201237499 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種變焦鏡頭組 有效地提高成像性能之-種鏡頭組件。有關於可 【先前技術】 以日本專利特開2008_176231案所揭露 件為例子,該,231案係在第五透鏡群中剌了單:=組 =且其錢係隨著第五透鏡群之移動而沿著光軸而移^。 :而’就色像差而言是無法有效地被降低,並且 缚型化及高倍率之要求。 …、去達到 因此’如何針對可有效增加色像差、達到薄 倍率要求而對於财變錄頭崎進行改及而 的。 疋,其必要性 【發明内容】 古^發明係提供—種可有效增加色像差且達到 阿倍率之要求之改良變焦鏡頭組件。 ’ t化及 本發明係提供一種變焦鏡頭組件,此變焦 於一廣角狀態與一嗲、旁灿r 、、、、見頭級件可 度之 之一第 之正屈光度 係從一物方側到一 欠焦鏡頭組件 度之一第ij/側、沿著—光軸而依次包括正Μ 鏡群、負屈光度之一第二透鏡群、屈先 第五透鏡群。當變焦鏡頭組件 透鏡 璜角狀態 ,、正屈光度之—第四透鏡群2屈光度 4 201237499 至望遠狀態進行變焦時,第一透鏡群係朝向至物方側移動 而使得第一透鏡群與第二透鏡群之間的距離增大且第二透 鏡群與第三透鏡群之間係彼此相互接近、第三透鏡群與第 五透鏡群之兩透鏡之間的距離增大。 第一透鏡群包括一笫一透鏡與一第二透鏡’第一透鏡 包括一第一鏡片與一第二鏡片所組成之一複合透鏡,第二 透鏡係為單一透鏡。 第二透鏡群包括具負屈光度之一第一透鏡、具負屈光 度之一第二透鏡與具正屈光度之一第三透鏡。第二透鏡群 之第一透鏡包括一非球面,第二透鏡群之第二透鏡係為一 雙凸透鏡。第二透鏡群之第三透鏡係為一雙凹透鏡。 第三透鏡群包括兩正透鏡與一負透鏡,兩正透鏡與負 透鏡係自物方側至像方側而依序排列。第三透鏡群之兩正 透鏡係為非球面透鏡。 第四透鏡群包括一凸透鏡。 第五透鏡群之兩透鏡包括一雙凸透鏡與一雙凹透鏡。 變焦鏡頭組件更包括一光圈,光圈係設置於第二透鏡 群、第三透鏡群之間且可沿著光軸移動。 此外,根據本發明之另一特性可知,本發明係提供了 一種變焦鏡頭組件,此變焦鏡頭組件可於一廣角狀態與一 望遠狀態之間進行變焦。本發明之變焦鏡頭組件包括五個 透鏡群,變焦鏡頭組件之五個透鏡群係從一物方侧到一像 方側、沿著一光軸依次為:正屈光度之一第一透鏡群、負 屈光度之一第二透鏡群、正屈光度之一第三透鏡群、正屈 § 5 201237499 光度之一第四透鏡群、正屈光度之一第五透鏡群。當變焦 鏡頭組件自廣角狀態至望遠狀態進行變焦時,第一透鏡群 係朝向至物方側移動而使得第一透鏡群與第二透鏡群之間 的距離增大且第三透鏡群係朝向於第二透鏡群移動而使得 第二透鏡群與第三透鏡群之間的距離減小、第三透鏡群與 第五透鏡群之間的距離增大,並且處於望遠狀態下之變焦 鏡頭組件係滿足以下關係式: TL/Tf/TY^0.17 其中,TL係為變焦鏡頭組件位於望遠狀態下之全長, Tf係為變焦鏡頭組件位於望遠狀態下之焦距,TY係為變 焦鏡頭組件位於望遠狀態下之一有效成像像高。 【實施方式】 請參閱第1、2A、2B、2C圖,第1圖係為本發明之一 變焦鏡頭組件之光學結構之示意圖,第2A圖係為本發明 之變焦鏡頭組件處於一廣角狀態下之光路圖,第2B圖係為 本發明之變焦鏡頭組件處於一中間狀態下之光路圖,以及 第2C圖係為本發明之變焦鏡頭組件處於一望遠狀態下之 光路圖。 如第1圖所示,本發明之變焦鏡頭組件係可於廣角狀 態與望遠狀態之間進行變焦。變焦鏡頭組件係從一物方側 到一像方側(亦即,由第1圖之左側至右側)、沿著一光軸 al-al而依次地包括正屈光度之一第一透鏡群G1、負屈光 度之一第二透鏡群G2、一光圈AP、正屈光度之一第三透 6 201237499 鏡群G3、正屈光 兩透鏡51、52 : 一第四透鏡群G4、具有可補儅 板PL與―成像每6屈第光一度诱之一第五透鏡群G5、—破心 圈AP、第三遷_Q3 /鏡群Gl、第二透鏡群⑺、光 玻璃平板PL、成 ^透鏡群G4、第五透鏡群^ S3、S4、&、S6、^ 6之各表面係依序地以符號S1、幻、 S15、S16、Sl7 、S8、S9、S1G、W、S12、S13 、201237499 VI. Description of the Invention: [Technical Field] The present invention relates to a lens assembly in which a zoom lens group is effective in improving imaging performance. For example, in the case of the disclosed article in Japanese Patent Laid-Open No. 2008_176231, the 231 case is singular in the fifth lens group: = group = and its money moves with the fifth lens group And move along the optical axis ^. : and ' is not effectively reduced in terms of chromatic aberration, and is required for binding and high magnification. ..., to reach the result, so how to change the chromatic aberration and achieve the thin rate requirement for the change of the financial record.疋, its necessity [Summary of the Invention] The invention provides an improved zoom lens assembly that can effectively increase chromatic aberration and achieve the requirement of Abe rate. The invention provides a zoom lens assembly, wherein the zoom is in a wide-angle state and one of the first, second, and second, the first diopter of the head member is from the object side to the An ij/side of one of the under-focus lens assemblies includes, in order of the optical axis, a positive lens group, a second lens group of negative diopter, and a fifth lens group. When the zoom lens assembly lens corner state, positive refractive power - fourth lens group 2 diopter 4 201237499 to zoom state, the first lens group moves toward the object side to make the first lens group and the second lens The distance between the groups is increased and the distance between the second lens group and the third lens group is close to each other, and the distance between the lenses of the third lens group and the fifth lens group is increased. The first lens group includes a first lens and a second lens. The first lens includes a composite lens composed of a first lens and a second lens, and the second lens is a single lens. The second lens group includes a first lens having a negative refracting power, a second lens having a negative refracting power, and a third lens having a positive refracting power. The first lens of the second lens group includes an aspherical surface, and the second lens of the second lens group is a lenticular lens. The third lens of the second lens group is a double concave lens. The third lens group includes two positive lenses and a negative lens, and the two positive lenses and the negative lens are sequentially arranged from the object side to the image side. The two positive lenses of the third lens group are aspherical lenses. The fourth lens group includes a convex lens. The two lenses of the fifth lens group include a lenticular lens and a double concave lens. The zoom lens assembly further includes an aperture disposed between the second lens group and the third lens group and movable along the optical axis. Furthermore, according to another feature of the present invention, the present invention provides a zoom lens assembly that can zoom between a wide-angle state and a telephoto state. The zoom lens assembly of the present invention comprises five lens groups, and the five lens groups of the zoom lens assembly are from one object side to one image side, along an optical axis: one of the positive refractive powers, the first lens group, and the negative lens group. One of the diopter second lens group, one of the positive refractive powers, the third lens group, the positive bending § 5 201237499 one of the luminosity fourth lens group, and one of the positive refractive power fifth lens groups. When the zoom lens assembly zooms from the wide-angle state to the telephoto state, the first lens group moves toward the object side such that the distance between the first lens group and the second lens group increases and the third lens group faces The second lens group is moved such that the distance between the second lens group and the third lens group is reduced, the distance between the third lens group and the fifth lens group is increased, and the zoom lens assembly in the telephoto state is satisfied The following relationship: TL/Tf/TY^0.17 where TL is the full length of the zoom lens assembly in the telephoto state, Tf is the focal length of the zoom lens assembly in the telephoto state, and TY is the zoom lens assembly in the telephoto state. An effective imaging image height. [Embodiment] Please refer to Figures 1, 2A, 2B, and 2C. Figure 1 is a schematic view showing the optical structure of a zoom lens assembly of the present invention, and Figure 2A is a zoom lens assembly of the present invention in a wide-angle state. The optical path diagram, FIG. 2B is an optical path diagram of the zoom lens assembly of the present invention in an intermediate state, and FIG. 2C is an optical path diagram of the zoom lens assembly of the present invention in a telephoto state. As shown in Fig. 1, the zoom lens unit of the present invention can zoom between a wide-angle state and a telephoto state. The zoom lens assembly sequentially includes one of the first lens groups G1, which is one of positive refractive powers, from an object side to an image side (ie, from the left side to the right side of FIG. 1) along an optical axis a1-al. One of the negative refractive powers, the second lens group G2, one aperture AP, one of the positive refractive powers, the third lens 6 201237499, the mirror group G3, the positive refractive lenses, 51, 52: a fourth lens group G4, having a complementable plate PL and ― Imaging every 6 volts of light once attracted one fifth lens group G5, broken core AP, third _Q3 / mirror group Gl, second lens group (7), light glass plate PL, lens group G4, fifth Each surface of the lens group ^S3, S4, &, S6, ^6 is sequentially symbolized by S1, Magic, S15, S16, Sl7, S8, S9, S1G, W, S12, S13,
示、 8、si9、s2〇、s2i、s22、CShow, 8, si9, s2〇, s2i, s22, C
第一透鏡群G 進行收光。第〜透約固定在變焦鏡頭組件之最前端 鏡12,其中1 ⑽—第—透鏡11與—第= 鏡片112所組成之—二二括―第—鏡片111與1二 俨。筮、龟比 硬口透鏡’第二透鏡12係糸。》 ,弟一透鏡群G1之第―透鏡u =早1 塑膠或玻瑪材質所模造成型。透鏡12係可由 鏡係可經由第二透鏡群G2而改變、 -透鏡群G2包括具負屈光度 义:、距。第 度之-第二透鏡22與具正屈光度之—第透:鏡二 第二細與第三透鏡23係相互連接:其中, 之第-透鏡21包括一非球面S6。第二透鏡透鏡鮮G2 鏡2卜第二透鏡22與第三透鏡23係可採:第〜透 質所模造成型。於本實施例中,第二透鏡群椅 鏡22係為-雙凸透鏡,第二透鏡群G 第〜透 為一雙凹透鏡。 第一透鏡23係 第三透鏡群G3係用以做為變焦鏡頭組 &确償系 201237499 統。由於可藉由第三透鏡群G3以補償變焦時所造成之一 成像面6之位置變動,除了可使得成像面6之位置可固定 不變之外,變焦後之入射光線仍可在固定位置之成像面6 進行聚焦而獲得清晰的影像。第三透鏡群G3包括兩正透 鏡31、32與一負透鏡33,其中,兩正透鏡31、32與負透 鏡33係自物方側至像方側而依序排列。於本實施例中,第 三透鏡群G3之兩正透鏡31、32係為非球面透鏡,負透鏡 33係為雙凹透鏡。 光圈AP係位於第二透鏡群G2、第三透鏡群G3之間 且可沿著光軸al-al進行移動。 第四透鏡群G4係為用以進行對焦用之正屈光度之一 凸透鏡41。 第五透鏡群G5之兩透鏡51、52係分別為一雙凸透鏡 與一雙凹透鏡。 玻璃平板PL係設置於第五透鏡群G5與成像面6之間。 如第2A、2C圖所示,於變焦鏡頭組件自廣角狀態(第 2A圖)至望遠狀態(第2C圖)進行變焦時,第一透鏡群G1 係朝向至物方側移動而使得第一透鏡群G1與第二透鏡群 G2之間的距離增大且第三透鏡群G3係朝向於第二透鏡群 G2移動而使得第二透鏡群G2與第三透鏡群G3之間的距 離減小(亦即,第二透鏡群G2與第三透鏡群G3彼此相互 接近)、第三透鏡群G3與第五透鏡群G5之兩透鏡51、52 之間的距離增大。 本發明之變焦鏡頭組件滿足以下關係式: 201237499 TL/Tf/TY ^0.17 其中,TL係為變焦鏡頭組件位於望遠狀態下之全長, Tf係為變焦鏡頭組件位於望遠狀態下之焦距,TY係為變 焦鏡頭組件位於望遠狀態下之一有效成像像高。 基於上述本發明之變焦鏡頭組件之技術内容,本發明 之變焦鏡頭組件可根據以下的表1、表2(a)〜2(d)、表3〜4 中之數值實施例而具體實施,其中,表1係為於望遠狀態 下之數值實施例,表2(a)〜2(d)係為各實施例[1〜15]之望遠 狀態下之非球面係數,表3係為於廣角狀態、中間狀態、 望遠狀態下之可變焦面(S5、S10、Sll、S16、S18)之間隔, 表4係為廣角狀態、中間狀態、望遠狀態之焦距,表5係 為於望遠狀態下之各透鏡群(G1〜G5)之焦距。 201237499 表1望遠狀態下之數值實施例 鏡群 透鏡 面編號 曲率半徑(mm) 厚度(mm) 材質 G1 11 111 S1 26.00 0.50 S-NPH2 112 S2 20.25 2.85 1.59,61.9 S3 142.00 0.07 12 S4 19.28 2.08 1.49,70.4 S5 62.83 (可變) 15.74 G2 21 S6 16.09 0.65 L-LAH85 S7 3.76 1.92 22 S8 33.45 1.19 S-NPH2 23 S9 -15.42 0.69 NBF1 S10 20.81 (可變) 0.50 AP S11 00(可變) 0.50 G3 31 S12 6.01 3.05 L-BAL35 S13 -7.00 0.07 32 S14 21.17 1.36 1.66,42.2 33 S15 -14.41 0.50 S-TIH4 S16 5.31 (可變) 11.40 G4 41 S17 9.85 1.87 480R S18 -603.06 (可變) 4.02 G5 51 S19 2687.37 0.80 1.70,36.9 52 S20 -29.00 0.50 1.76,27.6 S21 -92.22090711 0.7 PL S22 00 0.5 S-BSL7 S23 00 1.09093441 10 201237499 表2(a)望遠狀態下之非球面係數:實施例[1〜4] 鏡群 透鏡 面編號 非球面係數[1] 非球面係數[2] 非球面係數[3] 非球面係數[4] G1 11 111 S1 112 S2 S3 12 S4 S5 G2 21 S6 0.571374 -3.091013E-05 S7 -0.293864 1.383861E-03 22 S8 23 S9 S10 20.039562 -1.690241E-04 -1.602734E-03 -2.954734E-04 AP S11 G3 31 S12 -0.540112 -1.320872E-03 S13 -0.305776 3.056215E-04 32 S14 33 S15 S16 G4 41 S17 1.088098 -3.493342E-04 S18 -45731.919968 -1.718541E-04 G5 51 S19 52 S20 S21 PL S22 S23 201237499 表2(b)望遠狀態下之非球面係數:實施例[5〜8](續表2(a)) 鏡群 透鏡 面編號 非球面係數[5] 非球面係數[6] 非球面係數[7] 非球面係數[8] G1 11 111 S1 112 S2 S3 12 S4 S5 G2 21 S6 fV711QQE-nS 7.5676Q9E-07 S7 5.704025E-05 -4.089988E-07 22 S8 23 S9 S10 9.824431E-05 1.718685E-06 2.146329E-06 -2.624242E-06 AP S11 G3 31 S12 3.418096E-05 -2.141132E-06 S13 3.237853E-05 -4.945214E-06 32 S14 33 S15 S16 G4 41 S17 -7.683173E-06 2.068059E-06 S18 -1.422745E-06 1.768679E-06 G5 51 S19 52 S20 S21 PL S22 S23 12 201237499 表2(c)望遠狀態下之非球面係數:實施例[9〜12](續表2(b))_ 鏡群 透鏡 面No. 非球面係數[9] 非球面係數 Γ101 非球面係數 『111 非球面係數 『121 G1 11 111 S1 112 S2 S3 12 S4 S5 G2 21 S6 -8.000938E-08 4.365215E-09 S7 -7.646970E-07 3.130421E-08 22 S8 23 S9 S10 -1.619546E-06 9.063793E-08 1.107538E-07 4.032501E-08 AP S11 G3 31 S12 -3.100430E-07 1.447355E-08 S13 6.884784E-08 2.389893E-09 32 S14 33 S15 S16 G4 41 S17 -8.970219E-08 -2.331576E-09 S18 -7.545245E-08 -1.578152E-09 G5 51 S19 52 S20 S21 PL S22 S23The first lens group G performs light collection. The first to the lens is fixed at the foremost end of the zoom lens assembly mirror 12, wherein 1 (10) - the first lens 11 and the - the second lens 112 are composed of - two brackets - the first lens 111 and 1 two.筮, turtle ratio hard lens lens 'second lens 12 糸. 》, the first lens of the lens group G1 - lens u = early 1 plastic or Boma material molded type. The lens 12 can be changed by the mirror system via the second lens group G2, and the lens group G2 includes a negative refractive index: distance. The first-second lens 22 is connected to the first diopter and the second lens 23, wherein the second lens 22 includes a non-spherical surface S6. The second lens lens fresh G2 mirror 2, the second lens 22 and the third lens 23 are available: the first to the permeable type. In the present embodiment, the second lens group chair mirror 22 is a lenticular lens, and the second lens group G is permeable to a double concave lens. The first lens 23 is the third lens group G3 and is used as a zoom lens group & Since the position of the imaging surface 6 caused by the zooming can be compensated by the third lens group G3, the incident light of the zoomed surface can still be in a fixed position, except that the position of the imaging surface 6 can be fixed. The imaging surface 6 is focused to obtain a clear image. The third lens group G3 includes two positive lenses 31, 32 and a negative lens 33, wherein the two positive lenses 31, 32 and the negative lens 33 are sequentially arranged from the object side to the image side. In the present embodiment, the two positive lenses 31, 32 of the third lens group G3 are aspherical lenses, and the negative lens 33 is a biconcave lens. The aperture AP is located between the second lens group G2 and the third lens group G3 and is movable along the optical axis a-al. The fourth lens group G4 is a convex lens 41 for positive refractive power for focusing. The two lenses 51, 52 of the fifth lens group G5 are a lenticular lens and a double concave lens, respectively. The glass plate PL is disposed between the fifth lens group G5 and the image forming surface 6. As shown in FIGS. 2A and 2C, when the zoom lens assembly is zoomed from the wide-angle state (FIG. 2A) to the telephoto state (FIG. 2C), the first lens group G1 moves toward the object side to make the first lens. The distance between the group G1 and the second lens group G2 is increased and the third lens group G3 is moved toward the second lens group G2 such that the distance between the second lens group G2 and the third lens group G3 is reduced (also That is, the second lens group G2 and the third lens group G3 are close to each other, and the distance between the two lenses 51 and 52 of the third lens group G3 and the fifth lens group G5 is increased. The zoom lens assembly of the present invention satisfies the following relationship: 201237499 TL/Tf/TY ^0.17 wherein TL is the full length of the zoom lens assembly in the telephoto state, and Tf is the focal length of the zoom lens assembly in the telephoto state, and the TY is The zoom lens assembly is located at one of the telephoto states for effective imaging image height. Based on the technical content of the above-described zoom lens assembly of the present invention, the zoom lens assembly of the present invention can be embodied according to the numerical examples in Table 1, Tables 2(a) to 2(d), and Tables 3 to 4 below, wherein Table 1 is a numerical example in the telephoto state, and Tables 2(a) to 2(d) are the aspherical coefficients in the telephoto state of the respective embodiments [1 to 15], and Table 3 is in the wide-angle state. In the intermediate state, the distance between the variable focal planes (S5, S10, S11, S16, and S18) in the telephoto state, Table 4 is the focal length of the wide-angle state, the intermediate state, and the telephoto state, and Table 5 is for each of the telephoto states. The focal length of the lens group (G1 to G5). 201237499 Table 1 Numerical Example in Telephoto State Mirror Group Lens No. Surface Curvature Radius (mm) Thickness (mm) Material G1 11 111 S1 26.00 0.50 S-NPH2 112 S2 20.25 2.85 1.59,61.9 S3 142.00 0.07 12 S4 19.28 2.08 1.49, 70.4 S5 62.83 (variable) 15.74 G2 21 S6 16.09 0.65 L-LAH85 S7 3.76 1.92 22 S8 33.45 1.19 S-NPH2 23 S9 -15.42 0.69 NBF1 S10 20.81 (variable) 0.50 AP S11 00 (variable) 0.50 G3 31 S12 6.01 3.05 L-BAL35 S13 -7.00 0.07 32 S14 21.17 1.36 1.66,42.2 33 S15 -14.41 0.50 S-TIH4 S16 5.31 (variable) 11.40 G4 41 S17 9.85 1.87 480R S18 -603.06 (variable) 4.02 G5 51 S19 2687.37 0.80 1.70,36.9 52 S20 -29.00 0.50 1.76,27.6 S21 -92.22090711 0.7 PL S22 00 0.5 S-BSL7 S23 00 1.09093441 10 201237499 Table 2 (a) Aspherical coefficient in telephoto state: Example [1~4] Mirror number aspheric coefficient [1] Aspheric coefficient [2] Aspheric coefficient [3] Aspheric coefficient [4] G1 11 111 S1 112 S2 S3 12 S4 S5 G2 21 S6 0.571374 -3.091013E-05 S7 -0.293864 1.383861E-03 22 S8 23 S9 S10 20.039562 -1.690241E-04 -1.602734E-03 -2.954734E-04 AP S11 G3 31 S12 -0.540112 -1.320872E-03 S13 -0.305776 3.056215E -04 32 S14 33 S15 S16 G4 41 S17 1.088098 -3.493342E-04 S18 -45731.919968 -1.718541E-04 G5 51 S19 52 S20 S21 PL S22 S23 201237499 Table 2 (b) Aspherical coefficient in telescopic state: Example [ 5~8] (Continued from Table 2(a)) Mirror group lens surface number aspheric coefficient [5] Aspheric coefficient [6] Aspheric coefficient [7] Aspheric coefficient [8] G1 11 111 S1 112 S2 S3 12 S4 S5 G2 21 S6 fV711QQE-nS 7.5676Q9E-07 S7 5.704025E-05 -4.089988E-07 22 S8 23 S9 S10 9.824431E-05 1.718685E-06 2.146329E-06 -2.624242E-06 AP S11 G3 31 S12 3.418096E -05 -2.141132E-06 S13 3.237853E-05 -4.945214E-06 32 S14 33 S15 S16 G4 41 S17 -7.683173E-06 2.068059E-06 S18 -1.422745E-06 1.768679E-06 G 5 51 S19 52 S20 S21 PL S22 S23 12 201237499 Table 2 (c) Aspherical coefficient in telephoto state: Example [9~12] (Continued Table 2(b))_ Mirror group lens surface No. Aspheric coefficient [ 9] Aspherical coefficient Γ101 Aspherical coefficient 『111 Aspherical coefficient 『121 G1 11 111 S1 112 S2 S3 12 S4 S5 G2 21 S6 -8.000938E-08 4.365215E-09 S7 -7.646970E-07 3.130421E-08 22 S8 23 S9 S10 -1.619546E-06 9.063793E-08 1.107538E-07 4.032501E-08 AP S11 G3 31 S12 -3.100430E-07 1.447355E-08 S13 6.884784E-08 2.389893E-09 32 S14 33 S15 S16 G4 41 S17 -8.970219E-08 -2.331576E-09 S18 -7.545245E-08 -1.578152E-09 G5 51 S19 52 S20 S21 PL S22 S23
S 13 201237499 表2(d)望遠狀態下之非球面係數:實施例[13〜15](續表 2(c))_ 鏡群 透鏡 面No. 非球面係數[13] 非球面係數[14] 非球面係數[15] G1 11 111 S1 112 S2 S3 12 S4 S5 G2 21 S6 -4.438617E-11 -9.343426E-13 S7 -3.266113E-10 -3.133852E-18 22 S8 23 S9 S10 -2.726844E-09 -2.081446E-09 -1.807200E-10 AP S11 G3 31 S12 2.389137E-10 -4.730433E-12 S13 -4.669070E-10 2.694880E-11 32 S14 33 S15 S16 G4 41 S17 9.420233E-11 6.113630E-13 S18 -5.718893E-13 2.919209E-12 G5 51 S19 52 S20 S21 PL S22 S23 表3廣角狀態、中間狀態、望遠狀態下之可變焦面之間隔 面編號 廣角狀態 中間狀態 望遠狀態 S5 0.52 8.80 15.74 S10 7.47 2.22 0.50 S11 3.41 2.36 0.50 S16 2.54 3.98 11.40 S18 3.47 6.05 4.02 14 201237499 表4於廣角狀態、中間狀態 焦S 廣角狀態 5.22 中間狀態 14.30 望遠狀態 39.35 望遠狀態之焦距 各透鏡群< G1〜G5)之焦距 G1 30.81 G2 -5.99 G3 9.67 G4 18.50 G5 150.10 ^___於_言遠婆態下之各透鏡群(Ό1〜G5、夕焦距S 13 201237499 Table 2 (d) Aspherical coefficient in telephoto state: Example [13~15] (Continued Table 2(c))_ Mirror group lens surface No. Aspheric coefficient [13] Aspheric coefficient [14] Aspheric coefficient [15] G1 11 111 S1 112 S2 S3 12 S4 S5 G2 21 S6 -4.438617E-11 -9.343426E-13 S7 -3.266113E-10 -3.133852E-18 22 S8 23 S9 S10 -2.726844E-09 -2.081446E-09 -1.807200E-10 AP S11 G3 31 S12 2.389137E-10 -4.730433E-12 S13 -4.669070E-10 2.694880E-11 32 S14 33 S15 S16 G4 41 S17 9.420233E-11 6.113630E-13 S18 -5.718893E-13 2.919209E-12 G5 51 S19 52 S20 S21 PL S22 S23 Table 3 Wide-angle state, intermediate state, telephoto surface of the zoom surface No. of the wide-angle state Middle state telephoto state S5 0.52 8.80 15.74 S10 7.47 2.22 0.50 S11 3.41 2.36 0.50 S16 2.54 3.98 11.40 S18 3.47 6.05 4.02 14 201237499 Table 4 in wide-angle state, intermediate state focal point S wide-angle state 5.22 intermediate state 14.30 telescopic state 39.35 telephoto distance Group < G1~G5) The focal length G1 30.81 G2 -5.99 G3 9.67 G4 18.50 G5 150.10 ^ ___ _ made in each lens group away (Ό1~G5, Xi focal length state under the po
夂祿链症A or- I 第3A圖係為本發明之變焦鏡頭組件處於一廣角狀態 下、瞳孔半徑(pupil radius)為 0.7911 MILLIMETERS(毫米) 之球面像差示意圖’第3B圖係為本發明之變焦鏡頭組件處 於一望遠狀態下、瞳孔半徑為3.3777 MILLIMETERS(毫米) 之球面像差示意圖。第4A〜4D圖係為本發明之變焦鏡頭組 件處於一廣角狀態下、不同成像平面(ΙΜΑ)(0.0000]ν[Μ、 1.9000ΜΜ、2.7440ΜΜ、4.0000ΜΜ)之慧差曲線圖,第 5Α〜5D圖係為本發明之變焦鏡頭組件處於一望遠狀態下、 不同成像平面(ΙΜΑ)(0·0〇〇〇ΜΜ、1.9000ΜΜ、2.7440ΜΜ、 4.0000ΜΜ)之慧差曲線圖,其中,符號EX、ΡΧ、ΕΥ、ΡΥ 係表示座標轴。第3Α-3Β圖、第4Α〜4D圖、第5Α〜5D圖 係根據上述各表之實施例數值而獲得之各種曲線圖。 綜合上述說明可知,經由可在第二透鏡群G2、第三透 鏡群G3之間且可沿著光軸ai-ai進行移動之光圈ΑΡ及其 它配合元件的共同作用下,本發明之變焦鏡頭組件可獲得 15 201237499 高倍率且達到結構之薄型化目的,並且在第五透鏡群G5 之雙凸透鏡51與雙凹透鏡52的組合作用下更可有效地提 南成像性能。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限制本發明,任何熟習此項技藝者,在不脫離本發明之精 神和範圍内,當可做更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。 16 201237499 【圖式簡單說明】 第1圖係為本發明之一變焦鏡頭組件之光學結構之示 意圖, 第2A圖係為本發明之變焦鏡頭組件處於一廣角狀態 下之光路圖; 第2B圖係為本發明之變焦鏡頭組件處於一中間狀態 下之光路圖; 第2C圖係為本發明之變焦鏡頭組件處於一望遠狀態 下之光路圖; 第3A圖係為本發明之變焦鏡頭組件處於一廣角狀態 下之球面像差示意圖; 第3B圖係為本發明之變焦鏡頭組件處於一望遠狀態 下之球面像差示意圖; 第4A〜4D圖係為本發明之變焦鏡頭組件處於一廣角狀 態下之慧差曲線圖;以及 第5A〜5D圖係為本發明之變焦鏡頭組件處於一望遠狀 態下之慧差曲線圖。 【主要元件符號說明】 11〜第一透鏡 111〜第一鏡片 112〜第二鏡片 12〜第二透鏡 21〜第一透鏡 17 201237499 22〜第二透鏡 23〜第三透鏡 31、32〜正透鏡 33〜負透鏡 41〜凸透鏡 51、52〜透鏡 6〜成像面 al-al〜光轴 AP〜光圈 EX、PX、ΕΥ、PY〜座標轴夂链链症 A or- I Figure 3A is a schematic diagram of the spherical aberration of the zoom lens assembly of the present invention in a wide-angle state with a pupil radius of 0.7911 MILLIMETERS (mm). The zoom lens assembly is in a telephoto state with a pupil radius of 3.3777 MILLIMETERS (mm). 4A to 4D are coma curves of the zoom lens assembly of the present invention in a wide-angle state, different imaging planes (ΙΜΑ) (0.0000] ν [Μ, 1.9000 ΜΜ, 2.7440 ΜΜ, 4.000 ΜΜ), 5th Α 〜 The 5D image is a coma curve of the zoom lens assembly of the present invention in a telephoto state and different imaging planes (0·0〇〇〇ΜΜ, 1.9000ΜΜ, 2.7440ΜΜ, 4.0000ΜΜ), wherein the symbol EX , ΡΧ, ΕΥ, ΡΥ represent the coordinate axis. The third to third views, the fourth to fourth pictures, and the fifth to fifth pictures are various graphs obtained based on the numerical values of the examples of the above respective tables. As can be seen from the above description, the zoom lens assembly of the present invention is acted upon by a combination of an aperture ΑΡ and other mating elements movable between the second lens group G2 and the third lens group G3 and along the optical axis ai-ai. A high magnification of 15 201237499 can be obtained and the structure is thinned, and the combination of the lenticular lens 51 of the fifth lens group G5 and the biconcave lens 52 can effectively improve the imaging performance. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and the present invention can be modified and retouched without departing from the spirit and scope of the present invention. The scope of protection is subject to the definition of the scope of the patent application attached. 16 201237499 [Simple description of the drawings] Fig. 1 is a schematic view showing the optical structure of a zoom lens assembly of the present invention, and Fig. 2A is an optical path diagram of the zoom lens assembly of the present invention in a wide-angle state; The optical path diagram of the zoom lens assembly of the present invention is in an intermediate state; the 2C is the optical path diagram of the zoom lens assembly of the present invention in a telephoto state; and the 3A is the wide angle of the zoom lens assembly of the present invention. Schematic diagram of spherical aberration in the state; FIG. 3B is a schematic diagram of spherical aberration of the zoom lens assembly of the present invention in a telephoto state; FIGS. 4A to 4D are diagrams showing the zoom lens assembly of the present invention in a wide-angle state The difference graph; and the 5A to 5D maps are coma curves of the zoom lens assembly of the present invention in a telephoto state. [Description of Main Element Symbols] 11 to First Lens 111 to First Lens 112 to Second Lens 12 to Second Lens 21 to First Lens 17 201237499 22 to Second Lens 23 to Third Lens 31 and 32 to Positive Lens 33 ~ Negative lens 41 ~ convex lens 51, 52 ~ lens 6 ~ imaging surface a-al ~ optical axis AP ~ aperture EX, PX, ΕΥ, PY ~ coordinate axis
Gl、G2、G3、G4、G5〜第一、二、三、四、五透鏡群 PL〜玻璃平板 IMA〜成像平面 SI ' S2 ' S3 ' S4 ' S5、S6、S7、S8 ' S9、S10、S11、 S12 、 S13 、 S14 、 S15 、 S16 、 S17 、 S18 、 S19 、 S20 、 S21 、 S22、S23〜面 TL〜變焦鏡頭組件位於望遠狀態下之全長 18Gl, G2, G3, G4, G5 ~ first, second, third, fourth, and fifth lens groups PL ~ glass plate IMA ~ imaging plane SI ' S2 ' S3 ' S4 ' S5, S6, S7, S8 ' S9, S10, The full length of the S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23~face TL~zoom lens assembly is in the telephoto position.