TW201237483A - Optoelectronic hybrid interconnect - Google Patents

Optoelectronic hybrid interconnect Download PDF

Info

Publication number
TW201237483A
TW201237483A TW100108423A TW100108423A TW201237483A TW 201237483 A TW201237483 A TW 201237483A TW 100108423 A TW100108423 A TW 100108423A TW 100108423 A TW100108423 A TW 100108423A TW 201237483 A TW201237483 A TW 201237483A
Authority
TW
Taiwan
Prior art keywords
optical
transmission
transmission medium
interface
opto
Prior art date
Application number
TW100108423A
Other languages
Chinese (zh)
Other versions
TWI485455B (en
Inventor
Mao-Jen Wu
Chien-Chen Hsieh
Hsiao-Chin Lan
Hsu-Liang Hsiao
Chia-Chi Chang
An-Nong Wen
Yun-Chih Lee
Po-Shen Lee
Chin-Ta Chen
Bo-Kuan Shen
Original Assignee
Ct A Photonics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ct A Photonics Corp filed Critical Ct A Photonics Corp
Priority to TW100108423A priority Critical patent/TWI485455B/en
Publication of TW201237483A publication Critical patent/TW201237483A/en
Application granted granted Critical
Publication of TWI485455B publication Critical patent/TWI485455B/en

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

The present invention provides an optoelectronic hybrid interconnect comprising a first transmission interface for transmitting an electrical signal. An optical-electrical coupling module is coupled to the first transmission interface for conversion between an optical signal and the electrical signal. A second transmission interface is coupled the optical-electrical coupling module which includes an electrical transmission medium for transmitting the electrical signal and an optical transmission medium for transmitting the optical signal, and wherein the electrical transmission medium and optical transmission medium are enclosed by a cable wire.

Description

201237483 六、發明說明: 【發明所屬之技術領域】 本發明係關於電子連接器,特別係一種光電混合連接 器。 【先前技術】 電子裝置中通常會配設一連接器藉此與一其他元件 電性連接,以使電子裝置與他裝置溝通或傳輸訊號。然而, 隨著科技的進步,電子裝置朝向輕薄化之趨勢發展,以傳 統模具所製作之連接器塑膠本體以及應用沖壓技術所製作 之導電端子即不易裝設於輕薄化之電子裝置中。習知技術 即提出一種適於裝設於輕薄化電子裝置中之微型連接器。 其中,微型連接器内設有多個導電端子,而插入元件可插 置於微型連接器中,並藉由這些導電端子來與電子裝置電 性連接。舉例而言,HDMI(High-Defenition Multimedia Interface)連接器係用於在同一線材上進行數位聲音訊號 和數位晝面訊號之傳輸,而具有不受線材長度影響之高性 能傳輸介面。 另外,一種矽基微光學平台之光學連結技術係利用自 由空間的光學傳遞,其可以作為板對板或USB 3.0之光學 連結技術的一個應用平台。在架構上,此矽基微光學平台 之光學連結收發模組包含有:單石積體化之45°微反射 面、置放光纖陣列之V型凹槽、具2.5 GHz之高頻傳輸線 與錫金焊料等,並可經由適當之光學對位而將面射型雷射 與光偵測器封裝至該微光學平台上。矽基微光學平台已完 201237483 成2.5 GHz/channel的傳輸速度。 然而’上述傳輸介面或連接器之效能尚有待提升之 處,是以,本發明提出一種以微光學平台為基礎之連接裝 置。 【發明内容】 本發明提供一種光電混合連接器,包含第一傳輸介 面,用於傳輸電訊號;光電耦合模組,耦接第一傳輸介面, 用於光訊號與該電訊號間轉換;以及第二傳輸介面,轉接 光電耗合模組’包含電訊號傳輸媒介及光訊號傳輸媒介, 以利於藉由該電訊號傳輸媒介傳遞電訊號,以光訊號傳輸 媒介傳輸光訊號,其中電訊號傳輸媒介與光訊號傳輸媒介 被包覆於一纜線内。 .光電稱合权組包含一半導體基板,具有一凹型平台形 成於其中,凹型平台之第一端具有一反射面,凹型平台中 具有凹槽陣列可用於配置光訊號傳輸媒介,傳輸線形成於 半導體基板之上;一光元件,經由導電凸塊而耦接半導體 基板之傳輸線,配置以接近第一端,並經由反射面而耦接 光訊號傳輸媒介;一晶片,耦接該光元件。其中電訊號傳 輸媒介包含金屬導線;光訊號傳輸媒介包含光纖。 根據本發明之另一觀點,光電混合連接器,包含:第 一傳輸介面,耦接第一電子裝置,用於傳輸第一電訊號; 第二傳輸介面,耦接第二電子裝置’用於傳輸第二電訊號; 第一光電耦合模組,耦接第一傳輸介面,用於第一光訊號 與第一電訊號間轉換;第二光電耦合模組,耦接第二傳輸 201237483 介面’用於第二光訊號與第二電訊號間轉換;以及第三傳 輸介面,耦接第一光電耦合模組與第二光電耦合模組,包 含電訊號傳輸媒介及光訊號傳輸媒介,以利於藉由電訊號 傳輸媒介傳遞第一與第二電訊號,以光訊號傳輸媒介傳輸 第一與第二光訊號,其中電訊號傳輸媒介與光訊號傳輸媒 介被包覆於一纟覽線内。 【實施方式】 本發明將配合其較佳實施例與隨附之圖示詳述於 下。應可理解者為本發明中所有之較佳實施例僅為例示之 用’並非用以限制。因此除文中之較佳實施例外,本發明 亦可廣泛地應用在其他實施例中。且本發明並不受限於任 何實施例’應以隨附之申請專利範圍及其同等領域而定。 本發明提供一種光電混合連接器,其中光電耦合模組 係整合光元件(VCSELs/Photo-Detector)及光纖於一微光學 平台之中;另外,光電耦合模組亦包含具有波導之光學連 接益或波導整合式單晶片積體電路,其中波導整合式單晶 片積體電路係將積體電路與波導整合於單一矽基晶片上或 SOI(Silicon On Insulator)-基晶片上。 第圖顯不根據本發明一實施例之光電混合連接器 之功此方塊圖。如第一圖所示,光電混合連接器⑺包含一 第傳輸;丨Φ 11、第二傳輸介面12及光電麵合模組η, -第傳輸&quot;面11與第二傳輪介面12耗接光電搞合模 組U。第-傳輸介面u係用於連接—電子裝置之連接介 面,以利㈣f Μ料崎遞或純—钱號;並且第 201237483 -一傳輸介面11耦接光電耦合模組13,以利於電訊號於其 間傳遞。光電耦合模組12係用於一光訊號與一電訊號間轉 換。而第二傳輸介面12包含電訊號傳輸媒介及光訊號傳輸 媒&quot;’轉接光電耦合模組13。因此’第二傳輸介面12得 以藉由電訊號傳輸媒介而傳遞/接收電訊號至/從光電耦合 模組13,以及藉由光訊號傳輸媒介而傳輸/接收光訊號至/ 攸光電耦合模組13。換言之,第一傳輸介面u與光電耦 合模組13之間可以雙向傳輸電訊號;同樣地,第二傳輸介 面12與光電耦合模組13之間可以雙向傳輸電訊號及/或光 汛號,端視實際應用上之選取,惟其間可以利用光電耦合 模組13而轉換光訊號與電訊號。 第二圖顯示為根據本發明之一實施例之光電混合連 接器。如第二圖所示,光電混合連接器包含一第一傳輸介 面21、第一傳輸介面22及光電轉合模組23,其中第一傳 輸介面21與第二傳輸介面22耦接光電耦合模組23。第一 傳輸介面21係透過其中的連接介面21a,例如接腳(pins), 而連接一電子裝置之連接介面,以利於該電子裝置得以傳 遞或接收一電訊號;並且第一傳輸介面21透過連接介面 21a,例如接腳,而耦接光電耦合模組23,以利於電訊號 於其間傳遞。光電耦合模組23可利用一外殼24包覆,以 保護其免於受到外在環境的影響。第二傳輸介面22包含數 條導線25,例如銅導線(copper wires),及數條光纖(optical fibe〇26 ’其中數條導線25及光纖26被包覆於一纜線22a 内。因此’第二傳輸介面22得以藉由數條導線25而傳遞/ 201237483 接收電訊號至/從光電麵合模組23,以及藉由域26而傳 輸光訊號至/從光料合模組23。意即,第—傳輸介面^ 與光絲合模組23之間可以透過接腳21a而雙向傳輸電訊 號。 。 此外,上述光電耦合模組23包含一半導體基板29、 一晶片27以及一光元件32,上述第二傳輸介面22中之導 線25、半導體基板29以及晶片27配置於一印刷電路板3〇 之上與其電性連接。晶片27例如為一驅動電路晶片或控制 晶片。半導體基板29係作為矽基微光學平台(SiHc〇n Optical Bench)’其中具有凹形平台38,凹形平台%中具 有凹槽陣列(參考第五圖)以利於光纖26配置於其上,傳輸 線31形成於半導體基板29之上以利於電性連接晶片w 及光元件32。光元件32為光發射或接收元件,例如包括 雷射、垂直共振腔表面放射雷射(VCSEL)、光檢測器 (Photodetector)或發光二極體。 上述第二傳輸介面22中之導線25及光纖26分別配 置於光電耦合模組23中的印刷電路板3〇與半導體基板29 之上,因此第二傳輸介面22與光電耦合模組23之間可以 透過數條導線25及光纖26而雙向傳輸電訊號及光訊號, 端視實際應用上之選取,惟其間可以利用光電耦合模組23 上的晶片27及光元件32以進行光訊號與電訊號間的轉換。 舉一實施例而言,第一傳輸介面21為一有線傳輸介 面,包含但不限定於HDMI傳輸介面、uSB傳輸介面、顯 示面板傳輸介面、RS-232、RS-422、Rj-45、Fire Wire 等 201237483 等,或主動光規(Active Optical Cable)介面、Light Peak、 Thunderbolt、單端具有電性的介面、單端具有光學或光電 混合型態的介面、雙向傳輸介面,都可以用應用於本發明。 以HDMI為例,在高速的訊號傳遞上(例如4條光纖) 係單向傳輸(Transmitter to Receiver),而其他傳輸器如USB 等接頭,是屬於收發器(Transceiver)形式,意即單端(single End)上同時具有接收與發射模組。此外,在同一側配置光 發射次組裝與光接收次組裝(TOSA與ROSA : Transmitter optical sub-assembly 與 Receiver optical sub-assembly)而成 為雙向光次組裝(BOSA: Bi-directional optical sub-assembly) 也包含在内。換言之,本發明之第一傳輸介面21可以適用 於單向傳輸或雙向傳輸的介面。 第三圖顯示為根據本發明之一實施例之光電耦合模 組之截面圖。在本實施例中包含二組光電耦合模組,為微 型化被動式光連結發射端模組以及接收端模組,其分別包 含半導體基板29a及29b、晶片27a及27b、發光元件32a 及光接收元件32b,上述半導體基板29a及29b '晶片27a 及27b分別配置於印刷電路板30a及30b之上與其電性連 接。晶片27a及27b例如為一驅動電路晶片或控制晶片。 半導體基板29a及29b包含凹形平台及具某一角度(例如 45度)之反射面37a與37b,凹形平台上具有凹槽陣列35a 及35b以利於光纖26配置於其上,其中凹槽陣列35a及 35b例如為V型凹槽陣列(V-groove array),該45度反射面 37a與37b可作為各式光電元件中所需之光學反射面。傳 201237483 輸線31a及3lb ’例如為頻率1〇 GHz或更高的高頻傳輸 線刀別形成於半導體基板29a及29b之上以利於電性連 接晶片27a及27b及發光元件32a及光接收元件32b。舉 例而S ’傳輸線3la及31b係分別透過焊線(wire bonds)34a 及34b以電性連接晶片27a及27b,而傳輸線31a及31b 係分別透過(導電)焊接凸塊(solder bunip)33a及33b以電性 連接發光元件32a及光接收元件32b。此外,傳輸線31a 及31b亦可以利用覆晶接合(FHp_chip Bonding)的方法以 電性連接晶片27a及27b。發光元件32a例如包括雷射、 垂直共振腔表面放射雷射(VCSEL)或發光二極體,光接收 元件3 2b例如包括光檢測器。 光纖26包含核心部份(Core)26b及被覆部份 (Cladding)26a,核心部份26b為光纖中傳遞光信號的部 份’而被覆部份26a被覆在核心部份26b外圍,使光線能 在核心部份26b中傳送。核心部份26b之折射率須比被覆 部份26a之折射率大以使光線成全反射。另外,可增加一 保護層以保護被覆部份26a周圍,以防止損害光纖之被覆 部份26a及核心部分26b。 舉一實施例而言,上述半導體基板29a及29b分別具 有凹形平台形成於其下的一特定深度,該凹形平台之第一 端形成一反射面37a及37b,並且該凹形平台中具有凹槽 陣列35a及35b。反射面37a及37b為45度之反射面。 舉例而言’上述發光元件32a及光接收元件32b係配 置以接近凹形平台之第一端,並經由反射面37a及37b而 201237483 光學耦接光纖26。因此,發光元件32a及光接收元件32b 之間的光路徑40包含:從發光元件32a發出的光經由反射 面37a的反射而進入光纖26 ’通過光纖26之後再經由反 射面37b的反射而進入光接收元件32b以接收光訊號。 舉一實施例而言’微型化被動式光連結發射端模組以 及接收端模組之傳輸線31係分別透過導電部33以電性連 接發光元件或光接收元件32,半導體基板29係為矽基微 光學平台(Silicon Optical Bench),並且一塑模材料(m〇iding material)41係用於填入(滿)該凹形平台,而光纖26得以附 著於該凹槽陣列中的塑模材料41之上,如第四圖所示。發 光元件或光接收元件32係配置(形成)於石夕基微光學平台之 上。舉例而言,塑模材料41之上表面係與導體基板29之 凹形平台上表面平齊。基於光學平台(凹形平台)中的凹槽 陣列35,使得光纖26得以被動式地對準凹槽陣列,如第 五圖所示。舉一實施例而言,凹槽陣列的凹槽間距一般係 為2 5 0微米’而凹槽寬度7 〇則視不同的規格需求而作設計 或調整,在光學平台上5平方公釐内具有4個通道⑽咖 =傳輸10 Gbps。舉一實施例而言,光學元件之結構誤差 容忍度(T〇Ierance)為±1〇微米,光學系統的對準誤差容忍卢 為土2〇微米,而發光元件32至光纖26的光路經 第 圖所示 面52、 “圖顯tf根據本發明-纟統之功能方塊圖。如第山 楚此系統50包含一第一傳輸介面51、第二傳輸二 第二傳輸介面53、第-光電耦合模組54、第二光 201237483 電搞合模組55、第一電子裝置56及第二電子裝置57,其 中第一傳輸介面51與第三傳輸介面53耦接第一光電搞合 模組54,第二傳輸介面52與第三傳輸介面53耦接第二光 電耗合模組55。第一傳輸介面51係用於連接電子裝置56 之連接介面,以利於第一電子裝置56得以傳遞或接收一電 訊號;並且第一傳輸介面51耦接第一光電耦合模組54, 以利於電訊號於其間傳遞。第二傳輸介面52係用於連接第 二電子裝置57之連接介面,以利於第二電子裝置57得以 傳遞或接收一電訊號;並且第二傳輸介面52耦接第二光電 耦合模組55,以利於電訊號於其間傳遞。而第三傳輸介面 53包含電訊號傳輸媒介及光訊號傳輸媒介,耦接第一光電 耦合模組54及第二光電耦合模組55。因此,第一電子裝 置56與第二電子裝置57得以藉由上述傳輸介面與光電耗 合杈組而雙向或單向傳輸與接收電訊號。 第七圖顯示為根據本發明之另一實施例之光電混合 連,器。如第七圖所示,光電混合連接器更包含-電源轉 、器61功率控制晶片60、光纖轉接器(fiber adapter)66、 平均電阻63及調變電⑯64。—訊號輸人&amp;可以透過接腳 (Pins)21a卩輸入其訊號,接腳2U f性連接電源轉換器 61、°其中光纖轉接器66可用其光纖接頭連接至光纖%。 $源f換11 61為外接式電源,透過導線25b電性連接功率 .制aa片60。數條導線25a配置於印刷電路板之上。外接 ,電源61主要在於考量光電轉換lf(〇E e〇nvener)的功耗 〇 、在特疋連接器的功率提供内完成,例如USB可以 201237483 提供電壓5V且500〜900 mA的最大電流相當於 的功率,*H刪則可以提供電璧5V、電流5〇减或 ^外接電源將視需求引人或不需要均可。當内部電源功 广不足夠供應給光電耦合模組時,即可透過功 曰、 6〇以啟減賴^__61料行供電。平均= 63及霞電阻64電性連接晶片27,㈣於固定發光元件 32之平均電流及調變電流。 對熟悉此領域技藝者,本發明雖以較佳實例閣明如 上、」其並非用以限定本發明之精神。在不脫離本發明之 粕神:範圍内所作之修改與類似的配置,均應包含在下述 之申明專利In圍内,此範圍應覆蓋所有類似修 处 構,且應做最寬廣的詮釋。 … 【圖式簡單說明】 第一圖顯示根據本發明一實施例之光電混合連接器 之功能方塊圖。 °201237483 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to electronic connectors, and more particularly to an opto-electric hybrid connector. [Prior Art] A connector is usually provided in an electronic device to electrically connect with another component to allow the electronic device to communicate with or transmit signals to other devices. However, with the advancement of technology, electronic devices have been trending toward thinner and lighter. The connector plastic body made by the conventional mold and the conductive terminals made by applying the stamping technology are not easily installed in the thin and light electronic device. The prior art proposes a miniature connector suitable for mounting in a thin and light electronic device. Wherein, the micro connector has a plurality of conductive terminals, and the insertion component can be inserted into the micro connector, and the conductive terminals are electrically connected to the electronic device. For example, the HDMI (High-Defenition Multimedia Interface) connector is used to transmit digital audio signals and digital video signals on the same wire, and has a high-performance transmission interface that is not affected by the length of the wire. In addition, an optical bonding technology for a germanium-based micro-optical platform utilizes optical transmission of free space, which can be used as an application platform for board-to-board or USB 3.0 optical bonding technology. Architecturally, the optical connection transceiver module of the bismuth-based micro-optical platform comprises: a 45-degree micro-reflective surface of a monolithic body, a V-shaped groove for placing an optical fiber array, a high-frequency transmission line with 2.5 GHz, and a tin-gold solder. Etc., and a surface-emitting laser and photodetector can be packaged onto the micro-optical platform via appropriate optical alignment. The 矽-based micro-optics platform has completed the 201237483 transmission speed of 2.5 GHz/channel. However, the performance of the above-described transmission interface or connector has yet to be improved, so that the present invention proposes a connection device based on a micro-optical platform. SUMMARY OF THE INVENTION The present invention provides an opto-electric hybrid connector including a first transmission interface for transmitting electrical signals, and an optocoupler module coupled to the first transmission interface for converting between the optical signal and the electrical signal; The second transmission interface, the switching photoelectric consuming module </ RTI> comprises a telecommunication transmission medium and an optical signal transmission medium for facilitating transmission of electrical signals by the telecommunication transmission medium, and transmitting optical signals by the optical transmission medium, wherein the telecommunication transmission medium The optical signal transmission medium is wrapped in a cable. The photoelectric weighing group includes a semiconductor substrate having a concave platform formed therein, the concave end of the concave platform has a reflecting surface, the concave platform has a groove array for configuring the optical signal transmission medium, and the transmission line is formed on the semiconductor substrate An optical component is coupled to the transmission line of the semiconductor substrate via the conductive bump, disposed to be adjacent to the first end, and coupled to the optical signal transmission medium via the reflective surface; and a chip coupled to the optical component. The telecommunication transmission medium comprises a metal wire; the optical signal transmission medium comprises an optical fiber. According to another aspect of the present invention, an opto-electric hybrid connector includes: a first transmission interface coupled to the first electronic device for transmitting the first electrical signal; and a second transmission interface coupled to the second electronic device for transmitting a first electrical coupling module coupled to the first transmission interface for converting between the first optical signal and the first electrical signal; and a second optical coupling module coupled to the second transmission 201237483 interface The second optical signal is coupled to the second electrical signal; and the third optical interface is coupled to the first optical coupling module and the second optical coupling module, including the electrical signal transmission medium and the optical signal transmission medium, to facilitate the use of the telecommunication The transmission medium transmits the first and second electrical signals, and transmits the first and second optical signals by the optical signal transmission medium, wherein the electrical signal transmission medium and the optical signal transmission medium are wrapped in a navigation line. [Embodiment] The present invention will be described in detail with reference to the preferred embodiments thereof and the accompanying drawings. It should be understood that all of the preferred embodiments of the invention are intended to be illustrative only and not limiting. Therefore, the invention may be applied to other embodiments in addition to the preferred embodiments. And the present invention is not limited to any embodiment, which should be based on the scope of the appended claims and their equivalents. The invention provides an opto-electric hybrid connector, wherein the optocoupler module integrates optical components (VCSELs/Photo-Detector) and optical fibers in a micro-optical platform; in addition, the optocoupler module also includes an optical connection benefit with a waveguide or A waveguide integrated single-wafer integrated circuit in which a waveguide integrated single-wafer integrated circuit integrates an integrated circuit and a waveguide on a single germanium-based wafer or an SOI (Silicon On Insulator)-based wafer. The figure shows a block diagram of the operation of an opto-electric hybrid connector in accordance with an embodiment of the present invention. As shown in the first figure, the opto-electric hybrid connector (7) includes a first transmission; 丨Φ 11, the second transmission interface 12, and the photo-electrical surface module η, - the first transmission &quot; face 11 and the second transfer interface 12 Photoelectric combination module U. The first transmission interface u is used for the connection interface of the connection-electronic device, so as to facilitate the (four) f 崎 崎 或 or pure-money number; and the 201237483 - a transmission interface 11 is coupled to the optoelectronic coupling module 13 to facilitate the electrical signal Passed in between. The optocoupler module 12 is used for converting between an optical signal and an electrical signal. The second transmission interface 12 includes an electrical signal transmission medium and an optical transmission medium &quot;switching optocoupler module 13. Therefore, the second transmission interface 12 can transmit/receive the electrical signal to/from the optocoupler module 13 through the telecommunication transmission medium, and transmit/receive the optical signal to the/or optocoupler module 13 through the optical signal transmission medium. . In other words, the first transmission interface u and the optocoupler module 13 can transmit electrical signals bidirectionally; similarly, the second transmission interface 12 and the optocoupler module 13 can transmit electrical signals and/or optical signals in both directions. Depending on the actual application, only the optocoupler module 13 can be used to convert the optical signal and the electrical signal. The second figure shows an opto-electric hybrid connector in accordance with an embodiment of the present invention. As shown in the second figure, the opto-electric hybrid connector includes a first transmission interface 21, a first transmission interface 22, and a photoelectric conversion module 23, wherein the first transmission interface 21 and the second transmission interface 22 are coupled to the optocoupler module. twenty three. The first transmission interface 21 is connected to the connection interface of an electronic device through a connection interface 21a, such as a pin, to facilitate transmission or reception of an electrical signal by the electronic device; and the first transmission interface 21 is connected through the connection. The interface 21a, for example, a pin, is coupled to the optocoupler module 23 to facilitate the transmission of electrical signals therebetween. The optocoupler module 23 can be covered with a housing 24 to protect it from the external environment. The second transmission interface 22 includes a plurality of wires 25, such as copper wires, and a plurality of optical fibers (the optical wires 26 and the plurality of wires 26 are wrapped in a cable 22a. Therefore The two transmission interfaces 22 can be transmitted by a plurality of wires 25 / 201237483 to receive electrical signals to/from the photoelectric surface module 23, and the optical signals are transmitted to/from the optical material module 23 via the domain 26. That is, The photoelectric transmission module 23 includes a semiconductor substrate 29, a wafer 27, and an optical component 32. The photoelectric coupling module 23 includes a semiconductor substrate 29, a wafer 27, and an optical component 32. The wire 25, the semiconductor substrate 29, and the wafer 27 in the second transmission interface 22 are electrically connected to a printed circuit board 3. The wafer 27 is, for example, a driver circuit wafer or a control wafer. The semiconductor substrate 29 is used as a germanium substrate. A micro-optical platform (SiHc〇n Optical Bench) has a concave platform 38 therein, and has a groove array (refer to FIG. 5) in the concave platform % to facilitate the arrangement of the optical fiber 26 thereon, and the transmission line 31 is formed on the semiconductor substrate 29 Above The wafer w and the optical element 32 are electrically connected. The optical element 32 is a light emitting or receiving element, for example, including a laser, a vertical cavity surface radiation laser (VCSEL), a photodetector, or a light emitting diode. The wires 25 and the optical fibers 26 in the second transmission interface 22 are respectively disposed on the printed circuit board 3 〇 and the semiconductor substrate 29 in the optocoupler module 23, so that the second transmission interface 22 and the optocoupler module 23 can pass through. A plurality of wires 25 and 26 are used to transmit electrical signals and optical signals in two directions, depending on the actual application, but the wafer 27 and the optical components 32 on the optocoupler module 23 can be used to perform optical signals and electrical signals. In one embodiment, the first transmission interface 21 is a wired transmission interface, including but not limited to an HDMI transmission interface, a uSB transmission interface, a display panel transmission interface, RS-232, RS-422, Rj-45, Fire Wire et al 201237483, or Active Optical Cable interface, Light Peak, Thunderbolt, single-ended electrical interface, single-ended optical or opto-electric hybrid interface, bidirectional The transmission interface can be used in the present invention. Taking HDMI as an example, a high-speed signal transmission (for example, four optical fibers) is a one-way transmission (Transmitter to Receiver), and other transmitters such as a USB connector are transmitted and received. Transceiver form, meaning that there are both receiving and transmitting modules on a single end. In addition, the light-emitting sub-assembly and the light-receiving sub-assembly (TOSA and ROSA: Transmitter optical sub-assembly and Receiver optical sub-assembly) are arranged on the same side to form a bi-directional optical sub-assembly (BOSA). Included. In other words, the first transmission interface 21 of the present invention can be applied to an interface for one-way transmission or two-way transmission. The third figure shows a cross-sectional view of an optocoupler module in accordance with an embodiment of the present invention. In this embodiment, two sets of photoelectric coupling modules are included, which are miniaturized passive optical connection transmitting end modules and receiving end modules, which respectively include semiconductor substrates 29a and 29b, wafers 27a and 27b, light emitting elements 32a and light receiving elements. 32b, the semiconductor substrates 29a and 29b' of the wafers 27a and 27b are electrically connected to the printed circuit boards 30a and 30b, respectively. The wafers 27a and 27b are, for example, a driver circuit wafer or a control wafer. The semiconductor substrates 29a and 29b include a concave platform and reflective surfaces 37a and 37b having an angle (for example, 45 degrees), and the concave platform has groove arrays 35a and 35b for facilitating the arrangement of the optical fibers 26 thereon, wherein the groove array 35a and 35b are, for example, V-groove arrays, and the 45-degree reflecting surfaces 37a and 37b can be used as optical reflecting surfaces required for various types of photovoltaic elements. Transmission line 31a and 3lb', for example, a high-frequency transmission line cutter having a frequency of 1 〇 GHz or higher is formed on the semiconductor substrates 29a and 29b to facilitate electrical connection of the wafers 27a and 27b and the light-emitting element 32a and the light-receiving element 32b. . For example, the S' transmission lines 3a and 31b are electrically connected to the wafers 27a and 27b via wire bonds 34a and 34b, respectively, and the transmission lines 31a and 31b are respectively transmitted (conductive) solder bumps 33a and 33b. The light emitting element 32a and the light receiving element 32b are electrically connected. Further, the transmission lines 31a and 31b may be electrically connected to the wafers 27a and 27b by a method of flip chip bonding (FHp_chip bonding). The light-emitting element 32a includes, for example, a laser, a vertical cavity surface radiation laser (VCSEL) or a light-emitting diode, and the light-receiving element 32b includes, for example, a photodetector. The optical fiber 26 includes a core portion 26b and a Cladding portion 26a. The core portion 26b is a portion of the optical fiber that transmits an optical signal. The covered portion 26a is covered on the periphery of the core portion 26b to enable light to be present. Transmitted in core part 26b. The refractive index of the core portion 26b must be greater than the refractive index of the coated portion 26a to cause total reflection of the light. Alternatively, a protective layer may be added to protect the periphery of the covered portion 26a to prevent damage to the coated portion 26a and the core portion 26b of the optical fiber. In one embodiment, the semiconductor substrates 29a and 29b respectively have a specific depth formed by a concave platform, and the first end of the concave platform forms a reflecting surface 37a and 37b, and the concave platform has The groove arrays 35a and 35b. The reflecting surfaces 37a and 37b are 45-degree reflecting surfaces. For example, the light-emitting element 32a and the light-receiving element 32b are disposed to be close to the first end of the concave platform, and optically couple the optical fiber 26 via the reflective surfaces 37a and 37b and 201237483. Therefore, the light path 40 between the light-emitting element 32a and the light-receiving element 32b includes: the light emitted from the light-emitting element 32a enters the optical fiber 26 through the reflection of the reflective surface 37a, and then enters the light through the reflection of the reflective surface 37b. The component 32b is received to receive an optical signal. In one embodiment, the miniaturized passive optical connection transmitter module and the transmission line 31 of the receiver module are electrically connected to the light-emitting component or the light-receiving component 32 through the conductive portion 33, and the semiconductor substrate 29 is 矽基微. A Silicon Optical Bench, and a molding material 41 is used to fill (fill) the concave platform, and the optical fiber 26 is attached to the molding material 41 in the groove array. Above, as shown in the fourth picture. The light-emitting element or light-receiving element 32 is disposed (formed) on the Shishiji micro-optical platform. For example, the upper surface of the molding material 41 is flush with the upper surface of the concave platform of the conductor substrate 29. Based on the array of grooves 35 in the optical table (concave platform), the fibers 26 are passively aligned with the array of grooves, as shown in Figure 5. In one embodiment, the groove pitch of the groove array is generally 250 μm and the groove width 7 设计 is designed or adjusted according to different specifications, and has 5 square mm on the optical platform. 4 channels (10) coffee = transmission 10 Gbps. For one embodiment, the structural error tolerance (T〇Ierance) of the optical component is ±1 μm, the alignment error of the optical system is tolerated by 2 μm, and the optical path of the light-emitting element 32 to the optical fiber 26 is Figure 52, "Functional tf according to the present invention - a functional block diagram of the system. For example, the system 50 includes a first transmission interface 51, a second transmission two second transmission interface 53, a first-optocouple coupling The module 54 and the second light 201237483 are electrically coupled to the module 55, the first electronic device 56, and the second electronic device 57. The first transmission interface 51 and the third transmission interface 53 are coupled to the first optoelectronic module 54. The second transmission interface 52 and the third transmission interface 53 are coupled to the second photoelectric consuming module 55. The first transmission interface 51 is used to connect the connection interface of the electronic device 56 to facilitate the transmission or reception of the first electronic device 56. The first transmission interface 51 is coupled to the first optocoupler module 54 to facilitate the transmission of the electrical signal therebetween. The second transmission interface 52 is used to connect the connection interface of the second electronic device 57 to facilitate the second electronic Device 57 is capable of transmitting or receiving an electrical The second transmission interface 52 is coupled to the second optocoupler module 55 for facilitating the transmission of the electrical signal therebetween. The third transmission interface 53 includes an electrical signal transmission medium and an optical signal transmission medium coupled to the first optocoupler mode. The group 54 and the second optocoupler module 55. Therefore, the first electronic device 56 and the second electronic device 57 can transmit and receive electrical signals bidirectionally or unidirectionally through the transmission interface and the photoelectric consumption group. Shown as an opto-electric hybrid according to another embodiment of the present invention, as shown in the seventh figure, the opto-electric hybrid connector further includes a power converter, a power control chip 60, and a fiber adapter 66. , the average resistance 63 and the modulation and transformation power 1664. - the signal input &amp; can be input through the pin (Pins) 21a, the pin 2U f is connected to the power converter 61, wherein the fiber optic adapter 66 can use its fiber The connector is connected to the fiber %. $source f for 11 61 is an external power supply, electrically connected to the power through the wire 25b. The aa piece 60. The plurality of wires 25a are arranged on the printed circuit board. Externally, the power source 61 mainly considers the photoelectric Convert lf (〇E e〇nvener) power consumption 〇, completed in the power supply of the special connector, for example, USB can provide the voltage of 5V and the maximum current of 500~900 mA equivalent to the power of 201237483, *H delete can provide electricity璧5V, current 5〇 reduction or ^ external power supply will be introduced or not required according to demand. When the internal power supply is not enough to supply to the optocoupler module, you can use the power, 6〇 to reduce __61 is supplied with power. Average = 63 and Xia resistance 64 are electrically connected to the wafer 27, and (4) the average current and the modulation current of the fixed light-emitting element 32. It will be apparent to those skilled in the art that the present invention is not intended to limit the scope of the present invention. Modifications and similar configurations made within the scope of the present invention are intended to be included in the following claims, which should cover all similar modifications and should be interpreted broadly. BRIEF DESCRIPTION OF THE DRAWINGS The first figure shows a functional block diagram of an opto-electric hybrid connector in accordance with an embodiment of the present invention. °

不根據本發明之一實施例之光電混合連接 第一圖顯示根據本發明之一實施例之光電耦合模組 之截面圖。 第四圖顯示根據本發明之另一實施例之光電耦合模 組之截面圖。 第五圖顯示為根據本發明之一實施例之凹槽陣列之 戴面圖。 第六圖顯示為根據本發明之一實施例之一系統之功 12 201237483 能方塊圖。 第七圖顯示為根據本發明之另一實施例之光電耦合 模組之示意圖。 【主要元件符號說明】 光電混合連接器10 第一傳輸介面11、21、51 第二傳輸介面12、22、52 光電耦合模組13、23 光電耦合模組13、23 連接介面21a 纜線22a 外殼24 導線 25、25a、25b 光纖26 被覆部份26a 核心部份26b 晶片 27、27a、27b 半導體基板29、29a、29b 印刷電路板30、30a、30b 傳輸線 31、31a、31b 光元件32 發光元件32a 光接收元件32b 導電部33 13 201237483 焊接凸塊33a、33b 焊線 34a、34b 凹槽陣列35、35a、35b 反射面37a、37b 凹形平台38 光路徑40、40a 塑模材料41 系統50 第三傳輸介面53 第一光電耦合模組54 第二光電耦合模組55 第一電子裝置56 第二電子裝置57 功率控制晶片60 電源轉換器61 平均電阻63 調變電阻64 訊號輸入6 5 光纖轉接器66 凹槽寬度70 14Photoelectric Hybrid Connections Not in accordance with an Embodiment of the Invention The first figure shows a cross-sectional view of an optocoupler module in accordance with an embodiment of the present invention. The fourth figure shows a cross-sectional view of an optocoupler module in accordance with another embodiment of the present invention. The fifth figure shows a wear side view of a groove array in accordance with an embodiment of the present invention. Figure 6 is a block diagram showing the power of a system in accordance with one embodiment of the present invention. Figure 7 is a schematic illustration of an optocoupler module in accordance with another embodiment of the present invention. [Main component symbol description] Photoelectric hybrid connector 10 First transmission interface 11, 21, 51 Second transmission interface 12, 22, 52 Photoelectric coupling module 13, 23 Photoelectric coupling module 13, 23 Connection interface 21a Cable 22a Housing 24 wires 25, 25a, 25b fiber 26 coated portion 26a core portion 26b wafer 27, 27a, 27b semiconductor substrate 29, 29a, 29b printed circuit board 30, 30a, 30b transmission line 31, 31a, 31b optical element 32 light-emitting element 32a Light receiving element 32b Conductive portion 33 13 201237483 Solder bumps 33a, 33b Wire bonds 34a, 34b Groove array 35, 35a, 35b Reflecting surface 37a, 37b Concave platform 38 Light path 40, 40a Molding material 41 System 50 Third Transmission interface 53 first optocoupler module 54 second optocoupler module 55 first electronic device 56 second electronic device 57 power control chip 60 power converter 61 average resistance 63 modulation resistor 64 signal input 6 5 fiber optic adapter 66 groove width 70 14

Claims (1)

201237483 七、申請專利範圍: ι_ 一種光電混合連接器,包含: 第一傳輸介面,用於傳輸電訊號; 光電耦合模組,耦接該第一傳輸介面,用於光訊號與該 電訊號間轉換;以及 第二傳輸介面,耦接該光電耦合模組,包含電訊號傳輸 媒&quot;及光§fl號傳輸媒介,以利於藉由該電訊號傳輸媒介 傳遞電訊號,以該光訊號傳輸媒介傳輸光訊號,其中該 電號傳輸媒介與該光訊號傳輸媒介被包覆於一纟覽線 内。 2. 如請求項1所述之光電混合連接器,其中該光電耦合模 組包含一具有波導之光學連接器或波導整合式單晶片 積體電路。 3. 如請求項1所述之光電混合連接器,其中該光電耦合模 組包含: 一半導體基板,具有一凹型平台形成於其中,該凹型平 台之第一端具有一反射面,該凹型平台中具有凹槽陣列 可用於配置該光sfl號傳輸媒介,傳輸線形成於該半導體 基板之上; 一光元件,經由導電凸塊而耦接該半導體基板之該傳輸 線,配置以接近該第一端,並經由該反射面而耦接該光 訊號傳輸媒介; 15 201237483 . 一晶片’耦接該光元件。 4. 如凊求項3所述之光電混合連接器,其中該光元件包含 雷射、垂直共振腔表面放射雷射、光檢測器或發光二極 體。 5. 如請求項丨所述之光電混合連接器,其中該第一傳輸介 面包含HDMI傳輸介面、USB傳輸介面、顯示面板傳 輸介面、RS-232、RS-422、RJ-45、Fire Wire、Light Peak、 Thunderbolt、主動光纜介面、單端具有電性的介面、 單具有光學或光電混合型悲的介面、雙向傳輸介面。 6. 如睛求項1所述之光電混合連接器,其中該電訊號傳輸 媒介包含金屬導線;該光訊號傳輸媒介包含光纖。 7. 如請求項1所述之光電混合連接器,更包含一控制晶片 耦接該光電耦合模組。 8. 如請求項7所述之光電混合連接器,其中該控制晶片輕 接一外接電源。 9. 一種光電混合連接器,包含: 第一傳輸介面’耦接第一電子裝置’用於傳輸第一電訊 號; 16 201237483 第一傳輸介面,柄接第二電子裝置,用於傳輸第二電气 號; 第一光電耦合模組,耦接該第一傳輸介面,用於第—光 訊號與該第一電訊號間轉換; 第一光電搞合模組,辆接該第二傳輸介面,用於第二光 訊號與該第二電訊號間轉換;以及 第二傳輸介面,柄接該第一光電轉合模組與該第二光電 耦合模組,包含電訊號傳輸媒介及光訊號傳輸媒介,以 利於藉由該電訊號傳輸媒介傳遞該第一與該第二電气 號,以該光訊號傳輸媒介傳輸該第一與該第二光訊號, 其中該電訊號傳輸媒介與該光訊號傳輸媒介被包覆於 一纜線内。 ίο 如請求項9所述之光電混合連接器,其中該第一與該第 二光電耦合模組包含: ^ ~ 半導體基板,具有 u尘平台形成於其中’該凹型平 台之第-端具有-反射面,該凹好台巾具有凹槽陣列 可用於配置該光訊號傳輸媒介’傳輸線形成於該半導體 基板之上; -光元件’經由導電凸塊而㉝接該半導體基板之該傳輸 線,配置以接近該第-端,並經由該反射面而_接該光 訊號傳輸媒介; 一晶片,耦接該光元件。 17201237483 VII. Patent application scope: ι_ An opto-electric hybrid connector, comprising: a first transmission interface for transmitting a telecommunication signal; an optocoupler module coupled to the first transmission interface for converting between the optical signal and the electrical signal And a second transmission interface coupled to the optoelectronic coupling module, including a telecommunication transmission medium &quot; and a light transmission medium, to facilitate transmission of the electrical signal by the telecommunication transmission medium, and transmitting the optical signal to the optical transmission medium The optical signal, wherein the electric signal transmission medium and the optical signal transmission medium are wrapped in a navigation line. 2. The opto-electric hybrid connector of claim 1, wherein the optocoupler module comprises an optical connector having a waveguide or a waveguide integrated single-chip integrated circuit. 3. The opto-electric hybrid connector of claim 1, wherein the optocoupler module comprises: a semiconductor substrate having a concave platform formed therein, the first end of the concave platform having a reflective surface, the concave platform Having an array of grooves for arranging the light sfl number transmission medium, the transmission line is formed on the semiconductor substrate; an optical element coupled to the transmission line of the semiconductor substrate via the conductive bumps, configured to be adjacent to the first end, and The optical signal transmission medium is coupled via the reflective surface; 15 201237483. A chip 'couples the optical element. 4. The opto-electric hybrid connector of claim 3, wherein the optical component comprises a laser, a vertical cavity surface radiation laser, a photodetector or a light emitting diode. 5. The opto-electric hybrid connector of claim 1, wherein the first transmission interface comprises an HDMI transmission interface, a USB transmission interface, a display panel transmission interface, RS-232, RS-422, RJ-45, Fire Wire, and Light. Peak, Thunderbolt, active cable interface, single-ended electrical interface, single optical or opto-electronic hybrid interface, two-way transmission interface. 6. The opto-electric hybrid connector of claim 1, wherein the electrical signal transmission medium comprises a metal wire; the optical signal transmission medium comprises an optical fiber. 7. The opto-electric hybrid connector of claim 1, further comprising a control chip coupled to the optocoupler module. 8. The opto-electric hybrid connector of claim 7, wherein the control chip is lightly connected to an external power source. 9. An opto-electric hybrid connector, comprising: a first transmission interface 'coupled to a first electronic device' for transmitting a first electrical signal; 16 201237483 a first transmission interface, the handle is connected to a second electronic device for transmitting a second electrical The first optocoupler module is coupled to the first transmission interface for converting between the first optical signal and the first electrical signal; the first optoelectronic engagement module is connected to the second transmission interface, and is used for Converting between the second optical signal and the second electrical signal; and the second transmission interface, the handle is connected to the first photoelectric conversion module and the second photoelectric coupling module, and includes a telecommunication transmission medium and an optical signal transmission medium, Conveying the first and second electrical signals by the optical signal transmission medium, and transmitting the first and second optical signals by the optical signal transmission medium, wherein the electrical signal transmission medium and the optical signal transmission medium are packaged Covered in a cable. The opto-electric hybrid connector of claim 9, wherein the first and the second optocoupler modules comprise: a semiconductor substrate having a u-dust platform formed therein, wherein the first end of the concave platform has a reflection The recessed towel has an array of grooves for arranging the optical signal transmission medium 'transmission line formed on the semiconductor substrate; - the optical element is connected to the transmission line of the semiconductor substrate via the conductive bumps, and is configured to be close to The first end is connected to the optical signal transmission medium via the reflective surface; and a wafer is coupled to the optical element. 17
TW100108423A 2011-03-11 2011-03-11 Optoelectronic hybrid interconnect TWI485455B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100108423A TWI485455B (en) 2011-03-11 2011-03-11 Optoelectronic hybrid interconnect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100108423A TWI485455B (en) 2011-03-11 2011-03-11 Optoelectronic hybrid interconnect

Publications (2)

Publication Number Publication Date
TW201237483A true TW201237483A (en) 2012-09-16
TWI485455B TWI485455B (en) 2015-05-21

Family

ID=47223141

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100108423A TWI485455B (en) 2011-03-11 2011-03-11 Optoelectronic hybrid interconnect

Country Status (1)

Country Link
TW (1) TWI485455B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809250A (en) * 2012-11-05 2014-05-21 联崴光电股份有限公司 Optics engine assembly and transceiver using the same
CN104101965A (en) * 2014-07-02 2014-10-15 长芯盛(武汉)科技有限公司 Hybrid optoelectronic transceiver used for USB 3.0 interface and optical cable of hybrid optoelectronic transceiver
TWI499819B (en) * 2012-10-16 2015-09-11 Linkwell Opto Electronics Corp Optical engine assembly and tranceiver using the same
US9684135B2 (en) 2013-09-09 2017-06-20 Japan Aviation Electronics Industry, Limited Optoelectrical connector and portable electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149931B2 (en) * 2019-11-20 2021-10-19 Bks Tec Corp. Cable assembly and cable indication system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062056B2 (en) * 2008-06-25 2012-10-31 日立電線株式会社 Photoelectric conversion module
CN101692707A (en) * 2009-09-09 2010-04-07 武汉畅联光电科技有限公司 Long-distance nondestructive fiber transmission device of high-definition multimedia interface

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI499819B (en) * 2012-10-16 2015-09-11 Linkwell Opto Electronics Corp Optical engine assembly and tranceiver using the same
US9297969B2 (en) 2012-10-16 2016-03-29 Linkwell Opto-Electronics Corporation Optical engine assembly and transceiver using the same
CN103809250A (en) * 2012-11-05 2014-05-21 联崴光电股份有限公司 Optics engine assembly and transceiver using the same
US9684135B2 (en) 2013-09-09 2017-06-20 Japan Aviation Electronics Industry, Limited Optoelectrical connector and portable electronic device
CN104101965A (en) * 2014-07-02 2014-10-15 长芯盛(武汉)科技有限公司 Hybrid optoelectronic transceiver used for USB 3.0 interface and optical cable of hybrid optoelectronic transceiver
CN104101965B (en) * 2014-07-02 2015-11-25 长芯盛(武汉)科技有限公司 For mixed electrical optical transceiver and the optical cable thereof of USB3.0/3.1 interface

Also Published As

Publication number Publication date
TWI485455B (en) 2015-05-21

Similar Documents

Publication Publication Date Title
TWI695198B (en) Method and system for a chip-on-wafer-on-substrate assembly
US11275225B2 (en) Method and system for an optical coupler for silicon photonics devices
US10454586B2 (en) Integrated transceiver with lightpipe coupler
JP6399365B2 (en) Structure of photoelectric conversion assembly
US8452181B2 (en) Combined optical and electrical transmission assembly and module
EP1723456B1 (en) System and method for the fabrication of an electro-optical module
TWI485455B (en) Optoelectronic hybrid interconnect
JP2012103730A (en) Optoelectric composite transmission module
KR101266616B1 (en) Optical interconnection module
KR101276508B1 (en) Optical interconnection module
US8636426B2 (en) Photoelectric conversion system with optical transceive module
WO2015024489A1 (en) Photoelectric converter and optoelectronic connection device
KR101266710B1 (en) Optical interconnection module
JP2021067851A (en) Optical transceiver
JP2013167899A (en) Photo-electric composite transmission module
KR101266561B1 (en) Optical interconnection module
KR101436233B1 (en) The Receptacle of Optical Interconnection Module