TW201239021A - Creeping wave absorber material - Google Patents

Creeping wave absorber material Download PDF

Info

Publication number
TW201239021A
TW201239021A TW100111154A TW100111154A TW201239021A TW 201239021 A TW201239021 A TW 201239021A TW 100111154 A TW100111154 A TW 100111154A TW 100111154 A TW100111154 A TW 100111154A TW 201239021 A TW201239021 A TW 201239021A
Authority
TW
Taiwan
Prior art keywords
composition
wave material
altimeter
creeping
creeping wave
Prior art date
Application number
TW100111154A
Other languages
Chinese (zh)
Other versions
TWI415884B (en
Inventor
Hsin-Tzu Liu
Yu-Lin Peng
Kuang-Ming Kuo
Liau-Tung Lee
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW100111154A priority Critical patent/TWI415884B/en
Publication of TW201239021A publication Critical patent/TW201239021A/en
Application granted granted Critical
Publication of TWI415884B publication Critical patent/TWI415884B/en

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The present invention provides a creeping wave absorber material which has high magnetic loss and can be used to inhibit coupling signal between emitting antenna and receiving antenna in an altimeter to increase the S/N ratio of the received signal of the altimeter. The simplification of circuit also can reduce the weight and size of the altimeter. In addition, the creeping wave absorber material can be adhered on the surface between the emitting antenna and the receiving antenna of the altimeter in an aircraft to attenuate the coupling signal between two antennas by using its creeping wave-absorbing capacity at specific frequency so as to greatly reduce antenna coupling interference and simplify the circuit design, thereby only requiring to consider the difference of signal strength and phase angle between the radar wave reflected from the ground and the original emitting wave to determine the flying height of the aircraft.

Description

201239021 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種爬行波吸收材料。特別地,本發明是 揭露爬行波吸收材料的組成及其製造方法,此爬行波吸收材 料抑制高度計發射天線與接收天線間之轉合訊號,提高高度 計接收信號之S/Ν比;而電路之簡化也能使高度計重量減輕, 同時縮小其電子元件的體積。 【先前技術】 航空器飛行時,其飛行的高度是一項至關重要的資訊, 故有不同原理的高度計因此產生,其中可_無線電波、氣 壓等變化來測量航空器飛行的高度。目前主要是以兩類高度 計為主,一類為脈衝式雷達高度計,其主要是向地面發射一 系列RF脈衝,其接受器偵測自地面反射回來的脈衝,發射與 接文脈衝間之時間差正比於與地面之距離,經由控制發射訊 號的調變和拍頻(beat)頻率的偵測,可以決定到地面距離的正 確數值另類為 FM-CW(frequency modulated continuous wave)無線電波高度計’其主要利用分開的發射及接收天 線,可測定0至8〇〇〇呎的高度,但雙天線17]^_〇:^無線電波高 度計有一個缺點’就是必須以嚴格的條件使發射及接收天線 隔離’包括壓制天線的侧葉(side 1〇be)及限制天線在機身的位 置。兩天線間之距離必須夠大以使它們高度隔絕(is〇lati〇n), 否則會導致在測定低高度時的準確度失真,因為在低高度 時’天線間之輕合信號與正常信號強度接近,以致於不易分 201239021 辨。 目刖问度相發射天線和接收天射顿合信號會存在 干擾間題’因此目前已揭露解決方案均從線路設計進行改 善’以下為其提出改善之㈣專利。顏專職碼6426717 則將U天線與接收天線合而為―,交替發揮發射天線與接 收天線的功能’但會有發射、接收交替過於㈣因而衍生之 偵測受限問題。另外美國專利號碼5〇4779提出一種程式控制 可同時_多種不同高度目標的方法;美國專利號碼 5160933則揭露利用線路設計對溫度及高度自動調校的方法 美國專利號碼6992614揭露了 —款雷達高度計(Radar’201239021 VI. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to a creep wave absorbing material. In particular, the present invention discloses a composition of a creep wave absorbing material and a method of manufacturing the same, the creep wave absorbing material suppressing a turn-on signal between an altimeter transmitting antenna and a receiving antenna, and improving an S/Ν ratio of an altimeter received signal; and simplifying the circuit It also enables the altimeter to lose weight while reducing the size of its electronic components. [Prior Art] When an aircraft is flying, the altitude of its flight is a vital piece of information, so an altimeter with different principles is generated, in which changes in the altitude of the aircraft can be measured by changes in radio waves, air pressure, and the like. At present, it is mainly based on two types of altimeter. One is a pulsed radar altimeter, which mainly emits a series of RF pulses to the ground. The receiver detects the pulse reflected from the ground, and the time difference between the transmitted and the received pulses is proportional to The distance from the ground, by controlling the modulation of the transmitted signal and the detection of the beat frequency, the correct value to the ground distance can be determined as the FM-CW (frequency modulated continuous wave) radio wave altimeter. The transmitting and receiving antennas can measure the height of 0 to 8 ,, but the dual antenna 17]^_〇: ^ radio wave altimeter has a disadvantage 'is that the transmitting and receiving antennas must be isolated under strict conditions' including suppression The side of the antenna (side 1〇be) and the position of the antenna in the fuselage. The distance between the two antennas must be large enough to make them highly isolated (is〇lati〇n), which would otherwise result in accuracy distortion at low altitudes, because at low altitudes, the light-to-antenna signal between the antennas and the normal signal strength Close to the point that it is not easy to distinguish 201239021. There is a problem with the interference between the phase-transmitting antenna and the receiving antenna. Therefore, it has been revealed that the solution has been improved from the line design. The following (4) patents are proposed for improvement. Yan professional code 6426717 combines the U antenna and the receiving antenna into “, and alternately functions as a transmitting antenna and a receiving antenna.” However, there is a problem of limited detection due to the fact that the transmission and reception are alternated too much (4). In addition, U.S. Patent No. 5,4,779 proposes a method for program control of multiple different height targets at the same time; U.S. Patent No. 5,160,933 discloses a method for automatically adjusting temperature and height using circuit design. U.S. Patent No. 6,992,614 discloses a radar altimeter ( Radar'

Altimeter) ’其測定南度之方法為向地面發射無線電波,然 後接收地Φ反射之峨,缝^電路衰減天線間基帶 頻率(baseband)耦合訊號,而通過基帶頻率差異訊號換算成 對應的高度,需預設不狀fm_shG寧蚊採用之倍 頻,增加其高度測定之複雜性與失誤之可能性;美國專利 號碼7486228揭露—種於雷達高度計内接收返回的距離閘門 進行補償的一種方法,該方法包括調節距離閘門脈沖和雷 達波耦合信號之間的重疊量,直到一個可接受公差範圍 内,其方法為採用線路設計逐步增加耦合信號在接收機電 路中衰減量,直到抵消返回的耦合信號強度至可接受程度 為止。 通常航空器的空間異常珍貴,因飛行控制曰益要求精準 及自動化而增加的各式儀器均需爭取空間,因此高度計要達 到輕、薄、降低其信號干擾及提高測量高度準確性,乃為目 201239021 前各家航空器製造廠商亟待解決之重要技術問題。 【發明内容】 本發明係提供一種爬行波吸收材料。特別地,本發明是 揭露爬行波吸收材料的組成及其製造方法,其材料抑制高度 计發射天線與接收天線間之耦合訊號,提高高度計接收信號 之S/Ν比;而電路之簡化也能使高度計重量減輕,同時縮小其 電子元件的體積。 根據本發明之一具體實施例的該爬行波吸收材料之組成 物包含60至80wt%圓球形的介電改質羰基鐵磁晶粉、1〇至 3〇wt%高分子聚合物、1〇至5 〇加%架橋劑及丨〇至5 〇加%内部 離型劑。圓球形的介電改質羰基鐵磁晶粉之粒徑為lum至 5um ’其内層為鐵磁晶粉;粉體表層為絕緣體莫組成含1至 2wt%二氧化矽和lwt%磷酸鐵。該高分子聚合物為具有耐高 溫300C性質的矽橡膠^該架橋劑為會使矽橡膠形成交聯性 能的藥劑。該内部離型劑為使矽橡膠加熱熟化後易於脫模性 能的藥劑。另外,該爬行波材料的介電改質羰基鐵磁晶粉之 介電常數⑻數值範圍分別為:ε/=83〇〜η 7、〆=〇〇5〜_ 0.35 ;其導磁係數⑻數值範圍分別為:μ/=2.30〜2.55、μ" 0.73〜·1.06 ° 根據本發明之一具體實施例的該爬行波吸收材料之製造 方法包含下列步驟:首先,將—圓球形的介電改質型幾基鐵 磁晶粉與一高分子聚合物相互攪拌混合均勻。接著,將一架 橋劑與-内部離型劑相互齡混合均勻。最後,再將前述兩 201239021 ^合娜均勻,倒人模具中加壓加熱熟化製成薄 成。 相較於先前技術’本發明之爬行波材料具有高磁損耗, 可用於抑制高度計發射天線與接收天制之耗合訊號,抑制 功效可達1GdB以上,提高高度計收發信號之咖比。進一 步,該攸行波材料轉在航U的高度狀發射天線與接收 天線間的機身表面上,其在特㈣率下,會對綺波具 有吸波之%力’使兩天線間之#合訊號衰減,使得天線耗合 干擾作用大幅降低,電路設計得以簡化,僅需單純考量自地 面反射回來之雷達波與原發射波間之信號強度及相角差異, 並以此差異定出飛行器高度。 、 關於本發明之優點與精神可以藉由以下的創作詳述及所 附圖式得到進一步的瞭解。 【實施方式】 請參見圖-’如圖所示,本發明之一實施例為該爬行 波材料之製造方法包含下列步驟:首先,執行步驟⑽,將 60、65、75、77.5及8_%圓球形的介電改質_基鐵磁晶 (粒徑為lum〜5腿)分別與高分子聚合物(如耐熱石夕橡勝师半 混合均勻。其中介電改質型絲鐵磁晶,内層為鐵磁晶粉, 粉體表層為絕緣層,其表層含有Μ%的二氧切及〗感填 酸鐵’其介電常數⑻數值範圍分別為:ε、8.3(Κΐι 7、〆= 0.05〜-0.35,其導磁係數(μ)數值乾圍分別為:〆4 % 2分 μ” =-0.73—1.06。 201239021 接著,執行步驟si 1,將1.0〜5.0wt%架橋劑(如矽橡膠)和 1.0〜5.0wt%内部離型劑攪拌混合均勻。 最後,執行步驟S12,再將前述兩者混合攪拌均勻,倒 入模具中加壓150kg/cm2,加熱至160。(:約15min後脫模製成厚 度約3至5mm、尺寸約i5cmxi5cm薄片即成 將完成後配方一至五之薄片,由網路分析儀利用時域 (Time domain)功能’測定其斜向入射75度’ c頻段雷達波衰 減值,其結果如表一。另外可以發現本實施例之最佳的配方 為75至80wt%球形的介電改質型羰基鐵磁晶。 表一Altimeter) 'The method of determining the south degree is to transmit radio waves to the ground, and then receive the ground Φ reflection. The slot ^ circuit attenuates the baseband coupling signal between the antennas, and converts the baseband frequency difference signal into a corresponding height. It is necessary to preset the frequency multiplication of the fm_shG Ning mosquito to increase the complexity of the height measurement and the possibility of error; U.S. Patent No. 7,486,228 discloses a method for receiving the return gate from the radar altimeter for compensation. Including adjusting the amount of overlap between the gate pulse and the radar wave coupling signal until an acceptable tolerance range, the method is to gradually increase the attenuation of the coupled signal in the receiver circuit by using the line design until the returned coupled signal strength is offset to Acceptable to the extent. Usually, the space of the aircraft is extremely precious. All kinds of instruments that are added due to the precision and automation of flight control requirements need to gain space. Therefore, the height gauge should be light, thin, reduce its signal interference and improve the accuracy of measurement. Important technical issues that need to be addressed by previous aircraft manufacturers. SUMMARY OF THE INVENTION The present invention provides a creep wave absorbing material. In particular, the present invention discloses a composition of a creeping wave absorbing material and a method of manufacturing the same, which material suppresses a coupling signal between an altimeter transmitting antenna and a receiving antenna, and improves an S/Ν ratio of an altimeter received signal; and simplification of the circuit enables the altimeter Reduce weight while reducing the size of its electronic components. The composition of the creep wave absorbing material according to an embodiment of the present invention comprises 60 to 80% by weight of a spherical dielectric modified carbonyl ferromagnetic crystal powder, 1 〇 to 3 〇 wt% of a high molecular polymer, 1 〇 to 5 Add % bridging agent and 丨〇 to 5 〇 plus % internal release agent. The spherical modified dielectric carbonyl ferromagnetic crystal powder has a particle diameter of lum to 5 um', and the inner layer is a ferromagnetic crystal powder; the surface layer of the powder is an insulator composed of 1 to 2 wt% of ceria and 1 wt% of iron phosphate. The high molecular polymer is a ruthenium rubber having a high temperature resistant 300C property. The bridging agent is a chemical agent which forms a crosslinkability of the ruthenium rubber. The internal release agent is an agent which is easy to release properties after heating and curing the silicone rubber. In addition, the dielectric constant (8) of the dielectrically modified carbonyl ferromagnetic crystal powder of the creep wave material ranges from ε/=83〇~η7, 〆=〇〇5~_0.35; and the magnetic permeability coefficient (8) The ranges are: μ/=2.30~2.55, μ" 0.73~·1.06 ° The method for manufacturing the creep wave absorbing material according to an embodiment of the present invention comprises the following steps: First, a spherical modified dielectric modification The type of ferromagnetic crystal powder and a high molecular polymer are stirred and mixed uniformly. Next, a bridge agent and an internal release agent are uniformly mixed with each other. Finally, the above two 201239021 ^He Na is evenly distributed, and the man-made mold is subjected to pressure heating and aging to make a thin film. Compared with the prior art, the creeping wave material of the present invention has high magnetic loss, and can be used to suppress the consumption signal of the altimeter transmitting antenna and the receiving antenna, and the suppression effect can be more than 1 GdB, and the ratio of the transceiver of the altimeter is improved. Further, the crucible wave material is transferred to the surface of the fuselage between the height-shaped transmitting antenna and the receiving antenna of the air U, and at the special (four) rate, the ripple wave has a % force of the wave to make the two antennas between the two. The attenuation of the signal is greatly reduced, and the circuit design is greatly reduced. The circuit design can be simplified simply by considering the signal strength and phase angle difference between the radar wave reflected from the ground and the original transmitted wave, and determining the height of the aircraft by this difference. The advantages and spirit of the present invention can be further understood from the following detailed description of the invention and the accompanying drawings. [Embodiment] Referring to the drawings - as shown in the figure, an embodiment of the present invention is a method for manufacturing the creeping wave material comprising the following steps: First, performing step (10), 60, 65, 75, 77.5, and 8_% circles Spherical dielectric modification _ base ferromagnetic crystals (particle size lum~5 legs) are respectively mixed with high molecular polymer (such as heat-resistant Shishi rubber sorcerer semi-mixed. Among them, dielectric modified filament ferromagnetic crystal, inner layer It is a ferromagnetic crystal powder. The surface layer of the powder is an insulating layer. The surface layer contains Μ% of dioxotomy and the sensation of acid-filled iron. The dielectric constant (8) has the following values: ε, 8.3 (Κΐι 7, 〆 = 0.05~) -0.35, the permeability coefficient (μ) value of the dry circumference is: 〆 4 % 2 points μ" = -0.73 - 1.06. 201239021 Next, perform step si 1, 1.0~5.0wt% bridging agent (such as ruthenium rubber) And 1.0~5.0wt% of the internal release agent is stirred and mixed uniformly. Finally, step S12 is performed, and the above two are mixed and stirred uniformly, poured into a mold and pressurized at 150kg/cm2, and heated to 160. (: about 15 minutes after demolding A sheet having a thickness of about 3 to 5 mm and a size of about i5 cmxi 5 cm is prepared into a sheet of the formula 1 to 5 after completion, and is analyzed by a network analyzer. The time domain function was used to 'determine its oblique incident 75 degree' c-band radar wave attenuation value, and the results are shown in Table 1. It can be further found that the optimum formulation of this embodiment is 75 to 80 wt% spherical dielectric. Modified carbonyl ferromagnetic crystal. Table 1

配方 一 二 三 四 五 鐵磁晶 重量含率 wt% BASF EW-I 60% BASF EW-I 65% BASF EW-I 75% BASF EW-I 77.5% BASF EW-I 80% 厚度 5.0mm 4.8mm 4.5mm 4.2mm 3.0mm 斜向入射 75度吸收 峰頻率 5.0GHz 4.5GHz 4.0GHz 3.85GHz 3.60GHz 斜向入射 75度吸收 值 4dB 5dB 8dB lOdB 6dB 進一步,將配方一至五的薄片貼覆於靠近發射源lcm高 度計模組中,雙天線間隔12英吋,測其信號隔離度,其結果 如表二。 201239021 表二Formulation 1 2 3 5 Ferromagnetic crystal weight content wt% BASF EW-I 60% BASF EW-I 65% BASF EW-I 75% BASF EW-I 77.5% BASF EW-I 80% Thickness 5.0mm 4.8mm 4.5 Mm 4.2mm 3.0mm oblique incident 75 degree absorption peak frequency 5.0GHz 4.5GHz 4.0GHz 3.85GHz 3.60GHz oblique incidence 75 degree absorption value 4dB 5dB 8dB lOdB 6dB Further, the sheets of formula one to five are attached to the emission source lcm In the altimeter module, the two antennas are separated by 12 inches, and the signal isolation is measured. The results are shown in Table 2. 201239021 Table 2

配方 一 一- 三 四 五 鐵磁晶 重量含率 wt% BASF EW-I 60% BASF EW-I 65% BASF EW-I 75% BASF EW-I 77.5% BASF EW-I 80% 厚度 5.0mm 4.8mm 4.5mm 4.2mm 3.0mm 貼覆部 位:正面 天線距 離:30in 5dB 6dB 8dB 10dB 8dB 貼覆部 位: 正面及側 面(兩面) 天線距 離:30in 8dB 10dB 12dB 16dB 12dB 貼覆部 位:正面 天線距 離:12in 2dB 3dB 4dB 6dB 5dB 貼覆部 位: 正面及側 面(兩面) 天線距 離:12in 5dB 6dB 8dB lOdB 8dB 註:若無貼吸收片雙天線(收^ 曼天線)需隔開6C 1 in 才有 _8dB— 丨OdB之隔離度。 -—--J 上述之實施例僅為例示性說明本發明之特點及其功 效’而非用於限制本發明之實質技術内容的範圍。任何熟 習此技藝之人士均可在不違背本發明之精神及範疇下,對 上述實施例進行修飾與變化。因此,本發明之權利保護範 圍,應如後述之申請專利範圍所列。 【圖式簡單說明】 201239021 圖一係根據本發明之一具體實施例之爬行波吸收材料 的製造方法。 【主要元件符號說明】 S10-S12 流程步驟Formulation one-three-four-five ferromagnetic crystal weight content wt% BASF EW-I 60% BASF EW-I 65% BASF EW-I 75% BASF EW-I 77.5% BASF EW-I 80% thickness 5.0mm 4.8mm 4.5mm 4.2mm 3.0mm Attachment: Front antenna distance: 30in 5dB 6dB 8dB 10dB 8dB Attachment: Front and side (two sides) Antenna distance: 30in 8dB 10dB 12dB 16dB 12dB Attachment: Front antenna distance: 12in 2dB 3dB 4dB 6dB 5dB Applicable parts: Front and side (two sides) Antenna distance: 12in 5dB 6dB 8dB lOdB 8dB Note: If there is no absorbing film, the double antenna (receiving the antenna) needs to be separated by 6C 1 in to _8dB - 丨OdB Isolation. The above-described embodiments are merely illustrative of the features of the present invention and its functions, and are not intended to limit the scope of the technical scope of the present invention. Modifications and variations of the above-described embodiments can be made by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention should be as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a method of manufacturing a creeping wave absorbing material according to an embodiment of the present invention. [Main component symbol description] S10-S12 process steps

Claims (1)

201239021 七、申請專利範圍: L一種軸'波吸收材料,其組成包含: 一圓球形的介電改質羰其 厌基鐵磁晶粉,其粉體表層為絕緣層 内層為鐵磁晶粉; 一高分子聚合物; 一架橋劑;以及 一内部離型劑。 雷第1項所述之攸行波材料之組成,其中該介 ^絲綱晶_含量為60至8〇wt%。 =申二專利犯圍第i項所述之攸行波材料之組成,其中該介 電改質絲_晶粉的較佳含量妨至8〇wt%。 4’如申w專利域第丨項所述之贿波材料之組成,其中該介 電改貝型絲_晶粉的粒#為丨啦至Mm。 5’如U她㈣丨·述之⑯行波材料之組成,其中該介 電文貝.基鐵磁晶粉表層的組成為二氧化梦及填酸鐵。 6,申明專概圍第3項所述之贿波材料之組成,其中該二 氧化石夕的組成含1至2wt%。 7.如申a月專利範圍第3項所述之崎波材料之組成,其中該構 酸鐵的組成含lwt%。 S.如申μ糊範圍幻項所述之⑯行波材料之組成,其中該高 分子聚合物的含量為10至30wt〇/o。 9.如申請專利範圍第1項所述之爬行波材料之組成,其中該架 橋劑的含量為1.0至5.0wt%。 1〇·如申請專利範圍第1項所述之爬行波材料之組成,其中該 201239021 内部離型的含量為1.0至5.〇wt%。 Π.如申請專利範圍第1項所述之爬行波材料之組成,其中該 高分子聚合物為具有耐高溫3001:性質的矽橡膠。 12. 如申請專利範圍第1項所述之爬行波材料之組成,其中該 架橋劑為會使矽橡膠形成交聯性能的藥劑。 13. 如申請專利範圍第1項所述之爬行波材料之組成,其中該 内部離型劑為會使矽橡膠加熱熟化後易於脫模性能的藥劑。 14·如申請專利範圍第1項所述之爬行波材料之組成,其中爬 行波吸收材料具有高磁損耗,可用於抑制高度計發射天線與 接11 欠天線間之耦合訊號,提高高度計收發信號之S/N比。 15. 如申請專利範圍第1項所述之爬行波材料之組成,其中爬 行波吸收材料應用於飛行器抑制高度計發射天線與接收天線 間之耦合訊號,抑制功效可達10dB以上。 16. 如申請專利範圍第1項所述之爬行波材料之組成,其中該 介電改質羰基鐵磁晶粉之介電常數⑻數值範圍分別為: ε =8.30〜11·7、=-0.05〜-0.35。 Π.如申請專利範圍第丨項所述之爬行波材料之組成,其中之 介電改質羰基鐵磁晶粉之導磁係數(μ)數值範圍分別為: Μ· =2.30〜2.55、μ" =-0.73〜-1.06。 18. 如申請專利範圍第1項所述之爬行波材料之組成,其中該 攸行波材料貼覆在航空器的高度計之發射天線與接收天線間 的機身表面上。 19. —種爬行波吸收材料之製造方法,其步驟包括: (1)將一圓球形的介電改質型羰基鐵磁晶粉與一高分子聚合物 201239021 相互攪拌混合均勻; (2) 將一架橋劑與一内部離型劑相互攪拌混合均勻; (3) 再將前述兩者混合攪拌均勻,倒入模具中加壓加熱熟化製 成薄片狀即成。 12201239021 VII. Patent application scope: L. A kind of shaft 'wave absorbing material, the composition thereof comprises: a spherical dielectric modified carbonyl oxo-based ferromagnetic crystal powder, the surface layer of which is the inner layer of the insulating layer is ferromagnetic crystal powder; High molecular weight polymer; a bridging agent; and an internal release agent. The composition of the ruthenium wave material according to the above item 1, wherein the smectite _ content is 60 to 8 〇 wt%. = The composition of the 攸 traveling wave material described in item ii of the second patent, wherein the preferred content of the dielectric modified silk _ crystal powder may be 8 〇 wt%. 4' The composition of the bribe wave material as described in the second paragraph of the patent application, wherein the dielectric granules of the shell-type crystal powder are from 丨 to Mm. 5', such as the composition of the 16-wave material of U (4) 丨·, the composition of the dielectric layer of the ferromagnetic powder is dioxide dioxide and iron-filled iron. 6. A composition for a bribe wave material as recited in item 3, wherein the composition of the oxidized stone is 1 to 2 wt%. 7. The composition of the S-wave material as described in item 3 of the patent scope of the a month, wherein the composition of the ferric acid contains 1 wt%. S. A composition of a 16-wave material as described in the Scope of the Invention, wherein the high molecular polymer is present in an amount of 10 to 30 wt〇/o. 9. The composition of the creeping wave material according to claim 1, wherein the bridging agent is contained in an amount of from 1.0 to 5.0% by weight. 1) The composition of the creeping wave material as described in claim 1, wherein the content of the internal release of the 201239021 is 1.0 to 5. 〇wt%. The composition of the creeping wave material according to claim 1, wherein the high molecular polymer is a ruthenium rubber having a high temperature resistant 3001: property. 12. The composition of the creeping wave material of claim 1, wherein the bridging agent is an agent that causes the bismuth rubber to form cross-linking properties. 13. The composition of the creeping wave material according to claim 1, wherein the internal release agent is an agent which facilitates release property after heating and curing the tantalum rubber. 14. The composition of the creeping wave material according to claim 1, wherein the creeping wave absorbing material has high magnetic loss, and can be used for suppressing the coupling signal between the altimeter transmitting antenna and the connected antenna, and improving the transmitting and receiving signals of the altimeter. /N ratio. 15. The composition of the creeping wave material according to claim 1, wherein the creeping wave absorbing material is applied to the coupling signal between the transmitting antenna and the receiving antenna of the aircraft to suppress the altimeter, and the suppression effect can be more than 10 dB. 16. The composition of the creeping wave material according to claim 1, wherein the dielectric constant (8) of the dielectrically modified carbonyl ferromagnetic crystal powder has a range of values: ε = 8.30 to 11·7, = -0.05 ~-0.35. Π. The composition of the creeping wave material as described in the scope of the patent application, wherein the permeability coefficient (μ) of the dielectrically modified carbonyl ferromagnetic crystal powder ranges from: Μ· = 2.30 to 2.55, μ" =-0.73~-1.06. 18. The composition of the creeping wave material of claim 1, wherein the traveling wave material is applied to a surface of the fuselage between the transmitting antenna and the receiving antenna of the aircraft altimeter. 19. A method for producing a creeping wave absorbing material, comprising the steps of: (1) mixing and mixing a spherical dielectric-modified carbonyl ferromagnetic crystal powder with a polymer 201239021; (2) The bridging agent and an internal release agent are stirred and mixed with each other uniformly; (3) The above two are mixed and stirred uniformly, and poured into a mold, and heated and matured to form a flake. 12
TW100111154A 2011-03-31 2011-03-31 The creeping wave absorber materials TWI415884B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100111154A TWI415884B (en) 2011-03-31 2011-03-31 The creeping wave absorber materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100111154A TWI415884B (en) 2011-03-31 2011-03-31 The creeping wave absorber materials

Publications (2)

Publication Number Publication Date
TW201239021A true TW201239021A (en) 2012-10-01
TWI415884B TWI415884B (en) 2013-11-21

Family

ID=47599400

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100111154A TWI415884B (en) 2011-03-31 2011-03-31 The creeping wave absorber materials

Country Status (1)

Country Link
TW (1) TWI415884B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106599421A (en) * 2016-12-02 2017-04-26 上海无线电设备研究所 Imaging-based analysis method for absorbing material coated target creeping wave

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982073A (en) * 1997-12-16 1999-11-09 Materials Innovation, Inc. Low core loss, well-bonded soft magnetic parts
TWI250185B (en) * 2004-04-16 2006-03-01 Chung Shan Inst Of Science Nano microwave absorption composition and nano microwave absorption structure manufactured from the same
TW200800606A (en) * 2006-06-29 2008-01-01 Shiu Li Technology Co Ltd Multi-layered composite capable of conducting heat and absorbing electromagnetic wave and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106599421A (en) * 2016-12-02 2017-04-26 上海无线电设备研究所 Imaging-based analysis method for absorbing material coated target creeping wave
CN106599421B (en) * 2016-12-02 2019-10-18 上海无线电设备研究所 A kind of analysis method of the absorbing material coated targets Creeping Wave based on imaging

Also Published As

Publication number Publication date
TWI415884B (en) 2013-11-21

Similar Documents

Publication Publication Date Title
CN106207480B (en) Complete polarization single-pass band bilateral inhales wave bands complex Meta Materials and antenna house
EP3617269B1 (en) Epoxy resin wave-absorbing composite material and preparation method thereof
JP2019075571A (en) Electromagnetic wave-absorbing sheet
US6146545A (en) Radio wave absorbent
CN107474618A (en) A kind of high-temperature electromagnetic wave absorbent, microwave absorbing coating and preparation method thereof
CN110054942A (en) A kind of infrared radar multi-Functional Camouflage coating of containing graphene and preparation method thereof
CN111748233A (en) Low-reflectivity wave-absorbing material and preparation method thereof
TW201239021A (en) Creeping wave absorber material
TWI542884B (en) Microwave dark room with absorbing body changing reflection path
KR100438758B1 (en) Radio wave absorbent
CN208386538U (en) A kind of mm wave RF receive-transmit system
CN108586763B (en) Ku-waveband broadband electromagnetic wave absorbent and preparation method thereof
CN104892829B (en) For electromagnetic-field-shielded absorbing material
CN109943284A (en) A kind of absorbing material and preparation method thereof
RU2402845C1 (en) Electromagnetic wave absorber
JP2794293B2 (en) Radio wave absorption material
JP4317276B2 (en) Radio wave absorber
KR102621490B1 (en) Electromagnetic wave absorber having electromagnetic wave absorption properties in high frequency band and method for preparing the same
JP2706772B2 (en) Magnesium-zinc ferrite material for radio wave absorber
JPH0628204B2 (en) Radio wave absorber
KR940005137B1 (en) Electric wave absorber
JP2000022380A (en) Radio wave absorber
CN117467330A (en) Electromagnetic functional coating and preparation method thereof
Sun et al. Preparation and Microwave Absorbing Properties of BaFe12O19/Unsaturated Polyester Nanocomposites
CN104893606A (en) Broadband wave-absorbing film