TW201242209A - Intellectual and modular energy-storing device and management system employing same - Google Patents

Intellectual and modular energy-storing device and management system employing same Download PDF

Info

Publication number
TW201242209A
TW201242209A TW100112960A TW100112960A TW201242209A TW 201242209 A TW201242209 A TW 201242209A TW 100112960 A TW100112960 A TW 100112960A TW 100112960 A TW100112960 A TW 100112960A TW 201242209 A TW201242209 A TW 201242209A
Authority
TW
Taiwan
Prior art keywords
unit
energy storage
circuit
module
battery pack
Prior art date
Application number
TW100112960A
Other languages
Chinese (zh)
Other versions
TWI451656B (en
Inventor
Ming Kao
Shun-Chieh Chang
Original Assignee
Compal Communication Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compal Communication Inc filed Critical Compal Communication Inc
Priority to TW100112960A priority Critical patent/TWI451656B/en
Publication of TW201242209A publication Critical patent/TW201242209A/en
Application granted granted Critical
Publication of TWI451656B publication Critical patent/TWI451656B/en

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

An intellectual and modular energy-storing device, which is coupled to a load and a control center, is disclosed. The energy-storing device includes a main module and a plurality of sub-modules. The main module is coupled to the control center for allowing the energy-storing device and the control center to transmit and change information with each other. The sub-modules are coupled to the main module respectively, and the sub-modules are connected in series and further connected to the load and supply power to the load. Each sub-module includes a grounding and insulation unit for connecting to a ground so that the grounds between each sub-module and the main module are isolated with each other. When one of the sub-modules is failure or breakdown, the sub-module can perform a detection and protection automatically and the main module can transmit a signal issued from the sub-module to the control center automatically.

Description

201242209 六、發明說明: 【發明所屬之技術領域】 [0001] 本案係關於一種模組化儲能裝置,尤指一種應用於電池 驅動裝置,例如電動車、太陽能電子產品或家用電子產 品等裝置,之智慧型之模組化儲能裝置。 【先前技術】 [0002] 近年來,由於全球受到高油價衝擊以及能源短缺的問題 日趨嚴重,世界各國不斷地研發新的替代能源並提出相 關的補助方案,其中電動車之關鍵零組件動力電池的研 發更是各國政府積極投入研發的產業之一。目前電動車 之電池的種類包括鎳氫電池、鎳鋅電池、鋅-空氣電池、 鋰離子電池以及燃料電池等,一般而言,鋰離子電池具 有工作電壓高、能量密度大、體積小、重量輕、使用壽 命長及可快速充電等特性,因此有越來越多的研究及應 用係以鋰離子電池作為電動車的動力電池。 [0003] 然而,若要驅動一輛電動車需要搭載數千顆鋰離子電池 ,當數千顆鋰離子電池同時做大電流放電,例如駕駛重 踩油門急加速時,數千顆鋰離子電池會產生極高的熱量 ,而高熱量不僅可能造成鋰離子電池效能的快速衰耗, 嚴重者更可能導致整輛電動車爆炸或燒毁的危險,因此 作為驅動電動車之動力電池除了要注意電池本身的材料 與製程外,電動車之電池管理系統(Battery Manage-ment Systems, BMS)與電池自動故障檢測機制在安規 的設計上也都是不可或缺的。 [0004] 另一方面,雖然傳統上多以標準通訊介面,例如CAN Bus 100112960 表單編號A0101 第4頁/共27頁 1002021609-0 201242209 、ΙΕΕΕ485、ΙΕΕΕ488 ' UART或Net 等通訊介面,來監# 電動車或負載之電池系統的健康狀態及運作情況,但其 卻無法有效達到電池管理系統的可擴充性、穩定性與即 時性。再者’若負载電路的需求越來越多或不斷地新增 額外的負載設備時,電池系統的資料管理便會隨之變得 越來越龐大且繁瑣,進而增加電池系統維護的困難度, 以及當電動車或負載之電池系統發生老化或故障時將 會造成檢修人員不易修護的問題。 【發明内容】 〇 [0005] 本案之目的為提供一種智慧型之模組化儲能裝置,其係 包括一主模组及複數個彼此串聯連接之次模組,用以提 供一負載運作時所需之電力,且複數個次模組分别連接 於一接地端’藉此達到提高電池管理系統(Batte〇201242209 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a modular energy storage device, and more particularly to a device for driving a battery, such as an electric vehicle, a solar electronic product, or a household electronic product. Smart modular energy storage device. [Prior Art] [0002] In recent years, due to the global problem of high oil price shocks and energy shortages, countries around the world are constantly developing new alternative energy sources and proposing related subsidies, among which the key components of electric vehicles are powered by batteries. R&D is one of the industries that governments of all countries are actively investing in research and development. At present, the types of batteries for electric vehicles include nickel-hydrogen batteries, nickel-zinc batteries, zinc-air batteries, lithium-ion batteries, and fuel cells. In general, lithium-ion batteries have high operating voltage, high energy density, small size, and light weight. With long life and fast charging, there are more and more research and applications using lithium-ion batteries as power batteries for electric vehicles. [0003] However, if you want to drive an electric car, you need to carry thousands of lithium-ion batteries. When thousands of lithium-ion batteries are simultaneously discharging large currents, for example, when driving heavy pedals, thousands of lithium-ion batteries will Produces extremely high heat, which may not only cause rapid decay of lithium-ion battery performance, but also may cause the whole electric vehicle to explode or burn out. Therefore, as a power battery for driving electric vehicles, besides paying attention to the battery itself. In addition to the materials and processes, the Battery Management System (BMS) and battery automatic fault detection mechanism are also indispensable in the design of safety regulations. [0004] On the other hand, although traditionally, the standard communication interface, such as CAN Bus 100112960 form number A0101 page 4 / 27 pages 1002021609-0 201242209, ΙΕΕΕ 485, ΙΕΕΕ 488 'UART or Net communication interface, to monitor # electric The health status and operation of the battery system of the car or the load, but it cannot effectively achieve the scalability, stability and immediacy of the battery management system. Furthermore, if the demand for load circuits is increasing or the additional load devices are continuously added, the data management of the battery system will become more and more complicated and cumbersome, thereby increasing the difficulty of maintaining the battery system. And when the battery system of the electric vehicle or the load is aging or malfunctioning, it will cause the maintenance personnel to be difficult to repair. SUMMARY OF THE INVENTION [0005] The purpose of the present invention is to provide a smart modular energy storage device comprising a main module and a plurality of secondary modules connected in series to each other for providing a load operation Required power, and multiple sub-modules are connected to a grounding terminal respectively to achieve improved battery management system (Batte〇

Management Systems,BMS)之可擴充性與穩定性的目 的。Management Systems, BMS) The purpose of scalability and stability.

[0006] G 本案之另一目的為提供一種智慧型之模組化儲能裝置, 其可自動檢測各次模組之電池組的健康狀態及運作情況 ,進而自動啟動保護機制或即時通知檢修人員進行相關 的修護等動作,藉此可降低電池管理系統維護的困難度 〇 [0007] 為達上述目的,本案之一較廣義實施態樣為提供一種智 慧型之模組化儲能裝置,其係與負載及監控中心連接, 且包括主模組係與監控中心連接,用以使智慧型之模組 化儲月b裝置與監控中心間相互傳輸與交換資料;以及複 數個次模組分別與主模組連接,且複數個次模組係彼此 100112960 表單編號A0101 第5頁/共27頁 1002021609-0 201242209 串聯連接後連接於負載’並對負載進行供電,Η > _ 扎母一該 次模組包括一接地隔離單元,用以分別與一接地端連接 ,以使每一該次模組之接地端與主模組彼此間之接地端 彼此間相互隔離;其中,當複數個次模組之其中—個發 生故障或損壞時,該次模組係自動檢測與執行保護,且 主模組將自動傳送一由該次模組輸出之故障訊號至監控 中心。 闺為達上述目的,本案之另—較廣義實施態樣為提供一種 儲此裝置之管理系統,包括—監控中心以及至少—智慧 型之模組化難裝置,其中該至少—智慧型之模組化儲 能裝置係與負載及監控中心連接,且包括主模虹係架構 於與監控中心、連接’用以使智慧型之模組化職裝置與 应控中心間相互傳輸與交換資料;以及複數個次模組分 模。且連接,且複數個次模組係彼此串聯連接後連 接於負載,並對負栽進行供電,且每—該次模組包括一 ,也隔離單兀,用以分別與—接地端連接,以使每一該 二模^之接地端與主模組彼此間之接地端彼此間相互隔 ^八中,當该複數個次模組之其中一個發生故障或損 壞時4次模組係係自動傳送—故障訊號至該主模組, 俾使该主模組將該故障訊號傳送至該監控中心。 【實施方式】 [0009] 體現本荦说π ^ 支/、優點的一些典型實施例將在後段的說明 詳,田敘述。應理解的是本案能夠在不同的態樣上具有 各種的變化,铁甘fc(_ 然其皆不脫離本案的範圍,且其中的說明 及圖π在本質上係當作說明之用’而非用以限制本案。 100112960 表單編號Α0101 第6頁/共27頁 1002021609-0 201242209 [00103 請參閱第一圖,其係為本案較佳實施例之智慧型之模組 化儲能裝置方塊示意圖。如第一圖所示,於本實施例中 ,智慧型之模組化儲能裝置1係與負載2及監控中心3連接 ,且智慧型之模組化儲能裝置1包括主模組11及複數個次 模組,例如第一次模組12、第二次模組13以及第三次模 組14,但不以此為限。於本實施例中,主模組11係透過 標準通訊介面,例如CAN Bus、IEEE485、IEEE488、 UART或Net等通訊介面與監控中心3連接,用以使智慧型 之模組化儲能裝置1與監控中心3之間可互相傳輸與交換 〇 資料。 [0011] 複數個次模組,即第一次模組12、第二次模組13與第三 次模組14,係分別架構於與主模組11連接,且第一次模 組12、第二次模組13與第三次模組14係彼此串聯連接後 與負載2連接,並對負載2進行供電,以驅動負載2運作。 此外,第一次模組12、第二次模組13與第三次模組14分 別包括第一接地隔離單元121、第二接地隔離單元131與 第三接地隔離單元141,且分別連接於第一接地端gl、第 ❹ 二接地端g2與第三接地端g3,藉此使複數個次模組12、 13及14與主模組11彼此間之接地相互隔離。 [0012] 於本實例中,第一次模組12的第一接地端gl連接於負載2 的陰極端及負載接地端Ga,第二次模組13的第二接地端 g2與第一次模組12之第一儲能單元123之陽極端連接,第 三次模組14的第三接地端g3與第二次模組12之第二儲能 單元133之陽極端連接,而第三次模組14之第三儲能單元 143之陽極端連接於負載2的陽極端。由於,複數個次模 100112960 表單編號A0101 第7頁/共27頁 1002021609-0 201242209 組12、13及14與主模組11彼此間之接地(gl、g2、g3、 G)相互隔離’故每—個次模組之監控單元Π 22、132、 142)檢測關於第—儲能單元m〜第三儲能單元143之檢 測電壓訊號非以系統接地端為零電壓參考處,而是依各 自次模組之接地(gl H⑼為零電壓參考處,每一個 次模組之檢測電壓喊不受其他讀組之儲能電壓 (vbl〜vb3)影響,較準確。舉例而言,當第二監控單元 =2檢測關於第二儲能電%之檢測電壓訊號時,此時 “第儲1電I Vbl X然變化亦不會影響該檢測電塵訊號 ’第二監控單元132可以較準確地判斷第一儲能單元η; 之電池組是否故障或儲電量是否充足。 [0013] [0014] 於本實施例中,當複數個次模組之其中-個,例如第— 次模組12、第二次模組13或第三次模組14之其中一個, 發生故障或損壞時,域組⑽自料送—故障訊號至 監控中心3 ’以通知相關檢修人員,並對該發生故障或損 壞之次模組進行維護或檢修的動作。 請參閱第二圖並配合第—圖,其中第二圖係為第一圖中 任一個次模組之内部方塊示意®,為便於說明以下係以 第-次模組12為示範例說明。如第一圖及第二圖所示, 第人模"且12包括第一接地隔離單元121、第一監控單元 122及第-儲能單元⑵。於本實施例中,第—接地隔離 單元121包括輸出遮斷電路Mu及輸入遮斷電路lug, 其中輸出遮斷電路12丨1具有輪人連接端1211a、輸入接 地端12Ub、輸出連接端1211c及輸出接地端I211d,而 輸入遮斷電路121 2亦具有輸入連接端1 212a、輸入接地 100112960 表單編號A010】 第8頁/共27頁 1002021609-0 201242209 端1212b、輸出連接端121 2c及輸出接地端1212d。於本 實施例中’輸出遮斷電路〗211之輸入連接端uila與輸 入遮斷電路121 2之輸出連接端121 2c係分別連接於第一 監控單元122 ’以及輸出遮斷電路1211之輸入接地端 1211b與輸入遮斷電路丨212之輸出接地端1212d係互相連 接後再與第一接地端g 1連接。 [0015] Ο G [0016] 再者’輪出遮斷電路1211之輸出連接端1211c與輸入遮 斷電路1212之輸入連接端121 2a係分別連接於主模組11 ( 圖未示),以及輸出遮斷電路1211之輸出接地端I211d與 輸入遮斷電路1212之輸入接地端121 2b係互相連接後再 與系統接地端G連接’藉由上述之連接關係可使第一次模 組12透過輸出遮斷電路〗211及輸入遮斷電路1212與主模 組11互相傳輸資料’並使第一次模組12之電壓準位與主 模組11之電壓準位彼此隔離’而達到防止電壓準位互相 影響的問題。於本實施例中,輸出遮斷電路121丨及輸入 遮斷電路121 2可為但不限於具訊號隔離功能之光耦合元 件。 於本實施例中,第一次模組12之第一監控單元122至少包 括處理電路12 21及一或複數個偵測電路,例如電壓偵測 電路1 222、電流偵測電路1223、溫度偵測電路1224及内 阻偵測電路1225,但不以此為限,且第—儲能單元丨23至 少包括電池組1 2 31及開關電路1 2 3 2,其中電池組1 2 31用 以輸出一第一儲能電壓Vbl,且該電池組1231係由例如複 數個電池互相串聯連接及/或並聯連接所組合而成(圖未 示)’但不以此為限,。開關電路1 232係連接於電池組 100112960 表單編號A0101 第9頁/共27頁 1002021609-0 201242209 1231,用以決定是否使電池組1231之電力(即第一儲能 電壓VM)能夠輸出至負載2,亦即當開關電路斷路(〇ff) 時,電池組1232之電力則無法輪出至負載2,反之,當開 關電路⑽短路(ON)時,電池組哪之電力可通過^ 電路1 232而輸出至負載2,以驅動負載2運作。 [0017] 於本實施例中,處理電路1221係分別連接於電壓偵測電 路1 222、電流制電路1223、溫度偵測電路1 224及内阻 债測電路1 225,用以接收由每—债測電路輪出之故障訊 號,例如電壓摘測電路1222偵測到第一儲能單元123之電 池組1231發生電壓低於一電壓安全臨界值之低電壓故障 訊號、電㈣測電路12叫貞測到第—儲能單元123之電池 組1231發生電流高於一電流安全臨界值之過電流故障訊 號、溫度偵測電路1224偵測到第一儲能單元123之電池組 1231發生溫度高於一溫度安全臨界值之過溫度故障訊號 或内阻偵測電路1225偵測到第一儲能單元丨23之電池組 1231發生内阻尚於一内阻安全臨界值(例如數百歐坶)之 過内阻故障訊號’並且將接收到的—個或複數個故障訊 號進行分析與處理,例如,根據上述各種故障訊號之大 小給予不同之權重,以表示所偵測到的電池組1231發生 故障的嚴重程度,例如當低電壓故障訊號越小、過電流 故障訊號越大、過溫度故障訊號越大及過内阻故障訊號 越大時,其代表的權重越大,反之則代表的權重越小。 於一些實施例中,故障訊號亦包括例如,第一儲能單元 123之電池組1231老化而造成蓄電力不佳或供電不穩定等 故障訊號’但不以此為限。 100112960 表單編號A0101 第1〇頁/共27頁 1002021609-0 201242209 [0018] 再者,處理電路1221將依據各種故障訊號之權重的大小 自動對第一儲能單元123之電池組1231進行故障檢測,藉 以決定是否要立即做出對電池組1231進行初步故障排除 的動作,例如切斷開關電路1232,即使開關電路1232斷 路(OFF),讓第一儲能單元123無法提供第一儲能電壓 Vbl至負載2,或切斷部分開關電路1232以選擇性地使非 故障之部分電池組1231持續供電,進而保護負載2正常運 作。此外,處理電路12 21亦會將所有接收到的故障訊號 ,根據其權重的大小依序透過第一接地隔離單元121傳輸 〇 至主模組11 ’進而傳輸至監控中心3。 [0019] 於本實施例中,第一接地隔離單元121、第一監控單元 122以及第一儲能單元123係共同電性連接於第一接地端 gl,以使第一次模組12之接地獨立並與系統接地端6分離 ,藉此防止第一次模組12之電壓準位與主模組丨丨之電壓 準位互相影響的問題。 [0020]相似地,於本實施例中,第二接地隔離單元131及第三接 〇 地隔離單元141分別具有輸出遮斷電路(圖未示)及輸入遮 斷電路(圖未示),且輸出遮斷電路及輸入遮斷電路分別 具有輸入連接端、輸入接地端、輸出連接端以及輸出接 地端,用以使第二次模組13與第三次模組14可分別透過 各自的輸出遮斷電路及輸入遮斷電路與主模組u互相傳 輸資料,並使第二次模組13及第三次模組14之電壓準位 分別與主模組11之電壓準位隔離,而達到防止任兩者或 任三者之電壓準位會互相影響的問題。於本實施例中, 第一接地隔離單元131及第三接地隔離單元141之輸出遮 100112960 表單編號A0101 第11頁/共27頁 1002021609-0 201242209 斷電路及輸入遮斷電路可為但不限於具有訊號隔離功能 之光耦合元件。 [0021] 另外,第二次模組13與第三次模組14分別更包括第二監 控單元132、第二儲能單元133以及第三監控單元142、 第三儲能單元143。其中,第二監控單元132與第三監控 單元142分別至少包括處理電路(圖未示)及一或複數個偵 測電路(圖未示),例如電壓偵測電路、電流偵測電路、 溫度偵測電路以及内阻偵測電路,但不以此為限,且第 二儲能單元133與第三儲能單元143亦分別至少包括電池 組1331、1431及開關電路1 332、1431,並分別輸出第 二儲能電壓Vb2及第三儲能電壓Vb3至負載2。 [0022] 再者,第二接地隔離單元131、第二監控單元132以及第 二儲能單元1 3 3係共同電性連接於第二接地端g 2,相似地 ,第三接地隔離單元141、第三監控單元142以及第三儲 能單元143係共同電性連接於第三接地端g3,以使第二次 模組1 3與第三次模組14之接地各自獨立並與系統接地端G 分離,藉此防止第二次模組13之電壓準位、第三次模組 14之電壓準位與主模組11之電壓準位彼此間會互相影響 的問題,此外,由於第二監控單元132之運作電壓之零電 壓參考處為第二接地端g2,第二監控單元132之運作電壓 不受其他次模組之第一儲能電壓Vk1或儲能電壓VKQ影響, 其電壓值不會高於第一監控單元122或第三監控單元142 之運作電壓。於本實施例中,第二次模組13與第三次模 組14之連接關係及作動方式係與第一次模組12相似,於 此遂不再贅述。 100112960 表單編號Α0101 第12頁/共27頁 1002021609-0 201242209 [0023] 請再參閱第一圖,於本實施例中,智慧型之模組化儲能 〇 裝置1之主模組11至少包括處理單元111、儲存單元11 2 、通訊單元113以及顯示單元114。其中,處理單元ill 係連接於複數個次模組12、13及14之接地隔離單元121 、131及141 ’以使彼此間互相傳輸資料,且處理單元 111亦分別與儲存單元112、通訊單元113及顯示單元114 電性連接’亦用以使處理單元111分別與儲存單元112、 通訊單元11 3以及顯示單元114間可彼此互相傳輸及交換 資料,例如接收由第一次模組12、第二次模組13及/或第 三次模組14輸出之故障訊號,並將故障訊號儲存於儲存 單元112内以及顯示於顯示單元114,或選擇性地將故障 訊號透過通訊單元113傳輸至監控中心3,再由監控中心3 透過無線網路或全球行動通訊系統(Gl〇bai system for Mobile Communications,GSM)將故障訊號傳輸 至智慧型手機4,藉以通知相關檢修人員進行修護或更換 已故障之電池組的動作。於本實施例中,通訊單元丨13可 包括有線及/或無線訊號傳輸介面。 ❹ [0024] 另外,於本實施例中,複數個次模組間係以串聯方式連 接,亦即第一次模組12串聯連接第二次模組13,而第二 次模組13串聯連接第三次模組14 ’並共同輸出—總成電 壓VB至負載2,以提供負載2運作時所需之電力,其中該 總成《νΒ係由第—儲能電、第二儲能電壓v及第 三儲能電壓vb3疊加而成,即’但f每 -個監控單元122,132,142之運作電壓相等,非 關係。 i 100112960 表單編號A0I01 1002021609-0 第13頁/共27頁 201242209 [0025] 再者,由於串聯連接後之每一該次模組12、13及14之第 一接地隔離單元121、第二接地隔離單元131及第三接地 隔離單元141之接地彼此間互相隔離且獨立,也就是說, 第一次模組12之第一接地端gl、第二次模組13之第二接 地端g2以及第三次模組1 4之第三接地端g3係彼此不互相 連接,且第一接地端gl、第二接地端g2、第三接地端g3 及系統接地端G彼此間亦互相隔離且獨立,因而當第一監 控單元122、第二監控單元132及第三監控單元142分別 在檢測第一儲能單元123之電池組1231、第二儲能單元 133之電池組1331及第三儲能單元143之電池組1431時, 不會受到其他次模組及/或主模組11之電壓準位的影響, 例如當第一監控單元122在檢測第一儲能單元123之電池 組1231時,第一儲能電壓Vk1之電壓準位不會受到第二儲[0006] G Another object of the present invention is to provide a smart modular energy storage device, which can automatically detect the health status and operation status of the battery pack of each module, thereby automatically starting the protection mechanism or immediately notifying the maintenance personnel. Performing related repairs and the like, thereby reducing the difficulty of maintenance of the battery management system. [0007] In order to achieve the above object, one of the broader embodiments of the present invention provides a smart modular energy storage device. The system is connected to the load and the monitoring center, and includes a main module connected to the monitoring center for transmitting and exchanging data between the intelligent modular moon storage device and the monitoring center; and a plurality of secondary modules respectively The main module is connected, and the plurality of sub-modules are mutually 100112960 Form No. A0101 Page 5 / Total 27 pages 1002021609-0 201242209 Connected in series to the load and power the load, Η > _ 扎母一The module includes a ground isolation unit for respectively connecting to a ground end, so that the ground end of each of the sub-modules and the ground end of the main module are isolated from each other; , When a plurality of secondary modules which - when a failure or damage occurs, the sub-module performs automatic detection and protection system, and the main unit is automatically transferred to a fault signal from the output of the sub-module of the monitoring center. In order to achieve the above objectives, another broad aspect of the present invention provides a management system for storing the device, including a monitoring center and at least a smart modular hard device, wherein the at least the smart module The energy storage device is connected to the load and monitoring center, and includes a main mode of the rainbow system in the connection with the monitoring center, and is used to transmit and exchange data between the smart modular device and the control center; Secondary mode component mode. And connected, and the plurality of sub-modules are connected to each other in series, connected to the load, and supply power to the load, and each of the sub-modules includes one, and is also isolated from the single-pole, for respectively connecting with the grounding end, The grounding end of each of the two-mode ground and the grounding end of the main module are separated from each other, and when one of the plurality of sub-modules fails or is damaged, the four-module system automatically transmits - A fault signal is sent to the main module, so that the main module transmits the fault signal to the monitoring center. [Embodiment] [0009] Some typical embodiments embodying the advantages of the present invention will be described in detail in the following paragraphs. It should be understood that the case can have various changes in different aspects, and it does not deviate from the scope of the present case, and the description and the figure π are essentially used as explanations instead of To limit the case. 100112960 Form No. 101 0101 Page 6 / Total 27 Page 1002021609-0 201242209 [00103 Please refer to the first figure, which is a block diagram of a smart modular energy storage device according to a preferred embodiment of the present invention. As shown in the first figure, in the present embodiment, the intelligent modular energy storage device 1 is connected to the load 2 and the monitoring center 3, and the intelligent modular energy storage device 1 includes the main module 11 and a plurality of The secondary module 12, for example, the first module 12, the second module 13, and the third module 14, but not limited thereto. In this embodiment, the main module 11 is through a standard communication interface. For example, a communication interface such as CAN Bus, IEEE485, IEEE488, UART or Net is connected to the monitoring center 3 for transmitting and exchanging data between the intelligent modular energy storage device 1 and the monitoring center 3. [0011] Multiple sub-modules, namely the first module 12 and the second module 13 and the third sub-module 14 are respectively connected to the main module 11, and the first sub-module 12, the second sub-module 13 and the third sub-module 14 are connected to each other in series and connected to the load 2. And supplying power to the load 2 to drive the load 2. In addition, the first module 12, the second module 13 and the third module 14 respectively include a first ground isolation unit 121 and a second ground isolation unit. The first grounding terminal gl, the second grounding terminal g2 and the third grounding terminal g3 are respectively connected to the third grounding isolation unit 141, thereby making the plurality of secondary modules 12, 13 and 14 and the main module 11 The grounding of each other is isolated from each other. [0012] In this example, the first grounding end gl of the first module 12 is connected to the cathode end of the load 2 and the load grounding end Ga, and the second grounding of the second sub-module 13 The end g2 is connected to the anode end of the first energy storage unit 123 of the first sub-module 12, the third ground end g3 of the third sub-module 14 and the anode end of the second energy storage unit 133 of the second sub-module 12. Connected, and the anode end of the third energy storage unit 143 of the third module 14 is connected to the anode end of the load 2. Since, a plurality of secondary modes 100112960 Form No. A0101 Page 7 / Total 27 Page 1002021609-0 201242209 Groups 12, 13 and 14 and the main module 11 are grounded (gl, g2, g3, G) from each other 'so each time - module The monitoring unit Π 22, 132, 142) detects that the detection voltage signals of the first energy storage unit m to the third energy storage unit 143 are not referenced by the system ground terminal, but are grounded according to the respective modules (gl H(9) is the zero voltage reference point, and the detection voltage of each sub-module is not affected by the storage voltage (vbl~vb3) of other reading groups, which is more accurate. For example, when the second monitoring unit=2 detects the detection voltage signal about the second stored energy, at this time, “the first storage of the electric I Vbl X does not affect the detection of the electric dust signal” second monitoring The unit 132 can determine whether the battery pack of the first energy storage unit η is faulty or has sufficient storage capacity. [0014] In this embodiment, when one of the plurality of secondary modules, for example, - one of the secondary module 12, the second secondary module 13 or the third secondary module 14, in the event of a failure or damage, the domain group (10) sends a self-delivery-fault signal to the monitoring center 3' to notify the relevant maintenance personnel, and The operation of repairing or repairing the faulty or damaged secondary module. Please refer to the second figure and cooperate with the first figure. The second figure is the internal square diagram of any secondary module in the first figure. For convenience of explanation, the following describes the first-stage module 12 as an example. As shown in the first and second figures, the first mode " and 12 includes the first ground isolation unit 121, the first monitoring unit 122, and the first- The energy storage unit (2). In this embodiment, the first ground isolation unit 121 The output interrupting circuit Mu and the input blocking circuit lug, wherein the output blocking circuit 12丨1 has a wheel connector 1211a, an input ground terminal 12Ub, an output terminal 1211c, and an output ground terminal I211d, and the input is interrupted. The circuit 121 2 also has an input terminal 1 212a, an input ground 100112960, a form number A010, a page 8 / a total of 27 pages 1002021609-0 201242209 a terminal 1212b, an output connection end 121 2c and an output ground terminal 1212d. In this embodiment The output connection terminal uila of the output interruption circuit 211 and the output connection end 121 2c of the input interruption circuit 121 2 are respectively connected to the first monitoring unit 122' and the input ground terminal 1211b and the input of the output interruption circuit 1211. The output ground terminal 1212d of the blocking circuit 212 is connected to each other and then connected to the first ground terminal g 1. [0015] Ο G [0016] Furthermore, the output connection terminal 1211c and the input of the turn-off interrupting circuit 1211 The input terminal 121 2a of the blocking circuit 1212 is respectively connected to the main module 11 (not shown), and the output ground terminal I211d of the output blocking circuit 1211 and the input ground end 121 2b of the input blocking circuit 1212. Departments connected to each other The ground terminal G connection 'the first module 12 can transmit the data to and from the main module 11 through the output blocking circuit 211 and the input blocking circuit 1212 through the connection relationship described above and make the first module The voltage level of 12 is isolated from the voltage level of the main module 11 to achieve the problem of preventing the voltage level from affecting each other. In this embodiment, the output blocking circuit 121 and the input blocking circuit 121 2 can be It is, but not limited to, an optical coupling element with signal isolation. In this embodiment, the first monitoring unit 122 of the first module 12 includes at least a processing circuit 12 21 and one or more detection circuits, such as a voltage detection circuit 1 222, a current detection circuit 1223, and temperature detection. The circuit 1224 and the internal resistance detecting circuit 1225 are not limited thereto, and the first energy storage unit 丨 23 includes at least a battery pack 1 2 31 and a switch circuit 1 2 3 2, wherein the battery pack 1 2 31 is used to output one The first storage voltage Vbl, and the battery pack 1231 is composed of, for example, a plurality of batteries connected in series and/or in parallel with each other (not shown), but is not limited thereto. The switch circuit 1 232 is connected to the battery pack 100112960 Form No. A0101, page 9 / page 27, 1002021609-0 201242209 1231, for determining whether the power of the battery pack 1231 (ie, the first storage voltage VM) can be output to the load 2 That is, when the switch circuit is open (〇ff), the power of the battery pack 1232 cannot be turned to the load 2, whereas when the switch circuit (10) is short-circuited (ON), the power of the battery pack can pass through the circuit 1 232. Output to load 2 to drive load 2 operation. [0017] In the embodiment, the processing circuit 1221 is connected to the voltage detecting circuit 1 222, the current generating circuit 1223, the temperature detecting circuit 1 224, and the internal resistance measuring circuit 1 225, respectively, for receiving each debt. The fault signal of the circuit is detected, for example, the voltage sampling circuit 1222 detects that the voltage of the battery pack 1231 of the first energy storage unit 123 is lower than a voltage safety threshold, and the electric (four) measuring circuit 12 is called The battery group 1231 of the first energy storage unit 123 generates an overcurrent fault signal whose current is higher than a current safety threshold. The temperature detecting circuit 1224 detects that the temperature of the battery pack 1231 of the first energy storage unit 123 is higher than a temperature. The safety threshold over temperature fault signal or internal resistance detecting circuit 1225 detects that the internal resistance of the battery pack 1231 of the first energy storage unit 丨23 is within an internal resistance safety threshold (for example, several hundred ohms). Blocking the fault signal 'and analyzing or processing the received one or more fault signals, for example, giving different weights according to the size of the above various fault signals to indicate that the detected battery pack 1231 occurs. The severity of the fault, for example, when the low voltage fault signal is smaller, the overcurrent fault signal is larger, the over temperature fault signal is larger, and the overcurrent fault signal is larger, the weight of the representative is greater, and vice versa. small. In some embodiments, the fault signal also includes, for example, a faulty signal of the battery pack 1231 of the first energy storage unit 123 that is aged to cause poor power storage or unstable power supply, but is not limited thereto. 100112960 Form No. A0101 Page 1 of 271002021609-0 201242209 [0018] Furthermore, the processing circuit 1221 automatically detects the fault of the battery pack 1231 of the first energy storage unit 123 according to the weight of various fault signals. Therefore, it is determined whether the preliminary troubleshooting of the battery pack 1231 is to be performed immediately, for example, the switch circuit 1232 is turned off, and even if the switch circuit 1232 is turned OFF, the first energy storage unit 123 cannot provide the first storage voltage Vbl to The load 2, or the partial switching circuit 1232 is cut off to selectively supply the non-faulty battery pack 1231 to supply power, thereby protecting the load 2 from normal operation. In addition, the processing circuit 12 21 transmits all the received fault signals to the monitoring center 3 through the first ground isolation unit 121 in sequence according to the weight of the weights. [0019] In the embodiment, the first ground isolation unit 121, the first monitoring unit 122, and the first energy storage unit 123 are electrically connected to the first grounding end gl to ground the first sub-module 12 It is independent and separated from the system ground terminal 6, thereby preventing the problem that the voltage level of the first module 12 and the voltage level of the main module are mutually affected. [0020] Similarly, in the embodiment, the second ground isolation unit 131 and the third ground isolation unit 141 respectively have an output blocking circuit (not shown) and an input blocking circuit (not shown). And the output blocking circuit and the input blocking circuit respectively have an input connection end, an input ground end, an output connection end, and an output ground end, so that the second sub-module 13 and the third sub-module 14 can respectively pass through The respective output blocking circuit and the input blocking circuit and the main module u transmit data to each other, and the voltage levels of the second module 13 and the third module 14 are respectively compared with the voltage level of the main module 11. Bit isolation, to achieve the problem of preventing the voltage levels of either or all three from affecting each other. In this embodiment, the output of the first ground isolation unit 131 and the third ground isolation unit 141 is 100112960. Form No. A0101 Page 11 / Total 27 Page 1002021609-0 201242209 The circuit and the input interrupt circuit can be but not Limited to optical coupling components with signal isolation. [0021] In addition, the second sub-module 13 and the third sub-module 14 further include a second monitoring unit 132, a second energy storage unit 133, a third monitoring unit 142, and a third energy storage unit 143, respectively. The second monitoring unit 132 and the third monitoring unit 142 respectively include at least a processing circuit (not shown) and one or more detection circuits (not shown), such as a voltage detection circuit, a current detection circuit, and a temperature detection. The measurement circuit and the internal resistance detection circuit are not limited thereto, and the second energy storage unit 133 and the third energy storage unit 143 also include at least the battery groups 1331 and 1431 and the switch circuits 1 332 and 1431, respectively, and output respectively. The second storage voltage Vb2 and the third storage voltage Vb3 are to the load 2. [0022] Furthermore, the second ground isolation unit 131, the second monitoring unit 132, and the second energy storage unit 132 are electrically connected to the second ground terminal g2, and similarly, the third ground isolation unit 141, The third monitoring unit 142 and the third energy storage unit 143 are electrically connected to the third grounding end g3 so that the grounding of the second sub-module 13 and the third sub-module 14 are independent of each other and the system grounding end G Separating, thereby preventing the voltage level of the second module 13 , the voltage level of the third module 14 and the voltage level of the main module 11 from affecting each other, and further, due to the second monitoring unit The zero voltage reference of the operating voltage of 132 is the second grounding terminal g2, and the operating voltage of the second monitoring unit 132 is not affected by the first storage voltage Vk1 or the storage voltage VKQ of the other secondary modules, and the voltage value thereof is not high. The operating voltage of the first monitoring unit 122 or the third monitoring unit 142. In this embodiment, the connection relationship and the actuation mode of the second submodule 13 and the third submodule 14 are similar to those of the first submodule 12, and thus will not be described again. 100112960 Form No. 1010101 Page 12/Total 27 Page 1002021609-0 201242209 [0023] Referring again to the first figure, in the present embodiment, the main module 11 of the intelligent modular energy storage device 1 includes at least processing. The unit 111, the storage unit 11 2, the communication unit 113, and the display unit 114. The processing unit ill is connected to the ground isolation units 121, 131, and 141 ′ of the plurality of sub-modules 12, 13 and 14 to transmit data to each other, and the processing unit 111 is also associated with the storage unit 112 and the communication unit 113, respectively. And the display unit 114 is electrically connected to the processing unit 111 and the storage unit 112, the communication unit 113 and the display unit 114, respectively, for transmitting and exchanging data with each other, for example, receiving the first module 12 and the second module. The fault signal is outputted by the secondary module 13 and/or the third module 14 , and the fault signal is stored in the storage unit 112 and displayed on the display unit 114 , or the fault signal is selectively transmitted to the monitoring center through the communication unit 113 . 3. The monitoring center 3 transmits the fault signal to the smart phone 4 through the wireless network or the global mobile communication system (GSM) to notify the relevant maintenance personnel to repair or replace the faulty one. The action of the battery pack. In this embodiment, the communication unit 丨13 may include a wired and/or wireless signal transmission interface. [0024] In addition, in this embodiment, the plurality of secondary modules are connected in series, that is, the first module 12 is connected in series to the second module 13, and the second module 13 is connected in series. The third module 14' and jointly outputs the assembly voltage VB to the load 2 to provide the power required for the operation of the load 2, wherein the assembly "v" is the first energy storage, the second energy storage voltage v And the third storage voltage vb3 is superimposed, that is, 'but f is equal to the operating voltage of each of the monitoring units 122, 132, 142. i 100112960 Form No. A0I01 1002021609-0 Page 13 of 27 201242209 [0025] Furthermore, the first ground isolation unit 121 and the second ground isolation of each of the secondary modules 12, 13 and 14 after series connection The grounding of the unit 131 and the third grounding isolation unit 141 are isolated from each other and independent, that is, the first grounding end gl of the first module 12, the second grounding end g2 of the second secondary module 13, and the third The third grounding end g3 of the secondary module 14 is not connected to each other, and the first grounding end gl, the second grounding end g2, the third grounding end g3, and the system grounding end G are also isolated from each other and independent of each other. The first monitoring unit 122, the second monitoring unit 132, and the third monitoring unit 142 are respectively detecting the battery of the first energy storage unit 123, the battery of the second energy storage unit 133, and the battery of the third energy storage unit 143. When the group 1431 is not affected by the voltage levels of the other sub-modules and/or the main module 11, for example, when the first monitoring unit 122 is detecting the battery pack 1231 of the first energy storage unit 123, the first energy storage. The voltage level of the voltage Vk1 will not be affected by the second storage.

b I 能電壓、第三儲能電壓Vkq及/或主模組11之電壓準位b I energy voltage, third storage voltage Vkq and/or voltage level of the main module 11

ΟΔ DO 的影響,而能準確地測得第一儲能電壓Vk1之電壓準位值The influence of ΟΔ DO can accurately measure the voltage level value of the first storage voltage Vk1

b I ,以供第一監控單元122準確判斷第一儲能單元123是否 發生故障之依據。 [0026] 請參閱第三圖並配合第一圖及第二圖,其中第三圖係為 本案較佳實施例之智慧型之模組化儲能裝置自動檢測及 修護流程圖。如第一圖、第二圖及三圖所示,根據本案 之構想,本案自動檢測及修護流程主要包括下列步驟: 首先,如步驟S10〜S12所示,當智慧型之模組化儲能裝置 1提供電力至負載2並驅動負載2運作時,第一監控單元 122、第二監控單元132及第三監控單元142將分別週期 性地檢測第一儲能單元1 2 3之電池組1 2 3 1訊號、第二儲能 100112960 表單編號A0101 第14頁/共27頁 1002021609-0 201242209 ❹ [0027] [0028] ❹ [0029] 單元133之電池組1331訊號及第三儲能單元143之電池組 1431訊號是否發生異常。若是,則第一監控單元122、第 二監控單元132及第三監控單元142將自動分別透過第一 接地隔離單元121、第二接地隔離單元131及第三接地隔 離單元141傳輸一個或複數個故障訊號(例如低電壓故障 訊號、過電流故障訊號、過溫度故障訊號或過内阻故障 訊號等訊號)至主模組11之處理單元111,而主模組11之 處理單元111係將所接收到的一個或複數個故障訊號分別 傳輸至儲存單元112、通訊單元113以及顯示單元114, 藉以儲存及顯示該一個或複數個故障訊號,或選擇性地 透過通訊單元113傳輸至監控中心3。 接著,如步驟S13〜S14所示,監控中心3將會自動判斷是 否收到該一個或複數個故障訊號,若是,則監控中心3會 將故障訊號進行問題分析與收集。 最後,如步驟S15~S16所示,監控中心3係藉由故障訊號 之權重大小來判斷第一儲能單元123之電池組1231、第二 儲能單元133之電池組1331以及第三儲能單元143之電池 組1431是否嚴重故障,若是,則監控中心3透過無線網路 或全球行動通訊系統(GSM)傳輸該一個或複數個故障訊號 至智慧型手機4,進而通知相關檢修人員立即檢修或更換 已嚴重故障之電池組。 綜上所述,本案提供一種智慧型之模組化儲能裝置,其 係包括一主模組及複數個次模組,其中複數個次模組係 彼此串聯連接後與一負載連接,用以提供負載運作時所 需之電力,且複數個次模組分別具有一連接於各自接地 100112960 表單編號A0101 第15頁/共27頁 1002021609-0 201242209 端之接地隔離單元,藉以使複數個次模組之電壓準位分 別與主模組之電壓準位隔離,而達到防止任兩者或以上 之電壓準位互相影響的問題,藉此提高電池管理系統的 可擴充性及穩定性。此外,本案之智慧型之模組化儲能 裝置可自動檢測各次模組之電池組的健康狀態及運作情 況,且當一個或複數個次模組之電池組之其中任何一顆 電池發生故障時,智慧型之模組化儲能裝置將會自動啟 動保護機制,或立即傳輸一個故障訊號至監控中心,以 即時通知檢修人員進行相關的修護等動作,因此可降低 電池管理系統維護的困難度。 [0030] 縱使本發明已由上述之實施例詳細敘述而可由熟悉本技 藝之人士任施匠思而為諸般修飾,然皆不脫如附申請專 利範圍所欲保護者。 【圖式簡單說明】 [0031] 第一圖:係為本案較佳實施例之智慧型之模組化儲能裝 置方塊示意圖。 第二圖:係為第一圖中任一個次模組之内部方塊示意圖 〇 第三圖:係為本案較佳實施例之智慧型之模組化儲能裝 置自動檢測及修護流程圖。 【主要元件符號說明】 [0032] 1 :智慧型之模組化儲能裝置 II :主模組 III :處理單元 11 2 :儲存單元 100112960 表單編號A0101 第16頁/共27頁 1002021609-0 201242209 113 :通訊單元 11 4 :顯示單元 12 :第一次模組 13 :第二次模組 14 ·•第三次模組 121 :第一接地隔離單元 131 :第二接地隔離單元 141 :第三接地隔離單元 1211 :輸出遮斷電路 Ο 1212 :輸入遮斷電路 1211a、1212a :輸入連接端 1211b、1212b :輸入接地端 1211c、1212c :輸出連接端 1211d、1212d :輸出接地端 122 :第一監控單元 132 :第二監控單元 142 :第三監控單元b I , for the first monitoring unit 122 to accurately determine whether the first energy storage unit 123 is faulty. Please refer to the third figure and cooperate with the first figure and the second figure, wherein the third figure is a flow chart of automatic detection and repair of the intelligent modular energy storage device of the preferred embodiment of the present invention. As shown in the first figure, the second figure and the third figure, according to the concept of the present case, the automatic detection and repair process of the case mainly includes the following steps: First, as shown in steps S10 to S12, when the intelligent modular energy storage When the device 1 supplies power to the load 2 and drives the load 2 to operate, the first monitoring unit 122, the second monitoring unit 132, and the third monitoring unit 142 will periodically detect the battery pack 1 of the first energy storage unit 1 2 3 respectively. 3 1 signal, second energy storage 100112960 Form No. A0101 Page 14 / Total 27 pages 1002021609-0 201242209 ❹ [0028] [0029] The battery of the unit 133 and the battery of the third energy storage unit 143 Whether the group 1431 signal is abnormal. If yes, the first monitoring unit 122, the second monitoring unit 132, and the third monitoring unit 142 will automatically transmit one or more faults through the first ground isolation unit 121, the second ground isolation unit 131, and the third ground isolation unit 141, respectively. The signal (such as a low voltage fault signal, an over current fault signal, an over temperature fault signal, or an internal resistance fault signal) is sent to the processing unit 111 of the main module 11, and the processing unit 111 of the main module 11 receives the signal. One or more fault signals are transmitted to the storage unit 112, the communication unit 113, and the display unit 114, respectively, for storing and displaying the one or more fault signals, or selectively transmitted to the monitoring center 3 through the communication unit 113. Then, as shown in steps S13 to S14, the monitoring center 3 will automatically determine whether the one or more fault signals are received, and if so, the monitoring center 3 will analyze and collect the fault signals. Finally, as shown in steps S15 to S16, the monitoring center 3 determines the battery pack 1231 of the first energy storage unit 123, the battery pack 1331 of the second energy storage unit 133, and the third energy storage unit by the weight of the fault signal. 143 of the battery pack 1431 is seriously faulty, and if so, the monitoring center 3 transmits the one or more fault signals to the smart phone 4 through the wireless network or the global mobile communication system (GSM), thereby notifying the relevant maintenance personnel to immediately repair or replace A battery pack that has been severely faulty. In summary, the present invention provides a smart modular energy storage device, which includes a main module and a plurality of sub-modules, wherein a plurality of sub-modules are connected in series to each other and connected to a load for The power required for the operation of the load is provided, and the plurality of sub-modules respectively have a ground isolation unit connected to the respective ground 100112960 Form No. A0101, page 15 / 27 pages 1002021609-0 201242209, so that the plurality of sub-modules The voltage level is isolated from the voltage level of the main module, and the problem of preventing the voltage levels of any two or more from affecting each other, thereby improving the scalability and stability of the battery management system. In addition, the smart modular energy storage device of the present invention can automatically detect the health status and operation of the battery pack of each module, and when any one of the battery packs of one or more sub-modules fails, At the same time, the intelligent modular energy storage device will automatically start the protection mechanism, or immediately transmit a fault signal to the monitoring center to immediately notify the maintenance personnel to perform related repairs and the like, thereby reducing the difficulty of maintenance of the battery management system. degree. [0030] The present invention has been described in detail by the above-described embodiments, and may be modified by those skilled in the art, without departing from the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS [0031] The first figure is a block diagram of a smart modular energy storage device of the preferred embodiment of the present invention. The second figure is an internal block diagram of any of the secondary modules in the first figure. 〇 The third figure is a flow chart for automatic detection and repair of the intelligent modular energy storage device of the preferred embodiment of the present invention. [Main component symbol description] [0032] 1 : Intelligent modular energy storage device II: Main module III: Processing unit 11 2: Storage unit 100112960 Form number A0101 Page 16 of 27 1002021609-0 201242209 113 : communication unit 11 4 : display unit 12 : first module 13 : second module 14 · third module 121 : first ground isolation unit 131 : second ground isolation unit 141 : third ground isolation Unit 1211: output interrupting circuit Ο 1212: input blocking circuit 1211a, 1212a: input connecting end 1211b, 1212b: input grounding end 1211c, 1212c: output connecting end 1211d, 1212d: output grounding end 122: first monitoring unit 132: second monitoring unit 142: third monitoring unit

1221 :處理電路 1222 :電壓偵測電路 1223 :電流偵測電路 1 224 :溫度偵測電路 1225 :内阻偵測電路 123 :第一儲能單元 133 :第二儲能單元 143 :第三儲能單元 1231、1331、1431 :電池組 100112960 表單編號A0101 第17頁/共27頁 1002021609-0 201242209 1 232、1 332、1432 :開關電路 2 :負載 3 :監控中心 4 :智慧型手機 g 1 :第一接地端 g2 :第二接地端 g3 :第三接地端 G:系統接地端 Ga :負載接地端 S10〜S16:自動檢測及修護流程步驟 :第一儲能電壓 b 1 vb2:第二儲能電壓 vkQ :第三儲能電壓 b 〇 vB :總成電壓1221: processing circuit 1222: voltage detecting circuit 1223: current detecting circuit 1 224: temperature detecting circuit 1225: internal resistance detecting circuit 123: first energy storage unit 133: second energy storage unit 143: third energy storage Units 1231, 1331, 1431: Battery pack 100112960 Form number A0101 Page 17 of 27 1002021609-0 201242209 1 232, 1 332, 1432: Switch circuit 2: Load 3: Monitoring center 4: Smart phone g 1 : A ground terminal g2: a second ground terminal g3: a third ground terminal G: a system ground terminal Ga: a load ground terminal S10 to S16: an automatic detection and repair process step: a first energy storage voltage b 1 vb2: a second energy storage Voltage vkQ: third storage voltage b 〇vB : assembly voltage

D 100112960D 100112960

表單編號A0HU 第18頁/共27頁 1002021609-0Form No. A0HU Page 18 of 27 1002021609-0

Claims (1)

4 201242209 七、申請專利範圍: 1 •一種智慧型之模組化儲能裝置’其係與—負載及一監控中 心連接,該智慧型之模組化儲能裝置包括: 工 -主模組’架構於與該監控中心連接,用以使該智 慧型之模組化儲能裝置與該監控中心相互傳輸與交換資料 ;以及 ' 複數個次模組,分別架構於與該主模組連接,且該 複數個次模組係彼此串聯連接,該串聯連接後之複數個次 杈組係連接該負載並對該負載進行供電且每一該次模組 〇 &括"'接地隔離單元,用以分別與-接地端連接,以使每 一該次模組之接地端與該主模組之_接地端彼此間相互隔 離; 其中,當該複數個次模組之其中一個發生故障或損 壞時,遠次模組係自動檢測與執行保護,且該主模組將自 動傳运-由該發生故障或損壞之次模組所輸出之故障訊號 至該監控中心。 2 ·>申明專利㈣第1項所述之智慧型之模組化儲能裝置, ϋ 其中該主模組至少包括: 處理單元,連接於每一該次模組之該接地隔離單 元且與每一該次模組間彼此互相傳輸資料; —儲存單元’連接於該處理單元,用以儲存由該發 生故障杨壞之次模組所輸出之該故障訊號; 通訊單元,連接於該處理單元,用以透過一有線 及/或無線號傳輪介面傳輸該故障訊號至該監控中心; 以及 100112960 表早編號A0101 第19頁/共27頁 1002021609-0 201242209 一顯示單元,連接於該處理單元,用以顯示該故障 訊號。 3 .如申請專利範圍第1項所述之智慧型之模組化儲能裝置, 其中每一該次模組更包括: 一儲能單元,至少包括: 一電池組,係由複數個電池互相串聯連接及/或 並聯連接組合而成,用以輸出一儲能電壓;以及 一開關電路,連接該電池組,用以決定是否使 該電池組之該儲能電壓輸出至該負載,以驅動該負載運作 ;以及 一監控單元,連接於該儲能單元及該接地隔離單元 ,用以檢測該電池組是否發生故障,若是,則該監控單元 係自動分析與處理該故障訊號,並對該電池組進行初步故 障排除的動作,且透過該接地隔離單元傳輸該故障訊號至 該主模組。 4 .如申請專利範圍第3項所述之智慧型之模組化儲能裝置, 其中該監控單元至少包括: 一處理電路; 一電壓偵測電路,連接於該處理電路,用以偵測該 電池組之電壓值是否低於一電壓安全臨界值; 一電流偵測電路,連接於該處理電路,用以偵測該 電池組之電流值是否高於一電流安全臨界值; 一溫度偵測電路,連接於該處理電路,用以偵測該 電池組之溫度是否高於一溫度安全臨界值;以及 一内阻偵測電路,連接於該處理電路,用以偵測該 電池組之溫度是否高於一内阻安全臨界值; 100112960 表單編號A0101 第20頁/共27頁 1002021609-0 201242209 其中,當該電池組之電壓值低於該電壓安全臨界值 、電流值高於該電流安全臨界值、溫度高於該溫度安全臨 界值或内阻高於該内阻安全臨界值,該處理電路係自動分 析、處理與輸出該故障訊號至該主模組,並對該電池組進 行初步故障排除的動作。 5 .如申請專利範圍第3項所述之智慧型之模組化儲能裝置, 其中每一該次模組之該接地隔離單元至少包括: 一輸出遮斷電路,具有一輸入連接端、一輸入接地 端、一輸出連接端及一輸出接地端;以及 〇 一輸入遮斷電路,具有一輸入連接端、一輸入接地 端、一輸出連接端及一輸出接地端; 其中,該輸出遮斷電路之該輸入連接端與該輸入遮 斷電路之該輸出連接端係分別連接於該監控單元,且該輸 出遮斷電路之該輸入接地端與該輸入遮斷電路之該輸出接 地端係互相連接後再與該接地端連接; 該輸出遮斷電路之該輸出連接端與該輸入遮斷電路 之該輸入連接端係分別連接於該主模組,且該輸出遮斷電 Ο 路之該輸出接地端與該輸入遮斷電路之該輸入接地端係互 相連接後再與一系統接地端連接,用以使每一該次模組之 一電壓準位與該主模組之一電壓準位彼此隔離。 6 .如申請專利範圍第5項所述之智慧型之模組化儲能裝置, 其中該輸出遮斷電路及該輸入遮斷電路係為一具有訊號隔 離功能之光耦合元件。 7 .如申請專利範圍第3項所述之智慧型之模組化儲能裝置, 其中每一該次模組之該接地隔離單元、該監控單元以及該 儲能單元係共同電性連接於該接地端,以使每一該次模組 100112960 表單編號A0101 第21頁/共27頁 1002021609-0 201242209 之接地彼此獨立且與一系統接地端分離。 8 .如申請專利範圍第1項所述之智慧型之模組化儲能裝置, 其中該監控中心係透過一無線網路或一全球行動通訊系統 傳輸該故障訊號至一智慧型手機。 9 . 一種儲能裝置之管理系統,包括: 一監控中心;以及 至少一智慧型之模組化儲能裝置,其係與一負載及 該監控中心連接,且該智慧型之模組化儲能裝置包括: 一主模組,架構於與該監控中心連接,用以使該智 慧型之模組化儲能裝置與該監控中心相互傳輸與交換資料 :以及 複數個次模組,分別架構於與該主模組連接,且該 複數個次模組係彼此串聯連接,該串聯連接後之複數個次 模組係連接該負載並對該負載進行供電,且每一該次模組 包括一接地隔離單元,用以分別與一接地端連接,以使每 一該次模組之接地端與該主模組之一接地端彼此間相互隔 離, 其中,當該複數個次模組之其中一個發生故障或損 壞時,該次模組係自動傳送一故障訊號至該主模組,俾使 該主模組將該故障訊號傳送至該監控中心。 10 .如申請專利範圍第9項所述之儲能裝置之管理系統,其中 該主模組至少包括: 一處理單元,連接於每一該次模組之該接地隔離單 元,且與每一該次模組間彼此互相傳輸資料; 一儲存單元,連接於該處理單元,用以儲存由該發 生故障或損壞之次模組所輸出之該故障訊號; 100112960 表單編號A0101 第22頁/共27頁 1002021609-0 201242209 一通訊單元,連接於該處理單元,用以透過一有線 及/或無線訊號傳輸介面傳輸該故障訊號至該監控中心; 以及 一顯示單元,連接於該處理單元,用以顯示該故障 訊號; 其中,每一該次模組更包括: 一儲能單元,至少包括一電池組與一開關電路; 以及 一監控單元,連接於該儲能單元及該接地隔離單 〇 元,用以檢測該電池組是否發生故障,若是,則該監控單 元係自動分析與處理該故障訊號,並對該電池組進行初步 故障排除的動作,且透過該接地隔離單元傳輸該故障訊號 至該主模組; 其中該監控單元至少包括: 一處理電路; 一電壓偵測電路,連接於該處理電路,用以偵測 該電池組之電壓值是否低於一電壓安全臨界值; Ο 一電流偵測電路,連接於該處理電路,用以偵測 該電池組之電流值是否高於一電流安全臨界值; 一溫度偵測電路,連接於該處理電路,用以偵測 該電池組之溫度是否高於一溫度安全臨界值;以及 一内阻偵測電路,連接於該處理電路,用以偵測 該電池組之溫度是否高於一内阻安全臨界值; 其中,當該電池組之電壓值低於該電壓安全臨界 值、電流值高於該電流安全臨界值、溫度高於該溫度安全 臨界值或内阻高於該内阻安全臨界值,該處理電路係自動 100112960 表單編號A0101 第23頁/共27頁 1002021609-0 201242209 分析、處理與輸出該故障訊號至該主模組,並對該電池組 進行初步故障排除的動作。 100112960 表單編號A0101 第24頁/共27頁 1002021609-04 201242209 VII. Patent application scope: 1 • A smart modular energy storage device is connected to the load and a monitoring center. The intelligent modular energy storage device includes: work-main module The system is connected to the monitoring center for transmitting and exchanging data between the smart modular energy storage device and the monitoring center; and a plurality of secondary modules respectively connected to the main module, and The plurality of sub-modules are connected in series with each other, and the plurality of sub-modules connected in series are connected to the load and supply power to the load, and each of the sub-modules includes "'ground isolation unit Connecting to the grounding terminal respectively, so that the grounding end of each of the secondary modules and the grounding end of the primary module are isolated from each other; wherein, when one of the plurality of secondary modules fails or is damaged The remote module is automatically detected and executed, and the main module will be automatically transported - the fault signal output by the faulty or damaged secondary module to the monitoring center. 2 ·> Claim Patent (4) The intelligent modular energy storage device according to item 1, wherein the main module comprises at least: a processing unit connected to the ground isolation unit of each of the submodules and Each of the modules transmits data to each other; a storage unit is coupled to the processing unit for storing the fault signal output by the faulty module; the communication unit is connected to the processing unit For transmitting the fault signal to the monitoring center through a wired and/or wireless numbering interface; and 100112960, table early number A0101, page 19, total 27 pages, 1002021609-0 201242209, a display unit connected to the processing unit, Used to display the fault signal. 3. The intelligent modular energy storage device according to claim 1, wherein each of the sub-modules further comprises: an energy storage unit, comprising at least: a battery pack, wherein the plurality of batteries are mutually a series connection and/or a parallel connection for outputting a storage voltage; and a switch circuit connected to the battery pack for determining whether to output the storage voltage of the battery pack to the load to drive the a load operation; and a monitoring unit connected to the energy storage unit and the ground isolation unit for detecting whether the battery pack is faulty, and if so, the monitoring unit automatically analyzes and processes the fault signal, and the battery pack Performing a preliminary troubleshooting operation, and transmitting the fault signal to the main module through the ground isolation unit. 4. The intelligent modular energy storage device according to claim 3, wherein the monitoring unit comprises at least: a processing circuit; a voltage detecting circuit connected to the processing circuit for detecting the Whether the voltage value of the battery pack is lower than a voltage safety threshold; a current detecting circuit is connected to the processing circuit for detecting whether the current value of the battery pack is higher than a current safety threshold; Connected to the processing circuit for detecting whether the temperature of the battery pack is higher than a temperature safety threshold; and an internal resistance detecting circuit connected to the processing circuit for detecting whether the temperature of the battery pack is high The safety threshold of one internal resistance; 100112960 Form No. A0101 Page 20 of 271002021609-0 201242209 Where, when the voltage value of the battery pack is lower than the voltage safety threshold, the current value is higher than the current safety threshold, The temperature is higher than the temperature safety threshold or the internal resistance is higher than the safety threshold of the internal resistance, and the processing circuit automatically analyzes, processes and outputs the fault signal to the main module. The battery pack to carry out preliminary troubleshooting action. 5. The intelligent modular energy storage device according to claim 3, wherein the ground isolation unit of each of the sub-modules comprises at least: an output interrupting circuit having an input connection end, An input ground terminal, an output connection terminal and an output ground terminal; and an input input blocking circuit having an input connection end, an input ground end, an output connection end and an output ground end; wherein the output cover The input connection end of the breaking circuit and the output connection end of the input breaking circuit are respectively connected to the monitoring unit, and the input ground of the output blocking circuit and the output of the input blocking circuit The ground terminals are connected to each other and then connected to the ground terminal; the output connection end of the output interrupting circuit and the input connection end of the input interrupting circuit are respectively connected to the main module, and the output is interrupted The output ground of the electric circuit is interconnected with the input ground of the input interrupting circuit, and then connected to a system ground for making a voltage level of each of the submodules and the main mode Group voltage The positions are isolated from each other. 6. The intelligent modular energy storage device of claim 5, wherein the output interrupting circuit and the input interrupting circuit are optical coupling elements having a signal isolation function. 7. The intelligent modular energy storage device according to claim 3, wherein the ground isolation unit, the monitoring unit and the energy storage unit of each of the secondary modules are electrically connected to the same The grounding terminal is such that the grounding of each of the sub-modules 100112960 Form No. A0101 Page 21/27 pages 1002021609-0 201242209 is independent of each other and is separated from a system ground. 8. The intelligent modular energy storage device according to claim 1, wherein the monitoring center transmits the fault signal to a smart phone through a wireless network or a global mobile communication system. 9. A management system for an energy storage device, comprising: a monitoring center; and at least one intelligent modular energy storage device connected to a load and the monitoring center, and the intelligent modular energy storage device The device comprises: a main module, connected to the monitoring center, for transmitting and exchanging data between the smart modular energy storage device and the monitoring center: and a plurality of sub-modules respectively constructed and The main module is connected, and the plurality of sub-modules are connected in series with each other, and the plurality of sub-modules connected in series are connected to the load and supply power to the load, and each of the sub-modules includes a ground isolation The unit is connected to a grounding end, so that the grounding end of each of the secondary modules and one of the grounding ends of the primary module are isolated from each other, wherein when one of the plurality of secondary modules fails In the event of damage, the module automatically transmits a fault signal to the main module, so that the main module transmits the fault signal to the monitoring center. 10. The management system of an energy storage device according to claim 9, wherein the main module comprises at least: a processing unit connected to the ground isolation unit of each of the submodules, and each of the The secondary modules transmit data to each other; a storage unit is coupled to the processing unit for storing the fault signal output by the faulty or damaged secondary module; 100112960 Form No. A0101 Page 22 of 27 1002021609-0 201242209 a communication unit connected to the processing unit for transmitting the fault signal to the monitoring center via a wired and/or wireless signal transmission interface; and a display unit connected to the processing unit for displaying the The fault signal; wherein each of the modules further comprises: an energy storage unit comprising at least one battery pack and a switch circuit; and a monitoring unit connected to the energy storage unit and the ground isolation unit; Detecting whether the battery pack is faulty, and if so, the monitoring unit automatically analyzes and processes the fault signal, and performs preliminary analysis on the battery pack. And the faulty operation, and transmitting the fault signal to the main module through the ground isolation unit; wherein the monitoring unit comprises at least: a processing circuit; a voltage detecting circuit connected to the processing circuit for detecting the battery Whether the voltage value of the group is lower than a voltage safety threshold; Ο a current detecting circuit connected to the processing circuit for detecting whether the current value of the battery pack is higher than a current safety threshold; Connected to the processing circuit for detecting whether the temperature of the battery pack is higher than a temperature safety threshold; and an internal resistance detecting circuit connected to the processing circuit for detecting whether the temperature of the battery pack is high a safety threshold of the internal resistance; wherein, when the voltage value of the battery pack is lower than the voltage safety threshold, the current value is higher than the current safety threshold, the temperature is higher than the temperature safety threshold or the internal resistance is higher than the internal threshold Blocking safety threshold, the processing circuit is automatic 100112960 Form No. A0101 Page 23 / Total 27 Page 1002021609-0 201242209 Analysis, processing and output of this fault Numbers to the main module, and troubleshoot the initial operation of the battery pack. 100112960 Form No. A0101 Page 24 of 27 1002021609-0
TW100112960A 2011-04-14 2011-04-14 Intellectual and modular energy-storing device and management system employing same TWI451656B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100112960A TWI451656B (en) 2011-04-14 2011-04-14 Intellectual and modular energy-storing device and management system employing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100112960A TWI451656B (en) 2011-04-14 2011-04-14 Intellectual and modular energy-storing device and management system employing same

Publications (2)

Publication Number Publication Date
TW201242209A true TW201242209A (en) 2012-10-16
TWI451656B TWI451656B (en) 2014-09-01

Family

ID=47600259

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112960A TWI451656B (en) 2011-04-14 2011-04-14 Intellectual and modular energy-storing device and management system employing same

Country Status (1)

Country Link
TW (1) TWI451656B (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458756C (en) * 2006-04-10 2009-02-04 重庆大学 Management system of power battery for mixed-power automobile
US20080012570A1 (en) * 2006-07-17 2008-01-17 O2Micro, Inc. Monitoring battery cell voltage
CN201142022Y (en) * 2007-12-18 2008-10-29 瑞德电能股份有限公司 Long-range control system of battery module of electric vehicle
US8417472B2 (en) * 2008-12-19 2013-04-09 02Micro Inc. Synchronized data sampling systems and methods
CN201434904Y (en) * 2008-12-26 2010-03-31 广州电器科学研究院 Battery detecting sampling control device based on CPLD
TW201031079A (en) * 2009-02-02 2010-08-16 Stl Technology Co Ltd Apparatus and controlling system in communicated with multiple battery modules
US8253383B2 (en) * 2009-02-05 2012-08-28 O2Micro Inc Circuits and methods for monitoring multi-cell battery packs
CN201611385U (en) * 2009-11-19 2010-10-20 辽宁省电力有限公司鞍山供电公司 Automatic detecting device of communication battery

Also Published As

Publication number Publication date
TWI451656B (en) 2014-09-01

Similar Documents

Publication Publication Date Title
JP6595063B2 (en) Battery system monitoring device
JP4196122B2 (en) Battery pack
JP5143185B2 (en) Power supply
JP5611727B2 (en) Power supply
JP5443327B2 (en) Battery assembly
US9917461B2 (en) Battery unit, overcurrent control method, and computer program for the same
JP5274110B2 (en) Power supply for vehicle
US20060097700A1 (en) Method and system for cell equalization with charging sources and shunt regulators
CN106696724B (en) A kind of power battery of electric vehicle and its control method, device and electric vehicle
CN104471417A (en) Equipment and method for diagnosing faults of battery cell balancing circuit
JP6056581B2 (en) Abnormality detection device for battery pack
EP3767731A1 (en) Battery pack and charging bank
CN102624050A (en) Battery management system capable of automatically shutting off unavailable units in serial-connection battery pack
JP2013073897A (en) Storage battery device and storage battery device inspection and maintenance method
CN113078714A (en) Energy storage system and energy storage system control method
CN114400736A (en) Online battery pack capacity checking and balancing device
CN104655973A (en) Method and device for detecting battery module short circuit in UPS system
CN106712152B (en) A kind of power distribution method of power battery of electric vehicle, device and electric vehicle
TW201242209A (en) Intellectual and modular energy-storing device and management system employing same
CN113632271B (en) Battery pack including cell switching device of parallel cells and cell switching method
Nibaruta et al. An Integrated Approach to Lithium-Ion Battery Cell Management through Accurate Voltage Measurement and Cell Balancing
JPWO2018235774A1 (en) Fault diagnosis device
WO2015122746A1 (en) Battery management system for outputting signal, capable of analyzing whether error has occured, and battery driving system including same
CN202474829U (en) Heavy current switch group circuit for power lithium ion protection plate
KR20210104458A (en) Battery apparatus and current sensor diagnosis method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees