TW201241445A - Power detection method for primary-side circuit of power supply and the power detection circuit - Google Patents

Power detection method for primary-side circuit of power supply and the power detection circuit Download PDF

Info

Publication number
TW201241445A
TW201241445A TW100112173A TW100112173A TW201241445A TW 201241445 A TW201241445 A TW 201241445A TW 100112173 A TW100112173 A TW 100112173A TW 100112173 A TW100112173 A TW 100112173A TW 201241445 A TW201241445 A TW 201241445A
Authority
TW
Taiwan
Prior art keywords
current
voltage
value
signal
power
Prior art date
Application number
TW100112173A
Other languages
Chinese (zh)
Other versions
TWI460437B (en
Inventor
Wei-De Chen
zhi-hao Zhang
Original Assignee
Acbel Polytech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acbel Polytech Inc filed Critical Acbel Polytech Inc
Priority to TW100112173A priority Critical patent/TWI460437B/en
Priority to CN201110148990.XA priority patent/CN102809684B/en
Publication of TW201241445A publication Critical patent/TW201241445A/en
Application granted granted Critical
Publication of TWI460437B publication Critical patent/TWI460437B/en

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

A power detection method for primary-side circuit of power supply and the power detection circuit, in which the power detection method includes a voltage sampling procedure, a current sampling procedure and a power calculation procedure; where the voltage sampling procedure acquires the AC voltage signal of the city power and raises the DC level of AC voltage signal of the city power by letting the negative half cycle of the voltage signal as positive voltage level, then digitally transforms the AC voltage signal into DC sine signal, and then performs the voltage sampling at a certain time interval to obtain voltage RMS value. The current sampling procedure acquires the AC current signal of the city power, and then analogously transforms the AC current signal into DC sine signal, and then performs the current sampling at a certain time interval to obtain current RMS value. The power calculation procedure reads each of the acquired voltage and current sampled values, which are then multiplied with each other and finally divided by the cycle time to obtain power value.

Description

201241445 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種電源供應器的功率檢測方法、匕 種低成本高精度的一次側電路功率檢測方法。 【先前技術】 目前-般電腦或高階電腦’如伺服器所用電源供應 器,均具有與主機板雙向溝通的能力。為確保電腦能正常 開關機或伺服器的開關機順序,電源供應器除了於門機支 檢知輸出電源穩定’主動通知主機板目前供電良:訊號 外,更必須回報目前一次側電壓值、電流值及功率值,讓 用電電腦掌握電源供應器用電狀態。因此,電源供應器如 何符合電腦要求回報用電狀態的資 應薇關注。 卩備$各豕電源供 由於電源供應器主要成本係用以維持供電穩定性及高 轉換效率電路設定上,增加監控用電狀態並回報用電狀態 =路勢必造成成本提升;…早期作法係利用精密 置測紀錄電源供應器的輪入電壓及輸入電流,並建立 對照表。當電源供應器内部由OP運算放大器組成的檢知電 路粗估電壓值及電流值後,以對照表進行查表,向電腦回 報查表結果。由於查表係由精密電表量測記錄,故設置於 電源供應器内的檢知電路的檢知結果精準度不被要求。然 而此作法仍非最佳,因為對照表不可能驗證所有變數, 故仍與實際值存在一定每莫 , 子社疋决差,而且如圖9所示,為了不增 過。的成本,上述查表程序係直接以電源供應器内部原 201241445 因此檢知電路所檢知的 濾波成直流訊號才能輸 此一來即無法直接計算 有的一次側微處理器予以執行之, 電壓訊號及電流訊號lin均必須經過 入至該一次側微處理器《>然而,如 功率值。 因此為了符合精準度的需求,採用功率量測1C取代OP 放大器構成的檢測電路’由於功率量測lc採精密運算,故 可提供更為精準的用電狀態’亦包含功率值之運算。採用 該功率量浪j IC的電路誠如圖10所示,該功率量測|C 4〇 的電功感測端係連接至㈣、供應H側電路㈣交流電 源輸入端Vin’而電流感測端則連接至一串接於交流電源輸 入端之電流檢知器RD上,並再與—次側電路1〇的全橋整 流器12輸出端連接,藉以精密計算出一次側電路1〇的電 壓值、電机值及功率值。又由於該功率量測4〇連接至一 次側電路10,但必須將運算結果輸出至二次側電路3〇的二 人側電路控制益31及l2c輸出介面32,以傳送至電腦;然 而-次側電路1〇與二次側電路3〇接地並不相同,故功率 量測IC 40輸出訊號必須透過—訊號轉換處理器41、一次 側微處理器13及一光耦合器14才能輸出至二次側電路控 制器31,最後輸出至與電腦連接的丨丨◦輸出介面32 ^ 由上述說明可知,為了提供精準的一次側電壓值、電 :’l值及功率值的计异,<吏用了高成本的功率量測丨。,而因 該功率1測丨C訊號格式與一次側微處理器不同,故必須額 外加設-訊號轉換處理器’更提高了整體電源供應器的成 本;是以,目前電源供應器之回報一次側電路用電狀態的 電路有待進—步改良。 4 201241445 【發明内容】 有鑑於上述既有技術問題,本發明主要目的係提供一 種以低成本檢測電源供應器一次側電路功率的方法,^ 高精準度。 ’兼〃 欲達上述目的所使用的主要技術手段係令該功率檢測 方法係直接由一次側微處理器執行之,其包含有一電壓取樣 程序、一電流取樣程序及一功率計算程序,其中· 上述電壓取樣程序係包含有以下步驟: 擷取市電交流電壓訊號; 調升市電交流電壓訊號的直流準位,令負半週電壓訊 號為正電壓準位; 數位轉換交流電壓訊號為直流弦波訊號;及 以一定時間間隔進行電壓取樣,獲得一電壓均方根值。 上述電流取樣程序係包含有以下步驟: 擷取市電交流電流訊號; 類比轉換交流電流訊號為直流弦波訊號;及 以一定時間間隔進行電流取樣,獲得一電流均方根值。 上述功率計算程序係包含有以下步驟: 讀取母次抓取的電壓及電流取樣值並予相乘;及 除以一個一個週期時間,獲得功率值。 上述本發明方法為了可直接由一次側微處理器執行 之,而不必額外增加訊號轉換處理器,在計算市電交流電源 的電壓均方根值’係先將擷取到的市電交流電壓訊號調升其 直流準位’令負半週電壓訊號為正電壓準位,而得以直接 201241445 輸至人側微處理器,進行運算;而市電交流電流訊號則 直接取人側電路的全橋濾波器’故可取得振幅較小的電流 訊號並將其以類比轉換為直流弦波訊號後,直接輸入至一 人側微處理器+ ,因此,該一次側微處理器即可對直流弦 波訊號的電壓及雷、;*,p &次i:桃’抓取電壓及電流取樣值進行功率運 直接透過原有一次側微處理器與二次側電路控制器 的通訊管道’將運算結果輸出至二次側電路控制器。如此, 本發=確實不必使用昂貴的功率量測丨c &訊號轉換處理 器提供目刖所使用交電的電墨值、電流值及功率值。 上述功率計算程序同步抓取電壓及電流取樣值步驟 中欲判斷一個完整週期時間,先預設一電壓值及一電流 值,當連續抓取的電壓或電流取樣值,相較預設電壓值及 電流值:斷出高於結果、低於結果、高於結果、低於結果 時則得知已完成-個週期的電壓及電流取樣。 上述功率計算程序中同步抓取電壓及電流取樣值步驟 中’針對抓取電流取樣值進一步採用查表校正法,即該查 表中建立有複數組校正參數,而各組校正參數取得方式係 包含有: 調整電源供應器的交流電源電壓值; 於輸出不同電壓值期間内,執行以下步驟以取得各輸 出電壓值的電流校正參數; 第一次調整目前交流電源電流值; & -以#密電表量測類比直流弦波電流訊號的第一真實電 抓均方根值,以及同步獲得取樣後的第一檢測電流取樣 值並配合電流校正參數構成第一點斜運算式; 6 201241445 第二次調整目前交流電源電流值 以精密電表量測類比直流弦波電流訊號的第二真實電 流均方根值,以及同步獲得取樣後的第二檢測電流取樣 值,並配合電流校正參數構成第二點斜運算式;及 解出該第一及第二點斜運算式的校正參數,即獲得目 前輸入交流電源的電壓值下的一組電流校正參數。 是以,當建立好上述不同輸入電壓值的對應電流校正 參數,於檢知目前一次側電流值後,即可讀取查表中對應 目前輸入電壓值的電流校正參數,校正該檢知一次側電流 值,令其接近如同精密電表所實際量測到的電流值,再進 行功率計算。 本發明所使用的主要技術手段係令該具功率檢測功能 的一次側電路包含有: 一電壓§fl號轉換電路,係連接至一次側電路的交流電源 輸入端,以擷取市電交流電壓訊號,並調升市電交流電壓訊 號的直流準位,令負半週電壓訊號為正電壓準位後輸出·, 一電流訊號轉換電路,係以一電流檢知器連接至一次側 電路之全橋濾波器的輸出端,對該全橋濾波器輸出的類比直 流弦波電流訊號振幅減小; 一次側微處理器,其輸入端分別連接該電壓訊號轉換 電路及電流訊號轉換電路,以將類比電壓訊號數位轉換直 流弦波訊號,再以固定時間重覆對每個週期内的該電壓及 電流的直流弦波訊號進行取樣’並將每次抓取的電壓及電 流取樣值予相乘後,再除以週期時間以獲得功率值。 上述本發明直接以一次側微處理器配合簡單電壓及電 201241445 流訊號轉換電路’即能獲得電源供應器—次側電路使用市 電電源的電壓值、電流值及功率值。 上述一次側微處理器進一步内建有一電流校正對照 表,由於電源供應器的輸入電流波形會隨著輸入電壓高低 變化而改變,而且上述電壓及電流訊號轉換電路係主要由 運算放大器組成,輸入電流經過運算放大器會有失真現 象,因此為維持一定電流檢知精準度,該一次側微處理器 必須内建電流校正對照表,於每次獲得電流取樣值,以查 表方式進行電流校正。 【實施方式】 請參閱圖1所示’係為電源供應器包含本發明的一次側 側電路之電路方塊圖,其中該一次側電路彳〇係主要包含有 一電磁隔離單元11、一全橋濾波器12、一 BUKL電容cB、 一變壓器1 5的一次側線圈1 51,一串接於變壓器】5 一次側 線圈1 51的主動開關Q及一控制該主動開關Q啟閉的一次 側微處理器1 3 ;又,本發明一次側電路1 〇的功率檢測電路 除了包含有一次側微處理器13外,更進一步包含有: 一電壓訊號轉換電路20 ’係連接至一次側電路1 〇的交 流電源輸入端Vin ’以擷取市電交流電壓訊號,如圖3a所 示並調升輸入電壓訊號Va的直流準位,令負半週電麼訊 號為正電壓準位後輸出;於本實施例中,如圖2所示,該 電壓訊號轉換電路20係包含有一差動電路201及一直流準 位產生電路202,該差動電路201的正向及反向輸入端分 別連接至電源供應器交流電源輸入端|_、N,而正向輸入端 201241445 係進一步連接至該直流準位產生電路202,以比例縮小市電 交流電壓訊號Vin,並提高該交流電壓訊號直流準位’令交 流電壓訊號振幅不低於〇 ;及 一電流訊號轉換電路21,係以一電流檢知器Rd連接至 一次侧電路1 0之全橋濾波器12的輸出端,對該全橋濾波器 1 2輸出的類比直流弦波電流訊號振幅減小,如圖4B所示。 於本實施例中,如圖3所示’該電流訊號轉換電路21係包 含有一差動電路’係包含有正向輸入端及反向輸入端,該正 向及反向輸入端係分別連接於該電流檢知器rd的二端。 至於本發明一次側微處理器1 3的輸入端係分別連接該 電壓訊號轉換電路20及電流訊號轉換電路21,由於電壓訊 號及電流訊號的振幅均已縮減,故可直接輸入至該一次側 微處理器1 3;其中該一次側微處理器彳3將類比電壓訊號數 位轉換直流弦波訊號,再以固定時間重覆對每個週期内的 該電壓及電流的直流弦波訊號進行取樣,並將每次抓取的 電壓及電流取樣值予相乘後,再除以週期時間以獲得功率 值。 明配合參閱圖5A所不’上述—次侧微處理器彳3必須能 夠就接收的電壓訊號及電流訊號判斷單—週期時間,才能計 算出功率值;故該-次側微處理器13的單—週期時間丁判 斷方式,先預設-電壓值Vref及—電流值,當連續抓取的 電壓或電流取樣值,如圖5B,相較預設電壓值Vref及電冷 值判斷出高於結果·、低於結果、高於結果、低於結果時: 則仵知已完成-個週期時間T的電壓及電流取樣。 由於-次側微處理器13係將輸人的交流錢訊號數位 201241445 轉換為直流弦波電壓訊號v 號1〇,如圖4A &48所示,因直㈣波電㈣ 因此在同步獲得電壓取樣值及 電机取樣值時,可直接相乘供計算功率值用。 :基於電源供應器輸入電流會隨著輸入電壓訊號大 小而改變,加·及電流訊號轉換電路20、21的差動電 系主要由運算放大gs組成’會造成輸人電流經過運算放 大器有失真現象’因此為維持一定電流檢知精準度,該一 次側微處理器13必須内建—電流校正對照表,於每次獲得 電流取樣值’以查表法進行電流校正;該電流校正對照表 係包含有複數組輸入電壓及校正參數;請參閱圖6所示,係 為上述建立電流校正對照表内各組校正參數取得方式,其包 含有: 調整電源供應器輸出不同電壓值Si〇; 於輸出不同電壓值期間内,分別執行以下步驟以取得 各輸出電壓值的電流校正參數S1 1 ; 第一次調整目前交流電源電流值(80V/1 A)S 12 ; 以精密電表量測類比直流弦波電流訊號的第一真實電 流均方根值Μ。,以及同步獲得取樣後的第一檢測電流取樣 值丨「msrawi ’並配合電流校正參數構成第一點斜運算式:201241445 VI. Description of the Invention: [Technical Field] The present invention relates to a power supply method for a power supply, and a low-cost and high-precision primary-side circuit power detection method. [Prior Art] At present, a general-purpose computer or a high-end computer, such as a power supply for a server, has the ability to communicate with the motherboard in both directions. In order to ensure that the computer can normally switch on or off the servo sequence of the machine or the servo, the power supply is in addition to the door machine to detect that the output power is stable. 'Proactively notify the motherboard that the current power supply is good: the signal must return the current primary voltage value and current. The value and power value allow the power computer to know the power status of the power supply. Therefore, the power supply is in compliance with the requirements of the computer to report the power status. $ 豕 豕 豕 豕 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于Precisely record the turn-in voltage and input current of the power supply and establish a comparison table. When the detection circuit composed of the OP operational amplifier inside the power supply supply roughly estimates the voltage value and the current value, the table is checked by the comparison table, and the result of the check is returned to the computer. Since the look-up table is recorded by a precision meter, the accuracy of the detection result of the detecting circuit provided in the power supply is not required. However, this practice is still not optimal, because the comparison table is impossible to verify all the variables, so there is still a certain difference with the actual value, and as shown in Figure 9, in order not to increase. The cost of the above-mentioned table look-up procedure is directly executed by the original power supply inside the power supply 201204445. Therefore, the detection of the detected signal by the detection circuit into a DC signal can be directly input, that is, it cannot be directly calculated by some primary-side microprocessors, and the voltage signal is executed. And the current signal lin must pass through the primary side microprocessor "> however, such as the power value. Therefore, in order to meet the accuracy requirements, the power measurement 1C is used instead of the OP amplifier. The detection circuit 'causes the power measurement lc to perform precise calculations, so it can provide a more accurate power state' and also includes the calculation of the power value. The circuit using the power quantity wave j IC is as shown in FIG. 10, the power measurement end of the power measurement |C 4〇 is connected to (4), the supply side H circuit (4) the AC power input end Vin' and the current sensing The terminal is connected to a series of current detectors RD connected to the input end of the AC power source, and is further connected to the output end of the full-bridge rectifier 12 of the secondary side circuit 1〇, so as to accurately calculate the voltage value of the primary side circuit 1〇. , motor value and power value. Since the power measurement 4〇 is connected to the primary side circuit 10, the operation result must be output to the two-side circuit control benefit 31 and the l2c output interface 32 of the secondary side circuit 3〇 for transmission to the computer; The side circuit 1〇 is not the same as the second side circuit 3〇, so the power measurement IC 40 output signal must be transmitted through the signal conversion processor 41, the primary side microprocessor 13 and an optical coupler 14 to output to the second time. The side circuit controller 31 is finally outputted to the 丨丨◦ output interface 32 connected to the computer. As can be seen from the above description, in order to provide accurate primary side voltage value, electric: 'l value and power value difference, < A high-cost power measurement. Because the power 1 test C signal format is different from the primary side microprocessor, it is necessary to additionally add a - signal conversion processor to increase the cost of the overall power supply; The circuit of the side circuit power state needs to be improved step by step. 4 201241445 SUMMARY OF THE INVENTION In view of the above-mentioned prior art problems, the main object of the present invention is to provide a method for detecting the power of a primary side circuit of a power supply at a low cost, with high precision. The main technical means used to achieve the above purpose is that the power detection method is directly executed by the primary side microprocessor, and includes a voltage sampling program, a current sampling program and a power calculation program, wherein The voltage sampling program includes the following steps: taking the mains AC voltage signal; raising the DC level of the mains AC voltage signal, so that the negative half cycle voltage signal is a positive voltage level; the digital conversion AC voltage signal is a DC string signal; And voltage sampling at regular intervals to obtain a voltage rms value. The current sampling program includes the following steps: extracting a commercial AC current signal; analogizing the alternating current signal to a DC string signal; and sampling the current at a time interval to obtain a current rms value. The above power calculation program includes the following steps: reading the voltage and current sample values captured by the mother and the multiplication; and dividing by one cycle time to obtain the power value. In order to be directly executable by the primary side microprocessor, the method of the present invention does not need to additionally add a signal conversion processor, and the voltage rms value of the mains AC power supply is calculated to first increase the extracted commercial AC voltage signal. Its DC level ' makes the negative half-cycle voltage signal a positive voltage level, and can be directly transmitted to the human-side microprocessor for calculation at 201241445; and the commercial AC current signal directly takes the full-bridge filter of the human-side circuit. A current signal with a small amplitude can be obtained and converted into a DC sine wave signal analogously, and directly input to a human side microprocessor +, so that the primary side microprocessor can measure the voltage of the DC sine wave signal and the thunder , *, p & i: peach 'grab voltage and current sampling value for power transmission directly through the original primary side microprocessor and secondary side circuit controller communication pipeline 'output the operation result to the secondary side Circuit controller. In this way, the present invention does not have to use expensive power measurements, and the signal conversion processor provides the value of the ink, current, and power of the power used for the purpose. The power calculation program synchronously captures the voltage and current sampling values in the step of determining a complete cycle time, first presetting a voltage value and a current value, when continuously drawing the voltage or current sampling value, compared with the preset voltage value and Current value: When the output is higher than the result, lower than the result, higher than the result, and lower than the result, the voltage and current sampling are completed. In the above-mentioned power calculation program, in the step of synchronously grabbing the voltage and current sampling values, the table-correcting method is further adopted for the sampling value of the grab current, that is, the complex array correction parameter is established in the look-up table, and each group of correction parameter acquisition methods includes There are: Adjust the AC power supply voltage value of the power supply; During the period of outputting different voltage values, perform the following steps to obtain the current correction parameters of each output voltage value; adjust the current AC current current value for the first time; & - # The electric meter measures the first real electric RMS value of the analog DC sine wave current signal, and the first detection current sampling value after the synchronization is obtained, and the current correction parameter constitutes the first slanting operation formula; 6 201241445 Adjusting the current AC current value to measure the second real current rms value of the analog DC sine wave current signal with a precision meter, and synchronously obtaining the second detected current sample value after sampling, and matching the current correction parameter to form a second point slant An arithmetic expression; and solving the correction parameters of the first and second point oblique expressions, that is, obtaining the current input alternating current A set of current at a voltage value of the correction parameter. Therefore, when the corresponding current correction parameters of the different input voltage values are established, after the current primary current value is detected, the current correction parameter corresponding to the current input voltage value in the table can be read, and the detection side is corrected. The current value is close to the current value actually measured by a precision meter, and then the power is calculated. The main technical means used in the present invention is that the primary side circuit with the power detection function includes: a voltage §fl number conversion circuit connected to the AC power input end of the primary side circuit to capture the commercial AC voltage signal, And increase the DC level of the mains AC voltage signal, so that the negative half cycle voltage signal is positive voltage level output, and a current signal conversion circuit is connected to the primary bridge of the primary side circuit with a current detector. The output end of the analog bridge sine wave current signal has a reduced amplitude; the primary side microprocessor has its input terminal connected to the voltage signal conversion circuit and the current signal conversion circuit to compare the analog voltage signal Converting the DC sine wave signal, and then sampling the DC sine wave signal of the voltage and current in each cycle at a fixed time and multiplying the voltage and current sample values captured each time, and then dividing by Cycle time to obtain the power value. The above-mentioned invention directly obtains the voltage value, current value and power value of the commercial power source by the power supply-secondary circuit using the primary side microprocessor in conjunction with the simple voltage and power 201241445 flow signal conversion circuit. The primary side microprocessor further has a current correction reference table, wherein the input current waveform of the power supply varies with the input voltage, and the voltage and current signal conversion circuit is mainly composed of an operational amplifier, and the input current is After the op amp has distortion, in order to maintain a certain current detection accuracy, the primary side microprocessor must have a built-in current correction comparison table, and each time the current sampling value is obtained, the current correction is performed in a table lookup manner. [Embodiment] Please refer to FIG. 1 as a circuit block diagram of a power supply device including a primary side circuit of the present invention, wherein the primary side circuit system mainly includes an electromagnetic isolation unit 11 and a full bridge filter. 12, a BUKL capacitor cB, a transformer 1 5 primary side coil 1 51, a series connected to the transformer] 5 primary side coil 1 51 active switch Q and a primary side microprocessor 1 that controls the active switch Q open and close In addition, the power detecting circuit of the primary side circuit 1 of the present invention includes, in addition to the primary side microprocessor 13, a voltage signal conversion circuit 20' connected to the primary side circuit 1 〇 AC power input. The terminal Vin' draws the mains AC voltage signal, as shown in FIG. 3a and raises the DC level of the input voltage signal Va, so that the negative half-cycle signal is positive voltage level and then outputs; in this embodiment, As shown in FIG. 2, the voltage signal conversion circuit 20 includes a differential circuit 201 and a current level generating circuit 202. The forward and reverse input terminals of the differential circuit 201 are respectively connected to a power supply AC. The input terminals |_, N, and the forward input terminal 201241445 are further connected to the DC level generating circuit 202 to scale down the mains AC voltage signal Vin, and increase the AC voltage signal DC level 'to make the AC voltage signal amplitude not And a current signal conversion circuit 21 connected to the output end of the full-bridge filter 12 of the primary side circuit 10 by a current detector Rd, and the analog DC string outputted to the full-bridge filter 12 The wave current signal amplitude is reduced as shown in Figure 4B. In this embodiment, as shown in FIG. 3, the current signal conversion circuit 21 includes a differential circuit including a forward input terminal and an inverse input terminal, and the forward and reverse input terminals are respectively connected to The two ends of the current detector rd. The input terminal of the primary side microprocessor 13 of the present invention is respectively connected to the voltage signal conversion circuit 20 and the current signal conversion circuit 21. Since the amplitudes of the voltage signal and the current signal are reduced, the input to the primary side can be directly input. The processor 1 3; wherein the primary side microprocessor 彳3 converts the analog voltage signal digits into a DC sine wave signal, and then repeats the sine wave signal of the voltage and current in each period by a fixed time, and The voltage and current sample values captured each time are multiplied, and then divided by the cycle time to obtain the power value. Referring to FIG. 5A, the above-mentioned sub-microprocessor 彳3 must be able to determine the single-cycle time for the received voltage signal and current signal to calculate the power value; therefore, the single-microprocessor 13 - Cycle time D is judged, first preset - voltage value Vref and - current value, when the continuously captured voltage or current sample value, as shown in Figure 5B, compared to the preset voltage value Vref and the electric cooling value is judged to be higher than the result · Below the result, above the result, below the result: Then the voltage and current samples of the cycle time T are completed. Since the secondary side microprocessor 13 converts the input exchange signal digit 201241445 into a DC sine wave voltage signal v number 1〇, as shown in FIG. 4A & 48, the voltage is obtained synchronously due to the direct (four) wave power (4). When sampling values and motor sampling values, they can be directly multiplied for calculation of power values. : Based on the power supply input current will change with the input voltage signal size, the differential current system of the current and current signal conversion circuits 20, 21 is mainly composed of operational amplification gs, which will cause the input current to be distorted by the operational amplifier. Therefore, in order to maintain a certain current detection accuracy, the primary side microprocessor 13 must have a built-in current correction reference table, and each time the current sampling value is obtained, the current correction is performed by a look-up table method; the current correction comparison table includes There are multiple array input voltages and correction parameters; please refer to FIG. 6 , which is the method for obtaining the calibration parameters of each group in the above-mentioned current correction comparison table, which includes: adjusting the power supply output different voltage values Si 〇; During the voltage value period, the following steps are respectively performed to obtain the current correction parameter S1 1 of each output voltage value; the current AC current current value (80V/1 A) S 12 is adjusted for the first time; the analog DC sine wave current is measured by the precision electric meter. The first true current rms value of the signal is Μ. And synchronously obtaining the first detected current sampling value 丨 "msrawi ” and matching the current correction parameter to form a first point oblique expression:

Mci = CSn*lrmsraw1 + COffsetn (S13); 第二次調整目前交流電源電流值(80V/15A)S14 ; 以精密電表量測類比直流弦波電流訊號的第二真實電 流均方根值Mu,以及同步獲得取樣後的第二檢測電流取樣 值lrmsraW2,並配合電流校正參數構成第二點斜運算式: Mc2 = CSn*lrmsraw2 + COffsetn (S15);及 201241445 及 參 解出該第一及第二點斜運算式的校正參數d c〇ffsetn,即獲得目前輸入電壓⑽v)下的一組電流校1 數 S16。 經上述步驟重覆計算出不同電壓值下的電流校正參 數,即彳i下表一的電流校^^照表: CCP (電壓值) CCP1Mci = CSn*lrmsraw1 + COffsetn (S13); adjust the current AC current current value (80V/15A) S14 for the second time; measure the second true current rms value Mu of the analog DC sine wave current signal with a precision meter, and The second detected current sampling value lrmsraW2 after sampling is obtained synchronously, and the second point oblique operation formula is constructed according to the current correction parameter: Mc2 = CSn*lrmsraw2 + COffsetn (S15); and 201241445, and the first and second points are deciphered. The correction parameter dc 〇 ffsetn of the oblique operation formula obtains a set of current calibration numbers S16 under the current input voltage (10) v). Through the above steps, the current correction parameters under different voltage values are repeatedly calculated, that is, the current calibration table in Table 1 below: CCP (voltage value) CCP1

CS (校驗增益CS (check gain

CS COffset (校驗偏移值)CS COffset (check offset value)

Coffseti CCP? CS:Coffseti CCP? CS:

Coffset CCP, CS,Coffset CCP, CS,

Coffset, 因此當該一次側微處理器13每次自直流弦波電流訊號 取得電流取樣值lrmsraw後,即可讀取電流校正對照表中對 應目前電壓值乂「咖的電流校正參數,校正該檢知一次側電 流值Irmsraw,令其接近如同精密電表所實際量測到的電流 值丨rms,確保所判斷電流值的精準度;其中校正後的電流 值為:IrmsMrmSrav/CSm + Coffset, 進行後續的功率計算。Coffset, therefore, when the primary side microprocessor 13 obtains the current sampling value lrmsraw from the DC sine wave current signal, it can read the current current value in the current correction comparison table, "the current correction parameter of the coffee, and correct the detection. Know the primary current value Irmsraw, so that it is close to the current value 丨rms measured by the precision meter, to ensure the accuracy of the judged current value; the corrected current value is: IrmsMrmSrav/CSm + Coffset, for subsequent Power calculation.

if V rms CCP, 以供 一般全域式電源供應的可用市電電源電壓範圍廣,舉例 來說可為80V至1 64V電壓範圍,而建立每個輸入電壓的電 流校正對照表則必須花費相當多時間,必須以精密電表進行 不同電壓值下不同電流的電流值檢測(例如可取8〇v、 106V、132V、198V、164V),才能獲得不同輸入電壓的電 11 201241445 流校正參數;因此本發明可採用多段式,意即,預先儲存多 、'且電壓及其電流校正參數’若檢知目前電壓非為任—儲存多 ’、且電壓者’則取與最為接近目前電壓值且為小的電壓值的電 流校正參數進行檢知電流的校正。由於電源供應器在重載 時,電流經過電壓及電流訊號轉換電路波形失真更為嚴重, 故在5又疋多組電壓時,可在重載高壓範圍中取更多電壓值求 取其電流校正參數。 此外,本發明另提供一種方式,係令電流校正對照表僅 儲存數組不同電壓下的電流校正參冑,若一次側微處理器檢 知目前輸入電壓無匹配已儲存的電壓之電流校正參數者,則 讀取電流校正對照表中目前電壓的二相近電壓,以内差法 (interpolation algorithm)推廣至其目前電壓值,以推論出目 月'J電壓值的電流校正參數,以下舉例說明之; 令目前檢知電壓Vrms經判斷位於儲存在電流校正對照 表中的第一電壓CCPm及第二電壓CCPm i之間,其中第— 及第二電壓所對應的電流校正參數分別為校驗增益值 CSm、CSm-彳及校驗偏移值c〇ffsetm、Coffsetm」,而已知電 壓Vrms的電流校正參數csm—1m、Coffsetm.im,則以第—及 第二電壓及其電流校正參數進行内差運算而得,如下二式所 列:If V rms CCP, for a wide range of available mains supply voltages for general-purpose power supplies, for example, from 80V to 1 64V, the current correction table for each input voltage must take considerable time. The current value of different currents under different voltage values must be detected by a precision meter (for example, 8〇v, 106V, 132V, 198V, 164V) to obtain the power 11 201241445 flow correction parameters of different input voltages; therefore, the present invention can adopt multiple segments. The meaning, that is, pre-storage, 'and voltage and its current correction parameter', if it is detected that the current voltage is not arbitrary - store more ', and the voltage' is taken closest to the current voltage value and is a small voltage value The current correction parameter performs a correction of the detected current. Since the power supply is overloaded, the current is more severely distorted by the voltage and current signal conversion circuit waveforms. Therefore, when 5 sets of voltages are applied, more voltage values can be taken in the heavy-load high-voltage range to obtain current correction. parameter. In addition, the present invention further provides a method for the current correction comparison table to store only the current correction parameters at different voltages of the array. If the primary side microprocessor detects that the current input voltage does not match the current correction parameter of the stored voltage, Then read the two-phase near voltage of the current voltage in the current correction comparison table, and extend it to its current voltage value by an interpolation algorithm to infer the current correction parameter of the current month 'J voltage value, as exemplified below; The detection voltage Vrms is determined to be located between the first voltage CCPm and the second voltage CCPm i stored in the current correction comparison table, wherein the current correction parameters corresponding to the first and second voltages are the verification gain values CSm, CSm, respectively. - 彳 and check offset values c 〇 ffsetm, Coffsetm", and the current correction parameters csm - 1m, Coffsetm.im of the known voltage Vrms, the internal difference calculation with the first and second voltage and its current correction parameters , as listed in the following two formulas:

CS m-lm C〇ffset„ CSm.,{CCPm -CS m-lm C〇ffset„ CSm.,{CCPm -

~CCPm'l-;CCPm *CCP CCPm-CCPm_t C〇ffsetm_,{CCPm-Vrms) + COffsetm(Vrmi-CCPm_,) CCPm -CCPm.t 之後再比對目前電壓Vrms值與第一及第二電壓的大小 關係,選擇一組電流校正參數,對目前電流進校正,其包含 12 201241445 有: 參 法 參 當目前電M小於第—電屋,則以第-電麗的電流校正 數對目前電流丨「msraw進行校正; 當目前電壓落於第一電壓及第二電壓之間,則以内差 求得的電流校正參數對目前電流丨隱咖進行校正;及 當目削電壓大於第二電壓,則以第二電壓的電流校正 ^ < CCPm.x ifCCPm.t<Vn >CCP„ 數對目前電流lrmsraw進行校正; firms = Irmsraw x CS^ + COffset _ 〇v ^CCP_ fn~\m >~CCPm'l-;CCPm *CCP CCPm-CCPm_t C〇ffsetm_,{CCPm-Vrms) + COffsetm(Vrmi-CCPm_,) CCPm -CCPm.t then compare the current voltage Vrms value with the first and second voltages Size relationship, select a set of current correction parameters, for the current current correction, which includes 12 201241445 Yes: Reference parameter When the current electricity M is less than the first - electricity house, the current correction number of the first - electric current is "current" Msraw is corrected; when the current voltage falls between the first voltage and the second voltage, the current correction parameter obtained by the internal difference is corrected for the current current crypto coffee; and when the meshing voltage is greater than the second voltage, the Current correction of two voltages ^ < CCPm.x ifCCPm.t <Vn > CCP „ Correction of current current lrmsraw; firms = Irmsraw x CS^ + COffset _ 〇v ^CCP_ fn~\m >

Irms = Irmsraw x CSm_lm + COffset Irms = Irmsraw x CSm + COffsetn 如此一來,本發明一次側微處理器彳3縱使未内建所有 電壓的電流校正參數,仍能藉由預設電流校正參數,配合内 差法推導出來;請配合參閱圖7A、7B所示,以預儲四組 W8GV' 125V' 175V、235V)及其對應的電流校正參數配合 内差法推·^出電流校正參數(csm」nterpr〇|atj〇n、Irms = Irmsraw x CSm_lm + COffset Irms = Irmsraw x CSm + COffsetn In this way, the primary side microprocessor 彳3 of the present invention can still use the preset current correction parameter even if the current correction parameters of all voltages are not built. The difference method is derived; please refer to FIG. 7A and FIG. 7B to pre-store four groups of W8GV '125V' 175V, 235V) and their corresponding current correction parameters with the internal difference method to push the current correction parameter (csm) nterpr 〇|atj〇n,

Coffsetjnterprolation),分別與實際以精密電表量測計算所 得的電流校正參數(CSm—「ea卜Coffset—real)及分段式選擇 的電流杈正參數(CSm_Section、Coffset—Section)統計,如 圖示可知,採用分段式配合内差法即可實現無段式的校正, 並且貼近於實際以精密電表量測計算所得結果。 疋以,本發明確實只要以一次側微處理器配合簡單的電 壓及電流訊號轉換電路,即可計算電源供應器目前用電的電 壓值、電流值及功率值;而且藉由簡單預先儲存複數組電壓 及其電流校正參數,即可以分段式或無段式計算出目前用電 電壓的電流杈正參數,對目前同步檢知電流取樣進行校正, 以回報如同實際精密電表量測的電流值及功率值,而且不必 13 201241445 採用昂貴的功率量測丨c及訊號轉換處理器,就電源供應器 具備功率檢知。 由上述說可知,本發明電源供應器一次側電路之功率檢 測方法係包含有一電壓取樣程序、一電流取樣程序及一功率 計算程序。 請配合圖8所示,上述電壓取樣程序係包含有以下步 驟: 拍頁取市電交流電壓訊號S20 ; 調升市電交流電壓訊號的直流準位,令負半週電壓訊 號為正電壓準位S21 ; 數位轉換交流電壓訊號為直流弦波訊號S22 ;及 以一定時間間隔進行電壓取樣,獲得一電壓均方根值 S23 〇 又,上述電流取樣程序係包含有以下步驟: 擷取市電交流電流訊號S3〇 ; 類比轉換交流電流訊號為直流弦波訊號S31 ;及 以一定時間間隔進行電流取樣,獲得一電流均方根值 S33 ° 上述功率計算程序係包含有以下步驟: 讀取每次抓取的電壓及電流取樣值並予相乘S4〇 ;及 除以一個一個週期時間,獲得功率值S41。 上述功率計算程序同步抓取電壓及電流取樣值步驟 中,欲判斷一個完整週期時間,先預設一電壓值及一電流 值’當連續抓取的電壓或電流取樣值,相較預設電壓值及 電流值判斷出尚於結果、低於結果、高於結果、低於結果 201241445 時,則得知已完成一個週期 , J的電壓及電流取樣。 上述功率計算程序中 ψ , 4+^4, 门步抓取電壓及電流取樣值步驟 中,針對抓取電流取樣值 7驟 矣Φ途★士 值進—步採用查表校正法,即該杳 表中建立有複數組校正參 — 包含有: 而各組扠正參數取得方式係 調整電源供應器輸出不同電壓值; 於輸出不同電壓值如pq + Λ 出雷厭/“ 值期間内’執行以下步驟以取得各輪 出電壓值的電流校正參數; 鞠 調整電源供應器的負載 _ ^ ^ φ κ 、戰為紅载,令電源供應器輸出第 直流電源訊號; 乐 同樣以精密電表量測類卜古、ώ i -φ ^ ^ j類比直流弦波電流訊號的第一真 貫電流均方根值,以及同步 具 媒枯^ 」,獲侍取樣後的第一檢測電流取 樣值,並配合電流校正來 /数構成第一點斜運算式; 再調整電源供應器的負載Λ 取馬重载’令電源供應器輸出 第一直流電源訊號;其中兮笛 ^ ,Βπ τ該第—及第二直流電源訊號之電 壓相同,但電流不同; 电 同樣以精密電表量測_ μι_古+ 1 眘带4 j類比直流弦波電流訊號的第二真 實電、均方根值,以及同步样 m ..、 步獲侍取樣後的第二檢測電流取 ,值,並配合電流校正來數爐A # /数構成第二點斜運算式;及 解出該第一及第二點斜谨瞀4 A 1 A ·,斜運π式的校正參數,即獲得目 則輸出電壓值下的H流校正參數。 是以,當本發明檢知刭 _ . 】目刖一二人側電流值後,即可讀 —表中對應目前電壓值的雷泣护Τ办 Α 7 的電机校正參數,校正該檢知一 二人側電流值,令其接近如同精 j货在電表所實際量測到的電流 15 201241445 【圖式簡單說明】 圖1:係一隔離型交換式電源供應器的電路方塊圖。 圖2 :係本發明交流電壓訊號波形圖。 圖3 :係本發明交流電流訊號波形圖。 圖4A .係本發明電壓訊號轉換電路的詳細電路圖。 圖4 B :係本發明電流訊號轉換電路的詳細電路圖。 圖5A :係本發明直流弦波電壓訊號判斷單一週期時間 之波圖。 圖5B :係本發明直流弦波電壓訊號取樣電壓值之波形 圖。 圖6:係本發明電流校正對照表中各組校正參數建立程 序之流程圖。 圖7A :係本發明以分段式、無段式電流校正方式與實 際精密電表量測後計算的校驗增益值統計表。 圖7B :係本發明以分段式、無段式電流校正方式與實 際精密電表量測後計算的校驗偏移值統計表。 圖8 :係本發明功率檢測方法流程圖。 圖9 ··係既有隔離型交換式電源供應器一次側電路的電 流波形圖。 圖1 0 .係既有隔離型交換式電源供應器的電路圖。 11電磁隔離單元 【主要元件符號說明】 1 0 —次側電路 16 201241445 1 2全橋整流器 14光耦合器 1 51 —次側線圈 201差動電路 21電流訊號轉換電路 31二次側電路控制器 40功率量測IC 1 3 —次側微處理器 1 5變塵器 20電壓訊號轉換電路 202直流準位調整電路 30二次側電路 32 l2C輸出介面 41訊號轉換處理器 17Coffsetjnterprolation), respectively, is calculated from the actual current correction parameters (CSm - "ea Coffset - real" and the segmented selection of current correction parameters (CSm_Section, Coffset - Section) calculated by precision electric meter measurement, as shown in the figure The segmented fit internal difference method can realize the stepless correction, and is close to the actual calculation result by the precision electric meter. Therefore, the present invention does not only need the primary side microprocessor to match the simple voltage and current. The signal conversion circuit can calculate the current voltage value, current value and power value of the power supply; and by simply pre-storing the complex array voltage and its current correction parameters, the current calculation can be performed in a segmental or non-segment manner. Using the current correction parameter of the electric voltage, the current synchronous detection current sampling is corrected to report the current value and the power value measured by the actual precision electric meter, and it is not necessary to use the expensive power measurement 丨c and the signal conversion processing. The power supply has power detection. It can be seen from the above that the power supply primary side circuit of the present invention The power detection method includes a voltage sampling program, a current sampling program and a power calculation program. As shown in FIG. 8, the voltage sampling program includes the following steps: taking a page to take a commercial AC voltage signal S20; The DC level of the voltage signal makes the negative half cycle voltage signal positive voltage level S21; the digital conversion AC voltage signal is DC string signal S22; and the voltage sampling is performed at a certain time interval to obtain a voltage rms value S23 〇 Moreover, the current sampling program includes the following steps: capturing the mains AC current signal S3〇; analogizing the alternating current signal to the DC string signal S31; and sampling the current at a certain time interval to obtain a current rms value S33 ° The above power calculation program includes the following steps: reading the voltage and current sampling values of each grab and multiplying them by S4〇; and dividing by one cycle time, obtaining the power value S41. The above power calculation program synchronously grabs In the voltage and current sampling value step, to determine a complete cycle time, first preset a voltage value and a The flow value 'when the continuously captured voltage or current sample value is judged to be the result, lower than the result, higher than the result, and lower than the result 201241445 compared with the preset voltage value and current value, it is known that a cycle has been completed. J. Voltage and current sampling. In the above power calculation program, ψ, 4+^4, step-by-step grab voltage and current sampling value step, for grab current sampling value 7 矣 途 ★ ★ 士 士 士 — — 采用 采用 采用 采用The table correction method, that is, the complex array correction parameter is established in the table - includes: and each group of fork positive parameter acquisition manners adjusts the power supply output different voltage values; and outputs different voltage values such as pq + Λ During the value period, perform the following steps to obtain the current correction parameters for each turn-off voltage value; 鞠 adjust the load of the power supply _ ^ ^ φ κ, and the battle is red, so that the power supply outputs the DC power signal; Using the precision electric meter to measure the first true current rms value of the class of the quaternary, ώ i - φ ^ ^ j ratio DC sine wave current signal, and the synchronous medium ^ ^", the first detection current after sampling sampling The value, combined with the current correction / number constitutes the first point of the oblique operation; then adjust the load of the power supply Λ take the horse heavy load 'to make the power supply output the first DC power signal; where the flute ^, Β π τ the first - And the voltage of the second DC power signal is the same, but the current is different; the electric power is also measured by a precision electric meter _ μι_古+ 1 with the second real electric power, the rms value of the 4 j-class DC sine wave current signal, and the synchronization The sample m.., the second detection current after the sampling is taken, the value, and the current correction is used to count the furnace A # / number to form the second point oblique operation formula; and the first and second points are interpreted obliquely瞀4 A 1 A ·, the correction parameter of the slanting π type, that is, the H flow correction parameter under the target output voltage value. Therefore, when the present invention detects the 电流_. 】 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖 刖The current value of one or two people is close to the current measured by the actual quantity of the goods in the meter. 15 201241445 [Simplified diagram] Figure 1: Block diagram of an isolated switching power supply. Figure 2 is a waveform diagram of the alternating voltage signal of the present invention. Figure 3 is a waveform diagram of the alternating current signal of the present invention. Fig. 4A is a detailed circuit diagram of a voltage signal conversion circuit of the present invention. Figure 4B is a detailed circuit diagram of the current signal conversion circuit of the present invention. Fig. 5A is a waveform diagram for determining a single cycle time of the DC sine wave voltage signal of the present invention. Fig. 5B is a waveform diagram showing the sampled voltage value of the DC sine wave voltage signal of the present invention. Fig. 6 is a flow chart showing the procedure for establishing a set of correction parameters in the current correction comparison table of the present invention. Fig. 7A is a statistical table of the check gain value calculated by the segmented, stepless current correction mode and the actual precision electric meter. Fig. 7B is a statistical table of check offset values calculated by the segmented, stepless current correction method and the actual precision electric meter. Figure 8 is a flow chart of the power detection method of the present invention. Figure 9 is a current waveform diagram of the primary side circuit of an isolated switched power supply. Figure 10. A circuit diagram of an isolated switched-mode power supply. 11 electromagnetic isolation unit [main component symbol description] 1 0 - secondary side circuit 16 201241445 1 2 full bridge rectifier 14 optical coupler 1 51 - secondary side coil 201 differential circuit 21 current signal conversion circuit 31 secondary side circuit controller 40 Power measurement IC 1 3 - secondary side microprocessor 15 5 dust filter 20 voltage signal conversion circuit 202 DC level adjustment circuit 30 secondary side circuit 32 l2C output interface 41 signal conversion processor 17

Claims (1)

201241445 七、申請專利範圍: 1. 一種電源供應器一次側電路的功率檢測方法,係包 含有一電壓取樣程序、一電流取樣程序及一功率計算程 序,其中: 上述電壓取樣程序係包含有以下步驟: 擷取市電交流電壓訊號; 調升市電交流電壓訊號的直流準位,令負半週電壓訊 號為正電壓準位; 數位轉換交流電壓訊號為直流弦波訊號;及 以一定時間間隔進行電壓取樣,獲得一電壓均方根值; 上述電流取樣程序係包含有以下步驟: 擷取市電交流電流訊號; 類比轉換交流電流訊號為直流弦波訊號;及 以一定時間間隔進行電流取樣,獲得一電流均方根 值;及 上述功率汁具程序係包含有以下步驟: 讀取每次抓取的電屢及電流取樣值並予相乘;及 除以一個一個週期時間,獲得功率值。 2.如申β月專利範圍第,項所述之電源供應器一次側電 的力率k測方法,上述功率計算程序同步抓取電壓及電流 :樣值步驟中’欲判斷—個完整週期時間,先預設一電壓 <二電机值’當連續抓取的電壓或電流取樣值,相較預 值及電流值判斷出高於結果、低於結果、高於結果、 低於結果時,則得知 匕70成一個週期的電壓及電流取樣。 如申請專利範圍第項所述之電源供應器一次側 18 201241445 電路的功率檢測方法,上述功率計算程序之同步抓取電壓及 電流取樣值步驟中,抓取電流取樣值後再以查表法予以校 正之.此一查表法係建立一電流校正對照表,該電流校正對 照表係包含有複數組電壓及其電流校正參數,依據同步抓 取電壓值讀取該電流校正參數值,對電流取樣值予以校正。 4如申請專利範圍第3項所述之電源供應器一次側電 路的功率檢測方法,上述電流校正對照表的各組校正參數建 立方式係包含有:. 調整電源供應器輸出不同電壓值; 於輸出不同電壓值期間内,分別執行以下步驟以取得 各輸出電壓值的電流校正參數; 第一次調整交流電源電流; 以精密電表量測類比直流弦波電流訊號的第一真實電 流均方根值’以及同步獲得取樣後的第一檢測電流取樣 值,並配合電流校正參數構成第一點斜運算式; 第二次調整交流電源電流; 以精密電表量測類比直流弦波電流訊號的第二真實電 流均方根值,以及同步獲得取樣後的第二檢測電流取樣 值,並配合電流校正參數構成第二點斜運算式;及 解出該第一及第二點斜運算式的校正參數,即獲得目 前輪出電壓值下的一組電流校正參數。 5·如申清專利範圍帛4 ,所述之電源供應器一次側電 路的功率檢測方法,上述查表法於依據同步抓取電壓值讀取 該電机%c JL參數值步驟巾,若檢知目前電壓未匹配該電流校 對,、、、表中任一電壓,則讀取與目前電壓最為接近且為小的 19 201241445 電壓之電μ校正參數進行檢知電流的校正。 6.如申吻專利範圍第4項所述之電源供應器一次側電 路的功率檢測方法,上述查表法於依據同步抓取電麗值讀取 -亥電流k正參數值步驟中’若檢知目前電屋未匹配該電流校 正對照表中任一電麗’則讀取該電流校正對照表與目前電壓 最相近的一電壓及其電流校正參數,並以内差法推算出目前 電壓的電流校正參數。 7.如申請專利範圍第6項所述之電源供應器一次側電 路的功率檢測方法’上述電流校正參數係包含有校驗增益值 及校驗偏移值’而以内差法推算目前電壓對應的電流校正參 數係包含有: 7第電壓CCPm及第二電壓c〇pm1與目前電壓V 最接近; 、讀取第電壓及第二電壓的電流校正參數,包含校驗增 益值 CSm、CSm·!及校驗偏移值 c〇ffSetm、Coffsetw ; 進行内差運算,以計算出目前電壓的校驗增益值CSm_^ 及校驗偏移值C0ffsetm 1m: m -CCP„ ccpm -一,ccp,ccp— COffsel、=g〇ggWCCPw-Vrms) + COffseiJVrmr-CCP^) · CCP-CCP^ ' 再比對目前電壓vrms值與第一及第二電壓的大小關 係,選擇—組電流校正參數,對目前電流進校正,其包含有: 當目前電壓小於第一電壓,則以第一電壓的電流校正參 數對目前電流lrmsraw進行校正; 當目前電壓落於第一電壓及第二電壓之間,則以内差法 201241445 求得的電流校正參數對目前電流丨叫aw進行校正;及 當目前電壓大於第二電壓,則以第二電壓的電流校正參 數對目前電流lrmsraw進行校正; Irms = Irmsraw,CSm.i+C〇ffSetm_u <〇〇ρ 卜= +。〇伽—;〇:Pdccp。 {lrms = IrmsrawxCSm+C〇ffsetm ifVJ>cc;m m 8. -種電源供應器—次側電路的功率檢測電路,其包 含有: 八 -電壓訊號轉換電路’係連接至一次側電路的交流電源 輸入端’以擷取市電交流電壓訊號,並調升市電交流電壓訊 號的直流準位,令負半週電壓訊號為正電壓準位後輸出; 一電流訊號轉換電路’係以-電流檢知器連接至-次側 電路之全橋滤波器的輸出端,斜兮入换·邊、士 认 ^對該全橋濾波窃輸出的類比直 流弦波電流訊號振幅減小;& 一次側微處理器的輪人岵後八w e ^ 别入k係/刀別連接該電壓訊號轉換 電路及電流訊號轉換電路,由 由於電壓訊號及電流訊號的振 幅均已縮減,故可直接給^ 安碗入至該一次側微處理器;其中該 一次側微處理器將類比電壓旬 电您Λ唬數位轉換直流弦波訊號, 再以固定時間重覆對每個调细向认—+ J甘似週期内的該電壓及電流的直流弦 波訊號進行取樣,並將每今把你认恭e 竹母-人抓取的電壓及電流取樣值予相 乘後’再除以週期時間以獲得功率值。 9·如申請專利範圍第8項所述之功率檢測電路,該電 壓訊说轉換電路係包含有: 一直流準位產生電路;及 差動電路’其正向及反向輸入端分別連接至電源供 應器交流電源輪人端L、N ’其中該正向輸人端進—步連接 21 201241445 至該直流準位產生電路,以比例縮小市電交流電壓訊號, 並提高該交流電壓訊號,令交流電壓訊號振幅不低於0。 1 0 ·如申凊專利範圍第8或9項所述之功率檢測電路, 該電流訊號轉換電路係包含有一差動電路,係包含有正向輸 入端及反向輸入端’該正向及反向輸入端係分別連接於該電 流檢知器的二端。 11 ·如申睛專利範圍第1 〇項所述之功率檢測電路,該 一次侧微處理器計算判斷電壓訊號及電流訊號的單一週期 時間,係預設一電壓值及一電流值,當連續抓取的電壓或電 流取樣值,相較預設電壓值及電流值判斷出高於結果、低 於結果、高於結果、低於結果時,則得知已完成一個週期 的電壓及電流取樣。 1 2 如申晴專利範圍第1 〇項所述之功率檢測電路,〗 一次側微處理器係内建—電流校正對照表,該電流校正對I 表係包含有複數組電壓及其電流校正參數,於同步抓取電) 及電ΛΜ·後以查表法進一步依據目前檢知電壓讀取電流^ 正參數之電流校正參數值,對電流取樣值予以校正。 1 3.如申切專利範圍第]2項所述之功率檢測電路,^ 一次側微處理器以查表法於依據同步抓取電壓值讀取該1 流校正參數值步驟中,若檢知目前電壓未匹配該電流校正3 照表中任-電壓,則讀取與目前電壓最為接近且為小的電》 之電流校正參數進行檢刼電流的校正。 14.如中請專利範圍第12項所述之功率檢測電路,古 一次側微處理器以查表法於依據同步抓取電壓值讀取心 流校正參數值步驟中,若檢知目前電壓未匹配該電流校正, 22 .201241445 照表中任—電壓,則讀取該電流校正對照表與目前電壓最相 近的二電壓及其電流校正參數,並以内差法推算出目前電壓 的電流校正參數。 15·如申請專利範圍第14項所述之功率檢測電路,上 述電流校正參數係包含有校驗增益值及校驗偏移值,而以内 差法推算目前電壓對應的電流校正參數係包含有: 7第一電壓CCPm及第二電壓cCPm」與目前電壓Vrms 最接近; 、讀取第一電壓及第二電壓的電流校正參數,包含校驗增 益值 CSm、CSm-·!及校驗偏移值 C〇ffsetm、c〇ffsetm i ; 進行内差運舁,以計算出目前電壓的校驗增益值CSmi π 及校驗偏移值COffsetm.1m : CCPm ~CCP^ .一,CCP户 CCP„—' ) + COffsetm(yrmr-CCP_.). CCPm-CCP’ cs-m ~ ccpm CQffset /再比對目削電壓vrms值與第一及第二電壓的大小關 係’選擇一組電流校正參數,重子目冑電流進校正,纟包含有: 當目前電壓小於第—電壓m —電壓的電流校正參 數對目前電流|rmSraw進行校正; 當目前電壓落於第-電壓及第二電壓之間,則以内差法 求得的電流校正參數對目前電流lnmsraw進行校正;及 當目前電壓大於第二電壓,則以第二電壓的電流校正參 數對目前電流丨「msraw進行校正; / Irms = Irmsrttw x CSm_Xm + C〇ffs^t Irms = Irmsraw x CSm + COffset Irms = Irmsmw x CS,^ + COffi^ 砍 < CCP 一 if〇CPm.l<Vrna^CCPm ifV—>CCP„ 23201241445 VII. Patent application scope: 1. A power supply detection method for a power supply primary side circuit includes a voltage sampling program, a current sampling program and a power calculation program, wherein: the voltage sampling program includes the following steps: Take the mains AC voltage signal; increase the DC level of the mains AC voltage signal, so that the negative half cycle voltage signal is positive voltage level; the digital conversion AC voltage signal is DC string signal; and the voltage sampling is performed at regular intervals. Obtaining a voltage rms value; the current sampling program includes the following steps: extracting a commercial AC current signal; analogizing the alternating current signal to a DC sine wave signal; and sampling the current at a certain time interval to obtain a current mean square The root value; and the above power juice program includes the following steps: reading each of the captured electrical and current sampling values and multiplying them; and dividing by one cycle time to obtain the power value. 2. For the power rate k-measurement method of the primary side of the power supply as described in the patent scope of the invention, the power calculation program synchronously captures the voltage and current: in the sample step, "to judge" a complete cycle time First, preset a voltage <two motor value' when continuously drawing the voltage or current sample value, compared with the pre-value and current value to judge higher than the result, lower than the result, higher than the result, lower than the result, Then we know that 匕70 is a cycle of voltage and current sampling. For example, in the power detection method of the primary side 18 201241445 circuit of the power supply device described in the scope of the patent application, in the step of synchronously grasping the voltage and current sampling value of the above power calculation program, the current sampling value is captured and then the table lookup method is used. Correction. This look-up table method establishes a current correction comparison table, which includes a complex array voltage and its current correction parameter, reads the current correction parameter value according to the synchronous capture voltage value, and samples the current. The value is corrected. 4 The power detection method of the primary side circuit of the power supply device as described in claim 3, wherein the calibration parameter setting manner of the current correction comparison table includes: adjusting the power supply output different voltage values; During the different voltage value periods, the following steps are respectively performed to obtain the current correction parameters of the respective output voltage values; the first adjustment of the AC power supply current; and the measurement of the first real current rms value of the analog DC sine wave current signal by the precision meter' And synchronously obtaining the first detection current sampling value after sampling, and matching the current correction parameter to form a first point oblique operation formula; adjusting the AC power supply current for the second time; measuring the second real current of the analog DC sine wave current signal by using a precision electric meter a root mean square value, and a second detected current sample value after the synchronization is obtained, and a second point oblique operation formula is matched with the current correction parameter; and the correction parameters of the first and second point oblique expressions are solved, that is, obtained A set of current correction parameters at the current voltage value. 5. According to Shen Qing Patent Range 帛 4, the power detection method of the primary side circuit of the power supply device, the above table lookup method reads the motor %c JL parameter value according to the synchronous grabbing voltage value, if the check It is known that the current voltage does not match the current calibration, and any voltage in the table is read. The current correction is performed by reading the electrical μ correction parameter of the current value of 19 201241445 which is the closest to the current voltage. 6. The power detection method of the primary side circuit of the power supply device as described in claim 4 of the patent application scope, wherein the above-mentioned table lookup method is based on the synchronous capture of the electric value reading step - the current value of the current value of the current value It is known that the current electric house does not match any one of the current correction comparison tables, and then reads a current voltage and its current correction parameter which is closest to the current voltage in the current correction comparison table, and calculates the current correction of the current voltage by the internal difference method. parameter. 7. The power detection method for the primary side circuit of the power supply device according to claim 6, wherein the current correction parameter includes a check gain value and a check offset value, and the current voltage is used to estimate the current voltage. The current correction parameter includes: 7 the first voltage cpmm and the second voltage c〇pm1 are closest to the current voltage V; and the current correction parameters for reading the second voltage and the second voltage, including the verification gain values CSm, CSm·! Check the offset values c〇ffSetm, Coffsetw; perform the internal difference operation to calculate the current gain check value CSm_^ and the check offset value C0ffsetm 1m: m -CCP„ ccpm - one, ccp, ccp - COffsel , =g〇ggWCCPw-Vrms) + COffseiJVrmr-CCP^) · CCP-CCP^ ' Compare the current voltage vrms value with the magnitude of the first and second voltages, select the group current correction parameter, and correct the current current The method includes: when the current voltage is less than the first voltage, correcting the current current lrmsraw with the current correction parameter of the first voltage; when the current voltage falls between the first voltage and the second voltage, the internal difference method is 2012414 45 The current correction parameter is corrected for the current current yaw aw; and when the current voltage is greater than the second voltage, the current current lrmsraw is corrected by the current correction parameter of the second voltage; Irms = Irmsraw, CSm.i+C 〇ffSetm_u <〇〇ρ Bu = +. Sangha-; 〇: Pdccp. {lrms = IrmsrawxCSm+C〇ffsetm ifVJ>cc; mm 8. - Power supply - power detection circuit for the secondary circuit, including There are: Eight-voltage signal conversion circuit 'connected to the AC power input terminal of the primary side circuit' to capture the commercial AC voltage signal, and raise the DC level of the commercial AC voltage signal, so that the negative half cycle voltage signal is positive voltage After the level is output, a current signal conversion circuit is connected to the output end of the full-bridge filter of the secondary circuit by the current detector, and the output is switched to the edge of the full bridge. The analog dc sine wave current signal amplitude is reduced; & the primary side microprocessor wheel 岵 八 eight we ^ do not enter the k system / knife connected to the voltage signal conversion circuit and current signal conversion circuit, due to electricity The amplitudes of the voltage signal and the current signal have been reduced, so the bowl can be directly input to the primary side microprocessor; wherein the primary side microprocessor converts the analog voltage to the DC string signal, and then Sampling the DC chord signal of the voltage and current in each of the fine-tuning-+J-like cycles at a fixed time, and will now recognize the voltage of the bamboo-person-carrying The current sample value is multiplied and then divided by the cycle time to obtain the power value. 9. The power detection circuit of claim 8, wherein the voltage signal conversion circuit comprises: a DC level generating circuit; and the differential circuit 'the forward and reverse input terminals are respectively connected to the power source The supplier AC power supply wheel terminal L, N 'where the forward input terminal is connected to the step 21 201241445 to the DC level generating circuit to proportionally reduce the commercial AC voltage signal, and increase the AC voltage signal to make the AC voltage The signal amplitude is not less than zero. 1 0. The power detection circuit according to claim 8 or 9, wherein the current signal conversion circuit comprises a differential circuit including a forward input terminal and a reverse input terminal. The input ends are respectively connected to the two ends of the current detector. 11 · The power detection circuit according to item 1 of the scope of the patent application, the primary side microprocessor calculates a single cycle time for determining the voltage signal and the current signal, and presets a voltage value and a current value, when continuously grasping The sampled voltage or current sample value is compared with the preset voltage value and the current value to determine that the voltage and current samples have been completed for one cycle when the result is higher than the result, lower than the result, higher than the result, and lower than the result. 1 2 If the power detection circuit described in item 1 of the Shenqing patent scope, the primary side microprocessor is built-in current correction comparison table, the current correction for the I table includes the complex array voltage and its current correction parameters. The current sampling value is corrected according to the current reading parameter value of the current reading voltage positive parameter according to the current detection voltage method. 1 3. If the power detection circuit described in item 2 of the patent scope is applied, ^ the primary side microprocessor reads the 1 stream correction parameter value according to the synchronous capture voltage value by the look-up table method, if it is detected At present, the voltage is not matched to the current correction, and the current correction parameter of the current voltage is the closest and smaller. 14. The power detection circuit according to item 12 of the patent scope, the ancient primary side microprocessor uses the look-up table method to read the current flow correction parameter value according to the synchronous grabbing voltage value, if the current voltage is not detected Matching the current correction, 22 .201241445 According to any voltage in the table, the current correction reference table reads the two voltages closest to the current voltage and its current correction parameters, and calculates the current correction parameters of the current voltage by the internal difference method. 15. The power detection circuit according to claim 14, wherein the current correction parameter includes a verification gain value and a verification offset value, and the current correction parameter corresponding to the current voltage by the internal difference method includes: 7 The first voltage CCPm and the second voltage cCPm" are closest to the current voltage Vrms; and the current correction parameters of the first voltage and the second voltage are read, including the check gain values CSm, CSm-·!, and the check offset value C〇ffsetm, c〇ffsetm i ; perform internal differential operation to calculate the current voltage calibration gain value CSmi π and check offset value COffsetm.1m: CCPm ~ CCP^. First, CCP household CCP„-' + COffsetm(yrmr-CCP_.). CCPm-CCP' cs-m ~ ccpm CQffset / Revising the relationship between the vrms value of the meshing voltage and the magnitude of the first and second voltages' Select a set of current correction parameters, Current correction, 纟 includes: when the current voltage is less than the first voltage m - the current correction parameter corrects the current current | rmSraw; when the current voltage falls between the first voltage and the second voltage, the internal difference method is used The current correction parameter is current The stream lnmsraw is corrected; and when the current voltage is greater than the second voltage, the current correction parameter of the second voltage is corrected for the current current ms "msraw; / Irms = Irmsrttw x CSm_Xm + C〇ffs^t Irms = Irmsraw x CSm + COffset Irms = Irmsmw x CS,^ + COffi^ Cut < CCP an if〇CPm.l<Vrna^CCPm ifV->CCP„ 23
TW100112173A 2011-04-08 2011-04-08 Power detection method of power supply primary circuit and power detection circuit TWI460437B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100112173A TWI460437B (en) 2011-04-08 2011-04-08 Power detection method of power supply primary circuit and power detection circuit
CN201110148990.XA CN102809684B (en) 2011-04-08 2011-06-03 Power detection method and circuit for primary side circuit of power supply unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100112173A TWI460437B (en) 2011-04-08 2011-04-08 Power detection method of power supply primary circuit and power detection circuit
CN201110148990.XA CN102809684B (en) 2011-04-08 2011-06-03 Power detection method and circuit for primary side circuit of power supply unit

Publications (2)

Publication Number Publication Date
TW201241445A true TW201241445A (en) 2012-10-16
TWI460437B TWI460437B (en) 2014-11-11

Family

ID=50114237

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112173A TWI460437B (en) 2011-04-08 2011-04-08 Power detection method of power supply primary circuit and power detection circuit

Country Status (2)

Country Link
CN (1) CN102809684B (en)
TW (1) TWI460437B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267254A (en) * 2014-08-13 2015-01-07 如皋市图腾电力科技有限公司 Sine circuit reactive power detection method
CN105319437A (en) * 2014-08-05 2016-02-10 国家电网公司 Direct-current power sampling system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181380B (en) * 2013-05-23 2017-03-01 远翔科技股份有限公司 Underloading current detecting system
CN104659922B (en) * 2013-11-18 2017-01-18 立锜科技股份有限公司 Electric power computing method
CN103698562B (en) * 2013-12-26 2016-03-16 艾德克斯电子(南京)有限公司 A kind of electronic load device and emulation mode thereof
CN107271831B (en) * 2017-05-31 2020-06-19 国家电网公司 Transformer substation secondary cable alignment device and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2929729Y (en) * 2006-07-14 2007-08-01 鸿富锦精密工业(深圳)有限公司 Output power measuring device for power supply device
TWM304837U (en) * 2006-07-21 2007-01-11 Hon Hai Prec Ind Co Ltd Apparatus for measuring an output power of a power supply
US7375995B1 (en) * 2007-02-01 2008-05-20 Spi Electronic Co., Ltd. Power factor correction circuit
US20090306914A1 (en) * 2008-06-04 2009-12-10 Texas Instruments Incorporated System and method for measuring input power of power supplies
TW201011515A (en) * 2008-09-12 2010-03-16 Acbel Polytech Inc Power supply having function of monitoring power of input power-source
CN101930026B (en) * 2009-06-22 2012-10-17 冠捷投资有限公司 Electronic device with power loss detection function
TWM385003U (en) * 2009-11-16 2010-07-21 Etasis Electronics Corporati Electrical power detector and its management device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319437A (en) * 2014-08-05 2016-02-10 国家电网公司 Direct-current power sampling system
CN104267254A (en) * 2014-08-13 2015-01-07 如皋市图腾电力科技有限公司 Sine circuit reactive power detection method
CN104267254B (en) * 2014-08-13 2017-03-01 如皋市图腾电力科技有限公司 A kind of sinusoidal current reactive power detection method

Also Published As

Publication number Publication date
TWI460437B (en) 2014-11-11
CN102809684A (en) 2012-12-05
CN102809684B (en) 2015-02-18

Similar Documents

Publication Publication Date Title
CN111707863B (en) Method and apparatus for learning phase errors of current transformers and power measurement devices including current transformer error correction
TW201241445A (en) Power detection method for primary-side circuit of power supply and the power detection circuit
CN105738689B (en) System and method for measuring the power in power factor converter
CN103217572A (en) Device and method for detecting voltage and zero crossing point of alternating current
CN107402324B (en) Power supply sampling circuit and method based on single current transformer and low-voltage circuit breaker thereof
CN101622777A (en) Load current detection in electrical power converters
US10181787B2 (en) Power factor correction device, and current sensing method and apparatus thereof
CN102565523A (en) Current harmonic detection system and working method
Irmak et al. Design and application of a novel zero-crossing detector circuit
JP5940389B2 (en) AC resistance measuring device and AC resistance measuring method
WO2005040837A1 (en) Magnetic bridge electric power sensor
CN101493479B (en) Electric current generating circuit, method and electric energy meter check meter
CN103134969B (en) A kind of power factor corrector and phase voltage method of estimation
TW202411681A (en) Radio frequency power supply signal collection circuit and semiconductor process equipment
CN208283540U (en) A kind of electric energy meter direct current and even-order harmonic pilot system
KR20150027365A (en) Referential signal generating circuit and method, and power factor compensation apparatus including the same
CN103913628B (en) The method and apparatus for measuring ac voltage signal under light load conditions
CN103105525A (en) Precision compensation method of current clamp, detection method and detection system using current clamp
CN103954828A (en) Voltage detection circuit and device based on single-phase PFC
JP2011072163A (en) Ground fault direction finding apparatus
EP3118636A1 (en) Electric power measuring system
CN110261668A (en) Current detection circuit and detection method
JP2012122781A (en) Resistance measurement device
CN114778935A (en) Over-current detection circuit and method suitable for alternating current
CN107589394B (en) Direct current and even harmonic test system and method for electric energy meter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees