TW201240483A - Thermal acoustic device and electric device - Google Patents

Thermal acoustic device and electric device Download PDF

Info

Publication number
TW201240483A
TW201240483A TW100112570A TW100112570A TW201240483A TW 201240483 A TW201240483 A TW 201240483A TW 100112570 A TW100112570 A TW 100112570A TW 100112570 A TW100112570 A TW 100112570A TW 201240483 A TW201240483 A TW 201240483A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
thermo
acoustic
thermoacoustic
electrode
Prior art date
Application number
TW100112570A
Other languages
Chinese (zh)
Other versions
TWI450600B (en
Inventor
Kai-Li Jiang
xiao-yang Lin
Lin Xiao
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Publication of TW201240483A publication Critical patent/TW201240483A/en
Application granted granted Critical
Publication of TWI450600B publication Critical patent/TWI450600B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

The present invention relates to a thermal acoustic device. The thermal acoustic device includes a substrate, a heater and a thermal acoustic element. The thermal acoustic element is disposed on the substrate. The heater is used to heat the thermal acoustic element. The thermal acoustic element includes a composite film comprising at least one carbon nanotube layer and at least one graphene film. The substrate includes a carbon nanotube structure and an insulated layer coated on surface of the carbon nanotube structure. The present invention further provides an electric device using the thermal acoustic device.

Description

201240483 •六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種熱致發聲裝置,尤其涉及一種基於石墨 烯的熱致發聲裝置及應用該熱致發聲裝置的電子裝置。 【先前技術】 [0002] 熱致發聲裝置一般由信號輸入裝置和發聲元件組成,通 過信號輸入裝置輸入信號到該發聲元件,進而發出聲音 。熱致發聲裝置為發聲裝置中的一種,其為基於熱聲效 _ 應的一種熱致發聲裝置,請參見文獻“The Thermo-201240483 • VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a thermoacoustic device, and more particularly to a graphene-based thermoacoustic device and an electronic device using the same. [Prior Art] [0002] A thermoacoustic device generally consists of a signal input device and a sounding element, and a signal is input through the signal input device to the sounding element to emit sound. The thermoacoustic device is one of the sounding devices, which is a thermoacoustic device based on thermoacoustic effect, please refer to the document "The Thermo-

O phone”,EDWARD C. WENTE,Vol. XIX,No. 4, p333-345及 “On Some Thermal Effects of Elec-tric Currents” , William Henry Preece, Proceedings of the Royal Society of London, V〇1.30,p408-41 1 (1879-1881 )。其揭示一種熱致發 聲裝置,該熱致發聲裝置通過向一導體中通入交流電來 實現發聲。該導體具有較小的熱容(Heat capacity) Ο ,較薄的厚度,且可將其内部產生的熱量迅速傳導給周 圍氣體介質的特點。當交流電通過導體時,隨交流電電 流強度的變化,導體迅速升降溫,而和周圍氣體介質迅 速發生熱交換,促使周圍氣體介質分子運動,氣體介質 密度隨之發生變化,進而發出聲波。 [0003]另外,Η. D. Arno 1 d和 I. B. Cranda 11 在文獻 “The thermophone as a precision source of sound” ,Phys. Rev. 10,p22-38 (1917)中揭示了一種簡單 的熱致發聲裝置,其採用一鉑片作熱致發聲元件。受材 100112570 表單編號A0101 第3頁/共65頁 1002020939-0 201240483 料本身的限制,採用該鉑片作熱致發聲元件的熱致發聲 裝置,其所產生的發聲頻率最高僅可達4千赫茲,且發聲 效率較低。 【發明内容】 [0004] 有鑒於此,確有必要提供一種發聲頻率高且發聲效果好 的熱致發聲裝置。 [0005] 一種熱致發聲裝置,其包括一基底,其中,該熱致發聲 裝置進一步包括至少一致熱裝置及複數個熱致發聲元件 ,該複數個熱致發聲元件分別設置於基底上,致熱裝置 用於向該熱致發聲元件提供能量使該熱致發聲元件產生 熱量,所述熱致發聲元件包括一複合膜,該複合膜包括 相互層疊設置的至少一奈米碳管層和至少一石墨烯膜。 [0006] 與先前技術相比較,本技術方案所提供的熱致發聲裝置 具有以下優點:其一,由於所述熱致發聲裝置中的熱致 發聲元件包括一由奈米碳管層和石墨烯膜組成的複合膜 ,無需磁鐵等其他複雜結構,故該熱致發聲裝置的結構 較為簡單,有利於降低該熱致發聲裝置的成本。其二, 由於複合膜的厚度較薄,熱容較低,因此,其發聲頻率 較高且具有較高的發聲效率。 【實施方式】 [0007] 以下將結合附圖詳細說明本發明實施例提供的熱致發聲 裝置。以下各實施例中將相同的元部件使用相同的標號 表示。本發明實施例中所涉及的示意圖係為了使本實施 例得到更好的說明,對實施例本身並沒有限制作用。 100Π2570 表單編號A0101 第4頁/共65頁 1002020939-0 201240483 > [0008] [0009] Ο 請參閱圖1及圖2,本發明第一實施例提供一種熱致發聲 裝置10,該熱致發聲裝置10包括一熱致發聲元件102及一 致熱裝置104。 所述致熱裝置104用於向熱致發聲元件102提供能量,使 熱致發聲元件102產生熱量,發出聲音。本實施例中,致 熱裝置104向熱致發聲元件提供電能,使熱致發聲元件 102在焦耳熱的作用下產生熱量。該致熱裝置104包括一 第一電極104a及一第二電極104b。所述第一電極104a和 第二電極104b分別與該熱致發聲元件102電連接。本實施 例中,第一電極104a和第二電極104b分別設置於熱致發 聲元件102的表面,並與該熱致發聲元件102的兩個相對 的邊齊平。 [0010] ❹ 本實施例中,該致熱裝置104中的第一電極104a和第二電 極104b用於向熱致發聲元件102提供電信號,使該熱致發 聲元件102產生焦耳熱,溫度升高,從而發出聲音。所述 第一電極104a與第二電極104b可為層狀(絲狀或帶狀) 、棒狀、條狀、塊狀或其他形狀,其橫截面的形狀可為 圓型、方型、梯形、三角形、多邊形或其他不規則形狀 。該第一電極104a與第二電極104b可通過黏結劑黏結的 方式固定於熱致發聲元件102的表面。而為防止熱致發聲 元件102的熱量被第一電極104a與第二電極104b過多吸 收而影響發聲效果,該第一電極104a及第二電極104b與 熱致發聲元件102的接觸面積較小為好,因此,該第一電 極104a和第二電極104b的形狀優選為絲狀或帶狀。該第 一電極104a與第二電極104b材料可選擇為金屬、導電膠 100112570 表單編號A0101 第5頁/共65頁 1002020939-0 201240483 [0011] [0012] [0013] [0014] v电廣料、銦錫氧化物(I το) 〇 當第-電極lG4a和第二電賴化具有一定強度時第_ :“考第—電極〗041)可以起到支撐該熱致發聲元件 102的作用。如將第一電極1〇4&和第二電極⑽匕的兩端 刀別固疋在-個框架上,熱致發聲元件㈣設置在第—電 極1〇4a和第二電極10扑上,通過第-電極104a和第二電 極104b懸空設置。 本實施例中’第-電極1{)43與第二電極1Q4b係利用銀聚 通過印刷方式如L卩卿狀触發聲元㈣2上的絲 狀銀電極。 該熱致發聲裝置1G進—步包括—第—電極引線(圖未示 )及一第二電極引線(圖未示)’該第-電極引線與第 二電極引線分別與熱致發聲裝置1〇中的第一電極1〇切和 第二電極104b電連接,使該第一電極l〇4a與該第一電極 引線電連接,使該第二電極1〇41)與該第二電極引線電連 接。所述熱致發聲裝置10通過該第一電極引線和第二電 極引線與外部電路電連接。 所述熱致發聲元件102包括一複合膜,該複合膜包括至少 —奈米碳管層及至少一石墨烯膜。所述至少—奈米碳管 層和至少一石墨稀膜相互層疊設置,即該至少一石墨稀 膜設置於該至少一奈米碳管層的表面。石墨烯膜和奈米 碳管層可以相互重疊設置,即,當石墨烯臈的面積較小 時,石墨’烯膜完全附著於奈米碳管層的表面;當奈米礙 、奈米碳管或碳纖維等 100112570 表單編號A0101 第6頁/共65頁 1002020939-0 201240483 [0015] Ο Ο =積較小時’奈米碳管層可以完全附著於石墨稀 稀=當該複合膜包括多層奈米碳管層和多層石墨 讯置、,該多層奈米碳管層和該多層石墨烯膜交替層疊 二:Γ膜的厚度為10奈米至1毫米。所述複合膜 行裁; ,可啸據熱致發的要求進 所烯膜為-個二維結構的具有-定面積的膜結構 心==34奈米至10奈米,墨烯膜 料爲 墨烯膜包括多層石墨稀時, 〜多層石祕可以減搭接形成石墨_ :具有更大的面積;或者該多層石墨射以二= 成石墨_,以使石祕_厚度增加。優選地該石 墨缔膜為-單層石墨稀。所述石墨烯為由複數個碳原子 通過SP2鍵雜化構成的單層的二维平面結構。該石墨_ 厚度可以為單層碳原子的厚度。石墨相具有較高的透 光性,單層的石墨料透絲可以達im.7%。由於石墨 稀膜的厚度非常薄,因此具有較低的熱容,其教容可以 小於2x10-3焦耳每平方厘米開爾文,單層石墨烯的執容 可以小於W-4寒、耳每平方厘米開爾文。所述石墨稀 膜為-自支撐結構,所述自切為石料财需要大面 積的載體支撐’㈣要相料邊提供切力即能整體上 懸空而保持自身膜狀狀態,即將該石料膜置於(或固 定於)間隔-固定距離設置的兩個支撑體上時,位於兩 個支樓體之間的石墨稀膜能夠懸空保持自身膜狀狀態。 實驗表明,石墨稀並非-個百分之百料潔平整的二維 100112570 表單編號Α0101 第7頁/共65頁 1002020939-0 201240483 膜,而係有大量的微觀起伏在單層石墨烯的表面上,單 層石墨烯正係借助這種方式來維持自身的自支撐性及穩 定性。 [0016] 所述奈米碳管層包括複數個均勻分佈的奈米碳管。該奈 米碳管可以為單壁奈米碳管、雙壁奈米碳管、多壁奈米 碳管中的一種或幾種。所述奈米碳·管層中的奈米竣管之 間可以通過凡得瓦力緊密結合。奈米碳管層為一自支撐 的結構。該奈米碳管層中的奈米碳管為無序或有序排列 。這裏的無序排列指奈米碳管的排列方向無規律,這裏 的有序排列指至少多數奈米碳管的排列方向具有一定規 律。具體地,當奈米碳管層包括無序排列的奈米碳管時 ,奈米碳管可以相互纏繞或者各向同性排列;當奈米碳 管層包括有序排列的奈米碳管時,奈米碳管沿一個方向 或者複數個方向擇優取向排列。該奈米碳管層的厚度不 限,可以為0. 5奈米〜1厘米,優選地,該奈米碳管層的厚 度可以為100微米〜0. 5毫米。該奈米碳管層進一步包括複 數個微孔,該微孔由奈米碳管之間的間隙形成。所述奈 米碳管層中的微孔的孔徑可以小於等於50微米。所述奈 米碳管層狀結構的單位面積熱容小於2x10-4焦耳每平方 厘米開爾文。優選地,所述奈米碳管層狀結構的單位面 積熱容可以小於等於1. 7x1 0-6焦耳每平方厘米開爾文。 所述奈米碳管層可包括至少一層奈米碳管拉膜、奈米碳 管絮化膜或奈米碳管碾壓膜。 [0017] 請參閱圖3,該奈米碳管拉膜包括複數個通過凡得瓦力相 互連接的奈米碳管。所述複數個奈米碳管基本沿同一方 100112570 表單編號A0101 第8頁/共65頁 1002020939-0 201240483 2優取向排列。所述擇優取㈣指在奈米碳管拉膜中 數奈米碳管的整體延伸方向基本朝同—方向。而且 ’所述大錄奈米《㈣體延伸方向基本平行於 =拉膜的表面。進-步地,所述奈米碳管拉膜中:數 =碳管係通過凡得瓦力首尾減。具體地,所述 奴官拉膜中基本朝同—方向延伸的大多數奈米碳管中每 奈米碳管與在延伸方向上相鄰的奈米O phone", EDWARD C. WENTE, Vol. XIX, No. 4, p333-345 and "On Some Thermal Effects of Elec-tric Currents", William Henry Preece, Proceedings of the Royal Society of London, V〇1.30, p408 -41 1 (1879-1881), which discloses a thermo-acoustic device that achieves sound by introducing alternating current into a conductor. The conductor has a small heat capacity Ο, thinner The thickness, and the heat generated inside can be quickly transmitted to the surrounding gas medium. When the alternating current passes through the conductor, the conductor rapidly rises and falls with the change of the alternating current intensity, and the heat exchange with the surrounding gas medium rapidly causes the surrounding The movement of the gas medium molecules, the density of the gas medium changes, and then emits sound waves. [0003] In addition, D. Arno 1 d and IB Cranda 11 in the literature "The thermophone as a precision source of sound", Phys. Rev. 10, p22-38 (1917) discloses a simple thermo-acoustic device that uses a platinum sheet as a thermo-acoustic component. Receptaments 100112570 Form No. A0101 3 pages / total 65 pages 1002020939-0 201240483 The material itself is limited to the use of the platinum sheet as a thermo-acoustic component of the thermo-acoustic device, which produces a sound frequency of up to 4 kHz and a low sound efficiency. SUMMARY OF THE INVENTION [0004] In view of the above, it is indeed necessary to provide a thermoacoustic device having a high sounding frequency and good sounding effect. [0005] A thermoacoustic device comprising a substrate, wherein the thermoacoustic device Further comprising at least a uniform thermal device and a plurality of thermo-acoustic components, the plurality of thermo-acoustic components being respectively disposed on the substrate, the heating device for supplying energy to the thermo-acoustic component to generate heat of the thermo-acoustic component, The thermoacoustic element comprises a composite film comprising at least one carbon nanotube layer and at least one graphene film laminated on each other. [0006] Compared with the prior art, the thermoacoustic sound provided by the technical solution The device has the following advantages: First, since the thermo-acoustic element in the thermo-acoustic device comprises a composite film composed of a carbon nanotube layer and a graphene film, The structure of the thermo-acoustic device is relatively simple, which is advantageous for reducing the cost of the thermo-acoustic device. Second, since the thickness of the composite film is thin and the heat capacity is low, the sound frequency is low. Higher and higher vocal efficiency. [Embodiment] Hereinafter, a thermoacoustic sounding device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. The same components are denoted by the same reference numerals in the following embodiments. The schematic diagrams involved in the embodiments of the present invention are not intended to limit the embodiments themselves in order to better illustrate the embodiments. 100Π2570 Form No. A0101 Page 4/65 Page 1002020939-0 201240483 > [0008] [0009] Referring to FIG. 1 and FIG. 2, a first embodiment of the present invention provides a thermo-acoustic device 10, which is thermally generated. Device 10 includes a thermal sounding element 102 and a uniform thermal device 104. The heating device 104 is used to supply energy to the thermally audible element 102, causing the thermally audible element 102 to generate heat and emit sound. In this embodiment, the heating device 104 provides electrical energy to the thermally audible elements, causing the thermally audible elements 102 to generate heat under the action of Joule heat. The heating device 104 includes a first electrode 104a and a second electrode 104b. The first electrode 104a and the second electrode 104b are electrically connected to the thermo-acoustic element 102, respectively. In the present embodiment, the first electrode 104a and the second electrode 104b are respectively disposed on the surface of the thermoacoustic element 102 and are flush with the opposite sides of the thermoacoustic element 102. [0010] In the present embodiment, the first electrode 104a and the second electrode 104b in the heating device 104 are used to provide an electrical signal to the thermo-acoustic element 102, causing the thermo-acoustic element 102 to generate Joule heat, and the temperature rises. High, thus making a sound. The first electrode 104a and the second electrode 104b may be in the form of a layer (filament or strip), a rod, a strip, a block or other shapes, and the cross section may have a circular shape, a square shape, a trapezoidal shape, or the like. Triangle, polygon, or other irregular shape. The first electrode 104a and the second electrode 104b may be fixed to the surface of the thermoacoustic element 102 by adhesion of a binder. In order to prevent the heat of the thermo-acoustic element 102 from being excessively absorbed by the first electrode 104a and the second electrode 104b, the contact area of the first electrode 104a and the second electrode 104b with the thermo-acoustic element 102 is small. Therefore, the shape of the first electrode 104a and the second electrode 104b is preferably a filament shape or a ribbon shape. The material of the first electrode 104a and the second electrode 104b can be selected as metal, conductive adhesive 100112570 Form No. A0101 Page 5 / Total 65 pages 1002020939-0 201240483 [0011] [0013] [0014] v electric material, Indium tin oxide (I το) 〇 When the first electrode 1G4a and the second electric ray have a certain intensity, the _: "the first electrode" 041 can function to support the thermoacoustic element 102. The two electrodes of the first electrode 1〇4& and the second electrode (10) are fixed on the frame, and the thermo-acoustic element (4) is disposed on the first electrode 1〇4a and the second electrode 10, through the first- The electrode 104a and the second electrode 104b are suspended. In the present embodiment, the 'first electrode 1{) 43 and the second electrode 1Q4b are used to trigger the filament-like silver electrode on the acoustic element (4) 2 by means of silver polymerization. The thermo-acoustic device 1G further includes a first electrode lead (not shown) and a second electrode lead (not shown). The first electrode lead and the second electrode lead are respectively associated with the thermo-acoustic device. The first electrode 1 is cut and the second electrode 104b is electrically connected to the first electrode 10a and the first electrode The electrode lead is electrically connected to electrically connect the second electrode 1〇41) to the second electrode lead. The thermo-acoustic device 10 is electrically connected to an external circuit through the first electrode lead and the second electrode lead. The sound-emitting element 102 includes a composite film including at least a carbon nanotube layer and at least one graphene film. The at least-carbon nanotube layer and the at least one graphite thin film are stacked on each other, that is, the at least one A graphite thin film is disposed on the surface of the at least one carbon nanotube layer. The graphene film and the carbon nanotube layer may be disposed to overlap each other, that is, when the area of the graphene germanium is small, the graphite 'ene film is completely attached to the naphthalene Surface of the carbon nanotube layer; when nano-barrier, carbon nanotube or carbon fiber, etc. 100112570 Form No. A0101 Page 6 of 65 Page 1002020939-0 201240483 [0015] Ο Ο = When the product is small, the carbon nanotube layer Can be completely attached to the graphite thinner = When the composite film comprises a multi-layered carbon nanotube layer and a multi-layered graphite device, the multilayered carbon nanotube layer and the multilayer graphene film are alternately laminated two: the thickness of the tantalum film is 10 Meter to 1 mm. The composite membrane According to the requirement of heat generation, the olefin membrane is a two-dimensional structure with a fixed area membrane structure heart == 34 nm to 10 nm, and the ocene film is an ocene film including When the multi-layered graphite is thin, the multi-layered stone can be reduced to form a graphite _: having a larger area; or the multi-layered graphite is sprayed with two = graphite to increase the thickness of the stone. Preferably, the graphite film is - Single layer graphite is dilute. The graphene is a single layer two-dimensional planar structure composed of a plurality of carbon atoms by SP2 bond hybridization. The graphite _ thickness can be the thickness of a single layer of carbon atoms. The graphite phase has a high light transmittance, and the single layer of graphite material can reach im.7%. Because the thickness of the graphite thin film is very thin, it has a low heat capacity, and its teaching capacity can be less than 2x10-3 joules per square centimeter Kelvin. The performance of single-layer graphene can be less than W-4 cold, ear per square centimeter Kelvin. . The graphite thin film is a self-supporting structure, and the self-cutting stone material requires a large-area carrier support. (4) The shearing force is required to provide a shearing force to maintain the film state as a whole, that is, the stone film is placed. When (or fixed to) the spacer-fixed distance two support bodies, the graphite thin film between the two support bodies can be suspended to maintain its own film state. Experiments have shown that graphite is not a 100% clean and flat two-dimensional 100112570 form number Α0101 page 7 / a total of 65 pages 1002020939-0 201240483 film, while a large number of microscopic undulations on the surface of single-layer graphene, single layer Graphene is used in this way to maintain its self-supporting and stability. [0016] The carbon nanotube layer comprises a plurality of uniformly distributed carbon nanotubes. The carbon nanotube may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The nanotubes in the nanocarbon tube layer can be tightly bonded by van der Waals force. The carbon nanotube layer is a self-supporting structure. The carbon nanotubes in the carbon nanotube layer are disordered or ordered. The disordered arrangement here means that the arrangement direction of the carbon nanotubes is irregular, and the orderly arrangement here means that at least most of the carbon nanotubes have a certain arrangement direction. Specifically, when the carbon nanotube layer includes a disordered arrangement of carbon nanotubes, the carbon nanotubes may be entangled or isotropically arranged; when the carbon nanotube layer comprises an ordered arrangement of carbon nanotubes, The carbon nanotubes are arranged in a preferred orientation in one direction or in a plurality of directions. 5毫米。 The thickness of the carbon nanotube layer may be from 100 microns to 0. 5 mm. The carbon nanotube layer further includes a plurality of micropores formed by a gap between the carbon nanotubes. The pores in the carbon nanotube layer may have a pore diameter of 50 μm or less. The carbon nanotube layered structure has a heat capacity per unit area of less than 2 x 10-4 joules per square centimeter Kelvin. Preferably, the unit area heat capacity of the carbon nanotube layered structure may be less than or equal to 1. 7x1 0-6 joules per square centimeter Kelvin. The carbon nanotube layer may comprise at least one layer of carbon nanotube film, a carbon nanotube film or a carbon nanotube film. [0017] Referring to FIG. 3, the carbon nanotube film comprises a plurality of carbon nanotubes interconnected by a van der Waals force. The plurality of carbon nanotubes are arranged along the same side 100112570 Form No. A0101 Page 8 of 65 1002020939-0 201240483 2 Excellent orientation. The preferred extraction (4) means that the overall extension direction of the number of carbon nanotubes in the carbon nanotube film is substantially the same direction. Moreover, the "four" body extension direction is substantially parallel to the surface of the film. Further, in the carbon nanotube film: number = carbon tube system is reduced by van der Waals. Specifically, each of the carbon nanotubes in the majority of the carbon nanotubes extending substantially in the same direction in the slave film has a nanometer adjacent to the extending direction.

:::::::::一存在少數: 广不h管’這些奈米碳管不會對奈米碳管拉膜中 大多數奈米碳管的整體取向排賴成贿影響^所述奈 米碳管拉膜為-自支樓的膜。所述自支擇為奈米碳管拉 膜不需要大©積的賴切,而只要相對兩邊提供支撐 ^即能整體上懸空而保持自身膜狀狀態,即將該奈米破 s拉膜置於(或固定於)間隔__固定距離設置的兩個支 撐體上時,位於兩個支撐體之間的奈米碳管拉膜能夠懸 空保持自身膜狀狀態。所述自支撐主要通過奈米碳管拉 膜中存在連續的通過凡得瓦力首尾相連延伸排列的奈米 碳管而實現。 [0018]所述奈求碳管拉膜的厚度可以為〇. 5奈米~1〇〇微米,寬度 與長度不限’根據第二基體1〇8的大小設定《所述奈米碳 管拉膜的具體結構及其製備方法請參見范守善等人於民 國96年2月12日申請的’於民國99年7月11日公告的第 1327177號中國民國公告專利。為節省篇幅,僅引用於此 ’但所述申請所有技術揭露也應視為本發明申請技術揭 露的一部分。 100112570 表單編號A0101 第9頁/共65頁 1002020939-0 201240483 [0019] [0020] [0021] 田不米碳官層包括多層奈米碳管拉膜時,相鄰兩層奈米 碳管拉膜中的奈米礙管的延伸方向之間形成的交又角度 不限。 °月參見圖4,所述奈米碳管絮化膜為通過一絮化方法形成 的奈米碳管臈。該奈米碳管絮化膜包括相互纏繞且均勻 刀佈的奈米碳管。所述奈米碳管之間通過凡得瓦力相互 吸引、纏繞,形成網路狀結構。所述奈米碳管絮化膜各 向同性。所述奈米碳管絮化膜的長度和寬度不限。由於 在奈米碳管絮化膜中,奈米碳管相互纏繞,因此該奈米 碳管絮化膜具有很好的柔韌性,且為一自支撐結構,可 以彎曲折疊成任意形狀而不破裂。所述奈米碳管絮化膜 的面積及厚度均不限,厚度為丨微米〜丨毫米。所述奈米碳 官絮化膜及其製備方法請參見范守善等人於民國96年5月 11日申請的’於民國97年11月16日公開的第200844041 號台灣公開專利申請“奈米碳管薄膜的製備方法,,。為 節省篇幅,僅引用於此,但上述申請所有技術揭露也應 視為本發明申請技術揭露的一部分。 請參見圖5,所述奈米碳管碾壓膜包括均勻分佈的奈米碳 管’奈米碳管沿同一方向或不同方向擇優取向排列。奈 米碳管也可以係各向同性的。所述奈米碳管碾壓膜中的 奈米碳管相互部分交叠’並通過凡得瓦力相互吸引,緊 密結合。所述奈米碳管碾壓膜中的奈米碳管與形成奈米 碳管陣列的生長基底的表面形成一夾角万,其中,卢大 於等於0度且小於等於15度。依據碾壓的方式不同,該奈 米碳管碾壓膜中的奈米碳管具有不同的排列形式。當沿 100112570 表單編號A0101 第10頁/共65頁 1002020939-0 201240483 Ο [0022] 同一方向碾壓時,奈米碳管沿一固定方向擇優取向排列 可以理解,當沿不同方向礙壓時,奈米碳管可沿複數 個方向擇優取向排列。該奈米碳管礙壓膜厚度不限,優 選為為1微米〜1毫米。該奈米碳管碾壓膜的面積不限,由 艰髮出膜的奈米碳管陣列的大小決定。當奈米碳管陣列 的尺寸較大時,可以儀壓制得較大面積的奈米碳管碾壓 膜。所述奈米碳管碾壓膜及其製備方法請參見范守善等 人於民國96年6月29日申請的,於民國99年12月21日公 告的第1334851號台灣公告專利“奈米碳管薄膜的製備方 法。為節省篇幅,僅引用於此’但上述申請所有技術 揭露也應視為本發明申請技術揭露的一部分。 Ο 本實施例中,所述複合膜包括兩層相互交叉設置的奈米 碳管拉膜及一石墨烯膜,該石墨烯膜包括兩層石墨烯相 互重疊設置,該兩層相互交叉的奈米碳管拉膜設置於石 墨烯膜的表面。圖6為本實施例中的複合膜的掃描電鏡照 片’下面裂開的膜為石墨稀膜’上面為奈米碳管拉膜中 的奈米碳管。圖7為本實施例中複合膜的透光度測試曲線 圖。從圖7中可以看出,本實施例所提供的複合膜的透光 度可以達到60%以上,因此,當採用複合膜作為熱致發聲 元件102時,可以得到透明發聲裝置。本實施例中的複合 膜的電阻為500歐姆,具有良好的導電性。 [0023] 石墨稀膜為一整體的膜,非常敏密’但強度較差;而奈 米碳管層具有一定的強度,並存在大量的空隙,複合膜 結合了石墨稀膜更加敏密和奈米碳管層具有較大強度的 優點。複合膜作為發聲元件時,石墨婦膜設置於奈米碳 100112570 表單編號Α0101 第11頁/共65頁 1002020939-0 201240483 管層上,覆蓋了奈米碳管層的空隙,使複合膜與周圍介 質的接觸面積相對於奈米碳管層變大,因此,複合膜作 為熱致發聲元件可以具有更高的發聲效率;同時,複合 膜作為熱致發聲元件時,相對於石墨烯膜具有更大的強 度,使熱致發聲元件的強度增加,具有更長的使用壽命 。所述複合膜還具有以下優點:首先,複合膜具有較好 的任性,可以彎折成任意角度,因此,該熱致發聲裝置 可以為柔性的熱致發聲裝置;其次,石墨烯膜和奈米碳 管層均可具有良好的透光性,因此,複合膜也可以為一 透明膜,熱致發聲裝置可以為透明熱致發聲裝置;再次 ,石墨烯膜和奈米碳管層均具有較小的厚度和熱容,因 此,複合膜的厚度可以較薄,具有較小的熱容,可以快 速的升降溫,因此,該熱致發聲裝置比較靈敏。 [0024] 所述石墨烯膜的致備方法可以為化學氣相沉積法、LB法 或採用膠帶從定向石墨上斯取的方法。本實施例中,採 用化學氣相沉積法製備石墨烯膜。該石墨烯膜可以採用 化學氣相沉積法生長在一個金屬基底的表面,該金屬可 以為銅箔或者鎳箔。具體地,所述石墨烯膜的製備方法 包括以下步驟: [0025] 首先,提供一金屬薄膜基底。 [0026] 該金屬薄膜可以為銅箔或者鎳箔。所述金屬薄膜基底的 大小,形狀不限,可以根據反應室的大小以及形狀進行 調整。而通過化學氣相沉積法做形成的石墨烯膜的面積 同金屬薄膜基底的大小有關,所述金屬薄膜基底的厚度 可以在12. 5微米〜5 0微米。本實施例中,所述金屬薄膜 100112570 表單編號A0101 第12頁/共65頁 1002020939-0 201240483 [0027] [0028] Ο [0029] ❹ [_] [0031] 基底為銅箔,厚度12. 5~50微米的銅箔,優選25微米, 面積為4厘米乘4厘米。 其次,將上述金屬薄膜基底放入反應室内,在高溫下通 入碳源氣體,在金屬薄膜基底的表面沉積碳原子形成石 墨稀。 所述反應室為一英寸直徑的石英管,具體地,所述在反 應室内生長石墨烯的步驟包括以下步驟:先在氫氣的氣 氛下退火還原,氫氣流量係2sccm,退火溫度為1 000攝 氏度,時間為1小時;然後向反應室内通入碳源氣體甲烷 ,流量係25sccm,從而在金屬薄膜基底的表面沉積碳原 子,反應室的氣壓為500毫托,生長時間為10~60分鐘, 優選為30分鐘。 可以理解,上述反應室内通入的氣體的流量跟反應室的 大小有關,本領域技術人員可以根據反應室的大小調整 氣體的流量。 最後,在將所述金屬薄膜基底冷卻至室溫,從而在所述 金屬薄膜基底的表面形成一層石墨烯。 金屬薄膜基底在冷卻的過程中,要繼續向反應室内通入 碳源氣與氫氣,直到金屬薄膜基底冷卻至室溫。本實施 例中,在冷卻過程中,向反應室内通入25sccm的甲烧, 2sccm的氫氣,在500毫托氣麼下,冷卻1小時,方便取 出金屬薄膜基底,該金屬薄膜基底的表面生長有一層石 墨烯。 [0032] 該碳源氣優選為廉價氣體乙炔,也可選用其他碳氫化合 100112570 表單編號A0101 第13頁/共65頁 1002020939-0 201240483 物如甲烷、乙烷、乙烯等。保護氣體優選為氬氣,也可 選用其他惰性氣體如氮氣等。石墨烯的沉積溫度在800攝 氏度至1 000攝氏度。本發明的石墨烯採用化學氣相沉積 法製備,因此可以具有較大的面積,該石墨烯膜的最小 尺寸可以大於2厘米。由於該石墨烯膜具有較大的面積, 因此可以和所述奈米碳管層形成具有較大面積的複合膜 〇 [0033] 在通過化學氣相沉積法在金屬基底表面生長獲得石墨烯 膜後,可以將奈米碳管層铺到上述石墨烯膜表面,採用 機械力將奈米碳管層與石墨烯膜壓合在一起。最後,可 以將上述金屬薄膜基底用溶液腐蝕掉,從而獲得由石墨 烯膜以及奈米碳管層組成的複合膜。 [0034] 採用上述方法所製備的石墨烯膜可以為單層的石墨烯, 也可包括幾層石墨烯。通過控制反應溫度,基底材料等 條件可以控制石墨烯膜中石墨烯層的層數。本實施例中 ,由於銅箔基底的銅材料溶解碳的能力比較低,因此, 制得的石墨烯膜僅包括一層石墨烯層。 [0035] 所述熱致發聲元件102的工作介質不限,只需滿足其電阻 率大於所述熱致發聲元件102的電阻率即可。所述介質包 括氣態介質或液態介質。所述氣態介質可為空氣。所述 液態介質包括非電解質溶液、水及有機溶劑等中的一種 或多種。所述液態介質的電阻率大於0.01歐姆·米,優選 地,所述液態介質為純淨水。純淨水的電導率可達到1. 5 xlO7歐姆·米,且其單位面積熱容也較大,可以傳導出熱 致發聲元件102產生的熱量,從而可對熱致發聲元件102 100112570 表單編號A0101 第14頁/共65頁 1002020939-0 201240483 [0036] Ο [0037]::::::::: There are a few: 广不h管' These carbon nanotubes do not affect the overall orientation of most carbon nanotubes in the carbon nanotube film. The carbon nanotube film is a film of the self-supporting building. The self-selective carbon nanotube film does not require a large amount of the film, but as long as the support is provided on both sides, the film can be suspended and maintained in a self-membrane state, that is, the nano-strip film is placed. When (or fixed to) two spacers with a fixed distance __ fixed distance, the carbon nanotube film located between the two supports can be suspended to maintain its own film state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the ends of the van der Waals force through the carbon nanotube film. [0018] The thickness of the carbon nanotube film may be 〇. 5 nm ~ 1 〇〇 micron, width and length are not limited ' according to the size of the second substrate 1 〇 8 "the carbon nanotube pull For the specific structure of the membrane and its preparation method, please refer to the patent issued by Fan Shoushan et al. on February 12, 1996, in the Republic of China, No. 1327177 announced on July 11, 1999. In order to save space, it is only referred to herein', but all of the technical disclosures of the application are also considered to be part of the technical disclosure of the present application. 100112570 Form No. A0101 Page 9 / Total 65 Page 1002020939-0 201240483 [0020] [0021] When the Tianbei carbon carbon layer includes a multi-layered carbon nanotube film, two adjacent layers of carbon nanotube film are drawn. The angle between the extending direction of the nano tube is not limited. Referring to Fig. 4, the carbon nanotube film is a carbon nanotube formed by a flocculation method. The carbon nanotube flocculation membrane comprises carbon nanotubes intertwined and uniformly knurled. The carbon nanotubes are attracted and entangled with each other by van der Waals to form a network structure. The carbon nanotube flocculation membrane is isotropic. The length and width of the carbon nanotube film are not limited. Since the carbon nanotubes are intertwined in the carbon nanotube flocculation membrane, the carbon nanotube flocculation membrane has good flexibility and is a self-supporting structure, which can be bent and folded into any shape without breaking. . The area and thickness of the carbon nanotube film are not limited, and the thickness is 丨 micrometers to 丨 mm. The nano carbon official flocculation film and its preparation method can be found in the Taiwan Patent Application No. 200844041, published on May 11, 1996, by Fan Shoushan et al. The method for preparing the tube film, for the sake of space saving, is only cited herein, but all the technical disclosures of the above application are also considered as part of the disclosure of the application of the present application. Referring to FIG. 5, the carbon nanotube rolled film includes The uniformly distributed carbon nanotubes 'nanocarbon tubes are arranged in the same direction or in different directions. The carbon nanotubes can also be isotropic. The carbon nanotubes in the carbon nanotube film are mutually Partially overlapping 'and being closely attracted to each other by van der Waals force. The carbon nanotubes in the carbon nanotube rolled film form an angle with the surface of the growth substrate forming the carbon nanotube array, wherein Lu is greater than or equal to 0 degrees and less than or equal to 15 degrees. Depending on the way of rolling, the carbon nanotubes in the carbon nanotube film have different arrangements. When along 100112570 Form No. A0101 Page 10 of 65 Page 1002020939-0 201240 483 Ο [0022] When rolling in the same direction, it is understood that the carbon nanotubes are arranged along a fixed orientation. When the pressure is blocked in different directions, the carbon nanotubes can be arranged in a plurality of directions. The thickness of the film is not limited, and is preferably 1 μm to 1 mm. The area of the carbon nanotube film is not limited, and is determined by the size of the carbon nanotube array which is difficult to film. When the size of the array is large, a large area of the carbon nanotube film can be pressed. The carbon nanotube film and its preparation method can be found in Fan Shoushan and others on June 29, 1996. The Taiwan Patent Publication No. 1334851 published on December 21, 1999 in the Republic of China, "the preparation method of the carbon nanotube film. To save space, reference is made to this only, but all of the technical disclosures of the above application are also considered to be part of the disclosure of the present application. In the embodiment, the composite film comprises two layers of carbon nanotube film and a graphene film which are arranged to intersect each other, and the graphene film comprises two layers of graphene which are overlapped with each other, and the two layers intersect each other. The carbon tube film is disposed on the surface of the graphene film. Fig. 6 is a view showing a scanning electron microscope photograph of the composite film in the present embodiment, in which the film which is cracked below is a graphite thin film, and the carbon nanotube in the carbon nanotube film is formed. Fig. 7 is a graph showing the transmittance test of the composite film in the present embodiment. As can be seen from Fig. 7, the composite film provided in the present embodiment can have a transmittance of 60% or more. Therefore, when a composite film is used as the thermally-induced sound-emitting element 102, a transparent sound-emitting device can be obtained. The composite film of this embodiment has a resistance of 500 ohms and has good electrical conductivity. [0023] Graphite thin film is a monolithic film, very sensitive 'but poor strength; and the carbon nanotube layer has a certain strength, and there are a lot of voids, the composite film combined with graphite thin film is more sensitive and nano The carbon tube layer has the advantage of greater strength. When the composite film is used as the sounding element, the graphite film is placed on the carbon layer 100112570 Form No. 1010101 Page 11/65 page 1002020939-0 201240483 The layer covers the void of the carbon nanotube layer to make the composite film and the surrounding medium. The contact area is larger than that of the carbon nanotube layer. Therefore, the composite film can have higher phoning efficiency as a thermo-acoustic element; at the same time, when the composite film is used as a thermo-acoustic element, it has a larger relative to the graphene film. The strength increases the strength of the thermo-acoustic element and has a longer service life. The composite film also has the following advantages: First, the composite film has good arbitrarily and can be bent into any angle. Therefore, the thermo-acoustic device can be a flexible thermo-acoustic device; secondly, the graphene film and the nanometer The carbon tube layer can have good light transmittance. Therefore, the composite film can also be a transparent film, and the thermo-acoustic device can be a transparent thermo-acoustic device; again, the graphene film and the carbon nanotube layer are both small. The thickness and heat capacity, therefore, the thickness of the composite film can be thinner, has a smaller heat capacity, can quickly rise and fall, therefore, the thermo-acoustic device is more sensitive. [0024] The method for preparing the graphene film may be a chemical vapor deposition method, an LB method, or a method of taking a tape from a directional graphite. In this embodiment, a graphene film is prepared by chemical vapor deposition. The graphene film may be grown on the surface of a metal substrate by chemical vapor deposition, and the metal may be a copper foil or a nickel foil. Specifically, the method for preparing the graphene film comprises the following steps: [0025] First, a metal film substrate is provided. [0026] The metal film may be a copper foil or a nickel foil. The size and shape of the metal film substrate are not limited and can be adjusted according to the size and shape of the reaction chamber. The thickness of the metal film substrate may be from 12. 5 μm to 50 μm, and the thickness of the metal film substrate may be from 1. 5 μm to 50 μm. In this embodiment, the metal film 100112570 Form No. A0101 Page 12 / Total 65 pages 1002020939-0 201240483 [0028] [0028] ❹ [_] [0031] The substrate is copper foil, thickness 12. 5 ~50 micron copper foil, preferably 25 microns, with an area of 4 cm by 4 cm. Next, the above-mentioned metal thin film substrate is placed in a reaction chamber, a carbon source gas is introduced at a high temperature, and carbon atoms are deposited on the surface of the metal thin film substrate to form a graphite thin film. The reaction chamber is a one-inch diameter quartz tube. Specifically, the step of growing graphene in the reaction chamber includes the following steps: first annealing and reducing under a hydrogen atmosphere, a hydrogen flow rate of 2 sccm, and an annealing temperature of 1 000 degrees Celsius. The time is 1 hour; then the carbon source gas methane is introduced into the reaction chamber, and the flow rate is 25 sccm, thereby depositing carbon atoms on the surface of the metal film substrate, the pressure of the reaction chamber is 500 mTorr, and the growth time is 10 to 60 minutes, preferably 30 minutes. It will be understood that the flow rate of the gas introduced into the reaction chamber is related to the size of the reaction chamber, and those skilled in the art can adjust the flow rate of the gas according to the size of the reaction chamber. Finally, the metal thin film substrate is cooled to room temperature to form a layer of graphene on the surface of the metal thin film substrate. During the cooling of the metal film substrate, carbon source gas and hydrogen gas are continuously supplied into the reaction chamber until the metal film substrate is cooled to room temperature. In this embodiment, during the cooling process, 25 sccm of methane and 2 sccm of hydrogen are introduced into the reaction chamber, and under a condition of 500 mTorr, the film is cooled for 1 hour, and the metal film substrate is conveniently taken out. The surface of the metal film substrate is grown. A layer of graphene. [0032] The carbon source gas is preferably an inexpensive gas acetylene, and other hydrocarbons may also be used. 100112570 Form No. A0101 Page 13 of 65 1002020939-0 201240483 Materials such as methane, ethane, ethylene, and the like. The shielding gas is preferably argon, and other inert gases such as nitrogen may also be used. Graphene is deposited at temperatures ranging from 800 degrees Celsius to 1 000 degrees Celsius. The graphene of the present invention is prepared by chemical vapor deposition, and thus can have a large area, and the minimum size of the graphene film can be more than 2 cm. Since the graphene film has a large area, a composite film having a large area can be formed with the carbon nanotube layer [0033] after the graphene film is obtained by chemical vapor deposition on the surface of the metal substrate. The carbon nanotube layer can be laid on the surface of the above graphene film, and the carbon nanotube layer and the graphene film are pressed together by mechanical force. Finally, the above metal thin film substrate can be etched away with a solution to obtain a composite film composed of a graphene film and a carbon nanotube layer. [0034] The graphene film prepared by the above method may be a single layer of graphene, and may also include several layers of graphene. The number of layers of the graphene layer in the graphene film can be controlled by controlling the reaction temperature, the substrate material and the like. In this embodiment, since the copper material of the copper foil substrate has a relatively low ability to dissolve carbon, the obtained graphene film includes only one layer of graphene. [0035] The working medium of the thermoacoustic element 102 is not limited, and only needs to satisfy a resistivity higher than that of the thermo-acoustic element 102. The medium comprises a gaseous medium or a liquid medium. The gaseous medium can be air. The liquid medium includes one or more of a non-electrolyte solution, water, an organic solvent, and the like. The liquid medium has a resistivity greater than 0.01 ohm·meter. Preferably, the liquid medium is purified water. The conductivity of pure water can reach 1.5 x lO7 ohm·m, and its heat capacity per unit area is also large, which can conduct heat generated by the thermoacoustic element 102, so that the heat-induced sound element 102 100112570 form number A0101 14 pages/total 65 pages 1002020939-0 201240483 [0036] Ο [0037]

[0038] 進行散熱。本實施例中,所述介質為空氣。 本實施例的熱致發聲裝置10可通過第一電極104 a及第二 電極104b與外部電路電連接,而由此接入外部信號發聲 。由於熱致發聲元件102包括該複合膜,複合膜具有較小 的單位面積熱容以及較大的散熱面積,在致熱裝置104向 熱致發聲元件102輸入信號後,所述熱致發聲元件102可 迅速升降温,產生週期性的溫度變化,並和周圍介質快 速進行熱交換,使周圍介質的密度週期性地發生改變, 進而發出聲音。簡而言之,本發明實施例的熱致發聲元件 102係藉由“電-熱-聲”的轉換來達到發聲。另外,利用 複合膜的高透光度,該熱致發聲裝置10呈一透明熱致發 聲裝置。 本實施例提供的熱致發聲裝置10的聲壓級大於50分貝每 瓦聲壓級,發聲頻率範圍為1赫茲至10萬赫茲(即 ΙΗζ-lOOkHz)。所述熱致發聲裝置在500赫茲-4萬赫茲 頻率範圍内的失真度可小於3%。 另外,本實施例中的複合膜具有較好的韌性和機械強度 ,所以石墨烯膜可方便地製成各種形狀和尺寸的熱致發 聲裝置10,該熱致發聲裝置10可方便地應用於各種可發 聲的器件中,如音響、手機、MP3、MP4、電視、電腦等 可發聲的器件中。 請參閱圖8及圖9,本發明第二實施例提供一種熱致發聲 裝置20。本實施例所提供的熱致發聲裝置20與第一實施 例提供的熱致發聲裝置10的主要不同之處在於,本實施 100112570 表單編號A0101 第15頁/共65頁 1002020939-0 [0039] 201240483 例中的該熱致發聲裝置20進一步包括一基底208。所述熱 致發聲元件102設置於該基底208的表面。所述第一電極 104a和第二電極104b設置於該熱致發聲元件102的表面 。本實施例的熱致發聲元件102與基底的關係可以為:第 一,該至少一奈米碳管層設置於基底208與該至少一石墨 烯膜之間;第二,該至少一石墨烯膜設置於該基底208與 該至少一奈米碳管層之間;第三,當複合膜包括多層奈 米碳管層和多層石墨烯膜相互交替設置時,奈米碳管層 直接與基底208接觸或者石墨烯膜直接與基底208接觸。 該奈米碳管層與第一實施例揭示的奈米碳管層的結構相 同。本實施例中,熱致發聲元件102包括一層奈米碳管拉 膜和一層石墨烯,該奈米碳管拉膜設置於石墨烯與基底 208之間。由於石墨烯本身比較緻密,石墨烯位於奈米碳 管拉膜上時,可以使熱致發聲元件102與外界介質具有更 大的接觸面積。 [0040] 所述基底208的形狀、尺寸及厚度均不限,該基底208的 表面可為平面或曲面。該基底208的材料不限,可以為具 有一定強度的硬性材料或柔性材料。優選地,該基底208 的材料的電阻應大於該熱致發聲元件102的電阻,且具有 較好的絕熱性能,從而防止該熱致發聲元件102產生的熱 量過多的被該基底208吸收。具體地,所述絕緣材料可以 為玻璃、陶瓷、石英、金剛石、塑膠、樹脂或木質材料 〇 [0041] 本實施例中,所述基底208包括至少一個通孔208a。該通 孔208a的深度為所述基底208的厚度。所述通孔208a的 100112570 表單編號A0101 第16頁/共65頁 1002020939-0 201240483 橫戴面的形狀不限,可以為圓形、正方形、長方形、三 角形,多邊形、工字形、或者不規則圖形。當該基底2〇8 包括複數個通孔2〇8a時,該複數個通孔2〇8a可均勻分佈 、以一定規律分佈或隨機分佈於該基底2〇8。每相鄰兩個 通孔208a的間距不限,優選為1〇〇微米至3毫米。本實施 例中’所述通孔2 〇 8 a為圓柱形’其均勻分佈於基底2 〇 8。 [0042] Ο 该熱致發聲元件102設置於基底208的表面,並相對於基 底208上的通孔2〇8a懸空設置。本實施例中,由於該熱致 發聲元件102位於通孔208a上方的部分懸空設置,該部分 的熱致發聲元件102兩面均與周圍介質接觸,增加了熱致 發聲元件102與周圍氣體或液體介質接觸的面積,並且, 由於該熱致發聲元件102另一部分與該基底2〇8的表面直 接接觸,並通過該基底208支撑,故該熱致發聲元件1〇2 不易被破壞。 [0043] Ο 請參見圖10 ’本發明第三實施例提供一種熱致發聲裝置 30。本實施例所提供的熱致發聲裝置3〇與第二實施例提 供的熱致發聲裝置20的區別在於,本實施例中,該熱致 發聲裝置30的基底308包括至少一個盲槽3〇8a,該盲槽 308a設置於基底308的一個表面308b。所述盲槽3〇8a使 該表面308b形成一凹凸不平的表面。該盲槽3〇8a的深度 小於所述基底308的厚度’該盲槽3〇8a的長度不限。該盲 槽308a在該基底308的表面308b上的形狀可為長方形、 弓形、多邊形、扁圓形或其他不規則形狀。請參閱圖9, 本實施例中,基底308上設置有複數個盲槽3〇8a,該盲槽 308a在基底308的表面308b上的形狀為長方形。請參見 100112570 表單編號A0101 第17頁/共65頁 1002020939-0 201240483 圖11,該盲槽308a在其長度方向上的橫截面為長方形, 即,該盲槽308a為一長方體結構。請參閱圖12,該盲槽 308a在其長度方向上的橫截面為三角形,即,該盲槽 308a為一三棱柱結構。當該基底308的表面308b具有複 數個盲槽時,該複數個盲槽可均勻分佈、以一定規律分 佈或隨機分佈於該基底308的表面308b。請參閱圖12, 相鄰兩個盲槽的槽間距可接近於0,即所述基底308與該 熱致發聲元件102接觸的區域為複數個線。可以理解,在 其他實施例中,通過改變該盲槽308a的形狀,該熱致發 聲元件102與該基底308接觸的區域為複數個點,即該熱 致發聲元件102與該基底308之間可為點接觸、線接觸或 面接觸。 [0044] 本實施例的熱致發聲裝置30中所述基底308包括至少一盲 槽308a。該盲槽可以反射所述熱致發聲元件102發出的聲 波,從而增強所述熱致發聲裝置30在熱致發聲元件102 — 側的發聲強度。當該相鄰的盲槽之間的距離接近於0時, 該基底308既能支撐該熱致發聲元件102,又能使該熱致 發聲元件102具有與周圍介質接觸的最大表面積。 [0045] 可以理解,當該盲槽308a的深度達到某一值時,通過該 盲槽308a反射的聲波會與原聲波產生疊加,從而引起相 消干涉,影響熱致發聲元件102的發聲效果。為避免這一 現象,優選地,該盲槽308a的深度小於等於10毫米。另 外,當該盲槽308a的深度過小,通過基底308懸空設置的 熱致發聲元件102與基底308距離過近,不利於該熱致發 聲元件102的散熱。因此,優選地,該盲槽308a的深度大 100112570 表單編號A0101 第18頁/共65頁 1002020939-0 201240483 • . [0046] 於等於10微米。 請參見圖13及圖14,本發明第四實施例提供一種熱致發 聲裝置40。本實施例所提供的熱致發聲裴置4〇與第二實 施例提供的熱致發聲裝置20的區別在於,本實施例中,' 該熱致發聲裝置40的基底408為一網狀結構。所述美底 408包括複數個第一線狀結構4〇8a及複數個第二線狀纟士構 408b。所述之線狀結構也可以為帶狀或者條狀的結構。 ❹ 〇 該複數個第一線狀結構408a與該複數個第二線狀結構 408b相互交叉設置形成一網狀結構的基底4〇8。所述複數 個第一線狀結構408a可以相互平行,也可以不相互平行 ,所述複數個第二線狀結構408b可以相互平行,也可以 不相互平行,當複數個第一線狀結構408a相互平行,且 複數個第二線狀結構408b相互平行時,具體地,所述複 數個第·一線狀結構408a的抽向均沿第一方向L1延伸,才目 鄰的第一線狀結構408a之間的距離可以相等也可以不等 。相鄰的兩個第一線狀結構408a之間的距離不限,優選 地,其間距小於等於1厘米。本實施例中,該複數個第_ 線狀結構4 0 8 a之間等間距間隔設置,相鄰的兩個第_線 狀結構408a之間的距離為2k米。所述複數個第二線狀結 構4 0 8 b彼此間隔設置且其軸向均基本沿第二方向l 2延伸 ,相鄰的第二線狀結構408b之間的距離可以相等也可以 不等。相鄰的兩個第二線狀結構408b之間的距離不限, 優選地,其間距小於等於1厘米。第一方向L1與第二方向 L2形成一夾角α,α大於0度小於等於90度。本實施例中 ,第一方向L1和第二方向L2之間的夾角為90°。所述複數 100112570 表單編號Α0101 第19頁/共65頁 1002020939-0 201240483 個第一線狀結構408a與該複數個第二線狀結構408b交叉 設置的方式不限。本實施例中,第一線狀結構4〇8a和第 二線狀結構408b相互編織形成一網狀結構。在另一實施 例中,所述複數個間隔設置的第二線狀結構408b接觸設 置於所述複數個第一線狀結構408a的同一側。該複數個 第二線狀結構408b與該複數個第一線狀結構408a的接觸 部可通過黏結劑固定設置,也可以通過焊接的方式固定 設置。當第一線狀結構408a的熔點較低時,也可以通過 熱壓的方式將第二線狀結構408b與第一線狀結構408a固 定設置。 [0047] 所述基底408具有複數個網孔408c。該複數個網孔408c 由相互交叉設置的所述複數個第一線狀結構4〇8a以及複 數個第二線狀結構408b圍成。所述網孔408c為四邊形。 根據該複數個第一線狀結構408a和該複數個第二線狀結 構408b的交叉設置的角度不同,網孔4〇8c可以為正方形 、長方形或菱形。網孔408c的大小由相鄰的兩個第一線 狀結構4 0 8 a之間的距離和相鄰的兩個第二線狀結構4 〇 8匕 之間的距離決定。本實施例中,由於所述複數個第一線 狀結構408a與複數個第二線狀結構4〇8b分別等間距平行 設置,且該複數個第一線狀結構4 0 8 a與該複數個第二線 狀結構4 0 8 b相互垂直’所以網孔4 〇 8 c為正方形,其邊長 為2厘米。 [0048] 所述第一線狀結構408a的直徑不限,優選為10微米~5毫 米。該第一線狀結構4〇8a的材料由絕緣材料製成,該材 料包括纖維、塑膠、樹脂或矽膠等。所述第一線狀結構 100112570 表單編號A0101 第20頁/共65頁 1002020939-0 201240483 Ο 4〇83巧以為紡織材料,具體地,該第一線狀結構408a可 以包括植物纖維、動物纖維、木纖維及礦物纖維中的一 種或多種,如棉線、麻線、毛線、蠶絲線、尼龍線或氨 v等**優選地,該絕緣材料應具有一定的耐熱性質和柔 性,如尼龍或聚酯等。另外,該第一線狀結構408a也可 為外表包有絕緣層的導電絲。該導電絲可以為金屬絲或 暑条沭碳管線狀結構。所述金屬包括金屬單質或者合金 ,该單質金屬可以為鋁、銅、鎢、鉬、金、鈦、鈥、飽 成铯等,該金屬合金可以為上述單質金屬任意組合的合 金。该絕緣層的材料可以為樹脂、塑膠、二氧化石夕或金 廣氧化物等。本實施例中’該第一線狀結構408a為表面 塗覆有二氧化石夕的奈米破管線狀結構,二氧化碎構成的 絕緣層將奈米碳管線狀結構包裹,從而構成該第一線狀 結構408a。 [0049] Ο 所述第二線狀結構4081)的結構和材料與第一線狀結構 4 〇 8 a的結構和材料相同。在同一實施例中,第二線狀結 構4〇8b的結構和材料可以和第一線狀結構408a的結構和 材科相同,也可以不相同。本實施例中’第二線狀結構 4〇8b為表面塗覆有絕緣層的奈米碳營線狀結構。 [0050] 所述条米碳管線狀結構包括至少一根奈米碳管線,該奈 米破管線包括複數個奈米碳管°該奈米碳管可以為單壁 奈水碳管、雙壁奈米碳管、多壁奈米碳管中的一種或幾 種。所述奈米碳管線可以為由複數個奈米碳管組成的純 姑構。當奈米碳管線狀結構包括多根奈米碳管線時,該 多根奈米碳管線可以相互平行設置°當奈米碳管線狀結 100112570 表單编號A0101 第21頁/共65頁 1002020939-0 201240483 構包括多根奈米碳管線時,該多根奈米碳管線可以相互 螺旋纏繞。奈米碳管線狀結構中的多根奈米碳管線也可 以通過黏結劑相互固定。 [0051] 所述奈米碳管線可以為非扭轉的奈米碳管線或扭轉的奈 米碳管線。請參閱圖15,該非扭轉的奈米碳管線包括複 數個沿奈米碳管線長度方向延伸並首尾相連的奈米碳管 。優選地,該非扭轉的奈米碳管線包括複數個奈米碳管 片段,該複數個奈米碳管片段之間通過凡得瓦力首尾相 連,每一奈米碳管片段包括複數個相互平行並通過凡得 瓦力緊密結合的奈米碳管。該奈米碳管片段具有任意的 長度、厚度、均勻性及形狀。該非扭轉的奈米碳管線長 度不限,直徑為0. 5奈米~1 00微米。 [0052] 所述扭轉的奈米碳管線為採用一機械力將所述非扭轉的 奈米碳管線沿相反方向扭轉獲得。請參閱圖16,該扭轉 的奈米碳管線包括複數個繞奈米碳管線軸向螺旋排列的 奈米碳管。優選地,該扭轉的奈米碳管線包括複數個奈 米碳管片段,該複數個奈米碳管片段之間通過凡得瓦力 首尾相連,每一奈米碳管片段包括複數個相互平行並通 過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有 任意的長度、厚度、均勻性及形狀。該扭轉的奈米碳管 線長度不限,直徑為0. 5奈米〜100微米。所述奈米碳管線 及其製備方法請參見范守善等人於民國91年11月05曰申 請的,於民國97年11月21日公告的第130 3239號台灣公 告專利“一種奈米碳管繩及其製造方法”,專利權人: 鴻海精密工業股份有限公司,以及於民國98年7月21日公 100112570 表單編號A0101 第22頁/共65頁 1002020939-0 201240483 [0053] Ο ο [0054] [0055] 100112570 告的第1312337號台灣公告專利“奈米碳管絲及其製作方 法”,專利權人:鴻海精密工業股份有限公司。為節省 篇幅,僅引用於此,但上述申請所有技術揭露也應視為 本發明申請所揭露的一部分。 本實施例所提供的熱致發聲裝置4〇採用網狀結構的基底 408具有以下優點:其一,網狀結構包括複數個網孔,在 給熱致發聲元件102提供支撐的同時,可以使熱致發聲元 件102與周圍介質具有較大的接觸面積。其二,網狀結構 的基底408可以具有較好的柔韌性,因此,熱致發聲裝置 40具有較好的柔韌性。其三,當第一線狀結構4〇詫或/和 第二線狀結構408b包括塗覆有絕緣層的奈米碳管線狀結 構時,奈米碳管線狀結構可以具有較小的直徑,更進一 步增加了熱致發聲元件102與周圍介質的接觸面積;奈米 碳管線狀結構具有較小的密度,因此,熱致發聲裝置4〇 的質量可以較小;奈米碳管線狀結構具有較好的柔韌性 ,可以多次彎折而不被破壞,因此,該熱致發聲裝置4〇 可以具有更長的使用壽命。 請參見圖17,本發明第五實施例提供一種熱致發聲裝置 50。本實施例所提供的熱致發聲裝置5〇與第二實施例提 供的熱致發聲裝置20的區別在於,本實施例中,該熱致 發聲裝置50的基底508為一奈米碳管複合結構。 該奈米碳管複合結構包括一奈米碳管層及塗覆在該奈米 碳管層表面的絕緣材料層。所述奈米碳管層的結構與第 一實施例所揭不的奈米碳管層的結構想同。所述絕緣材 料層位於奈米碳管層的表面,該絕緣材料層的作用為使 表單編號A0101 第23頁/共65頁 201240483 奈米碳管層與熱致發聲元件102相互絕緣。該絕緣材料層 僅分佈於奈米碳管層的表面,或者絕緣材料層包袤奈米 碳管層中的每根奈米碳管。當絕緣材料層的厚度較薄時 ,不會將奈米碳管層中的微孔堵塞,因此,該奈米碳管 複合結構包括複數個微孔。複數個微孔使熱致發聲元件 102與外界接觸面積較大。 [0056] 本實施例所提供的熱致發聲裝置50採用奈米碳管複合結 構作為基底508,具有以下優點:第一,奈米碳管複合結 構包括奈米碳管層和塗覆在奈米碳管層表面的絕緣材料 層,由於奈米碳管層可以由純的奈米碳管組成的結構, 因此,奈米碳管層的密度小,質量相對較輕,因此,熱 致發聲裝置50具有較小的質量,方便應用;第二,奈米 碳管層中的微孔係由奈米碳管之間的間隙構成,分佈均 勻,在絕緣材料層較薄的情況下,奈米碳管複合結構可 以保持該均勻分佈的微孔結構,因此,熱致發聲元件102 通過該基底508可以與外界空氣較均勻地接觸;第三,所 述奈米碳管層具有良好的柔韌性,可以多次彎折而不被 破壞,因此,奈米碳管複合結構具有較好的柔韌性,採 用奈米碳管複合結構作為基底508的熱致發聲裝置50為一 柔性的發聲裝置,可以設置成任何形狀不受限制。 [0057] 請參見圖18及圖19,本發明第六實施例提供一種熱致發 聲裝置60,該熱致發聲裝置60包括一基底608、一致熱裝 置104及一熱致發聲元件102。該致熱裝置104包括複數 個第一電極104a及複數個第二電極104b,所述複數個第 一電極104a和複數個第二電極104b分別和熱致發聲元件 100112570 表單編號A0101 第24頁/共65頁 1002020939-0 201240483 .. 1Q2電連接。該熱致發聲元件1G2包括-石墨婦膜。 [酬所述複數個第一電極1〇^與複數個第二電極1〇仏交替間 隔°又置於基底608。所述熱致發聲元件102設置於該複數 個第電極1〇4a與複數個第二電極104b上,使該複數個 第一電極1〇4a與複數個第二電極104b位於基底608與熱 致么聲疋件102之間,該熱致發聲元件102相對於基底 6ί)8σΡ/7 1'工°即’複數個第-電極lG4a、複數個第二電 極l〇4b熱致發聲元件1()2以及基底刪共同形成有複數 〇 個間隙6〇1,從而使該熱致發聲元件102與周圍空氣產生較 大的接觸面積各個相鄰的第一電極104a與第二電極 104b之間的距離可以相等也可以不相等。優選地,各個 相鄰的第電極1〇4a與第二電極104b之間的距離相等。 相鄰的第一電極lG4a與第二電極104b之間的距離不限, 優選為10微米〜1厘米。 [0059] 〇 所述基底608主要起承載第一電極1〇4a與第二電極1〇4b 的作用〇該基底608的形狀與大小不限,材料為絕緣材料 或導電性差的材料。另外,該基底608的材料應具有較好 的絕熱性能,從而防止該熱致發聲元件102產生的熱量被 該基底608吸收,而無法達到加熱周圍介質進而發聲的目 的。在本實施例中,該基底608的材料可為玻璃、樹脂或 陶瓷等。本實施例中,所述基底608為一正方形的玻璃板 ,其邊長為4. 5厘米,厚度為1毫米。 該間隙601由一個第一電極104a、一個第二電極104b與 基底608定義,該間隙601的高度取決於第一電極l〇4a與 第二電極104b的高度。在本實施例中,第一電極104a與 100112570 表單編號A0101 第25頁/共65頁 1002020939-0 [0060] 201240483 第二電極104b的高度範圍為1微米〜1厘米。優選地,第 一電極104a和第二電極104b的高度為15微米。 [0061] 所述第一電極104a與第二電極104b可為層狀(絲狀或帶 狀)、棒狀、條狀、塊狀或其他形狀,其橫截面的形狀 可為圓型、方型、梯形、三角形、多邊形或其他不規則 形狀。該第一電極104a與第二電極104b可通過螺栓連接 或黏結劑黏結等方式固定於基底608。而為防止熱致發聲 元件102的熱量被第一電極104a與第二電極104b過多吸 收而影響發聲效果,該第一電極104a及第二電極104b與 熱致發聲元件102的接觸面積較小為好,因此,該第一電 極104a和第二電極104b的形狀優選為絲狀或帶狀。該第 一電極104a與第二電極104b材料可選擇為金屬、導電膠 、導電漿料、銦錫氧化物(ITO)、奈米碳管或碳纖維等 。當第一電極104a或第二電極104b的材料為奈米碳管時 ,該第一電極104a或第二電極104b可以為一奈米碳管線 狀結構。該奈米碳管線狀結構的結構與第四實施例提供 的奈米碳管線狀結構相同。由於奈米碳管線狀結構中的 奈米碳管首尾相連,因此,奈米碳管線狀結構具有良好 的導電性,可以用作電極。 [0062] 該熱致發聲裝置60進一步包括一第一電極引線610及一第 二電極引線612,該第一電極引線610與第二電極引線 612分別與熱致發聲裝置60中的第一電極104a和第二電 極104b連接,使複數個第一電極104a分別與該第一電極 引線610電連接,使複數個第二電極104b分別與該第二電 極引線61 2電連接。所述熱致發聲裝置60通過該第一電極 100112570 表單編號Λ0101 第26頁/共65頁 1002020939-0 201240483 [0063] Ο [0064] ❹ [0065] 引線610和第二電極引線61 2與外部電路電連接。這種連 接方式可以使第一電極引線6 1 0和第二電極引線61 2之間 的熱致發聲元件102的方塊電阻大大減小,可以提高熱致 發聲元件102的發聲效率。 本實施例中,複數個第一電極104a和複數個第二電極 104b可以起到支撐熱致發聲元件102的作用,因此,基底 608並非必須的元件。當本實施例中的熱致發聲裝置60不 包括基底608時,第一電極104a和第二電極104b在使熱 致發聲元件102與外部電路電連接的同時,還可以保護和 支撐熱致發聲元件102。 本實施例中,第一電極104a與第二電極1 04b為用絲網印 刷方法形成的絲狀銀電極。第一電極104a數量為四個, 第二電極104b數量為四個,該四個第一電極104a與四個 第二電極104b交替且等間距設置於基底608。每個第一電 極104a與第二電極104b的長度均為3厘米,高度為15微 米,相鄰的第一電極104a與第二電極104b之間的距離為 5毫米。 本實施例提供的熱致發聲裝置60中,熱致發聲元件102通 過複數個第一電極104a和複數個第二電極104b懸空設置 ,增加了熱致發聲元件102與周圍空氣的接觸面積,有利 於熱致發聲元件102與周圍空氣熱交換,提高了發聲效率 〇 請參見圖20和圖21,本發明第七實施例提供一種熱致發 聲裝置70。該熱致發聲裝置70包括一基底608、一致熱裝 100112570 表單編號A0101 第27頁/共65頁 1002020939-0 [0066] 201240483 置104及一熱致發聲元件1〇2。該致熱裝置1〇4包括複數 個第一電極l〇4a及複數個第二電極i〇4b ,所述複數個第 一電極104a和複數個第二電極i〇4b分別和熱致發聲元件 102電連接。該熱致發聲元件丨〇2包括一石墨烯膜。本實 施例所提供的熱致發聲裝置70與第六實施例所提供的熱 致發聲裝置60的結構基本相同,其區別在於,本實施例 中,相鄰的兩個第一電極l〇4a和第二電極i〇4b之間進一 步包括至少一個間隔元件714。 [0067] [0068] 所述間隔元件714與基底608可以為分離的元件,該間隔 兀•件714通過例如螺栓連接或黏結劑黏結等方式固定於基 底608。另外,該間隔元件714也可以與基底6〇8 一體成 型,即間隔元件714的材料與基底6〇8的材料相同。該間 隔元件714的形狀不限,可為球形、絲狀或帶狀結構。為 保持熱致發聲元件102具有良好的發聲效果,該間隔元件 Ή 4在支撐熱致發聲元件102的同時應與熱致發聲元件 102具有較小的接觸面積,優選為該間隔元件714與熱致 發聲元件102之間為點接觸或線接觸。 在本實施例中,該間隔元件714的材料不限,可為玻璃、 陶瓷或樹脂等的絕緣材料,也可為金屬、合金或銦錫氧 化物等的導電材料。當間隔元件714為導電材料時,其與 第一電極104a和第二電極i〇4b電性絕緣,且,優選地, 間隔元件714與第一電極1〇4a和第二電極丨〇4b平行。誃 間隔το件714的高度不限,優選為1〇微米〜〗厘米❶本實施 例中,該間隔元件714為採用絲網印刷方法形成的絲狀銀 ,該間隔元件714的高度與所述第一電極1〇“及第二電極 100112570 表單編號A0101 第28頁/共65頁 1002020939-0 201240483 itHb的高度相同,為20微米。間隔元件714與第一電極 l〇4a和第二電極l〇4b平行設置。由於間隔元件714的高 度與第一電極104a和第二電極104b的高度相同,因此, 所述熱致發聲元件102位於同一平面。 [0069] Ο 所述熱致發聲元件102設置於間隔元件714、第一電極 104a及第二電極104b。該熱致發聲元件102通過該間隔 元件714與基底608間隔設置,且與該基底608形成有一 空間701,該空間701係由所述第一電極l〇4a或所述第二 電極104b、所述間隔元件714、基底608以及熱致發聲元 件102共同形成。進一步地,為防止熱致發聲元件1〇2產 生駐波,保持熱致發聲元件102良好的發聲效果,該熱致 發聲元件102與基底608之間的距離優選為1〇微米〜1厘米 。本實施例中’由於第一電極1〇43、第二電極10扑及間 隔元件714的高度為20微米,所述熱致發聲元件1〇2設置 於第一電極l〇4a、第二電極i〇4b及間隔元件714,因此 ’該熱致發聲元件102與基底608之間的距離為20微米。 Ο [0070] 可以理解,第一電極l〇4a和第二電極104b對熱致發聲元 件102也有一定的支撐作用,但當第一電極104a和第二電 極1〇4b之間的距離較大時,對熱致發聲元件102的支撐效 果不佳,在第一電極l〇4a和第二電極104b之間設置間隔 疋件714 ’可起到較好支撐熱致發聲元件102的作用,使 熱致發聲元件102與基底608間隔設置並與基底608形成 有一空間701 ’從而保證熱致發聲元件102具有良好的發 聲效果。 凊參見圖22,本發明第八實施例提供一種熱致發聲裝置 100112570 1002020939-0 表單編號刪1 第29頁/共65頁 [0071] 201240483 80。該熱致發聲裝置80包括至少一個致熱裝置和複數個 熱致發聲元件。所述複數個熱致發聲元件的情況包括兩 種:第一,該複數個熱致發聲元件的數量為至少兩個, 熱致發聲元件之間沒有相互接觸;第二,該複數個熱致 發聲元件的數量為一個,該熱致發聲元件設置於一具有 曲面的基底上,使其法線方向為複數個或者該熱致發聲 元件彎折後設置於不同的平面上。致熱裝置可以與熱致 發聲元件——對應,也可以一個致熱裝置對應複數個熱 致發聲元件。該致熱裝置也可以為由對應所述複數個熱 致發聲元件的複數個部位組成的一整體結構。本實施例 中,該熱致發聲裝置80包括一第一致熱裝置804、一第二 致熱裝置806、一基底208、一第一熱致發聲元件802a及 一第二熱致發聲元件802b。 [0072] 所述基底208包括一第一表面808a及一第二表面808b。 所述基底208的形狀、尺寸及厚度均不限。所述第一表面 808a和第二表面808b可為平面、曲面或凹凸不平的表面 。第一表面808a和第二表面808b可以為相鄰的兩個表面 ,也可以為相對的兩個表面。本實施例中,所述基底208 為一長方體結構,第一表面808a和第二表面808b為兩個 相對的表面。所述基底208進一步包括複數個通孔810, 該通孔810貫穿於第一表面808a和第二表面808b,從而 使第一表面808a和第二表面808b成為凹凸不平的表面。 所述複數個通孔208a可以相互平行設置。 [0073] 所述第一熱致發聲元件802 a設置於基底208的第一表面 808a上,並相對於該第一表面808a至少部分懸空設置。 100112570 表單編號·Α0101 第30頁/共65頁 1002020939-0 201240483 [0074] ❹[0038] Perform heat dissipation. In this embodiment, the medium is air. The thermo-acoustic device 10 of the present embodiment can be electrically connected to an external circuit through the first electrode 104a and the second electrode 104b, thereby thereby accessing an external signal to sound. Since the thermally-induced sounding element 102 includes the composite film, the composite film has a small heat capacity per unit area and a large heat-dissipating area, and after the heat-generating device 104 inputs a signal to the thermally-sounding element 102, the thermo-acoustic element 102 It can quickly raise and lower temperature, produce periodic temperature changes, and quickly exchange heat with the surrounding medium, so that the density of the surrounding medium changes periodically, and then makes a sound. In short, the thermally audible element 102 of the embodiment of the present invention achieves vocalization by "electric-thermal-acoustic" conversion. Further, the thermoacoustic device 10 is a transparent thermoacoustic device by utilizing the high transmittance of the composite film. The thermal sound generating device 10 of the present embodiment has a sound pressure level greater than 50 decibels per watt of sound pressure level, and the sounding frequency ranges from 1 Hz to 100,000 Hz (i.e., ΙΗζ-lOO kHz). The thermoacoustic device may have a distortion of less than 3% in the frequency range of 500 Hz to 10,000 Hz. In addition, the composite film of the present embodiment has better toughness and mechanical strength, so the graphene film can be conveniently fabricated into the thermo-acoustic device 10 of various shapes and sizes, and the thermo-acoustic device 10 can be conveniently applied to various types. Among the sound-emitting devices, such as audio, mobile phones, MP3, MP4, TV, computers, etc. Referring to Figures 8 and 9, a second embodiment of the present invention provides a thermo-acoustic device 20. The main difference between the thermo-acoustic device 20 provided in this embodiment and the thermo-acoustic device 10 provided in the first embodiment is that the present embodiment 100112570 Form No. A0101 Page 15 / Total 65 Page 1002020939-0 [0039] 201240483 The thermoacoustic device 20 in the example further includes a substrate 208. The thermally audible element 102 is disposed on a surface of the substrate 208. The first electrode 104a and the second electrode 104b are disposed on a surface of the thermoacoustic element 102. The relationship between the thermoacoustic element 102 of the present embodiment and the substrate may be: first, the at least one carbon nanotube layer is disposed between the substrate 208 and the at least one graphene film; and second, the at least one graphene film Between the substrate 208 and the at least one carbon nanotube layer; third, when the composite film comprises a plurality of layers of carbon nanotubes and a plurality of layers of graphene are alternately arranged, the carbon nanotube layer is in direct contact with the substrate 208 Or the graphene film is in direct contact with the substrate 208. The carbon nanotube layer has the same structure as the carbon nanotube layer disclosed in the first embodiment. In the present embodiment, the thermoacoustic element 102 includes a layer of carbon nanotube film and a layer of graphene disposed between the graphene and the substrate 208. Since the graphene itself is relatively dense, the graphene is located on the carbon nanotube film, and the thermoacoustic element 102 can have a larger contact area with the external medium. [0040] The shape, size and thickness of the substrate 208 are not limited, and the surface of the substrate 208 may be a flat surface or a curved surface. The material of the substrate 208 is not limited and may be a hard material or a flexible material having a certain strength. Preferably, the material of the substrate 208 should have a higher electrical resistance than the thermo-acoustic element 102 and have better thermal insulation properties to prevent excessive heat generated by the thermo-acoustic element 102 from being absorbed by the substrate 208. Specifically, the insulating material may be glass, ceramic, quartz, diamond, plastic, resin or wood material. [0041] In this embodiment, the substrate 208 includes at least one through hole 208a. The depth of the via 208a is the thickness of the substrate 208. 100112570 of the through hole 208a Form No. A0101 Page 16 of 65 1002020939-0 201240483 The shape of the cross surface is not limited and may be a circle, a square, a rectangle, a triangle, a polygon, an I-shape, or an irregular figure. When the substrate 2〇8 includes a plurality of through holes 2〇8a, the plurality of through holes 2〇8a may be uniformly distributed, distributed in a regular pattern or randomly distributed to the substrate 2〇8. The spacing of each adjacent two through holes 208a is not limited, and is preferably from 1 μm to 3 mm. In the present embodiment, the through holes 2 〇 8 a are cylindrical, which are uniformly distributed on the substrate 2 〇 8. [0042] The thermo-acoustic element 102 is disposed on the surface of the substrate 208 and is suspended relative to the through hole 2〇8a on the base 208. In this embodiment, since the portion of the thermo-acoustic element 102 located above the through hole 208a is suspended, the portions of the thermo-acoustic element 102 are in contact with the surrounding medium, and the thermo-acoustic element 102 and the surrounding gas or liquid medium are added. The area of the contact, and since the other portion of the thermo-acoustic element 102 is in direct contact with the surface of the substrate 2〇8 and supported by the substrate 208, the thermo-acoustic element 1〇2 is not easily broken. [0043] Referring to FIG. 10, a third embodiment of the present invention provides a thermo-acoustic device 30. The difference between the thermo-acoustic device 3A provided in this embodiment and the thermo-acoustic device 20 provided in the second embodiment is that, in this embodiment, the substrate 308 of the thermo-acoustic device 30 includes at least one blind slot 3〇8a. The blind groove 308a is disposed on one surface 308b of the substrate 308. The blind groove 3〇8a causes the surface 308b to form an uneven surface. The depth of the blind groove 3〇8a is smaller than the thickness of the substrate 308. The length of the blind groove 3〇8a is not limited. The shape of the blind groove 308a on the surface 308b of the substrate 308 may be rectangular, arcuate, polygonal, oblate, or other irregular shape. Referring to FIG. 9, in the embodiment, the substrate 308 is provided with a plurality of blind grooves 3〇8a, and the blind grooves 308a have a rectangular shape on the surface 308b of the substrate 308. See 100112570 Form No. A0101 Page 17 of 65 1002020939-0 201240483 In Fig. 11, the blind groove 308a has a rectangular cross section in the longitudinal direction thereof, that is, the blind groove 308a has a rectangular parallelepiped structure. Referring to Fig. 12, the blind groove 308a has a triangular cross section in its longitudinal direction, i.e., the blind groove 308a is a triangular prism structure. When the surface 308b of the substrate 308 has a plurality of blind grooves, the plurality of blind grooves may be uniformly distributed, distributed in a regular pattern, or randomly distributed on the surface 308b of the substrate 308. Referring to FIG. 12, the groove pitch of two adjacent blind grooves may be close to zero, that is, the area where the substrate 308 is in contact with the thermo-acoustic element 102 is a plurality of lines. It can be understood that in other embodiments, by changing the shape of the blind groove 308a, the area where the thermo-acoustic element 102 contacts the substrate 308 is a plurality of points, that is, between the thermo-acoustic element 102 and the substrate 308. For point contact, line contact or face contact. [0044] The substrate 308 in the thermoacoustic device 30 of the present embodiment includes at least one blind groove 308a. The blind groove can reflect the sound waves emitted by the thermoacoustic element 102, thereby enhancing the vocal intensity of the thermoacoustic device 30 on the side of the thermoacoustic element 102. When the distance between the adjacent blind grooves is close to zero, the substrate 308 can support both the thermally audible element 102 and the maximum surface area of the thermo-acoustic element 102 in contact with the surrounding medium. [0045] It can be understood that when the depth of the blind groove 308a reaches a certain value, the sound wave reflected by the blind groove 308a is superimposed with the original sound wave, thereby causing destructive interference and affecting the sounding effect of the thermo-acoustic element 102. To avoid this, it is preferable that the blind groove 308a has a depth of 10 mm or less. In addition, when the depth of the blind groove 308a is too small, the thermo-acoustic element 102 suspended by the substrate 308 is too close to the substrate 308, which is disadvantageous for heat dissipation of the thermo-acoustic element 102. Therefore, preferably, the depth of the blind groove 308a is large 100112570 Form No. A0101 Page 18 of 65 1002020939-0 201240483 • [0046] Equal to 10 microns. Referring to Figures 13 and 14, a fourth embodiment of the present invention provides a thermally induced acoustic device 40. The thermoacoustic device 4 of the present embodiment is different from the thermoacoustic device 20 of the second embodiment in that, in this embodiment, the base 408 of the thermoacoustic device 40 is a mesh structure. The bottom 408 includes a plurality of first linear structures 4〇8a and a plurality of second linear gentlemen 408b. The linear structure may also be a strip or strip structure.复 〇 The plurality of first linear structures 408a and the plurality of second linear structures 408b are disposed to intersect each other to form a substrate 4〇8 having a mesh structure. The plurality of first linear structures 408a may or may not be parallel to each other, and the plurality of second linear structures 408b may or may not be parallel to each other when the plurality of first linear structures 408a are mutually When the plurality of second linear structures 408b are parallel to each other, specifically, the pumping directions of the plurality of first linear structures 408a extend in the first direction L1 to be adjacent to the first linear structure 408a. The distance between them can be equal or unequal. The distance between the adjacent two first linear structures 408a is not limited, and preferably, the pitch is 1 cm or less. In this embodiment, the plurality of _ linear structures 4 0 8 a are equally spaced apart, and the distance between the adjacent two _ linear structures 408a is 2 k meters. The plurality of second linear structures 4 0 8 b are spaced apart from each other and extend substantially in the second direction l 2 in the axial direction, and the distance between the adjacent second linear structures 408b may be equal or unequal. The distance between the adjacent two second linear structures 408b is not limited, and preferably, the pitch is less than or equal to 1 cm. The first direction L1 forms an angle α with the second direction L2, and α is greater than 0 degrees and less than or equal to 90 degrees. In this embodiment, the angle between the first direction L1 and the second direction L2 is 90°. The plural number 100112570 Form No. Α 0101 Page 19 / Total 65 pages 1002020939-0 201240483 The manner in which the first linear structures 408a are arranged to intersect the plurality of second linear structures 408b is not limited. In this embodiment, the first linear structure 4〇8a and the second linear structure 408b are woven with each other to form a mesh structure. In another embodiment, the plurality of spaced apart second linear structures 408b are disposed on the same side of the plurality of first linear structures 408a. The contact portion of the plurality of second linear structures 408b and the plurality of first linear structures 408a may be fixed by a bonding agent or may be fixed by soldering. When the melting point of the first linear structure 408a is low, the second linear structure 408b and the first linear structure 408a may be fixedly disposed by heat pressing. [0047] The substrate 408 has a plurality of meshes 408c. The plurality of meshes 408c are surrounded by the plurality of first linear structures 4?8a and the plurality of second linear structures 408b which are disposed to intersect each other. The mesh 408c is quadrangular. The mesh 4〇8c may be square, rectangular or rhombic depending on the angle at which the plurality of first linear structures 408a and the plurality of second linear structures 408b are disposed at intersections. The size of the mesh 408c is determined by the distance between the adjacent two first linear structures 4 0 8 a and the distance between the adjacent two second linear structures 4 〇 8 。. In this embodiment, the plurality of first linear structures 408a and the plurality of second linear structures 4〇8b are disposed in parallel at equal intervals, and the plurality of first linear structures 4 0 8 a and the plurality of The second linear structure 4 0 8 b is perpendicular to each other 'so the mesh 4 〇 8 c is square and has a side length of 2 cm. [0048] The diameter of the first linear structure 408a is not limited, and is preferably 10 micrometers to 5 millimeters. The material of the first linear structure 4A8a is made of an insulating material including fibers, plastics, resins or silicones. The first linear structure 100112570 Form No. A0101 Page 20 / 65 pages 1002020939-0 201240483 Ο 4〇83 is a textile material, in particular, the first linear structure 408a may include plant fibers, animal fibers, wood One or more of fiber and mineral fiber, such as cotton thread, twine, wool, silk thread, nylon thread or ammonia v, etc. Preferably, the insulating material should have certain heat resistance and flexibility, such as nylon or polyester. . Alternatively, the first linear structure 408a may be a conductive wire having an insulating layer on its outer surface. The conductive filament may be a wire or a hot bar carbon line structure. The metal includes a metal element or an alloy, and the elemental metal may be aluminum, copper, tungsten, molybdenum, gold, titanium, tantalum, saturated tantalum or the like, and the metal alloy may be an alloy of any combination of the above elemental metals. The material of the insulating layer may be resin, plastic, silica dioxide or gold oxide. In the present embodiment, the first linear structure 408a is a nano-crushed pipeline structure having a surface coated with a cerium oxide, and the insulating layer composed of the oxidized granules wraps the nanocarbon line-like structure to constitute the first Linear structure 408a. [0049] The structure and material of the second linear structure 4081) are the same as those of the first linear structure 4 〇 8 a . In the same embodiment, the structure and material of the second linear structure 4〇8b may be the same as or different from the structure and material of the first linear structure 408a. In the present embodiment, the 'second linear structure 4' 8b is a nano carbon camp line-like structure whose surface is coated with an insulating layer. [0050] The strip-meter carbon pipeline structure comprises at least one nano carbon pipeline, and the nano-crush pipeline comprises a plurality of carbon nanotubes. The carbon nanotubes may be single-walled carbon nanotubes or double-walled naphthalenes. One or more of carbon nanotubes and multi-walled carbon nanotubes. The nanocarbon line may be a pure constitutive composed of a plurality of carbon nanotubes. When the nanocarbon pipeline structure includes a plurality of nano carbon pipelines, the plurality of nanocarbon pipelines may be arranged in parallel with each other. When the nanocarbon pipeline junction 100112570 Form No. A0101 Page 21 / 65 pages 1002020939-0 When the 201240483 structure includes a plurality of nano carbon lines, the plurality of nano carbon lines can be spirally wound with each other. The plurality of carbon nanotubes in the nanocarbon line-like structure can also be fixed to each other by a binder. [0051] The nanocarbon line may be a non-twisted nano carbon line or a twisted carbon carbon line. Referring to Fig. 15, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes extending along the length of the nanocarbon pipeline and connected end to end. Preferably, the non-twisted nanocarbon pipeline comprises a plurality of carbon nanotube segments, the plurality of carbon nanotube segments being connected end to end by van der Waals, and each of the carbon nanotube segments comprises a plurality of mutually parallel and A carbon nanotube that is tightly bonded by van der Waals. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米至1 00微米。 The non-twisted nano carbon line length is not limited, the diameter is 0. 5 nm ~ 1 00 microns. [0052] The twisted nanocarbon line is obtained by twisting the non-twisted nanocarbon line in the opposite direction using a mechanical force. Referring to Figure 16, the twisted nanocarbon line includes a plurality of carbon nanotubes arranged axially helically around the carbon nanotube line. Preferably, the twisted nanocarbon pipeline comprises a plurality of carbon nanotube segments, the plurality of carbon nanotube segments being connected end to end by van der Waals, and each of the carbon nanotube segments comprises a plurality of mutually parallel and A carbon nanotube that is tightly bonded by van der Waals. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米〜100微米。 The twisted carbon nanotubes are not limited in length, the diameter is 0. 5 nanometers ~ 100 microns. The nano carbon pipeline and its preparation method can be found in Fan Shoushan et al., November 05, 1991. The Taiwan Patent No. 130 3239 announced on November 21, 1997, "a carbon nanotube rope." And its manufacturing method", the patentee: Hon Hai Precision Industry Co., Ltd., and July 21, 1998, public 100112570 Form No. A0101 Page 22 / Total 65 pages 1002020939-0 201240483 [0053] Ο ο [0054] [0055] 100112570 Taiwan No. 1312337 Announced Patent "Nano Carbon Tube Wire and Its Manufacturing Method", patentee: Hon Hai Precision Industry Co., Ltd. In order to save space, only the above is cited, but all the technical disclosures of the above application should also be considered as part of the disclosure of the present application. The substrate 408 of the thermo-acoustic device 4 网 provided by the embodiment has the following advantages: First, the mesh structure includes a plurality of meshes, which can provide heat while supporting the thermo-acoustic component 102. The sound producing element 102 has a large contact area with the surrounding medium. Second, the base 408 of the mesh structure can have better flexibility, and therefore, the thermo-acoustic device 40 has better flexibility. Third, when the first linear structure 4 or/and the second linear structure 408b includes a nanocarbon line-like structure coated with an insulating layer, the nanocarbon line-like structure may have a smaller diameter and Further increasing the contact area of the thermo-acoustic element 102 with the surrounding medium; the nanocarbon line-like structure has a smaller density, and therefore, the mass of the thermo-acoustic device 4 可以 can be smaller; the nano-carbon line-like structure is better The flexibility can be bent multiple times without being destroyed, so that the thermo-acoustic device 4 can have a longer service life. Referring to Figure 17, a fifth embodiment of the present invention provides a thermally induced sound generating device 50. The difference between the thermo-acoustic device 5〇 provided in this embodiment and the thermo-acoustic device 20 provided in the second embodiment is that, in the embodiment, the base 508 of the thermo-acoustic device 50 is a carbon nanotube composite structure. . The carbon nanotube composite structure includes a carbon nanotube layer and an insulating material layer coated on the surface of the carbon nanotube layer. The structure of the carbon nanotube layer is the same as that of the carbon nanotube layer disclosed in the first embodiment. The insulating material layer is located on the surface of the carbon nanotube layer, and the insulating material layer functions to insulate the carbon nanotube layer from the thermoacoustic element 102 from Form No. A0101. The layer of insulating material is only distributed on the surface of the carbon nanotube layer, or the layer of insulating material surrounds each of the carbon nanotube layers in the carbon nanotube layer. When the thickness of the insulating material layer is thin, the micropores in the carbon nanotube layer are not blocked, and therefore, the carbon nanotube composite structure includes a plurality of micropores. The plurality of micropores provide a large contact area of the thermoacoustic element 102 with the outside. [0056] The thermo-acoustic device 50 provided in this embodiment adopts a carbon nanotube composite structure as the substrate 508, and has the following advantages: First, the carbon nanotube composite structure includes a carbon nanotube layer and is coated on the nanometer. The insulating material layer on the surface of the carbon tube layer, because the carbon nanotube layer can be composed of pure carbon nanotubes, the density of the carbon nanotube layer is small and the quality is relatively light, therefore, the thermo-acoustic device 50 The utility model has the advantages of small mass and convenient application; secondly, the microporous system in the carbon nanotube layer is composed of a gap between the carbon nanotubes, and the distribution is uniform, and in the case where the insulating material layer is thin, the carbon nanotube composite The structure can maintain the uniformly distributed microporous structure, so that the thermo-acoustic element 102 can be more uniformly contacted with the outside air through the substrate 508; third, the carbon nanotube layer has good flexibility and can be repeatedly The bend is not broken, so the carbon nanotube composite structure has better flexibility, and the thermo-acoustic device 50 using the carbon nanotube composite structure as the substrate 508 is a flexible sounding device, which can be set to any Like unlimited. Referring to FIG. 18 and FIG. 19, a sixth embodiment of the present invention provides a thermo-acoustic device 60. The thermo-acoustic device 60 includes a substrate 608, a uniform thermal device 104, and a thermo-acoustic component 102. The heating device 104 includes a plurality of first electrodes 104a and a plurality of second electrodes 104b, and the plurality of first electrodes 104a and the plurality of second electrodes 104b are respectively associated with the thermoacoustic element 100112570 Form No. A0101 Page 24 65 pages 1002020939-0 201240483 .. 1Q2 electrical connection. The thermoacoustic element 1G2 comprises a graphite film. [The plurality of first electrodes 1〇^ and the plurality of second electrodes 1〇仏 are alternately placed on the substrate 608. The thermo-acoustic element 102 is disposed on the plurality of first electrodes 1〇4a and the plurality of second electrodes 104b, so that the plurality of first electrodes 1〇4a and the plurality of second electrodes 104b are located on the substrate 608 and thermally induced. Between the sonar members 102, the thermoacoustic element 102 is 8σΡ/7 1'°° with respect to the substrate, that is, 'a plurality of first electrodes 1G4a, and a plurality of second electrodes 10b 4b thermally igniting elements 1()2 And the substrate is collectively formed with a plurality of gaps 6〇1, so that the thermo-acoustic element 102 generates a large contact area with the surrounding air, and the distance between each adjacent first electrode 104a and the second electrode 104b can be Equality can also be unequal. Preferably, the distance between each of the adjacent first electrodes 1a, 4a and the second electrodes 104b is equal. The distance between the adjacent first electrode 1G4a and the second electrode 104b is not limited, and is preferably 10 μm to 1 cm. [0059] The substrate 608 mainly functions to carry the first electrode 1〇4a and the second electrode 1〇4b. The shape and size of the substrate 608 are not limited, and the material is an insulating material or a material having poor conductivity. In addition, the material of the substrate 608 should have better thermal insulation properties, thereby preventing the heat generated by the thermoacoustic element 102 from being absorbed by the substrate 608, and failing to achieve the purpose of heating the surrounding medium and then vocalizing. In this embodiment, the material of the substrate 608 may be glass, resin or ceramic or the like. In this embodiment, the substrate 608 is a square glass plate having a side length of 4.5 cm and a thickness of 1 mm. The gap 601 is defined by a first electrode 104a, a second electrode 104b and a substrate 608, the height of which depends on the height of the first electrode 104a and the second electrode 104b. In the present embodiment, the first electrodes 104a and 100112570 form number A0101 page 25/65 pages 1002020939-0 [0060] 201240483 The height of the second electrode 104b ranges from 1 micrometer to 1 centimeter. Preferably, the height of the first electrode 104a and the second electrode 104b is 15 microns. [0061] The first electrode 104a and the second electrode 104b may be layered (filament or strip), rod, strip, block or other shape, and the cross section may be round or square. , trapezoids, triangles, polygons, or other irregular shapes. The first electrode 104a and the second electrode 104b may be fixed to the substrate 608 by bolting or bonding of a bonding agent or the like. In order to prevent the heat of the thermo-acoustic element 102 from being excessively absorbed by the first electrode 104a and the second electrode 104b, the contact area of the first electrode 104a and the second electrode 104b with the thermo-acoustic element 102 is small. Therefore, the shape of the first electrode 104a and the second electrode 104b is preferably a filament shape or a ribbon shape. The material of the first electrode 104a and the second electrode 104b may be selected from a metal, a conductive paste, a conductive paste, indium tin oxide (ITO), a carbon nanotube or a carbon fiber. When the material of the first electrode 104a or the second electrode 104b is a carbon nanotube, the first electrode 104a or the second electrode 104b may have a nanocarbon line structure. The structure of the nanocarbon line-like structure is the same as that of the nanocarbon line-like structure provided in the fourth embodiment. Since the carbon nanotubes in the nanocarbon line-like structure are connected end to end, the nanocarbon line-like structure has good electrical conductivity and can be used as an electrode. [0062] The thermo-acoustic device 60 further includes a first electrode lead 610 and a second electrode lead 612. The first electrode lead 610 and the second electrode lead 612 are respectively associated with the first electrode 104a of the thermo-acoustic device 60. The second electrode 104b is connected to the second electrode 104b, and the plurality of first electrodes 104a are electrically connected to the first electrode lead 610, and the plurality of second electrodes 104b are electrically connected to the second electrode lead 61 2, respectively. The thermo-acoustic device 60 passes the first electrode 100112570 Form No. 1010101 Page 26/65 Page 1002020939-0 201240483 [0064] 006 [0065] Lead 610 and second electrode lead 61 2 and external circuit Electrical connection. This connection can greatly reduce the sheet resistance of the thermally-induced acoustic element 102 between the first electrode lead 610 and the second electrode lead 61 2, and can improve the vocal efficiency of the thermo-acoustic element 102. In this embodiment, the plurality of first electrodes 104a and the plurality of second electrodes 104b can function to support the thermoacoustic element 102, and therefore, the substrate 608 is not an essential component. When the thermo-acoustic device 60 in this embodiment does not include the substrate 608, the first electrode 104a and the second electrode 104b can also protect and support the thermo-acoustic component while electrically connecting the thermo-acoustic element 102 to an external circuit. 102. In this embodiment, the first electrode 104a and the second electrode 104b are filamentary silver electrodes formed by a screen printing method. The number of the first electrodes 104a is four, and the number of the second electrodes 104b is four. The four first electrodes 104a and the four second electrodes 104b are alternately and equally spaced on the substrate 608. Each of the first electrode 104a and the second electrode 104b has a length of 3 cm and a height of 15 μm, and a distance between the adjacent first electrode 104a and the second electrode 104b is 5 mm. In the thermo-acoustic device 60 provided in this embodiment, the thermo-acoustic element 102 is suspended by the plurality of first electrodes 104a and the plurality of second electrodes 104b, which increases the contact area between the thermo-acoustic element 102 and the surrounding air, which is advantageous. The heat-induced sounding element 102 is heat-exchanged with the surrounding air to improve the sounding efficiency. Referring to Figures 20 and 21, a seventh embodiment of the present invention provides a thermo-acoustic sounding device 70. The thermoacoustic device 70 includes a base 608, a uniform hot pack 100112570, a form number A0101, a page 27 of 65, a 1002020939-0 [0066] 201240483 set 104 and a thermal sounding element 1〇2. The heating device 1〇4 includes a plurality of first electrodes 104a and a plurality of second electrodes i〇4b, and the plurality of first electrodes 104a and the plurality of second electrodes i〇4b and the thermo-acoustic element 102, respectively Electrical connection. The thermoacoustic element 丨〇2 includes a graphene film. The structure of the thermo-acoustic device 70 provided in this embodiment is substantially the same as that of the thermo-acoustic device 60 provided in the sixth embodiment, except that in the present embodiment, two adjacent first electrodes 104a and At least one spacer element 714 is further included between the second electrodes i〇4b. [0068] The spacer element 714 and the substrate 608 may be separate components that are secured to the substrate 608 by, for example, bolting or adhesive bonding. Alternatively, the spacer element 714 can be integrally formed with the substrate 6A, i.e., the spacer element 714 is made of the same material as the substrate 6A8. The spacer element 714 is not limited in shape and may be in the form of a sphere, a filament or a ribbon. In order to maintain the sound-emitting element 102 with a good sounding effect, the spacer element Ή 4 should have a small contact area with the thermally-induced sound-emitting element 102 while supporting the thermally-sounding element 102, preferably the spacer element 714 and the heat-induced element The sounding elements 102 are in point or line contact. In the present embodiment, the material of the spacer member 714 is not limited, and may be an insulating material such as glass, ceramic or resin, or a conductive material such as a metal, an alloy or an indium tin oxide. When the spacer member 714 is a conductive material, it is electrically insulated from the first electrode 104a and the second electrode i4b, and, preferably, the spacer member 714 is parallel to the first electrode 1a4a and the second electrode 4b. The height of the 誃 spacer τ 714 is not limited, and is preferably 1 〇 micrometer to 〖 centimeter. In the embodiment, the spacer element 714 is a filamentary silver formed by a screen printing method, and the height of the spacer element 714 is the same as the first One electrode 1" and the second electrode 100112570 Form No. A0101 Page 28 / Total 65 pages 1002020939-0 201240483 The height of the itHb is the same, 20 microns. The spacer element 714 and the first electrode 104a and the second electrode 10b4b Parallelly disposed. Since the height of the spacer element 714 is the same as the height of the first electrode 104a and the second electrode 104b, the thermoacoustic elements 102 are located in the same plane. [0069] The thermoacoustic element 102 is disposed at intervals The element 714, the first electrode 104a and the second electrode 104b. The thermo-acoustic element 102 is spaced apart from the substrate 608 by the spacer element 714, and a space 701 is formed with the substrate 608, and the space 701 is formed by the first electrode. L〇4a or the second electrode 104b, the spacer element 714, the substrate 608, and the thermo-acoustic element 102 are formed together. Further, in order to prevent the thermo-acoustic element 1〇2 from generating standing waves, the heat generation is maintained. The acoustic element 102 has a good sounding effect, and the distance between the thermo-acoustic element 102 and the substrate 608 is preferably 1 μm to 1 cm. In the present embodiment, the first electrode 1〇43 and the second electrode 10 are spaced apart. The height of the element 714 is 20 micrometers, and the thermo-acoustic element 1〇2 is disposed on the first electrode 104a, the second electrode i〇4b, and the spacer element 714, thus between the thermo-acoustic element 102 and the substrate 608 The distance is 20 μm. [0070] It can be understood that the first electrode 104a and the second electrode 104b also have a certain supporting effect on the thermo-acoustic element 102, but when the first electrode 104a and the second electrode 1〇4b are When the distance between the two is large, the supporting effect on the thermoacoustic element 102 is not good, and the spacer 714' is disposed between the first electrode 104a and the second electrode 104b to better support the thermoacoustic element 102. The effect is that the thermo-acoustic element 102 is spaced from the substrate 608 and forms a space 701 ' with the substrate 608 to ensure that the thermo-acoustic element 102 has a good vocal effect. Referring to Figure 22, an eighth embodiment of the present invention provides a heat. Acoustic device 100112570 1002020939-0 Form No. 1 Page 29 of 65 [0071] 201240483 80. The thermoacoustic device 80 includes at least one heating device and a plurality of thermoacoustic elements. The condition of the plurality of thermoacoustic elements There are two types: first, the number of the plurality of thermo-acoustic elements is at least two, and the thermo-acoustic elements are not in contact with each other; secondly, the number of the plurality of thermo-acoustic elements is one, the thermo-acoustic The component is disposed on a substrate having a curved surface such that a plurality of normal directions are formed or the thermo-acoustic component is bent and disposed on different planes. The heating means may correspond to the thermo-acoustic element - or a heating means may correspond to a plurality of thermal-sounding elements. The heating means may also be a unitary structure consisting of a plurality of portions corresponding to the plurality of thermally audible elements. In this embodiment, the thermo-acoustic device 80 includes a first heating device 804, a second heating device 806, a substrate 208, a first thermo-acoustic component 802a, and a second thermo-acoustic component 802b. [0072] The substrate 208 includes a first surface 808a and a second surface 808b. The shape, size and thickness of the substrate 208 are not limited. The first surface 808a and the second surface 808b may be planar, curved or rugged surfaces. The first surface 808a and the second surface 808b may be two adjacent surfaces or may be opposite surfaces. In this embodiment, the substrate 208 has a rectangular parallelepiped structure, and the first surface 808a and the second surface 808b are two opposite surfaces. The substrate 208 further includes a plurality of through holes 810 extending through the first surface 808a and the second surface 808b such that the first surface 808a and the second surface 808b become uneven surfaces. The plurality of through holes 208a may be disposed in parallel with each other. [0073] The first thermo-acoustic component 802a is disposed on the first surface 808a of the substrate 208 and is at least partially suspended relative to the first surface 808a. 100112570 Form No. · Α 0101 Page 30 / Total 65 1002020939-0 201240483 [0074] ❹

[0075] 所述第二熱致發聲元件802b設置於第二表面808b上,並 相對於第二表面808b至少部分懸空設置。所述第一熱致 發聲元件802a為一複合膜,該複合膜與第一實施例所揭 示的複合膜的性質相同。所述第二熱致發聲元件802b為 一石墨稀膜、一奈米碳管層或該複合膜。所述奈米碳管 層的結構與第一實施例中所揭示的奈米碳管層的結構相 同。 所述第一致熱裝置804包括一第一電極104a及一第二電極 104b。所述第一電極104a和第二電極104b分別與該第一 熱致發聲元件802a電連接。本實施例中,第一電極104a 和第二電極104b分別設置於第一熱致發聲元件802a的表 面,並與該第一熱致發聲元件802a的兩個相對的邊齊平 。所述第二致熱裝置806包括一第一電極104a及一第二電 極104b。所述第一電極104a和第二電極104b分別與該第 二熱致發聲元件802b電連接。本實施例中,第一電極 104a和第二電極104b分別設置於第二熱致發聲元件802b 的表面,並與該第一熱致發聲元件802a的兩個相對的邊 齊平。 本實施例所提供的熱致發聲裝置80為雙面發聲裝置,通 過在兩個不同的表面上設置熱致發聲元件,可以使熱致 發聲元件所發出的聲音傳播範圍更大且更清晰。可以通 過控制致熱裝置選擇讓任何一個熱致發聲元件發出聲音 ,或者同時發出聲音,使該熱致發聲裝置的使用範圍更 加廣泛。進一步地,當一個熱致發聲元件出現故障時, 另一個熱致發聲元件可以繼續工作,提高了該熱致發聲 100112570 表單編號A0101 第31頁/共65頁 1002020939-0 201240483 裝置的使用壽命。 [0076] 請參見圖23,本發明第九實施例提供一種熱致發聲裝置 90。所述熱致發聲裝置90包括一基底908,複數個熱致發 聲元件102及複數個致熱裝置104。所述基底908包括複 數個表面(圖未標),每個熱致發聲元件102對應設置於 一個表面上,熱致發聲元件102和致熱裝置104為——對 應關係。本實施例所提供的熱致發聲裝置90與第八實施 例提供的熱致發聲裝置80的結構基本相同,其區別在於 ,本實施例所提供的熱致發聲裝置90為一多面發聲裝置 〇 [0077] 本實施例中,所述基底908為一長方體結構,其包括四個 不同的表面,該四個不同的表面為凹凸不平的表面。所 述熱致發聲裝置90包括四個熱致發聲元件102,其中至少 一個熱致發聲元件10 2為一複合膜,另外的熱致發聲元件 102可以為石墨烯膜或者奈米碳管層。 [0078] 每個致熱裝置104分別包括一個第一電極104a和一個第二 電極104b。第一電極104a和第二電極104b分別與一個熱 致發聲元件102電連接。 [0079] 本實施例所提供的熱致發聲裝置90可以實現向複數個方 向傳播聲音。 [0080] 請參見圖24,本發明第十實施例提供一種熱致發聲裝置 100。該熱致發聲裝置100包括一熱致發聲元件102、一 基底208及一致熱裝置1 004。所述熱致發聲元件102設置 於所述基底208。本實施例所提供的熱致發聲裝置100與 100112570 表單編號A0101 第32頁/共65頁 1002020939-0 201240483 [0081] ❹ [0082] ❹ [0083] 100112570 第二實施例提供的熱致發聲裝置20的結構基本相同,其 區別在於,本實施例所提供的熱致發聲裝置100中,致熱 裝置1004為一雷射器,或其他電磁波信號發聲裝置。從 該致熱裝置1004發出的電磁波信號1〇2〇傳遞至該熱致發 聲元件102,該熱致發聲元件102發聲。 該致熱裝置1004可正對該熱致發聲元件1〇2設置。當致熱 裝置1 004為一雷射器時,當該基底208為透明基板時,該 雷射器可對應於該基底208遠離該熱致發聲元件1〇2的表 面設置,從而使從雷射器發出的雷射穿過基底208傳遞至 該熱致發聲元件102。另外’當該致熱裝置1〇〇4發出的係 一電磁波信號時’該電磁波信號可透過基底208傳遞至該 熱致發聲元件102 ’此時’該致熱裝置1〇〇4也可以對應於 該基底208遠離該熱致發聲元件102的表面設置。 本實施例的熱致發聲裝置100中,當熱致發聲元件102受 到如雷射等電磁波的照射時’該熱致發聲元件102因吸收 電磁波的能量而受激發,並通過非輻射使吸收的光能全 部或部分轉變為熱。該熱致發聲元件102溫度根據電磁波 信號1020頻率及強度的變化而變化,並和周圍的空氣或 其他氣體或液體介質進行迅速的熱交換,從而使其周圍 介質的溫度也產生等頻率的變化,造成周圍介質迅速的 膨脹和收縮,從而發出聲音。 由於該熱致發聲裝置的工作原理為將一定形式的能量以 極快的速度轉換為熱量,並和周圍氣體或液體介質進行 快速的熱交換,從而使該介質膨脹及收縮,從而發出聲 音。可以理解,所述能量形式不局限於電能或光能’該 表單编號A0101 第33頁/共65頁 1002020939-0 201240483 致熱裝置也不局限於上述實施例中的電極或電磁波信號 發生器,任何可以使該熱致發聲讀發熱,並按照音頻 變化加熱周圍介質㈣置均可看作_致㈣置,並在本 發明保護範圍内。 [0084] 本發明中的複合膜具有較好的㈣和機械強度,所以複 合膜可方便地製成各種形狀和尺寸的熱致發聲裝置。本 發明的熱致發縣W僅單料以料揚聲ϋ使用,也 可方便地應用於各種需要發聲裝置的電子裝置中。該熱 致發聲裝置可以内置於電子裝置殼體中或者殼體外表面 ,作為電子裝置的發聲單元。該熱致發聲裝置可以取代 電子裝置的傳統的發聲單元,也可以與傳統發聲單元組 合使用。該熱致發聲裝置可以與電子裝置的其他電子元 件公用電源或公用處理器等,也可以通過有線或無線的 方式與電子裝置連接’有線的方式比如通過信號傳輸線 與電子裝置的USB介面等結合,無線的方式比如通過藍牙 方式與電子裝置連接。軸致發聲裝置也可以安裝或集 成在電子裝置的顯示幕上,作為電子裳置的發聲單元。 該電子裝置可以為音響、手機、Mp3、Mp4、遊戲機、數 碼相機、數碼攝像機、電視或電腦等。例如,當電子裝 置為手機時’由於本實施例提供的熱致發縣置為一透 明的結構,該熱致發聲裝置可以通過機械固定方式或者 黏結劑貼合在手機顯示幕的表面。當電子裝置為Mp3時, 該熱致發聲裝置可以内置於Mp3中,與Mp3内部的電路板 電連接,當MP3通電時’該熱致發聲裝置可以發出聲音。 可以理解,本發明所提供的熱致發聲發聲裝置也可以直 100112570 表單編號A0101 第34頁/共65頁 1002020939-0 201240483 接替代先前電子裝置中的發聲元件應用於電子裝置中, 由於本發明的熱致發聲裝置為無磁結構,具有較小的體 積和重量,因此,當其替代先前的發聲裝置用在電子裝 置中時,可以使電子裝置的重量減輕,同時也可以使電 子裝置具有更小的體積或具備超薄的結構。 [0085] 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟’以上所述者僅為本發明之較佳實施例 ’自不能以此限制本案之申請專利範圍。舉凡孰来本幸 ❹ 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0086] 圖1係本發明第一實施例提供的熱致發聲裴置的俯視示意 圖。 [0087] 圖2係沿圖1中π-丨丨線剖開的剖面示意圖。 [0088] 〇 圖3係本發明第一實施例熱致發聲裝置所採用的夺米碳管 拉膜的掃描電鏡照片。 [0089] 圖4係本發明第一實施例熱致發聲裝置所採用的夺米碳管 絮化膜的掃描電鏡照片。 [0090] 圖5係本發明第一實施例熱致發聲裝置所採用的奈米碳管 碾壓膜的掃描電鏡照片》 _] 圖6係本發明第-實施例熱致發聲裂置所採用的複合膜的 掃描電鏡照片》 13 [0092] 圖7係本發明圖6中熱致發聲元件透明度的κ曲線圖。 100112570 表單編號A0101 第35頁/共65頁 1002020939-0 201240483 [0093] 圖8係本發明第二實施例提供的熱致發聲裝置的俯視示意 圖。 [0094] 圖9係沿圖8中I X- I X線剖開的剖面示意圖。 [0095] 圖10係本發明第三實施例提供的熱致發聲裝置的俯視示 意圖。 [0096] 圖11係第三實施例中一種情況下沿圖1 0中X I - XI線剖開 的剖面示意圖。 [0097] 圖12為第三實施例中另一種情況下沿圖10中XI-XI線剖 開的剖面示意圖。 [0098] 圖1 3係本發明第四實施例提供的熱致發聲裝置的俯視示 意圖。 [0099] 圖14係沿圖13中XIV-XIV線剖開的剖面示意圖。 [0100] 圖15係本發明第四實施例熱致發聲裝置所採用的非扭轉 的奈米碳管線狀結構的掃描電鏡照片。 [0101] 圖16係本發明第四實施例熱致發聲裝置所採用的扭轉的 奈米碳管線狀結構的掃描電鏡照片。 [0102] 圖17係本發明第五實施例提供的採用表面塗有絕緣層的 奈米碳管層作為基底的熱致發聲裝置的側視剖面示意圖 〇 [0103] 圖1 8係本發明第六實施例提供的熱致發聲裝置的俯視示 意圖。 [0104] 圖19係沿圖18中XIX-XIX線剖開的剖面示意圖。 100112570 表早編號A0101 第36頁/共65頁 1002020939-0 201240483 .[0105] 圖20係本發明第七實施例提供的熱致發聲裝置的俯視示 意圖。 [0106] 圖21係沿圖20中XXI-XXI線剖開的剖面示意圖。 [0107] 圖2 2係本發明第八實施例提供的熱致發聲裝置的侧視剖 面示意圖。 [0108] 圖2 3係本發明第九實施例提供的熱致發聲裝置的側視剖 面示意圖。 [0109] 圖24為本發明第十實施例提供的熱致發聲裝置的側視示 意圖。 【主要元件符號說明】 [0110] 熱致發聲裝置:10 ; 20 ; 30 ; 40 ; 50 ; 60 ; 70 ; 80 ; 90 ; 100 [0111] 熱致發聲元件:102 [0112] 致熱裝置:104 ; 1004 [0113] 第一電極:104a [0114] 第二電極:104b [0115] 基底:208 ; 308 ; 408 ; 508 ; 608 ; 908 [0116] 通孔:208a [0117] 盲槽:308a [0118] 表面:308b [0119] 第一線狀結構:408a 100112570 表單編號A0101 第37頁/共65頁 1002020939-0 201240483 [0120] 第二線狀結構: 408b [0121] 網孔:408c [0122] 間隙:601 [0123] 第一電極引線: 610 [0124] 第二電極引線: 612 [0125] 間隔元件:714 [0126] 第一熱致發聲元件:802a [0127] 第二熱致發聲元件:802b [0128] 第一致熱裝置: 804 [0129] 第二致熱裝置: 806 [0130] 第一表面:808a [0131] 第二表面:808b [0132] 電磁波信號:1020 100112570 表單編號A0101 第38頁/共65頁 1002020939-0[0075] The second thermo-acoustic element 802b is disposed on the second surface 808b and is at least partially suspended relative to the second surface 808b. The first thermo-acoustic element 802a is a composite film having the same properties as the composite film disclosed in the first embodiment. The second thermoacoustic element 802b is a graphite thin film, a carbon nanotube layer or the composite film. The structure of the carbon nanotube layer is the same as that of the carbon nanotube layer disclosed in the first embodiment. The first heating device 804 includes a first electrode 104a and a second electrode 104b. The first electrode 104a and the second electrode 104b are electrically connected to the first thermo-acoustic element 802a, respectively. In this embodiment, the first electrode 104a and the second electrode 104b are respectively disposed on the surface of the first thermo-acoustic element 802a and are flush with the opposite sides of the first thermo-acoustic element 802a. The second heating device 806 includes a first electrode 104a and a second electrode 104b. The first electrode 104a and the second electrode 104b are electrically connected to the second thermo-acoustic element 802b, respectively. In this embodiment, the first electrode 104a and the second electrode 104b are respectively disposed on the surface of the second thermo-acoustic element 802b and are flush with the opposite sides of the first thermo-acoustic element 802a. The thermo-acoustic device 80 provided in this embodiment is a double-sided sounding device, and by providing a thermo-acoustic element on two different surfaces, the range of sound emitted by the thermo-acoustic element can be made larger and clearer. It is possible to control the heating device to make any of the thermoacoustic elements emit sound, or to simultaneously emit sound, so that the use of the thermoacoustic device is wider. Further, when one of the thermo-acoustic elements fails, the other thermo-acoustic element can continue to work, improving the heat-induced sound. 100112570 Form No. A0101 Page 31 of 65 1002020939-0 201240483 The service life of the device. Referring to FIG. 23, a ninth embodiment of the present invention provides a thermo-acoustic sounding device 90. The thermoacoustic device 90 includes a substrate 908, a plurality of thermo-acoustic elements 102, and a plurality of heating devices 104. The substrate 908 includes a plurality of surfaces (not labeled), each of which is disposed on a surface, and the thermo-acoustic element 102 and the heating device 104 are in a corresponding relationship. The thermo-acoustic device 90 of the embodiment is basically the same as the thermo-acoustic device 80 of the eighth embodiment, and the difference is that the thermo-acoustic device 90 provided in this embodiment is a multi-faceted sound device. [0077] In the embodiment, the substrate 908 is a rectangular parallelepiped structure including four different surfaces, and the four different surfaces are uneven surfaces. The thermo-acoustic device 90 includes four thermo-acoustic elements 102, at least one of which is a composite film, and the other thermo-acoustic elements 102 may be a graphene film or a carbon nanotube layer. [0078] Each of the heating devices 104 includes a first electrode 104a and a second electrode 104b, respectively. The first electrode 104a and the second electrode 104b are electrically connected to a thermo-acoustic element 102, respectively. [0079] The thermo-acoustic device 90 provided in this embodiment can realize the propagation of sound in a plurality of directions. Referring to FIG. 24, a tenth embodiment of the present invention provides a thermo-acoustic device 100. The thermoacoustic device 100 includes a thermo-acoustic component 102, a substrate 208, and a uniform thermal device 1 004. The thermally audible element 102 is disposed on the substrate 208. The thermo-acoustic device 100 and 100112570 provided in this embodiment form No. A0101 page 32/65 pages 1002020939-0 201240483 [0081] 008 [0083] 100112570 The second embodiment provides a thermo-acoustic device 20 The structure is basically the same, and the difference is that in the thermo-acoustic device 100 provided in this embodiment, the heating device 1004 is a laser device or other electromagnetic wave signal sounding device. The electromagnetic wave signal 1 〇 2 发出 emitted from the heating device 1004 is transmitted to the thermoacoustic element 102, and the thermo-acoustic element 102 sounds. The heat generating device 1004 can be disposed on the thermo-acoustic element 1〇2. When the heating device 1 004 is a laser, when the substrate 208 is a transparent substrate, the laser device can be disposed corresponding to the surface of the substrate 208 away from the thermo-acoustic element 1〇2, thereby making the laser The laser emitted by the device is transmitted through the substrate 208 to the thermoacoustic element 102. In addition, when the electromagnetic device 1 〇〇 4 emits an electromagnetic wave signal, the electromagnetic wave signal can be transmitted to the thermoacoustic element 102 through the substrate 208. At this time, the heating device 1〇〇4 can also correspond to The substrate 208 is disposed away from the surface of the thermoacoustic element 102. In the thermoacoustic device 100 of the present embodiment, when the thermoacoustic element 102 is irradiated with electromagnetic waves such as lasers, the thermoacoustic element 102 is excited by the energy of absorbing electromagnetic waves, and the absorbed light is absorbed by non-radiation. Can be converted to heat in whole or in part. The temperature of the thermoacoustic element 102 changes according to the frequency and intensity of the electromagnetic wave signal 1020, and is rapidly exchanged with the surrounding air or other gas or liquid medium, so that the temperature of the surrounding medium also changes with the frequency. Causes the surrounding medium to expand and contract rapidly, thereby making a sound. Since the thermoacoustic device works by converting a certain form of energy into heat at an extremely fast rate and performing rapid heat exchange with the surrounding gas or liquid medium, the medium expands and contracts to emit sound. It can be understood that the energy form is not limited to electric energy or light energy. The form number is A0101, page 33 / page 65, 1002020939-0 201240483 The heating device is not limited to the electrode or electromagnetic wave signal generator in the above embodiment. Anything that can cause the thermal audible reading to generate heat and heat the surrounding medium according to the audio change (4) can be regarded as _ (4), and is within the scope of the present invention. The composite film of the present invention has good (4) and mechanical strength, so that the composite film can be conveniently fabricated into thermoacoustic devices of various shapes and sizes. The heat-producing county W of the present invention is used only in the form of a sonar, and can be conveniently applied to various electronic devices requiring sound generating devices. The thermal sound generating device may be built in the housing of the electronic device or on the outer surface of the housing as a sounding unit of the electronic device. The thermoacoustic device can replace the conventional sounding unit of the electronic device or can be used in combination with a conventional sounding unit. The thermal sound generating device can be connected to other electronic components of the electronic device, a public power source, a utility processor, or the like, or can be connected to the electronic device by wire or wirelessly. The wired method is combined with the USB interface of the electronic device, for example, through a signal transmission line. The wireless method is connected to the electronic device, for example, via Bluetooth. The shaft-inducing device can also be mounted or integrated on the display screen of the electronic device as a sounding unit for the electronic display. The electronic device can be an audio, a mobile phone, an Mp3, an Mp4, a game console, a digital camera, a digital video camera, a television, or a computer. For example, when the electronic device is a mobile phone, the thermo-acoustic device can be attached to the surface of the display screen of the mobile phone by mechanical fixing or adhesive because the thermal-producing county provided by the embodiment is provided with a transparent structure. When the electronic device is Mp3, the thermo-acoustic device can be built in Mp3 and electrically connected to the circuit board inside the Mp3, and the thermo-acoustic device can emit sound when the MP3 is powered. It can be understood that the thermoacoustic sounding device provided by the present invention can also be applied to an electronic device instead of the sounding component in the prior electronic device, as shown in FIG. 100112939, Form No. A0101, Page 34/65, 1002020939-0 201240483. The thermo-acoustic device has a non-magnetic structure and has a small volume and weight. Therefore, when it is used in an electronic device instead of the previous sound-generating device, the weight of the electronic device can be reduced, and the electronic device can be made smaller. The volume or the ultra-thin structure. [0085] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application of the present invention is not limited thereto. Equivalent modifications or variations made by those skilled in the art to the present invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0086] Fig. 1 is a plan view showing a thermoacoustic device according to a first embodiment of the present invention. 2 is a schematic cross-sectional view taken along line π-丨丨 in FIG. 1. 3 is a scanning electron micrograph of a film taken from a carbon nanotube used in the thermoacoustic device of the first embodiment of the present invention. 4 is a scanning electron micrograph of a carbon nanotube film of a thermoacoustic device according to a first embodiment of the present invention. 5 is a scanning electron micrograph of a carbon nanotube rolled film used in a thermoacoustic device according to a first embodiment of the present invention. FIG. 6 is a view showing a thermoacoustic rupture used in the first embodiment of the present invention. Scanning Electron Micrograph of Composite Film" [0092] Figure 7 is a graph showing the κ curve of the transparency of the thermoacoustic element of Figure 6 of the present invention. 100112570 Form No. A0101 Page 35 of 65 1002020939-0 201240483 FIG. 8 is a top plan view of a thermo-acoustic device according to a second embodiment of the present invention. 9 is a cross-sectional view taken along line I X-X X of FIG. 8. 10 is a top plan view of a thermo-acoustic device according to a third embodiment of the present invention. 11 is a cross-sectional view taken along line X I - XI of FIG. 10 in a case of the third embodiment. Figure 12 is a cross-sectional view taken along line XI-XI of Figure 10 in another case of the third embodiment. [0098] FIG. 13 is a top plan view of a thermoacoustic device provided by a fourth embodiment of the present invention. 14 is a cross-sectional view taken along line XIV-XIV of FIG. 15 is a scanning electron micrograph of a non-twisted nanocarbon line-like structure employed in a thermoacoustic device according to a fourth embodiment of the present invention. Figure 16 is a scanning electron micrograph of a twisted nanocarbon line-like structure employed in a thermoacoustic device according to a fourth embodiment of the present invention. 17 is a side cross-sectional view showing a thermoacoustic device using a carbon nanotube layer coated with an insulating layer as a substrate according to a fifth embodiment of the present invention. [0103] FIG. A schematic top view of a thermo-acoustic device provided by an embodiment. 19 is a cross-sectional view taken along line XIX-XIX of FIG. 18. 100112570 Table Early Number A0101 Page 36 of 65 1002020939-0 201240483. Fig. 20 is a top plan view of a thermally induced sounding device according to a seventh embodiment of the present invention. 21 is a cross-sectional view taken along line XXI-XXI of FIG. 20. 2 is a side cross-sectional view showing a thermoacoustic device according to an eighth embodiment of the present invention. 2 is a side cross-sectional view showing a thermoacoustic device according to a ninth embodiment of the present invention. 24 is a side elevational view of a thermoacoustic device according to a tenth embodiment of the present invention. [Explanation of main component symbols] [0110] Thermoacoustic device: 10; 20; 30; 40; 50; 60; 70; 80; 90; 100 [0111] Thermoacoustic component: 102 [0112] Heating device: 104 1004 [0113] First electrode: 104a [0114] Second electrode: 104b [0115] Substrate: 208; 308; 408; 508; 608; 908 [0116] Through hole: 208a [0117] Blind slot: 308a [0118] Surface: 308b [0119] First line structure: 408a 100112570 Form number A0101 Page 37/65 page 1002020939-0 201240483 [0120] Second line structure: 408b [0121] Mesh: 408c [0122] Gap : 601 [0123] First electrode lead: 610 [0124] Second electrode lead: 612 [0125] Spacer element: 714 [0126] First thermo-acoustic element: 802a [0127] Second thermo-acoustic element: 802b [ 0128] First Consistent Thermal Device: 804 [0129] Second Thermal Device: 806 [0130] First Surface: 808a [0131] Second Surface: 808b [0132] Electromagnetic Wave Signal: 1020 100112570 Form No. A0101 Page 38/ Total 65 pages 1002020939-0

Claims (1)

201240483 七、申請專利範圍: 1 . 一種熱致發聲裝置,其包括: 一基底; 一熱致發聲元件設置於該基底的表面; 一致熱裝置用於向該熱致發聲元件提供能量使該熱致發聲 元件產生熱量; 其改良在於,所述熱致發聲元件包括一複合膜,該複合膜 包括相互層疊設置的至少一第一奈米碳管層和至少一石墨 烯膜,所述基底包括一奈米碳管複合結構,該奈米碳管複 Ο 合結構包括一第二奈米碳管層及塗覆在該第二奈米碳管層 表面的絕緣材料層。 2. 如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 石墨烯膜包括多層石墨烯,該多層石墨烯相互搭接或者相 互疊加設置。 3. 如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 石墨稀膜為早層石墨稀。 q 4.如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 石墨烯膜的厚度為0.34奈米至10奈米。 5. 如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 複合膜中,第一奈米碳管層與石墨烯膜重疊設置。 6. 如申請專利範圍第5項所述之熱致發聲裝置,其中,所述 複合膜中,第一奈米碳管層位於石墨烯膜和基底之間。 7. 如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 複合膜包括多層第一奈米碳管層和多層石墨烯膜,該多層 第一奈米碳管層和該多層石墨烯膜交替層疊設置。 100112570 表單編號A0101 第39頁/共65頁 1002020939-0 201240483 8 ·如申請專利範圍第7項所述之熱致發聲褒置,其中,所述 複合膜中,第一奈米碳管層與基底接觸。 9·如申請專利範圍第丨項所述之熱致發聲裝置,其中,所述 第—奈米碳管層和第二奈米碳管層中至少一個由複數個奈 米碳管通過凡得瓦力相互連接組成。 .如申请專利範圍第1項所述之熱致發聲裝置,其中,所述 第一奈米碳管層包括複數個微孔,該微孔由奈米碳管之間 的間隙形成’所述複合膜中,第一奈米碳管層的複數個微 孔被所述石墨烯膜覆蓋。 11 .如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 奈米碳管複合結構包括複數個微孔。 ·如申請專利範圍第丨項所述之熱致發聲裝置,其中,所述 奈米碳管複合結構中,絕緣材料層塗覆於第二奈米碳管層 的表面。 13 14 15 16 17 100112570 如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 奈米碳管複合結構中,絕緣材料層包覆在第二奈米碳管層 中的奈米碳管的表面。 如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 致熱裝置包括一第一電極和一第二電極分別與該熱致發聲 元件電連接。 如申請專利範圍第1項所述之熱致發聲裝置,其令,所述 致熱裝置為一電磁波信號發生裝置。 如申請專利範圍第15項所述之熱致發聲裝置,其中,所述 致熱裝置為一雷射器。 —種電子裝置,其中,該電子裝置的發聲裝置包括如申請 專利範圍第1至16項中任意一項所述之熱致發聲裝置。 第40頁/共65頁 1002020939-0 表單編號A0101 201240483 • 18 .如申請專利範圍第17項所述之電子裝置,其中,所述熱致 發聲裝置内置於該電子裝置中或者直接設置於該電子裝置 的外殼。 19 .如申請專利範圍第17項所述之電子裝置,其中,所述熱致 發聲裝置通過USB介面與該電子裝置連接或者通過藍牙與 該電子裝置無線連接。 20 .如申請專利範圍第17項所述之電子裝置,其中,所述電子 裝置包括音響、手機、MP3、MP4、遊戲機、數碼相機、 數碼攝像機、電視或電腦。 Ο 21 .如申請專利範圍第20項所述之電子裝置,其中,該電子裝 置進一步包括一顯示幕,該熱致發聲裝置安裝或集成在電 子裝置的顯示幕上。 〇 100112570 表單編號A0101 第41頁/共65頁 1002020939-0201240483 VII. Patent application scope: 1. A thermo-acoustic device comprising: a substrate; a thermo-acoustic element disposed on a surface of the substrate; a heat-consisting device for supplying energy to the thermo-acoustic element to cause the heat-induced The sound generating element generates heat; the improvement is that the thermoacoustic element comprises a composite film comprising at least one first carbon nanotube layer and at least one graphene film laminated on each other, the substrate comprising a The carbon nanotube composite structure comprises a second carbon nanotube layer and a layer of insulating material coated on the surface of the second carbon nanotube layer. 2. The thermoacoustic device according to claim 1, wherein the graphene film comprises a plurality of layers of graphene which are overlapped or overlapped with each other. 3. The thermoacoustic device according to claim 1, wherein the graphite thin film is early graphite thin. 4. The thermoacoustic device according to claim 1, wherein the graphene film has a thickness of from 0.34 nm to 10 nm. 5. The thermoacoustic device according to claim 1, wherein the first carbon nanotube layer is overlapped with the graphene film in the composite film. 6. The thermoacoustic device according to claim 5, wherein in the composite film, the first carbon nanotube layer is located between the graphene film and the substrate. 7. The thermoacoustic device according to claim 1, wherein the composite film comprises a plurality of first carbon nanotube layers and a multilayer graphene film, the multilayer first carbon nanotube layer and the multilayer The graphene films are alternately stacked. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; contact. 9. The thermoacoustic device according to claim 2, wherein at least one of the first carbon nanotube layer and the second carbon nanotube layer passes through a plurality of carbon nanotubes through the Vandeva The forces are connected to each other. The thermo-acoustic device according to claim 1, wherein the first carbon nanotube layer comprises a plurality of micropores formed by a gap between the carbon nanotubes The plurality of micropores of the first carbon nanotube layer are covered by the graphene film. 11. The thermoacoustic device of claim 1, wherein the carbon nanotube composite structure comprises a plurality of micropores. The thermoacoustic device according to claim 2, wherein in the carbon nanotube composite structure, a layer of insulating material is applied to the surface of the second carbon nanotube layer. The heat-induced sounding device of claim 1, wherein in the carbon nanotube composite structure, the insulating material layer coats the nanometer in the second carbon nanotube layer The surface of the carbon tube. The thermoacoustic device of claim 1, wherein the heating device comprises a first electrode and a second electrode electrically connected to the thermo-acoustic element, respectively. The thermoacoustic device according to claim 1, wherein the heating device is an electromagnetic wave signal generating device. The thermoacoustic device of claim 15, wherein the heating device is a laser. An electronic device, wherein the sound-emitting device of the electronic device comprises the thermo-acoustic device according to any one of claims 1 to 16. The electronic device of claim 17, wherein the thermo-acoustic device is built in the electronic device or directly disposed on the electronic device. The electronic device according to claim 17 is provided in the electronic device. The outer casing of the device. 19. The electronic device of claim 17, wherein the thermo-acoustic device is connected to the electronic device via a USB interface or wirelessly connected to the electronic device via Bluetooth. The electronic device of claim 17, wherein the electronic device comprises an audio, a mobile phone, an MP3, an MP4, a game machine, a digital camera, a digital video camera, a television or a computer. The electronic device of claim 20, wherein the electronic device further comprises a display screen mounted or integrated on the display screen of the electronic device. 〇 100112570 Form No. A0101 Page 41 of 65 1002020939-0
TW100112570A 2011-03-29 2011-04-12 Thermal acoustic device and electric device TWI450600B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110076698.1A CN102724613B (en) 2011-03-29 2011-03-29 A thermal sounding device and an electronic device

Publications (2)

Publication Number Publication Date
TW201240483A true TW201240483A (en) 2012-10-01
TWI450600B TWI450600B (en) 2014-08-21

Family

ID=46950249

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112570A TWI450600B (en) 2011-03-29 2011-04-12 Thermal acoustic device and electric device

Country Status (3)

Country Link
JP (1) JP5134124B2 (en)
CN (1) CN102724613B (en)
TW (1) TWI450600B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841483B (en) * 2012-11-20 2018-03-02 清华大学 Earphone (Headset)
CN103841482B (en) * 2012-11-20 2017-01-25 清华大学 Earphone set
CN103841481B (en) * 2012-11-20 2017-04-05 清华大学 Earphone
CN103841480B (en) * 2012-11-20 2017-04-26 清华大学 Earphone
CN103841479B (en) * 2012-11-20 2017-08-08 清华大学 Earphone set
CN103781013A (en) * 2013-11-25 2014-05-07 美特科技(苏州)有限公司 Vibrating diaphragm production method and application thereof
CN105282664B (en) * 2014-06-19 2019-01-01 美特科技(苏州)有限公司 A kind of graphene-carbon nanotubes composite diaphragm
CN105036114B (en) * 2015-07-29 2017-04-05 苏州捷迪纳米科技有限公司 Graphene carbon nanotube graphene composite structure and preparation method thereof
JP2018133625A (en) * 2017-02-13 2018-08-23 ヤマハファインテック株式会社 Thermoacoustic device and acoustic wave inspection device
CN109195087B (en) * 2018-10-12 2020-04-24 大连理工大学 Multilayer carbon nanotube film stack speaker based on thermoacoustic effect
CN110049401A (en) * 2019-05-10 2019-07-23 珠海格力电器股份有限公司 Sound wave generates system and method, electrical equipment, air-conditioning
KR20220088716A (en) * 2019-10-11 2022-06-28 유니버셜 매터 아이엔씨. Apparatus, method and carbon fill for synthesizing graphene

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261352B2 (en) * 2004-07-13 2007-08-28 Samsung Electronics Co., Ltd. Electrostatically driven carbon nanotube gripping device
JP4644723B2 (en) * 2008-03-31 2011-03-02 株式会社日立ハイテクノロジーズ Measuring device with nanotube probe
US8249279B2 (en) * 2008-04-28 2012-08-21 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
CN101771915B (en) * 2008-12-30 2013-08-21 北京富纳特创新科技有限公司 Sounding device
US8300855B2 (en) * 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
JP2010245797A (en) * 2009-04-06 2010-10-28 Panasonic Corp Capacitor microphone
CN101964292B (en) * 2009-07-24 2012-03-28 清华大学 Graphene sheet-carbon nanotube film composite structure and preparation method thereof
JP2011171790A (en) * 2010-02-16 2011-09-01 Panasonic Corp Speaker system

Also Published As

Publication number Publication date
JP2012209918A (en) 2012-10-25
TWI450600B (en) 2014-08-21
JP5134124B2 (en) 2013-01-30
CN102724613B (en) 2015-04-01
CN102724613A (en) 2012-10-10

Similar Documents

Publication Publication Date Title
TWI478595B (en) Thermoacoustic device
TWI539828B (en) Thermal acoustic device and electric device
TW201240483A (en) Thermal acoustic device and electric device
US8958579B2 (en) Thermoacoustic device
CN102006542B (en) Sound generating device
JP2009302057A (en) Planar heat source, and its manufacturing method
TWI420507B (en) Thermal acoustic device and electric device
TWI465119B (en) Thermal acoustic device and electric device
JP2010034058A (en) Planar heat source
JP2010257973A (en) Surface heat source
TWI450601B (en) Thermal acoustic device and electric device
TWI465120B (en) Thermal acoustic device and electric device
TWI455604B (en) Thermal acoustic device and electric device
TWI420508B (en) Thermal acoustic device and electric device
JP2010034055A (en) Planar heat source
JP2010034059A (en) Plane heat source
JP2010034056A (en) Planar heat source
JP2010257972A (en) Surface heat source
JP2010034064A (en) Method of manufacturing hollow heater
JP2010021147A (en) Hollow heat source
JP2010034054A (en) Planar heat source
JP2010021148A (en) Hollow heat source