TW201242038A - Substrate for photoelectric conversion element with molybdenum electrode, photoelectric conversion element and solar cell - Google Patents

Substrate for photoelectric conversion element with molybdenum electrode, photoelectric conversion element and solar cell Download PDF

Info

Publication number
TW201242038A
TW201242038A TW101112086A TW101112086A TW201242038A TW 201242038 A TW201242038 A TW 201242038A TW 101112086 A TW101112086 A TW 101112086A TW 101112086 A TW101112086 A TW 101112086A TW 201242038 A TW201242038 A TW 201242038A
Authority
TW
Taiwan
Prior art keywords
substrate
photoelectric conversion
layer
conversion element
electrode
Prior art date
Application number
TW101112086A
Other languages
Chinese (zh)
Inventor
Keigo Sato
Shigenori Yuuya
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011212195A external-priority patent/JP5000779B1/en
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of TW201242038A publication Critical patent/TW201242038A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A substrate for a photoelectric conversion element is provided, in which a plurality of alkali metal ions can be efficiently diffused in a photoelectric conversion semiconductor layer, and a photoelectric conversion efficiency of the photoelectric conversion element can be elevated. The substrate for the photoelectric conversion element of the disclosure has an alkali metal silicate layer (30) on a substrate (10). The alkali metal silicate layer (30) includes sodium silicate, and lithium silicate or potassium silicate. Or, the substrate for the photoelectric conversion element of the disclosure has an alkali metal silicate layer (while alkaline earth metals are excluded) (30) on a substrate (10). The alkali metal silicate layer (30) includes silicon, alkali metals, and at least one of group 13 elements except aluminum or group 15 elements except nitrogen. The alkali metal silicate layer (30) is formed by a liquid-phase method.

Description

201242038 ,厶厶〇 / 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種帶有鉬電極的光電轉換元件用基 板以及適合於太陽電池等用途的光電轉換元件、與太陽電 池0 【先前技術】201242038, 厶厶〇 / 6. Description of the Invention: [Technical Field] The present invention relates to a substrate for a photoelectric conversion element having a molybdenum electrode, and a photoelectric conversion element suitable for use in a solar cell or the like, and a solar cell [Prior Art]

在基板上具有下部電極(背面電極)、藉由吸收光而產 生電流的光電轉換層與上部電極(透明電極)的積層結構 的光電轉換元件用於太陽電池等用途。先前,太 使用塊狀的單晶Si或多晶Si、或者薄膜的 j的 太陽電池為线,但近年來正在研朗發不依存於si的^ 合物半導㈣太陽f池。作為化合物半導财、太陽電池, 已知包含lb族元素、IIIb族元素及VIb族元素的CIS (Cu-In-Se)系或者CIGS(c;u七_Ga Se)系等薄膜系的光 吸收率高,光電轉換效率高。 CIS系或者CIGS系等光電轉換元件中已知,藉由使 驗金屬、較佳為Na在光電轉換層巾擴散,光電轉換層的 結晶性變得^好’光電轉換效率提高(專利文獻1及專利 文獻2)。先别,正在使用包含Na的鈉鈣玻璃基板,使Na 在光電轉換層中擴散。 然而’在使用金屬基板、高分子基板、喊基板等作 :太陽電池基板的情況下,不能夠由基板供給納,因此存 轉換效率不提®的問題。因此,在使用不含鈉的基板的 ’月況下進行如下操作:利用液相法設錄供給層,或者藉 4 201242038A photoelectric conversion element having a laminated structure of a lower electrode (back surface electrode) and a photoelectric conversion layer and an upper electrode (transparent electrode) for generating a current by absorbing light on a substrate is used for a solar cell or the like. Previously, a solar cell in which bulk single crystal Si or polycrystalline Si or thin film j was used was used as a wire, but in recent years, it has been studied that the semi-conductive (four) solar f pool does not depend on si. As a compound semi-conducting and solar cell, it is known that a light of a film such as a CIS (Cu-In-Se) system or a CIGS (c; u _Ga Se) system containing a group lb element, a group IIIb element, and a group VIb element High absorption rate and high photoelectric conversion efficiency. It is known that a photoelectric conversion element such as a CIS system or a CIGS system is known, and the photoelectric conversion efficiency of the photoelectric conversion layer is improved by the diffusion of the metal, preferably Na, in the photoelectric conversion layer (Patent Document 1 and Patent Document 2). First, a soda lime glass substrate containing Na is being used to diffuse Na in the photoelectric conversion layer. However, when a metal substrate, a polymer substrate, a substrate, or the like is used as the solar cell substrate, it is not possible to supply the substrate, so there is a problem that the conversion efficiency is not mentioned. Therefore, in the case of using a substrate containing no sodium, the following operation is performed: the supply layer is set by the liquid phase method, or by borrowing 4 201242038

I W I ,與CIGS的共蒸鐘來導入納,或者設置Mo-Na作為電極 等例如,專利文獻3中揭示有:藉由液相塗佈來塗佈驗 金屬石夕酸鹽,詳細而言為塗佈納石夕酸鹽。另外,專利文獻 4中揭示有.使陽極氧化基板與氫氧化鈉水溶液接觸來摻 雜納。進而專利文獻5中揭示有:利用溶膠凝膠法在不^ 鋼基板上形成氧化石夕膜,並且進而利用包含⑹的材料带 成絕緣層。 〆 但是已知,鈉以外的鹼金屬,即鋰或鉀、铯,盥鈉相 比而言能夠添加於CIGS中的量少,另外’即便添加, 電轉換效率提高的效果亦低(非專利文獻i及非專利文獻 2)。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利第2922465號公報 [專利文獻2]日本專利特開平u_312817號公報 [專利文獻3]日本專利特開2〇〇9_267332號公報 [專利文獻4]日本專利特開2〇1〇·232427號公報 [專利文獻5]日本專利特開2〇〇4_158511號公報 [非專利文獻] [非專利文獻1]固體薄膜(Thin S〇lid Fiims),第36 卷,ρ.9-ρ.16 (2000)IWI, a co-steaming clock with CIGS to introduce sodium, or a Mo-Na as an electrode, etc., for example, Patent Document 3 discloses that a metal oxide coating is applied by liquid phase coating, in detail, coating Buna stone acid salt. Further, Patent Document 4 discloses that an anodized substrate is brought into contact with an aqueous sodium hydroxide solution to be doped. Further, Patent Document 5 discloses that an oxidized stone film is formed on a steel substrate by a sol-gel method, and further, an insulating layer is formed by using the material containing (6). However, it is known that an alkali metal other than sodium, that is, lithium or potassium, cesium or cesium, can be added to CIGS in a smaller amount, and the effect of improving electric conversion efficiency is low even if it is added (Non-Patent Literature) i and non-patent document 2). [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Publication No. 2922465 [Patent Document 2] Japanese Patent Laid-Open Publication No. Hei No. Hei. No. Hei. [Patent Document 5] Japanese Patent Laid-Open Publication No. Hei. No. 2-158511 [Non-Patent Document] [Non-Patent Document 1] Thin film (Thin S〇lid Fiims), Volume 36, ρ.9-ρ.16 (2000)

[非專利文獻2]M. A. contreras等人著,「第26屆IEEE 光伏專豕會δ義的會5義§己錄(c〇nference Rec〇r(j[Non-Patent Document 2] M. A. contreras et al., "The 26th IEEE Photovoltaic Specialized Conference δ 义 义 义 义 录 录 (c〇nference Rec〇r (j

Twenty Sixth IEEE Ph〇t〇v〇ltaic Specialists Conference)」, 20124203 8f 2000年,p.359-p.362 ’標題「關於Na的作用以及對使用 向MF刖驅層的CIGS吸收材料的改良(〇n the role of Na and modifications to CIGS absorber materials using high MF precursor layers )」 如上所述’先前最普通的見解如下:當形成光電轉換 半導體層時,鈉從鈉供給層擴散至光電轉換半導體層中, 藉此發電效率提高,但已知,即便設置鈉供給層,發電效 率亦不會提高得比設想的高。其原因為:由於鈉與電極的 鉬反應而生成雜質,在集成化的太陽電池的製造步驟中實 施電極成膜後的劃線(scratch )後,必需進行水洗,但證 實了藉由該水洗,鈉溶出而造成損耗。此外,經推定,在 鈉與鉬的反應中,濺鍍能量為反應的驅動力主要是在鹼金 屬矽酸鹽層上濺鍍鉬時產生。 【發明内容】 本發明是鑒於上述情況而形成,目的在於提供一種光 電轉換元件用基板與光電轉換元件以及太陽電池,上述光 電轉換元件用基板可使上述驗金屬離子在光電轉換半導體 層中效率良好地擴散,且可提高光電轉換元件的光電轉換 效率。 、 本發明的第一態樣的帶有翻電極的光電轉換元件用基 板的特徵在於包含:光電轉換元件用基板,在基板上積^ 有包含矽酸鋰或矽酸鉀、與矽酸鈉的鹼金屬矽酸鹽層;以 及鉬電極,積層於鹼金屬矽酸鹽層上。 孤曰’ 第一態樣的驗金屬矽酸鹽層的鋰或鉀相對於石夕的莫耳 6 201242038 ----丨 j· 比較佳為0.001以上1以下。 第一態樣的鋰或鉀相對於矽的莫耳比、與鈉相對於 的莫耳比之和較佳為1以下。 第一態樣的鹼金屬矽酸鹽層較佳為包含硼或碌。 第一態樣的鹼金屬矽酸鹽層的厚度較佳為2 μιη以下。 第一態樣的基板較佳為金屬基板。 車乂佳為在金屬基板的表面形成有陽極氧化銘皮膜。 金屬基板較佳為將鋁、不鏽鋼或者鐵鋼板的單面或者 兩面以鋁板進行一體化而成的被覆材料。 陽極氧化鋁皮膜較佳為多孔型陽極氧化鋁皮膜,且該 多孔型陽極氧化鋁皮膜具有壓縮應力。 本發明的光電轉換元件能夠形成於上述第一態樣的光 電轉換元件用基板上。 本發明的第二態樣的光電轉換元件用基板的特徵在 於:在基板上具有鹼金屬矽酸鹽層(但不含鹼土類金屬), 該鹼金屬矽酸鹽層包含除鋁以外的第13族元素或者除氮 以外的第15族元素中的至少丨種、矽及鹼金屬,且為利用 液相法而形成;並且該光電轉換元件用基板包含積層於該 驗金屬石夕酸鹽層上的銦電極。 除铭以外的第13族元素或者除氮以外的第15族元素 較佳為硼或磷。 第二態樣的驗金屬較佳為納。 第一態樣的驗金屬更佳為包含鐘或鉀、與鈉的2種。 上述除鋁以外的第13族元素或者除氮以外的第15族 201242038 元素的合計的相對於矽的莫耳比更佳為〇15以下。 第二態樣的鹼金屬矽酸鹽層的厚度較佳為2 pm以 第二態樣的基板更佳為金屬基板。 ° 尤佳為在金屬基板的表面形成有陽極氧化紹皮膜者。 金屬基板更佳為將紹、不鑛鋼或者鐵鋼板的單面 兩面以鋁板進行一體化而成的被覆材料。 4百 電轉換元件能夠形成於上述第二態樣的光 從另-方面而言,本發明的光電轉換元件是在基板上 依次積層有!目電極、光電轉換半導體層及上部電極 轉換元件’其特徵在於4電轉換半導體層社成分是包 含lb族元素、IIIb族元素及VIb族元素的至少丨種黃銅 結構的化合物半導體’並且在光電轉換半導體層中包含鐘 離子或鉀離子、與鈉離子。 光電轉換半導體層中所含的經離子或卸離子、血鈉離 子的各自的含量較佳為lxl〇i5 atms/cm3以上。 光電轉換半導體層中所含的鐘離子或钟離子、及鈉離 子較佳為由形献聽與鉬電極之給層所供給。 光電轉換半導體層的主成分較佳為包含以下元素的至 少1種的化合物半導體:選自由^及^所組成組群中的 至少1種lb族元素;選自由…,及化所組成組群中的 f ; 1 , Illb族兀素;及選自由s、知及Te所組成 中的至少1種vib族元素。 野 上述基板較佳為金屬基板。 8 201242038 較佳為在金屬基板絲面形成有陽極氧化銘皮膜。 金屬基板較佳為將鋁、不鏽鋼或者鐵鋼板的單面 兩面以鋁板進行一體化而成的被覆材料。 一 陽極氧化鋁皮膜較佳為多孔型陽極氡化鋁皮膜,且夕 孔型陽極氧化鋁皮膜具有壓縮應力。 夕 本%明的太%電池能夠具備上述光電轉換元件。 [發明的效果] 本發明的第一態樣的光電轉換元件用基板具有包含鹼 金屬矽酸鹽(但鹼金屬為鈉以外)、與矽酸鈉的鹼金屬矽酸 鹽層,即便藉由將鈉與其他鹼金屬併用而在鹼金屬矽酸鹽 層上形成包含鉬的電極,亦抑制鈉與鉬反應生成雜質、戋 者抑制由於水洗而使鈉溶出的現象,因此可使鹼金屬矽酸 鹽層的鈉效率良好地在光電轉換半導體層中擴散,而能夠 提高光電轉換元件的發電效率。 藉由將鈉與其他驗金屬併用而獲得上述效果的作用機 制未必明確’但推測為:與鈉相比,其他鹼金屬(尤其是 鋰或鉀)的吸濕性低,藉由於鹼金屬矽酸鹽層中包含鋰或 鉀,鹼金屬矽酸鹽層所含的水分絕對地減少,結果難以發 生由於水分而產生的氧化反應,因此雜質的生成得到抑 制,另外,由水洗引起的鈉溶出減輕。 本發明的第二態樣的光電轉換元件用基板由於在驗金 屬矽酸鹽層中包含除鋁以外的第13族元素、或者除氮以外 的第15族元素中的至少1種’故而即便在鹼金屬矽酸鹽層 上形成包含钥的電極’亦抑制鈉與鉬反應而生成異物,或 201242038 t pif 者抑制由於水洗而使鹼金屬溶出的現象,因此可使鹼金屬 矽酸鹽層的鹼金屬效率良好地在光電轉換半導體層中擴 散,而能夠提高光電轉換元件的發電效率。 藉由鹼金屬矽酸鹽層含有除鋁以外的第13族元素、或 者除氮以外的第15族元素中的至少1種而獲得上述效果的 作用機制未必明碟’但推測為如下機制。在僅包含石夕、驗 金屬及氧的鹼金屬矽酸鹽層的情況下,鹼金屬離子固溶於 玻璃t,但由於鹼金屬離子為一價,故而並不形成包含石夕_ 氧的玻璃網狀物(glass network)。因此,鹼金屬與氧的相 互作用不充分,容易從玻璃中游離而偏析於表面。若驗金 屬離子偏析於表面,則產生如下問題:與設置電極時的具 有高能量的濺:鍍钥反應而生成異物。 另一方面’已知除鋁以外的第13族元素或者除氮以外 的第15族元素的氧化物固溶於矽酸玻璃中而形成單一相 的玻璃,本發明的鹼金屬矽酸鹽層中,亦藉由添加除鋁以 外的第13族元素或者除氮以外的第15族元素,該些元素 的離子進入至包含矽-氧的玻璃網狀物中而形成均勻的玻 璃。詳細情況未必明確,但推測為:玻璃的微觀結構變化, 破璃中的驗金屬離子的穩定性提高,因此鹼金屬離子的游 離得到抑制,不會產生鹼金屬離子向表面的偏析,而能夠 防止翻藏鍵時的異物生成。另外推測為:由於鹼金屬離子 向表面的偏析得到抑制,故而由水洗引起的驗金屬離子溶 出亦減輕。 本發明的光電轉換元件在光電轉換半導體層中除了包 201242038 --X-- 子或钾離子,藉此能夠提高光 心素》析’除包含鱗子以外還包含鋰離 轉換半導體層、及僅包含納離子的光電 5 ί 光㈣財導體射所含_的量大致 測’雖對光電轉換半導體層的物性、特性帶 亚列確’但輯子物離子的存在有助於光電 高。此情況是由本發明者首次發現。 對本發明的第-態樣的光電轉換元件用基板進行詳細 說明。 第-態樣的光電轉換元件用基板中的驗金屬石夕酸鹽層 包含石夕酸錢树鉀、與魏納。亦可包切酸誠石夕酸 鉀兩者。 鹼金屬矽酸鹽層的鋰或鉀相對於矽的莫 0.001以上1以下,更佳為0.01以上i以下,尤佳1為〇 〇2 •以上i以下,特佳為G.05以上0.5以下。㈣驗金屬石夕酸 鹽層中所含的總梦(亦包含來自矽酸鈉的矽),在包含石夕酸 裡及破酸钾兩者的情況下’是指鋰與鉀的與相對於來自石夕 酸鋰、來自矽酸鉀及來自矽酸鈉的矽的莫耳比。若裡或钟 相對於石夕的莫耳比變得大於1 ’則鋰或鉀變得過多,^以 作為石夕酸鹽而固化。另一方面,若链或鉀相對於石夕的莫耳 比小於0.001,則鋰或鉀過少,無法獲得添加效果,光電 201242038 轉換元件的光電轉換效率不提高。 較理想的是,鋰或鉀相對於鹼金屬矽酸鹽層中所含的 總石夕的莫耳比、與鈉相對於驗金屬石夕酸鹽層中所含的總石夕 的莫耳比之和較佳為1以下,更佳為0.8以下。若不含鐘 或鉀,則絕緣性降低,此外,當將通常用於背面電極的鉑 成膜時形,雜質發電效率降低。推定其原因在於鈉 的吸水性高。另-方面,在僅含鐘或鉀的情況下,無法提 高發電效率。另外,若鋰或鉀相對於矽的莫耳比、與鈉相 對於矽的莫耳比之和大於丨,則難以作為矽酸鹽而固化, 另外由於矽的量少,故而與基板的密著性下降。 々矽酸鈉、矽酸鋰、矽酸鉀的製法已知有濕式法、乾式 法等,能夠利用將氧化矽分別以氫氧化鈉、氫氧化鋰、氫 氧化鉀進行溶解等的方法來製作。另外,各種莫耳比的鹼 金屬石夕酸鹽已有市售,亦可利用該些驗金屬石夕酸鹽。 作為石夕酸鈉、石夕酸經、石夕酸鉀,市售有各種莫耳比的 矽酸鈉、矽酸鋰、矽酸鉀。作為表示矽與鹼金屬的比例的 指標’常常使用Si〇2/A2〇(A:鹼金屬)的莫耳比。例如, 矽酸鋰有日產化學工業股份有限公司的矽酸鋰35、矽酸鋰 45、矽酸鋰75等。矽酸鉀市售有1號矽酸鉀、2號矽酸鉀 等。 矽酸鈉已知有原矽酸鈉、偏矽酸鈉、1號矽酸鈉、2 號石夕酸鈉、3號矽酸鈉、4號石夕酸鈉等,亦市售有將石夕的莫 耳比提高至數十為止的高莫耳矽酸鈉。 藉由將上述矽酸鈉、矽酸鋰、矽酸鉀分別與水以任意 12 201242038 比率混合,能夠獲得任意濃度的溶液。鐘或鉀相對於石夕的 比率可藉由該些鹼金屬矽酸鹽的混合而變化,此外可藉由 將各種矽酸鈉以任意比率混合而變化。藉由變更水的添加 量,可調整塗佈液的黏度,決定適當的塗佈條件。將塗佈 液塗佈於基板上的方法並無特別限定,例如可使用:到刀 法、線棒法、凹版法、喷霧法、浸潰塗佈法、旋轉塗佈法、 毛細管塗佈法等方法。 此外’鹼金屬矽酸鹽層的矽酸鋰、矽酸鉀及矽酸鈉在 製作時的供給源未必需要為石夕酸链、石夕酸鉀及石夕酸納。例 如在鹼金屬矽酸鹽層包含矽酸鋰及矽酸鈉的情況下,將石夕 酸鐘與氫氧化鈉、或者氫氧化鋰與矽酸鈉分別與水以任意 的比率混合,在驗金屬石夕酸鹽層包含石夕酸卸及石夕酸鈉的情 況下’將氫氧化鉀與矽酸鈉、或者矽酸鉀與氫氧化鈉分別 與水以任意的比率混合,亦可製作包含石夕酸鐘與石夕酸鈉或 者矽酸鉀與矽酸鈉的鹼金屬矽酸鹽層。另外,作為供給源, 分別可添加鋰鹽、鉀鹽、鈉鹽。例如使用硝酸鹽、硫酸鹽、 乙酸鹽、磷酸鹽、氯化物、溴化物、碘化物等。 矽酸鋰、矽酸鉀、矽酸鈉以外的鹼金屬矽酸鹽的塗佈 液可藉由對矽酸鈉溶液添加所需的鹼金屬的硝酸鹽、硫酸 鹽、乙酸鹽、填酸鹽、氯化物、漠化物、碘化物等而簡便 地獲得。 亦可在鹼金屬矽酸鹽水溶液中添加包含硼的化合物、 或者包含磷的化合物。藉由添加該些化合物,能夠進一步 提高Mo成膜適應性及發電效率。詳細情況未必明確,但 13 201242038 • w ·尤^為▲* 推定為:藉由硼或磷添加於鹼金屬矽酸鹽中’玻璃的微觀 結構變化,玻璃中的鹼金屬離子的穩定性提高’因此鹼金 屬離子的游離得到抑制,Mo成膜適應性提高’發電效率 提高。 石朋源較佳為可列舉z朋酸、四硼酸納等硼酸鹽。 磷源有:磷酸、過氧磷酸、膦酸、次膦酸、二磷酸、 三磷酸、多磷酸、環-三磷酸、環-四磷酸、二膦酸、以及 該些酸的鹽等’例如較佳可列舉:磷酸鋰、磷酸鈉、磷酸 鉀、磷酸氫鋰、磷酸銨、磷酸氫鈉、磷酸氫鈣、磷酸氫銨、 磷酸二氫鋰、磷酸二氫鈉、磷酸二氫鈣、磷酸二氫銨、焦 鱗酸納、三構酸納等。 可藉由將塗佈液塗佈於基板上後,進行熱處理來製作 鹼金屬矽酸鹽層。發明者等人使用熱重量分析、以及升溫 脫氣分析的方法來測定脫水溫度,結果可知,脫水在2〇〇。〇 〜300°C左右產生。在低於200°C的溫度下,無法使塗佈液 充分乾燥,無法形成耐水性高的驗金屬石夕酸鹽層,因此欠 佳。另外,300°C以下的熱處理中產生以下問題:鹼金屬矽 酸鹽層的殘留水分多,與大氣中的二氧化碳等反應而在表 面形成碳酸鹽等雜質,或者在Mo電極濺鍍時生成鉬酸鈉 等。因此,熱處理溫度較佳為200°C以上,尤佳為3〇(rCW 上,特佳為400°C以上。 由於實施上述在更高溫度下的熱處理,故而第一態樣 中使用的基板較佳為使用將紹與異種金屬複合,而在紹表 面形成有陽極氧化皮膜的被覆基板。下文對被覆基板有記 201242038 述’已知在氣以上的高溫下亦不會產生 的龜裂等,具有高耐熱性。另外已知,藉由將基板預先在 30CTC以上進行熱處理,而可對陽極氧化皮膜賦予壓縮= 力,進而可提南财熱性,可確保絕緣性的長期可靠性。藉 由在驗金屬雜鹽層的塗佈後實施該處理, g 石夕酸鹽層的脫水所必㈣熱處理、及陽極氧 壓 應力化所必需的熱處理。 細 另-方面,在超過60叱的溫度下,由於超過驗 矽酸鹽的玻璃轉移溫度而欠佳。 胃 熱處理後的驗金屬石夕酸鹽層的厚度為〇〇1卿〜2 μπι,,佳為0.05 μπι〜1.5㈣,尤佳為〇]卿…_。若 酸黯的厚度變得厚於2陶,賴處理時的驗金 屬石夕的收縮量變大,容易產生龜裂,因此欠佳。 明對Ϊ發明的第二態樣的光電轉換元件用基板進 :酸二的特態樣的光電轉換元件用基板中的鹼金屬 t二Ϊ 包含除紹以外的第13族元素或者除 Λ15族元素(以下,亦僅稱為第13族元素或者 ' 兀,、)中的至少1種、矽及鹼金屬,且利用液相法 而形成。 第夕 13族元素或者第15族元素較佳為硼或磷。 f夕,鹼金屬較佳為鈉,更佳為如鋰與鈉、或者鉀盥 鈉那樣丄包含鈉與鋰或鉀的2種。 、 外鹽層較或鉀機於㈣莫耳比較佳為 〇· 1以下’更佳為〇.01以上1以下’尤佳為0.02 15 201242038 ’Hu / pif 以上1以下,特佳為0.05以上0.5以下。矽是鹼金屬石夕酸 鹽層中所含的總矽(亦包含來自矽酸鈉的矽),在包含石夕酸 鋰與矽酸鉀兩者的情況下,是指鋰與鉀的與相對於來自矽 酸鋰、來自矽酸鉀、及來自矽酸鈉的矽的莫耳比。若鋰或 鉀相對於矽的莫耳比大於1,則鋰或鉀過多,難以作為矽 酸鹽而固化。另一方面,若鋰或鉀相對於矽的莫耳比小於 0·⑻卜則鋰或鉀過少,無法獲得添加效果,光電轉換元件 的光電轉換效率不會提高。 較理想的是,鋰或鉀相對於鹼金屬矽酸鹽層中所含的 總矽的莫耳比、與鈉相對於鹼金屬矽酸鹽層中所含的總矽 的莫耳比之和較佳為丨以下,更佳為〇 8以下。若不含鋰 或鉀,則絕緣性降低,此外,當將通常用於背面電極的翻 ,膜時T成雜質,因此發電效率降低。其原因推定為納的 ,水性南。另-方面’僅含链或鉀時無法提高發電效率。 另外,若鋰或鉀相對於矽的莫耳比、與鈉相對於矽的莫耳 和大於卜_以作為魏鹽而固化另外由於 里乂,故而與基板的密著性下降。 第二態樣的鹼金屬矽酸鹽層包含第13族元素或者第 ^ Λ °亥些元素進入至包含矽-氧的玻璃網狀物中而 璃中的。藉此推定為:麵的微觀結構變化,玻 屬離子的穩定性提高,因級金屬離子的游離 而不會產生鹼金屬離子向表面的偏析。因此, 層例如’不包含如在鹼金屬矽酸鹽層的 201242038 ----- £— 表面形成有包含第13族元素或者第15族元素的層者。 此外,若於驗金屬石夕酸鹽層中包含驗土類金屬,則容 易形成沈殺,驗金屬石夕酸鹽層形成時的塗佈液的穩定性變 差。因此,第二態樣的鹼金屬矽酸鹽層不含鹼土類金屬。 第丨3族元素或者第15族元素相對於鹼金屬矽酸鹽層 T所含的石夕的莫耳比(在包含多種第13族元素或者第15 杈元素的情況下為多種元素的合計的莫耳比)較佳為〇 〇 〇 i 以上〇·15以下,更佳為0.⑻2以上0.10以下,尤佳為〇 〇〇5 以亡〇.08以下,特佳為0.01以上〇·〇5以下。若小於〇 〇〇1, 貝J貝貝上不含苐13族元素或者第15族元素中的至少1種 以上,異物容易析出至鹼金屬矽酸鹽層的表面,此外,絕 緣性降低’或者在使通常餘背面電極_成膜時容易形 成異物,因此發電效率降低。另—方面,若第13族元素或 者第15族元素中的至少1種以上的莫耳比大於〇.15,則 存,生成沈澱而無法獲得均勻的塗佈液的情況,此外,即 便此夠塗佈,亦難以作為_而固化,另外由神的量少, 故而與基板的密著性下降。 矽源及驗金屬源亦可利用與第一態樣的光電轉換元件 用基板所記載的矽源及驗金屬源相同者。 除鋁以外的第13族元素或者除氮以外的第15族元素 為:领、鎵、銦、鉈、磷、砷、銻、鉍。 蝴源、麟源亦可利用與第一態樣的光電轉換元件用基 板所記載的硼源、磷源相同者。 鎵源、銦源、鉈源可列舉:鎵、銦、鉈的硝酸鹽、硫 17 201242038 /pif 酸鹽、乙酸鹽、氯化物等。 砷源、銻源、鉍源有砷、銻、鉍的含氧酸或含氧酸鹽 等,例如可列舉亞砷酸、錄酸鈉、秘酸鈉等。 藉由將上述矽酸鈉、矽酸鋰或矽酸鉀與第13族元素源 或者第15族元素源分別與水以任意的比率混合,可獲得第 二態樣的驗金屬石夕酸鹽層的塗佈液。可藉由變更水的添力口 量來調整塗佈液的黏度,決定適當的塗佈條件。將塗佈液 塗佈於基板上的方法並無特別限定,例如可使用刮刀法、 線棒法、凹版法、喷霧法、浸潰塗佈法、旋轉塗佈法、毛 細管塗佈法等方法。 將塗佈液塗佈於基板上後的熱處理的溫度條件,只要 是在與第一態樣的光電轉換元件用基板相同的條件下進行 即可。另外,所使用的基板亦可使用與第一態樣的光電^ 換元件用基板相同的基板。 進而,較佳為熱處理後的驗金屬矽酸鹽層的厚度亦與 第一態樣的光電轉換元件用基板相同。 /、 對使用本發明第一態樣的光電轉換元件用基板的光 轉換兀件進行說明。此外,使用第-態樣的光電轉換 用基板、第二態樣的光電轉換元件用基板的任—種' 光電轉換元件的構成均相同。圖1是表示光電轉換元件^ -貫施形態的概略剖關。此外,為了容易目視辨認 構成要素的比例尺等與實際者適t不同。越轉換 如圖1所示形成如下構成:在基板1G上依次積層有藉 極氧化而形成的陽極氧化膜2G、驗金財酸鹽層30、翻電 201242038 極40、藉由光吸收而產生電洞.電子對的光電轉換半導體 層50、緩衝層60、透光性導電層(透明電極)7〇、及上部 電極(栅電極)80。此外’圖1中表示在基板1〇上形成有 藉由陽極氧化而形成的陽極氧化膜2〇、及驗金屬砂酸鹽層 30的光電轉換元件,亦可為如圖2所示在基板1〇上形成 有鹼金屬矽酸鹽層30的態樣(此外,圖2中,對與圖j 中的構成要素相同的構成要素標註相同編號)。 作為基板10,不論是陶瓷基板(無鹼玻璃、石英玻璃、 氧化鋁等)、金屬基板(不鏽鋼、鈦箔、矽等)、高分子基 板(聚酿亞胺等)’均可使用。糾熱性.輕量性的觀點而 言’特佳為金屬基板。尤其可__陽極氧化而生成於 金屬基板表面上的金屬氧化膜成為絕緣體的材料。且體而 言,較佳為含有選自紹(A1)、鐵(Fe)、錯(zn、姑;:丁n、Twenty Sixth IEEE Ph〇t〇v〇ltaic Specialists Conference)", 20124203 8f 2000, p.359-p.362 'Title' on the role of Na and the improvement of CIGS absorption materials using MF 刖 drive layer (〇 n the role of Na and modifications to CIGS absorber materials using high MF precursor layers )" as described above. 'Previously the most common insight is as follows: when forming a photoelectric conversion semiconductor layer, sodium diffuses from the sodium supply layer into the photoelectric conversion semiconductor layer, Thereby, the power generation efficiency is improved, but it is known that even if the sodium supply layer is provided, the power generation efficiency is not improved higher than expected. The reason for this is that impurities are generated by the reaction of sodium with the molybdenum of the electrode, and after the etching of the electrode film formation in the manufacturing step of the integrated solar cell, water washing is necessary, but it is confirmed by the water washing. Sodium is dissolved to cause loss. Further, it is presumed that in the reaction of sodium and molybdenum, the sputtering energy is a driving force for the reaction mainly generated when the molybdenum is sputtered on the alkali metal silicate layer. The present invention has been made in view of the above circumstances, and it is an object of the invention to provide a substrate for a photoelectric conversion element, a photoelectric conversion element, and a solar cell, wherein the substrate for the photoelectric conversion element can efficiently use the metal ions in the photoelectric conversion semiconductor layer. The ground diffusion, and the photoelectric conversion efficiency of the photoelectric conversion element can be improved. A substrate for a photoelectric conversion element with a flip electrode according to a first aspect of the present invention includes a substrate for a photoelectric conversion element, and a lithium niobate or potassium niobate and sodium citrate are accumulated on the substrate. An alkali metal ruthenate layer; and a molybdenum electrode laminated on the alkali metal ruthenate layer. Lonely 曰 The first aspect of the metal citrate layer of lithium or potassium relative to the stone oxime 6 201242038 ---- 丨 j · Preferably 0.001 or more and 1 or less. The sum of lithium or potassium in the first aspect relative to the molar ratio of cerium and the molar ratio with respect to sodium is preferably 1 or less. The first aspect of the alkali metal ruthenate layer preferably comprises boron or lanthanum. The thickness of the alkali metal ruthenate layer of the first aspect is preferably 2 μηη or less. The substrate of the first aspect is preferably a metal substrate. Che Yujia formed an anodized film on the surface of the metal substrate. The metal substrate is preferably a coating material obtained by integrating one side or both sides of aluminum, stainless steel or iron steel plate with an aluminum plate. The anodized aluminum film is preferably a porous anodized aluminum film, and the porous anodized aluminum film has a compressive stress. The photoelectric conversion element of the present invention can be formed on the substrate for a photoelectric conversion element according to the first aspect described above. A substrate for a photoelectric conversion element according to a second aspect of the present invention is characterized in that the substrate has an alkali metal tellurite layer (but does not contain an alkaline earth metal), and the alkali metal tellurite layer contains the thirteenth except aluminum. a group element or at least an anthracene, an anthracene, and an alkali metal of a Group 15 element other than nitrogen, and formed by a liquid phase method; and the substrate for a photoelectric conversion element includes a layer deposited on the metallosilicate layer Indium electrode. The Group 13 element other than the one or the Group 15 element other than the nitrogen is preferably boron or phosphorus. The metal of the second aspect is preferably nano. The first aspect of the metal test is preferably two types including a clock or potassium, and sodium. The total molar ratio of the Group 13 element other than aluminum or the Group 15 201242038 element other than nitrogen to 矽 is preferably 15 or less. The thickness of the alkali metal ruthenate layer of the second aspect is preferably 2 pm. The substrate of the second aspect is more preferably a metal substrate. ° It is especially preferable to form an anodized film on the surface of a metal substrate. The metal substrate is more preferably a covering material obtained by integrating one side and two sides of a steel, a non-mineral steel or an iron steel plate with an aluminum plate. The electric conversion element of the present invention can be formed on the substrate in another order. The electrode, the photoelectric conversion semiconductor layer, and the upper electrode conversion element' are characterized in that the composition of the four-conversion-conducting semiconductor layer is a compound semiconductor including at least a brass structure of a group lb element, a group IIIb element, and a group VIb element. The conversion semiconductor layer contains a clock ion or a potassium ion and a sodium ion. The content of each of the ions, ions, and blood sodium ions contained in the photoelectric conversion semiconductor layer is preferably lxl〇i5 atms/cm3 or more. The clock ions or the clock ions and the sodium ions contained in the photoelectric conversion semiconductor layer are preferably supplied from the donor layer of the molybdenum electrode. The main component of the photoelectric conversion semiconductor layer is preferably a compound semiconductor containing at least one of the following elements: at least one lb group element selected from the group consisting of ^ and ^; selected from the group consisting of... f ; 1 , Illb alizarin; and at least one vib group element selected from the group consisting of s, know and Te. The substrate is preferably a metal substrate. 8 201242038 Preferably, an anodized film is formed on the surface of the metal substrate. The metal substrate is preferably a coating material obtained by integrating aluminum sheets, aluminum sheets, or iron steel sheets on one surface and an aluminum plate. An anodized aluminum film is preferably a porous anodized aluminum film, and the smectic anodized aluminum film has a compressive stress. The solar cell of the present invention can be provided with the above-mentioned photoelectric conversion element. [Effects of the Invention] The substrate for a photoelectric conversion element according to the first aspect of the present invention has an alkali metal ruthenate layer containing an alkali metal ruthenate (other than an alkali metal other than sodium) and sodium citrate, even by Sodium is used in combination with other alkali metals to form an electrode containing molybdenum on the alkali metal ruthenate layer, and also inhibits the reaction of sodium with molybdenum to form impurities, and suppresses the dissolution of sodium by water washing, thereby allowing alkali metal citrate The sodium of the layer is efficiently diffused in the photoelectric conversion semiconductor layer, and the power generation efficiency of the photoelectric conversion element can be improved. The mechanism of action for obtaining the above effects by using sodium in combination with other metals is not necessarily clear, but it is presumed that other alkali metals (especially lithium or potassium) have lower hygroscopicity than sodium, due to the alkali metal tannic acid. Lithium or potassium is contained in the salt layer, and the moisture contained in the alkali metal silicate layer is absolutely reduced. As a result, the oxidation reaction due to moisture is less likely to occur, so that generation of impurities is suppressed, and sodium elution due to water washing is reduced. The substrate for a photoelectric conversion element according to the second aspect of the present invention includes at least one of a group 13 element other than aluminum or a group 15 element other than aluminum in the metal silicate layer. The formation of the electrode containing the key on the alkali metal ruthenate layer also inhibits the reaction of sodium with molybdenum to form a foreign matter, or the 201242038 t pif inhibits the elution of the alkali metal by water washing, thereby allowing the alkali metal citrate layer to be alkali The metal is efficiently diffused in the photoelectric conversion semiconductor layer, and the power generation efficiency of the photoelectric conversion element can be improved. The mechanism of action for obtaining the above-described effects by the alkali metal silicate layer containing at least one of the Group 13 element other than aluminum or the Group 15 element other than nitrogen is not necessarily a dish, but is presumed to be as follows. In the case of an alkali metal ruthenate layer containing only Shi Xi, metal and oxygen, the alkali metal ions are solid-solubilized in the glass t, but since the alkali metal ions are monovalent, the glass containing the sulphur-oxygen is not formed. Glass network. Therefore, the interaction between the alkali metal and oxygen is insufficient, and it is easy to be segregated from the glass and segregated on the surface. If the gold-collecting ions are segregated on the surface, there arises a problem that a high-energy splash: a key is reacted to form a foreign matter when the electrode is disposed. On the other hand, it is known that an oxide of a Group 13 element other than aluminum or a Group 15 element other than nitrogen is solid-dissolved in a phthalic acid glass to form a single phase glass, which is in the alkali metal ruthenate layer of the present invention. Also, by adding a Group 13 element other than aluminum or a Group 15 element other than nitrogen, ions of the elements enter into a glass network containing xenon-oxygen to form a uniform glass. The details are not necessarily clear, but it is presumed that the microstructure of the glass changes, and the stability of the metal ions in the glass is improved. Therefore, the release of the alkali metal ions is suppressed, and the segregation of the alkali metal ions to the surface is not caused, and the prevention can be prevented. Foreign matter generation when the key is turned over. Further, it is presumed that since the segregation of alkali metal ions to the surface is suppressed, the elution of the metal ions by the water washing is also alleviated. In the photoelectric conversion element of the present invention, in addition to the 201242038-X-- or potassium ion in the photoelectric conversion semiconductor layer, it is possible to improve the formation of the lithium-ion-converting semiconductor layer in addition to the scales. The amount of _ contained in the photoelectron 5 λ light (four) photoconductor containing nano ions is roughly measured. Although the physical properties and characteristics of the photoelectric conversion semiconductor layer are sub- ing, the presence of the ion ions contributes to the photoelectric high. This situation was first discovered by the inventors. The substrate for a photoelectric conversion element according to the first aspect of the present invention will be described in detail. The metal oxide layer in the substrate for the photoelectric conversion element of the first aspect includes potassium ascorbate and Weiner. It can also be used to cut both acid and potassium. The lithium or potassium of the alkali metal ruthenate layer is 0.001 or more and 1 or less, more preferably 0.01 or more and i or less, and particularly preferably 1 〇 • 2 or more and i or less, particularly preferably G.05 or more and 0.5 or less. (4) The total dream contained in the metal silicate layer (including strontium from sodium citrate), in the case of both oxalic acid and potassium sulphate, 'refers to lithium and potassium Mohrby from lithium oleate, potassium citrate and bismuth from sodium citrate. If the molar ratio of the ri" or the clock to the stone eve becomes greater than 1 ', the lithium or potassium becomes too much, and it is solidified as a sulphate. On the other hand, if the molar ratio of chain or potassium to shixi is less than 0.001, lithium or potassium is too small, and an additive effect cannot be obtained, and the photoelectric conversion efficiency of the photoelectric 201242038 conversion element is not improved. Preferably, the molar ratio of lithium or potassium to the total sulphate contained in the alkali metal ruthenate layer, and the molar ratio of sodium to the total radix contained in the metal silicate layer The sum is preferably 1 or less, more preferably 0.8 or less. If the bell or potassium is not contained, the insulating property is lowered, and when the platinum which is usually used for the back electrode is formed into a film, the impurity power generation efficiency is lowered. The reason is presumed to be that the water absorption of sodium is high. On the other hand, in the case of only bell or potassium, power generation efficiency cannot be improved. Further, if the molar ratio of lithium to potassium to cerium and the molar ratio of sodium to cerium are greater than cerium, it is difficult to cure as ceric acid salt, and since the amount of cerium is small, adhesion to the substrate is small. Sexual decline. A method of producing sodium citrate, lithium niobate or potassium citrate is known as a wet method or a dry method, and can be produced by dissolving cerium oxide with sodium hydroxide, lithium hydroxide or potassium hydroxide, respectively. . Further, various metal molars of the molar ratio of the molar ratio are commercially available, and the metal oxide salts can also be used. As sodium sulphate, aspartic acid, and potassium oxalate, various sodium molar ratios of sodium citrate, lithium niobate, and potassium citrate are commercially available. As an index indicating the ratio of bismuth to alkali metal, the molar ratio of Si 〇 2 / A 2 〇 (A: alkali metal) is often used. For example, lithium niobate has lithium niobate 35, lithium niobate 45, lithium niobate 75, and the like. Potassium citrate is commercially available as No. 1 potassium citrate, No. 2 potassium citrate, and the like. Sodium citrate is known to have sodium decanoate, sodium metasilicate, sodium citrate No. 1, sodium sulphate No. 2, sodium citrate No. 3, sodium sulphate No. 4, etc. The molar ratio of moorium increased to tens of thousands of sodium morbid. A solution of any concentration can be obtained by mixing the above sodium citrate, lithium niobate, and potassium citrate with water at a ratio of 12 201242038. The ratio of the bell or potassium to the shovel can be varied by the mixing of the alkali metal silicates, and can be varied by mixing various sodium citrates at any ratio. By changing the amount of water added, the viscosity of the coating liquid can be adjusted to determine appropriate coating conditions. The method of applying the coating liquid onto the substrate is not particularly limited, and examples thereof include a knife-to-knife method, a wire bar method, a gravure method, a spray method, a dipping coating method, a spin coating method, and a capillary coating method. And other methods. Further, the supply of lithium niobate, potassium niobate and sodium citrate in the alkali metal ruthenate layer is not necessarily required to be a source of linal acid, potassium oxalate or sodium silicate. For example, in the case where the alkali metal citrate layer contains lithium niobate and sodium citrate, the cerium acid clock and sodium hydroxide, or lithium hydroxide and sodium citrate are mixed with water at an arbitrary ratio, respectively. In the case where the sulphuric acid layer contains the sulphuric acid and the sodium sulphate, 'the potassium hydroxide and sodium citrate, or the potassium citrate and the sodium hydroxide are mixed with water at an arbitrary ratio, and the stone may be made. An alkali metal citrate layer of an acid clock and sodium sulphate or potassium citrate and sodium citrate. Further, as a supply source, a lithium salt, a potassium salt, or a sodium salt may be added, respectively. For example, nitrates, sulfates, acetates, phosphates, chlorides, bromides, iodides, and the like are used. A coating solution of an alkali metal ruthenate other than lithium niobate, potassium citrate or sodium citrate can be added to a sodium citrate solution by adding a desired alkali metal nitrate, sulfate, acetate, acidate, It is easily obtained by chloride, desertification, iodide or the like. A compound containing boron or a compound containing phosphorus may also be added to the aqueous alkali metal citrate solution. By adding these compounds, Mo film forming suitability and power generation efficiency can be further improved. The details may not be clear, but 13 201242038 • w · especially ^ ▲ * Presumed as: by adding boron or phosphorus to the alkali metal citrate 'the microstructure change of the glass, the stability of the alkali metal ions in the glass is improved' Therefore, the release of alkali metal ions is suppressed, and the film forming suitability of Mo is improved, and the power generation efficiency is improved. The Si Peng source is preferably a borate such as z-p-acid or sodium tetraborate. Phosphorus sources are: phosphoric acid, peroxyphosphoric acid, phosphonic acid, phosphinic acid, diphosphoric acid, triphosphoric acid, polyphosphoric acid, cyclo-triphosphate, cyclo-tetraphosphonic acid, diphosphonic acid, and salts of such acids, etc. Listed by: lithium phosphate, sodium phosphate, potassium phosphate, lithium hydrogen phosphate, ammonium phosphate, sodium hydrogen phosphate, calcium hydrogen phosphate, ammonium hydrogen phosphate, lithium dihydrogen phosphate, sodium dihydrogen phosphate, calcium dihydrogen phosphate, dihydrogen phosphate Ammonium, sodium pyrophosphate, tribasic acid, and the like. The alkali metal tellurite layer can be produced by applying a coating liquid onto a substrate and then performing heat treatment. The inventors of the present invention measured the dehydration temperature by a method using thermogravimetric analysis and temperature rise degassing analysis, and as a result, it was found that the dehydration was 2 Torr. 〇 ~300°C or so. At a temperature lower than 200 °C, the coating liquid cannot be sufficiently dried, and a metal oxide layer having high water resistance cannot be formed, which is not preferable. In addition, in the heat treatment at 300 ° C or lower, the alkali metal citrate layer has a large amount of residual water, reacts with carbon dioxide in the atmosphere, and forms impurities such as carbonate on the surface, or generates molybdic acid when the Mo electrode is sputtered. Sodium and so on. Therefore, the heat treatment temperature is preferably 200 ° C or more, and more preferably 3 〇 (rCW, particularly preferably 400 ° C or more. Since the above heat treatment at a higher temperature is carried out, the substrate used in the first aspect is more It is preferable to use a coated substrate in which an anodic oxide film is formed on the surface of the sinter and a dissimilar metal. The following description of the coated substrate is described in 201242038, which is known as a crack that does not occur at a high temperature or higher. It is also known that by heat-treating the substrate at 30 CTC or more in advance, compression/force can be imparted to the anodic oxide film, and the heat can be improved, and long-term reliability of insulation can be ensured. After the application of the metal salt layer, the treatment is carried out, and the dehydration of the g sulphate layer must be (4) heat treatment and heat treatment necessary for anodic oxidative stress. In addition, at a temperature exceeding 60 ,, Exceeding the glass transition temperature of the citrate is not good. The thickness of the metal oxide layer after the heat treatment of the stomach is 〇〇1 qing~2 μπι, preferably 0.05 μπι~1.5 (4), especially good 〇] ..._. If The thickness of the crucible becomes thicker than 2 pottery, and the amount of shrinkage of the metal-like stone in the treatment is increased, and cracking is likely to occur, so that it is not preferable. The substrate for the photoelectric conversion element of the second aspect of the invention is: acid The alkali metal t Ϊ in the substrate for a photoelectric conversion element according to the second aspect includes a group 13 element other than the group or a group 15 element (hereinafter, simply referred to as a group 13 element or '兀, 、). At least one of hydrazine and an alkali metal is formed by a liquid phase method. The Group 13 element or the Group 15 element is preferably boron or phosphorus. The base metal is preferably sodium, more preferably lithium. As with sodium or potassium strontium, there are two kinds of sodium, lithium or potassium. The outer salt layer is better than the potassium machine. (4) Moore is better than 〇·1 or less 'more preferably 〇.01 or more and 1 or less'. Preferably, it is 0.02 15 201242038 'Hu / pif or more and 1 or less, particularly preferably 0.05 or more and 0.5 or less. 矽 is the total 矽 contained in the alkali metal silicate layer (including bismuth from sodium citrate), including stone In the case of both lithium niobate and potassium citrate, it refers to the relationship between lithium and potassium and from lithium niobate. Potassium and molar ratio of bismuth from strontium citrate. If the molar ratio of lithium or potassium to strontium is greater than 1, lithium or potassium is too much to be solidified as citrate. On the other hand, if lithium or potassium When the molar ratio with respect to ruthenium is less than 0·(8), the lithium or potassium is too small to obtain an additive effect, and the photoelectric conversion efficiency of the photoelectric conversion element is not improved. Preferably, lithium or potassium is relative to the alkali metal ruthenate layer. The molar ratio of the molar ratio of the total enthalpy contained in the sodium to the total enthalpy contained in the alkali metal silicate layer is preferably 丨 or less, more preferably 〇 8 or less. In the case of potassium or potassium, the insulating property is lowered. Further, when the film is normally used for turning the back electrode, T becomes an impurity, and thus the power generation efficiency is lowered. The reason is estimated to be nano, and water is south. On the other hand, when the chain or potassium is only contained, the power generation efficiency cannot be improved. Further, if the molar ratio of lithium or potassium to cerium, the molar ratio of sodium to cerium to cerium, and the amount of cerium relative to cerium, it is cured as a cerium salt, and the adhesion to the substrate is lowered. The second aspect of the alkali metal ruthenate layer comprises a Group 13 element or a portion of the element which enters into the glass network comprising helium-oxygen. From this, it is presumed that the microstructure of the surface changes, the stability of the glass ions is improved, and the segregation of the alkali metal ions to the surface is not caused by the release of the metal ions. Therefore, the layer, for example, does not include a layer containing a Group 13 element or a Group 15 element as formed on the surface of the alkali metal silicate layer 201242038 ----- £. Further, if the soil-like metal is contained in the metal oxide layer, it is easy to form a smear, and the stability of the coating liquid at the time of forming the metal silicate layer is deteriorated. Therefore, the second aspect of the alkali metal silicate layer does not contain an alkaline earth metal. The molar ratio of the third group element or the group 15 element to the base metal of the alkali metal silicate layer T (in the case of containing a plurality of group 13 elements or 15th element, a total of a plurality of elements) Mohr ratio is preferably 〇〇〇i or more 〇·15 or less, more preferably 0. (8) 2 or more and 0.10 or less, and particularly preferably 〇〇〇5 to death 〇.08 or less, particularly preferably 0.01 or more 〇·〇5 the following. When it is less than 〇〇〇1, at least one of the group 13 element or the group 15 element is not contained in the shell J, and the foreign matter is likely to be precipitated on the surface of the alkali metal silicate layer, and the insulation is lowered' or When the normal remaining back surface electrode is formed into a film, foreign matter is easily formed, and thus power generation efficiency is lowered. On the other hand, when the molar ratio of at least one of the group 13 element or the group 15 element is larger than 〇.15, a precipitate is formed and a uniform coating liquid cannot be obtained, and even if this is sufficient The coating is also difficult to cure as _, and the amount of God is small, so that the adhesion to the substrate is lowered. The source of the germanium source and the metal source can be the same as those of the source and the metal source described in the substrate for the photoelectric conversion element of the first aspect. The Group 13 element other than aluminum or the Group 15 element other than nitrogen is: collar, gallium, indium, antimony, phosphorus, arsenic, antimony, antimony. The source of the butterfly and the source of the lining may be the same as those of the boron source and the phosphorus source described in the substrate for the photoelectric conversion element of the first aspect. Gallium source, indium source, and lanthanum source include gallium, indium, bismuth nitrate, sulfur 17 201242038 /pif acid salt, acetate, chloride, and the like. Examples of the arsenic source, the antimony source, and the antimony source include an oxo acid or an oxo acid salt of arsenic, antimony or bismuth. Examples thereof include arsenious acid, sodium citrate, and sodium silicate. The second aspect of the metallographic layer can be obtained by mixing the above sodium citrate, lithium niobate or potassium niobate with a source of a Group 13 element or a source of a Group 15 element with water at any ratio. Coating solution. The viscosity of the coating liquid can be adjusted by changing the force of the water to determine the appropriate coating conditions. The method of applying the coating liquid onto the substrate is not particularly limited, and for example, a doctor blade method, a wire bar method, a gravure method, a spray method, a dipping coating method, a spin coating method, a capillary coating method, or the like can be used. . The temperature condition of the heat treatment after applying the coating liquid onto the substrate may be carried out under the same conditions as those of the substrate for a photoelectric conversion element of the first aspect. Further, the substrate to be used may be the same substrate as the substrate for the photoelectric conversion element of the first aspect. Further, it is preferable that the thickness of the metal silicate layer after the heat treatment is also the same as that of the substrate for a photoelectric conversion element of the first aspect. / The light conversion element using the substrate for a photoelectric conversion element according to the first aspect of the present invention will be described. Further, the configuration of any of the photoelectric conversion elements of the substrate for photoelectric conversion using the first aspect and the substrate for photoelectric conversion device of the second aspect is the same. Fig. 1 is a schematic cross-sectional view showing a form of a photoelectric conversion element. Further, the scale and the like for easily recognizing the constituent elements are different from those of the actual person. As shown in FIG. 1, the conversion is performed by sequentially depositing an anodized film 2G formed by polar oxidation, a gold hydroxide layer 30, and a flip-flop 201242038 pole 40 on the substrate 1G to generate electricity by light absorption. The electron-transformed semiconductor layer 50, the buffer layer 60, the light-transmitting conductive layer (transparent electrode) 7〇, and the upper electrode (gate electrode) 80 of the electron pair. Further, FIG. 1 shows a photoelectric conversion element in which an anodized film 2A formed by anodization and a metal oxide layer 30 are formed on a substrate 1A, which may be as shown in FIG. The alkali metal silicate layer 30 is formed on the crucible (in the same manner, in FIG. 2, the same constituent elements as those in FIG. j are denoted by the same reference numerals). The substrate 10 can be used as a ceramic substrate (alkali-free glass, quartz glass, alumina, etc.), a metal substrate (stainless steel, titanium foil, tantalum, etc.), or a polymer substrate (such as polyacrylonitrile). From the viewpoint of heat correction and lightweightness, it is particularly preferable to be a metal substrate. In particular, the metal oxide film formed on the surface of the metal substrate by anodization can be used as a material of the insulator. In other words, it preferably contains a selected one from the group consisting of Shao (A1), iron (Fe), and wrong (zn, abundance;

'-_______. 19 20124203 8f ηδδο /pif 化』ϋ極氧化而形成的陽極氧化膜20是藉由陽極氧 絕緣性^具有多個細孔的絕緣性氧化膜者,藉此確保高 读嗜㈣^氧化可藉由將基板10作為陽極,與陰極一起 二―、質中’對陽極陰極間施加電壓而實施。陰極可 使用奴或紹等。 陽極氧化條件亦取決於所使用的電解質的種類,並無 特别限制。作為條件,例如只要在電解質濃度為0.1 mol/L 2 mol/L、液溫為yc〜8(rc、電流密度為〇㈨5 A/cm2 〇-6^A/cm、電壓為1 v〜200 V、電解時間為3分鐘〜 分鐘的__適當。電解質並無特別限制,較佳為 ,巧^含硫酸、磷酸、鉻酸、乙二酸、丙二酸、磺胺酸、 本文以及酿如續酸等酸1種或者2種以上的酸性電解 液。在使用該電解質的情況下,較佳為電解質濃度為〇 2 m〇l/^ 1 m〇l/L、液溫為10°C〜80〇C、電流密度為0.05 A/cm2〜〇.3〇A/cm2、以及電壓為 3〇v〜150V。 陽極氧化膜較佳為包含阻隔層部分及多孔層部分,且 多孔層部分在室溫下具有壓縮應變者。通常,阻隔層具有 壓縮應力’多孔層具有拉伸應力,因此數μιη以上的厚膜 中,已知陽極氧化膜整體成為拉伸應力。另一方面,在使 用上述被覆材料來實施例如後述的加熱處理的情況下,可 製作具有壓縮應力的多孔層。因此,即便製成數μιη以上 的厚膜’亦可使陽極氧化膜整體成為壓縮應力,不會由成 膜時的熱膨脹差引起龜裂的產生,另外,可製成於室溫附 近的長期可靠性優異的絕緣性膜。 20 201242038 下’上述壓縮應變的大小較佳為〇〇1%以 上’尤佳為0.05〇/〇以上,特佳為〇 1〇%以上。另外 為0.25%以下。 竿乂住 若壓縮應變小於0.01%,則雖有壓縮應變,但不充分, :在最終製品形態下 長期而歷經溫度循環,或者從外部受 情況下’作為絕緣層而形成的陽極氧 化膜產生龜裂,導致絕緣性的下降。 另一方面,若壓縮應變過大,則陽極氧 :籍由對陽極氧化膜施加強的壓縮應變而產生龜裂,或二 ==匕膜隆起而平坦性下降、或者剝離,因此絕緣性會 疋性地下降。因此,壓縮應變較佳為0.25%以下。 =’已知陽極氧化膜的楊氏模數為5〇咖〜15〇 mpI左右。因此’上述壓縮應力的大小較佳為5MPa〜300 陽極氧化處理後,可實施加熱處理 =陽極氧化膜賦予壓縮應力,耐龜裂“高。因:處 =板絕提高,能夠更適合用作帶有絕緣層的 孟屬基板。加熱處理溫度較佳為b ^情況下,較佳為在30心;行;= 先2熱處理,可減少多孔質陽極氧化财所含的‘ 刀里可&向絕緣性。 3〇〇。€^1^!^呂的基板存在以下等問題:若實施 乂上的加熱處理’廳觀而失姆絲板的功能, 21 201242038 1 二,_pif 或者由於鋁與陽極氧化膜的熱膨脹率的差,而在陽極氧化 膜上產生龜裂,失去絕緣性;但藉由使用鋁與異種金屬的 被覆材料,可在300°C以上的溫度下進行加熱。 陽極氧化膜是在水溶液中形成的氧化被膜,在固體内 部保持水分,例如已知如「化學快報第34卷第9期(2〇〇5) 第 1286 頁(Chemistry Letters Vol.34,No.9,(2005 )'-_______. 19 20124203 8f ηδδο /pif The anodic oxide film 20 formed by the ruthenium oxidization is an insulating oxide film having a plurality of pores by anodic oxygen insulation, thereby ensuring high reading (4)^ Oxidation can be carried out by applying a voltage between the anode and the cathode in the same manner as the cathode by using the substrate 10 as an anode. The cathode can be used as slave or sau. The anodizing conditions also depend on the kind of the electrolyte to be used, and are not particularly limited. As conditions, for example, the electrolyte concentration is 0.1 mol/L 2 mol/L, the liquid temperature is yc 8 (rc, the current density is 〇(9) 5 A/cm 2 〇-6^A/cm, and the voltage is 1 v to 200 V. The electrolysis time is 3 minutes to minutes. The electrolyte is not particularly limited. Preferably, it contains sulfuric acid, phosphoric acid, chromic acid, oxalic acid, malonic acid, sulfamic acid, and the like. One type or two or more kinds of acidic electrolytes are used. When the electrolyte is used, the electrolyte concentration is preferably 〇2 m〇l/^1 m〇l/L, and the liquid temperature is 10 °C to 80 〇. C, current density is 0.05 A / cm2 ~ 〇. 3 〇 A / cm2, and the voltage is 3 〇 v ~ 150 V. The anodized film preferably includes a barrier layer portion and a porous layer portion, and the porous layer portion is at room temperature Generally, the barrier layer has a compressive stress. The porous layer has a tensile stress. Therefore, in a thick film of several μm or more, the entire anodized film is known to be a tensile stress. On the other hand, the above-mentioned coated material is used. When a heat treatment such as described later is carried out, a porous layer having a compressive stress can be produced. The thick film of several μm or more can also be used as a compressive stress in the entire anodized film, and cracks are not generated by the difference in thermal expansion at the time of film formation, and the long-term reliability in the vicinity of room temperature can be excellent. Insulating film. 20 201242038 The size of the above-mentioned compressive strain is preferably 〇〇1% or more, particularly preferably 0.05〇/〇 or more, particularly preferably 〇1〇% or more, and 0.25% or less. If the compressive strain is less than 0.01%, there is a compressive strain, but it is insufficient. In the final product form, the temperature is circulated for a long period of time, or the anodic oxide film formed as an insulating layer is cracked due to external external conditions. On the other hand, if the compressive strain is too large, the anode oxygen is generated by applying a strong compressive strain to the anodized film to cause cracking, or the second == the film is raised, and the flatness is lowered or peeled off. The insulating property is degraded. Therefore, the compressive strain is preferably 0.25% or less. = 'The Young's modulus of the anodized film is known to be about 5 〜 15 〇 mpI. Therefore, the magnitude of the above-mentioned compressive stress is higher. After 5 MPa to 300 anodic oxidation treatment, heat treatment can be performed = the anodic oxide film is given a compressive stress, and the crack resistance is "high. Because the plate is absolutely improved, it can be more suitably used as a substrate with an insulating layer. Heating When the treatment temperature is preferably b ^, it is preferably 30 cents; row; = 2 heat treatment, which can reduce the 'knife can' and the insulation property contained in the porous anodization. 3〇〇. The substrate of 1^!^吕 has the following problems: If the heat treatment on the crucible is performed, the function of the wire plate is lost, 21 201242038 1 2, _pif or due to the difference in thermal expansion coefficient between aluminum and anodized film, Cracks are generated in the anodized film, and insulation is lost. However, by using a coating material of aluminum and a dissimilar metal, heating can be performed at a temperature of 300 ° C or higher. The anodized film is an oxide film formed in an aqueous solution and retains moisture inside the solid, and is known, for example, in Chemical Letters, Vol. 34, No. 9 (2〇〇5), page 1286 (Chemistry Letters Vol. 34, No. 9). , (2005)

Pl286)」所記載。藉由與該文獻相同的陽極氧化膜的固體 核磁共振(nuclear magnetic resonance,NMR)測定,確認 在l〇〇°C以上進行熱處理的情況下,陽極氧化膜的固體内 部的水分量(OH基)減少,尤其在2〇(rc以上顯著減少。 因此推定,藉由加熱,A1_〇與A1_〇H的結合狀態變化, 產生應力緩和(退火效果)。 另外,藉由發明者等人的陽極氧化膜的脫水量測定而 瞭解到,大部分的脫水是在室溫〜3〇〇<t左右為止產生。在 欲使用陽極氧化膜作為絕緣膜的情況下,所含的水分量越 夕’。絕緣性越下降,因此就提高絕緣性的觀點而言,在 300 C以上進行熱處理的步驟亦極其有效。藉由使用紹與異 種金屬的被覆材料作為基材,與3〇(rc以上的熱處理加以 組合’ y有效地表現出退火效果,可實現先前技術所無法 達到的高壓縮應變、及少含水量。藉此,能夠進一步提供 絕緣可靠性高的光電轉換元件用基板。 就電氣絕緣性的觀點而言,陽極氧化膜的厚度較佳為 3 μηι〜50 μιη。藉由具有3 μπι以上的膜厚,可兼顧絕緣性 以及在至溫下由於具有壓縮應力而帶來的成膜時的耐熱 22 201242038 性、以及長期可靠性。 膜厚較佳為5 以上m 20μπι以下。 将佳為5μιη以上 在膜厚極薄的情況下,存 氣絕緣性及操作日^ . ^防止由電 在於:由於膜厚較薄,陽極氧u 增大’成為龜裂的起點而容易產生龜裂:== :金屬雜質而來的陽極氧化膜中的金屬析出物:;: 3物、η金屬氧化物、空_影響相對增大,而崎= ίϊΞ極氧化膜在從外部受到衝擊或應力時斷裂而容易產 龜裂。結果為’若陽極氧化膜低於3邮,魏緣性 合於作為可祕耐熱基板的用途 、或者藉由輥對 另外,在膜厚過厚的情況下,可挽性下降,並且 =^化所需的成本及時間,因此欠佳。另外,彎曲耐= 或熱應變雖下降。彎㈣性下降的·,雜定是 當陽極氧化膜彎曲時,表面與銘界面的拉伸應力的大小 =因此剖面方向的應力分布增大,容易產生局部的應力 集中。熱應變耐性下降的原因,經推定是由於:當藉由夷 材的熱膨脹而對陽極氧化膜施加拉伸應力時,越靠^與二 的界面施加越大_力’剖面方向的應力分布增大,ς 產生局部的應力集中。結果,若陽極氧化膜超過5〇帅, 則曾曲耐性或熱應變耐性下降,因此不適合於作為可挽性 23 201242038 ΗΖ.ΔΟ / pif 财熱基板的用途、或者藉由較對輥的製造。另外,絕緣可 靠性亦下降。 钥電極4〇的膜厚並無限制較佳為nm〜1 〇〇〇 nm 左右。 光電轉換半導體層50為化合物半導體系光電轉換半 ^體層’作為主成分(所謂主成分是指2G質量%以上的成 分)並無特別限制,就獲得高光電轉換效率而言,可適宜 使用硫族元素(chalc〇gen )化合物半導體、黃銅礦 (chalcopyrite )結構的化合物半導體、缺陷黃錫礦 (stannite)型結構的化合物半導體。 硫族元素化合物(包含S、Se、Te的化合物)較佳可 列舉: II-VI 化合物:ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe 等; I-III-VI2 族化合物:CuInSe2、CuGaSe2、Cu(In,Ga)Se2、 CuInS2、CuGaSe2、Cu(In,Ga)(S,Se)2 等; I-III3-VI5 族化合物:CuIn3Se5、CuGa3Se5、Cu(In,Ga)3Se5 等。 黃銅礦型結構以及缺陷黃錫礦型結構的化合物半導體 較佳可列舉: I-III-VI2 族化合物:CuInSe2、CuGaSe】、Cu(In,Ga)Se2、 CuInS2、CuGaSe2、Cu(In,Ga)(S,Se)2 等; I-IIIrVI5 族化合物:CuIn3Se5、CuGa3Se5、Cu(In,Ga)3Se5 等。 24 201242038 其中’上述記载中,(In,Ga)、(S,Se:^1e*(InixGax:)、 (Sl-ySey)(其中 ’ Χ=〇〜1,y=〇〜1)。 光電轉換半導體層的成膜方法並無特別限制。例如, 包含Cn、In、(Ga)、S的Cl (G) S系的光電轉換半導體 層的成膜中,可使用砸化法或多元蒸鑛法等方法來成膜。 光電轉換半導體層50的膜厚並無特別限制,較佳為 1.0 μηι〜3.0 μπι,特佳為 1.5 μπι〜2.0 μηι。 緩衝層60並無特別限制’較佳為含有Cds、ZnS、Pl286)". By solid-state magnetic resonance (NMR) measurement of the anodized film similar to this document, it was confirmed that the moisture content (OH group) inside the solid of the anodized film when heat treatment was performed at 10 ° C or higher. Reduction, especially at 2 〇 (the rc or more is significantly reduced. Therefore, it is presumed that by heating, the bonding state of A1_〇 and A1_〇H changes, and stress relaxation (annealing effect) is generated. In addition, the anode of the inventor et al. It is known from the measurement of the amount of dehydration of the oxide film that most of the dehydration is generated at room temperature of ~3 〇〇<t. In the case where an anodized film is to be used as the insulating film, the amount of water contained is overnight. Since the insulation property is lowered, the step of heat-treating at 300 C or more is extremely effective from the viewpoint of improving the insulating property. By using a coating material of a dissimilar metal as a substrate, and heat treatment of 3 〇 or more The combination 'y effectively exhibits an annealing effect, which achieves a high compressive strain that cannot be achieved by the prior art, and a small water content. Thereby, it is possible to further provide high insulation reliability. The substrate for the photoelectric conversion element has a thickness of preferably 3 μm to 50 μm from the viewpoint of electrical insulating properties, and has a film thickness of 3 μm or more, which can achieve both insulation and temperature. The heat resistance at the time of film formation due to the compressive stress is 22,420,38, and the long-term reliability. The film thickness is preferably 5 or more and 20 μm or less. When the film thickness is 5 μm or more, the gas insulation is excellent. Operation day ^ . ^ Prevention of electricity lies in: due to the thin film thickness, the increase in the anode oxygen u 'becomes the starting point of the crack and is prone to cracking: == : metal precipitates in the anodized film from metal impurities: ;: 3, η metal oxide, _ _ effect is relatively increased, and the = ϊΞ ϊΞ 氧化 氧化 氧化 氧化 在 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化In the case where the film is used as a heat-resistant substrate, or by a roll pair, when the film thickness is too thick, the drawability is lowered, and the cost and time required for the film are lowered, which is not preferable. In addition, bending resistance = or heat should The decrease is due to the decrease in the bending (four) property. When the anodized film is bent, the tensile stress of the surface and the interface is increased. Therefore, the stress distribution in the cross-sectional direction is increased, and local stress concentration is likely to occur. Thermal strain resistance. The reason for the decrease is presumed to be due to the fact that when the tensile stress is applied to the anodized film by the thermal expansion of the material, the larger the interface between the two and the second is, the larger the stress distribution in the cross-sectional direction increases, and the ς is generated. Local stress concentration. As a result, if the anodized film exceeds 5, the strain or thermal strain resistance is lowered, so it is not suitable for use as a chargeable 23 201242038 ΗΖ.ΔΟ / pif financial substrate, or by comparison The manufacture of rolls. In addition, insulation reliability is also reduced. The film thickness of the key electrode 4〇 is not limited to about nm to 1 〇〇〇 nm. The photoelectric conversion semiconductor layer 50 is a compound semiconductor-based photoelectric conversion semiconductor layer as a main component (the main component means a component of 2 G% by mass or more), and is particularly limited in terms of obtaining high photoelectric conversion efficiency. Element (chalc〇gen) compound semiconductor, compound semiconductor of chalcopyrite structure, compound semiconductor of defective stannite type structure. The chalcogen compound (compound containing S, Se, Te) is preferably: II-VI compound: ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, etc.; Group I-III-VI2: CuInSe2, CuGaSe2, Cu (In, Ga) Se2, CuInS2, CuGaSe2, Cu(In, Ga)(S, Se)2, etc.; I-III3-VI5 group compound: CuIn3Se5, CuGa3Se5, Cu(In,Ga)3Se5 and the like. The chalcopyrite type structure and the compound semiconductor of the defective yellow tin type structure are preferably: I-III-VI2 group compound: CuInSe2, CuGaSe], Cu(In, Ga)Se2, CuInS2, CuGaSe2, Cu(In, Ga (S, Se) 2 and the like; I-IIIrVI5 compound: CuIn3Se5, CuGa3Se5, Cu(In, Ga)3Se5 and the like. 24 201242038 Wherein the above description, (In, Ga), (S, Se: ^1e* (InixGax:), (Sl-ySey) (where 'Χ=〇~1, y=〇~1). The film formation method for converting the semiconductor layer is not particularly limited. For example, in the film formation of a Cl (G) S-based photoelectric conversion semiconductor layer containing Cn, In, (Ga), or S, a deuteration method or a multi-distillation may be used. The film thickness of the photoelectric conversion semiconductor layer 50 is not particularly limited, but is preferably 1.0 μm to 3.0 μm, and particularly preferably 1.5 μm to 2.0 μm. The buffer layer 60 is not particularly limited. Cds, ZnS,

Zn(S,0;^^Zn(S,0,0H)、SnS、Sn(S,0;^^Sn(S,0,0H)、Zn(S,0;^^Zn(S,0,0H), SnS,Sn(S,0;^^Sn(S,0,0H),

InS、In(S,0)及/或 ln(S,〇,〇H)等包含選自由 Cd、Zn、Sn、InS, In(S,0) and/or ln(S,〇,〇H) and the like are selected from Cd, Zn, Sn,

In所組成組群中的至少丨種金屬元素的金屬硫化物 層40的膜厚較佳為1〇ηηι〜2μηι,更佳為15伽〜2〇〇跡 透光性導電層(透明電極)70是用於取入光,並且與 下部電極4G朗地作為供光電轉換層5Q巾生成的電流流 通的電極而發揮作用的層。透紐導電層%的組成並無特 別限制’ k佳為ZnO : A1等的η·Ζη()等。透光性導電層 7〇的膜厚並無特別限制,較佳為50 nm〜2叫。 上部電極(栅電極)8G並無特別限制,可列舉A1等。 上部電極8G的膜厚並無特別限制,較佳為q』畔〜3哗。 ^發明的光電轉換元件就其他方面而言,光電轉換半 Ϊ的2主成t是包含化族元素、IIIb族元素及VIb族元 導體二化合物半導體,且光電轉換半 子及鉀離Ϊϋ切料、與鈉離子。亦可包含歸 25 201242038 光電轉換半導體層中所含的姆子、鉀離子以及納離 子的各自的含量較㈣lxl()i5 atms/em3以上 離子的含量較佳為卜丨⑽—〜lxl()2Q atms/em3 & 佳為 2xl018 atms/cm3〜lxl02〇 atms/cm3,尤佳為 5_18 atms/cm3〜1 χ 1 〇2〇 atms/cm3。鋰離子或鉀離子的含量較佳為 lxl〇15 —sW〜5x1〇19 atms/cm3,更佳為 1χΐ〇16 _知3 〜5xl〇19 atms/cm3,尤佳為 lxl〇17 atms/cm3 〜5χΐ〇ΐ9 atms/cm3 〇 光電轉換半導體層中所含的鐘離子或鉀離子與納離子 可在光電轉換半導體層的賴時共驗,或者亦可預先在 Mo電極上蒸鍍NaF、LiF、KF等氟化物等。另外,可在 包a Na或Li、K的Mo膜上形成光電轉換半導體層,或 者亦可在製成光電轉換半導體層後,堆積包含Na戋Li、κ 的化合物而進行後退火。或者,亦可藉由使用上述第一態 樣的帶有鉬電極的光電轉換元件基板、第二態樣的帶有鉬 電極的光電轉換元件基板,從鹼供給層3〇穿透鉬電極4〇 而擴散。 本發明的光電轉換元件用基板可較佳地用於太陽電池 等。可對光電轉換元件1視需要而安裝外罩玻璃、保護膜 等,來製成太陽電池。 以下,利用實例,對本發明的光電轉換元件用基板進 一步進行詳細說明。 第一態樣的實例 (基板的準備) 26 201242038. 作為基板,準備3 cm見方的無驗玻璃基板(實例i、 ^例7及實例32中使用)、SUS43〇基板(厚度1〇〇㈣, 實例2、實例5、實例8、實例25、實例27、比較例卜比 較例5、比較例6、比較例8中使用)、陽極氧化銘基板(上 述以外的實例及比較例2、t匕較例3、較例4、比較例7 中使用)。陽極氧化鋁基板是利用如下方法製作。將包含厚 度如μηι的鋁及厚度10〇4111的SUS43〇的被覆材料,使用 乙二酸電解液在40 V的恆定電壓條件下進行陽極氧化,製 作表面形成有1〇 μιη的陽極氧化鋁的基板。 (塗佈液的準備與實例及比較例) 將鋰供給源(日產化學製造,商品名:矽酸鋰45、矽 酸鋰75、氫氧化鋰)、鉀供給源(富士化學製造,商品名: 1Κ矽酸鉀、2Κ矽酸鉀)、鈉供給源(昭和化學製造,商品 名1號矽酸鈉、3號矽酸鈉;以及東曹產業製造,商品名^ 4號石夕酸納、高莫耳械鈉、氫氧化鈉)、水分別以表i及 表3所示的質量比,進而將添加有作為硼供給源的硼或四 硼酸鈉、作為磷酸源的磷酸者以表2所示的質量比進行混 合,,來製備塗佈液。在基板上滴下塗佈液,藉由旋轉塗佈 而形成鹼金屬矽酸鹽層。然後,在45〇〇c下對基板進行 刀在里…、處理。熱處理後,藉由直流(direct current,dc) 濺鍍,在基板上形成厚度為8〇〇 nm的M〇。 (Mo成膜性評價) ^對於上述形成的鹼金屬矽酸鹽層上的Mo表面的雜質 量,使用光學顯微鏡來觀察表面,觀察異物的量。將實例 27 20124203 8f /pll 9及比較例1的顯微鏡照片示於圖3中。實例9中未觀矜 到異物,但比較例1中每i mm見方觀察到1〇〇〇〇個以丄 的異物。對於其他的實例、比較例亦同樣地實施顯微鏡觀 察,根據每1 mm見方的異物的個數,以下述基準進行 價並示於表1〜表3中。 AA :未觀察到異物。 A :異物為1個以上且小於1〇個。 B :異物為1〇個以上且小於1〇〇個。 C :異物為10000個以上。 (太陽電池的製作) 在該Mo電極上形成CIGS太陽電池。此外,本實例 中,使用高純度銅與銦(純度99.9999%)、高純度Ga (純 度99.999%)、高純度Se (純度99.999%)的粒狀原材料作 為蒸鐘源。使用絡錄紹錄熱電偶(chr〇mei_aiUmel thermocouple)作為基板溫度監測器。將主真空腔室進行 真空排氣直至l〇-6Torr(1.3xlO_3Pa)為止,然後控制源自 各蒸發源的蒸鍍速率,在最高基板溫度為530〇C的製膜條 件下製成膜厚約1·8μηι的CIGS薄膜。繼而,利用溶液成 長法來堆積90 nm左右的CdS薄膜作為緩衝層,在其上利 用DC ί賤鍍法以厚度〇.6 形成透明導電膜的Zn〇 : A1 膜。最後利用蒸鐘法形成A1栅電極來作為上部電極,從而 製作太陽電池單元。 (發電效率的測定) 對所製作的太陽電池單元(面積0.5 cm2)照射空氣質 28The film thickness of the metal sulfide layer 40 of at least one of the metal elements in the group of In is preferably 1 〇ηηι 2 2 ηι, more preferably 15 Å to 2 透光 trace transparent conductive layer (transparent electrode) 70 It is a layer that functions to take in light and to function as an electrode through which the lower electrode 4G flows as a current for generating the photoelectric conversion layer 5Q. The composition of the conductive layer % of the translucent layer is not particularly limited, and k is preferably η·Ζη() such as ZnO: A1 or the like. The film thickness of the light-transmitting conductive layer 7 is not particularly limited, and is preferably 50 nm to 2 Å. The upper electrode (gate electrode) 8G is not particularly limited, and examples thereof include A1 and the like. The film thickness of the upper electrode 8G is not particularly limited, but is preferably q′′ to 3哗. Inventive Photoelectric Conversion Element In other respects, the main constituent t of the photoelectric conversion semiconductor is a compound semiconductor containing a group element, a group IIIb element and a group VIb conductor, and a photoelectric conversion half and a potassium ion-cutting material. With sodium ions. It can also contain the content of each of the lumps, potassium ions and nano ions contained in the photoelectric conversion semiconductor layer of 201224038. (4) The content of ions above lxl()i5 atms/em3 is preferably dip (10)-~lxl()2Q Atms/em3 & good is 2xl018 atms/cm3~lxl02〇atms/cm3, especially 5_18 atms/cm3~1 χ 1 〇2〇atms/cm3. The content of lithium ion or potassium ion is preferably lxl 〇 15 - sW 〜 5 x 1 〇 19 atms / cm 3 , more preferably 1 χΐ〇 16 _ know 3 〜 5 x l 〇 19 atms / cm 3 , especially preferably lxl 〇 17 atms / cm 3 ~ 5χΐ〇ΐ9 atms/cm3 钟 The photoelectric ions or potassium ions and nano-ions contained in the photoelectric conversion semiconductor layer can be shared by the photoelectric conversion semiconductor layer, or the NaF, LiF, KF can be vapor-deposited on the Mo electrode in advance. Such as fluoride and so on. Further, a photoelectric conversion semiconductor layer may be formed on the Mo film of a Na or Li or K, or a compound containing Na戋Li or κ may be deposited after the photoelectric conversion semiconductor layer is formed to perform post-annealing. Alternatively, the molybdenum electrode 4 may be penetrated from the alkali supply layer 3 by using the photoelectric conversion element substrate with the molybdenum electrode and the second embodiment of the photoelectric conversion element substrate with the molybdenum electrode in the first aspect. And spread. The substrate for a photoelectric conversion element of the present invention can be preferably used for a solar cell or the like. A solar cell can be fabricated by mounting a cover glass, a protective film, or the like on the photoelectric conversion element 1 as needed. Hereinafter, the substrate for a photoelectric conversion element of the present invention will be further described in detail by way of examples. Example of the first aspect (preparation of the substrate) 26 201242038. As a substrate, a 3 cm square non-glass substrate (used in Example i, Example 7 and Example 32) and a SUS43 substrate (thickness 1 〇〇 (4)) were prepared. Example 2, Example 5, Example 8, Example 25, Example 27, Comparative Example, Comparative Example 5, Comparative Example 6, and Comparative Example 8), anodized substrate (examples other than the above, and comparative example 2, t匕Example 3, Comparative Example 4, and Comparative Example 7 were used). The anodized aluminum substrate was produced by the following method. A coating material comprising aluminum having a thickness such as μηι and SUS43〇 having a thickness of 10〇4111 was anodized using a oxalic acid electrolyte under a constant voltage of 40 V to prepare a substrate on which an anodized aluminum having a surface of 1 μm was formed. . (Preparation, Examples, and Comparative Examples of Coating Liquid) A lithium supply source (manufactured by Nissan Chemical Co., Ltd., trade name: lithium niobate 45, lithium niobate 75, lithium hydroxide) and a potassium supply source (manufactured by Fuji Chemical Co., Ltd., trade name: 1 potassium citrate, potassium citrate), sodium supply source (manufactured by Showa Chemical, product name No. 1 sodium citrate, sodium citrate No. 3; and manufactured by Tosoh Industries, trade name ^ No. 4 Table 2 and the water are respectively added in the mass ratio shown in Table i and Table 3, and further, boron or sodium tetraborate as a boron supply source and phosphoric acid as a phosphoric acid source are added as shown in Table 2. The mass ratio is mixed to prepare a coating liquid. The coating liquid was dropped on the substrate, and an alkali metal silicate layer was formed by spin coating. Then, the substrate was knives and processed at 45 〇〇c. After the heat treatment, M 厚度 having a thickness of 8 〇〇 nm was formed on the substrate by direct current (dc) sputtering. (Mo filming property evaluation) ^ The amount of impurities on the surface of Mo on the alkali metal silicate layer formed above was observed with an optical microscope, and the amount of foreign matter was observed. The micrographs of Example 27 20124203 8f /pll 9 and Comparative Example 1 are shown in Fig. 3. In Example 9, no foreign matter was observed, but in Comparative Example 1, 1 丄 foreign matter was observed every i mm square. The microscope observation was carried out in the same manner as in the other examples and the comparative examples, and the price was shown in Tables 1 to 3 based on the number of foreign matters per square meter. AA: No foreign matter was observed. A: The foreign matter is one or more and less than one. B: The foreign matter is one or more and less than one. C: 10,000 or more foreign substances. (Production of Solar Cell) A CIGS solar cell was formed on the Mo electrode. Further, in the present example, a granular raw material of high-purity copper and indium (purity of 99.9999%), high-purity Ga (purity of 99.999%), and high-purity Se (purity of 99.999%) was used as a steam source. A thermocouple (chr〇mei_aiUmel thermocouple) was used as a substrate temperature monitor. The main vacuum chamber was vacuum-exhausted until l〇-6 Torr (1.3×10 −3 Pa), and then the evaporation rate from each evaporation source was controlled, and the film thickness was formed under the film forming conditions of the highest substrate temperature of 530 〇C. 1·8μηι CIGS film. Then, a solution growth method was used to deposit a CdS film of about 90 nm as a buffer layer, and a Zn〇: A1 film of a transparent conductive film was formed by DC 贱. Finally, an A1 gate electrode was formed by a steaming clock method to serve as an upper electrode, thereby fabricating a solar cell unit. (Measurement of power generation efficiency) The solar cell (area 0.5 cm2) produced is irradiated with air quality.

201242038 X 量(Air Mass,AM) =1·5、100 mW/cm2 的模擬太陽光, 測定能量轉換效率。對於實例、比較例的光電轉換元件, 分別製作8個樣品。對各光電轉換元件,以上述條件測定 光電轉換效率,將其中的最南值作為各貫例、比較例的光 電轉換元件的轉換效率。另外’將變動係數(將8個單元 的標準偏差除以平均值而得的值)作為單元的效率不均來 進行評價。 (鈉濃度的測定) 對實例及比較例的光電轉換元件測定光電轉換層 (CIGS層)的納濃度。該鈉濃度的測定是使用二次離子質 譜儀(secondary ion mass spectrometer,SIMS )。用於測定 的一次離子種類設為Cs+,加速電壓設為5.0 kV。光電轉 換層(CIGS層)中的納》辰度在厚度方向具有分布,進行積 分而導出平均值,將該平均值用於鈉濃度的評價。 將Mo成膜適應性、鈉濃度、發電效率的測定結果與 塗佈液的配方一起示於表1、表2及表3中,且將實例及 比較例中使用的鈉供給源、經供給源、鉀供給源的質量比 不於表4、表5及表6中。表1、表2及表3的莫耳比是由 該質量比換算為莫耳比而得的值(此外,氫氧化納、$氧 化鋰為固體)。此外,表1中的莫耳比的和,是以鐘或卸相 對於矽的莫耳比、以及鈉相對於矽的莫耳比的精確到小數 點後第3位之前的數值計算而得。 29 201242038 JUZ-oo(N(N寸 鬥Id 變動 係數 (%) (Ν m v〇 m ν-» VO ro P; v〇 ΓΛ ON m o P; 00 m 〇\ m oo m 〇\ m ON m ON m 00 ΓΛ ON m ν〇 m 發電 效率 (%) rn 丨_H CO rn yri 9 ·Η CN CO CO <N rn CO (N Tf 寸 cn v〇 CN oo ΓΟ 00 寸 cn CO (N 寸 cn 卜 ΓΠ <n rn r-H rn 寸 CO T·^ ^ I J 4? J1 〇〇 o X DO o X M o X 30 o X oo 〇 X DO o X OO o X DO o X eo o X DO 〇 X f— 00 o X 30 o X oo ο X OO 〇 X 00 〇 X OO 〇 X OO Ο »—Η X 00 〇 X ao o X 30 Ο X DO Ο T-* X 00 o X Na濃度 [atms/cm3] 2χ1019 2xl019 | 2X1019 I 1 3xl019 J o X 3xl019 1 2xl019 I O' 〇 X (N 2xl019 2χ1019 2xl019 2χ1019 2χ1019 9\ o X m 2xl019 I 2X1019 2xl〇19 2xl019 I 2xl019 2xl019 2χ1019 2xl019 〇智恕 < 5 < < 5 ί < < ΐ 5 ί < 莫耳比 兩者 的和 d 00 〇 o ο o VO v〇 〇 <n 〇 VO CO o o CN 〇 W-J fS VO o yn v〇 o v〇 VO o v〇 (N Ο Γ〇 i〇 Ο V-J d Ο 〇\ d On fNj Na/Si o On m 〇 d ο oo κη d ζι 〇 O 寸 o 00 cs o o g o κη 〇 ο fS VO o v〇 v〇 o 〇 m fN ο CN CN 〇 On 〇 沄 ο g ο o Li/Si 或 K/Si (N 〇 00 o g d g ο v〇 o <N 〇 o CM <N 〇 o o o o 〇 cs o Ό CN s o o JO d ο m O s 〇 ο s ο (N <N ^ ΦΊ 3 On o | 3.333 CN 寸 ro CN m (N 卜 o m ΓΟ CN CN CN m rn 钟供給源 ^ ΦΊ S (N v〇 (N d (Ν Ο 卜 黩 <N 龥 CN 龆 (N if.lJ <Ν 氫氧 化钟 鋰供給源 j ΦΊ S o CN CN 寸 寸 v〇 o 00 m 艺 o fN CN 〇 JN d 黩 梁 矽酸鋰45 矽酸鋰45 矽酸鋰45 矽酸鋰45 矽酸鋰45 1矽酸鋰45 1 矽酸鋰45 矽酸鋰45 矽酸鋰45 I 矽酸鋰45 氫氧化鋰 氫氧化链 矽酸鋰45 矽酸鋰45 氫氧化鋰 鈉供給源 j ΦΙ μ o o 00 oo CN 寸 00 (N ΓΛ O ο Ο o o ο in 寸 寸 Ο Ο 騷 想 m m 寸 寸 iSs m 寸 氫氧化納i Μ 寸 振 寸 •hi«3 m 饀 m 寸 寸 寸 寸 寸 寸 尚莫耳 |實例2 I 1實例3 1 1實例4 1 1實例5 1 |實例6 1 實例7 |實例8 1實例9 1 1實例i〇 I 1實例li 實例12 1實例13 I j實例14 I |實例15 |實例16 1實例17 I 實例18 1實例19 I 1實例20 1 1實例21 1 實例22 oe 201242038 【(Nd Ji^ooCNCN寸201242038 X-ray (Air Mass, AM) =1·5, 100 mW/cm2 of simulated sunlight, measuring energy conversion efficiency. For the photoelectric conversion elements of the examples and the comparative examples, eight samples were prepared. The photoelectric conversion efficiency was measured for each of the photoelectric conversion elements under the above conditions, and the most southmost value was used as the conversion efficiency of the photoelectric conversion elements of the respective examples and comparative examples. Further, the coefficient of variation (a value obtained by dividing the standard deviation of 8 cells by the average value) was evaluated as the efficiency unevenness of the cells. (Measurement of sodium concentration) The photoelectric conversion elements (CIGS layers) were measured for the photoelectric conversion elements of the examples and the comparative examples. The sodium concentration was measured using a secondary ion mass spectrometer (SIMS). The primary ion type used for the measurement was set to Cs+, and the acceleration voltage was set to 5.0 kV. The nano-length in the photoelectric conversion layer (CIGS layer) has a distribution in the thickness direction, and is integrated to derive an average value, which is used for the evaluation of the sodium concentration. The measurement results of the Mo film forming suitability, the sodium concentration, and the power generation efficiency are shown in Table 1, Table 2, and Table 3 together with the formulation of the coating liquid, and the sodium supply source and the supplied source used in the examples and the comparative examples. The mass ratio of the potassium supply source is not in Table 4, Table 5 and Table 6. The molar ratios of Table 1, Table 2, and Table 3 are values obtained by converting the mass ratio into a molar ratio (in addition, sodium hydroxide and lithium oxide are solids). Further, the sum of the molar ratios in Table 1 was calculated by numerically calculating the molar ratio of the clock or the unloading phase to the molar ratio of strontium and the molar ratio of sodium to strontium to the third decimal place. 29 201242038 JUZ-oo(N(N inch bucket Id variation coefficient (%) (Ν mv〇m ν-» VO ro P; v〇ΓΛ ON mo P; 00 m 〇\ m oo m 〇\ m ON m ON m 00 ΓΛ ON m ν〇m Power generation efficiency (%) rn 丨_H CO rn yri 9 ·Η CN CO CO <N rn CO (N Tf inch cn v〇CN oo ΓΟ 00 inch cn CO (N inch cn ΓΠ <n rn rH rn 寸 CO T·^ ^ IJ 4? J1 〇〇o X DO o XM o X 30 o X oo 〇X DO o X OO o X DO o X eo o X DO 〇X f— 00 o X 30 o X oo ο X OO 〇X 00 〇X OO 〇X OO Ο »—Η X 00 〇X ao o X 30 Ο X DO Ο T-* X 00 o X Na concentration [atms/cm3] 2χ1019 2xl019 | 2X1019 I 1 3xl019 J o X 3xl019 1 2xl019 IO' 〇X (N 2xl019 2χ1019 2xl019 2χ1019 2χ1019 9\ o X m 2xl019 I 2X1019 2xl〇19 2xl019 I 2xl019 2xl019 2χ1019 2xl019 〇智恕< 5 << 5 ί << lt 5 ί < Mo Erbi and d 00 〇o ο o VO v〇〇<n 〇VO CO oo CN 〇WJ fS VO o yn v〇ov〇VO ov〇(N Ο Γ〇i〇Ο VJ d Ο 〇\ d On fNj Na/Si o On m 〇d ο oo κη d ζι 〇O inch o 00 cs oogo κη 〇ο fS VO ov〇v〇o 〇m fN ο CN CN 〇On 〇沄ο g ο o Li/Si or K/Si (N 〇00 ogdg ο v〇o <N 〇o CM &lt ;N 〇oooo 〇cs o Ό CN soo JO d ο m O s 〇ο s ο (N <N ^ ΦΊ 3 On o | 3.333 CN inch ro CN m (N 卜 om ΓΟ CN CN CN rn clock supply source ^ ΦΊ S (N v〇(N d (Ν Ο 黩 黩 <N .CN 龆(N if.lJ <Ν 氢氧化 氢氧化 锂 供给 供给 供给 供给 o o o o o o o o o o 00 00 00 00 00 00 00 00 00 00 CN 〇JN d Lithium silicate lithium niobate 45 Lithium niobate 45 Lithium niobate 45 Lithium niobate 45 Lithium niobate 45 1 Lithium niobate 45 1 Lithium niobate 45 Lithium niobate 45 Lithium niobate 45 I Lithium niobate 45 Hydrogen Lithium oxide hydroxide chain lithium niobate 45 lithium niobate 45 lithium hydroxide sodium supply j ΦΙ μ oo 00 oo CN 00 00 (N ΓΛ O ο Ο oo ο in inch inch Ο 骚想mm inch inch iSs m inch hydride i Μ inch inch inch •hi«3 m 饀m inch inch inch inch inch ear ear|example 2 I 1 instance 3 1 1 instance 4 1 1 instance 5 1 | example 6 1 instance 7 | example 8 1 instance 9 1 1 instance i〇I 1 instance li instance 12 1 instance 13 I j instance 14 I | example 15 | example 16 1 instance 17 I instance 18 1 instance 19 I 1 instance 20 1 1 instance 21 1 instance 22 oe 201242038 [( Nd Ji^ooCNCN inch

v〇 ΓΟ 寸 \〇 寸 yr) m CN 〇\ CN οο l®1 ^ Co tri Ο) cs Ο) U-i rn <N CN 寸· — Η ΓΠ 寸· 寸· — cn 甸轉I ^ g 00 〇 X ixio18 [χΙΟ18 Χίο18 Χίο18 χΙΟ18 xlO18 xlO18 XlO18 χΙΟ18 χΙΟ18 J ^ 1 t " 1 σ\ 3\ ο 〇\ Ο £ ο 〇Ν Ο r»·* Ο 9\ o 〇N o σ\ Ο Ον Ο 〇\ Ο 4 1 <-* Λ X <Ν X cs X (Ν X <Ν A X CN X cs X CN X <Ν < < < < <ζ <d <d <ς <ς < < 〇 < < < < < 00 ^Ti 00 m οο ΟΟ ιη 00 u-> <N ι〇 (N V〇 00 l〇 00 yn 00 ι〇 00 € S ο d Ο Ο Ο Ο d o d ο ο 莫耳比 CO σ\ m On cn σ\ CO 〇\ ΓΟ Ον CO Qj rjj ON m 〇\ m σ\ ΓΟ 〇\ m 2 d o Ο Ο Ο c> 〇 〇 ο Ο ο 00 00 00 00 00 00 00 〇〇 〇〇 O »—H o t-H ο Ο τ—^ ο o o o Ο ο Ο J ®H S o o ο Ο Ο W*J o 〇 ο Ο Ο 磷酸 ^ * Μ (Ν Ο S ο CN| o 0.001 ^―« Ο ο 四棚 酸鈉 ^ ®w 2 r4 ci 硼酸 添加量 [g] 寸 d d CN d 0.001 0.006 φή -¾ 3 寸 寸 眾鳑 廢 举窗 _ -§ 2 痪 o o ^H ο Ο ο o V-H ο 2 ο φ| 名S o o Ο ο ο v〇 VO o »—H ο ο ο m cs iT) CN ν〇 CN 00 CN 〇\ CN Pi m cn 军 革 军 革 ♦ζ %ί m %: %: ίΚ ψχ IK 201242038 JUZ.O0CSCN寸 【e崦】 變動 係數 (%) ^T) I〇 Qj 9 σ; 發電 效率 (%) o o m O On 〇 寸 ο ο 00 〇\ ο Li濃度或 者K濃度 [atms/cm3] CO o X 〇〇 "o X 〇〇 Id X 00 "o X 1 1 > I Na濃度 [atms/cm3] 1 1 1 1 2χ1019 〇\ "〇 X 00 *〇 X 00 00 "ο 咳 ±i 1谳邊 ΐ ί u 〇 U ffl M- 兩者 的和 JO 〇 〇 00 On d o Os 00 ο νο 〇 tr> Ο Ο Na/Si 1 1 1 1 ON 〇〇 ο \〇 〇 <η ο g ο Li/Si 或 K/Si JTi 〇 〇 〇〇 On 〇 O 1 1 1 1 j S in cs o ΙΛί CN 鉀供給源 j — s **N 推! ® <N 鋰供給源 φ| 妥3 皓 JO o .im.t 矽酸鋰45 矽酸鋰75 鈉供給源 j «w S in 鞔 餱 ψ^4 m Μ 寸 η y. 比較例1 比較例2 |比較例3 比較例4 1比較例5 比較例6 1比較例7 比較例8 ζε 201242038 [表4] 納供給源的種類 質量比 Si〇2 Na20 水分 1號 37.0% 17.0% 46.0% 3號 29.0% 10.0% 61.0% 4號 23.9% 6.3% 69.8% 高寞耳 14.8% 0.6% 84.7% [表5] 鋰供給源的種類 質量比 Si02 Li20 水分 矽酸鋰45 20.1% 2.3% 77.7% 矽酸裡75 20.5% 1.4% 78.1% [表6] 鉀供給源的種類 質量比 Si〇2 K20 水分 1號 28.7% 22.0% 49.3% 2號 20.9% 9.0% 70.1% 如表1所示,設置有包含矽酸鋰或矽酸鉀與矽酸鈉的 鹼金屬矽酸鹽層的實例1〜實例10,與作為僅包含矽酸鈉 的驗金屬矽酸鹽層的比較例5〜比較例8相比較,可獲得 接近加倍的發電效率。該些例子均被認為:鈉濃度為大致 同等程度’對CIGS的鈉擴散充分進行;但比較例5〜比較 例8的偷被認為雜質的峰值比高,由此造成發電效率低。 w ^ 2 ^作為僅包含赠鍾的驗金屬㈣鹽層的比 ,歹 卩父列2、作為僅包含矽酸鉀的鹼金屬矽酸鹽層 33 201242038 -ΤΛΑυ / _pif 的比較例3及比較例4中,雖然Μ〇的成膜適應性良好, 但由於不含矽酸鈉,故而發電效率與實例相比,平均低了 接近30%。認為,由於鹼金屬矽酸鹽層中不存在鈉,故而 鈉未擴散於CIGS中,效率未提高。由此可知,藉由將矽 酸鋰或矽酸鉀與矽酸鈉併用,可大幅度提高發電效率。 實例11使用氫氧化鈉來代替矽酸鈉作為鈉供給源,且 併用矽酸鋰。另外,實例12、實例13使用氫氧化鋰來代 替石夕I鐘作為裡供給源’且併用石夕酸納。在該情況下,所 付的驗金屬碎酸鹽亦成為本發明的石夕酸鈉與碎酸鐘的混合 物。其中,實例11與實例丨至實例10相比,成膜適應性、 發電效率稍低。認為其原因在於:鋰相對於矽的莫耳比與 鈉相對於矽的莫耳比的和大於i。另外,實例13與實例J 至貫例10相比,發電效率稍差。認為其原因在於:鐘相對 於矽的莫耳比大於1。 圖2是實例4、比較例1及比較例5的CIGS結晶的電 子顯微鏡照片。如該3個CIGS結晶的電子顯微鏡照片所 明示’作為本發明的光電轉換元件用基板的實例4中,與 比較例1相比’ CIGS結晶的粒徑變大,確認到鹼添加效 果。比較例5亦為粒徑大,確認到鹼添加效果,但轉換效 率低’推定其原因在於:Mo成膜適應性低,而在Mo/CIGS 界面形成雜質。 實例14〜實例19改變鈉供給源、鋰供給源、鉀供給 源的添加量。根據該些實例可知,鐘或卸相對於石夕的莫耳 比為1以下的範圍,鋰相對於矽的莫耳比與鈉相對於矽的 34 201242038 莫耳3和亦為丨以下的範圍,顯示出更良好的發電效率。 發電效率看上去並ΙίίΙ ’與不含碱磷的實例相比, 所製作的單元全,但由於變動係數小,因此 單元整體的發電有111發電效率者,可知所製作的 +主。— 例4中發電效率低。另一方面,如表1 ι: ’❺&含1^離子以外還包含1^離子或κ離子 人,發電效率崎增大。若料含Li離子或κ離 ,Na離子的比較例5、與具有相同%離子濃度且 =3 Li離子或κ離子的實例進行比較,則可知,Li離子 =離子與Na離子相比含量低,即便〇離子或κ離子為 ,置’Ll離子或Κ離子的存在亦大幅度有助於光電轉換效 率的提高。 第二態樣的實例 (基板的準備) 作為基板’準備3 cm見方的玻璃基板、SUS43〇基板 (厚度100 μιη)、陽極氧化銘基板。陽極氧化铭基板是利 用如下方法製作。料含厚度30 μηι的紹與厚度5〇阿的 SUS430的被覆材料,分別使用乙二酸電解液在4〇 ν的怪 定電壓條件下進行陽極氧化,製作表面形成有1G哗的陽 極氧化鋁的基板。 (鹼金屬矽酸鹽層以及Mo電極的形成) 35 201242038 HZZO /pif 將矽酸鋰(日產化學製造:矽酸鋰45 (Si〇2 : Li2〇 : 水=20.1% : 2.3% : 77.7%))、矽酸鉀(富士化學製』:2 號矽酸鉀(Si02 : K2〇 :水=20.9% : 9.0% : 7〇 1%))、石夕酸 鈉(昭和化學製造:3號矽酸鈉(Si02 : Na2〇 :水=29 〇% : 10.0% : 61.0%))、硼酸、四硼酸鈉十水合物、碟酸(85〇/〇 溶液)、水分別以表7及表8所示的質量比進行混合,來製 備塗佈液。在基板上滴下塗佈液,藉由旋轉塗佈^形成驗 金屬矽酸鹽層。然後,在45(TC下對基板進行30分鐘熱處 理。熱處理後,藉由DC濺鍍,在基板上形成厚度8〇〇nm 的Mo。 此外,比較例3由於塗佈液固化,故而無法塗佈。 (Mo的表面性評價) 對上述形成的鹼金屬矽酸鹽層上的M〇表面的雜質 罝,使用光學顯微鏡來觀察表面,觀察異物的量。將實例 9及比較例1的顯微鏡照片示於圖4中。實例9中未觀察 到異物’但比較例1中每1 mm見方觀察到10000個以上 的異物。=於其他的實例、比較例㈣樣地實施顯微鏡觀 察’根據每1 mm見方的異物的個數,以下述基準進行評 價且示於表1及表2中。 AA :未觀察到異物。 A .異物為1個以上且小於1〇個。 B ·異物為10個以上且小於100個。 C .異物為10〇〇〇個以上。 (太陽電池的製作) 36 201242038 在Mo電極上形成CIGS太陽電池。此外,本實例中, 使用向純度銅與銦(純度99.9999%)、高純度Ga (純度 99.999%)、高純度Se (純度99 999%)的粒狀原材料作為 蒸鐘源。使用鉻鎳銘鎳熱電偶作為基板溫度監測器。將主 真空腔室進行真空排氣直至3xl〇.3Pa)為止’ 然,控制源自各蒸發源的蒸鍍速率,在最高基板溫度 530C的製膜條件下製成膜厚約18 μιη的aGS薄膜。繼 而,利用溶液成長法堆積9〇 nm左右的Cds薄膜作為緩衝 層’在其上利用DC ί賤鑛法以厚度(^叫形成透明導電膜 的ZnO : Α1膜。最後,利用蒸鍍法形成A1栅電極來作為 上部電極,從而製作太陽電池單元。 (發電效率的測定) 對所製作的太陽電池單元(面積G 5 em2)照射空氣質 里(Air Mass,AM) =1.5、100 mW/cm2 的模擬太陽光, 測定,量轉換效率。對於實例、比較例的太陽電 , 分別製作8個#品。對各太陽電池單元以 電轉換效率,職巾的衫如及㈣ 個 的標準偏差除以平均值而得的值) 早兀 太陽電池單元的轉換效率二比較例的 ΓΓ效率的測定結果作為M。表面性評 仏,與塗佈液的配方一起示於表7及表8中。 的莫耳比是由質量比換算為莫耳比*得的值。 37 201242038 J-a卜OOCNCN寸v〇ΓΟ inch\〇 inch yr) m CN 〇\ CN οο l®1 ^ Co tri Ο) cs Ο) Ui rn <N CN inch·—— Η 寸 inch·inch· — cn 甸 转 I ^ g 00 〇 X ixio18 [χΙΟ18 Χίο18 Χίο18 χΙΟ18 xlO18 xlO18 XlO18 χΙΟ18 χΙΟ18 J ^ 1 t " 1 σ\ 3\ ο 〇\ Ο £ ο 〇Ν Ο r»·* Ο 9\ o 〇N o σ\ Ο Ον Ο 〇\ Ο 4 1 <-* Λ X <Ν X cs X (Ν X <Ν AX CN X cs X CN X <Ν <<<<<ζ<d<d< ς <ς <<〇<<<<< 00 ^Ti 00 m οο ΟΟ ιη 00 u-><N ι〇(NV〇00 l〇00 yn 00 ι〇00 € S ο d Ο Ο Ο Ο dod ο ο Moerby CO σ\ m On cn σ\ CO 〇\ ΓΟ Ον CO Qj rjj ON m 〇\ m σ\ ΓΟ 〇\ m 2 do Ο Ο Ο c> 〇〇ο ο 00 00 00 00 00 00 00 00 〇〇〇〇O »—H o tH ο Ο τ—^ ο ooo Ο ο Ο J ®HS oo ο Ο Ο W*J o 〇ο Ο Ο Phosphate ^ * Μ (Ν Ο S ο CN| o 0.001 ^―« Ο ο Si Sodium Sodium ^ ® w 2 r4 ci Boron Adding amount [g] inch dd CN d 0.001 0.006 φή -3⁄4 3 inch inch crowded window _ -§ 2 痪oo ^H ο Ο ο o VH ο 2 ο φ| Name S oo Ο ο ο v〇VO o » —H ο ο ο m cs iT) CN ν〇CN 00 CN 〇\ CN Pi m cn Military leather ζ ζ %ί m %: %: ίΚ IK IK 201242038 JUZ.O0CSCN inch [e崦] Coefficient of change (% ) ^T) I〇Qj 9 σ; Power generation efficiency (%) oom O On ο ο ο 00 〇 ο Li concentration or K concentration [atms/cm3] CO o X 〇〇"o X 〇〇Id X 00 "o X 1 1 > I Na concentration [atms/cm3] 1 1 1 1 2χ1019 〇\ "〇X 00 *〇X 00 00 "ο cough±i 1谳边ΐ ί u 〇U ffl M- The sum of the two is JO 〇〇00 On do Os 00 ο νο 〇tr> Ο Ο Na/Si 1 1 1 1 ON 〇〇ο \〇〇<η ο g ο Li/Si or K/Si JTi 〇〇〇 〇On 〇O 1 1 1 1 j S in cs o ΙΛί CN Potassium supply source j — s **N Push! ® <N lithium supply source φ| 33 皓JO o .im.t lithium niobate 45 lithium niobate 75 sodium supply j «w S in 鞔糇ψ^4 m Μ inch η y. Comparative example 1 Comparative example 2 |Comparative Example 3 Comparative Example 4 1 Comparative Example 5 Comparative Example 6 1 Comparative Example 7 Comparative Example 8 ζ ε 201242038 [Table 4] Kind of mass ratio of nano supply source Si〇2 Na20 Moisture No. 1 37.0% 17.0% 46.0% No. 3 29.0% 10.0% 61.0% No. 4 23.9% 6.3% 69.8% Gao Er Er 14.8% 0.6% 84.7% [Table 5] Lithium supply source type mass ratio Si02 Li20 Molybdate lithium niobate 45 20.1% 2.3% 77.7% Tannin 75 20.5% 1.4% 78.1% [Table 6] Kinds of mass ratio of potassium supply source Si〇2 K20 Moisture No. 1 28.7% 22.0% 49.3% No. 2 20.9% 9.0% 70.1% As shown in Table 1, there is a tannic acid Examples 1 to 10 of the alkali metal silicate layer of lithium or potassium citrate and sodium citrate were compared with Comparative Example 5 to Comparative Example 8 as a metal citrate layer containing only sodium citrate. Near double the power generation efficiency. In these examples, it is considered that the sodium concentration is approximately equal to that of sodium diffusion of CIGS sufficiently; however, the stealing ratio of the impurities of Comparative Example 5 to Comparative Example 8 is considered to be high, thereby causing low power generation efficiency. w ^ 2 ^ is the ratio of the metal (4) salt layer containing only the gift clock, the father's column 2, the alkali metal citrate layer 33 containing only potassium citrate, and the comparative example 3 and the comparative example of 201242038 - ΤΛΑυ / _pif In 4, although the film forming suitability of bismuth is good, since the sodium citrate is not contained, the power generation efficiency is as low as nearly 30% compared with the example. It is considered that since sodium is not present in the alkali metal ruthenate layer, sodium is not diffused in the CIGS, and the efficiency is not improved. From this, it is understood that the power generation efficiency can be greatly improved by using lithium niobate or potassium niobate in combination with sodium citrate. Example 11 used sodium hydroxide instead of sodium citrate as a sodium supply source, and lithium niobate was used in combination. Further, in Example 12 and Example 13, lithium hydroxide was used instead of Shixia I as the source of supply ‘and the use of sodium silicate. In this case, the metalloate salt to be treated also becomes a mixture of the sodium alginate and the acid clock of the present invention. Among them, the example 11 has a film forming suitability and a slightly lower power generation efficiency than the example 丨 to the example 10. The reason is considered to be that the sum of the molar ratio of lithium relative to lanthanum to the molar ratio of sodium to yt is greater than i. In addition, Example 13 was slightly inferior in power generation efficiency as compared with Example J to Example 10. The reason is considered to be that the molar ratio of the clock to the cymbal is greater than one. Fig. 2 is an electron micrograph of the CIGS crystal of Example 4, Comparative Example 1, and Comparative Example 5. In the example 4 of the substrate for a photoelectric conversion element of the present invention, the particle diameter of the CIGS crystal was larger than that of the comparative example 1, and the effect of alkali addition was confirmed. In Comparative Example 5, the particle size was large, and the effect of alkali addition was confirmed, but the conversion efficiency was low. The reason for this was that the Mo film-forming suitability was low, and impurities were formed at the Mo/CIGS interface. Examples 14 to 19 changed the amount of addition of the sodium supply source, the lithium supply source, and the potassium supply source. According to these examples, the range of the molar ratio of the clock or the discharge to the stone eve is 1 or less, and the range of lithium relative to the molar ratio of yttrium to yttrium relative to lanthanum 34 201242038 and the range below 丨, Shows better power generation efficiency. The power generation efficiency seems to be better than that of the case where no alkali phosphorus is contained. However, since the coefficient of variation is small, the power generation of the entire unit has 111 power generation efficiency, and the generated + main is known. — The power generation efficiency in Example 4 is low. On the other hand, as shown in Table 1, ι: '❺& contains 1 ^ ion or κ ion in addition to 1 ^ ion, and the power generation efficiency increases. When Li ion or κ is contained, Comparative Example 5 of Na ion is compared with an example having the same % ion concentration and = 3 Li ion or κ ion, it is understood that Li ion = ion is lower than Na ion. Even if the cesium ion or the κ ion is present, the presence of the 'Ll ion or the cesium ion greatly contributes to the improvement of the photoelectric conversion efficiency. Example of the second aspect (preparation of the substrate) As the substrate, a glass substrate of 3 cm square, a SUS43 substrate (thickness: 100 μm), and an anodized substrate were prepared. The anodized substrate is produced by the following method. The coating material of SUS430 having a thickness of 30 μm and a thickness of 5 Å was anodized using an oxalic acid electrolyte under a strange voltage of 4 〇ν to prepare an anodized aluminum having a surface formed with 1 G 哗. Substrate. (Formation of alkali metal silicate layer and Mo electrode) 35 201242038 HZZO /pif Lithium niobate (manufactured by Nissan Chemical Co., Ltd.: lithium niobate 45 (Si〇2: Li2〇: water = 20.1%: 2.3%: 77.7%) ), potassium citrate (made by Fuji Chemical Co., Ltd.): No. 2 potassium citrate (Si02: K2 〇: water = 20.9%: 9.0%: 7〇1%)), sodium sulphate (made by Showa Chemical: No. 3 citric acid) Sodium (SiO 2 : Na 2 〇: water = 29 〇 % : 10.0% : 61.0%)), boric acid, sodium tetraborate decahydrate, disc acid (85 〇 / 〇 solution), water shown in Table 7 and Table 8, respectively The mass ratio is mixed to prepare a coating liquid. The coating liquid was dropped on the substrate, and a metal silicate layer was formed by spin coating. Then, the substrate was heat-treated at 45 (TC) for 30 minutes. After the heat treatment, Mo was formed to a thickness of 8 Å on the substrate by DC sputtering. Further, Comparative Example 3 was not coated because the coating liquid was cured. (Evaluation of Surface Properties of Mo) The amount of foreign matter was observed on the surface of the M〇 surface on the alkali metal niobate layer formed as described above using an optical microscope, and the amount of foreign matter was observed. The micrographs of Example 9 and Comparative Example 1 are shown. In Fig. 4, no foreign matter was observed in Example 9 but 10,000 or more foreign bodies were observed per 1 mm square in Comparative Example 1. = Microscopic observation was performed on other examples and comparative examples (4) 'Based on every 1 mm square The number of the foreign matter was evaluated based on the following criteria and is shown in Tables 1 and 2. AA: No foreign matter was observed A. The foreign matter was one or more and less than one. B · The foreign matter was 10 or more and less than 100. C. Foreign matter is more than 10. (Production of solar cell) 36 201242038 A CIGS solar cell is formed on the Mo electrode. In addition, in this example, the purity to copper and indium (purity of 99.9999%) is used. Purity Ga (purity 99.999%), high purity A granular raw material of Se (purity 99 999%) is used as a steaming clock source. A chrome-nickel nickel thermocouple is used as a substrate temperature monitor. The main vacuum chamber is evacuated until 3xl 3.3Pa). From the evaporation rate of each evaporation source, an aGS film having a film thickness of about 18 μm was formed under the film formation conditions of the highest substrate temperature of 530C. Then, a Cds film of about 9 〇 nm is deposited as a buffer layer by a solution growth method, and a thickness of the ZnO: Α1 film is formed by a DC 贱 贱 method. Finally, an A1 is formed by vapor deposition. The solar cell is fabricated by using the gate electrode as the upper electrode. (Measurement of power generation efficiency) The solar cell (area G 5 em2) to be produced is irradiated with air mass (AM) = 1.5, 100 mW/cm2. Simulated sunlight, measurement, and mass conversion efficiency. For the solar power of the example and the comparative example, eight ## products were separately produced. For each solar cell unit, the electrical conversion efficiency, the standard deviation of the shirts of the service and (4) were divided by the average. The value obtained by the value) The conversion efficiency of the solar cell of the early solar cell and the measurement result of the enthalpy efficiency of the comparative example were taken as M. The surface evaluation is shown in Tables 7 and 8 together with the formulation of the coating liquid. The molar ratio is a value obtained by converting the mass ratio into a molar ratio*. 37 201242038 J-a Bu OOCNCN inch

LI 單元效率 w-i r<i 卜 ΓΟ m ΓΛ 寸 rn 寸 rn cn cn to rn 寸 cn ΓΟ m Ο) 寸· <N ♦μ 〇\ rn CO r-M cs 變動係數 (%) 〇 〇\ 〇\ On CO Pi 00 (N CN CN m 寸 寸 寸 異物 個數 5 ί < CQ < m < ΐ 5 5 ί ί 莫耳比 添加離 子/Si 0.0667 0.0167 0.0109 0.0224 0.0045 0.0002 0.0017 0.0001 0.0018」 0.0788 0.0197 1 0.0128 | 0.0265 1 0.0053 0.0238 1 0.0468 添加量 [g] o 〇 ο 〇 〇 *—η o ο o o ο ο ο o ο o 硼·磷供給源 φΐ -¾ 3 咚 寸 o 〇 <Ν Ο JQ d S 〇 0.001」 o o 0.001 s o 寸 ο »-Η Ο CS ο (N 〇 S ο cs o (N 〇 鄉 草 f 四棚酸納 十水合物 锊 湓 锊 齊 荸 盤 W 四棚酸納 十水合物 W 鉀供給源 添加量 [g] 寸 d* $ S CN (N 鋰供給源 φή 倍 ο ο ο Ο ο S 掷 1矽酸鋰45 1 矽酸鋰45 1 矽酸鋰45 矽酸鋰45 矽酸鋰45 鈉供給源 j ®w S ο ο ο Ο Ο νο v〇 餚 ΓΟ m m 餱 ΓΟ CO CO CO m 職 m Ss m if.lJ 5fe m ifltJ m 龋 m 餘 m if.* J 龄 陽極氧化鋁 陽極氧化鋁 陽極氧化鋁 陽極氧化鋁 陽極氧化鋁 陽極氧化鋁 00 P 陽極氧化鋁 C/5 D C/3 |實例2 I 實例3 |實例4 I 革 1實例6 I 1實例7 I 00 |實例9 I |實例10 1實例11 實例12 1實例13 實例14 |實例15 1 1實例16 se 201242038 J?re8z(N寸 單元效率 | <N $ Ο — τ~Η q — >~·Η — ΓΟ 〇6 ΓΟ 塗佈液固化 | 變動係數 (%) m CN 〇\ 00 Oj ν〇 cn 異物 個數 PQ PQ < 〇 U 莫耳比 添加離 子/Si | 0.0002 I 0.0012 | o.oooi | 0.0011 0.0000 1 o.oooo 1 0.1590 名S 疫 o ο O 〇 iT) 卜 \〇 〇 硼·磷供給源 φ| 与S 暗 o.ooi | 0.006 | o.ooi | 〇 〇 use 热 aoul w 荸 替 鉀供給源 騷 緦 鋰供給源 丟S o ο r~H ο 〇 Η ο τ—Η 〇 驟 舞 矽酸鋰45 矽酸鋰45 矽酸鋰45 矽酸鋰45 矽酸鋰45 矽酸鋰45 鈉供給源 _ 矣2 痪 o Ο Ο 〇 Ο 〇 m .Ifni! 梁 m if.tJ 辭 CO itltJ m if.O 龄 m m m 陽極氧化在呂 陽極氧化鋁 陽極氧化铭 陽極氧化is If 1 1實例π 實例18 1實例19 |實例20 I 比較例1 1比較例2 1 比較例3 201242038 /pif 如表7及表8所示,添加有硼或鱗的實例1〜實例20 中’與未添加硼或磷的比較例1及比較例2相比,能夠大 幅度抑制Mo表面的異物。比較例丨及比較例2中,M〇 表面的異物密度高,產生Mo下部電極與上部電極的局部 短路,或者異物附近的Mo電極.CIGS光電轉換層的界面 電阻提高,因此認為由該些原因造成發電效率低,且不 大。 M =卜實例10〜實例16中,與實例1〜實例5相比, 〇的表面性進-步提高,發電效率更高,不均亦進一牛LI unit efficiency wi r<i ΓΟ ΓΟ m ΓΛ inch rn rn cn cn to rn inch cn ΓΟ m Ο) inch · <N ♦μ 〇\ rn CO rM cs coefficient of variation (%) 〇〇\ 〇\ On CO Pi 00 (N CN CN m inch inch foreign object number 5 ί < CQ < m < ΐ 5 5 ί ί Moer than adding ion / Si 0.0667 0.0167 0.0109 0.0224 0.0045 0.0002 0.0017 0.0001 0.0018" 0.0788 0.0197 1 0.0128 | 0.0265 1 0.0053 0.0238 1 0.0468 Adding amount [g] o 〇ο 〇〇*—η o ο oo ο ο ο o ο o Boron and phosphorus supply source φΐ -3⁄4 3 咚 inch o 〇<Ν Ο JQ d S 〇0.001” Oo 0.001 so inch ο »-Η Ο CS ο (N 〇S ο cs o (N 〇乡草 f 四棚酸纳十hydrate锊湓锊齐荸盘 W 四棚酸纳十hydrate W potassium source added Quantity [g] inch d* $ S CN (N lithium supply source φή times ο ο ο Ο ο S throw 1 lithium niobate 45 1 lithium niobate 45 1 lithium niobate 45 lithium niobate 45 lithium niobate 45 sodium supply j ®w S ο ο ο Ο Ο νο v〇菜ΓΟ mm 糇ΓΟ CO CO CO m m Ss m if.lJ 5fe m ifltJ m 龋m remainder m if.* J age anodized aluminum anodized aluminum anodized anodized aluminum anodized aluminum anodized aluminum 00 P anodized aluminum C/5 DC/3 | 2 I Example 3 | Example 4 I Leather 1 Example 6 I 1 Example 7 I 00 | Example 9 I | Example 10 1 Example 11 Example 12 1 Example 13 Example 14 | Example 15 1 1 Example 16 se 201242038 J?re8z (N inch Unit efficiency| <N $ Ο — τ~Η q — >~·Η — ΓΟ 〇6 ΓΟ Coating solution solidification | Coefficient of variation (%) m CN 〇\ 00 Oj ν〇cn Number of foreign objects PQ PQ < 〇U Moerby added ion/Si | 0.0002 I 0.0012 | o.oooi | 0.0011 0.0000 1 o.oooo 1 0.1590 S 疫 o ο O 〇iT) Bu 〇〇 〇〇 boron · Phosphorus supply source φ| and S dark o .ooi | 0.006 | o.ooi | 〇〇use hot aoul w 荸 钾 钾 钾 缌 缌 缌 缌 缌 缌 缌 缌 缌 缌 缌 缌 缌 缌 缌 缌 缌 缌 缌 缌 45 45 矽 45 45 45 45 45 45 45 45 45 45 Lithium niobate 45 lithium niobate 45 lithium niobate 45 lithium niobate 45 sodium supply _ 矣2 痪o Ο Ο 〇Ο 〇m .Ifni! beam m if.tJ m if.O age mmmm anodizing in Lu anodized alumina anodizing Ming anodizing is If 1 1 instance π Example 18 1 Example 19 | Example 20 I Comparative Example 1 1 Comparative Example 2 1 Comparative Example 3 201242038 /pif As shown in Table 8, in Examples 1 to 20 to which boron or scale was added, 'compared with Comparative Example 1 and Comparative Example 2 to which no boron or phosphorus was added, foreign matter on the surface of Mo was greatly suppressed. In Comparative Example 比较 and Comparative Example 2, the foreign matter density on the surface of M〇 was high, and a partial short circuit between the lower electrode of Mo and the upper electrode was generated, or the interface resistance of the Mo electrode and the CIGS photoelectric conversion layer in the vicinity of the foreign matter was improved, and therefore it was considered that The power generation efficiency is low and not large. In the case of the example 10 to the example 5, the surface property of the crucible is improved, the power generation efficiency is higher, and the unevenness is also increased.

St進==藉由將物或卿與雜ί 2進-步提尚發電效率。此外,實例 : 中降低了耳比者,實例 二疋:例4 或實例13中降低了硼或 疋貫例11 知,兔了、讲丨、田仏 、今有根據該些比敕可 上。心異物,更佳為相對_的莫耳比為_2^ 闽八間單說明】 圖 基板的先=::!:= 極的光電轉換元件用 圖2表示使用本發明其他“二^剖面圖。 換几件用基板的光電轉換 目電極的光電轉 圖。 ㈣貫施形態的概略剖面St in == to improve power generation efficiency by moving things or qing qing. In addition, the example: the ear ratio is reduced, the example two: Example 4 or Example 13 reduces boron or 疋 疋 11 11 11 11 11 , , , , , , , , , , , , , , 兔 兔 兔 兔 兔 兔 兔 兔 兔 兔 兔 兔 兔 兔 兔 兔 兔 兔 兔 兔 兔 兔The foreign body of the heart is more preferably the relative molar ratio of _2^ 闽 间 间 】 】 】 】 】 】 : : : : : : : : : : : : : : : 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图Change the photoelectric conversion of the photoelectric conversion electrode of the substrate with a few pieces. (4) Outline profile of the form of the application

圖3是第一態樣的實例4、比較 …晶的電子顯微鏡照片。 及比較例5的CIGS 圖4是第二態樣的實例 叫1㈣。表面的光 201242038 —…t— 學顯微鏡照片。 【主要元件符號說明】 1 :光電轉換元件 10 :基板 20 :陽極氧化膜 30 :驗金屬>5夕酸鹽層 40 :鉬電極 50 :光電轉換半導體層 60 :緩衝層 70 :透光性導電層 80 :上部電極 41Figure 3 is an electron micrograph of Example 4, Comparative Example of the first aspect. And CIGS of Comparative Example 5 Fig. 4 is an example of the second aspect called 1 (four). Surface light 201242038 —...t—Learning a microscope photo. [Major component symbol description] 1 : Photoelectric conversion element 10 : Substrate 20 : Anodized film 30 : Metallurgy > 5 酸 酸 layer 40 : Molybdenum electrode 50 : Photoelectric conversion semiconductor layer 60 : Buffer layer 70 : Translucent conductive Layer 80: upper electrode 41

Claims (1)

201242038 *tz,^o iyif 七、申請專利範圍: 1. -種帶有㈣極㈣電轉換元件用基板,其特徵 於包含: 切2電轉換元制基板,在基板上積層有包切酸鐘或 夕I鉀、及矽酸鈉的鹼金屬矽酸鹽層;以及 翻電極,積層於上述驗金屬石夕酸鹽層上。 2. 如申請專利範圍第旧所述之帶^目電極的 ^0件用基板,其中上述鹼金屬矽酸鹽層的上 = 鉀相對於矽的莫耳比為0.001以上丨以下。 迚 3·如申請專娜圍第2項所述之帶有 =用基板,其中上酬上述卸相對於上述=二 比、與上述納相對於上述石夕的莫耳比之和為!以下。 如申請專利範圍第3項所述之帶有 換元件用基板,其中上述驗金屬石夕酸鹽 $電轉 =件用基板’其一屬衝=的為,: 換專利範圍第5項所述之帶有鉬電極的光電轉 換凡件用基板,其中上述基板為金屬基板。 換元專rtf6項所述之帶抽電極的光電轉 基板,其中在上述金屬基板的表面形成有陽極氧 換二 電極的光電轉 屬基板疋㈣、獨鋼或者鐵 42 201242038 鋼板的單面或者^面以紹板進行—體化而成的被覆材料。 一 9·如巾請專利範圍第8項所述之帶餘電極的光電轉 換το件用基板,其巾上述陽極氧化減膜為多孔型陽極 化紹皮膜’且域乡孔魏極氧倾倾具有壓縮應力。 10. —種帶有鉬電極的光電轉換元件用基板,其特徵 在於:在基板上具有鹼金屬矽酸鹽層(但不含鹼^類金 屬)’上述鹼金屬矽酸鹽層包含除鋁以外的第13族元.或 t除氮以外的第15族元素中的至少丨種、料驗金屬= 2利用液相法而形成;並且上述帶有㈣極的光電轉換元 牛用基板包含積層於上述驗金屬雜鹽層上的錮電極。、 11. 如申π專利範圍第1〇項所述之帶有鉬電極的 ?換兀件用基板’其中上述除銘以外的第13族元素或者除 氮以外的第15族元素為硼或磷。 ’一 ’、 U•如中請專利範圍第1G項或第u項所述之帶有銷 ^虽的光電轉換元制基板’其中上述鹼金屬為納。 轉振翻顧第12韻狀㈣㈣極的光電 =換兀件用基板,其中上述驗金屬包含鐘或鉀、與_ 2 14. Μ料職_13顧叙帶抽電極的光電 &amp;換7G件用基板,其t上述除銘以外的第13族元素或 第15族元素的合計的相對於上述碎的莫耳“ 15·如申請專利翻第14項所述之帶抽電極的光 換兀件用基板,其中上述驗金屬石夕酸鹽層的厚度為2卿 43 201242038 以下。 16·如申請專利範圍第15項所述之帶有銷電極的 轉換兀件用基板’其中上述基板為金屬基板。 1 一7.如申請專利範圍第16項所述之帶有*目電極的光電 轉換元件用基板,其中在上属其&amp; &amp;生 氧化紹皮膜。〃中在上述金屬基板的表面形成有陽極 18.如申請專利範圍第17項所述之帶有 轉換元制基板,其巾上述金屬基缺触、残 :鋼板的早面或者兩面以鋁板進行一體化而成的被覆材 19·如中請專__18項所述之帶有 f奐元制基板,其中上述陽極氧化財_纽型^ 氧=皮膜插且上述多孔型陽極氧化铭皮膜具有壓縮應力。 ==*至第9項、第13項至第19上-2 述之帶有1目電極的光電轉換元制基板上。 21. -種光電轉換元件,在 極、光電轉換半導體層及上部電極,其特徵二= 的主成分是包含此族元素、咖族元= 、兀素的至乂1種黃鋼礦結構的化合物半導體,且上 述光電轉換半導體層中包含_子或_子、與鈉離子。 22. 如申5月專利範圍帛2!項所述之光電轉換元件,其 中上述光電賴半物層切含的雜子或_子、及鈉 離子的各自的含量為lx⑻5物/ey以上。 201242038 Λ. 一 23.如申請專利範圍第21項或第22項所述之光電轉 換元件其中上述光電轉換半導體層中所含的鐘離子或鉀 離子、及鈉離子是由形成於上述基板與上述鉬電極之間的 驗供給層所供給。 24.如申請專利範圍第21項、第22項或者第幻項所 ,之光電轉換元件,其巾上述光電轉換半導體層的主成分 為包含以下元素的至少1種化合物半導體: 選自由Cu及Ag所組成組群中的至少丨種比族元素; 選自由Al、Ga及In所組成組群中的至少丨種lnb族 元素;及 、 選自由S、Se及Te所組成組群中的至少J種VIb族 元素。 、 25. 如申請專利範圍第24項所述之光電轉換元件,其 中上述基板為金屬基板。 八 26. 如申請專利範圍第25項所述之光電轉換元件,其 中在上述金屬基板的表面形成有陽極氧化鋁皮膜。 27. 如申請專利範圍第26項所述之光電轉換元件,其 中上述金屬基板是將鋁、不鏽鋼或者鐵鋼板的單面或者兩 面以鋁板進行一體化而成的被覆材料。 28·如申請專利範圍第27項所述之光電轉換元件,其 中上述陽極氧化鋁皮膜為多孔型陽極氧化鋁皮膜,且上述 多孔型陽極氧化鋁皮膜具有壓縮應力。 29. —種太陽電池,其特徵在於:具備如申請專利範 圍第25項至第28項中任-項所述之光電轉換元件。 45201242038 *tz,^o iyif VII. Patent application scope: 1. A substrate with a (four) pole (four) electrical conversion element, characterized in that it comprises: a 2-electrode conversion substrate, and a packet-cut acid clock laminated on the substrate Or an alkali metal citrate layer of potassium I and sodium citrate; and a flip electrode laminated on the above metal oxide layer. 2. The substrate for a 0-piece electrode according to the above-mentioned patent application, wherein the alkali metal tellurite layer has a molar ratio of potassium to erbium of 0.001 or more.迚 3·If you apply for the base plate with the = in the second item of the special circumnavigation, the sum of the above-mentioned unloading relative to the above-mentioned two ratios and the above-mentioned nano relative to the above-mentioned shixi is the sum of the molar ratios! the following. The substrate with a replacement component according to the third aspect of the patent application, wherein the metallurgical substrate of the above-mentioned metallurgical compound=the substrate for the component is a rush=, as described in item 5 of the patent scope. A substrate for photoelectric conversion of a molybdenum electrode, wherein the substrate is a metal substrate. The photoelectric conversion substrate with the extraction electrode according to the rtf6 item, wherein the photoelectric conversion substrate 疋 (4), the single steel or the iron 42 201242038 steel plate having the anode oxygen-alternating electrode formed on the surface of the metal substrate is single-sided or ^ The coated material is made of a slab. A 9. The substrate for photoelectric conversion of the remaining electrode described in Item 8 of the patent scope, the anodic oxidation-reducing film of the towel is a porous anodized film, and the domain is well-polarized. Compressive stress. 10. A substrate for a photoelectric conversion element having a molybdenum electrode, comprising: an alkali metal tellurite layer (but not an alkali metal) on the substrate; the alkali metal tellurite layer containing aluminum a group 13 element or a group of elements other than nitrogen, at least one of which is formed by a liquid phase method; and the above-mentioned substrate having a (four) pole for photoelectric conversion unit contains a layer of The above-mentioned germanium electrode on the metal salt layer is examined. 11. The substrate for the replacement of the substrate with a molybdenum electrode as described in the first paragraph of the π patent scope, wherein the group 13 element other than the above or the group 15 element other than nitrogen is boron or phosphorus . </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Turning the vibration to look at the 12th rhyme (4) (four) pole photoelectric = the substrate for the replacement of the workpiece, wherein the above metal includes the clock or potassium, and _ 2 14. Μ _13 Gu Sui with the extraction of the photoelectric &amp; With a substrate, the total of the group 13 element or the group 15 element other than the above, relative to the above-mentioned broken moir, "15. The substrate, wherein the thickness of the metallization layer of the above-mentioned metallurgical layer is 2, and the substrate for the conversion element of the pin electrode according to the fifteenth aspect of the invention, wherein the substrate is a metal substrate The substrate for a photoelectric conversion element with a * mesh electrode according to claim 16 of the invention, wherein the substrate of the above-mentioned metal substrate is formed in the above-mentioned &amp;&amp;&amp; There is an anode 18. The substrate with a conversion element as described in claim 17 of the patent application, wherein the metal substrate is missing or residual: the early surface of the steel plate or the coated material formed by integrating the aluminum plates on both sides. In the case of the __18 item, the substrate with the f-ary element is In the above-mentioned anodizing, the above-mentioned porous anodized film has a compressive stress. ==* to 9th, 13th to 19th-2, with a 1-mesh electrode On the substrate of photoelectric conversion element 21. 21. Kind of photoelectric conversion element, in the pole, photoelectric conversion semiconductor layer and upper electrode, the main component of the characteristic == contains the family element, the gamma element =, the halogen element to 乂1 a compound semiconductor of a yellow iron ore structure, and the photoelectric conversion semiconductor layer includes a _ sub or a _ sub, and a sodium ion. 22. The photoelectric conversion element according to the patent scope of 5 2! The content of each of the hetero- or the smear and the sodium ion in the half-layer is 1x(8)5/ey or more. 201242038 Λ. A. 23. The photoelectric conversion element according to claim 21 or 22, wherein The clock ions or potassium ions and sodium ions contained in the photoelectric conversion semiconductor layer are supplied from an inspection supply layer formed between the substrate and the molybdenum electrode. 24. For the scope of claim 21, item 22 Or the first magic item, the photoelectric conversion The main component of the photoelectric conversion semiconductor layer is a compound semiconductor containing at least one of the following elements: at least one of the group elements selected from the group consisting of Cu and Ag; and consisting of Al, Ga, and In At least one of the Group VIIIb elements in the group consisting of S, Se, and Te; and 25. The photoelectric conversion element according to claim 24, The substrate is a metal substrate. The photoelectric conversion element according to claim 25, wherein an anodized aluminum film is formed on a surface of the metal substrate. The photoelectric conversion element according to claim 26, wherein the metal substrate is a coating material obtained by integrating one side or both sides of aluminum, stainless steel or iron steel plate with an aluminum plate. The photoelectric conversion element according to claim 27, wherein the anodized aluminum film is a porous anodized aluminum film, and the porous anodized aluminum film has a compressive stress. A solar cell characterized by comprising the photoelectric conversion element according to any one of the items 25 to 28. 45
TW101112086A 2011-04-05 2012-04-05 Substrate for photoelectric conversion element with molybdenum electrode, photoelectric conversion element and solar cell TW201242038A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011083336 2011-04-05
JP2011212194 2011-09-28
JP2011212195A JP5000779B1 (en) 2011-04-05 2011-09-28 Substrate for photoelectric conversion element with molybdenum electrode
JP2011212197 2011-09-28

Publications (1)

Publication Number Publication Date
TW201242038A true TW201242038A (en) 2012-10-16

Family

ID=46968906

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101112086A TW201242038A (en) 2011-04-05 2012-04-05 Substrate for photoelectric conversion element with molybdenum electrode, photoelectric conversion element and solar cell

Country Status (2)

Country Link
TW (1) TW201242038A (en)
WO (1) WO2012137497A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI654771B (en) 2012-12-21 2019-03-21 瑞士商弗里松股份有限公司 Fabricating thin-film optoelectronic devices with added potassium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150057820A (en) * 2013-11-20 2015-05-28 삼성에스디아이 주식회사 Solar cell
JP7183395B2 (en) * 2019-03-29 2022-12-05 富士フイルム株式会社 Aluminum foil, method for producing aluminum foil, current collector, lithium ion capacitor, and lithium ion battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119796A (en) * 1984-07-06 1986-01-28 Fujikura Ltd Reinforcement of anodic oxidized film
DE4442824C1 (en) * 1994-12-01 1996-01-25 Siemens Ag Solar cell having higher degree of activity
JP2922465B2 (en) * 1996-08-29 1999-07-26 時夫 中田 Manufacturing method of thin film solar cell
JP2004047860A (en) * 2002-07-15 2004-02-12 Matsushita Electric Ind Co Ltd Thin film solar cell and its manufacture
JP4974986B2 (en) * 2007-09-28 2012-07-11 富士フイルム株式会社 Solar cell substrate and solar cell
JP4629151B2 (en) * 2009-03-10 2011-02-09 富士フイルム株式会社 Photoelectric conversion element, solar cell, and method for manufacturing photoelectric conversion element
JP2010251694A (en) * 2009-03-26 2010-11-04 Fujifilm Corp Photoelectric conversion semiconductor layer, method of manufacturing the same, photoelectric conversion device, and solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI654771B (en) 2012-12-21 2019-03-21 瑞士商弗里松股份有限公司 Fabricating thin-film optoelectronic devices with added potassium

Also Published As

Publication number Publication date
WO2012137497A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
US20120305049A1 (en) Solar cell and solar cell manufacturing method
KR101650997B1 (en) Metal substrate having insulating layer, method for manufacturing same, and semiconductor device
JP4955086B2 (en) Method for producing Al substrate with insulating layer
JP4700130B1 (en) Insulating metal substrate and semiconductor device
JP2010267967A (en) Thin film solar cell, and method of manufacturing thin film solar cell
JP5000779B1 (en) Substrate for photoelectric conversion element with molybdenum electrode
JP2013084921A (en) Photoelectric conversion element and solar cell
JP2011176287A (en) Photoelectric conversion element, thin film solar cell, and method of manufacturing photoelectric conversion element
Wijesinghe et al. Defect engineering in antimony selenide thin film solar cells
Fraga et al. Effect of alkali doping on CIGS photovoltaic ceramic tiles
TW201205840A (en) Cigs-type solar cell, and electrode-attached glass substrate for use in the solar cell
Yoo et al. Surface and interface engineering for highly efficient Cu 2 ZnSnSe 4 thin-film solar cells via in situ formed ZnSe nanoparticles
TW201242038A (en) Substrate for photoelectric conversion element with molybdenum electrode, photoelectric conversion element and solar cell
Zhang et al. High efficiency CIGS solar cells on flexible stainless steel substrate with SiO2 diffusion barrier layer
JP2011176285A (en) Photoelectric conversion element, thin film solar cell, and method of manufacturing photoelectric conversion element
KR20130037654A (en) Method for producing solar cell, and solar cell
Lee et al. Evolution of Morphological and Chemical Properties at p–n Junction of Cu (In, Ga) Se2 Solar Cells with Zn (O, S) Buffer Layer as a Function of KF Postdeposition Treatment Time
JP2011190466A (en) Aluminum alloy substrate, and substrate for solar cell
US20110186123A1 (en) Substrate with insulation layer and thin-film solar cell
JP2010232427A (en) Photoelectric conversion device, method for manufacturing the same, anodic oxidation substrate for use therein, and solar cell
JP5634315B2 (en) Metal substrate with insulating layer and photoelectric conversion element
JP6246544B2 (en) Insulating substrate for CIGS solar cell and CIGS solar cell
WO2013111566A1 (en) Metal substrate with insulating layer, method for producing same, and semiconductor element
JP2010258255A (en) Anodic oxidation substrate, method of manufacturing photoelectric conversion element using the same, the photoelectric conversion element, and solar cell
JP2011124538A (en) Insulating-layer-attached metal substrate, methods for manufacturing semiconductor device using the same and solar cell using the same, and solar cell