TW201237455A - Image capturing optical lens system - Google Patents

Image capturing optical lens system Download PDF

Info

Publication number
TW201237455A
TW201237455A TW101118973A TW101118973A TW201237455A TW 201237455 A TW201237455 A TW 201237455A TW 101118973 A TW101118973 A TW 101118973A TW 101118973 A TW101118973 A TW 101118973A TW 201237455 A TW201237455 A TW 201237455A
Authority
TW
Taiwan
Prior art keywords
lens
optical
image side
lens system
focal length
Prior art date
Application number
TW101118973A
Other languages
Chinese (zh)
Other versions
TWI460463B (en
Inventor
Hsin-Hsuan Huang
Tsung-Han Tsai
Original Assignee
Largan Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Largan Precision Co Ltd filed Critical Largan Precision Co Ltd
Priority to TW101118973A priority Critical patent/TWI460463B/en
Priority to CN201210328134.7A priority patent/CN103454753B/en
Priority to CN2012204528249U priority patent/CN202748528U/en
Publication of TW201237455A publication Critical patent/TW201237455A/en
Priority to US13/655,490 priority patent/US9036274B2/en
Application granted granted Critical
Publication of TWI460463B publication Critical patent/TWI460463B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An image capturing optical lens system includes, in order from an object side to an image side, the first lens element, the second lens element, the third lens element, the fourth lens element and the fifth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element has refractive power. The third lens element with positive refractive power has a convex image-side surface. The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface which are aspheric. The fifth lens element with negative refractive power has a convex object-side surface and a concave image-side surface which are aspheric, wherein the image-side surface of the fifth lens element has at least one inflection point. When the image capturing optical lens system satisfies specific conditions, the total track length and spherical aberration of the image capturing optical lens system can be reduced.

Description

201237455 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種拾像光學鏡片系統,且特別是有 * 關於一種應用於電子產品上的小型化拾像光學鏡片系統以 及三維(3D)影像延伸應用之拾像光學鏡片系統。 【先前技術】 近年來,隨著具有攝影功能之可攜式電子產品的興 起’光學系統的需求曰漸提高。一般光學系統的感光元件 不外乎是感光耦合元件(Charge Coupled Device, CCD)或互 補性氧化金屬半導體元件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)兩種,且隨著半導體 製程技術的精進,使得感光元件的畫素尺寸縮小,光學系 統逐漸往高晝素領域發展,因此,對成像品質的要求也日 益增加。 傳統搭載於可攜式電子產品上的光學系統,如美國專 利第7,869,142號所示,多採用四片式透鏡結構為主,但由 於智慧型手機(Smart Phone)與 PDA(Personal Digital Assistant)等高規格行動裝置的盛行,帶動光學系統在晝素 • 與成像品質上的迅速攀升,習知的光學系統將無法滿足更 . 南階的攝影系統。 目前雖有進一步發展五片式光學系統,如美國專利第 8,000,030號所揭示,為具有五片鏡片之光學系統,雖可提 升成像品質,但其第四透鏡及第五透鏡之屈折力設計’無 法有效縮短光學系統之後焦距使總長不易縮短,有礙於小 201237455 型化電子產品的應用。 【發明内容】 因此,本發明之一態樣是在提供一種拾像光學鏡片系 統,其第四透鏡及第五透鏡同時配置具負屈折力之透鏡, 可使拾像光學鏡片系統之主點有效遠離成像面,以縮短其 後焦距,進而可縮短拾像光學鏡片系統總長度,達到小型 化的目標。此外,拾像光學鏡片系統之第三透鏡可有效分 散第一透鏡之正屈折力分布,以避免單一透鏡屈折力過大 而產生過多的球差。 依據本發明一實施方式,提供一種拾像光學鏡片系 統,由物側至像側依序包含一第一透鏡、一第二透鏡、一 第三透鏡、一第四透鏡以及一第五透鏡。第一透鏡具有正 屈折力,其物側表面為凸面。第二透鏡具有屈折力。第三 透鏡具有正屈折力,其像側表面為凸面。第四透鏡具有負 屈折力,其物側表面為凹面、像側表面為凸面,並皆為非 球面。第五透鏡具有負屈折力,其物側表面為凸面、像侧 表面為凹面,並皆為非球面,且第五透鏡之像側表面具有 至少一反曲點。第一透鏡之焦距為fi,第三透鏡之焦距為 〇,第四透鏡之焦距為f4,第五透鏡之焦距為f5,拾像光 學鏡片系統之焦距為f,第二透鏡之物側表面曲率半徑為 R3,其滿足下列條件: 0 &lt; D/fl &lt; 0.57 ; 0 &lt; f4/f5 &lt; 1.50 ;以及 -0.5 &lt; f/R3 &lt; 3.5。 201237455 依據本發明另一實施方式,提供一種拾像光學鏡片系 統,由物側至像側依序包含一第一透鏡、一第二透鏡、一 第三透鏡、一第四透鏡以及一第五透鏡。第一透鏡具有正 屈折力,其物側表面為凸面。第二透鏡具有屈折力。第三 透鏡具有正屈折力,其像側表面為凸面。第四透鏡具有負 屈折力,其物側表面為凹面、像側表面為凸面,並皆為非 球面。第五透鏡具有負屈折力,其物侧表面為凸面、像側 表面為凹面,並皆為非球面,且第五透鏡之像側表面具有 至少一反曲點。第一透鏡之焦距為fi,第三透鏡之焦距為 f3,第四透鏡之焦距為f4,第五透鏡之焦距為f5,第三透 鏡之像側表面曲率半徑為R6,第四透鏡之物侧表面曲率半 徑為R7,其滿足下列條件: 0 &lt; f3/fl &lt; 0.57 ; 0 &lt; f4/f5 &lt; 1.50 ;以及 0 &lt; R7/R6 &lt; 0.90。 當f3/fl滿足上述條件時,可適當分配第一透鏡及第三 透鏡之正屈折力,可避免單一透鏡屈折力過大而產生過多 的球差。 當f4/f5滿足上述條件時,適當分配第四透鏡及第五透 鏡之負屈折力,可使拾像光學鏡片系統之主點遠離成像 面,以利於縮短其後焦距,可使鏡組配置更為緊密。 當f/R3滿足上述條件時,可適當分配第二透鏡物侧表 面之曲率,有助於修正拾像光學鏡片系統之像差。 當R7/R6滿足上述條件時,可適當調整第三透鏡像側 表面及第四透鏡物側表面之曲率,有助於降低拾像光學鏡 201237455 片系統之敏感度與像差,進一步提升拾像光學鏡片系統的 解像力。 【實施方式】 一種拾像光學鏡片系統,由物側至像側依序包含第一 透鏡、第二透鏡、第三透鏡、第四透鏡以及第五透鏡。 第一透鏡具有正屈折力,其物側表面為凸面、像側表 面則可為凹面,藉此可適當調整第一透鏡之正屈折力強 度’有助於縮短拾像光學鏡片系統的總長度。 第一透鏡之物側表面可為凸面、像侧表面可為凹面, 藉此有助於修正拾像光學鏡片系統之像散。第二透鏡之像 側表面自光軸處朝周邊處由凹面轉凸面,藉此可有效地壓 制離軸視場的光線入射於影像感測元件上的角度,進一步 可修正離轴視場的像差。 第三透鏡可具有正屈折力,可有效分散第一透鏡之正 屈折力分布,以避免單一透鏡屈折力過大而產生過多的球 差。第三透鏡之像侧表面可為凸面.,可適當調並平衡拾像 光學鏡片系統的正屈折力配置,有助於降低拾像光學鏡片 系統的敏感度。 第四透鏡具負屈折力,有助於拾像光學鏡片系統主點 遠離成像面’以利於縮短其後焦距,且其物側表面為凹面、 像侧表面為凸面可有效修正拾像光學鏡片系統之像散。 第五透鏡具有負屈折力,且其物側表面為凸面、像側 表面為四面’其可配合第四透鏡之負屈折力,使拾像光學 鏡片系統之主點有效遠離成像面,以加強縮短其後焦距, 201237455 進而可減少拾像光學鏡片系統總長度,達到小型化的目 標。另外,第五透鏡之物側表面自光轴處朝周邊處由凸面 轉凹面,像侧表面則具有反曲點,藉此可有效地壓制離軸 視場的光線入射於影像感測元件上的角度,進一步可修正 離軸視場的像差。 第一透鏡之焦距為Π,第三透鏡之焦距為f3,其滿足 下列條件:0 &lt; f3/fl &lt; 0.57。藉由適當分配第一透鏡及第三 透鏡之正屈折力’可避免單一透鏡屈折力過大而產生過多 的球差。拾像光學鏡片系統更可滿足下列條件:〇&lt;f3/fl &lt; 0.45。進一步可滿足下列條件:〇 &lt; β/η &lt; 〇 35。 第四透鏡之焦距為f4 ’第五透鏡之焦距為f5,其滿足 下列條件:0 &lt; f4/f5 &lt; 1.50。適當分配第四透鏡及第五透鏡 之負屈折力,可使拾像光學鏡片系統之主點遠離成像面, 以利於縮短其後焦距,可使鏡組配置更為緊密。拾像光學 鏡片系統更可滿足下列條件:〇 &lt;f4/f5 &lt;0.7〇。 拾像光學鏡片系統之焦距為f,該第二透鏡之物側表面 曲率半徑為R3,其滿足下列條件:_〇 5x f/R3 &lt; 3 5。藉此, 適當分配第二透鏡物側表面之曲率,有助於修正拾像光學 鏡片系統之像差。 第二透鏡之像側表面曲率半徑為R6,第四透鏡之物側 表面曲率半徑為R7’其滿足下列條件:g&lt;R7/r6&lt;〇9〇。 藉此’適當調整第三透鏡像側表面及第四透鏡物側表面之 曲率,有助於降低拾像光學鏡片系統之敏感度與像差,進 一步提升拾像光學鏡片系統的解像力。 第一透鏡至第五透鏡分別於光轴上的厚度之總和為 201237455 Σστ,第一透鏡之物側表面至第五透鏡之像側表面於光軸 上的距離為Td ’其滿足下列條件:〇 7〇 &lt; SCT/Td &lt; 〇 9〇。 藉此,透鏡厚度的配置有助於縮短拾像光學鏡片系統的總 長度,促進其小型化。拾像光學鏡片系統更可滿足下列條 件:0.75 &lt;SCT/Td&lt;0.85。 第五透鏡之物側表面曲率半徑為r9,拾像光學鏡片系 統之焦距為f’其滿足下列條件:〇2〇&lt;119/£&lt;〇6〇。藉此, 可修正拾像光學鏡片系統的佩茲伐和數(petzval Sum),使 周邊像面變得更平’並且進-步提升其解像力,且可具有 修正像差之效果。 拾像光學鏡片系統之焦距為f,拾像光學鏡片系統之入 射瞳直徑為EPD,其滿足下列條件:丨2〈 f/EpD $ 2 2。藉 此,使拾像光學鏡片系統具有入射光量充足的大光圈特 性,可提升感光元件的響應效率,於光線不足的環境下也 可仔到較佳成像品質,並且具有淺景深之突顯主題效果。 第四透鏡之物側表面曲率半徑為R7、像側表面曲率半 控馬R8,第五透鏡之物侧表面曲率半徑為R9、像側表面 曲率半徑為R10,其滿足下列條件:〇 2〇 &lt; |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+R10)| &lt; ο.&quot;。藉由適當 分配第四透鏡及第五透鏡表面曲率,使其所具有之負屈折 力更為合適,可有效縮短拾像光學鏡片系統之總長度。 第二透鏡之色散係數為V2,第四透鏡之色散係數為 V4,其滿足下列條件:20 &lt; (V2+V4)/2 &lt; 30。藉此,有助 於拾像光學鏡片系統色差的修正。 拾像光學鏡片系統之焦距為f,第一透鏡之焦距為fl, 201237455 第三透鏡之焦距為Ο,第五透鏡之焦距為f5,其滿足下列 條件:0.20 &lt;(f/fl-f/f5)/(f/f3)&lt; 0.75。藉由適當分配第一透 鏡及第三透鏡之正屈折力,可避免單一透鏡屈折力過大而 產生過多的球差,同時配置適當第五透鏡屈折力並可修正 拾像光學鏡片系統之像差。 第五透鏡像側表面上,除與光轴之交點外,像侧表面 垂直光軸之一切面,切面與像側表面之一切點,切點與光 軸之垂直距離為Yc52,第三透鏡於光轴上之厚度為CT3, 其滿足下列條件:1.0 &lt; Yc52/CT3 &lt; 3.5。藉此,可有效地 壓制離軸視場的光線入射於影像感測元件上的角度,使感 光元件之響應效率提升,進而增加成像品質,並可進一步 修正離轴視場的像差。 第三透鏡之物側表面曲率半徑為R5、像側表面曲率半 徑為 R6,其滿足下列條件:〇.3 &lt; (R5+R6)/(R5-R6) &lt; 1.3。 藉此,適當調整第三透鏡之正屈折力,使其有效分配第一 透鏡之正屈折力,避免產生過多球差。 第四透鏡於光轴上之厚度為CT4,第五透鏡於光軸上 之厚度為CT5,其滿足下列條件:0.8 &lt; CT5/CT4 &lt; 1.8。藉 此,第四透鏡及第五透鏡的厚度有助於透鏡的製造及拾像 光學鏡片系統的組裝。 第一透鏡與第二透鏡於光軸上的間隔距離為T12,第 二透鏡於光軸上之厚度為CT2,其滿足下列條件:〇 &lt; T12/CT2 &lt; 1.0。藉此,適當調整透鏡間的距離及透鏡之厚 度’有助於拾像光學鏡片系統的組裝,並維持拾像光學鏡 片系統的小型化。 10 201237455 本發明拾像光學鏡片系統中,透鏡之材質可為塑膠或 玻璃。當透鏡材質為塑膠,可以有效降低生產成本。另當 透鏡的材質為玻璃,則可以增加拾像光學鏡片系統屈折力 配置的自由度。此外,可於透鏡表面上設置非球面,非球 面可以容易製作成球面以外的形狀,獲得較多的控制變 數,用以消減像差,進而縮減透鏡使用的數目,因此可以 有效降低本發明拾像光學鏡片系統的總長度。 本發明拾像光學鏡片系統中,若透鏡表面係為凸面, 則表不該透鏡表面於近軸處為凸面;若透鏡表面係為凹 面’則表示該透鏡表面於近轴處為凹面。 本發明拾像光學鏡片系統中,可設置有至少n 其位置可設置於第-透鏡之前、各透敎間絲後一透鏡 之後均可,該光闌之種類如耀光光闌⑹⑽St〇p)或視場光 鬧(FieldStGp)等,用以減少雜散光,有助於提昇影像品質。 本發明拾像光學鏡片系統中,光圈可設置於被攝物與 第一透鏡間(即為,置光圈)或是[透鏡與成像面間(即為 中置光圈)。光圈若為前置光圈,可使拾像光學鏡片系統的 出射瞳_ Pupu)與成像面產生較長的距離,使之具有遠201237455 VI. Description of the Invention: [Technical Field] The present invention relates to a pickup optical lens system, and particularly to a miniaturized optical lens system and three-dimensional (3D) applied to an electronic product. A pick-up optical lens system for image extension applications. [Prior Art] In recent years, with the rise of portable electronic products having photographic functions, the demand for optical systems has been increasing. Generally, the photosensitive element of the optical system is nothing more than a Charge Coupled Device (CCD) or a Complementary Metal-Oxide Semiconductor Sensor (CMOS Sensor), and with the advancement of semiconductor process technology, As the size of the pixel of the photosensitive element is reduced, the optical system is gradually developed in the field of sorghum, and therefore, the requirements for image quality are increasing. An optical system conventionally mounted on a portable electronic product, as shown in U.S. Patent No. 7,869,142, is mainly a four-piece lens structure, but is high in smart phones and PDAs (Personal Digital Assistant). The prevalence of mobile devices has driven the optical system to rapidly increase in quality and imaging quality, and the conventional optical system will not be able to satisfy the more advanced photographic systems. Although there is a further development of a five-piece optical system, as disclosed in U.S. Patent No. 8,000,030, an optical system having five lenses can improve the image quality, but the refractive power design of the fourth lens and the fifth lens cannot be improved. Effectively shortening the focal length after the optical system makes the total length difficult to shorten, which hinders the application of the small 201237455 type electronic products. SUMMARY OF THE INVENTION Accordingly, it is an aspect of the present invention to provide a pickup optical lens system in which a fourth lens and a fifth lens are simultaneously provided with a lens having a negative refractive power, which can make the main point of the optical lens system effective. Keep away from the imaging surface to shorten the back focal length, which can shorten the total length of the optical lens system and achieve the goal of miniaturization. In addition, the third lens of the optical pickup lens system can effectively disperse the positive refractive power distribution of the first lens to avoid excessive spherical aberration due to excessive deflection of the single lens. According to an embodiment of the present invention, an optical pickup lens system includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens in sequence from the object side to the image side. The first lens has a positive refractive power and its object side surface is convex. The second lens has a refractive power. The third lens has a positive refractive power and its image side surface is convex. The fourth lens has a negative refractive power, and the object side surface is a concave surface, the image side surface is a convex surface, and both are aspherical surfaces. The fifth lens has a negative refractive power, the object side surface is a convex surface, the image side surface is a concave surface, and both are aspherical surfaces, and the image side surface of the fifth lens has at least one inflection point. The focal length of the first lens is fi, the focal length of the third lens is 〇, the focal length of the fourth lens is f4, the focal length of the fifth lens is f5, the focal length of the optical lens system of the pickup lens is f, and the curvature of the object side surface of the second lens The radius is R3, which satisfies the following conditions: 0 &lt; D/fl &lt;0.57; 0 &lt; f4/f5 &lt;1.50; and -0.5 &lt; f/R3 &lt; 3.5. According to another embodiment of the present invention, an optical pickup lens system includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens from the object side to the image side. . The first lens has a positive refractive power and its object side surface is convex. The second lens has a refractive power. The third lens has a positive refractive power and its image side surface is convex. The fourth lens has a negative refractive power, and the object side surface is a concave surface, the image side surface is a convex surface, and both are aspherical surfaces. The fifth lens has a negative refractive power, the object side surface is a convex surface, the image side surface is a concave surface, and both are aspherical surfaces, and the image side surface of the fifth lens has at least one inflection point. The focal length of the first lens is fi, the focal length of the third lens is f3, the focal length of the fourth lens is f4, the focal length of the fifth lens is f5, and the radius of curvature of the image side surface of the third lens is R6, the object side of the fourth lens The radius of curvature of the surface is R7, which satisfies the following conditions: 0 &lt; f3/fl &lt;0.57; 0 &lt; f4/f5 &lt;1.50; and 0 &lt; R7/R6 &lt; 0.90. When f3/fl satisfies the above conditions, the positive refractive power of the first lens and the third lens can be appropriately distributed, and excessive refractive error of the single lens can be avoided to cause excessive spherical aberration. When f4/f5 satisfies the above conditions, the negative refractive power of the fourth lens and the fifth lens are appropriately allocated, so that the main point of the optical lens system can be moved away from the imaging surface, so as to shorten the back focal length, and the mirror configuration can be further improved. To be close. When f/R3 satisfies the above conditions, the curvature of the surface of the second lens object side can be appropriately distributed to help correct the aberration of the pickup optical lens system. When R7/R6 satisfies the above conditions, the curvature of the third lens image side surface and the fourth lens object side surface can be appropriately adjusted, which helps to reduce the sensitivity and aberration of the pickup optics 201237455 chip system, and further enhances the image pickup. The resolution of the optical lens system. [Embodiment] A pickup optical lens system includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens in this order from the object side to the image side. The first lens has a positive refractive power, and the object side surface is a convex surface, and the image side surface may be a concave surface, whereby the positive refractive power of the first lens can be appropriately adjusted to help shorten the total length of the pickup optical lens system. The object side surface of the first lens may be a convex surface, and the image side surface may be a concave surface, thereby helping to correct the astigmatism of the pickup optical lens system. The image side surface of the second lens is convexly convex from the optical axis toward the periphery, whereby the angle of the off-axis field of view light incident on the image sensing element can be effectively suppressed, and the image of the off-axis field of view can be further corrected. difference. The third lens may have a positive refractive power effective to disperse the positive refractive power distribution of the first lens to avoid excessive spherical aberration due to excessive deflection of the single lens. The image side surface of the third lens may be convex. The positive refractive power configuration of the optical lens system can be properly adjusted and balanced to help reduce the sensitivity of the optical lens system. The fourth lens has a negative refractive power, which helps the main point of the optical lens system to be away from the imaging surface to facilitate shortening the back focal length thereof, and the object side surface is concave and the image side surface is convex, which can effectively correct the optical lens system. The astigmatism. The fifth lens has a negative refractive power, and the object side surface is convex, and the image side surface is four sides' which can cooperate with the negative refractive power of the fourth lens, so that the main point of the optical lens system is effectively away from the imaging surface to strengthen and shorten The rear focal length, 201237455, in turn reduces the total length of the optical lens system and achieves the goal of miniaturization. In addition, the object side surface of the fifth lens is convexly concave from the optical axis toward the periphery, and the image side surface has an inflection point, thereby effectively suppressing the light of the off-axis field of view from being incident on the image sensing element. The angle further corrects the aberration of the off-axis field of view. The focal length of the first lens is Π, and the focal length of the third lens is f3, which satisfies the following condition: 0 &lt; f3/fl &lt; 0.57. By appropriately distributing the positive refractive power of the first lens and the third lens, it is possible to avoid excessive spherical aberration due to excessive bending force of the single lens. The pickup optical lens system can satisfy the following conditions: 〇 &lt;f3/fl &lt; 0.45. Further, the following conditions can be satisfied: 〇 &lt; β / η &lt; 〇 35. The focal length of the fourth lens is f4'. The focal length of the fifth lens is f5, which satisfies the following condition: 0 &lt; f4/f5 &lt; 1.50. Appropriately assigning the negative refractive power of the fourth lens and the fifth lens, the main point of the optical lens system can be moved away from the imaging surface, so as to shorten the rear focal length and make the lens assembly more compact. The pickup optical lens system can satisfy the following conditions: 〇 &lt;f4/f5 &lt;0.7〇. The focal length of the optical lens system is f, and the radius of curvature of the object side surface of the second lens is R3, which satisfies the following condition: _〇 5x f/R3 &lt; 35. Thereby, the curvature of the second lens object side surface is appropriately distributed to help correct the aberration of the pickup optical lens system. The image side surface of the second lens has a radius of curvature of R6, and the object side surface of the fourth lens has a radius of curvature of R7' which satisfies the following condition: g &lt; R7 / r6 &lt; 〇 9 〇. Thereby, the curvature of the third lens image side surface and the fourth lens object side surface is appropriately adjusted to help reduce the sensitivity and aberration of the pickup optical lens system, and further improve the resolution of the pickup optical lens system. The sum of the thicknesses of the first lens to the fifth lens on the optical axis is 201237455 Σ στ, and the distance from the object side surface of the first lens to the image side surface of the fifth lens on the optical axis is Td ', which satisfies the following condition: 7〇&lt; SCT/Td &lt; 〇9〇. Thereby, the configuration of the lens thickness contributes to shortening the total length of the pickup optical lens system and promoting its miniaturization. The pickup optical lens system can satisfy the following conditions: 0.75 &lt; SCT/Td &lt; 0.85. The radius of curvature of the object side surface of the fifth lens is r9, and the focal length of the pickup optical lens system is f' which satisfies the following condition: 〇2〇&lt;119/£&lt;〇6〇. Thereby, the petzval sum of the pickup optical lens system can be corrected, the peripheral image plane becomes flatter, and the resolution is further improved, and the effect of correcting the aberration can be obtained. The focal length of the optical lens system is f, and the entrance pupil diameter of the optical lens system is EPD, which satisfies the following condition: 丨 2 < f / EpD $ 2 2 . Therefore, the optical lens system has a large aperture characteristic with sufficient incident light amount, which can improve the response efficiency of the photosensitive element, and can also achieve better image quality in a low-light environment, and has a shallow depth of field to highlight the subject effect. The radius of curvature of the object side surface of the fourth lens is R7, the curvature of the image side surface is half controlled horse R8, the radius of curvature of the object side surface of the fifth lens is R9, and the radius of curvature of the image side surface is R10, which satisfies the following condition: 〇2〇&lt;; |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+R10)| &lt;ο.&quot;. By appropriately distributing the curvatures of the fourth lens and the fifth lens surface to make the negative refractive power more suitable, the total length of the optical pickup lens system can be effectively shortened. The second lens has a dispersion coefficient of V2, and the fourth lens has a dispersion coefficient of V4, which satisfies the following condition: 20 &lt; (V2 + V4)/2 &lt; Thereby, it helps to correct the chromatic aberration of the optical lens system. The focal length of the optical lens system is f, the focal length of the first lens is fl, 201237455, the focal length of the third lens is Ο, and the focal length of the fifth lens is f5, which satisfies the following condition: 0.20 &lt; (f/fl-f/ F5) / (f / f3) &lt; 0.75. By appropriately distributing the positive refractive power of the first lens and the third lens, it is possible to avoid excessive single-lens bending force and excessive spherical aberration, and to configure an appropriate fifth lens refractive power and correct aberration of the optical lens system. On the side surface of the fifth lens image, except for the intersection with the optical axis, all sides of the vertical optical axis of the image side surface, all points of the tangent plane and the image side surface, the vertical distance between the tangent point and the optical axis is Yc52, and the third lens is in the light. The thickness on the shaft is CT3, which satisfies the following condition: 1.0 &lt; Yc52/CT3 &lt; 3.5. Thereby, the angle of the off-axis field of view light incident on the image sensing element can be effectively suppressed, the response efficiency of the photosensitive element is improved, the imaging quality is increased, and the aberration of the off-axis field of view can be further corrected. The object side surface of the third lens has a radius of curvature R5, and the image side surface has a radius of curvature of R6, which satisfies the following condition: &.3 &lt; (R5 + R6) / (R5 - R6) &lt; 1.3. Thereby, the positive refractive power of the third lens is appropriately adjusted to effectively distribute the positive refractive power of the first lens to avoid excessive spherical aberration. The thickness of the fourth lens on the optical axis is CT4, and the thickness of the fifth lens on the optical axis is CT5, which satisfies the following condition: 0.8 &lt; CT5/CT4 &lt; 1.8. Thereby, the thickness of the fourth lens and the fifth lens contributes to the manufacture of the lens and the assembly of the optical lens system. The distance between the first lens and the second lens on the optical axis is T12, and the thickness of the second lens on the optical axis is CT2, which satisfies the following condition: 〇 &lt; T12/CT2 &lt; 1.0. Thereby, the distance between the lenses and the thickness of the lens are appropriately adjusted to facilitate the assembly of the pickup optical lens system and to maintain the miniaturization of the optical pickup lens system. 10 201237455 In the optical pickup lens system of the present invention, the material of the lens may be plastic or glass. When the lens material is plastic, it can effectively reduce the production cost. In addition, when the lens is made of glass, the degree of freedom of the refractive power configuration of the optical lens system can be increased. In addition, an aspherical surface can be disposed on the surface of the lens, and the aspherical surface can be easily formed into a shape other than the spherical surface, and more control variables are obtained to reduce the aberration, thereby reducing the number of lenses used, thereby effectively reducing the image pickup of the present invention. The total length of the optical lens system. In the optical pickup lens system of the present invention, if the surface of the lens is convex, it is indicated that the surface of the lens is convex at the paraxial; if the surface of the lens is concave, it indicates that the surface of the lens is concave at the paraxial. In the image pickup optical lens system of the present invention, at least n may be disposed at a position before the first lens, and after each of the second and second lenses, the type of the aperture such as a flare (6) (10) St〇p) Or FieldStGp, etc., to reduce stray light and help improve image quality. In the optical pickup lens system of the present invention, the aperture can be disposed between the subject and the first lens (i.e., the aperture) or between the lens and the imaging surface (i.e., the center aperture). If the aperture is a front aperture, the exit pupil Pu Pupu of the optical lens system can be made longer distance from the imaging surface, so that it has a far distance.

心(TdeCentriC)效果’並可增加影像感測元件CCD或CM0S 接收影像的效率;若為中置光®,財助於擴大拾像光學 鏡片系統的視場角,使拾像光學鏡片系統具有廣角鏡頭之 優勢。 以下提出具體實施例並配合圖式 根據上述實施方式, 予以詳細說明。 &lt;第一實施例&gt; 201237455 請參照第1圖及第2圖,其中第1圖繪示依照本發明 第一實施例的一種拾像光學鏡片系統之示意圖,第2圖由 左至右依序為第一實施例的拾像光學鏡片系統之球差、像 散及歪曲曲線圖。由第1圖可知,第一實施例之拾像光學 鏡片系統由物側至像侧依序包含第一透鏡110、光圈100、 第二透鏡120、第三透鏡13〇、第四透鏡14〇、第五透鏡15〇、 紅外線遽除遽光片(IR Filter) 17〇以及成像面160。 第一透鏡110具有正屈折力,其物側表面ιη為凸面、 像側表面112為凹面,並皆為非球面,且第一透鏡11〇為 塑膠材質。 第一透鏡120具有負屈折力,其物側表面121為凸面、 像側表面122為凹面,日笼-抹μ ..,, 且第一透鏡120之像侧表面122自 J軸處朝周邊處’由凹面轉為凸面。第二透鏡12〇之物 為塑膠材質。 面122白為非球面,且第二透鏡⑽ 矣透鏡130具有正屈折力,其物側表面131及像侧 豚材質32白為凸面,並皆為非埭面,且第三透鏡130為塑 像j四透鏡⑽具有負屈折力,其物側表面⑷為凹面、 塑膠材f。 、白為非球面,且第四透鏡140為 像如ί五透鏡15Q具有負屈折力,其物側表面151為凸面、 ::表面152為凹*,且第五透鏡15〇之物側表面i5i自 側處朝周邊處,由凸面轉為四面,第五透鏡150之像 152具有反曲點。第五透鏡15〇之物側表面ΐ5ΐ及 12 201237455 像側表面152皆為非球面,且第五透鏡15〇為塑膠材質。 紅外線濾除濾光片17〇之材質為玻璃,其設置於第五 透鏡150與成像面16〇之間,並不影響拾像光學鏡片系統 的焦距。 上述各透鏡之非球面的曲線方程式表示如下: X⑺=(r2/i〇/(u 命,(1 ― (1+φ (17〇)+ 石 〇4/)x(r) ;其中: ' X:非球面上距離光軸為Y的點,其與相切於非球面 之光軸上頂點切面的相對距離; Y:非球面曲線上的點與光轴的距離; R :曲率半徑; k :錐面係數;以及The heart (TdeCentriC) effect can increase the efficiency of the image sensing component CCD or CM0S to receive images; if it is the centerlighting®, it helps to expand the field of view of the optical lens system, so that the optical lens system has a wide-angle lens. The advantage. Specific embodiments will be described below in conjunction with the drawings and will be described in detail based on the embodiments described above. &lt;First Embodiment&gt; 201237455 Please refer to FIG. 1 and FIG. 2, wherein FIG. 1 is a schematic view of a pickup optical lens system according to a first embodiment of the present invention, and FIG. 2 is left to right. The spherical aberration, astigmatism, and distortion curves of the optical pickup lens system of the first embodiment are shown. As can be seen from FIG. 1, the optical pickup lens system of the first embodiment sequentially includes the first lens 110, the aperture 100, the second lens 120, the third lens 13A, and the fourth lens 14 from the object side to the image side. The fifth lens 15 〇, the infrared ray eliminator (IR Filter) 17 〇 and the imaging surface 160. The first lens 110 has a positive refractive power, and the object side surface i is a convex surface, the image side surface 112 is a concave surface, and both are aspherical surfaces, and the first lens 11 is made of a plastic material. The first lens 120 has a negative refractive power, the object side surface 121 is a convex surface, the image side surface 122 is a concave surface, and the image side surface 122 of the first lens 120 is from the J axis toward the periphery. 'From concave to convex. The second lens 12 is made of plastic material. The surface 122 is aspherical, and the second lens (10) has a positive refractive power, and the object side surface 131 and the image side porpoise material 32 are convex and are non-faceted, and the third lens 130 is a figurative j. The four lens (10) has a negative refractive power, and the object side surface (4) is a concave surface and a plastic material f. The white lens is aspherical, and the fourth lens 140 has a negative refractive power such as a five-lens lens 15Q, the object side surface 151 is convex, the surface 152 is concave*, and the object side surface i5i of the fifth lens 15 is From the side toward the periphery, from the convex surface to the four sides, the image 152 of the fifth lens 150 has an inflection point. The object side surface ΐ5ΐ and 12 of the fifth lens 15〇 are 2012 201255, and the image side surface 152 is aspherical, and the fifth lens 15 is made of a plastic material. The material of the infrared filter filter 17 is glass, which is disposed between the fifth lens 150 and the imaging surface 16A, and does not affect the focal length of the optical lens system. The aspherical curve equation of each of the above lenses is expressed as follows: X(7)=(r2/i〇/(u 命,(1  (1+φ (17〇)+ 〇 4/)x(r); where: ' X : the relative distance of the point on the aspheric surface from the optical axis to Y, and the vertex of the vertex on the optical axis tangent to the aspheric surface; Y: the distance between the point on the aspheric curve and the optical axis; R: radius of curvature; k : Cone coefficient;

Ai :第i階非球面係數。 第一實施例之拾像光學鏡片系統中,拾像光學鏡片系 統之焦距為f,拾像光學鏡片系統之光圈值(f-number)為 Fno,拾像光學鏡片系統中最大視角的一半為HFOV,其數 值如下:f = 2.18 mm ; Fno = 2.00 ;以及 HFOV = 34.2 度。 第一實施例之拾像光學鏡片系統中,第二透鏡120之 色散係數為V2,第四透鏡140之色散係數為V4,其滿足 下列條件:(V2+V4)/2 = 23.30。 第一實施例之拾像光學鏡片系統中,第一透鏡11〇與 第二透鏡120於光軸上的間隔距離為T12,第二透鏡12〇 於光轴上之厚度為CT2 ’第四透鏡140於光軸上之厚户 CT4,第五透鏡150於光轴上之厚度為CT5,其滿足$列 201237455 條件:T12/CT2 = 0.71 ;以及 CT5/CT4 = 1.47 ° 第一實施例之拾像光學鏡片系統中,第一透鏡110至 第五透鏡150分別於光軸上的厚度之總和為Σ(:Τ ’第一透 鏡110之物側表面111至第五透鏡150之像側表面152於 光軸上的距離為Td,其滿足下列條件:ZCT/Td = 0.77。 第一實施例之拾像光學鏡片系統中,拾像光學鏡片系 統之焦距為f,第二透鏡120之物側表面121曲率半徑為 R3,其滿足下列條件:f/R3 = 1.49。 第一實施例之拾像光學鏡片系統中,第三透鏡130之 物側表面131曲率半徑為R5、像側表面132曲率半徑為 R6 ’第四透鏡140之物侧表面141曲率半徑為R7,其滿足 下列條件:(R5+R6)/(R5-R6) = 0.84 ;以及 R7/R6 = 0.58。 第一實施例之拾像光學鏡片系統中,第四透鏡140之 物側表面141曲率半徑為R7、像側表面142曲率半徑為 R8 ’第五透鏡150之物側表面151曲率半徑為R9、像側表 面152曲率半徑為R10,其滿足下列條件: |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+R10)卜 0.34。 第一實施例之拾像光學鏡片系統中,第五透鏡150之 物侧表面151曲率半徑為R9,拾像光學鏡片系統之焦距為 . f,其滿足下列條件:R9/f=0.38。 . 第一實施例之拾像光學鏡片系統中,第一透鏡110之 焦距為fl ’第三透鏡130之焦距為f3,第四透鏡140之焦 距為f4,第五透鏡150之焦距為f5,拾像光學鏡片系統之 焦距為f ’其滿足下列條件:Ο/fl = 0.31 ; f4/f5 = 0.19 ;以 及(f/fl-f/f5)/(f/f3) = 0.38。 14 201237455 第一實施例之拾像光學鏡片系統中,拾像光學鏡片系 統之焦距為f,拾像光學鏡片系統之入射瞳直徑為EPD’ 其滿足下列條件:f/EPD = 2.00。 配合參照第19圖,其繪示依照第1圖實施方式之第五 透鏡150之Yc52示意圖。由第19圖可知,第五透鏡150 像侧表面152上,除與光軸之交點外,像側表面152垂直 光軸之一切面,切面與像侧表面152之一切點,切點與光 軸之垂直距離為Yc52,第三透鏡130於光軸上之厚度為 CT3,其滿足下列條件:Yc52/CT3 = 1.58。 再配合參照下列表一以及表二。 表一、第一實施例 仪隹距、=2.18!11111^11〇(光圈值)=2.00,1^(&gt;\/|丰視角)=34.2疳 表面 曲率半徑 厚度 材質 折射率 色散係數 焦距 0 被攝物 平面 無限 1 第一透鏡 1.609 (ASP) 0.340 塑膠 1.544 55.9 4.24 2 4.912 (ASP) 0.013 3 光圈 平面 0.164 4 第二透鏡 1.457 (ASP) 0.250 塑膠 1.640 23.3 -7.89 5 1.055 (ASP) 0.162 6 第三透鏡 8.802 (ASP) 0.616 塑膠 1.544 55.9 1.32 7 -0.760 (ASP) 0.126 8 第四透鏡 -0.439 (ASP) 0.257 塑膠 1.640 23.3 -3.42 9 -0.675 (ASP) 0.094 10 第五透鏡 0.830 (ASP) 0.379 塑膠 1.544 55.9 -18.07 11 0.642 (ASP) 0.500 12 紅外線濾除 濾光片 平面 0.200 玻璃 1.517 64.2 13 平面 0.245 14 |成像面 平面 - 參考波長(d-Hne)為587·6ηπι 15 201237455 表二、非球面係數 表面 1 2 4 5 6 k- -1.2875E+00 -2.0000E+01 -1.2559E+01 -3.2004E+00 2.9860E+00 A4 = -5.4269E-02 -5.6424E-01 -7.4566E-01 -7.4379E-01 -1.6656E-01 A6 = 3.0281E-01 7.1024E-01 -4.2476E-01 2.0183E-01 -2.0992E-01 A8 = -1.9318E+00 3.2871E-03 2.5973E+00 8.0073E-01 -8.8117E-01 A10 = 4.7118E+00 -5.1675E+00 -5.2031E+00 -1.1447E+00 1.9848E+00 A12 = -6.0687E+00 6.6674E+00 9.2935E-01 -2.3008E+00 2.8112E+00 A14 = 8.5520E-02 -1.2268E-01 7.8495E-02 1.0604E+00 -7.903 8E+00 A16 = -1.8180E+00 表面 7 8 9 10 11 k = -5.9868E-01 -2.3557E+00 -8.6486E-01 -6.0725E+00 -3.7544E+00 A4 = 5.4469E-02 -2.2674E-01 5.8943E-01 -2.9264E-01 -2.1640E-01 A6 = 1.4914E-01 -1.2666E-01 -6.2547E-01 -3.4205E-03 6.8169E-02 A8 = -4.1067E-01 1.0797E+00 2.8591E-01 -2.6242E-04 -2.4778E-02 A10 = -7.4268E-02 -2.0186E+00 2.2271E-01 4.5147E-02 9.3929E-03 A12 = 1.9487E+00 7.0654E-01 -1.8452E-01 -8.6502E-03 -5.6000E-03 A14 = -1.7428E+00 2.0299E+00 -1.0034E-01 3.8728E-03 2.2867E-03 A16 = -1.1290E+00 2.3705E-01 -1.4254E-03 表一為第1圖第一實施例詳細的結構數據,其中曲率 半徑、厚度及焦距的單位為mm,且表面0-14依序表示由 物侧至像側的表面。表二為第一實施例中的非球面數據, 其中,k表非球面曲線方程式中的錐面係數,A1-A16則表 示各表面第1-16階非球面係數。此外,以下各實施例表格 乃對應各實施例之示意圖與像差曲線圖,表格中數據之定 義皆與第一實施例之表一及表二的定義相同’在此不加贅 述。 &lt;第二實施例&gt; 請參照第3圖及第4圖’其中第3圖繪示依照本發明 第二實施例的一種拾像光學鏡片系統之示意圖,第4圖由 左至右依序為第二實施例的拾像光學鏡片系統之球差、像 16 201237455 散及歪曲曲線圖。由第3圖可知,第二實施例之拾像光學 鏡片系統由物侧至像側依序包含第一透鏡210、光圈200、 第二透鏡220、第三透鏡230、第四透鏡240、第五透鏡250、 紅外線濾除濾光片以及成像面260。 第一透鏡210具有正屈折力’其物侧表面211為凸面、 像侧表面212為凹面,並皆為非球面,且第一透鏡21〇為 塑膠材質。 第二透鏡220具有負屈折力,其物側表面221為凸面、 像側表面222為凹面’且第二透鏡220之像側表面222自 近光軸處朝周邊處’由凹面轉為凸面。第二透鏡220之物 侧表面221及像側表面222皆為非球面,且第二透鏡220 為塑膠材質。 第二透鏡230具有正屈折力’其物侧表面231為凹面、 像側表面232為凸面’並皆為非球面,且第三透鏡230為 塑膠材質。 第四透鏡240具有負屈折力,其物側表面241為凹面、 像側表面242為凸面,並皆為非球面,且第四透鏡.240為 塑膠材質。 第五透鏡250具有負屈折力,其物侧表面251為凸面、 像側表面252為凹面,且第五透鏡250之物側表面251自 近光軸處朝周邊處,由凸面轉為凹面,第五透鏡250之像 側表面252具有反曲點。第五透鏡250之物侧表面251及 像側表面252皆為非球面,且第五透鏡250為塑膠材質。 紅外線濾除濾光片270之材質為玻璃,其設置於第五 透鏡250與成像面260之間,並不影響拾像光學鏡片系統 17 201237455 的焦距。 請配合參照下列表三以及表四。 表三、第二實施例 f(雋 SP) = 2.00mm, Fno(光圈值)=1.95, HFOVT丰視自)= 366 辞 表面 曲率半徑 厚度 材質 折射率 色散係數 焦距 0 被攝物 平面 無限 1 第一选鏡 1.946 (ASP) 0.319 塑膠 1.544 55.9 4.94 2 6.644 (ASP) 0.011 3 光圈 平面 0.138 4 第二透鏡 1.300 (ASP) 0.220 塑膠 1.650 21.4 -37.37 5 1.152 (ASP) 0.177 6 第三透鏡 -36.557 (ASP) 0.697 塑膠 1.544 55.9 1.19 7 -0.638 (ASP) 0.081 8 第四透鏡 -0.433 (ASP) 0.240 塑膠 1.650 21.4 -3.17 9 -0.667 (ASP) 0.152 10 第五透鏡 0.710 (ASP) 0.314 塑膠 1.544 55.9 -8.57 11 0.520 (ASP) 0.500 12 紅外線濾除 據光片 平面 0.200 玻璃 1.517 64.2 - 13 平面 0.196 14 成像面 平面 - 參考波長(d-line)為587.6 nm 表四、非球面係數 表面 1 2 4 5 6 k = -1.7405E+00 -1.5937E+01 -1.0439E+01 -2.8899E+00 -2.0000E+01 A4 = -6.5780E-02 -6.7099E-01 -6.8261E-01 -7.5765E-01 -1.8278E-01 A6 = 2.8078E-01 1.2000E+00 -5.5212E-01 -8.4276E-02 -2.4017E-01 A8 = -1.8591E+00 -1.6537E+00 1.6380E+00 7.7690E-01 -1.0705E+00 A10 = 4.2533E+00 -3.2367E+00 -3.9696E+00 -3.3446E-02 2.8154E+00 A12 = -6.0522E+00 6.5976E+00 1.0850E+00 -2.3421E+00 2.7789E+00 A14 = 8.Π14Ε-02 -1.4520E-01 1.5401E-01 9.7944E-01 -7.9853E+00 A16 = -1.9312E+00 表面 7 8 9 10 11 18 201237455 k = -7.2256E-01 -2.1607E+00 -8.9597E-01 -4.7903E+00 -3.1116E+00 A4 = 2.0621E-01 -1.3167E-01 6.2449E-01 -2.4986E-01 -2.1130E-01 A6 = 5.9999E-02 -7.1336E-02 -5.8496E-01 1.3591E-02 8.7908E-02 A8 = -3.6809E-01 1.0755E+00 3.1512E-01 1.4815E-02 -3.1716E-02 A10 = -4.9927E-02 -1.8725E+00 2.2640E-01 3.7187E-02 9.0786E-03 A12 = 1.7225E+00 1.0560E+00 -1.5103E-01 -1.9278E-02 -5.7992E-03 A14 = -1.5303E+00 1.8386E+00 -3.5801E-02 -3.181 IE-03 2.0718E-03 A16 = -1.8122E+00 1.1147E-01 3.0885E-03 第二實施例中,非球面的曲線方程式表示如第一實施 例的形式。此外,f、Fno、HFOV、V2、V4、T12、CT2、 CT3、CT4、CT5、ECT、Td、R3、R5、R6、R7、R8、R9、 RIO、fl、Ο、f4、f5、EPD以及Yc52之定義皆與第一實 施例相同,在此不加以贅述。 配合表三可推算出下列數據: 第二實施例 f (mm) 2.00 R7/R6 0.68 Fno 1.95 |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+R10)| 0.37 HFOV(度) 36.6 R9/f 0.36 (V2+V4)/2 21.40 β/fl 0.24 T12/CT2 0.68 f4/f5 0.37 CT5/CT4 1.31 (f/fl-fi^f5)/(f/G) 0.38 ZCT/Td 0.76 f/EPD 1.95 mi3 1.53 Yc52/CT3 1.59 (R5+R6)/(R5-R6) 1.04 &lt;第三實施例&gt; 請參照第5圖及第6圖,其中第5圖繪示依照本發明 第三實施例的一種拾像光學鏡片系統之示意圖,第6圖由 左至右依序為第三實施例的拾像光學鏡片系統之球差、像 散及歪曲曲線圖。由第5圖可知,第三實施例之拾像光學 鏡片系統由物侧至像側依序包含第一透鏡31〇、光圈300、 第二透鏡320、第三透鏡330、第四透鏡340、第五透鏡350、 19 201237455 紅外線濾除濾光片370以及成像面36〇。 第一透鏡310具有正屈折力’其物侧表面311及像側 表面312皆為凸面,並皆為非球面,且第一透鏡310為塑 膠材質。 • 第二透鏡320具有負屈折力’其物側表面321為凸面、 • 像侧表面322為凹面,且第二透鏡320之像側表面322自 近光軸處朝周邊處,由凹面轉為凸面。第二透鏡32〇之物 側表面321及像側表面322皆為非球面’且第二透鏡320 為塑膠材質。 第三透鏡330具有正屈折力,其物侧表面331及像側 表面332皆為凸面’並皆為非球面,且第三透鏡330為塑 膠材質。 第四透鏡340具有負屈折力’其物側表面341為凹面、 像侧表面342為凸面,並皆為非球面,且第四透鏡340為 塑膠材質。 第五透鏡350具有負屈折力,其物側表面351為凸面、 像側表面352為凹面’且第五透鏡350之物侧表面351自 近光軸處朝周邊處,由凸面轉為凹面,第五透鏡350之像 側表面352具有反曲點。第五透鏡350之物侧表面351及 . 像側表面352皆為非球面,且第五透鏡350為塑膠材質。 . 紅外線濾除濾光片370之材質為玻璃,其設置於第五 透鏡350與成像面360之間,並不影響拾像光學鏡片系統 的焦距。 請配合參照下列表五以及表六。 表五、第三實施例 201237455 flf焦距)= 2.05 mm, Fn〇r光圈值1.80,HFQV(丰視角)=35.8 唐 表面 曲率半徑 厚度 材質 折射率 色散係數 焦距 0 被攝物 平面 無限 1 第一透鏡 2.188 (ASP) 0.339 塑膠 1.544 55.9 3.66 2 21.053 (ASP) -0.035 3 光圈 平面 0.188 4 第二透鏡 1.339 (ASP) 0.220 塑膠 1.621 24.4 -5.79 5 0.915 (ASP) 0.146 _6 第三透鏡 5.586 (ASP) 0.622 塑膠 1.535 56.3 1.25 7 -0.732 (ASP) 0.101 8 ----- 第四透鏡 -0.438 (ASP) 0.241 塑膠 1.607 26.6 -3.12 9 -0.689 (ASP) 0.088 10 -----^ 第五透鏡 0.869 (ASP) 0.431 塑膠 1.535 56.3 -13.91 η ------一 _ 0.643 (ASP) 0.400 12 ----- k外線濾除 德光片 平面 0.150 玻璃 1.517 64.2 - 13 1 ——____ 平面 0.299 14 ----一 _ 成像面 平面 - ^^^(d-line)為 587.6 nm 表六、非球面係數 —----- 表面 1 2 4 5 6 k = -1.8102E+00 0.0000E+00 -1.5440E+01 -4.7847E+00 -1.3715E+01 A4 = ———__ -8.4685E-02 -6.3913E-01 -7.7289E-01 -6.3632E-01 -1.4069E-01 A6 = — 5.9734E-02 1.1893E+00 -2.2143E-01 2.7649E-01 -9.3371E-02 A8 = —--— -1.3787E+00 -1.2227E+00 2.9409E+00 7.6883E-01 -4.7246E-01 3.6289E+00 -4.1474E+00 -7.0440E+00 -1.8721E+00 7.861 IE-01 A12 = ----- -5.9832E+00 6.6457E+00 1.1602E+00 -2.4339E+00 2.6934E+00 Al4 = —*~~~ 3.7713E-01 -2.0735E-03 1.9137E-01 9.303 IE-01 -8.0614E+00 Al6 == ~~~---_ -2.0434E+00 表面 —-—_ 7 8 9 10 11 k = ---- •6.823 IE-01 -2.6464E+00 -9.4681E-01 -8.0925E+00 -4.0782E+00 A4 = ^ 1.5731E-01 -8.3120E-02 6.5856E-01 -4.3133E-01 -2.7249E-01 A6 = __ 6.8725E-02 -4.0543E-03 -6.6195E-01 1.5008E-01 1.5667E-01 A8 — —-----1 -3.4137E-01 9.8545E-01 4.1539E-01 -1.7635E-02 -6.6004E-02 Al〇 = -1.5004E-01 -1.9948E+00 3.0094E-01 -1.8826E-02 -6.6467E-03 21 201237455 A12 = 1.6964E+00 1.0330E+00 -2.7831E-01 -2.1896E-02 1.0562E-02 A14 = -1.5379E+00 1.8927E+00 -1.4750E-01 2.6422E-02 -1.2984E-03 A16 ~ -1.6945E+00 3.1661E-01 6.7671E-03 第三實施例中,非球面的曲線方程式表示如第一實施 例的形式。此外,f、Fno、HFOV、V2、V4、T12、CT2、 CT3、CT4、CT5、ICT、Td、R3、R5、R6、R7、R8、R9、 RIO、fl、f3、汉、f5、EPD以及Yc52之定義皆與第一實 施例相同,在此不加以贅述。 配合表五可推算出下列數據: 第三實施例 f (mm) 2.05 R7/R6 0.60 Fno 1.80 |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+Rl 0)| 0.37 HFOV(度) 35.8 R9/f 0.42 (V2+V4)/2 25.50 β/fl 0.34 T12/CT2 0.70 f4/f5 0.22 CT5/CT4 1.79 0.43 ZCT/Td 0.79 D 1.80 f/R3 1.53 Yc52/CT3 1.50 (R5+R6)/(R5-R6) 0.77 〈第四實施例&gt; 請參照第7圖及第8圖,其中第7圖繪示依照本發明 第四實施例的一種拾像光學鏡片系統之示意圖,第8圖由 左至右依序為第四實施例的拾像光學鏡片系統之球差、像 散及歪曲曲線圖。由第7圖可知,第四實施例之拾像光學 鏡片系統由物側至像側依序包含第一透鏡410、光圈400、 第二透鏡420、第三透鏡430、第四透鏡440、第五透鏡450、 紅外線濾除濾光片470以及成像面460。 第一透鏡410具有正屈折力,其物侧表面411為凸面、 像側表面412為凹面,並皆為非球面,且第一透鏡41〇為 22 201237455 塑膠材質。 第二透鏡420具有正屈折力,其物側表面421為凸面、 像側表面422為凹面,且第二透鏡420之像側表面422自 近光轴處朝周邊處,由凹面轉為凸面。第二·透鏡420之物 側表面421及像側表面422皆為非球面,且第一透鏡420 為塑膠材質。 第三透鏡430具有正屈折力’其物側表面431及像側 表面432皆為凸面,並皆為非球面,且第三透鏡43〇為塑 膠材質。 第四透鏡440具有負屈折力,其物側表面441為凹面、 像側表面442為凸面,並皆為非球面,且第四透鏡440為 塑膠材質。 第五透鏡450具有負屈折力,其物側表面451為凸面、 像側表面452為凹面,且第五透鏡450之物侧表面451自 近光轴處朝周邊處,由凸面轉為凹面,第五透鏡450之像 側表面452具有反曲點。第五透鏡450之物側表面451及 像侧表面452皆為非球面,且第五透鏡450為塑膠材質。 紅外線濾除濾光片470之材質為玻璃,其設置於第五 透鏡450與成像面460之間,並不影響拾像光學鏡片系統 的焦距。 請配合參照下列表七以及表八。 表七、 第四實施例 f(焦距)=1·98 mm,Fno(iLiLft) = 1.70· HFOVY车祸角)一36 7 户1 表面 曲率半徑 厚度 材質 折射率 色散係數 焦距 0 被攝物 平面 無限 23 201237455 1 第一透鏡 1.749 (ASP) 0.362 塑勝’ 1.544 55.9 6.37 2 3.276 (ASP) 0.022 3 光圈 平面 0.087 4 第二透鏡 1.061 (ASP) 0.220 塑膠 1.640 23.3 30.80 5 1.031 (ASP) 0.156 6 第三透鏡 33.302 (ASP) 0.659 塑膠 1.544 55.9 1.12 7 -0.614 (ASP) 0.057 8 第四透鏡 -0.428 (ASP) 0.324 塑膠 1.640 23.3 -2.45 9 -0.763 (ASP) 0.063 10 第五透鏡 0.774 (ASP) 0.400 塑膠 1.535 56.3 -37.32 11 0.611 (ASP) 0.500 12 紅外線濾除 濾光片 平面 0.150 玻璃 1.517 64.2 - 13 平面 0.244 14 成像面 平面 - 參考波長(d-line)為587.6nm 表八、非球面係數 表面 1 2 4 5 6 k = 1.1642E+00 -1.8746E+01 -9.1517E+00 -2.5144E+00 -1.0000E+00 A4 = -3.7894E-02 -7.9270E-01 -6.4666E-01 -7.7576E-01 -1.9471E-01 A6 = 2.5211E-01 2.3430E+00 -6.403 IE-01 -2.1794E-01 -1.6036E-01 A8 = -1.4427E+00 -3.9239E+00 2.0725E+00 9.5646E-01 -1.2069E+00 A10 = 4.3955E+00 -1.9397E+00 -7.7988E+00 -8.8081E-01 2.8182E+00 A12 = -6.0522E+00 6.5976E+00 1.0850E+00 -2.3421E+00 2.7789E+00 A14 = 8.1112E-02 -1.4520E-01 1.5401E-01 9.7944E-01 -7.9853E+00 A16 = -1.9312E+00 表面 7 8 9 10 11 k = -7.5294E-01 -2.4188E+00 -8.1257E-01 -5.2411E+00 -3.4847E+00 A4 = 2.5035E-01 -1.4215E-01 5.8956E-01 -2.5470E-01 -2.2366E-01 A6 = 7.0897E-02 -6.755 IE-02 -5.9614E-01 7.8537E-03 1.0360E-01 A8 = -4.8442E-01 1.0959E+00 3.6856E-01 2.3201E-02 -5.1852E-02 A10 = -6.4993E-02 -1.8087E+00 2.7204E-01 4.1871E-02 1.4131E-02 A12- 2.1259E+00 1.1813E+00 -1.5575E-01 -1.8492E-02 -2.5508E-03 A14 = -1.5303E+00 1.8265E+00 -1.0132E-01 -3.1420E-03 6.6838E-04 A16 = -1.9756E+00 1.5568E-01 1.9433E-03 第四實施例中,非球面的曲線方程式表示如第一實施 24 201237455 例的形式。此外,f、Fno、HFOV、V2、V4、T12、CT2、 CT3、CT4、CT5、XCT、Td、R3、R5、R6、R7、R8、R9、 RIO、fl、O、f4、f5、EPD以及Yc52之定義皆與第一實 施例相同,在此不加以贅述。 __㉟合表七可推算出下列數據: 第四實施例 f(mm) 1.98 R7/R6 0.70 Fno 1.70 |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+Rl 0)| 0.40 HFOV (度) 36.7 R9/f 0.39 (V2+V4)/2 23.30 β/fl 0.18 T12/CT2 0.50 f4/f5 0.07 CT5/CT4 1.23 师-£T5)/网 0.21 ICT/Td 0.84 fi^EPD 1.70 f/R3 1.86 Yc52/CT3 1.54 (R5+R6)/(R5-R6) 0.96 &lt;第五實施例&gt; 請參照第9圖及第10圖,其中第9圖繪示依照本發明 第五實施例的一種拾像光學鏡片系統之示意圖,第10圖由 左至右依序為第五實施例的拾像光學鏡片系統之球差、像 散及歪曲曲線圖。由第9圖可知,第五實施例之拾像光學, 鏡片系統由物侧至像側依序包含光圈500、第一透鏡51〇、 第二透鏡520'第三透鏡530、第四透鏡540、第五透鏡550、 紅外線濾除濾光片570以及成像面560。 第一透鏡510具有正屈折力,其物侧表面511為凸面、 像側表面512為凹面,並皆為非球面,且第一透鏡51〇為 塑膠材質。 第二透鏡520具有負屈折力,其物侧表面521為凸面、 像側表面522為凹面,且第二透鏡520之像側表面522自 201237455 近光轴處朝周邊處,由凹面轉為凸面。第二透鏡520之物 侧表面521及像側表面522皆為非球面,且第二透鏡520 為塑膠材質。 第三透鏡530具有正屈折力,其物侧表面531及像側 表面532皆為凸面,並皆為非球面,且第三透鏡530為塑 膠材質。 第四透鏡540具有負屈折力,其物侧表面541為凹面、 像侧表面542為凸面,並皆為非球面,且第四透鏡54〇為 塑膠材質。 第五透鏡550具有負屈折力,其物側表面551為凸面、 像側表面552為凹面,且第五透鏡550之物側表面551自 近光軸處朝周邊處,由凸面轉為凹面,第五透鏡550之像 側表面552具有反曲點。第五透鏡550之物侧表面551及 像侧表面552皆為非球面,且第五透鏡550為塑膠材質。 紅外線濾除濾光片570之材質為玻璃,其設置於第五 透鏡550與成像面560之間,並不影響拾像光學鏡片系統 的焦距。 請配合參照下列表九以及表十。_ __ 表九、第五實施例 11焦歪1= 2_.27 mm. Fnd#·圈值)=2.20, HFOV(丰視…=m $ 表面 曲率半徑 厚度 材質 折射率 色散係數 焦距 0 被攝物 平面 無限 __ 一·. 一 ---- 1 光圈 平面 -0.115 ......— 2 第一透鏡 1.128 (ASP) 0.310 塑膠 1.544 55.9 ~~2.97 —---. 3 2.135 (ASP) 0.173 4 第二透鏡 1.627 (ASP) 0.220 塑膠 1.634 23.8 --- -3.15 ~~---—^ 5 0.849 (ASP) 0.056 -.—1 ------ 26 201237455 6 第三透鏡 2.192 (ASP) 0.545 塑膠 1.544 55.9 1.30 7 -0.953 (ASP) 0.204 8 第四透鏡 -0.448 (ASP) 0.269 塑膠 1.544 55.9 -4.66 9 -0.659 (ASP) 0.038 10 第五透鏡 0.838 (ASP) 0.378 塑膠 1.530 55.8 -20.55 11 0.657 (ASP) 0.400 12 紅外線濾除 渡光片 平面 0.300 玻璃 1.517 64.2 - 13 平面 0.334 14 成像面 平面 - 參考波長(d-line)為587.6nm 表十、非球面係數 表面 2 3 4 5 6 k = -1.8519E-01 -2.5382E+01 -2.7256E+01 -5.2383E+00 -1.1801E+01 A4 = -5.0087E-04 -7.9953E-02 -9.3106E-01 -7.3957E-01 -1.8012E-01 A6 = 6.0828E-01 2.4670E-01 -3.3339E-01 4.3517E-01 -4.4315E-01 A8 = -1.7697E+00 7.6747E-01 1.6954E+00 -2.9820E-01 6.1118E-02 A10 = 3.4368E+00 -6.0510E+00 -5.2558E+00 -1.2683E+00 1.3638E+00 A12 = -9.1654E-01 6.4154E+00 -6.0982E+00 -2.4740E+00 1.2264E+00 A14 = -5.0795E-01 -2.0671E-01 2.8639E-02 5.5951E+00 -1.7114E+00 A16 = -1.6660E+00 表面 7 8 9 10 11 k = -3.5884E-02 -2.6015E+00 -8.3984E-01 -6.7867E+00 -4.3335E+00 A4 = -2.2399E-01 -4.3943E-01 6.0659E-01 -5.1464E-01 -3.2566E-01 A6 = 4.0456E-01 -5.5463E-01 -8.1358E-01 9.8498E-02 1.5042E-01 A8 = -7.9709E-01 1.8471E+00 3.1289E-01 -1.2423E-01 -5.8880E-02 A10 = 1.0187E+00 -9.0437E-01 6.7970E-01 1.7990E-02 8.0608E-03 A12 = 4.0630E+00 1.7734E+00 1.3360E-01 1.1649E-01 2.9196E-03 -2.9210E-05 A14 = -1.7059E+00 2.5663E+00 -2.0977E-01 1-7476E-01 A16 = -4.5309E+00 1.5293E-01 -1.4170E-01 第五實施例中,非球面的曲線方程式表示如第一實施 例的形式。此夕卜,f、Fno、HFOV、V2、V4、T12、CT2、 CT3、CT4、CT5、ΣΟΓ、Td、R3、R5、R6、R7、R8、R9、 RIO、fl、f3、f4、f5、EPD以及Yc52之定義皆與第一實 27 201237455 施例相同,在此不加以贅述。 配合表九可推算出下列數據: ' —........- - .............- — - — 第五實施例 f (mm) 2.27 R7/R6 0.47 Fno 2.20 |(R7,R8)/(R7+R8)|+|(R9-R10)/(R9+Rl 0)| 0.31 HFOV (度) 33.1 R9/f 0.37 (V2+V4)/2 39.85 O/fl 0.33 T12/CT2 0.79 f4/f5 0.23 CT5/CT4 1.41 0.39 ICT/Td 0.79 ί/ΕΡΌ 2.20 f/R3 1.40 Yc52/CT3 1.53 (R5+R6)/(R5-R6) 0.39 &lt;第六實施例&gt; 請參照第11圖及第12圖,其中第11圖繪示依照本發 明第六實施例的一種拾像光學鏡片系統之示意圖,第12圖 由左至右依序為第六實施例的拾像光學鏡片系統之球差、 像散及歪曲曲線圖。由第11圖可知,第六實施例之拾像光 學鏡片系統由物側至像侧依序包含光圈600、第一透鏡 610、第二透鏡620、第三透鏡630、第四透鏡640、第五 透鏡650、紅外線濾除濾光片670以及成像面660。 第一透鏡610具有正屈折力,其物側表面611為凸面、 像側表面612為凹面,並皆為非球面,且第一透鏡610為 塑膠材質。 第二透鏡620具有負屈折力,其物側表面621為凸面、 像側表面622為凹面,且第二透鏡620之像侧表面622自 近光軸處朝周邊處’由凹面轉為凸面。第二透鏡620之物 侧表面621及像側表面622皆為非球面,且第二透鏡620 為塑膠材質。 28 201237455 第三透鏡630具有正屈折力,其物側表面631為凹面、 像侧表面632為凸面’並皆為非球面,且第三透鏡630為 塑膠材質。 第四透鏡640具有負屈折力,其物側表面641為凹面、 像侧表面642為凸面,並皆為非球面,且第四透鏡640為 塑膠材質。 第五透鏡650具有負屈折力,其物側表面651為凸面、 像侧表面652為凹面,且第五透鏡65〇之物侧表面651自 近光軸處朝周邊處,由凸面轉為凹面,第五透鏡650之像 侧表面052具有反曲點。第五透鏡65〇之物侧表面651及 像側表面652皆為非球面,且第五透鏡65〇為塑膠材質。 紅外線渡除濾光片670之材質為玻璃,,其設置於第五 透鏡650與成像面660之間,並不影響拾像光學鏡片系統 的焦距。 請配合參照下列表十一 ♦十一 〇 表十一、第六實施例 fL焦距)=2.幻mm, Fno(光凰羞}二2^8, pjpovf丰梘自331疳 表面 曲率半徑 厚度 材質 折射率 色散係數 焦距 0 被攝物 光圈 平面 無限 ~----- -0.138 -------- ----- 2 第一透鏡 1.104 (ASP) &quot;----- 0.364 塑膠 1.535 1 04 3 3.045 (ASP) 0.104 j\j tj J « U 1 4 第二透鏡 2.239 (ASP) 0.220 塑膠 1.634 23.8 -6.47 5 1.393 (ASP) 0.137 6 第三透鏡 -13.277 (ASP) 0.459 塑膠 1.535~ 56.3 1.74 7 -0.880 (ASP) 0.166 8 第四透鏡 -0.477 (ASP) 0.240 塑膠 1.614 25.6 -5.88 9 -0.654 (ASP) --- 0.031 ~〇J2〇~~ 10 朵五透鏡 0.824 (ASP) 塑膠 1.535 56.3 -11.69 29 201237455 11 0.629 (ASP) 0.400 12 紅外線濾除 濾光片 平面 0.300 玻璃 1.517 64.2 - 13 平面 0.383 14 成像面 平面 - 參考波長(d-line)為587·6 nm 表十二、非球面係數 表面 2 3 4 5 6 k = -9.5220E-02 -7.6454E+01 -3.6170E+01 -3.2324E+00 -9.0000E+01 A4 = 1.6757E-02 -1.7299E-01 -8.9992E-01 -7.7072E-01 -1.5682E-01 A6 = 5.8194E-01 1.6672E-01 -3.0767E-01 3.9234E-01 -4.6353E-01 A8 = -1.7628E+00 6.9807E-01 1.5570E+00 -2.7935E-01 -5.7721E-05 A10 = 3.6383E+00 -5.8876E+00 -6.6527E+00 -1.0855E+00 1.2118E+00 A12 = -9.2056E-01 4.3154E+00 -3.9434E+00 -2.241 IE. 00 1.0797E+00 A14 = -3.7861E-01 -4.2399E+00 2.0224E+00 5.6100E+00 -1.9151E+00 A16 = -8.7456E-01 表面 7 8 9 10 11 k = -1.1168E-01 -2.6130E+00 -8.4914E-01 -7.4712E+00 -4.6025E+00 A4 = -1.8683E-01 -4.0075E-01 6.2296E-01 -5.0002E-01 -3.4424E-01 A6 = 4.3304E-01 -5.3401E-01 -8.3557E-01 1.0264E-01 1.4975E-01 A8 = -7.8460E-01 1.8219E+00 3.2282E-01 -1.2139E-01 -6.5869E-02 A10 = 9.8774E-01 -9.8102E-01 7.1473E-01 1-7179E-02 7.9187E-03 A12 = 4.1051E+00 1.6627E+00 1.6955E-01 Π464Ε-01 3.9141E-03 A14 = -1.5666E+00 2.4086E+00 -1.8946E-01 1-7433E-01 6.8404E-04 A16 = -4.7366E+00 1.4139E-01 -1.4391E-01 第六實施例中’非球面的曲線方程式表示如第一實施 例的形式。此外,f、Fno、HFOV、V2、V4、T12、CT2、 CT3、CT4、CT5、Σ(3Τ、Td、R3、R5、R6、R7、R8、R9、 RIO、fl、Ο、f4、f5、EPD以及Yc52之定義皆與第一實 施例相同’在此不加以贅述。 I 配合表十一可算出下列數據:_ 第六實施例 30 201237455 f (mm) 2.25 R7/R6 0.54 Fno 2.08 |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+Rl 0)| 〇29~ HFOV(度) 33.1 R9/f 0.37 (V2+V4)/2 24.70 G/fl 0.57 T12/CT2 0.47 f4/f5 __11111*—1 _ 0.50 CT5/CT4 1.33 (f/n-^f5)/(f/G) 0.72— ECT/Td 0.79 f/EPD 2.08~~ m.3 1.01 Yc52/CT3 1.7厂 (R5+R6)/(R5-R6) 1.14 '— — &lt;第七實施例&gt; 請參照第13圖及第14圖,其中第13圖繪示依照本發 明第七實施例的一種拾像光學鏡片系統之示意圖,第14圖 由左至右依序為第七實施例的拾像光學鏡片系統之球差、 像散及歪曲曲線圖。由第13圖可知,第七實施例之拾像光 學鏡片系統由物側至像側依序包含光圈700、第一透鏡 710、第二透鏡720、第三透鏡730、第四透鏡740、第五 透鏡750、紅外線濾除濾光片770以及成像面760。 第一透鏡710具有正屈折力,其物侧表面711及像側 表面712皆為凸面,並皆為非球面’且第一透鏡為塑 膠材質。 第二透鏡720具有負屈折力’其物側表面721為凸面、 像側表面722為凹面’且第二透鏡72〇之像側表面722自 近光軸處朝周邊處,由凹面轉為凸面。第二透鏡720之物 側表面721及像側表面722皆為非球面’且第一透鏡720 為塑膠材質。 第二透鏡730具有正屈折力,其物侧表面731及像側 表面732皆為凸面,並皆為非球面’且第三透鏡730為塑 膠材質。 31 201237455 第四透鏡740具有負屈折力,其物側表面741為凹面、 像側表面742為凸面’並皆為非球面,且第四透鏡740為 塑膠材質。 第五透鏡750具有負屈折力,其物側表面751為凸面、 像侧表面752為凹面’且第五透鏡750之物側表面751自 近光轴處朝周邊處’由凸面轉為凹面,第五透鏡750之像 側表面752具有反曲點。第五透鏡750之物側表面751及 像側表面752皆為非球面,且第五透鏡750為塑膠材質。 紅外線濾除濾光片770之材質為玻璃,其設置於第五 透鏡750與成像面760之間’並不影響拾像光學鏡片系統 的焦距。 諸配免參照下列表十三以及表十四。 表十三、第七實施例 仔斧汗)= 2.19 mm, Fno(光圈值)= 2.08. HFOV(丰視角)= 34.7 唐 表面 曲率半徑 厚度 材質 折射率 色散係數 焦距 0 被攝物 平面 無限 1 光圈 平面 -0.090 2 第一透鏡 1.447 (ASP) 0.357 塑膠 1.535 56.3 2.58 3 4 -26.316 (ASP) 0.109 第二透鏡 6.729 (ASP) 0.250 塑膠 1.614 25.6 -2.05 5 1.045 (ASP) 0.060 6 第三透鏡 2.840 (ASP) 0.537 塑膠 1.535 56.3 1.35 7 -0.900 (ASP) 0.171 8 第四选鏡 -0.468 (ASP) 0.241 塑膠 1.614 25.6 -6.43 9 ^ »――-- -0.634 (ASP) 0.032 1〇 第五透 0.799 (ASP) 0.370 塑膠 1.535 56.3 -19.89 11 12 13 一·· - 14 ^____-^ .一 ··— 紅外線濾除 波光片 0.623 (ASP) 0.400 平面 0.300 玻璃 1.517 64.2 - 成像面_ 平面 0.429 平面 - ------ 32 201237455 參考波長(d_line)為587.6nm 表十四、非球面係數 表面 2 3 4 5 6 k = 1.1021E-01 -9.0000E+01 -4.8568E+01 -2.1904E+00 5.7043E+00 A4 = 3.6833E-02 -1.0305E-01 -8.8163E-01 -7.4407E-01 -1.7243E-01 A6 = 5.0913E-01 1.3705E-01 -1.2500E-01 3.9432E-01 -5.1524E-01 A8 = -1.9430E+00 7.0195E-01 1.7621E+00 -2.9107E-01 -7.0832E-02 A10 = 3.4920E+00 -5.6825E+00 -7.0049E+00 -1.1670E+00 1.1744E+00 A12 = -1.5607E+00 3.3528E+00 -3.7523E+00 -2.3821E+00 1.1980E+00 A14 = -3.5086E+00 -6.5696E+00 4.2349E+00 5.1589E+00 -1.4884E+00 A16 = -2.868 IE-01 表面 7 8 9 10 11 k = -1.2467E-01 -2.7527E+00 -8.4552E-01 -7.2524E+00 -4.5750E+00 A4 = -1.7951E-01 -3.763 IE-01 6.1704E-01 -4.9839E-01 -3.4587E-01 A6 = 4.3087E-01 -5.3372E-01 -8.3217E-01 1.0199E-01 1.4597E-01 A8 = -7.8743E-01 1.8061E+00 3.3777E-01 -1.2269E-01 -6.3127E-02 A10 = 9.6648E-01 -9.2855E-01 7.3913E-01 1.5334E-02 8.3734E-03 A12 = 4.0340E+00 1.9400E+00 1.991 IE-01 1.1201E-01 4.1054E-03 A14 = -1.4727E+00 2.4790E+00 -1.5818E-01 1.7656E-01 7.7480E-04 A16 = -4.9393E+00 1.7033E-01 -1.4259E-01 第七實施例中,非球面的曲線方程式表示如第一實施 例的形式。此外,f、Fno、HFOV、V2、V4、T12、CT2、 CT3、CT4、CT5、ICT、Td、R3、R5、R6、R7、R8、R9、 RIO、fl、f3、f4、f5、EPD以及Yc52之定義皆與第一實 施例相同,在此不加以贅述。 配合表十三可推算出下列數據: 第七實施例 f (mm) 2.19 R7/R6 0.52 Fno 2.08 |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+Rl 0)| 0.27 hfov m 34.7 R9/f 0.36 (V2+V4)/2 25.60 β/fl 0.52 T12/CT2 0.44 f4/f5 0.32 33 201237455 CT5/CT4 1.54 师-肪)/(肪) 0.59 ECT/Td 0.83 f/EPD 2.08 f/R3 0.33 Yc52/CT3 1.46 (R5+R6)/(R5-R6) 0.52 &lt;第八實施例&gt; 請參照第15圖及第16圖,其中第15圖繪示依照本發 明第八實施例的一種拾像光學鏡片系統之示意圖’第16圖 由左至右依序為第八實施例的拾像光學鏡片系統之球差、 像散及歪曲曲線圖。由第15圖可知,第八實施例之拾像光 學鏡片系統由物侧至像側依序包含光圈800、第一透鏡 810、第二透鏡820、第三透鏡830、第四透鏡840、第五 透鏡850、紅外線濾除濾光片870以及成像面860。 第一透鏡810具有正屈折力,其物側表面811為凸面、 像侧表面812為凹面,並皆為非球面,且第一透鏡810為 玻璃材質。 第一透鏡820具有負屈折力,其物側表面821為凸面、 像侧表面822為凹面,且第二透鏡820之像侧表面822自 近光.軸處朝周邊處’由凹面轉為凸面。第二透鏡820之物 側表面821及像側表面822皆為非球面,且第二透鏡820 為塑膠材質。 第三透鏡830具有正屈折力,其物側表面831及像側 表面832皆為凸面’並皆為非球面,且第三透鏡830為塑 膠材質。 第四透鏡840具有負屈折力,其物側表面841為凹面、 像侧表面842為凸面,並皆為非球面,且第四透鏡840為 塑膠材質。 34 201237455 第五透鏡850具有負屈折力,其物側表面851為凸面、 像侧表面852為凹面,且第五透鏡850之物側表面851自 近光轴處朝周邊處,由凸面轉為凹面,第五透鏡850之像 側表面852具有反曲點。第五透鏡850之物侧表面851及 像側表面852皆為非球面,且第五透鏡850為塑膠材質。 紅外線濾除濾光片870之材質為玻璃,其設置於第五 透鏡850與成像面860之間,並不影響拾像光學鏡片系統 的焦距。 參照下列表十五以及表十六。 表十五 、第八實施例 _ — 一一 2.20 mm. Fnoi#.圖佶、―2.00. HFOVi本葙.&amp;、- 33.9j -- _______ 表面 曲率半徑 厚度 材質 折射率 色散係數 焦距 ----- 0 被攝物 平面 無限 1 光圈 平面 -0,133 2 第一透鏡 1.142 (ASP) 0.342 玻璃 1.603 42.5 3.47 ----- 3 2.232 (ASP) 0.105 —--- 4 第二透鏡 2.191 (ASP) 0.232 塑膠 1.650 21-4_____. 5 1.168 (ASP) 0.085 ________ 6 第三透鏡. 2.442 (ASP) 0.483 塑膠 1.535 56-3一_. 7 -1.135 (ASP) 0.218 8 第四透鏡 -0.483 (ASP) 0.280 塑膠 1.614 25.6 -6.73 9 -0.668 (ASP) 0.032 — -12.45 __- 10 第五透鏡 0.873 (ASP) 0.349 塑膠 1.530 55.8 11 0.664 (ASP) 0.400 _________ 12 紅外線濾除 渡光片 平面 0.300 玻璃 1.517 64.2 - 13 平面 0.261 ----- 14 成像面 平面 - 參考波長(d-line)為 587.6 nm _______-Ai : the i-th order aspheric coefficient. In the pickup optical lens system of the first embodiment, the focal length of the optical lens system is f, the aperture value (f-number) of the optical lens system is Fno, and half of the maximum angle of view in the optical lens system is HFOV. , the values are as follows: f = 2.18 mm; Fno = 2.00; and HFOV = 34.2 degrees. In the pickup optical lens system of the first embodiment, the second lens 120 has a dispersion coefficient of V2, and the fourth lens 140 has a dispersion coefficient of V4 which satisfies the following condition: (V2+V4)/2 = 23.30. In the optical pickup lens system of the first embodiment, the distance between the first lens 11 〇 and the second lens 120 on the optical axis is T12, and the thickness of the second lens 12 on the optical axis is CT 2 'the fourth lens 140 On the optical axis of the thick CT4, the thickness of the fifth lens 150 on the optical axis is CT5, which satisfies the $column 201237455 condition: T12/CT2 = 0.71; and CT5/CT4 = 1.47 ° the pick-up optics of the first embodiment In the lens system, the sum of the thicknesses of the first lens 110 to the fifth lens 150 on the optical axis respectively is Σ (: Τ 'the object side surface 111 of the first lens 110 to the image side surface 152 of the fifth lens 150 is on the optical axis The upper distance is Td, which satisfies the following condition: ZCT/Td = 0.77. In the pickup optical lens system of the first embodiment, the focal length of the optical lens system of the pickup lens is f, and the radius of curvature of the object side surface 121 of the second lens 120 R3, which satisfies the following condition: f/R3 = 1.49. In the pickup optical lens system of the first embodiment, the object side surface 131 of the third lens 130 has a radius of curvature R5, and the image side surface 132 has a radius of curvature of R6' The object side surface 141 of the four lens 140 has a radius of curvature of R7, which satisfies the following (R5+R6)/(R5-R6) = 0.84; and R7/R6 = 0.58. In the pickup optical lens system of the first embodiment, the object side surface 141 of the fourth lens 140 has a radius of curvature of R7 and an image side. The radius of curvature of the surface 142 is R8'. The radius of curvature of the object side surface 151 of the fifth lens 150 is R9, and the radius of curvature of the image side surface 152 is R10, which satisfies the following conditions: |(R7-R8)/(R7+R8)|+| (R9-R10) / (R9 + R10) Bra 0.34. In the pickup optical lens system of the first embodiment, the object side surface 151 of the fifth lens 150 has a radius of curvature of R9, and the focal length of the optical lens system of the pickup is f. It satisfies the following condition: R9/f=0.38. In the pickup optical lens system of the first embodiment, the focal length of the first lens 110 is fl 'the focal length of the third lens 130 is f3, and the focal length of the fourth lens 140 is F4, the focal length of the fifth lens 150 is f5, and the focal length of the optical lens system of the pickup is f' which satisfies the following conditions: Ο/fl = 0.31; f4/f5 = 0.19; and (f/fl-f/f5)/( f/f3) = 0.38. 14 201237455 In the pickup optical lens system of the first embodiment, the focal length of the optical lens system is f, and the entrance pupil diameter of the optical lens system is EP. D' which satisfies the following condition: f/EPD = 2.00. Referring to Fig. 19, there is shown a schematic diagram of Yc52 of the fifth lens 150 according to the embodiment of Fig. 1. As can be seen from Fig. 19, the image side surface of the fifth lens 150 152, except for the intersection with the optical axis, the image side surface 152 is perpendicular to the optical axis, the cut surface and the image side surface 152, the vertical distance between the tangent point and the optical axis is Yc52, and the third lens 130 is on the optical axis. The thickness is CT3, which satisfies the following condition: Yc52/CT3 = 1.58. Refer to Table 1 and Table 2 below for reference. Table 1, the first embodiment of the instrument distance, = 2.18! 11111 ^ 11 〇 (aperture value) = 2.00, 1 ^ (&gt; \ / | rich angle of view) = 34.2 疳 surface curvature radius thickness material refractive index dispersion coefficient focal length 0 The object plane is infinite 1 First lens 1.609 (ASP) 0.340 Plastic 1.544 55.9 4.24 2 4.912 (ASP) 0.013 3 Aperture plane 0.164 4 Second lens 1.457 (ASP) 0.250 Plastic 1.640 23.3 -7.89 5 1.055 (ASP) 0.162 6 Three lenses 8.802 (ASP) 0.616 Plastic 1.544 55.9 1.32 7 -0.760 (ASP) 0.126 8 Fourth lens -0.439 (ASP) 0.257 Plastic 1.640 23.3 -3.42 9 -0.675 (ASP) 0.094 10 Fifth lens 0.830 (ASP) 0.379 Plastic 1.544 55.9 -18.07 11 0.642 (ASP) 0.500 12 Infrared filter filter plane 0.200 Glass 1.517 64.2 13 Plane 0.245 14 | Imaging plane - Reference wavelength (d-Hne) is 587·6ηπι 15 201237455 Table 2, aspherical coefficient Surface 1 2 4 5 6 k- -1.2875E+00 -2.0000E+01 -1.2559E+01 -3.2004E+00 2.9860E+00 A4 = -5.4269E-02 -5.6424E-01 -7.4566E-01 - 7.4379E-01 -1.6656E-01 A6 = 3.0281E-01 7.1024E-01 -4.2476E-01 2.0183E-01 -2.0992E-01 A8 = -1.9318E+00 3.2871E-03 2.5973E+00 8.0073E-01 -8.8117E-01 A10 = 4.7118E+00 -5.1675 E+00 -5.2031E+00 -1.1447E+00 1.9848E+00 A12 = -6.0687E+00 6.6674E+00 9.2935E-01 -2.3008E+00 2.8112E+00 A14 = 8.5520E-02 -1.2268E -01 7.8495E-02 1.0604E+00 -7.903 8E+00 A16 = -1.8180E+00 Surface 7 8 9 10 11 k = -5.9868E-01 -2.3557E+00 -8.6486E-01 -6.0725E+00 -3.7544E+00 A4 = 5.4469E-02 -2.2674E-01 5.8943E-01 -2.9264E-01 -2.1640E-01 A6 = 1.4914E-01 -1.2666E-01 -6.2547E-01 -3.4205E- 03 6.8169E-02 A8 = -4.1067E-01 1.0797E+00 2.8591E-01 -2.6242E-04 -2.4778E-02 A10 = -7.4268E-02 -2.0186E+00 2.2271E-01 4.5147E-02 9.3929E-03 A12 = 1.9487E+00 7.0654E-01 -1.8452E-01 -8.6502E-03 -5.6000E-03 A14 = -1.7428E+00 2.0299E+00 -1.0034E-01 3.8728E-03 2.2867 E-03 A16 = -1.1290E+00 2.3705E-01 -1.4254E-03 Table 1 is the detailed structural data of the first embodiment of Fig. 1, in which the unit of curvature radius, thickness and focal length is mm, and the surface is 0- 14 sequentially represents the table from the object side to the image side . Table 2 shows the aspherical data in the first embodiment, in which the taper coefficients in the equation of the aspherical curve of k, and A1-A16 represent the aspherical coefficients of the first to the 16th of each surface. In addition, the tables of the following embodiments correspond to the schematic diagrams and aberration diagrams of the respective embodiments, and the definitions of the data in the tables are the same as those of Tables 1 and 2 of the first embodiment', and are not described herein. &lt;Second Embodiment&gt; Referring to Figures 3 and 4, FIG. 3 is a schematic view showing a pickup optical lens system according to a second embodiment of the present invention, and FIG. 4 is sequentially arranged from left to right. It is the spherical aberration of the pickup optical lens system of the second embodiment, the image of 2012 20123755, and the distortion curve. As can be seen from FIG. 3, the pickup optical lens system of the second embodiment sequentially includes the first lens 210, the aperture 200, the second lens 220, the third lens 230, the fourth lens 240, and the fifth from the object side to the image side. The lens 250, the infrared filter filter, and the imaging surface 260. The first lens 210 has a positive refractive power. The object side surface 211 is a convex surface, the image side surface 212 is a concave surface, and both are aspherical surfaces, and the first lens 21 is made of a plastic material. The second lens 220 has a negative refractive power, and the object side surface 221 is a convex surface, the image side surface 222 is a concave surface ', and the image side surface 222 of the second lens 220 is turned from a concave surface to a convex surface from the near optical axis toward the periphery. The object side surface 221 and the image side surface 222 of the second lens 220 are all aspherical, and the second lens 220 is made of a plastic material. The second lens 230 has a positive refractive power 'the object side surface 231 is a concave surface, the image side surface 232 is a convex surface' and is aspherical, and the third lens 230 is made of a plastic material. The fourth lens 240 has a negative refractive power, and the object side surface 241 is a concave surface, the image side surface 242 is a convex surface, and both are aspherical surfaces, and the fourth lens .240 is made of a plastic material. The fifth lens 250 has a negative refractive power, the object side surface 251 is a convex surface, the image side surface 252 is a concave surface, and the object side surface 251 of the fifth lens 250 is turned from the convex axis to the periphery from the near optical axis, and the convex surface is concave. The image side surface 252 of the five lens 250 has an inflection point. The object side surface 251 and the image side surface 252 of the fifth lens 250 are all aspherical, and the fifth lens 250 is made of a plastic material. The material of the infrared filter 270 is glass, which is disposed between the fifth lens 250 and the imaging surface 260, and does not affect the focal length of the optical lens system 17 201237455. Please refer to Table 3 and Table 4 below. Table 3, the second embodiment f(隽SP) = 2.00mm, Fno (aperture value) = 1.95, HFOVT (from HFOVT) = 366 surface curvature radius thickness material refractive index dispersion coefficient focal length 0 object plane infinite 1 Selective mirror 1.946 (ASP) 0.319 Plastic 1.544 55.9 4.94 2 6.644 (ASP) 0.011 3 Aperture plane 0.138 4 Second lens 1.300 (ASP) 0.220 Plastic 1.650 21.4 -37.37 5 1.152 (ASP) 0.177 6 Third lens -36.557 (ASP 0.697 Plastic 1.544 55.9 1.19 7 -0.638 (ASP) 0.081 8 Fourth lens -0.433 (ASP) 0.240 Plastic 1.650 21.4 -3.17 9 -0.667 (ASP) 0.152 10 Fifth lens 0.710 (ASP) 0.314 Plastic 1.544 55.9 -8.57 11 0.520 (ASP) 0.500 12 Infrared filtering light film plane 0.200 Glass 1.517 64.2 - 13 Plane 0.196 14 Imaging plane - Reference wavelength (d-line) is 587.6 nm Table IV, aspherical surface 1 2 4 5 6 k = -1.7405E+00 -1.5937E+01 -1.0439E+01 -2.8899E+00 -2.0000E+01 A4 = -6.5780E-02 -6.7099E-01 -6.8261E-01 -7.5765E-01 -1.8278E -01 A6 = 2.8078E-01 1.2000E+00 -5.5 212E-01 -8.4276E-02 -2.4017E-01 A8 = -1.8591E+00 -1.6537E+00 1.6380E+00 7.7690E-01 -1.0705E+00 A10 = 4.2533E+00 -3.2367E+00 - 3.9696E+00 -3.3446E-02 2.8154E+00 A12 = -6.0522E+00 6.5976E+00 1.0850E+00 -2.3421E+00 2.7789E+00 A14 = 8.Π14Ε-02 -1.4520E-01 1.5401 E-01 9.7944E-01 -7.9853E+00 A16 = -1.9312E+00 Surface 7 8 9 10 11 18 201237455 k = -7.2256E-01 -2.1607E+00 -8.9597E-01 -4.7903E+00 - 3.1116E+00 A4 = 2.0621E-01 -1.3167E-01 6.2449E-01 -2.4986E-01 -2.1130E-01 A6 = 5.9999E-02 -7.1336E-02 -5.8496E-01 1.3591E-02 8.7908 E-02 A8 = -3.6809E-01 1.0755E+00 3.1512E-01 1.4815E-02 -3.1716E-02 A10 = -4.9927E-02 -1.8725E+00 2.2640E-01 3.7187E-02 9.0786E- 03 A12 = 1.7225E+00 1.0560E+00 -1.5103E-01 -1.9278E-02 -5.7992E-03 A14 = -1.5303E+00 1.8386E+00 -3.5801E-02 -3.181 IE-03 2.0718E- 03 A16 = -1.8122E+00 1.1147E-01 3.0885E-03 In the second embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, f, Fno, HFOV, V2, V4, T12, CT2, CT3, CT4, CT5, ECT, Td, R3, R5, R6, R7, R8, R9, RIO, fl, Ο, f4, f5, EPD and The definition of Yc52 is the same as that of the first embodiment, and will not be described herein. The following data can be derived by compiling Table 3: Second Embodiment f (mm) 2.00 R7/R6 0.68 Fno 1.95 |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+R10) 0.37 HFOV (degrees) 36.6 R9/f 0.36 (V2+V4)/2 21.40 β/fl 0.24 T12/CT2 0.68 f4/f5 0.37 CT5/CT4 1.31 (f/fl-fi^f5)/(f/G) 0.38 ZCT/Td 0.76 f/EPD 1.95 mi3 1.53 Yc52/CT3 1.59 (R5+R6)/(R5-R6) 1.04 &lt;Third Embodiment&gt; Referring to Figures 5 and 6, FIG. 5 is a schematic view showing a pickup optical lens system according to a third embodiment of the present invention, and FIG. 6 is directed from left to right. It is a spherical aberration, astigmatism, and distortion curve of the pickup optical lens system of the third embodiment. As can be seen from FIG. 5, the optical pickup lens system of the third embodiment sequentially includes the first lens 31A, the aperture 300, the second lens 320, the third lens 330, the fourth lens 340, and the first from the object side to the image side. Five lenses 350, 19 201237455 Infrared filter 370 and imaging surface 36〇. The first lens 310 has a positive refractive power. The object side surface 311 and the image side surface 312 are both convex and aspherical, and the first lens 310 is made of plastic. • The second lens 320 has a negative refractive power 'the object side surface 321 is a convex surface, the image side surface 322 is a concave surface, and the image side surface 322 of the second lens 320 is turned from a concave surface to a convex surface from the near optical axis toward the periphery. . The object side surface 321 and the image side surface 322 of the second lens 32 are all aspherical and the second lens 320 is made of a plastic material. The third lens 330 has a positive refractive power, and both the object side surface 331 and the image side surface 332 are convex surfaces and are all aspherical, and the third lens 330 is made of plastic material. The fourth lens 340 has a negative refractive power. The object side surface 341 is a concave surface, the image side surface 342 is a convex surface, and both are aspherical surfaces, and the fourth lens 340 is made of a plastic material. The fifth lens 350 has a negative refractive power, the object side surface 351 is a convex surface, the image side surface 352 is a concave surface ′, and the object side surface 351 of the fifth lens 350 is from the near optical axis toward the periphery, and the convex surface is turned into a concave surface. The image side surface 352 of the five lens 350 has an inflection point. The object side surface 351 of the fifth lens 350 and the image side surface 352 are all aspherical, and the fifth lens 350 is made of a plastic material. The material of the infrared filter 370 is glass, which is disposed between the fifth lens 350 and the imaging surface 360, and does not affect the focal length of the optical lens system. Please refer to Table 5 and Table 6 below. Table 5, the third embodiment 201237455 flf focal length) = 2.05 mm, Fn〇r aperture value 1.80, HFQV (bump angle) = 35.8 Tang surface curvature radius thickness material refractive index dispersion coefficient focal length 0 object plane infinite 1 first lens 2.188 (ASP) 0.339 Plastic 1.544 55.9 3.66 2 21.053 (ASP) -0.035 3 Aperture plane 0.188 4 Second lens 1.339 (ASP) 0.220 Plastic 1.621 24.4 -5.79 5 0.915 (ASP) 0.146 _6 Third lens 5.586 (ASP) 0.622 Plastic 1.535 56.3 1.25 7 -0.732 (ASP) 0.101 8 ----- Fourth lens -0.438 (ASP) 0.241 Plastic 1.607 26.6 -3.12 9 -0.689 (ASP) 0.088 10 -----^ Fifth lens 0.869 (ASP ) 0.431 Plastic 1.535 56.3 -13.91 η ------ A _ 0.643 (ASP) 0.400 12 ----- k External line filter Deguang film plane 0.150 Glass 1.517 64.2 - 13 1 ——____ Plane 0.299 14 -- -- a _ imaging plane - ^ ^ ^ (d-line) is 587.6 nm Table VI, aspheric coefficient ----- surface 1 2 4 5 6 k = -1.8102E+00 0.0000E+00 -1.5440 E+01 -4.7847E+00 -1.3715E+01 A4 = ———__ -8.4685E-02 -6.3913E-01 - 7.7289E-01 -6.3632E-01 -1.4069E-01 A6 = — 5.9734E-02 1.1893E+00 -2.2143E-01 2.7649E-01 -9.3371E-02 A8 = —--— -1.3787E+00 -1.2227E+00 2.9409E+00 7.6883E-01 -4.7246E-01 3.6289E+00 -4.1474E+00 -7.0440E+00 -1.8721E+00 7.861 IE-01 A12 = ----- -5.9832 E+00 6.6457E+00 1.1602E+00 -2.4339E+00 2.6934E+00 Al4 = —*~~~ 3.7713E-01 -2.0735E-03 1.9137E-01 9.303 IE-01 -8.0614E+00 Al6 == ~~~---_ -2.0434E+00 Surface—-_ 7 8 9 10 11 k = ---- •6.823 IE-01 -2.6464E+00 -9.4681E-01 -8.0925E+00 -4.0782E+00 A4 = ^ 1.5731E-01 -8.3120E-02 6.5856E-01 -4.3133E-01 -2.7249E-01 A6 = __ 6.8725E-02 -4.0543E-03 -6.6195E-01 1.5008E -01 1.5667E-01 A8 — —-----1 —3.4137E-01 9.8545E-01 4.1539E-01 -1.7635E-02 -6.6004E-02 Al〇= -1.5004E-01 -1.9948E+ 00 3.0094E-01 -1.8826E-02 -6.6467E-03 21 201237455 A12 = 1.6964E+00 1.0330E+00 -2.7831E-01 -2.1896E-02 1.0562E-02 A14 = -1.5379E+00 1.8927E +00 -1.4750E-01 2.6422E-02 -1.2984E-03 A16 ~ -1.6945E+00 3.1661E-01 6.7671E-03 In the third embodiment, the aspheric The representation of the graph equation as in the first embodiment of the embodiment. In addition, f, Fno, HFOV, V2, V4, T12, CT2, CT3, CT4, CT5, ICT, Td, R3, R5, R6, R7, R8, R9, RIO, fl, f3, Han, f5, EPD and The definition of Yc52 is the same as that of the first embodiment, and will not be described herein. The following data can be derived in conjunction with Table 5: Third Embodiment f (mm) 2.05 R7/R6 0.60 Fno 1.80 |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+Rl 0 ) 0.37 HFOV (degrees) 35.8 R9/f 0.42 (V2+V4)/2 25.50 β/fl 0.34 T12/CT2 0.70 f4/f5 0.22 CT5/CT4 1.79 0.43 ZCT/Td 0.79 D 1.80 f/R3 1.53 Yc52/CT3 1.50 (R5+R6)/(R5-R6) 0.77 <Fourth Embodiment> Referring to FIGS. 7 and 8, FIG. 7 is a view showing an optical pickup lens system according to a fourth embodiment of the present invention. FIG. 8 is a left-to-right sequence of spherical aberration, astigmatism, and distortion of the optical pickup lens system of the fourth embodiment. As can be seen from FIG. 7, the pickup optical lens system of the fourth embodiment sequentially includes the first lens 410, the aperture 400, the second lens 420, the third lens 430, the fourth lens 440, and the fifth from the object side to the image side. The lens 450, the infrared filter filter 470, and the imaging surface 460. The first lens 410 has a positive refractive power, and the object side surface 411 is a convex surface, the image side surface 412 is a concave surface, and both are aspherical surfaces, and the first lens 41 is 22 201237455 plastic material. The second lens 420 has a positive refractive power, the object side surface 421 is a convex surface, and the image side surface 422 is a concave surface, and the image side surface 422 of the second lens 420 is turned from a concave surface to a convex surface from the near optical axis toward the periphery. The object side surface 421 and the image side surface 422 of the second lens 420 are all aspherical, and the first lens 420 is made of a plastic material. The third lens 430 has a positive refractive power. The object side surface 431 and the image side surface 432 are both convex and aspherical, and the third lens 43 is made of a plastic material. The fourth lens 440 has a negative refractive power, and the object side surface 441 is a concave surface, the image side surface 442 is a convex surface, and both are aspherical surfaces, and the fourth lens 440 is made of a plastic material. The fifth lens 450 has a negative refractive power, the object side surface 451 is a convex surface, and the image side surface 452 is a concave surface, and the object side surface 451 of the fifth lens 450 is turned from the convex axis to the periphery from the near optical axis, and the convex surface is concave. The image side surface 452 of the five lens 450 has an inflection point. The object side surface 451 and the image side surface 452 of the fifth lens 450 are all aspherical, and the fifth lens 450 is made of a plastic material. The material of the infrared filter 470 is glass, which is disposed between the fifth lens 450 and the imaging surface 460, and does not affect the focal length of the optical lens system. Please refer to Table 7 and Table 8 below. Table 7, fourth embodiment f (focal length) = 1.98 mm, Fno (iLiLft) = 1.70 · HFOVY car accident angle) a 36 7 household 1 surface curvature radius thickness material refractive index dispersion coefficient focal length 0 object plane infinite 23 201237455 1 First lens 1.949 (ASP) 0.362 Plastic wins 1.544 55.9 6.37 2 3.276 (ASP) 0.022 3 Aperture plane 0.087 4 Second lens 1.061 (ASP) 0.220 Plastic 1.640 23.3 30.80 5 1.031 (ASP) 0.156 6 Third lens 33.302 (ASP) 0.659 Plastic 1.544 55.9 1.12 7 -0.614 (ASP) 0.057 8 Fourth lens -0.428 (ASP) 0.324 Plastic 1.640 23.3 -2.45 9 -0.763 (ASP) 0.063 10 Fifth lens 0.774 (ASP) 0.400 Plastic 1.535 56.3 - 37.32 11 0.611 (ASP) 0.500 12 Infrared filter filter plane 0.150 Glass 1.517 64.2 - 13 Plane 0.244 14 Imaging plane - reference wavelength (d-line) is 587.6nm Table 8. Aspherical surface 1 2 4 5 6 k = 1.1642E+00 -1.8746E+01 -9.1517E+00 -2.5144E+00 -1.0000E+00 A4 = -3.7894E-02 -7.9270E-01 -6.4666E-01 -7.7576E-01 -1.9471 E-01 A6 = 2.5211E-01 2.34 30E+00 -6.403 IE-01 -2.1794E-01 -1.6036E-01 A8 = -1.4427E+00 -3.9239E+00 2.0725E+00 9.5646E-01 -1.2069E+00 A10 = 4.3955E+00 - 1.9397E+00 -7.7988E+00 -8.8081E-01 2.8182E+00 A12 = -6.0522E+00 6.5976E+00 1.0850E+00 -2.3421E+00 2.7789E+00 A14 = 8.1112E-02 -1.4520 E-01 1.5401E-01 9.7944E-01 -7.9853E+00 A16 = -1.9312E+00 Surface 7 8 9 10 11 k = -7.5294E-01 -2.4188E+00 -8.1257E-01 -5.2411E+ 00 -3.4847E+00 A4 = 2.5035E-01 -1.4215E-01 5.8956E-01 -2.5470E-01 -2.2366E-01 A6 = 7.0897E-02 -6.755 IE-02 -5.9614E-01 7.8537E- 03 1.0360E-01 A8 = -4.8442E-01 1.0959E+00 3.6856E-01 2.3201E-02 -5.1852E-02 A10 = -6.4993E-02 -1.8087E+00 2.7204E-01 4.1871E-02 1.4131 E-02 A12- 2.1259E+00 1.1813E+00 -1.5575E-01 -1.8492E-02 -2.5508E-03 A14 = -1.5303E+00 1.8265E+00 -1.0132E-01 -3.1420E-03 6.6838 E-04 A16 = -1.9756E+00 1.5568E-01 1.9433E-03 In the fourth embodiment, the aspherical curve equation represents the form of the first embodiment 24 201237455. In addition, f, Fno, HFOV, V2, V4, T12, CT2, CT3, CT4, CT5, XCT, Td, R3, R5, R6, R7, R8, R9, RIO, fl, O, f4, f5, EPD and The definition of Yc52 is the same as that of the first embodiment, and will not be described herein. __35 combined with Table 7 can calculate the following data: Fourth Embodiment f (mm) 1.98 R7/R6 0.70 Fno 1.70 | (R7-R8) / (R7 + R8) | + | (R9-R10) / (R9 + Rl 0)| 0.40 HFOV (degrees) 36.7 R9/f 0.39 (V2+V4)/2 23.30 β/fl 0.18 T12/CT2 0.50 f4/f5 0.07 CT5/CT4 1.23 Division - £T5) / Network 0.21 ICT/Td 0.84 fi ^EPD 1.70 f/R3 1.86 Yc52/CT3 1.54 (R5+R6)/(R5-R6) 0.96 &lt;Fifth Embodiment&gt; Referring to FIG. 9 and FIG. 10, FIG. 9 is a schematic view showing a pickup optical lens system according to a fifth embodiment of the present invention, and FIG. 10 is directed from left to right. It is a spherical aberration, astigmatism, and distortion curve of the pickup optical lens system of the fifth embodiment. As can be seen from FIG. 9, in the pickup optics of the fifth embodiment, the lens system sequentially includes the aperture 500, the first lens 51A, the second lens 520', the third lens 530, and the fourth lens 540 from the object side to the image side. The fifth lens 550, the infrared filter filter 570, and the imaging surface 560. The first lens 510 has a positive refractive power, and the object side surface 511 is a convex surface, the image side surface 512 is a concave surface, and both are aspherical surfaces, and the first lens 51 is made of a plastic material. The second lens 520 has a negative refractive power, the object side surface 521 is a convex surface, and the image side surface 522 is a concave surface, and the image side surface 522 of the second lens 520 is turned from a concave surface to a convex surface from the near-optical axis of the 201237455. The object side surface 521 and the image side surface 522 of the second lens 520 are all aspherical, and the second lens 520 is made of a plastic material. The third lens 530 has a positive refractive power, and both the object side surface 531 and the image side surface 532 are convex and aspherical, and the third lens 530 is made of plastic. The fourth lens 540 has a negative refractive power, and the object side surface 541 is a concave surface, the image side surface 542 is a convex surface, and both are aspherical surfaces, and the fourth lens 54 is made of a plastic material. The fifth lens 550 has a negative refractive power, the object side surface 551 is a convex surface, the image side surface 552 is a concave surface, and the object side surface 551 of the fifth lens 550 is turned from the convex axis to the periphery from the near optical axis, and the convex surface is concave. The image side surface 552 of the five lens 550 has an inflection point. The object side surface 551 and the image side surface 552 of the fifth lens 550 are all aspherical, and the fifth lens 550 is made of a plastic material. The material of the infrared filter 570 is glass, which is disposed between the fifth lens 550 and the imaging surface 560, and does not affect the focal length of the optical lens system. Please refer to the following list IX and Table 10. _ __ Table IX, Fifth Embodiment 11 歪 1 = 2_.27 mm. Fnd#·圈 value)=2.20, HFOV (Feng Vision...=m $ Surface Curvature Radius Thickness Material Refractive Index Dispersion Coefficient Focal Length 0 Subject Plane infinity __一·. 一---- 1 Aperture plane -0.115 ......— 2 First lens 1.128 (ASP) 0.310 Plastic 1.544 55.9 ~~2.97 —---. 3 2.135 (ASP) 0.173 4 Second lens 1.627 (ASP) 0.220 Plastic 1.634 23.8 --- -3.15 ~~----^ 5 0.849 (ASP) 0.056 -.-1 ------ 26 201237455 6 Third lens 2.192 (ASP) 0.545 Plastic 1.544 55.9 1.30 7 -0.953 (ASP) 0.204 8 Fourth lens -0.448 (ASP) 0.269 Plastic 1.544 55.9 -4.66 9 -0.659 (ASP) 0.038 10 Fifth lens 0.838 (ASP) 0.378 Plastic 1.530 55.8 -20.55 11 0.657 (ASP) 0.400 12 Infrared filter lighter plane 0.300 Glass 1.517 64.2 - 13 Plane 0.334 14 Imaging plane - Reference wavelength (d-line) is 587.6nm Table 10, aspherical surface 2 3 4 5 6 k = - 1.8519E-01 -2.5382E+01 -2.7256E+01 -5.2383E+00 -1.1801E+01 A4 = -5.0087E-04 -7.9953E-02 -9 .3106E-01 -7.3957E-01 -1.8012E-01 A6 = 6.0828E-01 2.4670E-01 -3.3339E-01 4.3517E-01 -4.4315E-01 A8 = -1.7697E+00 7.6747E-01 1.6954 E+00 -2.9820E-01 6.1118E-02 A10 = 3.4368E+00 -6.0510E+00 -5.2558E+00 -1.2683E+00 1.3638E+00 A12 = -9.1654E-01 6.4154E+00 -6.0982 E+00 -2.4740E+00 1.2264E+00 A14 = -5.0795E-01 -2.0671E-01 2.8639E-02 5.5951E+00 -1.7114E+00 A16 = -1.6660E+00 Surface 7 8 9 10 11 k = -3.5884E-02 -2.6015E+00 -8.3984E-01 -6.7867E+00 -4.3335E+00 A4 = -2.2399E-01 -4.3943E-01 6.0659E-01 -5.1464E-01 -3.2566 E-01 A6 = 4.0456E-01 -5.5463E-01 -8.1358E-01 9.8498E-02 1.5042E-01 A8 = -7.9709E-01 1.8471E+00 3.1289E-01 -1.2423E-01 -5.8880E -02 A10 = 1.0187E+00 -9.0437E-01 6.7970E-01 1.7990E-02 8.0608E-03 A12 = 4.0630E+00 1.7734E+00 1.3360E-01 1.1649E-01 2.9196E-03 -2.9210E -05 A14 = -1.7059E+00 2.5663E+00 -2.0977E-01 1-7476E-01 A16 = -4.5309E+00 1.5293E-01 -1.4170E-01 In the fifth embodiment, the aspheric curve equation The form as the first embodiment is shown. Further, f, Fno, HFOV, V2, V4, T12, CT2, CT3, CT4, CT5, ΣΟΓ, Td, R3, R5, R6, R7, R8, R9, RIO, fl, f3, f4, f5, The definitions of EPD and Yc52 are the same as those of the first embodiment of 2012 20125555, and are not described here. The following data can be derived in conjunction with Table 9: '-........- - .............---- Fifth Embodiment f (mm) 2.27 R7/R6 0.47 Fno 2.20 |(R7,R8)/(R7+R8)|+|(R9-R10)/(R9+Rl 0)| 0.31 HFOV (degrees) 33.1 R9/f 0.37 (V2+V4)/2 39.85 O /fl 0.33 T12/CT2 0.79 f4/f5 0.23 CT5/CT4 1.41 0.39 ICT/Td 0.79 ί/ΕΡΌ 2.20 f/R3 1.40 Yc52/CT3 1.53 (R5+R6)/(R5-R6) 0.39 &lt;Sixth Embodiment&gt; Referring to FIG. 11 and FIG. 12, FIG. 11 is a schematic view showing a pickup optical lens system according to a sixth embodiment of the present invention, and FIG. 12 is directed from left to right. It is a spherical aberration, astigmatism, and distortion curve of the pickup optical lens system of the sixth embodiment. As can be seen from FIG. 11, the optical pickup lens system of the sixth embodiment sequentially includes the aperture 600, the first lens 610, the second lens 620, the third lens 630, the fourth lens 640, and the fifth from the object side to the image side. The lens 650, the infrared filter filter 670, and the imaging surface 660. The first lens 610 has a positive refractive power, the object side surface 611 is a convex surface, the image side surface 612 is a concave surface, and both are aspherical, and the first lens 610 is made of a plastic material. The second lens 620 has a negative refractive power, the object side surface 621 is a convex surface, the image side surface 622 is a concave surface, and the image side surface 622 of the second lens 620 is turned from a concave surface to a convex surface from the near optical axis toward the periphery. The object side surface 621 and the image side surface 622 of the second lens 620 are all aspherical, and the second lens 620 is made of a plastic material. 28 201237455 The third lens 630 has a positive refractive power, the object side surface 631 is a concave surface, the image side surface 632 is a convex surface and both are aspherical, and the third lens 630 is made of a plastic material. The fourth lens 640 has a negative refractive power, and the object side surface 641 is a concave surface, the image side surface 642 is a convex surface, and both are aspherical surfaces, and the fourth lens 640 is made of a plastic material. The fifth lens 650 has a negative refractive power, the object side surface 651 is a convex surface, the image side surface 652 is a concave surface, and the object side surface 651 of the fifth lens 65 朝 is turned from the convex surface to the concave surface from the near optical axis toward the periphery. The image side surface 052 of the fifth lens 650 has an inflection point. The object side surface 651 and the image side surface 652 of the fifth lens 65 are all aspherical, and the fifth lens 65 is made of a plastic material. The material of the infrared eliminator filter 670 is glass, which is disposed between the fifth lens 650 and the imaging surface 660, and does not affect the focal length of the optical lens system. Please refer to the following list 11 ♦ eleven 〇 table eleventh, sixth embodiment fL focal length) = 2. illusion mm, Fno (光光羞} two 2^8, pjpovf 枧 疳 疳 疳 surface curvature radius thickness material Refractive index dispersion coefficient focal length 0 The aperture of the object is infinite~----- -0.138 -------- ----- 2 First lens 1.104 (ASP) &quot;----- 0.364 Plastic 1.535 1 04 3 3.045 (ASP) 0.104 j\j tj J « U 1 4 Second lens 2.239 (ASP) 0.220 Plastic 1.634 23.8 -6.47 5 1.393 (ASP) 0.137 6 Third lens - 13.277 (ASP) 0.459 Plastic 1.535~ 56.3 1.74 7 -0.880 (ASP) 0.166 8 Fourth lens -0.477 (ASP) 0.240 Plastic 1.614 25.6 -5.88 9 -0.654 (ASP) --- 0.031 ~〇J2〇~~ 10 five lenses 0.824 (ASP) Plastic 1.535 56.3 -11.69 29 201237455 11 0.629 (ASP) 0.400 12 Infrared filter filter plane 0.300 Glass 1.517 64.2 - 13 Plane 0.383 14 Imaging plane - reference wavelength (d-line) is 587·6 nm Table 12, aspherical Coefficient surface 2 3 4 5 6 k = -9.5220E-02 -7.6454E+01 -3.6170E+01 -3.2324E+00 -9.0000E+01 A4 = 1.6757E-02 -1.7299E-01 -8.9992E-01 -7.7072E-01 -1.5682E-01 A6 = 5.8194E-01 1.6672E-01 -3.0767E-01 3.9234E-01 -4.6353E-01 A8 = -1.7628E+00 6.9807E-01 1.5570E+00 -2.7935E-01 -5.7721E-05 A10 = 3.6383E+00 -5.8876E+00 -6.6527E+00 -1.0855E+00 1.2118E+00 A12 = -9.2056E-01 4.3154E+00 -3.9434E+00 -2.241 IE. 00 1.0797E+00 A14 = -3.7861E-01 -4.2399E+00 2.0224E+00 5.6100E+00 -1.9151E+00 A16 = -8.7456E-01 Surface 7 8 9 10 11 k = -1.1168E-01 -2.6130E+00 -8.4914E-01 -7.4712E+00 -4.6025E+00 A4 = -1.8683E-01 -4.0075E -01 6.2296E-01 -5.0002E-01 -3.4424E-01 A6 = 4.3304E-01 -5.3401E-01 -8.3557E-01 1.0264E-01 1.4975E-01 A8 = -7.8460E-01 1.8219E+ 00 3.2282E-01 -1.2139E-01 -6.5869E-02 A10 = 9.8774E-01 -9.8102E-01 7.1473E-01 1-7179E-02 7.9187E-03 A12 = 4.1051E+00 1.6627E+00 1.6955 E-01 Π464Ε-01 3.9141E-03 A14 = -1.5666E+00 2.4086E+00 -1.8946E-01 1-7433E-01 6.8404E-04 A16 = -4.7366E+00 1.4139E-01 -1.4391E- 01. The 'spherical curve equation' in the sixth embodiment represents the shape as in the first embodiment. . In addition, f, Fno, HFOV, V2, V4, T12, CT2, CT3, CT4, CT5, Σ (3Τ, Td, R3, R5, R6, R7, R8, R9, RIO, fl, Ο, f4, f5, The definitions of EPD and Yc52 are the same as those of the first embodiment, 'will not be repeated here. I. The following data can be calculated in conjunction with Table 11: _ Sixth Embodiment 30 201237455 f (mm) 2.25 R7/R6 0.54 Fno 2.08 | (R7 -R8)/(R7+R8)|+|(R9-R10)/(R9+Rl 0)| 〇29~ HFOV(degrees) 33.1 R9/f 0.37 (V2+V4)/2 24.70 G/fl 0.57 T12 /CT2 0.47 f4/f5 __11111*—1 _ 0.50 CT5/CT4 1.33 (f/n-^f5)/(f/G) 0.72—ECT/Td 0.79 f/EPD 2.08~~ m.3 1.01 Yc52/CT3 1.7 Factory (R5+R6)/(R5-R6) 1.14 '— &lt;Seventh Embodiment&gt; Referring to FIG. 13 and FIG. 14, FIG. 13 is a schematic view showing a pickup optical lens system according to a seventh embodiment of the present invention, and FIG. 14 is directed from left to right. It is a spherical aberration, astigmatism, and distortion curve of the pickup optical lens system of the seventh embodiment. As can be seen from FIG. 13, the optical pickup lens system of the seventh embodiment sequentially includes the aperture 700, the first lens 710, the second lens 720, the third lens 730, the fourth lens 740, and the fifth from the object side to the image side. A lens 750, an infrared filter filter 770, and an imaging surface 760. The first lens 710 has a positive refractive power, and both the object side surface 711 and the image side surface 712 are convex and are aspherical and the first lens is made of plastic. The second lens 720 has a negative refractive power 'the object side surface 721 is a convex surface, the image side surface 722 is a concave surface', and the image side surface 722 of the second lens 72 is curved from a concave surface to a convex surface from the near optical axis toward the periphery. The object side surface 721 and the image side surface 722 of the second lens 720 are both aspherical and the first lens 720 is made of a plastic material. The second lens 730 has a positive refractive power, and both the object side surface 731 and the image side surface 732 are convex and are aspherical and the third lens 730 is made of plastic. 31 201237455 The fourth lens 740 has a negative refractive power, the object side surface 741 is a concave surface, the image side surface 742 is a convex surface ‘and both are aspherical surfaces, and the fourth lens 740 is made of a plastic material. The fifth lens 750 has a negative refractive power, the object side surface 751 is a convex surface, the image side surface 752 is a concave surface ', and the object side surface 751 of the fifth lens 750 is turned from a convex surface to a concave surface from the near optical axis toward the periphery. The image side surface 752 of the five lens 750 has an inflection point. The object side surface 751 and the image side surface 752 of the fifth lens 750 are all aspherical, and the fifth lens 750 is made of a plastic material. The material of the infrared filter 770 is glass, which is disposed between the fifth lens 750 and the imaging surface 760' and does not affect the focal length of the optical lens system. Refer to Table 13 and Table 14 below for the allocation. Table 13 and the seventh embodiment are axe sweat) = 2.19 mm, Fno (aperture value) = 2.08. HFOV (bright angle of view) = 34.7 Tang surface curvature radius thickness material refractive index dispersion coefficient focal length 0 object plane infinite 1 aperture Plane -0.090 2 First lens 1.447 (ASP) 0.357 Plastic 1.535 56.3 2.58 3 4 -26.316 (ASP) 0.109 Second lens 6.729 (ASP) 0.250 Plastic 1.614 25.6 -2.05 5 1.045 (ASP) 0.060 6 Third lens 2.840 (ASP 0.537 Plastic 1.535 56.3 1.35 7 -0.900 (ASP) 0.171 8 Fourth Selective Mirror -0.468 (ASP) 0.241 Plastic 1.614 25.6 -6.43 9 ^ »——-- -0.634 (ASP) 0.032 1〇 Fifth Through 0.799 (ASP) 0.370 Plastic 1.535 56.3 -19.89 11 12 13 一·· - 14 ^____-^ .一··—Infrared filtering filter 0.623 (ASP) 0.400 Plane 0.300 Glass 1.517 64.2 - Imaging surface _ Plane 0.429 Plane -- --- --- 32 201237455 Reference wavelength (d_line) is 587.6nm Table XIV, aspherical surface 2 3 4 5 6 k = 1.1021E-01 -9.0000E+01 -4.8568E+01 -2.1904E+00 5.7043E+ 00 A4 = 3.6833E-02 -1.0305E-01 -8.8163E-01 -7.4407E-01 -1.7243E-01 A6 = 5.0913E-01 1.3705E-01 -1.2500E-01 3.9432E-01 -5.1524E-01 A8 = -1.9430E+00 7.0195E-01 1.7621E+00 -2.9107E-01 -7.0832E-02 A10 = 3.4920E+00 -5.6825E+00 -7.0049E+00 -1.1670E+00 1.1744E+00 A12 = -1.5607E+00 3.3528E+00 -3.7523E+00 -2.3821E+00 1.1980E+00 A14 = -3.5086E+00 -6.5696E+00 4.2349E+00 5.1589E+00 -1.4884E+00 A16 = -2.868 IE-01 Surface 7 8 9 10 11 k = -1.2467E-01 -2.7527E+00 -8.4552E-01 -7.2524E+00 -4.5750E+00 A4 = -1.7951E-01 -3.763 IE-01 6.1704E-01 -4.9839E-01 -3.4587E-01 A6 = 4.3087E-01 -5.3372E-01 -8.3217E-01 1.0199E-01 1.4597E-01 A8 = -7.8743E-01 1.8061E+00 3.3777E-01 -1.2269E-01 - 6.3127E-02 A10 = 9.6648E-01 -9.2855E-01 7.3913E-01 1.5334E-02 8.3734E-03 A12 = 4.0340E+00 1.9400E+00 1.991 IE-01 1.1201E-01 4.1054E-03 A14 = -1.4727E+00 2.4790E+00 -1.5818E-01 1.7656E-01 7.7480E-04 A16 = -4.9393E+00 1.7033E-01 -1.4259E-01 In the seventh embodiment, the aspheric curve equation The form as the first embodiment is shown. In addition, f, Fno, HFOV, V2, V4, T12, CT2, CT3, CT4, CT5, ICT, Td, R3, R5, R6, R7, R8, R9, RIO, fl, f3, f4, f5, EPD and The definition of Yc52 is the same as that of the first embodiment, and will not be described herein. The following data can be derived in conjunction with Table XIII: Seventh Embodiment f (mm) 2.19 R7/R6 0.52 Fno 2.08 |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+Rl 0)| 0.27 hfov m 34.7 R9/f 0.36 (V2+V4)/2 25.60 β/fl 0.52 T12/CT2 0.44 f4/f5 0.32 33 201237455 CT5/CT4 1.54 Division - Fat) / (Fat) 0.59 ECT/Td 0.83 f/EPD 2.08 f/R3 0.33 Yc52/CT3 1.46 (R5+R6)/(R5-R6) 0.52 &lt;Eighth Embodiment&gt; Referring to Figure 15 and Figure 16, FIG. 15 is a schematic view of a pickup optical lens system according to an eighth embodiment of the present invention. Figure 16 is directed from left to right. It is a spherical aberration, astigmatism, and distortion curve of the pickup optical lens system of the eighth embodiment. As can be seen from FIG. 15, the optical pickup lens system of the eighth embodiment sequentially includes the aperture 800, the first lens 810, the second lens 820, the third lens 830, the fourth lens 840, and the fifth from the object side to the image side. A lens 850, an infrared filter filter 870, and an imaging surface 860. The first lens 810 has a positive refractive power, the object side surface 811 is a convex surface, the image side surface 812 is a concave surface, and both are aspherical, and the first lens 810 is made of glass. The first lens 820 has a negative refractive power, the object side surface 821 is a convex surface, the image side surface 822 is a concave surface, and the image side surface 822 of the second lens 820 is turned from a concave surface to a convex surface from the low beam. The object side surface 821 and the image side surface 822 of the second lens 820 are all aspherical, and the second lens 820 is made of a plastic material. The third lens 830 has a positive refractive power, and both the object side surface 831 and the image side surface 832 are convex surfaces and are all aspherical, and the third lens 830 is made of plastic material. The fourth lens 840 has a negative refractive power, and the object side surface 841 is a concave surface, the image side surface 842 is a convex surface, and both are aspherical surfaces, and the fourth lens 840 is made of a plastic material. 34 201237455 The fifth lens 850 has a negative refractive power, the object side surface 851 is a convex surface, the image side surface 852 is a concave surface, and the object side surface 851 of the fifth lens 850 is turned from the convex surface to the concave surface from the near optical axis toward the periphery. The image side surface 852 of the fifth lens 850 has an inflection point. The object side surface 851 and the image side surface 852 of the fifth lens 850 are all aspherical, and the fifth lens 850 is made of a plastic material. The material of the infrared filter 870 is glass, which is disposed between the fifth lens 850 and the imaging surface 860, and does not affect the focal length of the optical lens system. Refer to Table 15 and Table 16 below. Table 15 and the eighth embodiment _ - one by one 2.20 mm. Fnoi #. 图佶, ―2.00. HFOVi本葙.&amp;, - 33.9j -- _______ Surface curvature radius thickness material refractive index dispersion coefficient focal length --- -- 0 Subject plane infinite 1 Aperture plane-0,133 2 First lens 1.142 (ASP) 0.342 Glass 1.603 42.5 3.47 ----- 3 2.232 (ASP) 0.105 —--- 4 Second lens 2.191 (ASP) 0.232 Plastic 1.650 21-4_____. 5 1.168 (ASP) 0.085 ________ 6 Third lens. 2.442 (ASP) 0.483 Plastic 1.535 56-3 a. 7 -1.135 (ASP) 0.218 8 Fourth lens -0.483 (ASP) 0.280 Plastic 1.614 25.6 -6.73 9 -0.668 (ASP) 0.032 — -12.45 __- 10 Fifth lens 0.873 (ASP) 0.349 Plastic 1.530 55.8 11 0.664 (ASP) 0.400 _________ 12 Infrared filter lighter plane 0.300 Glass 1.517 64.2 - 13 Plane 0.261 ----- 14 imaging plane - reference wavelength (d-line) is 587.6 nm _______-

表十六、非球面係數 35 201237455 表面 2 3 4 5 6 k = -2.0554E-01 -2.0109E+01 -1.8719E+01 -8.6176E-01 8.5482E+00 A4 = 7.0555E-03 -9.7472E-02 -8.1067E-01 -7.7746E-01 -1.6269E-01 A6 = 4.4681E-01 1.4952E-02 6.1061E-02 3.4526E-01 -5.8568E-01 A8- -1.6850E+00 5.0558E-01 1.8347E+00 -1.3118E-01 -1.1846E-01 A10 = 3.6247E+00 -5.2048E+00 -8.8175E+00 4.1469E-01 1.0407E+00 A12 = -1.5178E-01 2.9802E+00 -6.7636E-01 -1.8362E+00 1.1692E+00 A14 = -7.2016E+00 -7.1960E+00 1.4339E+01 5.6871E+00 -7.3834E-01 A16 = -1.3951E+00 表面 7 8 9 10 11 k = -2.0535E-02 -2.8049E+00 -7.5320E-01 -7.3875E+00 -4.4518E+00 A4 = -3.5609E-02 -3.0548E-01 5.6519E-01 -5.4482E-01 -3.2314E-01 A6 = 2.4850E-01 -5.4295E-01 -6.9580E-01 7.7136E-02 1.4110E-01 A8 = -8.4462E-01 1.7931E+00 4.4087E-01 -1.1528E-01 -6.3576E-02 A10 = 6.3342E-01 -8.4408E-01 6.4118E-01 2.8179E-02 1.0014E-02 A12 = 3.0684E+00 1.8435E+00 2.622 IE-02 1.2598E-01 6.7136E-03 A14 = -2.3998E-02 2.4085E+00 -4.4910E-01 1.9310E-01 -3.1914E-03 A16 = -5.0153E+00 4.3316E-01 -1.6614E-01 第八實施例中,非球面的曲線方程式表示如第一實施 例的形式。此外,f、Fno、HFOV、V2、V4、T12、CT2、 CT3、CT4、CT5、Σ(:Τ、Td、R3、R5、R6、R7、R8、R9、 RIO、Π、f3、f4、f5、EPD以及Yc52之定義皆與第一實 施例相同,在此不加以贅述。 配合表十五可推算出下列數據: 第八實施例 f(mm) 2.20 R7/R6 0.43 Fno 2.00 |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+Rl 0)| 0.30 HFOV(度) 33.9 R9/f 0.40 (V2+V4)/2 23.50 f3/fl 0.44 T12/CT2 0.45 f4/f5 0.54 CT5/CT4 1.25 (f/fl-卿(f/f3) 0.56 ECT/Td 0.79 D 2.00 f/R3 1.01 Yc52/CT3 1.69 (R5+R6)/(R5-R6) 0.37 36 201237455 &lt;第九實施例&gt; 請參照第17圖及第18圖’其中第17圖繪示依照本發 明第九實施例的一種拾像光學鏡片系統之示意圖,第18圖 由左至右依序為第九實施例的拾像光學鏡片系統之球差、 像散及歪曲曲線圖。由第17圖可知,第九實施例之拾像光 學鏡片系統由物側至像侧依序包含光圈900、第一透鏡 910、第二透鏡920、第三透鏡930、第四透鏡940、第五 透鏡950、紅外線濾除濾光片970以及成像面960。 第一透鏡910具有正屈折力,其物側表面911為凸面、 像側表面912為凹面,並皆為非球面,且第一透鏡910為 塑膠材質。 第二透鏡920具有負屈折力’其物側表面921及像側 表面922皆為凹面’且第二透鏡920之像側表面922自近 光軸處朝周邊處,由凹面轉為凸面。第二透鏡920之物側 表面921及像側表面922皆為非球面,且第二透鏡920為 塑膠材質。 第三透鏡930具有正屈折力,其物側表面931及像侧 表面932皆為凸面,並皆為非球面,且第三透鏡mo為塑 膠材質。 第四透鏡940具有負屈折力,其物側表面941為凹面、 像側表面942為凸面,並皆為非球面,且第四透鏡94Q為 塑膠材質。 第五透鏡950具有負屈折力,其物側表面951為凸面、 像側表面952為凹面,且第五透鏡950之物側表面951自 近光軸處朝周邊處,由凸面轉為凹面,第五透鏡950之像 37 201237455 側表面952具有反曲點。第五透鏡950之物側表面951及 像側表面952皆為非球面,且第五透鏡950為塑膠材質。 紅外線濾除濾光片970之材質為玻璃’其設置於第五 透鏡950與成像面960之間,並不影響拾像光學鏡片系統 的焦距。 請配合參照下列表十七以及表十八。 表十七、第九實施例 仔隹;re、= 1 89 mm, Fno(光圈值)=2.40, HFOV(丰視备、=议4疮 表面 曲率半徑 厚度 材質 折射率 色散係數 焦距 0 被攝物 平面 無限 1 光圈 平面 -0.065 2 第一透鏡 1.057 (ASP) 0.277 塑膠 1.514 56.8 2.96 3 3.165 (ASP) 0.102 4 第二透鏡 -40.883 (ASP) 0.220 塑膠 1.614 25.6 -3.48 5 2.261 (ASP) 0.064 6 第三透鏡 3.203 (ASP) 0.382 塑膠 1.535 56.3 1.51 7 -1.030 (ASP) 0.199 8 第四透鏡 -0.485 (ASP) 0.240 塑膠 1.614 25.6 •10.82 9 -0.622 (ASP) 0.030 10 第五透鏡 0.586 (ASP) 0.240 塑膠 1.530 55.8 -17.04 11 0.473 (ASP) 0.400 12 紅外線濾除 渡光片 平面 0.300 玻璃 1.517 64.2 - 13 平面 0.343 14 成像面 平面 - 參考波長(d-line)為587.6 nm 表十八、非球面係數 表面 2 3 4 5 6 1.3182E-01 -2.5381E+01 -1.9405E+01 -2.0441E+01 -7.1686E+01 A4 = 4.2012E-02 -3.5972E-02 -7.8978E-01 -8.4489E-01 -3.9244E-01 A6 = 5.1Π3Ε-01 2.7515E-02 8.803 IE-02 1.9961E-01 -7.2840E-01 38 201237455 A8 = -1.8422E+00 9.427 IE-01 1.6001E+00 -6.2181E-01 -2.9056E-01 A10 = 2.7855E+00 -4.2968E+00 -7.5918E+00 -1.6848E+00 8.4784E-01 A12 = -9.8802E+00 7.0708E+00 -3.3849E+00 -3.1747E+00 9.1783E-01 A14 = -1.1610E+01 1.6109E 十 00 -2.3903E+00 2.4239E+00 -1.7672E+00 A16 = 3.7031 E+00 表面 7 8 9 10 11 k = -2.4659E-01 -3.0480E+00 -8.6551E-01 -6.2122E+00 -4.2500E+00 A4 = -1.2426E-01 -3.3370E-01 6.4475E-01 -4.8907E-01 -3.0487E-01 A6 - 4.926 IE-01 -4.8564E-01 -8.4627E-01 1.1022E-01 1.3834E-01 A8 = -7.1571E-01 1.8523E+00 3.4763E-01 -1.2076E-01 -6.7214E-02 A10 = 9.5381E-01 -8.7791E-01 7.8004E-01 -7.8298E-03 5.7047E-03 A12 = 3.4176E+00 2.0027E+00 2.3063E-01 1.0663E-01 3.1044E-03 A14 = 1.2041E+00 2.5977E+00 -1.0771E-01 1.6110E-01 3.5523E-04 A16 = •4.7001 E+00 2.5044E-01 -1.2647E-01 第九實施例中,非球面的曲線方程式表示如第一實施 例的形式。此外,f、Fno、HFOV、V2、V4、T12、CT2、 CT3、CT4、CT5、ΣΟΓ、Td、R3、R5、R6、R7、R8、R9、 RIO、fl、Ο、f4、f5、EPD以及Yc52之定義皆與第一實 施例相同,在此不加以贅述。 配合表十七可推算出下列數據: 第九實施例 f(mm) 1.89 R7/R6 0.47 Fno 2.40 |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+Rl 0)| 0.23 HFOV(度) 38.4 R9/f 0.31 (V2+V4)/2 25.60 β/fl 0.51 T12/CT2 0.46 ms 0.63 CT5/CT4 1.00 (組-f/f5)/剛 0.60 ZCT/Td 0.77 f/EPD 2.40 f/R3 -0.05 Yc52/CT3 2.21 (R5+R6)/(R5-R6) 0.51 雖然本發明已以實施方式揭露如上,然其並非用以限 定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範 39 201237455 圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下: 第1圖繪示依照本發明第一實施例的一種拾像光學鏡 片系統之示意圖。 第2圖由左至右依序為第一實施例的拾像光學鏡片系 統之球差、像散及歪曲曲線圖。 第3圖繪示依照本發明第二實施例的一種拾像光學鏡 片系統之示意圖。 第4圖由左至右依序為第二實施例的拾像光學鏡片系 統之球差、像散及歪曲曲線圖。 第5圖繪示依照本發明第三實施例的一種拾像光學鏡 片系統之示意圖。 第6圖由左至右依序為第三實施例的拾像光學鏡片系 統之球差、像散及歪曲曲線圖。 第7圖繪示依照本發明第四實施例的一種拾像光學鏡 片系統之示意圖。 第8圖由左至右依序為第四實施例的拾像光學鏡片系 統之球差、像散及歪曲曲線圖。 第9圖繪示依照本發明第五實施例的一種拾像光學鏡 片糸統之不意圖。 第10圖由左至右依序為第五實施例的拾像光學鏡片Table XVI, aspherical coefficient 35 201237455 Surface 2 3 4 5 6 k = -2.0554E-01 -2.0109E+01 -1.8719E+01 -8.6176E-01 8.5482E+00 A4 = 7.0555E-03 -9.7472E -02 -8.1067E-01 -7.7746E-01 -1.6269E-01 A6 = 4.4681E-01 1.4952E-02 6.1061E-02 3.4526E-01 -5.8568E-01 A8- -1.6850E+00 5.0558E- 01 1.8347E+00 -1.3118E-01 -1.1846E-01 A10 = 3.6247E+00 -5.2048E+00 -8.8175E+00 4.1469E-01 1.0407E+00 A12 = -1.5178E-01 2.9802E+00 -6.7636E-01 -1.8362E+00 1.1692E+00 A14 = -7.2016E+00 -7.1960E+00 1.4339E+01 5.6871E+00 -7.3834E-01 A16 = -1.3951E+00 Surface 7 8 9 10 11 k = -2.0535E-02 -2.8049E+00 -7.5320E-01 -7.3875E+00 -4.4518E+00 A4 = -3.5609E-02 -3.0548E-01 5.6519E-01 -5.4482E-01 -3.2314E-01 A6 = 2.4850E-01 -5.4295E-01 -6.9580E-01 7.7136E-02 1.4110E-01 A8 = -8.4462E-01 1.7931E+00 4.4087E-01 -1.1528E-01 - 6.3576E-02 A10 = 6.3342E-01 -8.4408E-01 6.4118E-01 2.8179E-02 1.0014E-02 A12 = 3.0684E+00 1.8435E+00 2.622 IE-02 1.2598E-01 6.7136E-03 A14 = -2.3998E-02 2.4085E+00 -4.4910E-01 1.9310E-01 -3.1914E-03 A1 6 = -5.0153E+00 4.3316E-01 - 1.6614E-01 In the eighth embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, f, Fno, HFOV, V2, V4, T12, CT2, CT3, CT4, CT5, Σ (: Τ, Td, R3, R5, R6, R7, R8, R9, RIO, Π, f3, f4, f5 The definitions of EPD and Ec52 are the same as those in the first embodiment, and will not be described here. The following data can be derived by coordinating Table 15: Eighth embodiment f(mm) 2.20 R7/R6 0.43 Fno 2.00 |(R7-R8 )/(R7+R8)|+|(R9-R10)/(R9+Rl 0)| 0.30 HFOV (degrees) 33.9 R9/f 0.40 (V2+V4)/2 23.50 f3/fl 0.44 T12/CT2 0.45 f4 /f5 0.54 CT5/CT4 1.25 (f/fl-qing (f/f3) 0.56 ECT/Td 0.79 D 2.00 f/R3 1.01 Yc52/CT3 1.69 (R5+R6)/(R5-R6) 0.37 36 201237455 &lt; Nine Embodiments Referring to FIG. 17 and FIG. 18, FIG. 17 is a schematic view showing a pickup optical lens system according to a ninth embodiment of the present invention, and FIG. 18 is ninth from left to right. The spherical aberration, astigmatism and distortion curve of the optical lens system of the embodiment. As can be seen from Fig. 17, the optical lens system of the ninth embodiment sequentially includes the aperture 900 and the first lens from the object side to the image side. 910, second lens 920, third lens 930, fourth lens 940, fifth The lens 950, the infrared filter filter 970, and the imaging surface 960. The first lens 910 has a positive refractive power, the object side surface 911 is convex, the image side surface 912 is concave, and both are aspherical, and the first lens 910 The second lens 920 has a negative refractive power 'the object side surface 921 and the image side surface 922 are both concave surfaces' and the image side surface 922 of the second lens 920 is from the near optical axis toward the periphery, from the concave surface to the concave surface The object side surface 921 and the image side surface 922 of the second lens 920 are all aspherical, and the second lens 920 is made of a plastic material. The third lens 930 has a positive refractive power, and the object side surface 931 and the image side surface 932 are both The convex surface is aspherical, and the third lens mo is made of a plastic material. The fourth lens 940 has a negative refractive power, the object side surface 941 is a concave surface, the image side surface 942 is a convex surface, and both are aspherical surfaces, and The fourth lens 94Q is made of a plastic material. The fifth lens 950 has a negative refractive power, the object side surface 951 is a convex surface, the image side surface 952 is a concave surface, and the object side surface 951 of the fifth lens 950 is from the near optical axis toward the periphery. From convex to concave, fifth lens 95 Image of 0 37 201237455 Side surface 952 has an inflection point. The object side surface 951 and the image side surface 952 of the fifth lens 950 are all aspherical, and the fifth lens 950 is made of a plastic material. The material of the infrared filter 970 is glass, which is disposed between the fifth lens 950 and the imaging surface 960, and does not affect the focal length of the optical lens system. Please refer to Table 17 and Table 18 below. Table 17, the ninth embodiment of the larvae; re, = 1 89 mm, Fno (aperture value) = 2.40, HFOV (Fengshibei, = 4 sore surface curvature radius thickness material refractive index dispersion coefficient focal length 0 subject Plane Infinity 1 Aperture Plane -0.065 2 First Lens 1.057 (ASP) 0.277 Plastic 1.514 56.8 2.96 3 3.165 (ASP) 0.102 4 Second Lens -40.883 (ASP) 0.220 Plastic 1.614 25.6 -3.48 5 2.261 (ASP) 0.064 6 Third Lens 3.203 (ASP) 0.382 Plastic 1.535 56.3 1.51 7 -1.030 (ASP) 0.199 8 Fourth lens -0.485 (ASP) 0.240 Plastic 1.614 25.6 •10.82 9 -0.622 (ASP) 0.030 10 Fifth lens 0.586 (ASP) 0.240 Plastic 1.530 55.8 -17.04 11 0.473 (ASP) 0.400 12 Infrared filter lighter plane 0.300 Glass 1.517 64.2 - 13 Plane 0.343 14 Imaging plane - reference wavelength (d-line) is 587.6 nm Table 18, aspherical surface 2 3 4 5 6 1.3182E-01 -2.5381E+01 -1.9405E+01 -2.0441E+01 -7.1686E+01 A4 = 4.2012E-02 -3.5972E-02 -7.8978E-01 -8.4489E-01 -3.9244 E-01 A6 = 5.1Π3Ε-01 2.7515E- 02 8.803 IE-02 1.9961E-01 -7.2840E-01 38 201237455 A8 = -1.8422E+00 9.427 IE-01 1.6001E+00 -6.2181E-01 -2.9056E-01 A10 = 2.7855E+00 -4.2968E +00 -7.5918E+00 -1.6848E+00 8.4784E-01 A12 = -9.8802E+00 7.0708E+00 -3.3849E+00 -3.1747E+00 9.1783E-01 A14 = -1.1610E+01 1.6109E 00 -2.3903E+00 2.4239E+00 -1.7672E+00 A16 = 3.7031 E+00 Surface 7 8 9 10 11 k = -2.4659E-01 -3.0480E+00 -8.6551E-01 -6.2122E+00 -4.2500E+00 A4 = -1.2426E-01 -3.3370E-01 6.4475E-01 -4.8907E-01 -3.0487E-01 A6 - 4.926 IE-01 -4.8564E-01 -8.4627E-01 1.1022E- 01 1.3834E-01 A8 = -7.1571E-01 1.8523E+00 3.4763E-01 -1.2076E-01 -6.7214E-02 A10 = 9.5381E-01 -8.7791E-01 7.8004E-01 -7.8298E-03 5.7047E-03 A12 = 3.4176E+00 2.0027E+00 2.3063E-01 1.0663E-01 3.1044E-03 A14 = 1.2041E+00 2.5977E+00 -1.0771E-01 1.6110E-01 3.5523E-04 A16 = •4.7001 E+00 2.5044E-01 -1.2647E-01 In the ninth embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, f, Fno, HFOV, V2, V4, T12, CT2, CT3, CT4, CT5, ΣΟΓ, Td, R3, R5, R6, R7, R8, R9, RIO, fl, Ο, f4, f5, EPD and The definition of Yc52 is the same as that of the first embodiment, and will not be described herein. The following data can be derived in conjunction with Table 17: Ninth Embodiment f(mm) 1.89 R7/R6 0.47 Fno 2.40 |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+Rl 0)| 0.23 HFOV (degrees) 38.4 R9/f 0.31 (V2+V4)/2 25.60 β/fl 0.51 T12/CT2 0.46 ms 0.63 CT5/CT4 1.00 (group -f/f5)/just 0.60 ZCT/Td 0.77 f /EPD 2.40 f/R3 -0.05 Yc52/CT3 2.21 (R5+R6)/(R5-R6) 0.51 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and anyone skilled in the art The various modifications and refinements may be made without departing from the spirit and scope of the invention, and the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A schematic of a pick-up optical lens system. Fig. 2 is a left-to-right sequence of spherical aberration, astigmatism, and distortion of the optical pickup lens system of the first embodiment. Fig. 3 is a schematic view showing a pickup optical lens system in accordance with a second embodiment of the present invention. Fig. 4 is a left-to-right sequence of spherical aberration, astigmatism, and distortion of the pickup optical lens system of the second embodiment. Fig. 5 is a view showing a pickup optical lens system according to a third embodiment of the present invention. Fig. 6 is a left-to-right sequence of spherical aberration, astigmatism, and distortion of the optical pickup lens system of the third embodiment. Fig. 7 is a view showing a pickup optical lens system according to a fourth embodiment of the present invention. Fig. 8 is a left-to-right sequence of spherical aberration, astigmatism, and distortion of the optical pickup lens system of the fourth embodiment. Fig. 9 is a view showing a schematic view of a pickup optical lens system according to a fifth embodiment of the present invention. Figure 10 is a pick-up optical lens of the fifth embodiment from left to right.

S 40 201237455 糸統之球差、像散及歪曲曲線圖。 第11圖繪示依照本發明第六實施例的一種拾像光學 鏡片系統之示意圖。 第12圖由左至右依序為第六實施例的拾像光學鏡片 系統之球差、像散及歪曲曲線圖。 第13圖績示依照本發明第七實施例的一種拾像光學 鏡片系統之示意圖。 第14圖由左至右依序為第七實施例的拾像光學鏡片 系統之球差、像散及歪曲曲線圖。 第15圖繪示依照本發明第八實施例的一種拾像光學 鏡片系統之示意圖。 第16圖由左至右依序為第八實施例的拾像光學鏡片 系統之球差、像散及歪曲曲線圖。 第17圖繪示依照本發明第九實施例的一種拾像光學 鏡片系統之不意圖。 第18圖由左至右依序為第九實施例的拾像光學鏡片 系統之球差、像散及歪曲曲線圖。 第19圖繪示依照第1圖實施方式之第五透鏡的Yc52 示意圖。 Λ • 【主要元件符號說明】 光圈:100、200、300、400、500、600、700、800、900 第一透鏡·· 110、210、310、410、510、610、710、810、 910 物侧表面:111、211、311、411、511、611、711、811、 41 201237455 911 像側表面:112、212、312、 912 第二透鏡:120、220、320、 * 920 - 物侧表面:121、221、321、 921 像側表面:122、222、322、 922 第三透鏡:130、230、330、 930 物側表面:131、231、331、 931 像側表面:132、232、332、 932 第四透鏡:140、240、340、 940 物側表面:141、241、341、 941 像侧表面:142、242、342、 * 942 * 第五透鏡:150、250、350、 950 物側表面:151、25卜351、 951 像侧表面:152、252、352、 、512、612、712、812、 、520、620、720、820 ' ' 521、621、721 ' 821 ' 、522、622、722、822、 、530、630、730、830、 、531、631、731、831、 、532、632、732、832、 ' 540、640、740、840 ' 、541 、 641 、 741 、 841 、 、542、642、742、842、 、550、650、750、850、 、551 、 651 、 75卜 851 、 、552 、 652 、 752 、 852 、 42 201237455 952 成像面:160、260、360、460、560、660、760、860、960 紅外線濾除濾光片:17〇、270、370、470、570、670、770、 870 &gt; 970 • f:拾像光學鏡片系統之焦距 . Fno :拾像光學鏡片系統之光圈值 HFOV :拾像光學鏡片系統中最大視角的一半 V2 :第二透鏡之色散係數 V4 :第四透鏡之色散係數 T12:第一透鏡與第二透鏡於光軸上的間隔距離 CT2 :第二透鏡於光軸上之厚度 CT3 :第三透鏡於光軸上之厚度 CT4 :第四透鏡於光轴上之厚度 CT5 :第五透鏡於光軸上之厚度 Σστ.第-透鏡至第五透鏡分別於光轴上的厚度之總和 Td:第-透鏡之物侧表面至第五透鏡之像侧表 面於光轴上 的距離. R3 :第二透鏡之物侧表面曲率半獲 R5 :第三透鏡之物侧表面曲率半彳 R6 .第二透鏡之像側表面曲率半押 R7 ·第四透鏡之物側表面曲率半押 • R8 .第四透鏡之像侧表面曲率半和 R9:第五透鏡之物側表面曲率半徑 R10:第五透鏡之像侧表面曲率半徑 fl:第一透鏡之焦距 i 〇 :第三透鏡之焦距 43 201237455 f4 :第四透鏡之焦距 f5 :第五透鏡之焦距 EPD :拾像光學鏡片系統之入射瞳直徑S 40 201237455 The spherical aberration, astigmatism and distortion curves of SiS. Figure 11 is a schematic view showing an optical pickup lens system in accordance with a sixth embodiment of the present invention. Fig. 12 is a left-to-right sequence of spherical aberration, astigmatism, and distortion of the optical pickup lens system of the sixth embodiment. Figure 13 is a schematic view showing an optical pickup lens system in accordance with a seventh embodiment of the present invention. Fig. 14 is a left-to-right sequence of spherical aberration, astigmatism, and distortion of the optical pickup lens system of the seventh embodiment. Figure 15 is a schematic view showing an optical pickup lens system in accordance with an eighth embodiment of the present invention. Fig. 16 is a left-to-right sequence of spherical aberration, astigmatism, and distortion of the optical pickup lens system of the eighth embodiment. Figure 17 is a schematic view showing an optical pickup lens system in accordance with a ninth embodiment of the present invention. Fig. 18 is a left-to-right sequence of spherical aberration, astigmatism, and distortion of the optical pickup lens system of the ninth embodiment. Figure 19 is a schematic view showing Yc52 of the fifth lens according to the embodiment of Figure 1. Λ • [Main component symbol description] Aperture: 100, 200, 300, 400, 500, 600, 700, 800, 900 First lens · 110, 210, 310, 410, 510, 610, 710, 810, 910 Side surfaces: 111, 211, 311, 411, 511, 611, 711, 811, 41 201237455 911 Image side surface: 112, 212, 312, 912 Second lens: 120, 220, 320, * 920 - Object side surface: 121, 221, 321, 921 image side surface: 122, 222, 322, 922 third lens: 130, 230, 330, 930 object side surface: 131, 231, 331, 931 image side surface: 132, 232, 332, 932 Fourth lens: 140, 240, 340, 940 Object side surface: 141, 241, 341, 941 Image side surface: 142, 242, 342, * 942 * Fifth lens: 150, 250, 350, 950 object side surface : 151, 25 351, 951 image side surface: 152, 252, 352, 512, 612, 712, 812, 520, 620, 720, 820 ' ' 521, 621, 721 ' 821 ', 522, 622, 722, 822, 530, 630, 730, 830, 531, 631, 731, 831, 532, 632, 732, 832, '540, 640, 740, 840', 541, 641, 741, 841, , 542, 642, 742, 842, 550, 650, 750, 850, 551, 651, 75 851, 552, 652, 752, 852, 42 201237455 952 imaging surface: 160, 260, 360, 460, 560, 660, 760, 860, 960 Infrared filter: 17〇, 270, 370, 470, 570, 670, 770, 870 &gt; 970 • f: focal length of the pickup optical lens system. Fno: pick-up The aperture value of the optical lens system HFOV : half of the maximum viewing angle in the optical lens system V2 : the dispersion coefficient of the second lens V4 : the dispersion coefficient of the fourth lens T12 : the distance between the first lens and the second lens on the optical axis CT2: thickness of the second lens on the optical axis CT3: thickness of the third lens on the optical axis CT4: thickness of the fourth lens on the optical axis CT5: thickness of the fifth lens on the optical axis Σστ. The sum of the thicknesses of the fifth lens on the optical axis respectively Td: the distance from the object side surface of the first lens to the image side surface of the fifth lens on the optical axis. R3: the curvature of the object side surface of the second lens is half R5: The curvature of the object side surface of the third lens is half a radius R6. The curvature of the image side surface of the second lens is half pressed R7 · The curvature of the side surface of the four lens is half-pressed. R8. The curvature of the image side surface of the fourth lens is half and R9: the radius of curvature of the object side surface of the fifth lens R10: the radius of curvature of the image side surface of the fifth lens: the first lens Focal length i 〇: focal length of the third lens 43 201237455 f4 : focal length f5 of the fourth lens: focal length EPD of the fifth lens: incident pupil diameter of the optical lens system of the pickup

Yc52 :第五透鏡像側表面上,除與光轴之交點外,像侧表 面垂直光軸之一切面,切面與像側表面之一切點,切點與 光軸之垂直距離 44Yc52: on the side surface of the fifth lens image, except for the intersection with the optical axis, all the faces of the vertical optical axis of the side surface, all points of the cut surface and the image side surface, and the vertical distance between the tangent point and the optical axis 44

Claims (1)

201237455 七、申請專利範圍: 1. -種拾像光學鏡片系統,由物側至像側依序包含: 第-透鏡,具有正屈折力,其物側表面為凸面; 第一透鏡,具有屈折力; -第三透鏡,具有正屈折力’其像侧表面為凸面; 一第四透鏡’具有負屈折力,其物側表面為凹面、像 側表面為凸面,並皆為非球面;以及 一第五透鏡,具有負屈折力,其物侧表面為凸面、像 側表面為凹面,並皆為非球面,且該第五透鏡之像侧表面 具有至少一反曲點; 其中,該第一透鏡之焦距為fl,該第三透鏡之焦距為 f3,該第四透鏡之焦距為f4 ,該第五透鏡之焦距為f5,該 拾像光學鏡片系統之焦距為f,該第二透鏡之物側表面曲率 半徑為R3,其滿足下列條件: 0 &lt; f3/fl &lt; 0.57 ; 0 &lt; f4/f5 &lt; 1.50 ;以及 -0.5 &lt; f/R3 &lt; 3.5。 2. 如請求項1所述之拾像光學鏡片系統,其中該第三 透鏡之像侧表面曲率半徑為R6,該第四透鏡之物側表面曲 率半徑為R7,其滿足下列條件: 0 &lt; R7/R6 &lt; 〇 9〇。 3. 如請求項2所述之拾像光學鏡片系統,其中該第一 透鏡至該第五透鏡分別於光軸上的厚度之總和為2CT,該 第-透鏡之物侧表面至該第五透鏡之像侧表面於光軸上的 45 201237455 距離為Td,其滿足下列條件: 0.70 &lt; ICT/Td &lt; 0.90。 4.如請求項2所述之拾像光學鏡片系統,其中該第五 透鏡之物側表面曲率半徑為R9,該拾像光學鏡片系統之焦 距為f ’其滿足下列條件. 0.20 &lt; R9/f&lt; 0.60。 5·如請求項2所述之拾像光學鏡片系統,其中該拾像 光學鏡片系統之焦距為f,該拾像光學鏡片系統之入射瞳直 徑為EPD ’其滿足下列條件: 1.2 &lt; f/EPD S 2.2。 6. 如請求項1所述之拾像光學鏡片系統,其中該第二 透鏡之像側表面自近光轴處朝周邊處,由凹面轉為凸面。 7. 如請求項1所述之拾像光學鏡片系統,其中該第四 透鏡之物側表面曲率半徑為r7、像側表面曲率半徑為R8, 該第五透鏡之物側表面曲率半徑為R9、像侧表面曲率半徑 為R10,其滿足下列條件: 0.20 &lt; |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+R10)| &lt; 0.45 〇 8. 如請求項1所述之拾像光學鏡片系統,其中該第二 透鏡之色散係數為V2,該第四透鏡之色散係數為V4,其 滿足下列條件: ~ 20 &lt; (V2+V4)/2 &lt; 30。 9. 如請求項1所述之拾像光學鏡片系統,其中該第一 透鏡之像側表面為凹面。 10. 如凊求項9所述之拾像光學鏡片系統’其中該第 46 201237455 一透鏡之焦距為η,該第三透鏡之焦距為βΑ 條件: -疋卜列 0 &lt; f3/fl &lt; 〇 45。 11. 如請求項9所述之拎像光學鏡片系統,其中該拾 像光學鏡片系統之焦距為f,該第一透鏡之焦距為打,^ 第三透鏡之焦距為〇,該第五透鏡之焦距為f5,其滿; 列條件: 下 0.20 &lt; (f/fl-f/f5)/(f/f3) &lt; 0.75。 12. 如請求項9所述之拾像光學鏡片系統,其中該第 五透鏡像側表面上,除與光軸之交點外,該像侧表面垂直 光軸之一切面,該切面與該像側表面之一切點,該切點與 光轴之垂直距離為Yc52,該第三透鏡於光軸上之厚度^ CT3 ’其滿足下列條件: 1.0 &lt; YC52/CT3 &lt; 3.5。 13. 如請求項1所述之拾像光學鏡片系統,其中該第 二透鏡之物侧表面為凸面、像侧表面為凹面。 14. 如請求項13所述之拾像光學鏡片系統,其中該第 五透鏡之物侧表面自近光軸處朝周邊處,由凸面轉為凹面。 15. 如請求項13所述之拾像光學鏡片系統’其中該第 三透鏡之物侧表面曲率半徑為R5、像側表面曲率半徑為 R6,其滿足下列條件: 0.3 &lt; (R5+R6)/(R5-R6) &lt; 1.3。 16. 如請求項1所述之拾像光學鏡片系統’其中該第 四透鏡於光軸上之厚度為CT4,該第五透鏡於光軸上之厚 度為CT5,其滿足下列條件: 47 201237455 0.8 &lt; CT5/CT4 &lt; 1.8 0 列 17.如請求項1所述之拾像光學鏡片系統,其中該 一透鏡之焦距為Π,該第三透鏡之焦距為f3,其滿足^ 條件: 0 &lt; f3/fl &lt; 0.35。 18. —種拾像光學鏡片系統’由物側至像側依序包人 一第一透鏡,具有正屈折力,其物侧表面為凸面; 一第二透鏡,具有屈折力; 一第二透鏡,具有正屈折力,其像侧表面為凸面. 一第四透鏡’具有負屈折力,其物侧表面為四面、 側表面為凸面,並皆為非球面;以及 像 一第五透鏡,具有負屈折力,其物侧表面為凸面、 側表面為凹面,並皆為非球面,且該第五透鏡之像側表像 具有至少一反曲點; 面 其中,該第一透鏡之焦距為fl,該第三透鏡之焦距為 f3,該第四透鏡之焦距為f4,該第五透鏡之焦距為行,; 第三透鏡之像侧表面曲率半徑為R6,該第四透鏡之物側^ 面曲率半徑為R7 ’其滿足下列條件: 0 &lt; β/Π &lt; 0.57 ; 0 &lt; f4/f5 &lt; 1·5〇 ;以及 0 &lt; R7/R6 &lt; 0.90 〇 19·如請求項18所述之拾像光學鏡片系統,其中該第 一透鏡之像侧表面為凹面,該第二透鏡之物側表面 面、像側表面為凹面。 ” 48 201237455 20. 如請求項18所述之拾像光學鏡片系統,其中該第 二透鏡之像側表面自近光轴處朝周邊處,由凹面轉為凸面。 21. 如請求項18所述之拾像光學鏡片系統,其中該第 一透鏡至該第五透鏡分別於光軸上的厚度之總和為ECT, 該第一透鏡之物側表面至該第五透鏡之像側表面於光軸上 的距離為Td,其滿足下列條件: 0.75 &lt; ECT/Td &lt; 0.85。 22. 如請求項18所述之拾像光學鏡片系統,其中該第 四透鏡之焦距為f4,該第五透鏡之焦距為f5,其滿足下列 條件: 0 &lt; f4/f5 &lt; 0.70。 23. 如請求項18所述之拾像光學鏡片系統,其中該第 一透鏡之焦距為fl,該第三透鏡之焦距為β,其滿足下列 條件: 0 &lt; Ο/fl &lt; 0.35。 24. 如請求項18所述之拾像光學鏡片系統,其中該第 二透鏡之色散係數為V2,該第四透鏡之色散係數為V4, 其滿足下列條件: 20 &lt; (V2+V4)/2 &lt; 30。 25. 如請求項18所述之拾像光學鏡片系統,其中該拾 像光學鏡片系統之焦距為f,該拾像光學鏡片系統之入射瞳 直徑為EPD,其滿足下列條件: 1.2 &lt; f/EPD S 2.2。 26.如請求項18所述之拾像光學鏡片系統,其中該第 一透鏡與該第二透鏡於光轴上的間隔距離為T12,該第二 49 201237455 透鏡於光轴上之厚度為CT2,其滿足下列條件: 0 &lt; T12/CT2 &lt; 1.0。 50201237455 VII. Patent application scope: 1. - Pick-up optical lens system, including from the object side to the image side: the first lens has a positive refractive power, and the object side surface is convex; the first lens has a refractive power a third lens having a positive refractive power 'the image side surface is a convex surface; a fourth lens 'having a negative refractive power, the object side surface is a concave surface, the image side surface is a convex surface, and both are aspherical surfaces; a fifth lens having a negative refractive power, wherein the object side surface is a convex surface, the image side surface is a concave surface, and both are aspherical surfaces, and the image side surface of the fifth lens has at least one inflection point; wherein the first lens The focal length is fl, the focal length of the third lens is f3, the focal length of the fourth lens is f4, the focal length of the fifth lens is f5, the focal length of the optical lens system is f, and the object side surface of the second lens The radius of curvature is R3, which satisfies the following conditions: 0 &lt; f3/fl &lt;0.57; 0 &lt; f4/f5 &lt;1.50; and -0.5 &lt; f/R3 &lt; 3.5. 2. The optical lens system as claimed in claim 1, wherein the image side surface has a radius of curvature R6, and the fourth lens has an object side surface radius of curvature R7, which satisfies the following condition: 0 &lt; R7/R6 &lt; 〇9〇. 3. The pickup optical lens system according to claim 2, wherein a sum of thicknesses of the first lens to the fifth lens on the optical axis is 2CT, and an object side surface of the first lens to the fifth lens The distance of the image side surface on the optical axis of 45 201237455 is Td, which satisfies the following conditions: 0.70 &lt; ICT/Td &lt; 0.90. 4. The pickup optical lens system according to claim 2, wherein the fifth lens has an object side surface curvature radius of R9, and the pickup optical lens system has a focal length f' which satisfies the following condition. 0.20 &lt; R9/ f&lt;0.60. 5. The pickup optical lens system of claim 2, wherein the focal length of the optical lens system is f, and the incident pupil diameter of the optical lens system is EPD', which satisfies the following conditions: 1.2 &lt; f/ EPD S 2.2. 6. The pickup optical lens system according to claim 1, wherein the image side surface of the second lens is turned from a concave surface to a convex surface from the near-optical axis toward the periphery. 7. The optical lens system of claim 1, wherein the fourth lens has a radius of curvature of the object side surface of r7, an image side surface radius of curvature of R8, and an object side surface of the fifth lens has a radius of curvature of R9. The radius of curvature of the image side surface is R10, which satisfies the following conditions: 0.20 &lt; |(R7-R8)/(R7+R8)|+|(R9-R10)/(R9+R10)| &lt; 0.45 〇8. The optical lens system of claim 1, wherein the second lens has a dispersion coefficient of V2, and the fourth lens has a dispersion coefficient of V4, which satisfies the following condition: ~ 20 &lt; (V2+V4)/2 &lt; 30. 9. The pickup optical lens system of claim 1, wherein the image side surface of the first lens is a concave surface. 10. The optical optical lens system of claim 9, wherein the focal length of the lens of the 46 201237455 is η, and the focal length of the third lens is β Α condition: - 疋 0 0 &lt; f3 / fl &lt; 〇45. 11. The imaging optical lens system of claim 9, wherein the focal length of the optical lens system is f, the focal length of the first lens is a hit, and the focal length of the third lens is 〇, the fifth lens The focal length is f5, which is full; column condition: 0.20 &lt; (f/fl-f/f5)/(f/f3) &lt; 0.75. 12. The optical pickup lens system according to claim 9, wherein the image side surface is on the side surface of the fifth lens image, except for the intersection with the optical axis, the image side surface is perpendicular to the optical axis, the slice surface and the image side At all points of the surface, the vertical distance between the tangent point and the optical axis is Yc52, and the thickness of the third lens on the optical axis ^ CT3 's satisfies the following condition: 1.0 &lt; YC52/CT3 &lt; 3.5. 13. The optical pickup lens system according to claim 1, wherein the object side surface of the second lens is a convex surface, and the image side surface is a concave surface. 14. The pickup optical lens system according to claim 13, wherein the object side surface of the fifth lens is turned from a convex surface to a concave surface from the near-optical axis toward the periphery. 15. The optical pickup lens system of claim 13, wherein the third lens has an object side surface curvature radius R5 and an image side surface curvature radius R6, which satisfies the following condition: 0.3 &lt; (R5+R6) /(R5-R6) &lt; 1.3. 16. The pickup optical lens system of claim 1, wherein the thickness of the fourth lens on the optical axis is CT4, and the thickness of the fifth lens on the optical axis is CT5, which satisfies the following condition: 47 201237455 0.8 &lt; CT5/CT4 &lt; 1.8 0. The optical pickup lens system of claim 1, wherein the focal length of the lens is Π, and the focal length of the third lens is f3, which satisfies the condition: 0 &lt;; f3/fl &lt; 0.35. 18. A pick-up optical lens system 'incorporating a first lens from the object side to the image side, having a positive refractive power, the object side surface being convex; a second lens having a refractive power; a second lens a positive refractive power, the image side surface is convex. A fourth lens 'has a negative refractive power, the object side surface is four sides, the side surface is convex, and both are aspherical; and like a fifth lens, having a negative a refractive power, the object side surface is a convex surface, the side surface is a concave surface, and both are aspherical surfaces, and the image side image of the fifth lens has at least one inflection point; wherein the focal length of the first lens is fl, The focal length of the third lens is f3, the focal length of the fourth lens is f4, the focal length of the fifth lens is a line, and the radius of curvature of the image side surface of the third lens is R6, and the curvature of the object side of the fourth lens The radius is R7 'which satisfies the following conditions: 0 &lt; β / Π &lt;0.57; 0 &lt; f4 / f5 &lt; 1 · 5 〇; and 0 &lt; R7 / R6 &lt; 0.90 〇 19 · as claimed in claim 18 The image pickup optical lens system, wherein the image side surface of the first lens is a concave surface, the first The object side surface and the image side surface of the two lenses are concave. The image pickup optical lens system of claim 18, wherein the image side surface of the second lens is turned from a concave surface to a convex surface from the near optical axis, and is convex to a convex surface as described in claim 18. The image pickup optical lens system, wherein the sum of the thicknesses of the first lens to the fifth lens on the optical axis is ECT, and the image side surface of the first lens to the image side surface of the fifth lens is on the optical axis The distance is Td, which satisfies the following condition: 0.75 &lt; ECT/Td &lt; 0.85. 22. The optical lens system of claim 18, wherein the focal length of the fourth lens is f4, the fifth lens The focal length is f5, which satisfies the following condition: 0 &lt; f4/f5 &lt; 0.70. 23. The optical lens system of claim 18, wherein the focal length of the first lens is fl, and the focal length of the third lens It is β, which satisfies the following conditions: 0 &lt; Ο /fl &lt; 0.35. 24. The optical lens system of claim 18, wherein the second lens has a dispersion coefficient of V2, and the dispersion of the fourth lens The coefficient is V4, which satisfies the following conditions: 20 &lt; (V2+V4)/2 &lt The optical optical lens system of claim 18, wherein the focal length of the optical lens system is f, and the incident pupil diameter of the optical lens system is EPD, which satisfies the following conditions: 1.2 &lt; The f-optical optical lens system of claim 18, wherein the first lens and the second lens are spaced apart from each other on the optical axis by a distance T12, and the second 49 201237455 lens is in the light The thickness on the shaft is CT2, which satisfies the following conditions: 0 &lt; T12/CT2 &lt; 1.0. 50
TW101118973A 2012-05-28 2012-05-28 Image capturing optical lens system TWI460463B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW101118973A TWI460463B (en) 2012-05-28 2012-05-28 Image capturing optical lens system
CN201210328134.7A CN103454753B (en) 2012-05-28 2012-09-06 Image pickup optical lens system
CN2012204528249U CN202748528U (en) 2012-05-28 2012-09-06 Image pickup optical lens system
US13/655,490 US9036274B2 (en) 2012-05-28 2012-10-19 Image capturing optical lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101118973A TWI460463B (en) 2012-05-28 2012-05-28 Image capturing optical lens system

Publications (2)

Publication Number Publication Date
TW201237455A true TW201237455A (en) 2012-09-16
TWI460463B TWI460463B (en) 2014-11-11

Family

ID=47223137

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101118973A TWI460463B (en) 2012-05-28 2012-05-28 Image capturing optical lens system

Country Status (3)

Country Link
US (1) US9036274B2 (en)
CN (2) CN103454753B (en)
TW (1) TWI460463B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713381A (en) * 2012-10-09 2014-04-09 大立光电股份有限公司 Imaging lens system
TWI467223B (en) * 2012-11-20 2015-01-01 Largan Precision Co Ltd Image capturing lens assembly
JP2015022306A (en) * 2013-07-16 2015-02-02 玉晶光電股▲ふん▼有限公司 Optical image capturing lens
US9036273B2 (en) 2012-10-12 2015-05-19 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
TWI487937B (en) * 2013-06-07 2015-06-11 Largan Precision Co Ltd Imaging lens assembly
US9164257B2 (en) 2013-10-11 2015-10-20 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9191561B2 (en) 2013-10-11 2015-11-17 Genius Electronic Optical Co., Ltd. Optical imaging lens and electronic device comprising the same
US9223117B2 (en) 2013-03-19 2015-12-29 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9264594B2 (en) 2013-10-11 2016-02-16 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9274316B2 (en) 2014-04-18 2016-03-01 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9366844B2 (en) 2013-06-28 2016-06-14 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9389396B2 (en) 2013-06-03 2016-07-12 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9541736B2 (en) 2013-07-10 2017-01-10 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
TWI572887B (en) * 2015-01-06 2017-03-01 先進光電科技股份有限公司 Optical image capturing system
US9678308B2 (en) 2014-10-31 2017-06-13 Samsung Electro-Mechanics Co., Ltd. Optical system
US9703073B2 (en) 2014-01-27 2017-07-11 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
TWI607235B (en) * 2015-08-04 2017-12-01 玉晶光電股份有限公司 Imaging lens

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014850A1 (en) * 2011-07-25 2013-01-31 富士フイルム株式会社 Imaging lens and imaging device provided with imaging lens
KR101301314B1 (en) 2011-10-10 2013-08-29 삼성전기주식회사 Image Lense Unit
KR101321276B1 (en) 2011-10-21 2013-10-28 삼성전기주식회사 Imaging lens
TWI438476B (en) 2012-01-12 2014-05-21 Largan Precision Co Ltd Image capturing system
KR101422910B1 (en) * 2012-04-30 2014-07-23 삼성전기주식회사 Optical system for camera
TWI460463B (en) * 2012-05-28 2014-11-11 Largan Precision Co Ltd Image capturing optical lens system
US8675288B2 (en) 2012-06-12 2014-03-18 Samsung Electro-Mechanics Co., Ltd. Lens module
KR102008497B1 (en) * 2013-06-03 2019-08-09 삼성전자주식회사 Imaging lens system
TWI457593B (en) * 2013-08-19 2014-10-21 Largan Precision Co Ltd Image capturing lens system and image capturing device
EP2840427A1 (en) * 2013-08-20 2015-02-25 Samsung Electro-Mechanics Co., Ltd Lens module
TWI512326B (en) * 2014-07-14 2015-12-11 Largan Precision Co Ltd Photographing optical lens assembly, imaging device and mobile terminal
CN105445899B (en) * 2014-08-27 2017-10-20 玉晶光电(厦门)有限公司 The electronic installation of optical imaging lens and the application optical imaging lens
KR20180073904A (en) * 2016-12-23 2018-07-03 삼성전기주식회사 Optical Imaging System
WO2018192166A1 (en) * 2017-04-18 2018-10-25 浙江舜宇光学有限公司 Imaging lens
CN110737076B (en) * 2019-11-22 2021-01-08 诚瑞光学(常州)股份有限公司 Image pickup optical lens
CN111856733B (en) * 2020-09-21 2020-12-04 瑞泰光学(常州)有限公司 Image pickup optical lens

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4248429B2 (en) * 2004-03-16 2009-04-02 大立光電股▲ふん▼有限公司 Bifocal lens system and portable device
JP4847172B2 (en) * 2006-03-28 2011-12-28 富士フイルム株式会社 Imaging lens
JP2009223251A (en) * 2008-03-19 2009-10-01 Olympus Corp Image pickup apparatus
JP5073590B2 (en) * 2008-06-06 2012-11-14 富士フイルム株式会社 Five-lens imaging lens and imaging device
CN101782676B (en) * 2009-01-15 2012-04-11 大立光电股份有限公司 Imaging optical lens group
JP5391806B2 (en) * 2009-04-24 2014-01-15 コニカミノルタ株式会社 Imaging lens, imaging optical device, and digital device
CN102023370B (en) * 2009-09-15 2012-05-23 大立光电股份有限公司 Imaging lens system
TWI435135B (en) * 2010-10-06 2014-04-21 Largan Precision Co Ltd Optical lens system
TWI440922B (en) * 2010-11-01 2014-06-11 Largan Precision Co Ltd Photographing optical lens assembly
TWI429944B (en) * 2011-01-07 2014-03-11 Largan Precision Co Image pickup optical lens assembly
TWI437311B (en) * 2011-04-08 2014-05-11 Largan Precision Co Optical lens assembly for image taking
TWI435138B (en) * 2011-06-20 2014-04-21 Largan Precision Co Optical imaging system for pickup
TWI460463B (en) * 2012-05-28 2014-11-11 Largan Precision Co Ltd Image capturing optical lens system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713381B (en) * 2012-10-09 2016-05-18 大立光电股份有限公司 Imaging lens system
CN103713381A (en) * 2012-10-09 2014-04-09 大立光电股份有限公司 Imaging lens system
US9995911B2 (en) 2012-10-12 2018-06-12 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9036273B2 (en) 2012-10-12 2015-05-19 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
TWI487934B (en) * 2012-10-12 2015-06-11 玉晶光電股份有限公司 Mobile device and optical imaging lens thereof
TWI467223B (en) * 2012-11-20 2015-01-01 Largan Precision Co Ltd Image capturing lens assembly
US9223117B2 (en) 2013-03-19 2015-12-29 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9389396B2 (en) 2013-06-03 2016-07-12 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
TWI487937B (en) * 2013-06-07 2015-06-11 Largan Precision Co Ltd Imaging lens assembly
US9366844B2 (en) 2013-06-28 2016-06-14 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9541736B2 (en) 2013-07-10 2017-01-10 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US10394001B2 (en) 2013-07-10 2019-08-27 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
JP2015022306A (en) * 2013-07-16 2015-02-02 玉晶光電股▲ふん▼有限公司 Optical image capturing lens
US9264594B2 (en) 2013-10-11 2016-02-16 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9191561B2 (en) 2013-10-11 2015-11-17 Genius Electronic Optical Co., Ltd. Optical imaging lens and electronic device comprising the same
US9164257B2 (en) 2013-10-11 2015-10-20 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9703073B2 (en) 2014-01-27 2017-07-11 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
US9274316B2 (en) 2014-04-18 2016-03-01 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9678308B2 (en) 2014-10-31 2017-06-13 Samsung Electro-Mechanics Co., Ltd. Optical system
TWI630411B (en) * 2014-10-31 2018-07-21 三星電機股份有限公司 Optical system
TWI572887B (en) * 2015-01-06 2017-03-01 先進光電科技股份有限公司 Optical image capturing system
TWI607235B (en) * 2015-08-04 2017-12-01 玉晶光電股份有限公司 Imaging lens
US9971124B2 (en) 2015-08-04 2018-05-15 Genius Electronic Optical (Xiamen) Co., Ltd. Imaging lens

Also Published As

Publication number Publication date
CN202748528U (en) 2013-02-20
TWI460463B (en) 2014-11-11
US20130314803A1 (en) 2013-11-28
US9036274B2 (en) 2015-05-19
CN103454753B (en) 2015-09-09
CN103454753A (en) 2013-12-18

Similar Documents

Publication Publication Date Title
TW201237455A (en) Image capturing optical lens system
TWI534497B (en) Optical photographing lens assembly, image capturing device and electronic device
TWI510806B (en) Optical image capturing system
JP6376561B2 (en) Imaging lens
TWI487944B (en) Optical imaging lens assembly
TWI463169B (en) Image lens assembly and image capturing device
TWI589948B (en) Imaging lens assembly, image capturing unit and electronic device
TWI474038B (en) Imaging lens assembly
TWI448725B (en) Image capturing optical lens system
TWI457594B (en) Image lens assembly
TWI438480B (en) Optical image system
TWI474072B (en) Optical image lens system
TWI457596B (en) Optical photographing system
TWI438476B (en) Image capturing system
TWI440883B (en) Imaging lens assembly
TWI495899B (en) Image lens assembly
TWI452334B (en) Optical image capturing lens assembly
TW201224506A (en) Optical image lens assembly
TW201712394A (en) Imaging optical system, image capturing apparatus and electronic device
TW201627713A (en) Optical image capturing system, image capturing device and electronic device
TW201245758A (en) Optical image capturing lens system
TW201226963A (en) Monofocal optical lens system
TW201234037A (en) Optical image capturing system
TW201712388A (en) Photographing lens system, image capturing unit and electronic device
TW201234038A (en) Optical image lens system