.5。〜122.5。方位傾斜配向之區 域、液晶分子於192.5。〜212.5。方位傾斜配向之區域、 及液晶分子於282_5。〜302.5°方位傾斜配向之區域。 2·如請求項1之液晶顯示裝置,其中 163390.doc 201243449 上述第一λ/4板及上述第二λ/4板之其中一者之Nz係數 為2以上; 上述第一λ/4板及上述第二λ/4板之另一者之Nz係數為1 以上且未達2。 3 .如請求項1或2之液晶顯示裝置,其中 上述第一及第二λ/4板中Nz係數較大者係配置於上述 液晶單元之背面侧。 4. 如請求項1至3中任一項之液晶顯示裝置,其中 上述第一 λ/4板之Nz係數大於上述第二λ/4板之Nz係 數; 於上述第二偏光元件之觀察面側進而具備表面處理 層。 5. 如請求項1至4中任一項之液晶顯示裝置,其中 於將滿足nx<ny$nz之關係之雙折射層定義為第二種雙 折射層時, 於上述第一 λ/4板與第一偏光元件之間進而具備第二種 雙折射層,且 該第二種雙折射層之面内進相軸相對於該第一偏光元 件之吸收軸大致正交。 6. 如請求項5之液晶顯示裝置,其中 上述第二種雙折射層係配置於上述液晶單元之背面 側。 7. 如請求項6之液晶顯示裝置,其中 上述第一 λ/4板之Nz係數大於上述第二λ/4板之Nz係 163390.doc 201243449 數; 上述第二種雙折射層及上述第一 λ/4板係配置於上述液 晶單元之背面側。 8.如請求項5至7中任一項之液晶顯示裝置,其中 於將滿足ηχ与ny2nz之關係之雙折射層定義為第三種雙 • 折射層時, 於上述第一 λ/4板與上述液晶單元之間、及上述液晶單 元與上述第二λ/4板之間之至少一者’進而具備至少一層 第三種雙折射層。 9_如請求項8之液晶顯示裝置,其中 上述至少一層第三種雙折射層係配置於上述液晶單元 之背面側。 10. 如請求項8之液晶顯示裝置,其中 上述第一 λ/4板之Νζ係數大於上述第二λ/4板之Νζ係 數; Q 上述第二種雙折射層、上述第一 λ/4板及上述至少一層 第三種雙折射層係配置於上述液晶單元之背面側。 11. 如請求項8至10中任一項之液晶顯示裝置,其中 . 於將上述第一及第二λ/4板之Νζ係數之平均值定義為 Nzq, 將上述液晶單元之黑顯示時之厚度方向相位差定義為 Rlc, 且將上述至少一層第三種雙折射層之厚度方向相位差 之總和定義為R3時, 163390.doc 201243449 滿足下式(1)〜(3): 1.0<Nzq<2.9 (1) (169 nmxNzq-81 nm)-50 nm<Rlc+R3 (2) Rlc+R3<(169 nmxNzq-81 nm)+50 nm (3) 0 12. 如請求項11之液晶顯示裝置,其中 於將上述第二種雙折射層之Nz係數定義為Nz2,且將 面内相位差定義為R2時, 滿足下式(4)〜(7): (-0.63 xNzq2 + 0.56xNzq+0.40)-0.80<Nz2 (4) Nz2<(-0.63xNzq2+0.5 6xNzq+0.40)+0.80 (5) (43 nmxNzq2-226 nmxNzq+370 nm)-50 nm<R2 (6) R2<(43 nmxNzq2-226 nmxNzq+370 nm)+50 nm (7)。 13. 如請求項12之液晶顯示裝置,其中滿足1.40^Nzq。 14. 如請求項8至11中任一項之液晶顯示裝置,其中 於將上述第一及第二λ/4板之Nz係數之平均值定義為 Nzq, 將上述第二種雙折射層之Nz係數定義為Nz2,且將面 内相位差定義為R2時, 滿足 Nzq<1.40,滿足-0.80$Nz2S0 ,且滿足 88 nm$R2Sl 88 nm。 15. 如請求項5至7中任一項之液晶顯示裝置,其中 於將滿足nx与ny>nz之關係之雙折射層定義為第三種雙 折射層時, 於上述第一 λ/4板與上述液晶單元之間、及上述液晶單 元與上述第二λ/4板之間不具備第三種雙折射層。 163390.doc201243449 VII. Patent application scope: 1. A liquid crystal display device, which is defined as a first birefringent layer when the birefringent layer satisfying the relationship of nx>ny^nz is sequentially provided: a first polarizing element; a λ/4 plate whose in-plane phase difference is adjusted to λ/4; a liquid crystal cell comprising a pair of substrates facing each other and a liquid crystal layer sandwiched between the pair of substrates; a second λ/4 plate, It has a different coefficient than the first λ/4 plate, and the in-plane phase difference is adjusted to χ/4; and the second polarizing element; and the first and first λ/4 plates are the first birefringent layer The orientation of the absorption axis of the second polarizing element is defined as 〇. The in-plane slow axis of the second λ/4 plate is approximately 45. From the angle, the in-plane slow axis of the first λ/4 plate is approximately 135. The angle of the absorption of the first polarizing element is approximately 9 〇. In the liquid crystal display device, the display luminance is changed by changing the state in which the liquid crystal molecules in the liquid crystal layer are substantially perpendicularly aligned with respect to the substrate surface to the oblique alignment state, and the liquid crystal layer has liquid crystal molecules at 12.5. ~32.5. The area of the azimuth oblique alignment and the liquid crystal molecules are at 102.5. ~122.5. The area of the azimuth oblique alignment and the liquid crystal molecules are at 192.5. ~212.5. The region of the azimuth oblique alignment and the liquid crystal molecules are at 282_5. ~302.5° azimuth tilted alignment area. 2. The liquid crystal display device of claim 1, wherein 163390.doc 201243449 one of the first λ/4 plate and the second λ/4 plate has an Nz coefficient of 2 or more; the first λ/4 plate and The other of the second λ/4 plates has an Nz coefficient of 1 or more and less than 2. 3. The liquid crystal display device of claim 1 or 2, wherein the first and second λ/4 plates have a larger Nz coefficient disposed on a back side of the liquid crystal cell. 4. The liquid crystal display device of any one of claims 1 to 3, wherein the Nz coefficient of the first λ/4 plate is greater than the Nz coefficient of the second λ/4 plate; and the observation surface side of the second polarizing element Furthermore, it has a surface treatment layer. 5. The liquid crystal display device of any one of claims 1 to 4, wherein the birefringent layer satisfying the relationship of nx <ny$nz is defined as the second birefringent layer, the first λ/4 plate A second birefringent layer is further provided between the first polarizing element and the in-plane axis of the second birefringent layer is substantially orthogonal to the absorption axis of the first polarizing element. 6. The liquid crystal display device of claim 5, wherein the second birefringent layer is disposed on a back side of the liquid crystal cell. 7. The liquid crystal display device of claim 6, wherein the Nz coefficient of the first λ/4 plate is greater than the Nz 163390.doc 201243449 number of the second λ/4 plate; the second birefringent layer and the first The λ/4 plate is disposed on the back side of the liquid crystal cell. 8. The liquid crystal display device according to any one of claims 5 to 7, wherein when the birefringent layer satisfying the relationship of ηχ and ny2nz is defined as the third double-refractive layer, the first λ/4 plate is At least one of the liquid crystal cells and between the liquid crystal cell and the second λ/4 plate further includes at least one third birefringent layer. The liquid crystal display device of claim 8, wherein the at least one layer of the third birefringent layer is disposed on a back side of the liquid crystal cell. 10. The liquid crystal display device of claim 8, wherein the first λ/4 plate has a Νζ coefficient greater than a Νζ coefficient of the second λ/4 plate; Q the second birefringent layer, the first λ/4 plate And the at least one layer of the third birefringent layer is disposed on the back side of the liquid crystal cell. 11. The liquid crystal display device according to any one of claims 8 to 10, wherein the average value of the Νζ coefficients of the first and second λ/4 plates is defined as Nzq, and the black color of the liquid crystal cell is displayed The phase difference in the thickness direction is defined as Rlc, and when the sum of the phase differences in the thickness direction of the at least one third birefringent layer is defined as R3, 163390.doc 201243449 satisfies the following formula (1) to (3): 1.0 <Nzq<;2.9 (1) (169 nmxNzq-81 nm)-50 nm<Rlc+R3 (2) Rlc+R3<(169 nmxNzq-81 nm)+50 nm (3) 0 12. Liquid crystal display device according to claim 11 Wherein the Nz coefficient of the second birefringent layer is defined as Nz2, and when the in-plane phase difference is defined as R2, the following formulas (4) to (7) are satisfied: (-0.63 xNzq2 + 0.56xNzq+0.40) -0.80<Nz2 (4) Nz2<(-0.63xNzq2+0.5 6xNzq+0.40)+0.80 (5) (43 nmxNzq2-226 nmxNzq+370 nm)-50 nm<R2 (6) R2<(43 nmxNzq2-226 nmxNzq+370 nm)+50 nm (7). 13. The liquid crystal display device of claim 12, wherein 1.40^Nzq is satisfied. 14. The liquid crystal display device of any one of claims 8 to 11, wherein the average of the Nz coefficients of the first and second λ/4 plates is defined as Nzq, and the Nz of the second birefringent layer is The coefficient is defined as Nz2, and when the in-plane phase difference is defined as R2, Nzq<1.40 is satisfied, -0.80$Nz2S0 is satisfied, and 88 nm$R2Sl 88 nm is satisfied. 15. The liquid crystal display device of any one of claims 5 to 7, wherein the birefringent layer satisfying the relationship of nx and ny > nz is defined as the third birefringent layer, on the first λ/4 plate A third birefringent layer is not provided between the liquid crystal cell and the liquid crystal cell and the second λ/4 plate. 163390.doc
TW101111622A 2011-03-31 2012-03-30 Liquid crystal display device TW201243449A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080128 2011-03-31

Publications (1)

Publication Number Publication Date
TW201243449A true TW201243449A (en) 2012-11-01

Family

ID=46930867

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101111622A TW201243449A (en) 2011-03-31 2012-03-30 Liquid crystal display device

Country Status (2)

Country Link
TW (1) TW201243449A (en)
WO (1) WO2012133141A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5508702B2 (en) * 2008-02-20 2014-06-04 富士フイルム株式会社 Liquid crystal display
US9104037B2 (en) * 2009-07-30 2015-08-11 Sharp Kabushiki Kaisha Liquid crystal display device

Also Published As

Publication number Publication date
WO2012133141A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5248546B2 (en) Liquid crystal display
JP4792545B2 (en) Liquid crystal display
JP5330529B2 (en) Liquid crystal display
WO2010058633A1 (en) Circularly polarizing plate and display device
TWI294541B (en)
TWI258022B (en) In-plane switching liquid crystal display including viewing angle compensation film using +A-plate
JP4538096B2 (en) Liquid crystal display
JP5259824B2 (en) Liquid crystal display
WO2014034481A1 (en) Liquid crystal display device
TW201035605A (en) A coupled polarizing plate set and in-plane switching mode liquid crystal display including the same
WO2012133137A1 (en) Liquid crystal display device
TW200912458A (en) Transmissive liquid crystal display device
TW200918968A (en) Elliptical polarizer and liquid crystal display device
TWI495911B (en) Coupled polarizing plate set and blue phase liquid crystal mode liquid crystal display including the same
WO2013111867A1 (en) Liquid crystal display device
TWI495912B (en) Coupled polarizing plate set and blue phase liquid crystal mode liquid crystal display including the same
TW201248272A (en) Liquid crystal display device
JP2012252085A (en) Liquid crystal panel and liquid crystal display device
TW201243449A (en) Liquid crystal display device
WO2012133140A1 (en) Liquid crystal display device
TW201040594A (en) Coupled polarizing plate set and blue phase liquid crystal mode liquid crystal display including the same
Takahashi et al. 34.2: Viewing‐Angle Compensation of IPS and Circularly Polarized VA‐LCDs Using a Novel Ultra‐Thin Homeotropically Aligned Liquid‐Crystalline Polymer Film