TW201240721A - Energy-efficient N-methylmorpholine-N-oxide solvent recycling method - Google Patents

Energy-efficient N-methylmorpholine-N-oxide solvent recycling method Download PDF

Info

Publication number
TW201240721A
TW201240721A TW100111579A TW100111579A TW201240721A TW 201240721 A TW201240721 A TW 201240721A TW 100111579 A TW100111579 A TW 100111579A TW 100111579 A TW100111579 A TW 100111579A TW 201240721 A TW201240721 A TW 201240721A
Authority
TW
Taiwan
Prior art keywords
evaporation
aqueous solution
tank
steam
nmmo
Prior art date
Application number
TW100111579A
Other languages
Chinese (zh)
Other versions
TWI400371B (en
Inventor
wen-dong Zhou
Ming-Yi Lai
Kun-Shan Huang
xiao-qi Cai
zhi-zhong Guo
Original Assignee
Acelon Chem & Fiber Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acelon Chem & Fiber Corp filed Critical Acelon Chem & Fiber Corp
Priority to TW100111579A priority Critical patent/TW201240721A/en
Publication of TW201240721A publication Critical patent/TW201240721A/en
Application granted granted Critical
Publication of TWI400371B publication Critical patent/TWI400371B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

The invention relates to an energy-efficient N-methylmorpholine-N-oxide (NMMO) solvent recycling method for concentrating an NMMO water solution of greater than 50wt%. The energy-efficient NMMO solvent recycling method comprises the steps of: (i) collecting a water solution containing the NMMO; (ii) concentrating the water solution by a pressure-reducing multiple-effect evaporator system, which comprises a first evaporation tank, a second evaporation tank and a third evaporation tank; and (iii) pressurizedly recycling a water steam evaporated from the water solution of the third evaporation tank and inputting the water steam to the first evaporation tank as a supplement steam source to heat the water solution. Accordingly, by controlling a water solution exit concentrations of the first and second evaporation tanks, an efficacy of promoting recycling efficiency of the NMMO solvent can be achieved.

Description

201240721 、發明說明: 【發明所屬之技術領域】 本發明是有關於一種溶劑回收方法,特別是指—種高 效節能NMMO溶劑回收方法。 。 【先前技術】 一般製備一纖維素系(Ly〇cell)纖維時,其生產方式是 一纖維素漿直接溶解於•氧化 編Mmor—ine_N_〇xide;NMM〇)和水的混合溶劑中以 ’成m液,接著該紡絲原液透過_乾噴濕式纺絲方 式製成該纖維素系纖維。在進行該乾噴濕式纺絲方式製程 ^由、纺孔擠屋於-水槽中進行—凝固浴 處理’猎由該凝固洛處理能使ΝΜΜ〇由該纺絲原液内置換 ^水中,而使該紡絲原液中的纖維素漿析出並形成該纖維 士糸纖維n當該纖維素ι纖維捲繞收集前亦必須藉 由-水洗處理將該纖維素系纖維中殘存的νμμ〇 : =,因此《固㈣理與該水洗處料產生的紡絲廢液 為一具有ΝΜΜΟ的水溶液。 ΝΜΜ0為1㈣於進行該纖維素系纖維 使用的有機溶劑,I主以。 …、t ’且其饧才°昂貴,一般將該紡絲廢 夜經回收、處理成可i 製程中。 又使用於該纖該維素系纖維的紡絲 參考圖1,一 -6^ ΛΑ — 11、一串接於兮第又、二效蒸發器系統包含-第-效蒸發罐 一1: 效蒸發罐11的第二效蒸發罐12、-串 接於該第一效蒸發罐1 _ + 2的第二效瘵發罐13,及一串接於該 201240721 第三效蒸發罐13的冷凝器14。在多效蒸發過程中,該 NMMO水溶液依序經由該第一效蒸發罐u、第二效蒸發罐 12,及第三效蒸發罐13蒸發而濃縮。該第一效蒸發罐η内 的ΝΜΜΟ水溶液經由蒸發所產生的水蒸氣輸入並加熱該第 二效蒸發罐12内的ΝΜΜ0水溶液,該第二效蒸發罐12内 經由蒸發所產生的水蒸氣輸入並加熱該第三效蒸發罐13, 該第三效蒸發罐13内經由蒸發所產生的水蒸氣由該冷凝器 14冷卻為廢水。 λ叙的二效蒸發器系統方式進行ΝΜΜΟ濃縮處理時 ’由於該第-效蒸發罐u的溫度需控制在11(rc^丨坑之 間、,故需要將該料廢液溫度提升至該第—效蒸發罐u所 此進订處理的溫度,導致耗費許多能源在提升該讀水 溶液溫度與維持該第-效蒸發罐11的溫度上,而使_ 水溶液的回收效率不佳。此外,該第三效蒸發罐!3所產生 的水蒸氣仍需藉由冷卻水進行冷卻,對於最終的廢孰並益 回收再利用的機制。 ....... 【發明内容】 因此,本發明的目的 即在提供一 高效節能NMMO溶劑回收方法。 種提升回收效率的201240721, invention description: [Technical field to which the invention pertains] The present invention relates to a solvent recovery method, and more particularly to an efficient energy-saving NMMO solvent recovery method. . [Prior Art] When a cellulose-based (Ly〇cell) fiber is generally prepared, it is produced by directly dissolving a cellulose pulp in a mixed solvent of oxidized Mmor-ine_N_〇xide; NMM(R) and water to ' The m-liquid was formed, and then the spinning dope was passed through a dry-jet wet spinning method to produce the cellulose-based fiber. In the process of performing the dry-jet wet spinning method, the spinning hole is squeezed in the water tank, the coagulation bath is processed, and the solidification treatment can be used to replace the water in the spinning dope. The cellulose pulp in the spinning dope is precipitated and the fiber gypsum fiber is formed. When the cellulose ι fiber is wound up and collected, the νμμ〇:= remaining in the cellulosic fiber must be treated by washing with water. The solid waste liquid produced by the solid material and the water washing material is an aqueous solution having a hydrazine. ΝΜΜ0 is 1 (d) for the organic solvent used in the cellulose-based fiber. ..., t ′ and its 饧 is expensive, generally the spinning waste is recovered and processed into a process. Further, the spinning of the fiber of the fiber is referred to Fig. 1, a -6^ ΛΑ 11 , a series connected to the second and second effect evaporator system including - the first effect evaporation can - 1 evaporation a second effect evaporation tank 12 of the tank 11, a second effect hair tank 13 connected in series to the first effect evaporation tank 1 _ + 2, and a condenser 14 connected in series to the 201240721 third effect evaporation tank 13 . In the multi-effect evaporation process, the NMMO aqueous solution is sequentially concentrated by evaporation through the first effect evaporation tank u, the second effect evaporation tank 12, and the third effect evaporation tank 13. The hydrazine aqueous solution in the first effect evaporation can η is input and heated by the water vapor generated by the evaporation, and the ΝΜΜ0 aqueous solution in the second effect evaporation can 12 is input, and the second effect evaporation can 12 is input via the water vapor generated by the evaporation and The third effect evaporation tank 13 is heated, and the water vapor generated by the evaporation in the third effect evaporation tank 13 is cooled by the condenser 14 into waste water. When the temperature of the first-effect evaporation tank u needs to be controlled between 11 (rc^ 丨 pit), the temperature of the waste liquid is raised to the first The temperature of the finishing process of the evaporation canister u causes a lot of energy to increase the temperature of the read aqueous solution and maintain the temperature of the first effect evaporation can 11, so that the recovery efficiency of the aqueous solution is not good. The three-effect evaporation tank! The water vapor generated by 3 still needs to be cooled by the cooling water, and the mechanism for recycling and recycling is finally used. [Invention] Therefore, the object of the present invention That is to provide an energy-efficient NMMO solvent recovery method.

水溶液達50wt%以 該高效節能NMMO 於是,本發明-種用於濃缩NMM〇 上的高效節能NMMO溶劑回收方法, 溶劑回收方法包含下列步驟: 該水溶 液濃基嗎™的水溶液 4 201240721 ⑴)使用一降壓多效摹 多吋筮鉢抑么 、、發益糸統綸縮該水溶液,該降壓 户> L、器系統包括_第一— 第二一洛發罐、一第二蒸發罐,及一 弟一洛發罐’該第一蒸發 .«. 0Λ 罐的水溶液出口濃度大於1 〇wt% 小於20wt0/〇 ’該第二蒗於 ,认, 罐的水溶液出口濃度大於22wt% 小於38wt% ;及 。()將m洛發罐的水溶液所蒸發出的水蒸氣加壓 回收’並輸入該第一蒸發罐做為加熱該水溶液的補充蒸汽 源0 、本發月的功政在於·藉由該第一蒸發罐及該第二蒸發 罐的K /奋液出口 /辰度控制,及或藉由將該第三蒸發罐所產 生的=蒸氣加壓回收’能使該降壓多效蒸發器系統在相同 的主蒸汽源用量下可獲得較高的NMM0回收量,而產生提 升回收效率的效果。 【實施方式】 有關本發明的前述及其他技術内容、特點與功效,在 以下配合參考圖式的一個較佳實施例的詳細說明中,將可 清楚的呈現。 參閱圖2 ’本發明一種用於濃縮NMMO水溶液達 50wt°/〇以上的高效節能NMMO溶劑回收方法,該高效節能 NMMO溶劑回收方法的一較佳實施例包含下列步驟: 步驟201是收集一包括N-甲基嗎啉-N-氧化物的水溶液 ,該水溶液濃度為小於1 〇wt%。 步驟202是使用一降壓多效蒸發器系統濃縮該水溶液 ,該降壓多效蒸發器系統包括一第一蒸發罐、一第二蒸發 201240721 罐’及一第三蒸發罐,在多效蒸發過程中,是將-主蒸汽 源輸入該第-蒸發罐以蒸發該第—蒸發罐内的nmm〇水溶 液,再將該第-蒸發罐的水溶液所蒸發出的水蒸氣做為加 ,亥第二蒸發罐的蒸汽源,之後,再將該第二蒸發罐的水 浴液所蒸發出的水蒸氣做為加熱該第三蒸發罐的蒸汽源, 該第-蒸發罐的水溶液出口濃度大於1〇wt%小於編%, 該第二蒸發罐的水溶液出口濃度大於22wt%小於38_, 藉由控制該第一蒸發罐及該第二蒸發罐的水溶液出口濃产 =使該降❹效蒸發器线在相同的魅蒸汽源用量; 獲知較咼的NMMO回收量。 —步驟2G3是將從該第三蒸發罐的水溶液所蒸發出的水 洛氣加壓回收’並輸人該第—蒸發罐做為加_水溶液的 :織源’ϋ由將該第三蒸發罐所產生的水蒸氣加壓, 使該水蒸氣能達到與該主蒸汽源相同的溫度。 選擇性地,本較佳實施例還包含步驟2〇4是將 蒸發罐、第二蒸發罐,及第三蒸發罐的水溶液所^出的 水蒸氣做為預熱該水溶液的蒸汽源,藉由預熱的處理” 水溶液在進人該第-蒸發罐前即可提高到所須的" 步說明本較佳實施例, 以下分別透過下列具體例進一 及其產±的回收效率。 <ΝΜΜΟ回收效率> ΝΜΜΟ回收效率的計算方法如下列公式所八 曰# μ乎=回收後濃度回收後溶巧》 ^ 不 回收前濃度% X回收前導入量χ 100% 6 201240721 <具體例ι> 參閱圖3,收集經過濾與活性碳處理後的Ly〇cell紡絲 的一水溶液,其中該水溶液含有3 92wt%的NMM〇。將該 水溶液由一管路2進入該第一蒸發罐41,該管路2分別經 過一第二洛汽槽63、一第二蒸汽槽53、一第一蒸汽槽43, 及一熱交換器3,利用該第一蒸發罐41、第二蒸發罐51, 及第三蒸發罐61的水溶液所蒸發出的水蒸氣做為預熱該水 溶液的蒸汽源,而使該水溶液溫度到達所須的進料溫度後 ’再引導入該第一蒸發罐41中。 將蒸汽鍋爐產生的蒸汽做為主蒸汽源通入該第一蒸發 罐41對該水溶液進行蒸發,並以一真空幫浦42將該第一 蒸汽槽43的真空度控制在6〇〇mmHg,且以一濃度計量 測該第-蒸汽槽43内該水溶液的濃度。當該水溶液濃縮至 12wt%時,經一管路4S由一抽水幫浦牝將該水溶液引導入 該第二蒸發罐51巾進行二度脫水處理。該水溶液蒸發所產 生的水蒸氣經該第一蒸汽槽43分離後,經由—管路47輸 入並加熱該第二蒸發罐51,該第一蒸發罐41的操作溫度維 持在 70.0〜73.0°C。 以-真空幫浦52將該第二蒸汽槽53的真空度控制在 630mmHg,且以-漢度計54量測該第二蒸汽槽μ内該水 溶液的濃度。當該水溶液濃縮至28wt%時,經一管路W由 一抽水幫浦56將該水溶液引導入該第三蒸發罐μ中進行 三度脫水處理。該水溶液蒸發所產生的水蒸氣經該第二蒸 汽槽53分離後經由—管路57輸入並加熱該第三蒸發罐“ 201240721 ’該第二蒸發罐51的操作溫度維持在61.o〜62·π。 、真工幫4 62將該第三蒸汽槽63 #真空度控制在 65〇_Hg ’且以—濃度計64量測該第三蒸汽槽63内該水 溶液的濃度。當該水溶液濃縮至50.05wt%時,即經一管路 65由#水幫浦66將該水溶液抽至儲存槽備用,該第三基 發罐㈣操作溫度特在Μ〜。财溶液蒸發所產 生=氣、··!該第二蒸汽槽63分離後經由—管路π輸至 1液刀離槽71及—蒸汽機械壓縮機72,該蒸汽機械壓縮 機72將該水溶液蒸發所產生的水蒸氣的溫度提升至鱼該第 —蒸發罐㈣溫度相同後,經—管路73作為補充該第一蒸 ^罐41的蒸汽源’並流人該熱交換器3中,用以預熱進入 該第一蒸發罐41的該水溶液。 本具體例的操作參數彙整列於表_卜另紀錄該具體例i 中:收後的溶液量為925.5嘲(亦即自該第三蒸發罐61輸出 :量),回收前的導入量(亦即進入該第一蒸發罐41的進料 虿)為1 1835噸,再依上述的回收效率計算,結果列於表_2 中。 <具體例2-9> 具體例2_9是以與具體例1相同的步驟進行,不同處在 於:具體例2-9分別以表-2所示設定該第一蒸發罐41的水 /谷液出口漠度為大於1 〇wt%小於20wt%,且該.第二蒸發罐 51的水溶液出口濃度為大於22wt%小於38wt%,並將操作 參數彙整列於表-1。另,紀錄具體例2-9中回收後的溶液量 與回收前的導入量,以計算回收效率,結果同樣列於表·2 201240721 中。 <比較例1_9> 、比較例丨-9是以與具體例丨相同的步驟進行,不同處在 於,比&例1·9分別以表_2所示設定該第—蒸發罐及或 該第二蒸發罐的水溶液出口濃度分別不在大於1Gwt%小於 心%與大於22wt%小於3_%的範_,並將操作參數囊 J於表1。另,紀錄比較例丨·9中回收後的溶液量與回收 前的導入量,以計算回收效率,結果同樣列於表_2中。 結果: 參閲表-2與圖4可知,相較於比較例丨_9,本較佳實施 例的具體例1-9的回收效率在該第一蒸發罐41的水溶液出 口濃度大於l〇wt%小於20wt%,該第二蒸發罐51的水溶液 出口濃度大於22wt°/〇小於38wt%時有較佳的表現。 表-1 笫一蒸發罐 出口濃 真空度 操作溫 出口濃 度(wt%> (mmHg) 度(。〇 度(wt〇/〇> 具體 例1 12 600 70.0- 73.0 28 具體 例2 16.3 600 71.3- 72.2 28.3 具體 例3 12.8 600 71.9- 73.0 25.2 具體 例4 15.1 600 72.1- 73.3 30.3 具趙 例5 15.9 600 70.0- 72.1 35.1 具體 例6 13.3 600 71.0- 73.5 28.2 具體 例7 15.1 600 72.5- 74.1 31.6 具逋 例8 17.4 600 72.9- 74.9 33.4 具體 14.8 600 71.0- 30.9 真空度 (mmHg) 630 630 630 630 630 630 操作溫 Alii 61.0- ^_2.5 61 一6 3.殳ϋ.Π _62.3 62.3-. 63. 6^9: 62.1 6〇T-61. ~5: 62.4βΤΧ 63. 1三蒸發罐 出口濃 度(~wt0/0、 50.05 50.25 50.95 50.58 50.36 50.06 50.80 真空度 (mmHg) 650 650 650 650 650 650 650 操作溫 度(°C ) Tl.8- 52.2JT.i- 52.8 5~2.9- 53.1 52.9- 54.1 il.3- 52.2 52.7- 53.8 53.1- 52.9 53.7-54.5 53.1-The aqueous solution reaches 50% by weight to the energy-efficient NMMO. Thus, the present invention is a highly efficient and energy-saving NMMO solvent recovery method for concentrating NMM, and the solvent recovery method comprises the following steps: The aqueous solution of the aqueous solution is used in an aqueous solution 4 201240721 (1)) A pressure-reducing multi-effect 摹 吋筮钵 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 , and a younger one Luofa tank 'the first evaporation. «. 0Λ tank of the aqueous solution outlet concentration is greater than 1 〇 wt% less than 20wt0 / 〇 ' the second 蒗, recognized, the tank's aqueous solution outlet concentration is greater than 22wt% less than 38wt % ; and. () pressurizing and recovering the water vapor evaporated from the aqueous solution of the m-roof tank and inputting the first evaporating tank as a supplementary steam source for heating the aqueous solution 0, the merit of the present month is by the first The K/Exhaust outlet/length control of the evaporation canister and the second evaporation canister, and or by pressurizing the vaporization generated by the third evaporation canister to enable the pressure reduction multi-effect evaporator system to be the same The higher the recovery amount of NMM0 can be obtained by the main steam source dosage, and the effect of improving the recovery efficiency is produced. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. Referring to Fig. 2, a high-efficiency energy-saving NMMO solvent recovery method for concentrating NMMO aqueous solution up to 50wt/min, the preferred embodiment of the energy-efficient NMMO solvent recovery method comprises the following steps: Step 201 is to collect a N-containing An aqueous solution of methylmorpholine-N-oxide having a concentration of less than 1% by weight. Step 202 is to concentrate the aqueous solution using a buck multi-effect evaporator system comprising a first evaporation can, a second evaporation 201240721 can' and a third evaporation can, in a multi-effect evaporation process In the middle, the main steam source is input into the first evaporation can to evaporate the nmm 〇 aqueous solution in the first evaporation can, and the water vapor evaporated from the aqueous solution of the first evaporation can is added as a second evaporation. a steam source of the tank, after which the water vapor evaporated from the water bath of the second evaporation tank is used as a steam source for heating the third evaporation tank, and the outlet concentration of the first evaporation tank is greater than 1% by weight. The % of the second evaporation can has an aqueous solution outlet concentration of more than 22 wt% less than 38 mm, and the concentration of the aqueous solution outlet of the first evaporation can and the second evaporation can is controlled to make the reduced efficiency evaporator line in the same enchantment The amount of steam source; know the amount of NMMO recovery. - Step 2G3 is to pressurize and recover the water from the aqueous solution of the third evaporation tank, and to input the first-evaporation tank as an aqueous solution: a weaving source, and the third evaporation can The generated water vapor is pressurized so that the water vapor can reach the same temperature as the main steam source. Optionally, the preferred embodiment further includes the step 2〇4, wherein the water vapor from the evaporation tank, the second evaporation can, and the third evaporation can is used as a steam source for preheating the aqueous solution. Preheating treatment "The aqueous solution can be raised to the required portion before entering the first-evaporation tank". The preferred embodiment is described below, and the following specific examples are used to further improve the recovery efficiency of the product. Recovery efficiency> The calculation method of the recovery efficiency is as follows: μ = = = μ μ μ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 不 不 不 不 不 不 不 X X X X X X X X Referring to Figure 3, an aqueous solution of the filtered and activated carbon-treated Ly 〇 cell spun is collected, wherein the aqueous solution contains 392 wt% of NMM 〇. The aqueous solution enters the first evaporating tank 41 from a line 2, which The pipeline 2 passes through a second steam tank 63, a second steam tank 53, a first steam tank 43, and a heat exchanger 3, and the first evaporation tank 41, the second evaporation tank 51, and the first The water vapor evaporated from the aqueous solution of the three evaporation cans 61 is made Preheating the steam source of the aqueous solution, and then causing the temperature of the aqueous solution to reach the required feed temperature and then 're-introducing into the first evaporation can 41. The steam generated by the steam boiler is used as the main steam source to pass the first evaporation The tank 41 evaporates the aqueous solution, and controls the vacuum degree of the first steam tank 43 to 6 〇〇mmHg by a vacuum pump 42, and measures the concentration of the aqueous solution in the first steam tank 43 at a concentration. When the aqueous solution is concentrated to 12% by weight, the aqueous solution is guided into the second evaporation canister 51 by a pumping pipe 4S for a second degree of dehydration treatment. The water vapor generated by the evaporation of the aqueous solution passes through the first After the steam tank 43 is separated, the second evaporation tank 51 is input and heated via the line 47, and the operating temperature of the first evaporation tank 41 is maintained at 70.0 to 73.0 ° C. The second steam is taken by the vacuum pump 52 The degree of vacuum of the tank 53 is controlled at 630 mmHg, and the concentration of the aqueous solution in the second steam tank μ is measured by the -hour meter 54. When the aqueous solution is concentrated to 28 wt%, a pumping pump 56 is passed through a line W. Directing the aqueous solution into the third evaporation canister μ The water vapor generated by the evaporation of the aqueous solution is separated by the second steam tank 53 and then input through the line 57 and heats the third evaporation tank "201240721" The operating temperature of the second evaporation tank 51 is maintained at 61. o~62·π. The real steam gang 4 62 controls the third steam tank 63 #vacuum degree to 65 〇_Hg ' and measures the concentration of the water solution in the third steam tank 63 by the concentration meter 64. When the aqueous solution is concentrated to 50.05 wt%, the aqueous solution is pumped to the storage tank by a #65 pump 66 through a line 65, and the third base tank (4) is operated at a temperature of Μ~. The evaporation of the financial solution produces = gas, ··! The second steam tank 63 is separated and sent to a liquid knife off tank 71 and a steam mechanical compressor 72 via a line π, and the steam mechanical compressor 72 raises the temperature of the water vapor generated by the evaporation of the aqueous solution to the fish. After the evaporating tank (four) has the same temperature, the line 73 is used as a steam source for replenishing the first steaming tank 41 and flows into the heat exchanger 3 for preheating the inlet into the first evaporation tank 41. Aqueous solution. The operation parameter summary of this specific example is listed in the table _. The specific example i is recorded: the amount of the solution after the collection is 925.5 (ie, the output from the third evaporation can 61: the amount), and the amount of introduction before the recovery (also That is, the feed enthalpy entering the first evaporation can 41 is 1,835 tons, which is calculated according to the above recovery efficiency, and the results are shown in Table _2. <Specific Example 2-9> The specific example 2-9 is carried out in the same manner as in the specific example 1, except that the specific example 2-9 sets the water/column of the first evaporation can 41 as shown in Table-2, respectively. The outlet ingress is greater than 1 〇 wt% less than 20 wt%, and the aqueous solution outlet concentration of the second evaporation can 51 is greater than 22 wt% and less than 38 wt%, and the operating parameters are summarized in Table-1. Further, the amount of the solution recovered in Specific Example 2-9 and the amount of introduction before the recovery were recorded to calculate the recovery efficiency, and the results are also shown in Table 2 201240721. <Comparative Example 1_9>, Comparative Example -9 is carried out in the same manner as the specific example, except that the first evaporation can is set as shown in Table_2 in & Example 1 and 9, respectively. The aqueous solution outlet concentration of the second evaporation canister is not more than 1 Gwt% less than the core % and more than 22 wt% less than 3 %, respectively, and the operating parameter capsule J is shown in Table 1. Further, the amount of the solution recovered in Comparative Example 9 and the amount of introduction before the recovery were recorded to calculate the recovery efficiency, and the results are also shown in Table_2. Results: Referring to Table-2 and FIG. 4, the recovery efficiency of the specific example 1-9 of the preferred embodiment in the aqueous solution outlet of the first evaporation can 41 is greater than l〇wt compared to the comparative example 丨9. The % is less than 20% by weight, and the second evaporation can 51 has a better performance when the aqueous solution outlet concentration is greater than 22 wt / 〇 less than 38 wt%. Table-1 蒸发 Evaporation tank outlet concentrated vacuum operating temperature outlet concentration (wt% > (mmHg) degree (. 〇 degree (wt〇 / 〇 > specific example 1 12 600 70.0- 73.0 28 concrete example 2 16.3 600 71.3 - 72.2 28.3 Specific example 3 12.8 600 71.9- 73.0 25.2 Specific example 4 15.1 600 72.1- 73.3 30.3 with Zhao 5 5.9 600 70.0- 72.1 35.1 Specific example 6 13.3 600 71.0- 73.5 28.2 Concrete example 7 15.1 600 72.5- 74.1 31.6 Example 8 17.4 600 72.9- 74.9 33.4 Specific 14.8 600 71.0- 30.9 Vacuum (mmHg) 630 630 630 630 630 630 Operating temperature Alii 61.0- ^_2.5 61 a 6 3.殳ϋ.Π _62.3 62.3-. 63. 6^9: 62.1 6〇T-61. ~5: 62.4βΤΧ 63. 1 Three evaporation cans outlet concentration (~wt0/0, 50.05 50.25 50.95 50.58 50.36 50.06 50.80 vacuum (mmHg) 650 650 650 650 650 650 650 650 operating temperature (°C) Tl.8- 52.2JT.i- 52.8 5~2.9- 53.1 52.9- 54.1 il.3- 52.2 52.7- 53.8 53.1- 52.9 53.7-54.5 53.1-

201240721 例9 72.5 64.1 53.8 比較 例1 9.6 610 77.5- 79.8 28.5 630 66.5- 67.8 55.68 650 48.8- 50.9 比較 例2 9.5 610 78.0- 80.5 24.9 620 64.5- 66.0 51.88 650 51.1- 51.5 比較 例3 9.7 610 77.1- 79.2 27.3 630 63.5- 65.0 51.22 650 51.7- 52.0 比較 例4 14 600 65.5- 67.1 38.8 620 61.5- 62.5 52.99 660 52.7- 53.4 比較 例5 9.9 610 74.5- 78.5 26.5 630 65.6- 67.1 53.81 650 54.1- 54.5 比較 例6 15.9 600 63.5- 65.5 40.4 620 60,9- 61.9 51.72 680 54.1- 54.5 比較 例7 14.9 600 64.5- 65.5 40.5 620 59.5- 61.1 54.00 680 55.2- 56.2 比較 例8 9.5 610 77.3- 78.4 23.6 630 67.1- 68.3 52.10 650 57.1- 57.4 比較 例9 8.7 610 78.8- 79.5 14.4 630 65.7- 67.1 52.15 650 55.3- 55.9 表-2 回收前的 導入量(噸) 回收前濃度 (%) 回收後的 溶液量(嘴) 回收後濃度 (%) 回收效率(%) 具體例1 11835 3.92 925.5 50.05 99.80 具體例2 10917 5.15 1054.5 50.25 94.20 具體例3 12600 4.35 1013.7 50.95 94.30 具體例4 10056 4.15 808.8 50.58 98.03 具體例5 10533 4.59 924.5 50.36 96.30 具體例6 7427 3.78 536.7 50.06 95.71 具體例7 13335 4.01 1002.9 50.80 95.28 具體例8 11929 5.00 1105.9 50.69 93.98 具體例9 14670 4.10 1109.9 50.05 92.36 比較例1 11523 2.99 538.3 55.68 87.00 比較例2 5190 4.50 382.6 51.88 85.00 比較例3 10964 2.90 522.1 51.22 84.10 比較例4 11724 3.99 733.8 52.99 83.12 比較例5 10914 2.80 458.8 53.81 80.79 比較例6 9797 4.01 573.5 51.72 75.50 10 201240721 比較例7 9846 3.85 530.6 54.00 75.50 比較例8 ~~---^ 10968 2.99 509.3 52.10 80.79 比較例9 ---^ 10764 4.72 820.7 52.15 84.30 * 、 …丁人w μ 取π二双祭赞器系統引進1 噸蒸汽可處理2噸該ΝΜΜΟ水溶液,其經濟效益為2,而 本較佳實施例引進1噸蒸汽可處理60噸ΝΜΜ〇水溶液, 其經濟效益為60,顯示在整體的能源節省上有明顯的改善 。其中,經濟效益=ΝΜΜΟ水溶液處理量+使用蒸汽量。 可以思及的是,ΝΜΜΟ水溶液回收的處理費用由一般 =三效蒸發器1日處理15噸的ΝΜΜ〇水溶液,所需的蒸 >飞為7.5 «煩’而產生i嘴蒸汽需要75公升重油,故7 5噸 的蒸汽需要562.5公升’再以重油單價i公升18元推估所 需費用為=2·5公升xl8元/公升=1〇,125元。而本較佳實施 例所需的療汽費用為337.5元,另該蒸汽機械壓縮機Μ的 電費為隱祀元/kw_hr=3〇〇〇,合計為⑽元。 由此顯示,確實能達到本發明的目的。 歸納上述’本發明高效節能NMM〇溶劑回收方法,可 獲致下述㈣效及優點,故能達到本發明的目的: -:藉由該第-蒸發罐41及該第二蒸發罐Η的水溶 液出口,辰度控制’能使該降壓多效蒸 主蒸汽源用量下可獲得#古〜Μλ/ίλ/_ 回收效率的效果。一 ΝΜΜ〇回收量,而產生提升 該第三蒸發罐61所產生的水蒸氣加 使該水洛氣溫度上升並補充該±蒸汽源收“ 氣廢熱的效果,進而產生…’、1生回收水瘵 疋吨i生即省能源的效果。 201240721 三、藉由將該第一蒸發罐41、第二蒸發罐51,及第三 蒸發罐61的水溶液所蒸發出的水蒸氣做為預熱該水溶液的 洛汽源,而預熱的處理使該水溶液在進入該第一蒸發罐Μ 刖即可提高到所須的進料溫i ’而產生回收水蒸氣廢熱的 效果。 惟以上所述者,僅為本發明的較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作的簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋的範圍内。 【圖式簡單說明】 圖1是一般的三效蒸發器系統的一示意圖; 圖2是本發明高效節能NMMO溶劑回收方法的一較佳 實施例的流程圖; 圖3是該較佳實施例的一具體例的示意圖;及 圖4是該較佳實施例的回收效率圖,說明一第一蒸發 罐出口濃度、一第二蒸發罐出口濃度與一回收效率的變化 關係。 12 201240721 【主要元件符號說明】 11 …第一效蒸發罐 53 12 …第二效蒸發罐 54 13 …第三效蒸發罐 55 14 …冷凝器 56 2 . …管路 57 3 · …熱交換器 61 41 …第一蒸發罐 62 42 …真空幫浦 63 43 …第一蒸汽槽 64 44 …濃度計 65 45 …管路 66 46 …抽水幫浦 67 47 …管路 71 51 …第二蒸發罐 72 52 …真空幫浦 73 •第二蒸汽槽 •濃度計 •管路 •抽水幫浦 •管路 •第三蒸發罐 •真空幫浦 •第三蒸汽槽 •濃度計 •管路 •抽水幫浦 •管路 •汽液分離槽 •蒸汽機械壓縮機 •管路 13201240721 Example 9 72.5 64.1 53.8 Comparative Example 1 9.6 610 77.5- 79.8 28.5 630 66.5- 67.8 55.68 650 48.8- 50.9 Comparative Example 2 9.5 610 78.0- 80.5 24.9 620 64.5- 66.0 51.88 650 51.1- 51.5 Comparative Example 3 9.7 610 77.1- 79.2 27.3 630 63.5- 65.0 51.22 650 51.7- 52.0 Comparative Example 4 14 600 65.5- 67.1 38.8 620 61.5- 62.5 52.99 660 52.7- 53.4 Comparative Example 5 9.9 610 74.5- 78.5 26.5 630 65.6- 67.1 53.81 650 54.1- 54.5 Comparative Example 6 15.9 600 63.5- 65.5 40.4 620 60,9- 61.9 51.72 680 54.1- 54.5 Comparative Example 7 14.9 600 64.5- 65.5 40.5 620 59.5- 61.1 54.00 680 55.2- 56.2 Comparative Example 8 9.5 610 77.3- 78.4 23.6 630 67.1- 68.3 52.10 650 57.1 - 57.4 Comparative Example 9 8.7 610 78.8- 79.5 14.4 630 65.7- 67.1 52.15 650 55.3- 55.9 Table-2 Introduction before recovery (ton) Concentration before recovery (%) Amount of solution after recovery (mouth) Concentration after recovery (% Recovery efficiency (%) Specific example 1 11835 3.92 925.5 50.05 99.80 Specific example 2 10917 5.15 1054.5 50.25 94.20 Specific example 3 12600 4.35 1013.7 50.95 94.30 Specific example 4 10056 4.15 808.8 50.58 98.03 Specific example 5 10533 4.59 924.5 50.36 96.30 Specific Example 6 7427 3.78 536.7 50.06 95.71 Specific Example 7 13335 4.01 1002.9 50.80 95.28 Specific Example 8 11929 5.00 1105.9 50.69 93.98 Specific Example 9 14670 4.10 1109.9 50.05 92.36 Comparative Example 1 11523 2.99 538.3 55.68 87.00 Comparative Example 2 5190 4.50 382.6 51.88 85.00 Comparative Example 3 10964 2.90 522.1 51.22 84.10 Comparative Example 4 11724 3.99 733.8 52.99 83.12 Comparative Example 5 10914 2.80 458.8 53.81 80.79 Comparative Example 6 9797 4.01 573.5 51.72 75.50 10 201240721 Comparative Example 7 9846 3.85 530.6 54.00 75.50 Comparative Example 8 ~ ~---^ 10968 2.99 509.3 52.10 80.79 Comparative Example 9 ---^ 10764 4.72 820.7 52.15 84.30 * , ... Ding w μ Take π two double sacrificial system to introduce 1 ton of steam to process 2 tons of this hydrazine solution, The economic benefit is 2, and the preferred embodiment introduces 1 ton of steam to treat 60 tons of hydrazine aqueous solution, and the economic benefit is 60, indicating a significant improvement in overall energy saving. Among them, economic benefits = ΝΜΜΟ aqueous solution treatment + use of steam. It can be considered that the treatment cost of the hydrazine aqueous solution recovery is 15 ton of hydrazine aqueous solution treated by the general = three-effect evaporator for 1 day, and the required steaming is 7.5 « annoying" and the i-mouth steam is required to produce 75 liters of heavy oil. Therefore, the 7 5 tons of steam needs 562.5 liters. Then the heavy oil unit price i liter 18 yuan estimated cost is = 2. 5 liters x l8 yuan / liter = 1 〇, 125 yuan. The cost of the treatment for the preferred embodiment is 337.5 yuan, and the electricity charge for the steam mechanical compressor is crypto/kw_hr = 3 〇〇〇, which is a total of (10) yuan. It is thus shown that the object of the invention can indeed be achieved. By summarizing the above-mentioned "high-efficiency energy-saving NMM solvent recovery method of the present invention, the following (four) effects and advantages can be obtained, so that the object of the present invention can be achieved: -: the aqueous solution outlet of the first evaporation canister 41 and the second evaporation canister , Chen degree control 'can make the effect of the recovery efficiency of #古~Μλ/ίλ/_ under the amount of the main steam source of the pressure reduction multi-effect steaming. A recovery amount is generated, and the water vapor generated by the third evaporation can 61 is increased to increase the temperature of the water vapor gas, and the effect of the "steam source" to recover the waste heat of the gas is supplemented, thereby generating... The effect of saving energy is as follows: 201240721 3. The water vapor evaporated by the first evaporation can 41, the second evaporation can 51, and the third evaporation can 61 is used to preheat the aqueous solution. The steam source, and the preheating treatment enables the aqueous solution to increase to the required feed temperature i' when it enters the first evaporation tank, thereby producing the effect of recovering waste steam waste heat. The present invention is not limited by the scope of the invention, and the simple equivalent changes and modifications made in the scope of the invention and the description of the invention are still covered by the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a general three-effect evaporator system; FIG. 2 is a flow chart of a preferred embodiment of the energy-efficient NMMO solvent recovery method of the present invention; FIG. Good A schematic diagram of a specific example of the embodiment; and FIG. 4 is a recovery efficiency diagram of the preferred embodiment, illustrating a first evaporation vessel outlet concentration, a second evaporation canister outlet concentration, and a recovery efficiency. 12 201240721 [ Explanation of main component symbols] 11 ... first effect evaporation tank 53 12 ... second effect evaporation tank 54 13 ... third effect evaporation tank 55 14 ... condenser 56 2 ... ... line 57 3 ... heat exchanger 61 41 ... An evaporation canister 62 42 ... vacuum pump 63 43 ... first steam tank 64 44 ... concentration meter 65 45 ... line 66 46 ... pumping pump 67 47 ... line 71 51 ... second evaporation tank 72 52 ... vacuum pump 73 • Second steam tank • Concentration meter • Pipeline • Pumping pump • Pipeline • Third evaporation tank • Vacuum pump • Third steam tank • Concentration meter • Pipeline • Pumping pump • Pipeline • Vapor-liquid separation Tank • Steam Mechanical Compressor • Piping 13

Claims (1)

201240721 七、申請專利範圍: 1. 一種用於浪縮NMMO水溶液達5〇wt%以上的高效節能 NMMO溶劑回收方法,該高效節能丽丨容劑回收方 法包含下列步驟: (1)收集包括N-甲基嗎啉_N_氧化物的水溶液,該 水洛液濃度為小於1 〇wt% ; (ii)使用一降壓多效蒸發器系統濃縮該水溶液,該降 壓多效蒸發H統包括_第—蒸發罐、—第二蒸發罐, 及第二洛發罐,該第一蒸發罐的水溶液出口濃度大於 l〇wm小於20wt%,該第二蒸發罐的水溶液出口濃度大 於22wt%小於38wt% ;及 (⑴)將從該第三蒸發罐的水 J K冷液所蒸發出的水蔘惫 加壓回收,並輸入該第—蒸 ’、、、 充蒸汽源。 ‘、'發罐做為加熱該水溶液的補 2 根據申請專利範圍第1項所一 述的向效節能NMMO溶劑回 收方法,還包含步驟(iv)是 合W 口 ,及第三蒸發罐的水溶液:二第:蒸發罐、第二蒸發罐 水溶液的蒸汽源。以發出的水蒸氣做為預熱該 14201240721 VII. Patent application scope: 1. A high-efficiency energy-saving NMMO solvent recovery method for blasting NMMO aqueous solution up to 5〇wt% or more. The high-efficiency energy-saving 丨 丨 丨 回收 回收 包含 包含 包含 包含 包含 包含 包含 回收 高效 高效 高效 高效 高效 高效 高效 高效 高效 高效 高效 高效An aqueous solution of methylmorpholine_N_oxide having a concentration of less than 1% by weight; (ii) concentrating the aqueous solution using a reduced-pressure multi-effect evaporator system, the reduced-pressure multi-effect evaporation H system includes _ a first evaporation can, a second evaporation can, and a second firing can, wherein the first evaporation can has an aqueous solution outlet concentration of more than 10 〇wm and less than 20% by weight, and the second evaporation can has an aqueous solution outlet concentration of greater than 22% by weight and less than 38% by weight. And (1)) pressurizing the water vapor evaporated from the water JK cold liquid in the third evaporation tank, and inputting the first steaming, and charging steam source. ',' hair tank as a supplement to heat the aqueous solution 2 according to the scope of the patent scope of the first effective energy-saving NMMO solvent recovery method, further comprising the step (iv) is the mouth of the mouth, and the third evaporation tank of the aqueous solution : 二第: The vapor source of the evaporation can and the second evaporation can aqueous solution. Preheating with the emitted steam as the 14
TW100111579A 2011-04-01 2011-04-01 Energy-efficient N-methylmorpholine-N-oxide solvent recycling method TW201240721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100111579A TW201240721A (en) 2011-04-01 2011-04-01 Energy-efficient N-methylmorpholine-N-oxide solvent recycling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100111579A TW201240721A (en) 2011-04-01 2011-04-01 Energy-efficient N-methylmorpholine-N-oxide solvent recycling method

Publications (2)

Publication Number Publication Date
TW201240721A true TW201240721A (en) 2012-10-16
TWI400371B TWI400371B (en) 2013-07-01

Family

ID=47599899

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100111579A TW201240721A (en) 2011-04-01 2011-04-01 Energy-efficient N-methylmorpholine-N-oxide solvent recycling method

Country Status (1)

Country Link
TW (1) TW201240721A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215753A (en) * 2013-03-26 2013-07-24 聚隆纤维股份有限公司 Preparation method of bamboo pulp cellulose non-woven fabric with deodorizing function
CN105536277A (en) * 2016-03-14 2016-05-04 许达人 Evaporation and concentration technology and device for cellosolve NMMO (N-methylmorpholine-N-oxide) aqueous solution
WO2020254232A1 (en) * 2019-06-20 2020-12-24 List Technology Ag Preparation method and device for producing recycled fiber spinning solution using solvent method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1247841C (en) * 2004-09-07 2006-03-29 东华大学 Solvent recovery process for solvent method cellulose fiber preparation
DE102006019334A1 (en) * 2006-04-24 2007-10-25 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Process for the separation of superabsorbent particles from amine oxide-containing spinning baths
TW200928022A (en) * 2007-12-31 2009-07-01 Acelon Chem & Fiber Corp Manufacturing method for natural cellulose fiber with increased mildew-proof, antibacterial and deodorizing functions
CN101280476B (en) * 2008-05-23 2010-04-14 宜宾丝丽雅集团有限公司 Method for recovering NMMO solvent in solvent method fiber production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215753A (en) * 2013-03-26 2013-07-24 聚隆纤维股份有限公司 Preparation method of bamboo pulp cellulose non-woven fabric with deodorizing function
CN103215753B (en) * 2013-03-26 2016-01-13 聚隆纤维股份有限公司 Preparation method of bamboo pulp cellulose non-woven fabric with deodorizing function
CN105536277A (en) * 2016-03-14 2016-05-04 许达人 Evaporation and concentration technology and device for cellosolve NMMO (N-methylmorpholine-N-oxide) aqueous solution
WO2020254232A1 (en) * 2019-06-20 2020-12-24 List Technology Ag Preparation method and device for producing recycled fiber spinning solution using solvent method
CN114174571A (en) * 2019-06-20 2022-03-11 利斯特技术股份有限公司 Method and device for preparing regenerated fiber spinning solution by using solvent method

Also Published As

Publication number Publication date
TWI400371B (en) 2013-07-01

Similar Documents

Publication Publication Date Title
CN103265089B (en) High temperature high efficiency multi-effect seawater distillation desalination apparatus and method
CN102758273B (en) High-efficiency and energy-saving N-methylmorpholine-N-oxide solvent recovery method
TW201240721A (en) Energy-efficient N-methylmorpholine-N-oxide solvent recycling method
CN108558111A (en) A kind of condensed oil sewage processing system and method
CN104986815B (en) Universal evaporation concentration system experimental provision based on heat pump and climbing-film evaporation principle
CN102206014A (en) Wastewater Treatment and Comprehensive Utilization Process of Valuable Components in the Production of Carboxymethyl Cellulose Sodium
CN106830143A (en) A kind of lithium battery presoma prepares the high salt method of wastewater treatment containing lithium for producing
Si et al. Performance comparison of vertical and horizontal vacuum membrane distillation module coupled with mechanical vapor recompression
CN105523597B (en) A kind of efficient liquid matchmaker thermal compression evaporation purification system
CN209221515U (en) A kind of lithium chloride evaporation concentration device
CN205856228U (en) Energy-saving sequence batch thermo-compression evaporation device
KR101985444B1 (en) Method of recovering highly concentrated formic acid and highly concentrated sulfate from formate aqueous solution, and recovery apparatus
CN111644066B (en) A vacuum-aerated membrane distillation device and method of using the same
RU2567615C1 (en) Method of producing desalinated water and apparatus therefor
CN204111626U (en) A kind of methanol esterification reactor
CN211420023U (en) Acrolein waste water recovery preprocessing device
CN204385104U (en) The device of the spent acid of low-pressure methanol carbonyl process is processed continuously with scrapper thin film evaporator
WO2017166152A1 (en) Method and system for producing fresh water using difference between condensation points of seawater and fresh water
CN103663830B (en) Retracting device for Sewage treatment dimethylamine
CN102838180A (en) Rare metal wastewater zero discharge process
CN208843875U (en) A kind of high saliferous waste water treatment system containing solvent
CN201962163U (en) Device for separating and recycling wastewater
CN202849102U (en) Solvent water treating system for 2-chloropropionylchloride
CN212187850U (en) A purification device for carbon fiber polymerization raw materials
CN206219370U (en) A kind of cyclic utilization system of benzaldehyde waste water