TW201235731A - Wide angle photographic lens assembly - Google Patents

Wide angle photographic lens assembly Download PDF

Info

Publication number
TW201235731A
TW201235731A TW100105158A TW100105158A TW201235731A TW 201235731 A TW201235731 A TW 201235731A TW 100105158 A TW100105158 A TW 100105158A TW 100105158 A TW100105158 A TW 100105158A TW 201235731 A TW201235731 A TW 201235731A
Authority
TW
Taiwan
Prior art keywords
lens
wide
angle
angle photographic
refractive power
Prior art date
Application number
TW100105158A
Other languages
Chinese (zh)
Other versions
TWI417596B (en
Inventor
Dung-Yi Hsieh
Ming-Ta Chou
Tsung-Han Tsai
Original Assignee
Largan Precision Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Largan Precision Co filed Critical Largan Precision Co
Priority to TW100105158A priority Critical patent/TWI417596B/en
Priority to CN201110085930.8A priority patent/CN102645727B/en
Priority to CN2011200984479U priority patent/CN202008546U/en
Priority to US13/169,955 priority patent/US8441746B2/en
Publication of TW201235731A publication Critical patent/TW201235731A/en
Application granted granted Critical
Publication of TWI417596B publication Critical patent/TWI417596B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Abstract

A wide angle photographic lens assembly includes, in order from an object side to an image side, a first lens element with negative refractive power having a convex object-side surface and a concave image-side surface, a second lens element with positive refractive power having a concave object-side surface and a convex image-side surface, a third lens element, a fourth lens element with positive refractive power, a fifth lens element with negative refractive power, and a sixth lens element with positive refractive power. By adjusting the relationship among the above-mentioned lens elements, the wide angle photographic lens assembly can provide a wide-view angle and correct the aberration in order to obtain superior imaging quality.

Description

201235731 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種攝影鏡頭’特別是關於一種具有大視場角 且小型化的廣視角攝影鏡頭。 【先前技術】 近幾年來,由於光學攝像鏡頭的應用範圍越來越廣泛,特別 是在手機相機、電腦網路相機、車用鏡頭、安全影像監控及電子 φ 娛樂專產業,而一般攝像鏡頭的影像感測元件不外乎是咸光搞八 兀件(Charge Coupled Device,CCD)或互補性氧化金屬半導體元件 (Complementary Metal-Oxide Semiconductor Sensor, CMOS Sensor) 兩種,且由於製程技術的精進,使得影像感測元件的晝素面積縮 小,攝像鏡頭逐漸往高晝素及小型化領域發展,因此,如何以微 小化的攝像鏡頭於小型的影像感測元件上產生良好的成像品質係 為各業者主要研究與開發的方向。 # 一般應用於汽車、影像監控及電子娛樂裝置等方面的攝像鏡 頭’因考讀要單次娜大範圍區域的影像雜,其鏡頭所需的 視场角較大。習見的大視角攝像鏡頭,多採前群透鏡為負屈折力、 •後群透鏡為正麟力的配置料,構成所·反攝影鄉崎纪 Telephoto)結構,藉此獲得廣視場角的特性,如美國專利第 7’_55號所示’係採前群透鏡具有負屈折力、後群透鏡呈有正 屈折力的四以透賴構,_如此的魏配置形式可獲得較大 的視場角,但由於後群透鏡僅配置1透鏡,較難以對系統像差 201235731 做良好的補正。再者,料來汽車配備倒車影料置的普及,搭 載有高解析度的廣視角光學鏡組已成為—種趨勢,因此急需一種 具備有廣視則與高成像品質,且不至於使鏡頭總長度過長的廣 視角攝影鏡頭。 ’ 【發明内容】 為了因應市場需求及改善習知技術所存在的問題,本發明提 供種廣視角攝影鏡頭,一方面提升廣視角攝影鏡頭的成像品 質另方面提供充足的視場角,再一方面提供微型化的廣視角 攝影鏡頭。 .根據本發明所揭露—實施例之廣視角攝影鏡頭,由光轴之物 側至像側依序包括—具負麟力之第—透鏡、—具正·力之第 -透鏡、-第三透鏡、一具正屈折力之第四透鏡、一具負屈折力 之第五透鏡及-具正屈折力之第六透鏡。第—透鏡具有一為凸面 之物側面及-為凹面之像側面。第二透鏡具有—為凹面之物側面 及一為凸面之第二透鏡像側面。 其中’廣視角攝影鏡頭具有-焦距f,第二透鏡具有一焦距&amp;, 第六透鏡具有-_f6 ’且廣制攝影鏡頭滿足以下公式: (公式 1) : 0&lt;f/f2&lt;l.〇 ;以及 (公式 2) : 〇.35&lt;f/f6&lt;〇.95。 根據本發鴨揭露另-實施例之廣蝴攝影鏡頭,由光轴之 物側至像做序包括-前鏡群及—後鏡群。前鏡群包括一具負屈 折力之第-透鏡及-具正屈折力之第二透鏡。第—透鏡具有一為 201235731 凸面之物側面及一為凹面之像側面。第二透鏡具有一為凹面之物 側面及一為凸面之像側面。而後鏡群則包括一第三透鏡、一具正 屈折力之第四透鏡、一具負屈折力之第五透鏡及一具正屈折力之 第六透鏡。 其中,於光軸上,廣視角攝影鏡頭更包括一光圈,且第二透 鏡之像侧面與光圈之間具有一距離Dr4s,第一透鏡與第二透鏡之 間具有-鏡間距τ】2。廣視角攝影鏡頭具有一焦距f,前鏡群具有 _ 一焦距L ’且廣視角攝影鏡頭滿足以下公式: (公式 3) : Dr4S/T】2&lt;0.4 ;以及 (公式 4) : 〇&lt;f/f12&lt;1.2。 根據本發明所揭露之廣視角攝影鏡頭,具負屈折力之第一透 鏡可有利於擴大廣視角攝影鏡頭的視場角。具正屈折力之第二透 鏡可提供廣視_影鏡頭所需的部分屈折力,有祕縮短整體光 予總長度。當第二透鏡具有正屈折力時,有助於縮短整體光學總 ♦長度。當第二透鏡具有負屈折力時,有助於修正像差。具正屈折 力之第四透鏡可提供廣視㈣影鏡頭駐要麟力,有助於縮短 整體光學總長度。具貞騎力之第五透鏡可有祕修正廣視角攝 、影鏡軸像差。具正骑力之第六透鏡可有助於降低廣視角攝影 鏡頭的敏感度。 此外,當第一透鏡之物側面為凸面、像側面為凹面時,可有 助擴大廣視賴影鏡視場角,且對於人射光線的折射率較為 緩和,以避免像差過度增大,進而在擴大廣視㈣纖頭的視場 201235731 角與修正像差巾取得良好的平衡。當第二透鏡之物側面為凹面、 像j面為凸面時,可有助於修正廣視角攝影鏡頭的像散。當第四 透鏡之像側面為凸面時,可有效加強第四透鏡的正屈折力,以縮 短廣視角攝影鏡頭的總長度。當第五透鏡之物側面為凹面時,可 有助於修JL廣視觸影鏡頭的高階像差。當第六透鏡之像側面為 凸面時,可有效縮短廣視角攝影鏡頭的總長度。 ;滿足上述(公式1)時,第一透鏡具有合適的正屈折力,以有 效縮紐廣視賴影鏡綱總長度。於滿足上述(公式2)時,第六透 鏡-有。適的正屈折力’以有效分配廣視角攝影鏡獅正屈折 力,降低廣視角攝影鏡頭的敏感度。於滿足上述(公式3)時,前鏡 群(亦即帛透鏡及第二透鏡)與光圈具有合適的位置,以在不使廣 視角攝影__長度過長的情況下獲得最大的視場角。於滿足 上述(公式4)時,前鏡群具有合適的屈折力,以有效縮短廣視角攝 影鏡頭的總長度。 以上關於本發明㈣容說明及町之實施方式的說明係用以 不範及解釋本發_精神及顧,並且提供本發_專利申請範 圍更進一步的解釋。 【實施方式】 根據本發明所揭露之廣視角攝影鏡頭,係先以「第认圖」作 牛例η兒;^ ]^5兒明各貫施例中具有相同的透鏡組成及配置關 係’以及說明各實施例巾具有侧的廣視祕影鏡狀公式,而 其他相異之處將於各實施例中詳細描述。 201235731 、弟1A圖」為例,廣視角攝影鏡頭ι〇由光軸之物侧至像 側(如「第1A圖」由左至右)依序包括有: 一具負屈折力之第一透鏡110,包括一呈凸面之第一透鏡物侧 面m及呈凹面之第一透鏡像側面112。第一透鏡no之材質為 玻璃且第一透鏡物側面111及第一透鏡像側面112皆為球面。 具正屈折力之第二透鏡12〇’包括一呈凹面之第二透鏡物側 面121及一呈凸面之第二透鏡像側面122。第二透鏡120之材質為 鲁塑膠且第一透鏡物側面121及第二透鏡像側面122皆為非球面。 一第二透鏡130,包括一第三透鏡物側面131及一第三透鏡像 側面132。第三透鏡130之材質為塑膠,且第三透鏡物側面131 及第三透鏡像側面1;32皆為非球面。f注意的是,#第三透鏡㈣ 具有正屈折力時,有助於縮短整體光學總長度。當第三透鏡13〇 具有負屈折力時有助於修正像差。 一具正屈折力之第四透鏡140,包括一第四透鏡物側面141 鲁及一呈凸面之第四透鏡像侧面142。第四透鏡14〇之材質為塑膠, 且第四透鏡物側面141及第四透鏡像側面142皆為非球面。 一具負屈折力之第五透鏡150,包括一呈凹面之第五透鏡物側 •面151及一第五透鏡像側面152。第五透鏡150之材質為塑膠,且 第五透鏡物侧面151及第五透鏡像侧面152皆為非球面。 一具正屈折力之第六透鏡160,包括一第六透鏡物側面i6i 及一王凸面之第六透鏡像侧面162。第六透鏡160之材質為塑膠, 且第六透鏡物側面161及第六透鏡像側面〗62皆為非球面。 201235731 需注意的是’第三透鏡bo、第四透鏡14〇與第六透鏡16〇 至少其中之-係為—雙凸透鏡,可有助於紐整體光學總長度。 再者,廣視角攝影鏡頭10更包括—光圈100,光圈1〇〇可選 擇的設置於第二透鏡12〇及第三_ 13G H雜制廣視角 攝影鏡頭10之亮度。此外,廣視角攝影鏡頭10在第六透鏡16〇 之後依序包括有一紅外線濾光片180、一保護玻璃191(cover glass)、一成像面190及一影像感測元件192。其中,影像感測元 件192係設置於成像面ι9〇上。 根據本發明所揭露之廣視角攝影鏡頭10可滿足以下公式: (公式 1) : 〇&lt;f/f2&lt;1 〇 (公式 2) : 〇.35&lt;f/f6&lt;〇.95 (公式 3) : Dr4S/T12&lt;0.4 (公式 4) : 〇&lt;f/fl2&lt;12 其中,於光軸上,f為廣視角攝影鏡頭1〇的焦距,色為第二 透鏡120的焦距,&amp;為第六透鏡160的焦距。Dr4S為第二透鏡像 側面122與光圈1〇〇之間的距離,為第一透鏡11〇與第二透鏡 12〇之間的鏡間距嗝2為前鏡群(亦即第一透鏡11〇及第二透鏡丨如) 的焦距。 於滿足上述(公式丨)時,令第二透鏡120具有合適的正屈折 力,以有效縮紐廣視角攝影鏡頭1〇的總長度。於滿足上述(公式 2)時’令第六透鏡16〇具有合適的正屈折力,以有效分配廣視角攝 影鏡頭10的正屈折力、降低敏感度,且(公式2)的較佳範圍為: 201235731 0·4〈呢&lt;0.7。於滿足上述(公式3)時,令前鏡群(亦即第—透鏡11〇 及第二透鏡120)與光圈1〇〇分別具有合適的位置,以在不使廣視 角攝影鏡頭10的總長度職的叙下,麟最Α的視場肖,且(公 式3)的較佳範圍為:Dr4S/T]2&lt;〇 2。於滿足上述(公式4)時,前鏡 群(亦即第一透鏡110及第二透鏡12〇)具有合適的屈折力,以有效 縮短廣視角攝影鏡頭10的總長度。 再者,廣視角攝影鏡頭10另可至少滿足下列公式其中之一: (公式 5) : T23/CT2&lt;0.4 (公式 6) : -l.3&lt;f/f3&lt;0.2 (公式 7) : -i.〇&lt; R9/f&lt;_〇 4 (公式 8) : 〇 (公式9):风&gt;1.72 (公式 10) : 〇.9&lt;R8/R9&lt; 1.7 (公式 11) : 28&lt;V6-V5&lt;45 (公式 12) : ] (公式 13) : imgH/f&gt;i.2 (公式 14) : HF〇V&gt;75 其中,於光軸上,丁23為第二透鏡12〇與第三透鏡130之間的 兒門距(亦即第一透鏡像側面122至第三透鏡物側面131的距離), CT2為第二透鏡120的厚度(亦即第二透鏡物側面121至第二透鏡 像側面122的距離)。f]為第一透鏡丨1〇的焦距,色為第三透鏡13〇 的焦距°R7為第四透鏡物側面141的曲率半徑,%為第四透鏡 201235731 像侧面142的曲率半徑,r9為第五透鏡物侧面151的曲率半徑。 Vs為第五透鏡150的色散係數,%為第六透鏡16〇的色散係數。 ImgH為影像感測元件之有效感光區域對角線的一半,為廣 視角攝影鏡頭10之最大視角的一半。 於滿足(公式5)時,令廣視角攝影鏡頭10具有較合適的第二 透鏡120的厚度及第二透鏡12〇與第三魏13〇之間的鏡間距, 可有效修正廣視觸影鏡頭1G的球差,且(公式5)的較佳範圍為: T23/ CT2&lt;0.2。於滿足(公式6)時,第三透鏡13〇具有較合適的屈 折力,使得廣視角攝影鏡頭10可針對需求,進行像差的修正或更 進-步縮短光學總長度,且(公式6)的較佳範圍為:_丨力〈呢〈〇。 於滿足(公式7)時,可有效修正像差。於滿足(公式幻時,第四 透鏡⑽讀細⑷細蘭142具有較合適⑽面曲率,以 有效加強正屈折力,且不至於使廣視角攝影鏡頭10的像差過大。 於滿足(公式9)時,可提供較大的視場角,足(公㈣時 四透鏡140之像側面142與第五透細之物側面⑸具有較合 適的鏡片曲率’以有效縮短鏡間距(即第四透鏡像側面⑷ 的總長度。 廣則攝影鏡頭10 第=足(公式η)時,可有利於修正色差。於滿足(公式靖 滿足‘ 較合賴貞祕力,騎_献視場角。方 ^ &quot;日,可有利於維持廣視角攝影鏡頭ίο的小型化,, 載於輕討攜式的電子產品上。於狀(公式Η)時,可提供季 12 201235731 大視場角。 丹甲,贋: 伊。若透rJT 中所有透鏡的㈣可為玻璃或塑 ’則可明加廣視娜細屈折力 此夕若透鏡材質為塑膠’則可以有效降低生產成本。 a面可為非球面’非球面可以容易製作成球面以外的 =獲得㈣的㈣魏,㈣消減像差,謂以有效降低廣 視角攝影鏡頭1〇的總長度。 〃201235731 VI. Description of the Invention: [Technical Field] The present invention relates to a photographic lens, particularly to a wide-angle photographic lens having a large angle of view and miniaturized. [Prior Art] In recent years, the application range of optical camera lenses has become more and more extensive, especially in mobile phone cameras, computer network cameras, automotive lenses, security image monitoring and electronic φ entertainment industries, and general camera lenses. Image sensing components are nothing more than two types of Charge Coupled Device (CCD) or Complementary Metal-Oxide Semiconductor Sensor (CMOS Sensor), and due to the advanced process technology, The area of the pixel of the image sensing device is reduced, and the camera lens is gradually developing in the field of high-quality and miniaturization. Therefore, how to produce a good image quality on a small image sensing element with a miniaturized camera lens is the main cause of the industry. The direction of research and development. # Generally used in automotive, video surveillance and electronic entertainment devices, the camera lens is required to have a large angle of view for the lens. The large-angle camera lens that I have seen, the multi-collision lens is a negative refractive power, and the rear group lens is a configuration material of the positive lining force, which constitutes the structure of the anti-photographing telephoto), thereby obtaining the characteristics of the wide angle of view. For example, as shown in U.S. Patent No. 7'_55, the pre-harvest lens has a negative refractive power, and the rear group lens has a positive refractive power, so that a larger field of view can be obtained. Angle, but since the rear group lens is only equipped with one lens, it is difficult to make a good correction to the system aberration 201235731. Furthermore, it is expected that the high-resolution wide-angle optical lens set will become a trend in the car, and it is urgent to have a wide-view image and high image quality without causing the total length of the lens. A long wide-angle photographic lens. [Invention] In order to meet the market demand and improve the problems existing in the prior art, the present invention provides a wide-angle photographic lens, which improves the imaging quality of the wide-angle photographic lens and provides a sufficient angle of view. Provides a miniature, wide-angle photographic lens. According to the invention, the wide-angle photographic lens of the embodiment includes, in order from the object side to the image side of the optical axis, a first lens having a negative force, a first lens having a positive force, and a third A lens, a fourth lens having a positive refractive power, a fifth lens having a negative refractive power, and a sixth lens having a positive refractive power. The first lens has a convex side surface and a concave side image side surface. The second lens has a side surface that is a concave surface and a second lens image side surface that is a convex surface. Wherein the 'wide-angle photographic lens has a focal length f, the second lens has a focal length & the sixth lens has -_f6 ' and the wide-format photographic lens satisfies the following formula: (Formula 1): 0&lt;f/f2&lt;l.〇 ; and (Formula 2): 〇.35&lt;f/f6&lt;〇.95. According to the present invention, the wide-circle photographic lens of the other embodiment includes a front mirror group and a rear mirror group from the object side to the image of the optical axis. The front lens group includes a first lens having a negative refractive power and a second lens having a positive refractive power. The first lens has a side surface of the 201235731 convex surface and an image side surface which is a concave surface. The second lens has a concave side and a convex side. The rear mirror group includes a third lens, a fourth lens having a positive refractive power, a fifth lens having a negative refractive power, and a sixth lens having a positive refractive power. Wherein, on the optical axis, the wide-angle photographic lens further includes an aperture, and the image side of the second lens has a distance Dr4s between the side and the aperture, and the mirror-to-mirror distance τ is between the first lens and the second lens. The wide-angle photographic lens has a focal length f, the front lens group has _ a focal length L ' and the wide-angle photographic lens satisfies the following formula: (Formula 3): Dr4S/T] 2 &lt;0.4; and (Formula 4): 〇 &lt;f /f12&lt;1.2. According to the wide viewing angle photographic lens disclosed in the present invention, the first lens having a negative refractive power can be advantageous for expanding the angle of view of the wide viewing angle photographic lens. The second lens with positive refractive power provides the partial refractive power required for the wide-angle lens, which shortens the overall length of the overall light. When the second lens has a positive refractive power, it helps to shorten the overall optical total length. When the second lens has a negative refractive power, it helps to correct the aberration. The fourth lens with positive refractive power provides a wide-view (four) lens lens to help reduce the overall optical total length. The fifth lens with the rider's power can be corrected with wide viewing angle and lens axis aberration. The sixth lens with positive riding force can help reduce the sensitivity of wide-angle photographic lenses. In addition, when the object side surface of the first lens is convex and the image side surface is concave, it can help to expand the viewing angle of the wide viewing mirror, and the refractive index of the human light is moderated to avoid excessive increase of the aberration. Furthermore, in the expansion of the wide view (4) head of the field of view 201235731 angle and the correction of the aberration towel to achieve a good balance. When the object side surface of the second lens is a concave surface and the j-plane is a convex surface, it can contribute to correcting the astigmatism of the wide-angle photographic lens. When the image side of the fourth lens is convex, the positive refractive power of the fourth lens can be effectively enhanced to shorten the total length of the wide-angle photographic lens. When the side surface of the fifth lens is concave, it can contribute to the high-order aberration of the JL wide-viewing lens. When the image side of the sixth lens is convex, the total length of the wide-angle photographic lens can be effectively shortened. When the above (Formula 1) is satisfied, the first lens has a suitable positive refractive power to effectively reduce the total length of the mirror. When the above (Formula 2) is satisfied, the sixth lens-has. Appropriate positive refractive power is used to effectively distribute the wide angle of view of the lion's positive refractive power, reducing the sensitivity of wide-angle photographic lenses. When the above (Equation 3) is satisfied, the front mirror group (ie, the 帛 lens and the second lens) and the aperture have an appropriate position to obtain the maximum angle of view without making the wide viewing angle __ length too long. . When the above (Equation 4) is satisfied, the front mirror group has a suitable refractive power to effectively shorten the total length of the wide viewing angle lens. The above description of the invention (4) and the description of the implementation of the town is used to explain the scope of the present invention. [Embodiment] According to the wide-angle photographic lens disclosed in the present invention, the "first recognition map" is first used as a cow example; ^^^5 has the same lens composition and configuration relationship in each of the embodiments" It is to be noted that each of the embodiments has a side-viewing mirror-like formula, and other differences will be described in detail in the respective embodiments. 201235731, brother 1A", for example, the wide-angle lens ι〇 from the object side of the optical axis to the image side (such as "1A" from left to right) sequentially includes: a first lens with a negative refractive power 110, comprising a convex first surface of the first lens object m and a concave first lens image side surface 112. The material of the first lens no is glass, and the first lens side 111 and the first lens image side 112 are spherical. The second lens 12'' having a positive refractive power includes a concave second lens side surface 121 and a convex second lens image side surface 122. The second lens 120 is made of Lu plastic and the first lens side 121 and the second lens side 122 are aspherical. A second lens 130 includes a third lens side 131 and a third lens image side 132. The material of the third lens 130 is plastic, and the third lens side 131 and the third lens side 1; 32 are all aspherical. f Note that the #third lens (4), when it has a positive refractive power, helps to shorten the overall optical total length. It helps to correct aberrations when the third lens 13 〇 has a negative refractive power. A fourth lens 140 having a positive refractive power includes a fourth lens side 141 and a convex fourth lens side 142. The material of the fourth lens 14 is plastic, and the fourth lens side 141 and the fourth lens image side 142 are all aspherical. A fifth lens 150 having a negative refractive power includes a concave fifth surface side 151 and a fifth lens image side 152. The material of the fifth lens 150 is plastic, and the fifth lens side 151 and the fifth lens image side 152 are all aspherical. A sixth lens 160 having a positive refractive power includes a sixth lens side i6i and a sixth lens image side 162. The material of the sixth lens 160 is plastic, and the sixth lens side 161 and the sixth lens image side 62 are all aspherical. 201235731 It should be noted that at least the third lens bo, the fourth lens 14 〇 and the sixth lens 16 为 are - lenticular lenses, which can contribute to the total optical total length of the new rim. Furthermore, the wide-angle photographic lens 10 further includes an aperture 100, and the aperture 1 〇〇 is optionally disposed at a brightness of the second lens 12 〇 and the third _ 13 G H miscellaneous wide-angle photographic lens 10. In addition, the wide-angle photographic lens 10 sequentially includes an infrared ray filter 180, a cover glass 191, an imaging surface 190, and an image sensing element 192 after the sixth lens 16A. The image sensing element 192 is disposed on the imaging surface 119. The wide-angle photographic lens 10 according to the present invention can satisfy the following formula: (Formula 1): 〇&lt;f/f2&lt;1 〇(Formula 2): 〇.35&lt;f/f6&lt;〇.95 (Formula 3) : Dr4S/T12&lt;0.4 (Formula 4): 〇&lt;f/fl2&lt;12 where, on the optical axis, f is the focal length of the wide-angle photographic lens 1 ,, the color is the focal length of the second lens 120, & The focal length of the six lenses 160. Dr4S is the distance between the second lens image side surface 122 and the aperture 1〇〇, and the mirror spacing 嗝2 between the first lens 11〇 and the second lens 12〇 is a front lens group (ie, the first lens 11〇 The focal length of the second lens, for example. When the above (formula 丨) is satisfied, the second lens 120 is made to have a suitable positive refractive power to effectively reduce the total length of the wide-angle photographic lens 1 。. When the above (Formula 2) is satisfied, the sixth lens 16A has a suitable positive refractive power to effectively distribute the positive refractive power of the wide-angle photographic lens 10, and the sensitivity is lowered, and the preferred range of (Formula 2) is: 201235731 0·4<呢&lt;0.7. When the above formula (Equation 3) is satisfied, the front mirror group (ie, the first lens 11 〇 and the second lens 120) and the aperture 1 〇〇 are respectively disposed at appropriate positions so as not to make the total length of the wide-angle photographic lens 10 Under the syllabus, Lin's most awkward field of view, and (Formula 3), the preferred range is: Dr4S/T]2&lt;〇2. When the above (Equation 4) is satisfied, the front lens group (i.e., the first lens 110 and the second lens 12A) has a suitable refractive power to effectively shorten the total length of the wide-angle photographic lens 10. Furthermore, the wide-angle photographic lens 10 can at least satisfy one of the following formulas: (Equation 5): T23/CT2 &lt; 0.4 (Equation 6): -l.3 &lt;f/f3&lt;0.2 (Equation 7): -i .〇&lt;R9/f&lt;_〇4 (Equation 8): 〇(Equation 9): Wind&gt;1.72 (Equation 10): 〇.9&lt;R8/R9&lt; 1.7 (Equation 11): 28&lt;V6-V5&lt 45 (Equation 12): ] (Equation 13): imgH/f&gt;i.2 (Equation 14): HF 〇 V &gt; 75 wherein, on the optical axis, D is the second lens 12 〇 and the third lens 130 The gate distance between the gates (ie, the distance from the first lens image side surface 122 to the third lens object side surface 131), CT2 is the thickness of the second lens 120 (ie, the second lens object side surface 121 to the second lens image side surface 122). the distance). f] is the focal length of the first lens 丨1〇, the color is the focal length of the third lens 13〇°R7 is the radius of curvature of the fourth lens object side surface 141, and the % is the radius of curvature of the fourth lens 201235731 image side surface 142, r9 is the first The radius of curvature of the five lens side 151. Vs is the dispersion coefficient of the fifth lens 150, and % is the dispersion coefficient of the sixth lens 16A. ImgH is half the diagonal of the effective photosensitive area of the image sensing element, which is half of the maximum viewing angle of the wide-angle photographic lens 10. When the formula (Equation 5) is satisfied, the wide-angle photographic lens 10 has a suitable thickness of the second lens 120 and a mirror spacing between the second lens 12 〇 and the third wei 13 ,, which can effectively correct the wide-view illuminating lens The spherical aberration of 1G, and the preferred range of (Formula 5) is: T23/CT2&lt;0.2. When the formula (Equation 6) is satisfied, the third lens 13A has a suitable refractive power, so that the wide-angle photographic lens 10 can correct the aberration or shorten the total optical length for the demand, and (Equation 6) The preferred range is: _ 丨力 <呢 <〇. When (Equation 7) is satisfied, the aberration can be effectively corrected. When satisfied (the formula phantom, the fourth lens (10) read fine (4) fine blue 142 has a suitable (10) plane curvature to effectively strengthen the positive refractive power, and does not make the aberration of the wide-angle photographic lens 10 too large. When the angle of view is large, the image side 142 of the four-lens 140 and the fifth side of the fifth through-hole (5) have a suitable lens curvature to effectively shorten the mirror spacing (ie, the fourth through). The total length of the mirror side (4). When the photographic lens 10 is the first = foot (formula η), it can be used to correct the chromatic aberration. In the satisfaction (the formula meets the satisfaction of the 合 贞 , 骑 骑 骑 骑 骑 骑 骑 骑 骑 骑 骑 骑 骑 骑&quot;Day, can help maintain the wide-angle lens ίο miniaturization, and it is contained in the portable electronic products. In the case of the formula (formula Η), it can provide the season 12 201235731 large field of view.赝: 伊. If all the lenses in the rJT can be made of glass or plastic, then the brightness can be increased. If the lens is made of plastic, the production cost can be effectively reduced. The a surface can be aspherical. The aspheric surface can be easily made into a sphere other than the sphere (acquired (four), (four) Wei, (four) The subtraction of the aberration is to effectively reduce the total length of the wide-angle photographic lens.

10中,若透鏡表面係為凸面,則表 若透鏡表面係為凹面,則表示透鏡 再者,在廣視角攝影鏡頭 示透鏡表面於近軸處為凸面; 表面於近軲處為凹面。 、此外’為了因應使用需求,可在廣視角攝影鏡頭⑴中插入至 V光鬧,W嫌錄光域高成像品#或_其被攝物的成像 大小。其光闌可為耀光光闌(Glare stop)或視場光闌(Field s㈣等光 闌’但不以此為限。 13 201235731 實施例中i可為但不限於4、6、8、1Q、12。 &lt;第一實施例&gt; 請參照「第1A圖」所示,係為根據本發明所揭露之廣視角攝 影鏡頭的第-實施例結構示賴。在本實施例中,廣視觸影鏡 頭U)所接受光線的波長係以587.6 咖,㈣為例然 而上驗長可根據實際需錢行調整,並砂上驗長數值為限。 本貫知例之第透鏡110具有貞屈折力’第二透鏡具有 正屈折力’第二透鏡130具有正屈折力,第四透鏡14〇具有正屈 折力’第五透鏡150具有負屈折力,第六透鏡16〇具有正屈折力。 其中,第-透鏡物側面m為凸面,第一透鏡像側面112為凹面。 第二透鏡物側面121為凹面,第二透鏡像側面122為凸面。第四 透鏡像側面142為凸面。第五透鏡物側面151為凹面。第六透鏡 像側面162為凸面。此外,第四透鏡14〇與第六透鏡16〇係皆為 雙凸透鏡。 廣視角攝影鏡頭1〇的詳細資料如下列「表1_1」所示: 第一實施例 焦距(f&gt; =1.16_,光圈值(Fn〇)=2〇5,最大視角的一半(HF〇V)=90.1 deg. 表面# 物件 曲率半徑 (mm) 面距 (mm) 材質 折射率 色散 係數 焦距 (mm) 0 被攝物 平面 無限 1 第一透鏡 10.051 1.040 玻璃 1.804 46.6 -4.98 2 2.732 2.143 201235731 3 第二透鏡 -4.259400 3.877 塑膠 1.634 23.8 3.90 4 ----、 -2.115310 0.100 5 光圈 '^--- 平面 0.172 6 第三透鏡 -1.672960 1,097 塑膠 1.544 55.9 40.82 7 — -1.915270 0.100 8 第四透鏡 3.952800 1.127 塑膠 1.544 55.9 1.95 9 -1.304470 0.100 10 第五透鏡 ------ -0.956200 0.482 塑膠 1.634 23.8 -1.27 11 6.206900 0.100 12 第六透鏡 5.247000 1.562 塑膠 1.544 55.9 2.21 13 ---- -1.397330 0.500 14 &amp;外線濾光片 —一 平面 0.300 玻璃 1.516 64.1 一 15 平面 0.500 16 保護玻璃 平面 0.400 玻璃 1.516 64.1 —— 17 平面 0.396 18 成像面 平面 一 註:參考波長為d-line587.6nm 表1-1 此外,本實施例之第一透鏡n〇為球面透鏡(即第一透鏡物側 面111與第一透鏡像側面112皆為球面),第二透鏡12〇至第六透 鏡160皆可為非球面透鏡,且可符合但不限於上述(&amp;式ASP)的非 球面,關於各個非球面的參數請參照下列「表丨_2」·· 15 201235731 非球面係數(Aspheric Coefficients) 表面# 3 4 6 7 8 k = -1.83603E+01 -1.26244E+01 -4.51463E-01 7.26299E-01 -1.89351E+01 -1.10912E-02 -5.01510E-02 1.61062E-01 -6.93195E-02 -7.59803E-02 a6 = 1.73853E-03 6.71058E-02 -2.69888E-01 3.76450E-02 -1.08313E-03 a8 = -1.02019E-04 -4.44420E-02 3.14872E-01 -4.51197E-03 -1.26653E-03 Ai〇 = 8.72225E-07 1.14289E-02 -2.07206E-01 7.87134E-03 1.44193E-03 Ai2 = -1.01587E-25 -1.01617E-25 -1.01617E-25 -1.01617E-25 -1.01617E-25 表面# 9 10 11 12 13 k = -3.56827E+00 -1.86678E+00 4.08173E+00 -1.04401E+00 -1.84160E+00 A4 = -5.01832E-02 3.53435E-02 1.98777E-02 7.39656E-03 1.09471E-02 a6 = -1.96329E-02 -1.94252E-03 2.53019E-04 -1.71646E-03 3.19449E-03 a8 = 6.74736E-03 -7.8442 IE-03 -1.56275E-03 1.47697E-03 -1.81703E-03 A)〇 = -1.67452E-03 2.07200E-03 1.24234E-04 -3.42319E-04 5.29497E-04 Ai2 = -1.01617E-25 -1.01618E-25 — — -1.01620E-25 表1-2 此外,從「表14」中可推算出「表丨_3」所述的内容: 第一實施例 焦距(mm) 1.16 f/f6 0.52 光圈值 2.05 f/fn 0.34 最大視角的一半(deg.) 90.10 Dr4S/T,2 0.05 N, 1.80 T23/CT2 0.07 v6-v5 32.1 (R7+R8)/(R7-R8) 0.50 f/f, -0.23 R9/f -0.83 f/f2 0.30 R8/R9 1.36 201235731 f/f3 0.03 ImgH/f 1.75 ------ 表1-3 由表1-3可知,f/f2=0.30,符合(公式1)範圍。f/f6=〇.52,符合 (公式2)範圍。Di^S/TfO.OS,符合(公式3)範圍。邱2=〇·34,符合 (公式4)範圍。 T23/CT2=0.07,符合(公式5)範圍。f/f3=0.03 ’符合(公式6)範 圍。R9/fM).83 ’ 符合(公式 7)範圍。(R7+R8)/(R7-R8)=〇.50,符合 鲁(公式8)範圍。^=1.80,符合(公式9)範圍。Rs/R9=1.36,符合(公 式10)範圍。V6-V5=32·卜符合(公式11)範圍。^=-0.23,符合(公 式 12)範圍。ImgH/f=1.75 毫米(millimeter,mm),符合(公式 13)範圍。HFOV=90.10 度(degree,deg.),符合(公式 14)之範圍。 請參照「第1B圖」所示,係為波長486_lnm、587.6nmm與 656·3ηηι的光線入射於「第1A圖」所揭露之廣視角攝影鏡頭的縱 向球差(Longitudinal Spherical Aberration)曲線示意圖。其中,波長 • 486.lnm的光線於廣視角攝影鏡頭10中的縱向球差曲線係為「第 圖」圖面中的實線L。波長587.6nm的光線於廣視角攝影鏡頭 中的縱向球差曲線係為「第1Β圖」圖面中的虛線Μ。波長656.3mn 的光線於廣視角攝影鏡頭中的縱向球差曲線係為「第1B圖」圖面 中的點線N。橫座標為焦點位置(mm),縱座標為標準化⑦ 的入射瞳或光圈半徑。也就是說,由縱向球差曲線可看出近轴光(縱 座標接近0)及邊緣光(縱座標接近1)分別進入廣視角攝影鏡頭10 後之焦點位置的差異,上述的近軸光及邊緣光皆平行於光軸。從 17 201235731 「第1B圖」中可知’本實施例廣視角攝影鏡頭1〇不論是接收波 長486.1nm、587.6nm或656.3nm的光線,廣視角攝影鏡頭1〇所 產生的縱向球差皆介於-〇.〇25mm至0.0mm之間。 在後述之第二實施例至第七實施例的内容,「第2B圖」、「第 3B圖」、「第4B圖」、「第5B圖」、「第6B圖」與「第7B圖」之 縱向球差曲線示意圖中’其所表示之實線L係為波長486.1nm的 光線的縱向球差曲線,虛線河係為波長587 611111的光線的縱向球 差曲線’點線N係為波長656.3nm的光線的縱向球差曲線,為簡 〉糸爲幅,故不再逐一資述。 再請參照「第1C圖」所示,係為波長587.6nm的光線入射於 「第1A圖」所揭露之廣視角攝影鏡頭的像散場曲(AstigmaticField Curves)曲線示思圖。其中,子午面(Tangentiaip^e)的像散場曲曲 線係為「第ic圖」圖面中的虛線τ。弧矢面(SagittalPlane)的像散 场曲曲線係為「第1c圖」®面中的實'線S。橫座標為焦點的位置 (mm),縱座標可為像高(mm)或半視角HFOV(deg),在本實施例 中縱座標為半視角。也就是說,由像散場曲曲線可看 出子午面及弧矢面因曲率不同所造成焦點位置之差異。從「第 圖」中可知,波長587.6nm的光線入射廣視角攝影鏡頭10所產生 的子午面的像散場曲介於至0.03mm之間,弧矢面的像散 場曲介於-0.05mm至〇 〇mm之間。 在後述之第二實施例至第七 實施例的内容,「第2C圖」、「第 3C圖」、「第4C圖」、「第5C圖」、「第6C圖」與「第7C圖」之 201235731 像散場曲曲線示意圖中,其所表示之實線s係為弧矢面的像散場 曲曲線,虛線T係為子午面的像散場曲曲線,為簡潔篇幅,故不 再逐一贅述。 再請參照「第1D圖」所示’係為波長587.6nm的光線入射於 「第1A圖」所揭露之廣視角攝影鏡頭的畸變(Dist〇rti〇n)曲線示意 圖。其中,水準軸為畸變率(%),垂直軸可為像高(mm)或半視角 HFOV(deg),在本實施例中垂直軸為半視角jjpovyeg)。也就是 φ 說,由畸變曲線G可看出不同像高所造成畸變率之差異。從「第 1D圖」中可知,波長587.6nm的光線入射廣視角攝影鏡頭1〇所 產生的畸變率介於-100%至〇%之間。如「第1B圖」至「第id圖」 所示,依照上述第一實施例進行設計,廣視角攝影鏡頭1〇可有效 地在修正各種像差與獲得大視場角之間取得良好的平衡。 在後述之第—貫施例至第七實施例的内容,「第21)圖」、「第 3D圖」、「第4D圖」、「第5D圖」、「第6D圖」與「第7D圖」之 ❿畸變曲線不意圖’其所表示之實線G係為波長飢如㈣光線的 畸變曲線,為簡潔篇幅,故不再逐一贅述。 而庄思的疋,波長486.1nm與656.3nm的光線入射於廣視角 攝影鏡頭10所分別產生的畸變曲線與像散場曲曲線接近波長 587.6nm的光線入射於廣視角攝影鏡頭的畸變曲線與像散場曲 曲線為避免「第1C圖」與「第1D圖」圖式的混亂,於「第 圖」’、第ID圖」圖中未繪製出波長486. lnm與656.3nm的光線 入射於廣視角攝f礎頭1G所分別產生的畸變曲線與像散場曲曲 19 201235731 線’以下第二實施例至第七實施例亦同。 &lt;第二實施例&gt; 凊參照「第2A圖」所示,係為根據本發明所揭露之廣視角攝 影鏡頭的第二實施例結構示意圖。其具體實施方式及前述第一實 施例大致相同,且第二實施例中所述的元件及第一實施例中所述 的元件相同,其元件編號皆以2作為百位數字之開頭,表示其具 有相同的功能或結構,為求簡化說明,以下僅就相異之處加以說 明,其餘相同處不在贅述。 在本實施例中,廣視角攝影鏡頭2〇所接受光線的波長係以 587.6nm為例,然而上述波長可根據實際需求進行調整,並不以上 述波長數值為限。In the case of 10, if the surface of the lens is convex, if the surface of the lens is concave, it means that the lens is further convex, and the lens of the wide viewing angle indicates that the surface of the lens is convex at the paraxial surface; the surface is concave at the proximal side. In addition, in order to meet the needs of use, it can be inserted into the V-ray in the wide-angle lens (1), and the imaging size of the object is high. The aperture may be a Glare stop or a field stop (field s), but is not limited thereto. 13 201235731 In the embodiment, i may be but not limited to 4, 6, 8, 1Q. 12. First Embodiment As shown in FIG. 1A, the structure of the first embodiment of the wide-angle photographic lens according to the present invention is shown. In this embodiment, the wide view is used. The wavelength of the light received by the touch lens U) is 587.6 café, (4). However, the length of the inspection can be adjusted according to the actual demand, and the value of the inspection on the sand is limited. The first lens 110 of the present invention has a 贞 refractive power 'the second lens has a positive refractive power', the second lens 130 has a positive refractive power, and the fourth lens 14 〇 has a positive refractive power. The fifth lens 150 has a negative refractive power. The six lens 16 turns have a positive refractive power. The first lens image side surface m is a convex surface, and the first lens image side surface 112 is a concave surface. The second lens side surface 121 is a concave surface, and the second lens image side surface 122 is a convex surface. The fourth lens image side surface 142 is a convex surface. The fifth lens side surface 151 is a concave surface. The sixth lens image side surface 162 is convex. Further, the fourth lens 14A and the sixth lens 16 are both lenticular lenses. The details of the wide-angle photographic lens 1 如 are shown in the following "Table 1_1": The focal length of the first embodiment (f > =1.16_, the aperture value (Fn 〇) = 2 〇 5, half of the maximum angle of view (HF 〇 V) =90.1 deg. Surface # Object radius of curvature (mm) Face distance (mm) Material refractive index dispersion coefficient Focal length (mm) 0 Subject plane infinite 1 First lens 10.051 1.040 Glass 1.804 46.6 -4.98 2 2.732 2.143 201235731 3 Second Lens - 4.259400 3.877 Plastic 1.634 23.8 3.90 4 ----, -2.115310 0.100 5 Aperture '^--- Plane 0.172 6 Third lens - 1.672960 1,097 Plastic 1.544 55.9 40.82 7 — -1.915270 0.100 8 Fourth lens 3.952800 1.127 Plastic 1.544 55.9 1.95 9 -1.304470 0.100 10 Fifth lens ------ -0.956200 0.482 Plastic 1.634 23.8 -1.27 11 6.206900 0.100 12 Sixth lens 5.247000 1.562 Plastic 1.544 55.9 2.21 13 ---- -1.397330 0.500 14 &amp; Light sheet - a plane 0.300 glass 1.516 64.1 a 15 plane 0.500 16 protective glass plane 0.400 glass 1.516 64.1 - 17 plane 0.396 18 A plane plane note: the reference wavelength is d-line 587.6 nm. Table 1-1 In addition, the first lens n〇 of the embodiment is a spherical lens (ie, the first lens object side surface 111 and the first lens image side surface 112 are both spherical surfaces). The second lens 12 〇 to the sixth lens 160 may both be aspherical lenses, and may conform to, but not limited to, the aspherical surface of the above (& ASP). For the parameters of each aspherical surface, please refer to the following "Table _2" ·· 15 201235731 Aspheric Coefficients Surface # 3 4 6 7 8 k = -1.83603E+01 -1.26244E+01 -4.51463E-01 7.26299E-01 -1.89351E+01 -1.10912E-02 - 5.01510E-02 1.61062E-01 -6.93195E-02 -7.59803E-02 a6 = 1.73853E-03 6.71058E-02 -2.69888E-01 3.76450E-02 -1.08313E-03 a8 = -1.02019E-04 - 4.44420E-02 3.14872E-01 -4.51197E-03 -1.26653E-03 Ai〇= 8.72225E-07 1.14289E-02 -2.07206E-01 7.87134E-03 1.44193E-03 Ai2 = -1.01587E-25 - 1.01617E-25 -1.01617E-25 -1.01617E-25 -1.01617E-25 Surface # 9 10 11 12 13 k = -3.56827E+00 -1.86678E+00 4.08173E+00 -1.04401E+00 -1.84160E +00 A4 = -5.01832E-02 3.53435E-02 1.98777E-02 7 .39656E-03 1.09471E-02 a6 = -1.96329E-02 -1.94252E-03 2.53019E-04 -1.71646E-03 3.19449E-03 a8 = 6.74736E-03 -7.8442 IE-03 -1.56275E-03 1.47697 E-03 -1.81703E-03 A) 〇 = -1.67452E-03 2.07200E-03 1.24234E-04 -3.42319E-04 5.29497E-04 Ai2 = -1.01617E-25 -1.01618E-25 — — -1.01620 E-25 Table 1-2 In addition, the contents described in "Table 丨3" can be derived from "Table 14": First embodiment Focal length (mm) 1.16 f/f6 0.52 Aperture value 2.05 f/fn 0.34 Maximum Half of the angle of view (deg.) 90.10 Dr4S/T, 2 0.05 N, 1.80 T23/CT2 0.07 v6-v5 32.1 (R7+R8)/(R7-R8) 0.50 f/f, -0.23 R9/f -0.83 f/ F2 0.30 R8/R9 1.36 201235731 f/f3 0.03 ImgH/f 1.75 ------ Table 1-3 As shown in Table 1-3, f/f2=0.30, which conforms to the range of (Formula 1). f/f6=〇.52, in accordance with the range of (Formula 2). Di^S/TfO.OS, in accordance with (Formula 3) range. Qiu 2 = 〇 · 34, in accordance with the scope of (Formula 4). T23/CT2=0.07, in accordance with the range of (Formula 5). f/f3=0.03 ‘conforms to (formula 6) range. R9/fM).83 ‘ matches the range of (Formula 7). (R7+R8)/(R7-R8)=〇.50, in accordance with Lu (Equation 8). ^=1.80, in accordance with (Formula 9) range. Rs/R9 = 1.36, in accordance with (Formula 10) range. V6-V5=32·b meets the range of (Formula 11). ^=-0.23, in accordance with (Formula 12) range. ImgH/f = 1.75 mm (millimeter, mm), in accordance with (Formula 13) range. HFOV = 90.10 degrees (degree, deg.), in accordance with the range of (Formula 14). Please refer to the "Longitudinal Spherical Aberration" curve of the wide-angle photographic lens disclosed in "1A" as shown in "Fig. 1B" for the light of wavelengths 486_lnm, 587.6nmm, and 656·3ηηι. Among them, the longitudinal spherical aberration curve of the wavelength of 486.lnm in the wide-angle photographic lens 10 is the solid line L in the "picture" plane. The longitudinal spherical aberration curve of the light having a wavelength of 587.6 nm in the wide-angle photographic lens is a broken line 中 in the "first map" plane. The longitudinal spherical aberration curve of the light having a wavelength of 656.3 mn in the wide-angle photographic lens is the dotted line N in the "Phase 1B" drawing. The abscissa is the focus position (mm) and the ordinate is the normalized 7 entrance pupil or aperture radius. That is to say, from the longitudinal spherical aberration curve, it can be seen that the paraxial light (the ordinate is close to 0) and the edge light (the ordinate is close to 1) respectively enter the wide-angle photographic lens 10 after the focus position difference, the above-mentioned paraxial light and The edge light is parallel to the optical axis. From 17 201235731, "1B", it can be seen that the wide-angle photographic lens of the present embodiment is different from the light of the wavelength of 486.1 nm, 587.6 nm or 656.3 nm, and the longitudinal spherical aberration caused by the wide-angle photographic lens 1 皆- 〇. 〇 25mm to 0.0mm. In the contents of the second to seventh embodiments to be described later, "2B", "3B", "4B", "5B", "6B" and "7B" In the schematic diagram of the longitudinal spherical aberration curve, the solid line L is the longitudinal spherical aberration curve of the light with a wavelength of 486.1 nm, and the vertical spherical aberration curve of the light of the wavelength of the 587 611111 is the dotted line. The point line N is the wavelength of 656.3. The longitudinal spherical aberration curve of the light of nm is a simple one, so it is no longer reported one by one. Referring to the "1C", the astigmatism field curve of the wide-angle photographic lens disclosed in "1A" is shown as a light at a wavelength of 587.6 nm. Among them, the astigmatic field curve of the meridian (Tangentiaip^e) is the dotted line τ in the "ic map" plane. The astigmatic field curve of the Sagittal Plane is the real 'S' in the "1c" ® face. The abscissa is the position (mm) of the focus, and the ordinate may be the image height (mm) or the half angle HFOV (deg). In the present embodiment, the ordinate is a half angle of view. That is to say, from the astigmatic field curvature curve, the difference in the focal position caused by the difference in curvature between the meridional plane and the sagittal plane can be seen. As can be seen from the "figure", the astigmatic field curvature of the meridional plane generated by the light incident at a wavelength of 587.6 nm is between 0.03 mm and the astigmatic field curvature of the sagittal plane is between -0.05 mm and 〇〇. Between mm. In the contents of the second to seventh embodiments to be described later, "2C", "3C", "4C", "5C", "6C" and "7C" In the 201235731 astigmatism field curve diagram, the solid line s represented by the astigmatic field curvature curve of the sagittal plane, and the dotted line T is the astigmatic field curve of the meridional plane, which is a simple space, so it will not be described one by one. Please refer to the distortion diagram (Dist〇rti〇n) of the wide-angle photographic lens disclosed in "1A" as shown in "1D". Wherein, the horizontal axis is the distortion rate (%), and the vertical axis may be the image height (mm) or the half angle HFOV (deg). In the embodiment, the vertical axis is the half angle of view jjpovyeg). That is, φ says that the distortion curve G shows the difference in distortion rate caused by different image heights. As can be seen from "1D", the distortion rate of the light having a wavelength of 587.6 nm incident on the wide-angle lens 1 is between -100% and 〇%. As shown in "1B to id", according to the first embodiment described above, the wide-angle photographic lens 1 有效 can effectively achieve a good balance between correcting various aberrations and obtaining a large angle of view. . In the contents of the first to third embodiments to be described later, "21st", "3D", "4D", "5D", "6D" and "7D" The distortion curve of the graph is not intended to be 'the solid line G of the wavelength is the distortion curve of the wavelength hunger (four) light, which is a simple space, so it will not be described one by one. And Zhuang Si's flaw, the distortion curve and the astigmatism field of the wide-angle photographic lens, the distortion curve and the astigmatic field curvature curve of the wavelength of 486.1 nm and 656.3 nm incident on the wide-angle photographic lens 10 respectively. In order to avoid the confusion of the "1C map" and the "1D map", the wavelength of 486 is not plotted in the "graph" and "ID map". The light of lnm and 656.3 nm is incident on the wide viewing angle. The distortion curve respectively generated by the f base 1G is the same as the astigmatic field curvature 19 201235731 line 'the second embodiment to the seventh embodiment below. &lt;Second Embodiment&gt; Referring to Fig. 2A, there is shown a schematic structural view of a second embodiment of a wide viewing angle lens according to the present invention. The specific embodiment is substantially the same as the first embodiment, and the components described in the second embodiment are the same as those described in the first embodiment, and the component numbers are all represented by 2 as the beginning of the hundred digits. Have the same function or structure, in order to simplify the description, the following only explains the differences, the rest are not repeated. In the present embodiment, the wavelength of the light received by the wide-angle photographic lens 2 is exemplified by 587.6 nm. However, the above wavelength can be adjusted according to actual needs, and is not limited to the above-mentioned wavelength value.

本貫把例之第一透鏡210具有負屈折力,第二透鏡220具有 正屈折力,第二透鏡230具有負屈折力,第四透鏡240具有正屈 折力,第五透鏡250具有負屈折力,第六透鏡26〇具有正屈折力。 其中,第一透鏡物側面211為凸面,第一透鏡像側面212為凹面。 第二透鏡物側面221為凹面,第二透鏡像側面222為凸面。第四 透鏡像側面242為凸面,第五透鏡物側面251為凹面,第六透鏡 像側面262為凸面。此外’第四透鏡24〇與第六透鏡係皆為 雙凸透鏡。 廣視角攝影鏡頭20的詳細資料如下列「表n所示: -------- 」1小· 第二實施例The first lens 210 has a negative refractive power, the second lens 220 has a positive refractive power, the second lens 230 has a negative refractive power, the fourth lens 240 has a positive refractive power, and the fifth lens 250 has a negative refractive power. The sixth lens 26A has a positive refractive power. The first lens object side surface 211 is a convex surface, and the first lens image side surface 212 is a concave surface. The second lens object side surface 221 is a concave surface, and the second lens image side surface 222 is a convex surface. The fourth lens image side surface 242 is a convex surface, the fifth lens object side surface 251 is a concave surface, and the sixth lens image side surface 262 is a convex surface. Further, the 'fourth lens 24' and the sixth lens system are both lenticular lenses. The details of the wide-angle photographic lens 20 are as follows: "Table n: --------" 1 small · Second embodiment

20 20123573120 201235731

焦距(f)= 1.42mm,光圈值(Fno)= 2.50,最大視角的一半(HFOV)= 80.1 deg. 表面# 物件 曲率半徑 (mm) 面距 (mm) 材質 折射率 色散 係數 焦距 (mm) 0 被攝物 平面 無限 1. 第一透鏡 12.124 1.170 玻璃 1.804 46.6 -4.14 2 2.500 2.449 3 第二透鏡 -5.678500 2.900 塑膠 1.621 24.4 2.44 4 -1.428990 0.100 5 光圈 平面 0.016 6 第三透鏡 100.000000 0.450 塑膠 1.544 55.9 -2.27 7 1.216370 0.132 8 第四透鏡 1.234090 1.113 塑膠 1.530 55.8 1.22 9 -0.936960 0.106 10 第五透鏡 -0.678320 0.346 塑膠 1.633 23.4 -1.03 11 18.543100 0.285 12 第六透鏡 1.787130 1.511 塑膠 1.544 55.9 2.24 13 -2.697180 0.300 14 紅外線濾光片 平面 0.300 玻璃 1.516 64.1 — 15 平面 0.300 16 保護玻璃 平面 0.400 玻璃 1.516 64.1 —— 17 平面 0.303 18 成像面 平面 — 21 201235731Focal length (f) = 1.42mm, aperture value (Fno) = 2.50, half of maximum viewing angle (HFOV) = 80.1 deg. Surface # Object radius of curvature (mm) Face spacing (mm) Material refractive index dispersion coefficient Focal length (mm) 0 The object plane is infinite 1. The first lens 12.124 1.170 Glass 1.804 46.6 -4.14 2 2.500 2.449 3 Second lens - 5.678500 2.900 Plastic 1.621 24.4 2.44 4 -1.428990 0.100 5 Aperture plane 0.016 6 Third lens 100.000000 0.450 Plastic 1.544 55.9 -2.27 7 1.216370 0.132 8 Fourth lens 1.234090 1.113 Plastic 1.530 55.8 1.22 9 -0.936960 0.106 10 Fifth lens -0.678320 0.346 Plastic 1.633 23.4 -1.03 11 18.543100 0.285 12 Sixth lens 1.871310 1.511 Plastic 1.544 55.9 2.24 13 -2.697180 0.300 14 Infrared filtering Sheet plane 0.300 Glass 1.516 64.1 — 15 Plane 0.300 16 Protective glass plane 0.400 Glass 1.516 64.1 —— 17 Plane 0.303 18 Imaging surface plane — 21 201235731

表2-1 此外,本實施例之第一透鏡210為球面透鏡。第二透鏡22〇 至第六透鏡260皆可為非義透鏡,且可符合但稀於上述(公式 ASP)的非球面’關於各個非球面的參數請參照下列「表2—2 : 非球面係數(Aspheric Coefficients) 表面# 3 4 6 7 8 k = -2.2293 0E+00 -U1495E+01 -8.00000E+01 -1.48938E+01 -9.67896E+00 A4 = -1.48254E-02 3.80500E-02 3.21876E-01 -1.64771E-01 -1.15571E-01 a6 = 6.46417E-03 2.83858E-02 -2.33397E-01 9.72067E-02 -5.9260 IE-02 a8 = -6.35613E-04 -5.26089E-02 1.73257E-01 1.57970E-02 -1.38754E-01 A|〇 = -6.82952E-05 2.40550E-02 -3.72079E-02 4.09259E-02 -1.57663E-01 A丨2 = -2.98794E-15 -2.96919E-15 -2.96919E-15 -2.96919E-15 -2.96919E-15 表面# 9 10 11 12 13 k = -1.05740E+00 -1.89290E+00 1.99543E+02 -1.08437E+01 -2.17061E+01 A4 = -5.91238E-02 -8.51472E-02 5.00027E-02 2.19775E-03 -9.49479E-02 a6 = -4.77129E-02 5.42903E-02 2.43128E-02 -1.27190E-02 4.72332E-02 a8 = 7.32534E-02 7.83195E-02 -1.39712E-02 6.35827E-03 -1.79913E-02 Ai〇 = -7.29590E-02 -2.98226E-02 -9.45365E-04 -6.86662E-04 2.96470E-03 A12 = -2.96919E-15 -2.96919E-15 — _ -2.96919E-15 表2-2 此外,從「表2-1」中可推算出「表2-3」所述的内容: 第二實施例 焦距(mm) 1.42 f/f6 0.63 22 201235731 光圈值 2.50 f/f12 0.83 最大視角的一半(deg.) 80.10 Dr4S/T]2 0.04 Νι 1.80 T23/CT2 0.04 v6-v5 32.5 (R7+R8)/(RrR8) 0.14 f/f, -0.34 R9/f -0.48 f/f2 0.58 R8/R9 1.38 f/f3 -0.63 ImgH/f 1.42 表2-3 請參照「第2B圖」所示,係為波長486.1 nm、587.6 nm與 656.3mn的光線入射於「第2A圖」所揭露之廣視角攝影鏡頭的縱 向球差曲線示意圖。從「第2B圖」中可知,本實施例中不論是接 收波長486.1 nm、587.6 nm或656.3nm的光線,廣視角攝影鏡頭 20所產生的縱向球差皆介於_0.05min至0 0mm之間。 再請參照「第2C圖」所示,係為波長587.6nm的光線入射於 「第2A圖」所揭露之廣視角攝影鏡頭的像散場曲曲線示意圖。從 「第2C圖」中可知,波長5876nm的光線入射廣視角攝影鏡頭 2〇所產生的子午面像散場曲介於_〇 〇5mm至〇 〇5mm之間,弧矢 面像散場曲介於-〇.〇5mm至0.05mm之間。 再請參照「第2D圖」所示,係為波長587.6nm的光線入射於 「第2A圖」所揭露之廣視角攝影鏡頭的畸變曲線示意圖。從「第 2D圖」中可知,波長587.6nm的光線入射廣視角攝影鏡頭20所 產生的畸變率介於-75%至0%之間。如「第2B圖」至「第2D圖,Table 2-1 Further, the first lens 210 of the present embodiment is a spherical lens. The second lens 22 〇 to the sixth lens 260 may both be non-sense lenses, and may conform to the aspheric surface that is thinner than the above (Formula ASP). For the parameters of each aspherical surface, please refer to the following "Table 2-2: Aspherical Coefficients (Aspheric Coefficients) Surface # 3 4 6 7 8 k = -2.2293 0E+00 -U1495E+01 -8.00000E+01 -1.48938E+01 -9.67896E+00 A4 = -1.48254E-02 3.80500E-02 3.21876E -01 -1.64771E-01 -1.15571E-01 a6 = 6.46417E-03 2.83858E-02 -2.33397E-01 9.72067E-02 -5.9260 IE-02 a8 = -6.35613E-04 -5.26089E-02 1.73257E -01 1.57970E-02 -1.38754E-01 A|〇= -6.82952E-05 2.40550E-02 -3.72079E-02 4.09259E-02 -1.57663E-01 A丨2 = -2.98794E-15 -2.96919E -15 -2.96919E-15 -2.96919E-15 -2.96919E-15 Surface # 9 10 11 12 13 k = -1.05740E+00 -1.89290E+00 1.99543E+02 -1.08437E+01 -2.17061E+01 A4 = -5.91238E-02 -8.51472E-02 5.00027E-02 2.19775E-03 -9.49479E-02 a6 = -4.77129E-02 5.42903E-02 2.43128E-02 -1.27190E-02 4.72332E-02 a8 = 7.32534E-02 7.83195E-02 -1.39712E-02 6.35827E-03 -1.79913E-02 Ai〇= -7.29590E-02 -2.98226E-02 -9.45365E-04 -6. 86662E-04 2.96470E-03 A12 = -2.96919E-15 -2.96919E-15 — _ -2.96919E-15 Table 2-2 In addition, from Table 2-1, you can calculate "Table 2-3" Description: Second embodiment Focal length (mm) 1.42 f/f6 0.63 22 201235731 Aperture value 2.50 f/f12 0.83 Half of maximum viewing angle (deg.) 80.10 Dr4S/T]2 0.04 Νι 1.80 T23/CT2 0.04 v6-v5 32.5 (R7+R8)/(RrR8) 0.14 f/f, -0.34 R9/f -0.48 f/f2 0.58 R8/R9 1.38 f/f3 -0.63 ImgH/f 1.42 Table 2-3 Please refer to "2B" As shown in the figure, the longitudinal spherical aberration curves of the wide-angle photographic lens disclosed in "B2A" are incident on the wavelengths of 486.1 nm, 587.6 nm, and 656.3 mn. As can be seen from "Fig. 2B", in the present embodiment, the longitudinal spherical aberration generated by the wide-angle photographic lens 20 is between _0.05 min and 0 0 mm regardless of the light receiving the wavelength of 486.1 nm, 587.6 nm or 656.3 nm. . Referring to the "2Cth diagram", the astigmatism field curve of the wide-angle photographic lens disclosed in "Fig. 2A" is incident on the light having a wavelength of 587.6 nm. It can be seen from the "2C picture" that the meridional astigmatic field curvature generated by the light having a wavelength of 5876 nm incident on the wide-angle photographic lens 2 介于 is between _〇〇5 mm and 〇〇5 mm, and the sagittal astigmatic field curvature is between -〇 〇 5mm to 0.05mm. Referring to "2D", the distortion curve of the wide-angle photographic lens disclosed in "2A" is shown as a light having a wavelength of 587.6 nm. As can be seen from the "Fig. 2D", the distortion of the light having a wavelength of 587.6 nm incident on the wide-angle photographic lens 20 is between -75% and 0%. Such as "2B to" 2D,

«J 所述’依照上述第二實施例進行設計,本發明所揭露之廣視角攝«J described in accordance with the second embodiment described above, the wide viewing angle disclosed by the present invention

23 S 201235731 影鏡頭20可有效地在修正各種像差與獲得大視場角之間取得良好 的平衡。 &lt;第三實施例&gt; 請參照「第3A圖」所示,係為根據本發明所揭露之廣視角攝 影鏡頭的第三實施例結構示意圖。其具體實施方式及前述第一實 施例大致相同,且第三實施例中所述的元件及第—實施例中所述 的元件相同,其元件職皆以3作為百位數字之開頭,表示立且 有相同的魏或結構,為求簡化朗,以下僅就相異之處加以說 明,其餘相同處不在贅述。 在本實施财,廣視賴影鏡頭3G所接受親的波長係以 懇聰為例,然而上述波長可根據實際需求進行調整,並不以上 述波長數值為限。 本實施例之第-透鏡310具有負屈折力,第二透鏡32〇具有 正屈折力,第三透細具綱折力,第喊鏡具有正屈 折力,第五透鏡35〇具有負屈折力,第六透鏡具有正屈折力。 其中,第-透鏡物側面州為凸面,第—透鏡像側面312為凹面。 第-透鏡物側面321為凹面,第二透鏡像侧面切為凸面。第四 透鏡像側面342為凸面。第五透鏡物側面35〗為凹面。第六透鏡 像側面如為凸面。此外,第四透鏡_與第六透鏡 雙凸透鏡。 廣視角攝影鏡頭30的詳細資料如下列「表所示 24 20123573123 S 201235731 The shadow lens 20 is effective in achieving a good balance between correcting various aberrations and obtaining a large angle of view. &lt;Third Embodiment&gt; Referring to Fig. 3A, there is shown a schematic structural view of a third embodiment of a wide viewing angle lens according to the present invention. The specific embodiment is substantially the same as the first embodiment described above, and the components described in the third embodiment are the same as those described in the first embodiment, and the components are all represented by the beginning of the 100 digits. And have the same Wei or structure, in order to simplify the lang, the following only explain the differences, the rest are not repeated. In this implementation, the wavelength range of the 3G received by the wide-spectrum lens is taken as an example. However, the above wavelength can be adjusted according to actual needs, and is not limited to the above-mentioned wavelength values. The first lens 310 of the embodiment has a negative refractive power, the second lens 32 has a positive refractive power, the third transparent has a refractive power, the first mirror has a positive refractive power, and the fifth lens 35 has a negative refractive power. The sixth lens has a positive refractive power. The first lens side surface is a convex surface, and the first lens image side surface 312 is a concave surface. The first lens side surface 321 is a concave surface, and the second lens image side surface is cut into a convex surface. The fourth lens image side surface 342 is a convex surface. The fifth lens side surface 35 is a concave surface. The sixth lens image side is convex. Further, the fourth lens_and the sixth lens are lenticular lenses. The details of the wide-angle photographic lens 30 are shown in the following table 24 201235731

第三實施例 焦距(f)=1.35mm,光圈值(Fno)=2.40,最大視角的一半(HFOV)=90.1 deg. 表面# 物件 曲率半徑 (mm) 面距 (mm) 材質 折射率 色散 係數 焦距 (mm) 0 被攝物 平面 無限 1 第一透鏡 11.610 1.170 玻璃 1.804 46.6 -4.61 2 2.684 2.402 3 第二透鏡 -4.058600 2.900 塑膠 1.621 24.4 1.92 4 -1.174700 0.100 5 光圈 平面 0.133 6 第三透鏡 -1.237820 0.450 塑膠 1.544 55.9 -1.47 7 2.533880 0.100 8 第四透鏡 1.055230 1.118 塑膠 1.530 55.8 1.11 9 -0.835830 0.107 10 第五透鏡 -0.696040 0.367 塑膠 1.633 23.4 -1.04 11 15.731400 0.115 12 第六透鏡 2.618440 2.259 塑膠 1.544 55.9 2.31 13 -1.689500 0.437 14 紅外線濾光片 平面 0.300 玻璃 1.516 64.1 — 15 平面 0.326 16 保護玻璃 平面 0.400 玻璃 1.516 64.1 — 17 平面 0.143 25 201235731The third embodiment has a focal length (f)=1.35 mm, an aperture value (Fno)=2.40, and a half of the maximum viewing angle (HFOV)=90.1 deg. Surface #object radius of curvature (mm) face distance (mm) material refractive index dispersion coefficient focal length (mm) 0 Subject plane infinite 1 First lens 11.610 1.170 Glass 1.804 46.6 -4.61 2 2.684 2.402 3 Second lens -4.058600 2.900 Plastic 1.621 24.4 1.92 4 -1.174700 0.100 5 Aperture plane 0.133 6 Third lens -1.237820 0.450 Plastic 1.544 55.9 -1.47 7 2.533880 0.100 8 Fourth lens 1.055230 1.118 Plastic 1.530 55.8 1.11 9 -0.835830 0.107 10 Fifth lens -0.696040 0.367 Plastic 1.633 23.4 -1.04 11 15.731400 0.115 12 Sixth lens 2.618440 2.259 Plastic 1.544 55.9 2.31 13 -1.689500 0.437 14 Infrared filter plane 0.300 Glass 1.516 64.1 — 15 Plane 0.326 16 Protective glass plane 0.400 Glass 1.516 64.1 — 17 Plane 0.143 25 201235731

§主·參考波長為d-line587.6nm 表3-1 此外’本實施例之第一透鏡310為球面透鏡。第二透鏡32〇 至第六透鏡360皆可為非球面透鏡,且可符合但不限於上述(公式 ASP)的非球面,關於各個非球面的參數請參照下列「表3_2」: 非球面係數(Aspheric Coefficients) 表面# 3 4 6 7 8 k = -1.12469E+00 -8.57159E+00 -2.02892E+01 -2.22429E+00 -5.94604E+00 a4= -1.23554E-02 -2.62467E-02 1.87878E-01 -2.86449E-01 -1.10168E-01 a6 = 5.80075E-03 8.44455E-02 -2.20824E-01 -1.45821E-01 -4.05342E-02 a8 = -5.52763E-04 -7.75152E-02 -4.93497E-04 1.78735E-01 -6.52604E-02 Aio = -2.50420E-05 2.24772E-02 -1.54041E-03 -1.16315E-01 -1.61016E-01 Ai2 = 2.85396E-19 2.86140E-19 2.86140E-19 2.86140E-19 2.86140E-19 表面# 9 10 11 12 13 k = -2.23499E+00 -2.433 82E+〇〇 1.01462E+02 -2.80690E+01 -3.32964E+00 A4 = -2.88870E-03 -3.95939E-02 5.12353E-02 9.86456E-03 -3.63099E-02 a6 = -8.47161E-02 -7.23182E-03 1.59703E-03 2.33327E-03 1.20072E-02 a8 = -1.82971E-03 1.56995E-02 -1.05066E-02 2.19647E-03 -3.63125E-03 Ai〇 = -1.44949E-02 8.21342E-04 8.80870E-04 -9.13444E-04 8.57219E-04 Ai2 = 2.86140E-19 2.86140E-19 — —— 2.86140E-19 表3-2 ^&gt;外,從「表3-1」中可推算出「表3-3」所述的内容: 第三實施例 26 201235731 焦距 1.35 0.58 光圈值 2.40 f/f.2 1.02 最大視角的一半(deg.) 90.10 Dr4S/T,2 0.04 N, 1.80 T23/CT2 0.08 v6-v5 32.5 (RT+RsViRT-Rg) 0.12 f/f, -0.29 R9/f -0.52 f/f2 0.70 1.20 f/f3 -0.92 ImgH/f 1.50 表 3-3· 請參照「第3Β圖」所示’係為波長486.1 nm、587.6 nm與 656.3nm的光線入射於「第3A圖」所揭露之廣視角攝影鏡頭的縱 向球差曲線示意圖。從「第3B圖」中可知,本實施例中不論是接 收波長486.1 nm、587.6 nm或656.3nm的光線,廣視角攝影鏡頭 所產生的縱向球差皆介於_0.05mm至〇 〇2mm之間。 再凊參照「第3C圖」所示,係為波長587.6nm的光線入射於 鲁 「第3A圖」所揭露之廣視角攝影鏡頭的像散場曲曲線示意圖。從 「第3C圖」中可知,波長587.6nm的光線入射廣視角攝影鏡頭 3〇所產生的子午面像散場曲介於_〇15麵至〇 〇1_之間,弧矢 面像散場岳介於-0.1mm至0.〇2mm之間。 再凊參照「第3D圖」所示,係為波長587.6nm的光線入射於 第3A圖」所揭露之廣視角攝影鏡頭的畸變曲線示意圖。從「第 30圖」中可知’波長587.6nm的光線入射廣視角攝影鏡頭30所 產生的畸變率介於-100%至0%之間。如「第3B圖」至「第3D圖」 27 201235731 所述,依照上述第二實關進行設計,本發斷揭露之廣視角攝 影鏡頭30可有效地在修正各種像差與獲得大視場角之間取得良好 的平衡。 &lt; &lt;第四實施例&gt; 請參照「第4A圖」所示,係為根據本發明所揭露之廣視角攝 影鏡頭的第四實施例結構示意圖。其具體實施方式及前述第一實 施例大致相同,且第四實施例中所述的元件及第一實施例中所述 的元件相同,其元件編號皆以4作為雜數字之_,表示其具 有相同的魏或結構,為求簡化說明,町僅就相異之處加以說 明’其餘相同處不在贅述。 在本實施例中,廣視角攝影鏡頭4〇所接受光線的波長係以 587.6nm為例,然而上述波長可根據實際需求進行調整,並不以上 述波長數值為限。 本實施例之第-透鏡410具有負屈折力,第二透鏡具有 正屈折力’第三透鏡430具有負屈折力,第四透鏡44〇具有正屈 折力’第五透鏡450具有負屈折力,第六透鏡46〇具有正屈折力。 其中’第-透鏡物側面4]1為凸面,第一透鏡像側面412為凹面。 第二透鏡物側面421為凹面,第二透鏡像側面422為凸面。第四 透鏡像側面442為凸面。第五透鏡物側面451為凹面。第六透鏡 像側面462為凸面。此外,第四透鏡與第六透鏡46〇係皆為 雙凸透鏡。 廣視角攝影鏡頭40的詳細資料如下列「表孓〗」所示: 28 201235731§ The main reference wavelength is d-line 587.6 nm. Table 3-1 Further, the first lens 310 of the present embodiment is a spherical lens. The second lens 32 〇 to the sixth lens 360 may both be aspherical lenses, and may conform to, but not limited to, the aspherical surface of the above formula (Formula ASP). For the parameters of each aspherical surface, refer to the following "Table 3_2": Aspherical coefficient ( Aspheric Coefficients) Surface # 3 4 6 7 8 k = -1.12469E+00 -8.57159E+00 -2.02892E+01 -2.22429E+00 -5.94604E+00 a4= -1.23554E-02 -2.62467E-02 1.87878 E-01 -2.86449E-01 -1.10168E-01 a6 = 5.80075E-03 8.44455E-02 -2.20824E-01 -1.45821E-01 -4.05342E-02 a8 = -5.52763E-04 -7.75152E-02 -4.93497E-04 1.78735E-01 -6.52604E-02 Aio = -2.50420E-05 2.24772E-02 -1.54041E-03 -1.16315E-01 -1.61016E-01 Ai2 = 2.85396E-19 2.86140E-19 2.86140E-19 2.86140E-19 2.86140E-19 Surface # 9 10 11 12 13 k = -2.23499E+00 -2.433 82E+〇〇1.01462E+02 -2.80690E+01 -3.32964E+00 A4 = -2.88870E -03 -3.95939E-02 5.12353E-02 9.86456E-03 -3.63099E-02 a6 = -8.47161E-02 -7.23182E-03 1.59703E-03 2.33327E-03 1.20072E-02 a8 = -1.82971E- 03 1.56995E-02 -1.05066E-02 2.19647E-03 -3.63125E-03 Ai〇= -1.44949E-02 8.21342E-04 8.80870E -04 -9.13444E-04 8.57219E-04 Ai2 = 2.86140E-19 2.86140E-19 — —— 2.86140E-19 Table 3-2 ^&gt; From Table 3-1, you can calculate the table. Contents described in 3-3": Third Embodiment 26 201235731 Focal length 1.35 0.58 Aperture value 2.40 f/f.2 1.02 Half of maximum viewing angle (deg.) 90.10 Dr4S/T, 2 0.04 N, 1.80 T23/CT2 0.08 v6 -v5 32.5 (RT+RsViRT-Rg) 0.12 f/f, -0.29 R9/f -0.52 f/f2 0.70 1.20 f/f3 -0.92 ImgH/f 1.50 Table 3-3· Refer to the "Figure 3" 'The schematic diagram of the longitudinal spherical aberration curves of the wide-angle photographic lens disclosed by the light of the wavelengths of 486.1 nm, 587.6 nm, and 656.3 nm incident on the "Fig. 3A". It can be seen from "Fig. 3B" that in the present embodiment, whether the light of the receiving wavelength is 486.1 nm, 587.6 nm or 656.3 nm, the longitudinal spherical aberration caused by the wide viewing angle lens is between _0.05 mm and 〇〇2 mm. . Referring to "3C", the astigmatism field curve of the wide-angle photographic lens disclosed in Lu "3A" is incident on the light having a wavelength of 587.6 nm. It can be seen from "3C" that the meridional astigmatic field curvature generated by the light incident at a wavelength of 587.6 nm incident on the wide-angle photographic lens 3 介于 is between _〇15 faces and 〇〇1_, and the sagittal astigmatism field is between -0.1mm to 0. 〇 2mm. Referring to the "Fig. 3D", a distortion curve of the wide-angle photographic lens disclosed in Fig. 3A is shown as a light having a wavelength of 587.6 nm. As can be seen from Fig. 30, the distortion of the light having a wavelength of 587.6 nm incident on the wide-angle photographic lens 30 is between -100% and 0%. As described in "3B" to "3D" 27 201235731, according to the above second actual design, the wide viewing angle lens 30 disclosed in the present invention can effectively correct various aberrations and obtain a large angle of view. A good balance is achieved. &lt;&lt;Fourth Embodiment&gt; Referring to Fig. 4A, there is shown a schematic structural view of a fourth embodiment of a wide viewing angle lens according to the present invention. The specific embodiment is substantially the same as the first embodiment described above, and the components described in the fourth embodiment are the same as those described in the first embodiment, and the component numbers are all represented by 4 as a number, indicating that they have For the same Wei or structure, in order to simplify the description, the town only explains the differences. The rest are not repeated. In the present embodiment, the wavelength of the light received by the wide-angle photographic lens 4 is exemplified by 587.6 nm. However, the above wavelength can be adjusted according to actual needs, and is not limited to the above-mentioned wavelength value. The first lens 410 of the present embodiment has a negative refractive power, the second lens has a positive refractive power, the third lens 430 has a negative refractive power, and the fourth lens 44 has a positive refractive power. The fifth lens 450 has a negative refractive power. The six lens 46 has a positive refractive power. The 'first lens side surface 4' 1 is a convex surface, and the first lens image side surface 412 is a concave surface. The second lens object side surface 421 is a concave surface, and the second lens image side surface 422 is a convex surface. The fourth lens image side surface 442 is a convex surface. The fifth lens object side surface 451 is a concave surface. The sixth lens image side surface 462 is a convex surface. Further, the fourth lens and the sixth lens 46 are both lenticular lenses. The details of the wide-angle photographic lens 40 are shown in the following "Table": 28 201235731

第四實施例 焦距(f)=0.84mm,光圈值(Fno)=2.30,最大視角的一半(HFOV)=80.1 deg. 表面# 物件 曲率半徑 (mm) 面距 (mm) 材質 折射率 色散 係數 焦距 (mm) 0 被攝物 平面 無限 1 第一透鏡 10.789 1.170 玻璃 1.804 46.6 -4.32 2 2.500 2.019 3 第二透鏡 -3.816000 2.900 塑膠 1.621 24.4 3.53 4 -1.827830 0.273 5 光圈 平面 0.100 6 第三透鏡 -1.675270 0.450 塑膠 1.544 55.9 -5.01 7 -4.958600 0.100 8 第四透鏡 4.010000 1.207 塑膠 1.530 55.8 0.99 9 -0.541760 0.100 10 第五透鏡 -0.424290 0.331 塑膠 1.633 23.4 -0.92 11 -2.000000 0.100 12 第六透鏡 12.623000 1.634 塑膠 1.544 55.9 1.71 13 -0.957920 0.500 14 紅外線濾光片 平面 0.300 玻璃 1.516 64.1 — 15 平面 0.500 16 保護玻璃 平面 0.400 玻璃 1.516 64.1 — 17 平面 0.100 29 201235731 18 成像面 平面 — ----! 註.參考波長為d-line587.6nm ·— _ 表4-1 此外’本實施例之第一透鏡410為球面透鏡。第二透鏡42〇 至第六透鏡460皆可為非球面透鏡,且可符合但不限於上述(公式 ASP)的非球面,關於各個非球面的參數請參照下列「表4_2」: 非球面係數(Aspheric Coefficients) 表面# 3 4 6 7 8 k = -8.00000E+01 -1.00585E+01 -6.28176E+00 -8.00000E+01 1.40569E+01 A4 = -1.37533E-02 -4.63730E-02 5.11768E-01 1.67891E-01 -1.12390E-01 a6 = 1.56949E-03 5.11549E-02 -2.40985E+00 -2.64423E-02 -3.01364E-02 a8 = 4.67020E-05 -2.94192E-02 9.02918E+00 1.48329E-02 5.37286E-02 Aio = -1.13715E-05 7.00815E-03 -1.33501E+01 -9.95188E-02 -9.88267E-02 Ai2 = -3.83463E-21 4.48636E-22 4.48636E-22 4.48636E-22 4.48636E-22 表面# 9 10 11 12 13 k = -3.57711E+00 -2.97456E+00 -6.24986E+01 1.17150E+01 -1.74103E+00 A4 = -2.34700E-01 -4.24264E-02 8.76195E-02 2.56923E-02 4.86330E-02 a6 = -6.04961E-03 -3.3065 IE-02 -1.18629E-02 -5.23360E-03 -1.21468E-02 a8 = 3.17274E-02 -1.19475E-02 -5.75497E-03 2.44768E-03 -4.14242E-03 A]〇 = -3.11467E-02 2.21304E-02 1.66698E-04 -3.95432E-04 2.07253E-03 A]2 = 4.48636E-22 4.48636E-22 — — 4.4863 6E-22 表4-2 此外’從「表4-1」中可推算出「表4_3」所述的内容: 第四實施例 30 201235731 焦距(mm) 0.84 f/f6 0.49 光圈值 2.30 f/fl2 0.26 最大視角的一半(deg.) 80.10 Dr4S/T12 0.14 N, 1.80 T23/CT2 0.13 v6-v5 32.5 (R7+Re)/(R7-R8) 0.76 f/fi -0.19 R9/f -0.51 f/f2 &quot; 0.24 R8/R9 1.28 f/f3 -0.17 ImgH/f 2.41 表4-3 請參照「第4B圖」所示,係為波長486」啦、587 6 nm與 656.3mn的光線入射於「第4A圖」所揭露之廣視角攝影鏡頭的縱 向球差曲線示意圖。從「第4B圖」中可知,本實施例中不論是接 收波長486.1 nm、587.6 nm或656.3nm的光線,廣視角攝影鏡頭 40所產生的縱向球差皆介於〇25mm至0.04mm之間。 再睛參照「第4C圖」所示,係為波長587 6nm的光線入射於 第4A圖」所揭露之廣視角攝影鏡頭的像散場曲曲線示意圖。從 第4C圖」中可知,波長5876nm的光線入射廣視角攝影鏡頭 4〇所產生的子午面像散場曲介於也仍咖至〇1匪之間,弧矢面 像散場曲介於〇.〇mm至〇 05mm之間。 再响麥照「第4D圖」所示,係為波長587 6nm的光線入射於 第4A圖」所揭路之廣視角攝影鏡頭的畸變曲線示意圖。從「第 4D圖」中可知,波長587.6nm的光線入射廣視角攝影綱4〇所 產生的畸變率介於·75%至〇%之間。如「第4B圖」至「第4D圖」 31 201235731 所述,依照上述第四實關進行輯,本發日綺揭露之廣視角攝 影鏡頭4〇可极地在修正各歸差鱗得大視場角之躲得良好 的平衡。 &lt;第五實施例&gt; 請參照「第5A圖」所示,係為根據本發明所揭露之廣視角攝 影鏡頭的第五實_結構示_。其具體實财式及前述第一實 施例大致_,且第五實_切述的元件及第—魏例中所述 的兀件相同’其元件編號皆以5作為百位數字之陶,表示盆且 有相同的功能或結構,為求簡化說明,以下僅就相異之處加以說 明’其餘相同處不在贅述。 在本實施例中,廣視角攝影鏡頭5Q所接受光線的波長係以 nm為例,然而上述波長可根據實際需求進行調整,並不以上 述波長數值為限。 本實施例之第一透鏡510具有f屈把^姑^ ,貝屈折力,第二透鏡520具有 正屈折力,第三透鏡530具有負届姑士 ^ 、 、屈折力,第四透鏡540具有正屈 折力,第五透鏡550具有負屈折力,第丄 罘^、透鏡560具有正屈折力。 其中,第一透鏡物側面511為凸面,黛一 第一透鏡像側面512為凹面。 第二透鏡物側面521為凹面,第二读於你, 牙一通鏡像側面522為凸面。第四 透鏡像側面542為凸面。第五透鏡物 物側面551為凹面。第六透鏡 像侧面562為凸面。此外,第四透 透鏡540與第六透鏡漏係皆為 雙凸透鏡。 廣視角攝影鏡頭50的詳細資料如下列「表…所示. 32 201235731The fourth embodiment has a focal length (f) = 0.84 mm, an aperture value (Fno) = 2.30, and a maximum viewing angle of half (HFOV) = 80.1 deg. Surface #object radius of curvature (mm) face distance (mm) material refractive index dispersion coefficient focal length (mm) 0 Subject plane infinite 1 First lens 10.789 1.170 Glass 1.804 46.6 -4.32 2 2.500 2.019 3 Second lens -3.816000 2.900 Plastic 1.621 24.4 3.53 4 -1.827830 0.273 5 Aperture plane 0.100 6 Third lens - 1.675270 0.450 Plastic 1.544 55.9 -5.01 7 -4.958600 0.100 8 Fourth lens 4.010000 1.207 Plastic 1.530 55.8 0.99 9 -0.541760 0.100 10 Fifth lens -0.424290 0.331 Plastic 1.633 23.4 -0.92 11 -2.000000 0.100 12 Sixth lens 12.623000 1.634 Plastic 1.544 55.9 1.71 13 - 0.957920 0.500 14 Infrared filter plane 0.300 Glass 1.516 64.1 — 15 Plane 0.500 16 Protective glass plane 0.400 Glass 1.516 64.1 — 17 Plane 0.100 29 201235731 18 Imaging surface plane — ----! Note. The reference wavelength is d-line587.6nm · — _ Table 4-1 In addition, the first lens 410 of the present embodiment It is a spherical lens. Each of the second lens 42 〇 to the sixth lens 460 may be an aspherical lens, and may conform to, but is not limited to, the aspherical surface of the above formula (Formula ASP). For the parameters of each aspherical surface, refer to the following “Table 4_2”: aspherical coefficient ( Aspheric Coefficients) Surface # 3 4 6 7 8 k = -8.00000E+01 -1.00585E+01 -6.28176E+00 -8.00000E+01 1.40569E+01 A4 = -1.37533E-02 -4.63730E-02 5.11768E -01 1.67891E-01 -1.12390E-01 a6 = 1.56949E-03 5.11549E-02 -2.40985E+00 -2.64423E-02 -3.01364E-02 a8 = 4.67020E-05 -2.94192E-02 9.02918E+ 00 1.48329E-02 5.37286E-02 Aio = -1.13715E-05 7.00815E-03 -1.33501E+01 -9.95188E-02 -9.88267E-02 Ai2 = -3.83463E-21 4.48636E-22 4.48636E-22 4.48636E-22 4.48636E-22 Surface # 9 10 11 12 13 k = -3.57711E+00 -2.97456E+00 -6.24986E+01 1.17150E+01 -1.74103E+00 A4 = -2.34700E-01 -4.24264 E-02 8.76195E-02 2.56923E-02 4.86330E-02 a6 = -6.04961E-03 -3.3065 IE-02 -1.18629E-02 -5.23360E-03 -1.21468E-02 a8 = 3.17274E-02 -1.19475 E-02 -5.75497E-03 2.44768E-03 -4.14242E-03 A]〇= -3.11467E-02 2.21304E-02 1.66698E-04 - 3.95432E-04 2.07253E-03 A]2 = 4.48636E-22 4.48636E-22 — — 4.4863 6E-22 Table 4-2 In addition, 'from Table 4-1' can be used to calculate the “Table 4_3” Contents: Fourth Embodiment 30 201235731 Focal length (mm) 0.84 f/f6 0.49 Aperture value 2.30 f/fl2 0.26 Half of maximum viewing angle (deg.) 80.10 Dr4S/T12 0.14 N, 1.80 T23/CT2 0.13 v6-v5 32.5 (R7 +Re)/(R7-R8) 0.76 f/fi -0.19 R9/f -0.51 f/f2 &quot; 0.24 R8/R9 1.28 f/f3 -0.17 ImgH/f 2.41 Table 4-3 Please refer to "4B" As shown in the figure, the longitudinal spherical aberration curves of the wide-angle photographic lens disclosed in "Athlet 4A" are incident on the wavelengths of 486", 587 6 nm, and 656.3 mn. As can be seen from Fig. 4B, in the present embodiment, the longitudinal spherical aberration generated by the wide viewing angle lens 40 is between 〇25 mm and 0.04 mm regardless of the light receiving the wavelength of 486.1 nm, 587.6 nm or 656.3 nm. Further, referring to "Fig. 4C", it is a schematic diagram of the astigmatic field curvature curve of the wide-angle photographic lens disclosed in Fig. 4A, which is a light having a wavelength of 587 6 nm. It can be seen from Fig. 4C that the meridional astigmatic field curvature generated by the light incident at a wavelength of 5876 nm incident on the wide-angle photographic lens 4 介于 is still between 咖1匪, and the sagittal astigmatism field curvature is between 〇.〇mm Between 05mm. The photo of the distortion of the wide-angle photographic lens, which is shown in Fig. 4A, is shown in Fig. 4D. As can be seen from the "Fig. 4D", the distortion of the light having a wavelength of 587.6 nm incident on the wide viewing angle is between 75% and 〇%. As described in "Picture 4B" to "4D" 31 201235731, according to the above-mentioned fourth actual closing, the wide-angle photographic lens disclosed in this issue can greatly correct the large field of view of each difference scale. The corners are well balanced. &lt;Fifth Embodiment&gt; Referring to Fig. 5A, it is a fifth real-structural display of the wide-angle view lens according to the present invention. The specific financial formula and the first embodiment are substantially the same, and the fifth embodiment is the same as the one described in the first example, and the component numbers are all represented by a hundred digits. The basins have the same function or structure. For the sake of simplification of the description, the following only explains the differences. The rest are not repeated. In the present embodiment, the wavelength of the light received by the wide-angle photographic lens 5Q is taken as an example of nm. However, the above-mentioned wavelength can be adjusted according to actual needs, and is not limited to the above-mentioned wavelength value. The first lens 510 of the embodiment has a f-bend, a buckling force, the second lens 520 has a positive refractive power, the third lens 530 has a negative force, and a refractive power, and the fourth lens 540 has a positive The refractive power, the fifth lens 550 has a negative refractive power, and the second lens 560 has a positive refractive power. The first lens object side surface 511 is a convex surface, and the first lens image side surface 512 is a concave surface. The second lens object side surface 521 is a concave surface, and the second reading is a convex surface of the tooth mirror image side surface 522. The fourth lens image side surface 542 is a convex surface. The fifth lens object side surface 551 is a concave surface. The sixth lens image side surface 562 is convex. Further, the fourth through lens 540 and the sixth lens leakage system are both lenticular lenses. The details of the wide-angle photographic lens 50 are shown in the following table... 32 201235731

第五實施例 焦距(f)=0.97mm,光圈值(Fno)=2.10,最大視角的一半(HFOV)=90.1 deg. 表面# 物件 曲率半徑 (mm) 面距 (mm) 材質 折射率 色散 係數 焦距 (mm) 0 被攝物 平面 無限 1 第一透鏡 9.958 1.170 玻璃 1.804 46.6 -4.81 2 2.638 1.933 3 第二透鏡 -5.230400 3.349 塑膠 1.633 23.4 4.50 4 -2.302010 0.161 5 光圈 平面 0.129 6 第三透鏡 -1.254370 0.450 塑膠 1.530 55.8 -2.76 7 -9.823500 0.100 8 第四透鏡 1.352260 1.269 塑膠 1.530 55.8 1.21 9 -0.824520 0.166 10 第五透鏡 -0.696180 0.367 塑膠 1.633 23.4 -1.04 11 14.213600 0.100 12 第六透鏡 5.246100 1.859 塑膠 1.544 55.9 1.66 13 -0.954450 0.506 14 紅外線濾光片 平面 0.200 玻璃 1.516 64.1 — 15 平面 0.372 16 保護玻璃 平面 0.300 玻璃 1.516 64.1 — 17 平面 0.219 201235731The fifth embodiment has a focal length (f)=0.97 mm, an aperture value (Fno)=2.10, and a half of the maximum viewing angle (HFOV)=90.1 deg. Surface #object radius of curvature (mm) face distance (mm) material refractive index dispersion coefficient focal length (mm) 0 The plane of the object is infinite 1 First lens 9.958 1.170 Glass 1.804 46.6 -4.81 2 2.638 1.933 3 Second lens -5.230400 3.349 Plastic 1.633 23.4 4.50 4 -2.302010 0.161 5 Aperture plane 0.129 6 Third lens - 1.254370 0.450 Plastic 1.530 55.8 -2.76 7 -9.823500 0.100 8 Fourth lens 1.352260 1.269 Plastic 1.530 55.8 1.21 9 -0.824520 0.166 10 Fifth lens -0.696180 0.367 Plastic 1.633 23.4 -1.04 11 14.213600 0.100 12 Sixth lens 5.246100 1.859 Plastic 1.544 55.9 1.66 13 -0.954450 0.506 14 Infrared filter plane 0.200 Glass 1.516 64.1 — 15 Plane 0.372 16 Protective glass plane 0.300 Glass 1.516 64.1 — 17 Plane 0.219 201235731

此外,本實施例之第-透鏡510為球面透鏡。第二透鏡细 至第六透鏡 t可為雜面魏,且可符合但靴於上逃(公式 ASP)的非球面,關於各個非球面的參數請參照下列「表孓2 . -------- 非球面係數(Aspheric Coefficients) 表面# 3 4 6 7 — 8 k = -8.00000E+01 -2.24775E+01 -1.09158E+01 -7.80387E+01 -7.57097E+00 a4= -1.30880E-02 -5.34903E-02 2.20476E-02 -1.01996E-01 -3.44609E-02 a6 = 1.74284E-03 1.36078E-01 -2.72723E-02 -2.49910E-04 -1.48739E-02 a8 = -5.60568E-05 -1.26551E-01 2.13114E-01 -6.20836E-02 -2.49418E-02 Ai〇 = -2.44493E-06 4.79505E-02 -5.70982E-01 2.13204E-02 -1.78498E-02 Ai2 = 2.33217E-19 2.33965E-19 2.33965E-19 2.33965E-19 2.33965E-19 表面# 9 10 11 12 13 k = -2.943 87E+00 -2.32809E+00 5.88958E+01 7.61182E-01 -1.86996E+00 A4 = 1.53297E-03 1.82180E-02 7.27940E-03 -5.47247E-04 1.42503E-02 a6 = -2.94583E-02 6.26640E-04 3.06996E-03 -6.81946E-03 2.03207E-03 Ag = -4.12885E-03 -2.51547E-03 -1.83382E-03 3.36934E-03 -2.42929E-03 AlO = -4.03114E-03 9.65246E-04 -4.41455E-04 -5.74345E-04 5.71262E-04 A12 = 2.33965E-19 2.33965E-19 — — 2.33965E-19 表5-2 此外’從「表5-1」中可推算出「表5-3」所述的内容: 34 201235731 第五實施例 焦距(mm) 0.97 光圈值 2.10 最大視角的一半(deg.) 90.10 N, 1.80 v6-v5 32.5 f/f, -0.20 f/f2 0.22 _m_ -0.35Further, the first lens 510 of the present embodiment is a spherical lens. The second lens to the sixth lens t may be a matte surface, and may conform to the aspheric surface of the shoe that escapes (formula ASP). For the parameters of each aspheric surface, please refer to the following "Table 2" ----- --- Aspheric Coefficients Surface # 3 4 6 7 — 8 k = -8.00000E+01 -2.24775E+01 -1.09158E+01 -7.80387E+01 -7.57097E+00 a4= -1.30880E -02 -5.34903E-02 2.20476E-02 -1.01996E-01 -3.44609E-02 a6 = 1.74284E-03 1.36078E-01 -2.72723E-02 -2.49910E-04 -1.48739E-02 a8 = -5.60568 E-05 -1.26551E-01 2.13114E-01 -6.20836E-02 -2.49418E-02 Ai〇= -2.44493E-06 4.79505E-02 -5.70982E-01 2.13204E-02 -1.78498E-02 Ai2 = 2.33217E-19 2.33965E-19 2.33965E-19 2.33965E-19 2.33965E-19 Surface # 9 10 11 12 13 k = -2.943 87E+00 -2.32809E+00 5.88958E+01 7.61182E-01 -1.86996E +00 A4 = 1.53297E-03 1.82180E-02 7.27940E-03 -5.47247E-04 1.42503E-02 a6 = -2.94583E-02 6.26640E-04 3.06996E-03 -6.81946E-03 2.03207E-03 Ag = -4.12885E-03 -2.51547E-03 -1.83382E-03 3.36934E-03 -2.42929E-03 AlO = -4.03114E-03 9.65246E-04 -4.41455E-04 -5.7434 5E-04 5.71262E-04 A12 = 2.33965E-19 2.33965E-19 — — 2.33965E-19 Table 5-2 In addition, the contents described in “Table 5-3” can be derived from “Table 5-1”. : 34 201235731 Fifth embodiment Focal length (mm) 0.97 Aperture value 2.10 Half of maximum viewing angle (deg.) 90.10 N, 1.80 v6-v5 32.5 f/f, -0.20 f/f2 0.22 _m_ -0.35

請參照「第5B圖」所示,係為波長486.1 nm、587.6 nm與 656.3nm的光線入射於「第5A圖」所揭露之廣視角攝影鏡頭的縱 向球差曲線示意圖。從「第5B圖」中可知,本實施例中不論是接 收波長486.1 nm、587.6 nm或656.3nm的光線,廣視角攝影鏡頭 5〇所產生的縱向球差皆介於_〇.〇5mm至0.01mm之間。 再請參照「第5C圖」所示,係為波長587.6mn的光線入射於 「第5A圖」所揭露之廣視角攝影鏡頭的像散場曲曲線示意圖。從 「第5C圖」中可知’波長587.6nm的光線入射廣視角攝影鏡頭 50所產生的子午面像散場曲介於_〇.〇5mm至〇.〇5mm之間,狐矢 面像散場曲介於-〇.〇5mm至0.0mm之間。 再請參照「第5D圖」所示’係為波長587.6nm的光線入射於 「第5A圖」所揭露之廣視角攝影鏡頭的畸變曲線示意圖。從「第 5D圖」中可知,波長587.6nm的光線入射廣視角攝影鏡頭5〇所 35 201235731 產生的畸變率介於_100%至0%之間。如「第5B圖」至「第5d圖 所述,依照上述第五實施例進行設計,本發明所揭露之廣視角攝 影鏡頭50可有效地在修正各種像差與獲得大視場角之間取得良好 的平衡。 &lt;第六實施例&gt; 請參照「第6A圖」所示,係為根據本發明所揭露之廣視角攝 影鏡頭的第六實施例結構示意圖。其具體實施方式及前述第一實 施例大致相同,且第六實施射所述的元件及第一實施例中所述 的元件相同,其元件職皆以6作為百位數字之_,表示其具 有相同的魏或結構,為求簡化綱,以下僅就相異之處加以說 明’其餘相同處不在贅述。 在本實施财,廣視賴影_ 60所接受光_波長係以 587.6顧為例、然而上述波長可根據實際需求進行調整,並不以上 述波長數值為限。 本實施例之第-透鏡610具有負屈折力,第二透鏡具有 正屈折力,第三透鏡630具有正屈折力,第四透鏡_具有正屈 折力,第五透鏡650具有負屈折力,第六透鏡_具有正屈折力。 其中’第一透鏡物侧面611為凸面,第一透鏡像側面612為凹面。 第二透鏡物側面62i為凹面’第二透鏡像側面似為凸面。第四 透鏡像側面642為凸面。第五透鏡物側面651為凹面。第六透鏡 像側面6幻為凸面。此外,第四透鏡64〇與第六透鏡咖係皆為 雙凸透鏡。 36 201235731 廣視角攝影鏡頭60的詳細資料如下列「表6_1」所示:Please refer to "Fig. 5B" for the longitudinal spherical aberration curves of the wide-angle photographic lens disclosed in "5A" at the wavelengths of 486.1 nm, 587.6 nm, and 656.3 nm. It can be seen from "Fig. 5B" that in this embodiment, regardless of the light receiving wavelengths of 486.1 nm, 587.6 nm or 656.3 nm, the longitudinal spherical aberration produced by the wide-angle viewing lens 5 皆 is between _〇.〇5 mm to 0.01. Between mm. Referring to "5C", the astigmatism field curve of the wide-angle photographic lens disclosed in "5A" is incident on the light with a wavelength of 587.6 mn. It can be seen from the "5C picture" that the meridional astigmatism field curvature generated by the light incident at a wavelength of 587.6 nm is between _〇.〇5mm and 〇.〇5mm, and the variegated astigmatism field is between - 〇. 〇 5mm to 0.0mm. Please refer to the distortion curve of the wide-angle photographic lens disclosed in "5A" as shown in "5D". It can be seen from the "5D" that the light incident at a wavelength of 587.6 nm is incident on the wide-angle lens. The distortion rate generated by 2012-201231 is between _100% and 0%. As described in the fifth embodiment to the fifth embodiment, the wide viewing angle lens 50 disclosed in the present invention can be effectively obtained between correcting various aberrations and obtaining a large angle of view. A good balance. <Sixth embodiment> Referring to Fig. 6A, there is shown a schematic structural view of a sixth embodiment of a wide-angle photographic lens according to the present invention. The specific embodiment is substantially the same as the first embodiment described above, and the components described in the sixth embodiment are the same as those described in the first embodiment, and the component positions are all 6 as a hundred digits, indicating that they have For the same Wei or structure, for the sake of simplicity, the following only explains the differences. The rest are not repeated. In this implementation, the received light_wavelength of the wide-spectrum _60 is exemplified by 587.6. However, the above wavelength can be adjusted according to actual needs, and is not limited to the above-mentioned wavelength values. The first lens 610 of the present embodiment has a negative refractive power, the second lens has a positive refractive power, the third lens 630 has a positive refractive power, the fourth lens _ has a positive refractive power, and the fifth lens 650 has a negative refractive power. The lens has a positive refractive power. Wherein the first lens object side surface 611 is a convex surface, and the first lens image side surface 612 is a concave surface. The second lens object side surface 62i is a concave surface. The second lens image side surface is convex. The fourth lens image side surface 642 is a convex surface. The fifth lens side surface 651 is a concave surface. The sixth lens image side 6 is convex. Further, the fourth lens 64A and the sixth lens are both lenticular lenses. 36 201235731 The details of the wide-angle camera lens 60 are shown in the following "Table 6_1":

第六實施例 焦距(f)= 1.40 mm,光圈值(Fno)= 2.05,最大視角的一半(HFOV)= 90.1 deg. 表面# 物件 曲率半徑 (mm) 面距 (mm) 材質 折射率 色散 係數 焦距 (mm) 0 被攝物 平面 無限 1 第一透鏡 9.980 1.170 玻璃 1.804 46.6 -4.80 2 2.638 2.030 3 第二透鏡 -4.624600 3.197 塑膠 1.634 23.8 9.11 4 -3.257200 0.115 5 光圈 平面 0.239 6 第三透鏡 -1.657660 1.161 塑膠 1.535 56.3 19.37 7 -1.777510 0.100 8 第四透鏡 2.844530 1.443 塑膠 1.535 56.3 2.19 9 -1.640710 0.119 10 第五透鏡 -1.237860 0.549 塑膠 1.634 23.8 -1.45 11 4.149600 0.100 12 第六透鏡 2.559980 1.677 塑膠 1.535 56.3 2.62 13 -2.383030 0.500 14 紅外線濾光片 平面 0.300 玻璃 1.516 64.1 — 15 平面 0.500 16 保護玻璃 平面 0.400 玻璃 1.516 64.1 — 37 201235731The sixth embodiment has a focal length (f) = 1.40 mm, an aperture value (Fno) = 2.05, and a maximum viewing angle of half (HFOV) = 90.1 deg. Surface #object radius of curvature (mm) face distance (mm) material refractive index dispersion coefficient focal length (mm) 0 Subject plane infinite 1 First lens 9.980 1.170 Glass 1.804 46.6 -4.80 2 2.638 2.030 3 Second lens -4.624600 3.197 Plastic 1.634 23.8 9.11 4 -3.257200 0.115 5 Aperture plane 0.239 6 Third lens - 1.657660 1.161 Plastic 1.535 56.3 19.37 7 -1.777510 0.100 8 Fourth lens 2.844530 1.443 Plastic 1.535 56.3 2.19 9 -1.640710 0.119 10 Fifth lens - 1.237860 0.549 Plastic 1.634 23.8 -1.45 11 4.149600 0.100 12 Sixth lens 2.559980 1.677 Plastic 1.535 56.3 2.62 13 -2.383030 0.500 14 Infrared filter plane 0.300 Glass 1.516 64.1 — 15 Plane 0.500 16 Protective glass plane 0.400 Glass 1.516 64.1 — 37 201235731

至第六透鏡_皆可為非球面親,且可符合但祕於上述(公式 ASP)的非球面,關於各個非球面的參數請參照下列「表6_2」: 非球面係數(Aspheric Coefficients) 表面# 3 4 6 7 8 k = -1.27715E+01 -2.50525E+01 9.45638E-01 4.42429E-01 -4.9761 IE-01 八4 = -9.37027E-03 -4.00877E-02 1.00420E-01 -3.70307E-02 -5.30149E-02 a6 = 1.97777E-03 6.16480E-02 -1.75604E-01 -2.56870E-02 -1.58356E-02 a8 = -1.06818E-04 -6.50013E-02 1.88498E-01 3.45556E-02 1.09255E-02 Αι〇 = -7.5778 IE-06 2.15978E-02 -1.58537E-01 -1.19935E-02 -1.83987E-03 A12 = -1.9801 IE-23 -1.9801 IE-23 -1.9801 IE-23 -1.9801 IE-23 -1.9801 IE-23 表面# 9 10 11 12 13 k = -5.61387E+00 -1.91178E+00 2.50458E+00 -9.09652E-01 -6.07021E+00 a4= -6.65608E-02 2.49823E-02 2.16554E-03 -1.5351 IE-02 -1.02703E-02 a6 = 2.28613E-03 -3.02006E-03 -1.97246E-03 -9.24120E-03 3.85971E-03 a8 = 5.44174E-03 -4.81285E-04 -1.15787E-04 4.36190E-03 -2.39172E-03 A|〇 = -9.82856E-04 2.24602E-04 -1.87045E-04 -5.54381E-04 4.46109E-04 A12 = -1.9801 IE-23 -1.9801 IE-23 — — -1.9801 IE-23 表6-2 此外,從「表6-1」中可推算出「表6-3」所述的内容: 38 201235731 第六實施例 焦距(mm) 1.40 f/f6 0.53 光圈值 2.05 f/f.2 0.03 最大視角的一半(deg.) 90.10 Dr4S/T12 0.06 N, 1.80 T23/CT2 0.11 V6-V5 32.5 (R7+Rg)/(Ry-Rg) 0.27 f/fi -0.29 R9/f -0.88 f/f2 0.15 Rg/R^ 1.33 f/f3 0.07 ImgH/f 1.44 表6-3 請參照「第6B圖」所示,係為波長486.1 nm、587.6 nm與 656.3nm的光線入射於「第6A圖」所揭露之廣視角攝影鏡頭的縱 向球差曲線示意圖。從「第6B圖」中可知,本實施例中不論是接 收波長486.1 nm、587.6 nm或656.3nm的光線,廣視角攝影鏡頭 60所產生的縱向球差皆介於-0.01mm至0.03mm之間。 肇 再清參照「第6C圖」所示,係為波長587.6nm的光線入射於 「第6A圖」所揭露之廣視角攝影鏡頭的像散場曲曲線示意圖。從 「第6C圖」中可知,波長587.6nm的光線入射廣視角攝影鏡頭 60所產生的子午面像散場曲介於_〇 〇3111111至〇 〇7mm之間,弧矢 面像散場曲介於-〇.〇3mm至〇.〇3mm之間。 々再請參照「第6D圖」所示,係為波長587 6nm的光線入射於 「第6A圖」所揭露之廣視角攝影鏡頭的畸變曲線示意圖。從「第 6D圖」中可知,波長587_6nm的光線入射廣視角攝影鏡頭仞所 39 201235731 產生的畸變率介於-驅至〇%之間,「第紐圖」至「第则」 =述依照上述第五實施例進行設計,本發明所揭露之廣視角攝 影鏡頭60可有效地在修正各種像差與獲得大視場角之間取得良好 的平衡。 &lt;第七實施例&gt; 月多…、第7A圖」所示,係為根據本發明所揭露之廣視角攝 影鏡頭的第七實施繼構示意圖^其具體實施方式及前述第一實 施例大致相同’且第七實施例中所述的元件及第一實施例中所述 的元件相同’其元件職㈣7作為耻數字之_,表示其具 有相同的魏或結構,為求.簡化制,以下僅就相異之處加以說 明,其餘相同處不在贅述。 在本實施财,廣姻攝職頭7G所接受光線的波長係以 為例,然而上述波長可根據實際需求進行調整,並不以上 述波長數值為限。 本實施例之第一透鏡710具有負屈折力,第二透鏡720具有 正屈折力,第二透鏡730具有負屈折力’第四透鏡74〇具有正屈 折力,第五透鏡750具有負屈折力,第六透鏡漏具有正屈折力。 其中’第-透鏡物側面711為凸面,第一透鏡像側面712為凹面。 第二透鏡物侧面721為凹面,第二透鏡像側面?22為凸面。第四 透鏡像侧面742為凸面。第五透鏡物側面751為凹面。第六透鏡 像側面762為凸面。此外,第四透鏡74〇與第六透鏡係皆為 雙凸透鏡。 201235731 廣視角攝影鏡頭70的詳細資料如下列「表7-1」所示:The sixth lens _ can be an aspherical surface, and can conform to the aspheric surface of the above (Formula ASP). For the parameters of each aspheric surface, please refer to the following "Table 6_2": Aspheric Coefficients Surface # 3 4 6 7 8 k = -1.27715E+01 -2.50525E+01 9.45638E-01 4.42429E-01 -4.9761 IE-01 八4 = -9.37027E-03 -4.00877E-02 1.00420E-01 -3.70307E -02 -5.30149E-02 a6 = 1.97777E-03 6.16480E-02 -1.75604E-01 -2.56870E-02 -1.58356E-02 a8 = -1.06818E-04 -6.50013E-02 1.88498E-01 3.45556E -02 1.09255E-02 Αι〇= -7.5778 IE-06 2.15978E-02 -1.58537E-01 -1.19935E-02 -1.83987E-03 A12 = -1.9801 IE-23 -1.9801 IE-23 -1.9801 IE-23 -1.9801 IE-23 -1.9801 IE-23 Surface # 9 10 11 12 13 k = -5.61387E+00 -1.91178E+00 2.50458E+00 -9.09652E-01 -6.07021E+00 a4= -6.65608E-02 2.49823E-02 2.16554E-03 -1.5351 IE-02 -1.02703E-02 a6 = 2.28613E-03 -3.02006E-03 -1.97246E-03 -9.24120E-03 3.85971E-03 a8 = 5.44174E-03 - 4.81285E-04 -1.15787E-04 4.36190E-03 -2.39172E-03 A|〇= -9.82856E-04 2.24602E-04 -1.87045E-04 -5.54381E-0 4 4.46109E-04 A12 = -1.9801 IE-23 -1.9801 IE-23 — — —1.9801 IE-23 Table 6-2 In addition, from Table 6-1, the “Table 6-3” can be derived. Content: 38 201235731 Sixth embodiment Focal length (mm) 1.40 f/f6 0.53 Aperture value 2.05 f/f.2 0.03 Half of maximum viewing angle (deg.) 90.10 Dr4S/T12 0.06 N, 1.80 T23/CT2 0.11 V6-V5 32.5 (R7+Rg)/(Ry-Rg) 0.27 f/fi -0.29 R9/f -0.88 f/f2 0.15 Rg/R^ 1.33 f/f3 0.07 ImgH/f 1.44 Table 6-3 Please refer to "Picture 6B" As shown, the longitudinal spherical aberration curves of the wide-angle photographic lens disclosed in "Phase 6A" are incident on the wavelengths of 486.1 nm, 587.6 nm, and 656.3 nm. As can be seen from Fig. 6B, in the present embodiment, the longitudinal spherical aberration caused by the wide viewing angle lens 60 is between -0.01 mm and 0.03 mm regardless of the light receiving the wavelength of 486.1 nm, 587.6 nm or 656.3 nm. .肇 Re-clearing is shown in Fig. 6C, which is a schematic diagram of the astigmatic field curvature curve of a wide-angle photographic lens disclosed in "6A" at a wavelength of 587.6 nm. It can be seen from "6C" that the meridional astigmatic field curvature generated by the light incident at a wavelength of 587.6 nm incident on the wide-angle photographic lens 60 is between _〇〇3111111 and 〇〇7 mm, and the sagittal astigmatism field curvature is between -〇 〇 3mm to 〇. 〇 3mm. 々Please refer to the “Picture 6D” for the distortion curve of the wide-angle photographic lens disclosed in “Phase 6A”. It can be seen from the "Picture 6D" that the distortion of the wavelength of 587_6 nm incident on the wide-angle camera lens 39 201235731 is between - drive and 〇%, "New Zealand" to "the first" = according to the above The fifth embodiment is designed in such a manner that the wide-angle photographic lens 60 disclosed in the present invention can effectively achieve a good balance between correcting various aberrations and obtaining a large angle of view. &lt;Seventh Embodiment&gt; The present invention is a seventh embodiment of the wide viewing angle photographic lens according to the present invention, and the specific embodiment thereof and the foregoing first embodiment are substantially The same elements are described in the seventh embodiment and the elements described in the first embodiment are the same as the element number (4) 7 as the shame number, indicating that they have the same Wei or structure, for the sake of simplicity, the following Only the differences are explained, and the rest are not repeated. In this implementation, the wavelength of the light received by the 7G of the Guangying photo is taken as an example. However, the above wavelength can be adjusted according to actual needs, and is not limited to the above wavelength values. The first lens 710 of the present embodiment has a negative refractive power, the second lens 720 has a positive refractive power, and the second lens 730 has a negative refractive power. The fourth lens 74 has a positive refractive power, and the fifth lens 750 has a negative refractive power. The sixth lens leak has a positive refractive power. Wherein the first lens side surface 711 is a convex surface, and the first lens image side surface 712 is a concave surface. The second lens side 721 is a concave surface, and the second lens is a side surface? 22 is convex. The fourth lens image side surface 742 is a convex surface. The fifth lens side 751 is a concave surface. The sixth lens image side surface 762 is convex. Further, the fourth lens 74A and the sixth lens system are both lenticular lenses. The details of the 201235731 wide viewing angle lens 70 are shown in the following "Table 7-1":

第七實施例 焦距(f)= 1.13 mm,光圈值(Fno)= 2.40,最大視角的一半(HFOV)= 83.8 deg. 表面# 物件 曲率半徑 (mm) 面距 (mm) 材質 折射率 色散 係數 焦距 (mm) 0 被攝物 平面 無限 1 第一透鏡 10.328100 1.333 塑膠 1.530 55.8 -3.03 2 1.327360 2.790 3 第二透鏡 -6.156700 2.600 塑膠 1.634 23.8 2.80 4 -1.601770 0.100 5 光圈 平面 -0.001 6 第三透鏡 38.887900 0.450 塑膠 1.544 55.9 -2.46 7 1.289170 0.110 8 第四透鏡 1.279750 1.127 塑膠 1.530 55.8 1.25 9 -0.951670 0.116 10 第五透鏡 -0.704110 0.300 塑膠 1.634 23.8 -1.05 11 14.318800 0.182 12 第六透鏡 2.248490 1.417 塑膠 1.544 55.9 2.07 13 -1.763150 0.500 14 紅外線濾光片 平面 0.300 玻璃 1.516 64.1 — 15 平面 0.500 16 保護玻璃 平面 0.400 玻璃 1.516 64.1 —— 41 201235731The seventh embodiment has a focal length (f) = 1.13 mm, an aperture value (Fno) = 2.40, and a half of the maximum viewing angle (HFOV) = 83.8 deg. Surface #object radius of curvature (mm) face distance (mm) material refractive index dispersion coefficient focal length (mm) 0 The plane of the object is infinite 1 First lens 10.328100 1.333 Plastic 1.530 55.8 -3.03 2 1.327360 2.790 3 Second lens - 6.156700 2.600 Plastic 1.634 23.8 2.80 4 -1.601770 0.100 5 Aperture plane -0.001 6 Third lens 38.887900 0.450 Plastic 1.544 55.9 -2.46 7 1.289170 0.110 8 Fourth lens 1.279750 1.127 Plastic 1.530 55.8 1.25 9 -0.951670 0.116 10 Fifth lens -0.704110 0.300 Plastic 1.634 23.8 -1.05 11 14.318800 0.182 12 Sixth lens 2.248490 1.417 Plastic 1.544 55.9 2.07 13 -1.763150 0.500 14 Infrared filter plane 0.300 Glass 1.516 64.1 — 15 Plane 0.500 16 Protective glass plane 0.400 Glass 1.516 64.1 —— 41 201235731

此外’本實施例之第-透鏡71〇至第六透鏡皆可為非球 面透鏡’且謂合但祕於上述(公式Asp)神_,關於各個非 球面的參數請參照下列「表7-2」: 非球面係數(Aspheric Coefficients) 表面# 1 2 3 4 k = -2.92170E+00 -5.46256E-01 -3.04097E+00 -1.37485E+01 a4= 2.46771E-05 -1.08000E-02 -1.42177E-02 4.26228E-02 a6 = -8.03988E-06 1.91395E-03 6.55941E-03 2.68819E-02 -6.32509E-08 -4.31587E-04 -6.49959E-04 -5.52174E-02 Al〇 = 3.67439E-09 -2.09696E-05 -9.37860E-05 2.35564E-02 A12 = 一 — -2.98794E-15 -2.96919E-15 表面# 6 7 8 9 k = -8.00000E+01 -1.63474E+01 -1.09066E+01 -1.05581E+00 A4 = 3.15418E-01 -1.53147E-01 -1.12253E-01 '5.9753 IE-02 = -2.15631E-01 1.04277E-01 -6.71426E-02 -5.12557E-02 Ag = 1.91340E-01 1.03488E-02 -1.50288E-01 7.30175E-02 A)0 = -8.97827E-02 4.04185E-02 -1.39712E-01 -7.61053E-02 A12 = -2.96919E-15 -2.96919E-15 -2.96919E-15 -2.96919E-15 表面枯 10 11 12 13 k = -1.84531E+00 1.00000E+02 -2.00841E+01 -6.94258E+00 42 201235731 表7-2 此外,從「表7-1」中可推算出「表7-3」所述的内容: 第七實施例 焦距(mm;) 1.13 f/f6 0.54 光圈值 2,40 f/fn 0.62 最大視角的一半(deg.) 83.80 Dr4S/T12 0.04 N, 1.53 T23/CT2 0.04 v6-v5 32.1 (R7+Rs)/(R7-R8) 0.15 f/fj -0.37 R9/f -0.63 f/f2 0.40 R8/R9 1.35 f/f3 -0.46 ImgH/f 1.85 a4= -8.58087E-02 4-697l5E-〇2 5.22071E-03 -8.12271E-02 a6 = 5.39630E-02 2.26530E-02 -1.18257E-02 4.54733E-02 a8 = 7.44839E-02 -!-4l625E-〇2 6.20104E-03 -1.86616E-02 Αι〇 = -3.76498E-02 *2.04317E-04 -8.36554E-04 2.84378E-03 Ai2 = -2.96919E-15 — —— -2.96919E-15 表7-3 請參照「第7B圖」所示,係為波長486 1脱、587.6 nm與 656.3nm的光線入射於「第7A圖」所揭露之廣視角攝影鏡頭的縱 向球差曲線示意圖。從「第7B圖」中可知,本實施例中不論是接 收波長486.1 nm、587.6 nm或656.3nm的光線,廣視角攝影鏡頭 70所產生的縱向球差皆介於_〇 〇3mm至〇 〇2mm之間。 再請參照「第7C圖」所示,係為波長587.6nm的光線入射於 43 201235731 「=圖」所揭露之廣視角攝影鏡頭的像散場曲曲線示意圖。從 第7C圖」f可知,波長5876贈的光線入射 ^曲生Γ午面像散場曲介於〇.0晒至_咖之間,: 像散%曲介於_a〇lmm至0 〇8mm之間。 再請參照「第7D圖」所示,係為波長縱6歸的光線入射於 7A圖」所揭露之廣視角攝影義的畸變曲線示意圖。從「第 7D圖」中可知,波長5876nm的光線入射廣視角攝影鏡頭%所 產生料變率介於挪。至〇%之間。如厂第7b圖」至「第綱」 所述依照上述第七實施例進行設計,本發明所揭露之廣視角攝 影鏡頭7G可纽齡紅各娜差簡得大觸肖之_得良好 的平衡。 —雖穌發_前_較佳實施例揭露如上,然其並非用以限 定本發明,任域f相像技藝者,在不脫離本發_精神和範圍 内’當可作些許的更動與潤飾’因此本發專利保護範圍須視 本說明書所_申請專利範騎界定者為準。 【圖式簡單說明】 第1A圖係為根據本發明所揭露之廣視角攝影鏡頭的第一實 施例結構示意圖。 第1B圖係為波長486,lnm、587.6nm與656.3nm的光線入射 於第1A圖所揭露之廣視角攝影鏡頭的縱向球差曲線示意圖。 第1C圖係為波長587.6nm的光線入射於第1A圖所揭露之廣 視角攝影鏡頭的像散場曲曲線示意圖。 201235731 第ID圖係為波長587.6nm的光線入射於第1A圖所揭露之廣 視角攝影鏡頭的畸變曲線示意圖。 第2Α圖係為根據本發明所揭露之廣視角攝影鏡頭的第二實 施例結構示意圖。 第2Β圖係為波長486.1nm、587.6nm與656.3nm的光線入射 於第2A圖所揭露之廣視角攝影鏡頭的縱向球差曲線示意圖。 第2C圖係為波長587.6nm的光線入射於第2A圖所揭露之廣 視角攝影鏡頭的像散場曲曲線示意圖。 第2D圖係為波長587.6nm的光線入射於第2A圖所揭露之廣 視角攝影鏡頭的畸變曲線示意圖。 第3A圖係為根據本發明所揭露之廣視角攝影鏡頭的第三實 施例結構示意圖。 第3B圖係為波長486.1nm、587.6nm與656.3nm的光線入射 於第3A圖所揭露之廣視角攝影鏡頭的縱向球差曲線示意圖。 第3C圖係為波長587.6nm的光線入射於第3A圖所揭露之廣 視角攝影鏡頭的像散場曲曲線示意圖。 第3C)圖係為波長587.6nm的光線入射於第3A圖所揭露之廣 視角攝影鏡頭的畸變曲線示意圖。 第4A圖係為根據本發明所揭露之廣視角攝影鏡頭的第四實 施例結構示意圖。 第圖係為波長486.1nm、587.6nm與656.3nm的光線入射 於第4A圖所揭露之廣視角攝影鏡頭的縱向球差曲線示意圖。 45 201235731 第4C圖係為波長587.6膽❾光線入射於第4A圖所揭露之廣 視角攝影鏡頭的像散場曲曲線示意圖。 第4D圖係為波長587.6nm #光線入射於第4A圖所揭露之廣 視角攝影鏡頭的畸變曲線示意圖。 第5A圖係為根據本發明所揭露之廣視角攝影鏡頭的第五實 施例結構示意圖。 第5B圖係為波長働lnm、奶6nm與娜3舰的光線入射 於第5A圖所揭露之廣視角攝影鏡頭的縱向球差曲線示意圖。 第5C圖係為波長587 6nm的光線入射於第5a圖所揭露之廣 .視角攝影鏡頭的像散場曲曲線示意圖。 第5D圖係為波長587.6nm的光線入射於第5A圖所揭露之廣 視角攝影鏡頭的畸變曲線示意圖。 第6A圖係為根據本發明所揭露之廣視角攝影鏡頭的第六實 施例結構不意圖。 第6B圖係為波長486 lnm、587 6nm與656編的光線入射 於第6A圖所揭露之廣視角攝影鏡頭的縱向球差曲線示意圖。 第6C圖係為波長6職#光線入射於第6a圖所揭露之廣 視角攝影鏡頭的像散場曲曲線示意圖。 第6D圖係為波長587 6nm白勺光線入射於第6A圖所揭露之廣 視角攝影鏡頭的畸變曲線示意圖。 第Μ圖係為根據本發明所揭露之廣視角攝影鏡頭的第七實 施例結構示意圖。 46 201235731 第7B圖係為波長486.1nm、587.6nm與656.3nm的光線入射 於第7A圖所揭路之廣視角攝影鏡頭的縱向球差曲線示音圖。 第7C圖係為波長587 6nm的光線入射於第7八圖所揭露之廣 視角攝影鏡頭的像散場曲曲線示意圖。 第7D圖係為波長587.6nm的光線入射於第7八圖所揭♦ 視角攝影鏡頭的畸變曲線示意圖。 之廣 【主要元件符號說明】 10,20,30,40,50,60,70 廣視角攝影鏡頭 100,200,300,400,500,600,700 光圈 110.210.310.410.510.610.710 第一透鏡 111.211.311.411.511.611.711 第一透鏡物側面 112.212.312.412.512.612.712 第一透鏡像側面 120,220,320,420,520,620,720 第二透鏡 121.221.321.421.521.621.721 第二透鏡物側面 122.222.322.422.522.622.722 第二透鏡像側面 130,230,330,430,530,630,730 第三透鏡 第三透鏡物側面 第三透鏡像側面 第四透鏡 第四透鏡物側面 第四透鏡像側面 第五透鏡 131.231.331.431.531.631.731 132.232.332.432.532.632.732 140.240.340.440.540.640.740 141.241.341.441.541.641.741 142.242.342.442.542.642.742 150,250,350,450,550,650,750 47 201235731 151,251,351,451,551,651,751 第五透鏡物側面 152,252,352,452,552,652,752 第五透鏡像側面 160.260.360.460.560.660.760 第六透鏡 161.261.361.461.561.661.761 第六透鏡物側面 162.262.362.462.562.662.762 第六透鏡像側面 180,280,380,480,580,680,780 紅外線濾光片 190.290.390.490.590.690.790 成像面 191.291.391.491.591.691.791 保護玻璃 192.292.392.492.592.692.792 影像感測元件In addition, the 'the first lens to the sixth lens of the present embodiment may be an aspherical lens' and the combination is the same as the above (Formula Asp). For the parameters of each aspheric surface, please refer to the following "Table 7-2". ”: Aspheric Coefficients Surface # 1 2 3 4 k = -2.92170E+00 -5.46256E-01 -3.04097E+00 -1.37485E+01 a4= 2.46771E-05 -1.08000E-02 -1.42177 E-02 4.26228E-02 a6 = -8.03988E-06 1.91395E-03 6.55941E-03 2.68819E-02 -6.32509E-08 -4.31587E-04 -6.49959E-04 -5.52174E-02 Al〇= 3.67439 E-09 -2.09696E-05 -9.37860E-05 2.35564E-02 A12 = One - -2.98794E-15 -2.96919E-15 Surface # 6 7 8 9 k = -8.00000E+01 -1.63474E+01 - 1.09066E+01 -1.05581E+00 A4 = 3.15418E-01 -1.53147E-01 -1.12253E-01 '5.9753 IE-02 = -2.15631E-01 1.04277E-01 -6.71426E-02 -5.12557E-02 Ag = 1.91340E-01 1.03488E-02 -1.50288E-01 7.30175E-02 A)0 = -8.97827E-02 4.04185E-02 -1.39712E-01 -7.61053E-02 A12 = -2.96919E-15 - 2.96919E-15 -2.96919E-15 -2.96919E-15 Surface surface 10 11 12 13 k = -1.84531E+00 1.00000E+02 -2.00841E+01 -6.94258E+00 4 2 201235731 Table 7-2 In addition, the contents described in "Table 7-3" can be derived from "Table 7-1": The focal length of the seventh embodiment (mm;) 1.13 f/f6 0.54 Aperture value 2, 40 f /fn 0.62 Half of the maximum viewing angle (deg.) 83.80 Dr4S/T12 0.04 N, 1.53 T23/CT2 0.04 v6-v5 32.1 (R7+Rs)/(R7-R8) 0.15 f/fj -0.37 R9/f -0.63 f /f2 0.40 R8/R9 1.35 f/f3 -0.46 ImgH/f 1.85 a4= -8.58087E-02 4-697l5E-〇2 5.22071E-03 -8.12271E-02 a6 = 5.39630E-02 2.26530E-02 -1.18257 E-02 4.54733E-02 a8 = 7.44839E-02 -!-4l625E-〇2 6.20104E-03 -1.86616E-02 Αι〇= -3.76498E-02 *2.04317E-04 -8.36554E-04 2.84378E- 03 Ai2 = -2.96919E-15 — —— -2.96919E-15 Table 7-3 Please refer to “Figure 7B” for the wavelengths of 486 1 off, 587.6 nm and 656.3 nm incident on “Phase 7A”. A schematic diagram of the longitudinal spherical aberration curve of the wide-angle photographic lens disclosed. As can be seen from "Fig. 7B", in the present embodiment, regardless of the light receiving wavelengths of 486.1 nm, 587.6 nm or 656.3 nm, the longitudinal spherical aberration produced by the wide viewing angle lens 70 is between _3 mm and 〇〇2 mm. between. Please refer to the "Act 7C" for the astigmatism field curve of the wide-angle photographic lens disclosed in the light of 587.6 nm. It can be seen from Fig. 7C that the light incident at wavelength 5876 is incident on the 曲 Γ 面 像 像 场 场 〇 0 0 0 0 咖 咖 咖 : : 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖 咖between. Referring to the "Picture 7D", it is a schematic diagram of the distortion curve of the wide-angle photography disclosed in the light of the wavelength of the vertical light. It can be seen from the "Fig. 7D" that the light variability of the light incident at a wavelength of 5,876 nm is different from that of the wide-angle photographic lens. Between 〇%. According to the seventh embodiment described above, the seventh aspect of the invention is designed according to the seventh embodiment described above, and the wide-angle photographic lens 7G disclosed by the present invention can be well-balanced. . - Although the preferred embodiment of the present invention is disclosed above, it is not intended to limit the invention, and the skilled artisan will be able to make some changes and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of protection of this patent shall be subject to the definition of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a schematic view showing the structure of a first embodiment of a wide viewing angle photographing lens according to the present invention. Fig. 1B is a schematic diagram showing the longitudinal spherical aberration curves of the wide-angle photographic lens disclosed in Fig. 1A with wavelengths of 486, 1 nm, 587.6 nm, and 656.3 nm. Fig. 1C is a schematic diagram showing the astigmatic field curvature curve of the wide-angle photographic lens disclosed in Fig. 1A when light having a wavelength of 587.6 nm is incident. 201235731 The ID diagram is a distortion curve of a wide-angle photographic lens disclosed in Fig. 1A, which is incident on a wavelength of 587.6 nm. The second drawing is a schematic structural view of a second embodiment of the wide viewing angle photographic lens according to the present invention. The second graph is a schematic diagram of the longitudinal spherical aberration curves of the wide-angle photographic lenses disclosed in Fig. 2A, which are incident on the wavelengths of 486.1 nm, 587.6 nm, and 656.3 nm. Fig. 2C is a schematic diagram showing the astigmatic field curvature curve of the wide-angle photographic lens disclosed in Fig. 2A when the light having a wavelength of 587.6 nm is incident. Fig. 2D is a schematic diagram showing the distortion curve of a wide-angle photographic lens disclosed in Fig. 2A by light having a wavelength of 587.6 nm. Fig. 3A is a schematic view showing the structure of a third embodiment of the wide viewing angle photographing lens according to the present invention. Fig. 3B is a schematic diagram showing the longitudinal spherical aberration curves of the wide-angle photographic lenses disclosed in Fig. 3A, which are incident on the wavelengths of 486.1 nm, 587.6 nm, and 656.3 nm. Fig. 3C is a schematic diagram showing the astigmatic field curvature curve of the wide-angle photographic lens disclosed in Fig. 3A when light having a wavelength of 587.6 nm is incident. The 3C) is a schematic diagram of the distortion curve of the wide-angle photographic lens disclosed in Fig. 3A when the light having a wavelength of 587.6 nm is incident. Fig. 4A is a schematic view showing the structure of a fourth embodiment of the wide viewing angle photographing lens according to the present invention. The figure is a schematic diagram of the longitudinal spherical aberration curves of the wide-angle photographic lenses disclosed in Fig. 4A, which are incident on the wavelengths of 486.1 nm, 587.6 nm, and 656.3 nm. 45 201235731 Figure 4C is a schematic diagram of the astigmatic field curvature curve of a wide-angle photographic lens with a wavelength of 587.6 cholesteric light incident on Figure 4A. The 4D figure is a distortion curve of the wide-angle photographic lens disclosed by the wavelength of 587.6 nm # ray incident on the 4A. Fig. 5A is a schematic view showing the structure of a fifth embodiment of the wide viewing angle photographing lens according to the present invention. Fig. 5B is a schematic diagram showing the longitudinal spherical aberration curves of the wide-angle photographic lens disclosed in Fig. 5A by the light of the wavelength 働lnm, the milk 6nm and the Na 3 ship. Fig. 5C is a diagram showing the astigmatism field curve of the angle of view lens as the light beam having a wavelength of 587 6 nm is incident on the image disclosed in Fig. 5a. Fig. 5D is a schematic diagram showing the distortion curve of the wide-angle photographic lens disclosed in Fig. 5A when the light having a wavelength of 587.6 nm is incident. Fig. 6A is a schematic view showing the structure of the sixth embodiment of the wide viewing angle photographing lens according to the present invention. Fig. 6B is a schematic diagram showing the longitudinal spherical aberration curves of the wide-angle photographic lens disclosed in Fig. 6A by the light of the wavelengths of 486 lnm, 587 6 nm and 656. Fig. 6C is a schematic diagram of the astigmatic field curvature curve of the wide-angle photographic lens disclosed by the wavelength 6 ray # ray incident on Fig. 6a. Fig. 6D is a schematic diagram showing the distortion curve of the wide-angle photographic lens disclosed in Fig. 6A when the light having a wavelength of 587 6 nm is incident. The figure is a schematic structural view of a seventh embodiment of the wide-angle photographic lens according to the present invention. 46 201235731 Figure 7B is a longitudinal spherical aberration curve diagram of a wide-angle photographic lens with wavelengths of 486.1 nm, 587.6 nm, and 656.3 nm incident on the road of Figure 7A. Fig. 7C is a schematic diagram showing the astigmatic field curve of the wide-angle photographic lens disclosed by the light beam having a wavelength of 587 6 nm incident on the seventh image. The 7D image is a distortion curve of the light source with a wavelength of 587.6 nm incident on the photographic lens of FIG.广广 [Main component symbol description] 10,20,30,40,50,60,70 Wide viewing angle lens 100,200,300,400,500,600,700 Aperture 110.210.310.410.510.610.710 First lens 111.211.311.411.511.611.711 First lens side 112.212 .312.412.512.612.712 First lens image side 120, 220, 320, 420, 520, 620, 720 Second lens 121.221.321.421.521.621.721 Second lens side 122.222.322.422.522.622.722 Second lens image side 130, 230, 330, 430, 530, 630, 730 Third lens third lens side third Lens image side surface fourth lens fourth lens object side fourth lens image side surface fifth lens 131.231.331.431.531.631.731 132.232.332.432.532.632.732 140.240.340.440.540.640.740 141.241.341.441.541.641.741 142.242.342.442 .542.642.742 150,250,350,450,550,650,750 47 201235731 151,251,351,451,551,651,751 fifth lens side 152,252,352,452,552,652,752 fifth lens image side 160.260.360.460.560.660.760 sixth lens 161.261.361.461.561.661.761 sixth Lens object side 162.262.362.462.562.662.762 sixth lens image side 180, 280, 380, 4 80,580,680,780 Infrared filter 190.290.390.490.590.690.790 Imaging surface 191.291.391.491.591.691.791 Protective glass 192.292.392.492.592.692.792 Image sensing element

4848

Claims (1)

201235731 、申請專利範圍: 種=角攝錢頭’係沿著—光軸之物側至像側依序包括 〃、負屈折力之第一透鏡,該第一透鏡之物 該第一透鏡之像側㈣㈣; 面為凸面 -具正屈折力之第二透鏡 該第二透鏡之像側面為凸面; 一第三透鏡; ,該第一透鏡之物側面為凹面, 一具正屈折力之第四透鏡; 一具負屈折力之第五透鏡;以及 一具正屈折力之第六透鏡; 其中’該廣視角攝影鏡頭具有一焦距f,該第二透鏡具有 -焦距f2 ’該第六透鏡具有,且滿足以下公式: 〇&lt;f/f2&lt;i.〇 ;以及 0.35 &lt;f/f6&lt;0.95。 癱2.如请求項1所述之廣視角攝影鏡頭,其中該第六透鏡之像側面 為凸面。 3. 如請求項2所述之廣視賴影鏡頭,其中該第四透鏡之像侧面 為凸面,該第五透鏡之物侧面為凹面。 4. 如請求項3所述之廣視角攝影鏡頭,其中更包括一光圈,於該 光軸上,該第一透鏡與該第二透鏡之間具有一鏡間距Τι2,該 第一透鏡像側面與该光圈之間具有一距離j)r4S,且滿足以下 公式:Dr4S/T12&lt;0.4。 49 201235731 士〜月求項3所述之廣視賴影鏡頭,其中於該光輛上,該 =與該第三透糊具有—她T23,:透鏡且有: 厚f CT2’且滿足以下公式:t23/CT2&lt;0.4。 ^ 如請求項5所述之廣視角攝影鏡頭,其中於透鏡與該第二透鏡之門且右 、〜 〜苐一厚产CT鏡1具有—_距Tm透鏡具有- 又2 ’且該廣視角攝影鏡頭滿足以下公式: T23/ CT2&lt;0.2 ο =2 f4所Γ第之廣視角攝影鏡頭,其中該廣視角攝影鏡頭具鏡具有,且敲以下公式:^==侧_„㈣峨之像側面 且該第五透鏡之物側面具有一曲率半經化, j視輯影鏡頭滿足以下公式:G9&lt;R鳥&lt;17。 如味求項5所述之廣視角攝影 有-焦則,該第 、口廣視角攝衫鏡碩具 〇續6&lt;〇.7 焦距☆,壞下列公式: 1〇.^=!之廣視角攝影鏡頭,其中更包括一光圈,於該 透鏡與該第二透鏡之間具有-賴距τ12,节 第二透鏡之像側面與該光圈之間具有一距離以 下公式:Dr4S/T12&lt;0.2。 兩灿項7所述之廣視角攝影鏡頭,其中該廣視角攝影鏡頭夏 有-焦Μ,該第三透鏡具有—焦距$,且滿足以下公式〆、 5. 6. 7. 8. 9. 201235731 _i.〇&lt;f/f3&lt;〇。 12.Γ1項7所述之廣視角攝影鏡頭,其中該廣視角攝影鏡頭具 距f ’料五辆之物側面具有—#料㈣且滿足 乂下公式:-1.0&lt;R9/f&lt;-0.4。 13=求項嫩瓣_,財㈣峨之物侧面 &quot;有—⑽半徑R7,該細透鏡之像側面具有—曲率半徑… • 且滿足以下公式:〇碌7+R雜7_R把1〇。 • 14.=求項7所述之廣視角攝影鏡頭,其中該第一透鏡具有一折 射率Νι,且滿足以下公式:\&gt;1.72。 15. =求項11所述之廣視_鏡頭,其_視_綱 4 —焦距f,該第—透鏡具有—焦距d滿相下公式: _〇.4&lt;f/f丨〈_〇 ]。 16. 如清求項3所述之廣視角攝影鏡頭,其中該第五透鏡且有一色 散係數%,該第六透鏡具有—色散係數乂,且滿足下列公式: 28&lt;V6—v5&lt;45。 〗7.如請求項2所述之廣視賴影鏡頭,其中更包括一影像感測元 件’該影像感測元件之有效感光區域對角線的一半為㈤讲, 該廣視角攝影鏡頭具有-焦距f,且滿足以下公式:imgH/w2。 18·如請求項17所述之廣視角攝影鏡頭,其中該廣視角攝影鏡頭 具有-最大視角的-半HFW 1滿足以下公式:_v&gt;75。 I9. -種廣視角攝影鏡頭,係沿著一光軸之物側至像側依序包括: 一具正屈折力之前鏡群,包括有: 51 201235731 面 面 八負屈折力之第—透鏡,該第一透鏡之物側面 該第-透鏡之像側面為凹面;以及 '' 具正屈折力之第二透鏡,該第二透鏡之物側面為凹 該第二透鏡之像側_㈣; ‘、'、凹 凸 光圈;以及 一後鏡群,包括有: 一第三透鏡; 具正屈折力之第四透鏡; 一具負屈折力之第五透鏡;以及 鲁 一具正屈折力之第六透鏡; 八中於》亥光軸上,該第二透鏡之像側面與該光圈之門具 有一距離滅,該第—透鏡與該第二透鏡之間具有-鏡^ Tl2’該廣視鱗影鏡頭具有—焦距f,該前鏡群具有—焦距^, 且滿足以下公式: 12 ’ Dr4S/T12&lt;〇.4 ;以及 〇&lt;f/f12&lt;1.2。 鲁 2〇.如π求項19所述之廣視肖攝影綱,其巾該後鏡群至少包人 一具正屈折力之雙凸透鏡。 3 21·如印求項20所述之廣視角攝影鏡頭,其中該第四透鏡之像側 面為凸面,該第五透鏡之物側面為凹面,該第六透鏡之像⑽ 為凸面。 如請求項21所述之廣視角攝影鏡頭,其中於該光軸上,該第 52 201235731 二透鏡與該第三透鏡之間具有一鏡間距丁23,該第二透鏡具有 一厚度CT〗,真滿足以下公式.T23/ CT〗&lt;0.2。 23. 如請求項所述之廣視角攝影鏡頭,其中更包括一影像感測 元件’該影像感測元件之有效感光區域對角線的一半為 ImgH ’該廣視角攝影鏡頭具有一焦距f,且滿足以下公式: ImgH/£&gt;1.2 〇 24. 如請求項21所述之廣視角攝影鏡頭,其中該第五透鏡具有一 • 色散係數%,該第六透鏡具有一色散係數V6,且滿足下列公 式:28&lt;V6 —V5&lt;45。 25_如請求項21所述之廣視角攝影鏡頭,其中該廣視角攝影鏡頭 具有一焦距f’該第三透鏡具有一焦距4,且滿足以下公式: -1.0&lt;f/f3&lt;0。 53201235731, the scope of the patent application: the type of the first lens is the first lens of the first lens, and the image of the first lens is along the object side to the image side of the optical axis. Side (four) (four); surface is convex - second lens with positive refractive power, the image side of the second lens is convex; a third lens; the first lens object side is concave, a positive refractive power of the fourth lens a fifth lens having a negative refractive power; and a sixth lens having a positive refractive power; wherein 'the wide-angle photographic lens has a focal length f, the second lens has a focal length f2', the sixth lens has The following formula is satisfied: 〇 &lt;f/f2&lt;i.〇; and 0.35 &lt;f/f6&lt;0.95. The wide-angle photographic lens of claim 1, wherein the image side of the sixth lens is convex. 3. The wide viewing lens of claim 2, wherein the image side of the fourth lens is a convex surface, and the object side of the fifth lens is a concave surface. 4. The wide-angle photographic lens of claim 3, further comprising an aperture on the optical axis, a mirror spacing Τι2 between the first lens and the second lens, the first lens image side and The aperture has a distance j)r4S between them and satisfies the following formula: Dr4S/T12&lt;0.4. 49 201235731 The Vision-Looking lens described in Item 3 of the syllabus, wherein on the light vehicle, the = and the third permeable paste have her-T23, lens: and the thickness f CT2' and satisfies the following formula :t23/CT2&lt;0.4. ^ The wide-angle photographic lens of claim 5, wherein the lens and the second lens door and the right, ~ 苐 厚 thick CT mirror 1 have - _ Tm lens has - 2 ' and the wide viewing angle The photographic lens satisfies the following formula: T23/CT2&lt;0.2 ο =2 f4 The wide-angle photographic lens of the ,, wherein the wide-angle photographic lens has a mirror and knocks the following formula: ^== side _„(4) And the side surface of the fifth lens has a curvature semi-transformation, and the j-viewing lens satisfies the following formula: G9 &lt; R bird &lt;17. The wide-angle photography as described in claim 5 has - focus, the first , mouth wide viewing angle mirror mirror masterpiece continues 6 &lt; 〇.7 focal length ☆, the following formula: 1 〇. ^ =! wide viewing angle photographic lens, which further includes an aperture, the lens and the second lens Between the image side of the second lens and the aperture, there is a distance below the formula: Dr4S/T12&lt;0.2. The wide-angle photographic lens described in the second item 7, wherein the wide-angle photographic lens is summer With-focal, the third lens has a focal length of $ and satisfies the following formula 〆, 5. 6. 7. 8. 9. 201235731 _i.〇&lt;f/f3&lt;〇. 12. The wide-angle photographic lens described in Item 1 of the item 7, wherein the wide-angle photographic lens has a side distance from the object of the five items, and has a material (four) and satisfies the underarm. Formula: -1.0&lt;R9/f&lt;-0.4. 13=Improve the tender _, the treasury (4) 侧面 侧面 侧 side &quot;有—(10) Radius R7, the image side of the lens has a radius of curvature... • and the following Formula: 〇 7 7+R 杂 7_R 〇 1 •. 14. The broad-angle photographic lens of claim 7, wherein the first lens has a refractive index Νι and satisfies the following formula: \&gt; 1.72. = The wide view _ lens described in Item 11, the _ _ _ 4 - the focal length f, the first lens has - the focal length d full phase under the formula: _ 〇 . 4 &lt; f / f 丨 < _ 〇]. 16. The wide viewing angle photographic lens of claim 3, wherein the fifth lens has a dispersion coefficient %, the sixth lens has a dispersion coefficient 乂, and satisfies the following formula: 28 &lt; V6 - v5 &lt; 45. 7. The wide viewing lens of claim 2, further comprising an image sensing component 'one of the diagonals of the effective photosensitive region of the image sensing component In the case of (5), the wide-angle photographic lens has a focal length f and satisfies the following formula: imgH/w2. 18. The wide-angle photographic lens of claim 17, wherein the wide-angle photographic lens has a maximum angle of view - The half HFW 1 satisfies the following formula: _v &gt; 75. I9. - A wide-angle photographic lens, which is sequentially included along the object side to the image side of an optical axis: a group of positive refractive power before, including: 51 201235731 a lens having an eight-negative refractive power; a side surface of the first lens on which the image side of the first lens is a concave surface; and a second lens having a positive refractive power, the object side of the second lens being concave The image side of the second lens _ (four); ', ', the concave and convex aperture; and a rear lens group, including: a third lens; a fourth lens having a positive refractive power; a fifth lens having a negative refractive power; Lu is a sixth lens with positive refractive power; on the axis of the light, the image side of the second lens has a distance from the gate of the aperture, and the first lens and the second lens have - Mirror ^ Tl2' the wide-view scale lens has - focal length f The front lens group having a - ^ focal length, and satisfies the following formula: 12 'Dr4S / T12 &lt;〇.4; and a square &lt; f / f12 &lt; 1.2. Lu 2〇. As described in π, item 19, the wide-view photographic camera has a lenticular lens with at least one positive refractive power. The wide viewing angle photographic lens of claim 20, wherein the image side of the fourth lens is a convex surface, the object side surface of the fifth lens is a concave surface, and the image (10) of the sixth lens is a convex surface. The wide-angle photographic lens of claim 21, wherein on the optical axis, the 52nd 201235731 two lens and the third lens have a mirror spacing DD 23, the second lens has a thickness CT, true The following formula .T23/CT is satisfied &lt;0.2. 23. The wide-angle photographic lens of claim 1 , further comprising an image sensing element 'half of a diagonal of an effective photosensitive area of the image sensing element is ImgH'; the wide-angle photographic lens has a focal length f, and The wide-angle photographic lens of claim 21, wherein the fifth lens has a dispersion coefficient %, the sixth lens has a dispersion coefficient V6, and satisfies the following formula: Formula: 28 &lt; V6 - V5 &lt; 45. The wide-angle photographic lens of claim 21, wherein the wide-angle photographic lens has a focal length f', the third lens has a focal length of 4, and satisfies the following formula: -1.0&lt;f/f3&lt;0. 53
TW100105158A 2011-02-16 2011-02-16 Wide angle photographic lens assembly TWI417596B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW100105158A TWI417596B (en) 2011-02-16 2011-02-16 Wide angle photographic lens assembly
CN201110085930.8A CN102645727B (en) 2011-02-16 2011-04-02 Wide-angle photographic lens
CN2011200984479U CN202008546U (en) 2011-02-16 2011-04-02 Wide-angle photographic lens
US13/169,955 US8441746B2 (en) 2011-02-16 2011-06-27 Wide angle photographic lens assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100105158A TWI417596B (en) 2011-02-16 2011-02-16 Wide angle photographic lens assembly

Publications (2)

Publication Number Publication Date
TW201235731A true TW201235731A (en) 2012-09-01
TWI417596B TWI417596B (en) 2013-12-01

Family

ID=44750206

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105158A TWI417596B (en) 2011-02-16 2011-02-16 Wide angle photographic lens assembly

Country Status (3)

Country Link
US (1) US8441746B2 (en)
CN (2) CN202008546U (en)
TW (1) TWI417596B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9383552B2 (en) 2013-10-31 2016-07-05 Genius Electronic Optical Co., Ltd. Optical imaging lens and electronic device comprising the same
TWI660194B (en) * 2014-12-05 2019-05-21 南韓商三星電機股份有限公司 Optical system
TWI694276B (en) * 2017-09-26 2020-05-21 鴻海精密工業股份有限公司 Optical lens
TWI733191B (en) * 2019-09-12 2021-07-11 大陸商信泰光學(深圳)有限公司 Lens assembly
US11624895B2 (en) 2019-09-12 2023-04-11 Sintai Optical (Shenzhen) Co., Ltd. Lens assembly

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI417596B (en) * 2011-02-16 2013-12-01 Largan Precision Co Wide angle photographic lens assembly
TWI449944B (en) 2012-07-24 2014-08-21 Largan Precision Co Ltd Wide-angle optical lens assembly
TWI474038B (en) 2013-02-25 2015-02-21 Largan Precision Co Ltd Imaging lens assembly
CN103676089B (en) 2013-08-29 2016-01-20 玉晶光电(厦门)有限公司 Optical imaging lens and apply the electronic installation of this optical imaging lens
CN103676106B (en) * 2013-08-29 2016-05-11 玉晶光电(厦门)有限公司 Portable electronic devices and its optical imaging lens
CN103777320B (en) 2013-09-06 2016-08-10 玉晶光电(厦门)有限公司 Portable electronic devices and its optical imaging lens
US9551857B2 (en) 2013-09-25 2017-01-24 Google Inc. Wide angle lens assembly
US9083885B1 (en) 2013-11-18 2015-07-14 Google Inc. Fixed focus camera module with near-field image recognition
CN103969790B (en) 2013-12-09 2016-05-11 玉晶光电(厦门)有限公司 Optical imaging lens and apply the electronic installation of this optical imaging lens
KR101536557B1 (en) * 2013-12-19 2015-07-15 주식회사 코렌 Photographic lens optical system
TWI498623B (en) * 2013-12-20 2015-09-01 玉晶光電股份有限公司 Optical imaging lens and eletronic device comprising the same
TWI477808B (en) 2014-01-17 2015-03-21 Largan Precision Co Ltd Image capturing lens assembly, image capturing device and automobile photographing terminal
TWI479190B (en) * 2014-03-24 2015-04-01 Largan Precision Co Ltd Imaging lens assembly, imaging device and vehicle photographing device
KR101681383B1 (en) 2014-11-18 2016-11-30 삼성전기주식회사 Lens module
KR102380229B1 (en) 2015-03-06 2022-03-29 삼성전자주식회사 Photographing lens system and photographing apparatus having the same
KR102458661B1 (en) * 2015-03-18 2022-10-25 삼성전자주식회사 Super wide angle lens and photographing lens having the same
TWI533021B (en) * 2015-04-02 2016-05-11 大立光電股份有限公司 Optical lens, image capturing device and electronic device
KR101823203B1 (en) 2015-08-10 2018-01-29 삼성전기주식회사 Imaging Lens System
KR102508341B1 (en) 2015-09-04 2023-03-10 삼성전자주식회사 Super wide angle optical system
KR102296113B1 (en) 2015-11-26 2021-09-01 삼성전기주식회사 Optical Imaging System
KR101883151B1 (en) 2015-11-26 2018-07-30 삼성전기주식회사 Optical Imaging System
US10732383B2 (en) * 2016-02-05 2020-08-04 Young Optics Inc. Optical lens
KR102600453B1 (en) 2016-02-19 2023-11-10 삼성전자주식회사 Optical lens assembly and electronic apparatus having the same
TWI582458B (en) 2016-04-22 2017-05-11 大立光電股份有限公司 Imaging optical lens system, image capturing unit and electronic device
CN107305274B (en) * 2016-04-22 2019-04-12 大立光电股份有限公司 Imaging optical system microscope group, image-taking device and electronic device
KR20180015485A (en) 2016-08-03 2018-02-13 삼성전자주식회사 Optical lens assembly and electronic apparatus having the same
KR20180076164A (en) 2016-12-27 2018-07-05 삼성전기주식회사 Optical system
EP3470905A1 (en) * 2017-10-10 2019-04-17 Shanghai Xiaoyi Technology Co., Ltd. Fisheye lens
CN107505693A (en) 2017-10-10 2017-12-22 上海小蚁科技有限公司 A kind of fish eye lens
CN108363178B (en) * 2018-04-26 2020-08-25 瑞声光学解决方案私人有限公司 Image pickup optical lens
US11320632B2 (en) 2018-07-20 2022-05-03 Samsung Electro-Mechanics Co., Ltd. Optical imaging system and mobile electronic device
JP6551875B1 (en) * 2018-08-14 2019-07-31 エーエーシー テクノロジーズ ピーティーイー リミテッド Imaging optical lens
KR20200084180A (en) 2019-01-02 2020-07-10 삼성전기주식회사 Image Capturing Lens System
CN110297314B (en) * 2019-06-29 2021-08-17 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN110297315B (en) * 2019-06-30 2021-08-17 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN114942508A (en) * 2020-11-16 2022-08-26 宁波舜宇车载光学技术有限公司 Optical lens and electronic device
CN113960754B (en) * 2021-10-26 2023-10-31 浙江舜宇光学有限公司 Optical imaging lens
CN114019656B (en) * 2021-11-15 2023-07-28 江西凤凰光学科技有限公司 Small wide-angle high-low temperature day-night confocal lens

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5043471B2 (en) * 2007-02-27 2012-10-10 キヤノン株式会社 Zoom lens and optical apparatus having the same
CN101359087B (en) * 2007-08-02 2010-06-02 鸿富锦精密工业(深圳)有限公司 Wide-angle lens and vehicle apparatus using the wide-angle lens
US7446955B1 (en) 2007-08-26 2008-11-04 Largan Precision Co., Ltd. Wide-angle lens system
TW200909849A (en) * 2007-08-31 2009-03-01 E Pin Optical Industry Co Ltd Three Groups Compact Zoom Lens and design method thereof
JP5132343B2 (en) * 2008-02-04 2013-01-30 キヤノン株式会社 Zoom lens and image projection apparatus having the same
TWI407141B (en) * 2010-02-08 2013-09-01 Hon Hai Prec Ind Co Ltd Imaging module
TWI417596B (en) * 2011-02-16 2013-12-01 Largan Precision Co Wide angle photographic lens assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9383552B2 (en) 2013-10-31 2016-07-05 Genius Electronic Optical Co., Ltd. Optical imaging lens and electronic device comprising the same
TWI660194B (en) * 2014-12-05 2019-05-21 南韓商三星電機股份有限公司 Optical system
US10838168B2 (en) 2014-12-05 2020-11-17 Samsung Electro-Mechanics Co., Ltd. Optical system
US11921352B2 (en) 2014-12-05 2024-03-05 Samsung Electro-Mechanics Co., Ltd. Optical system
TWI694276B (en) * 2017-09-26 2020-05-21 鴻海精密工業股份有限公司 Optical lens
TWI733191B (en) * 2019-09-12 2021-07-11 大陸商信泰光學(深圳)有限公司 Lens assembly
US11624895B2 (en) 2019-09-12 2023-04-11 Sintai Optical (Shenzhen) Co., Ltd. Lens assembly

Also Published As

Publication number Publication date
TWI417596B (en) 2013-12-01
US8441746B2 (en) 2013-05-14
CN102645727A (en) 2012-08-22
CN202008546U (en) 2011-10-12
CN102645727B (en) 2014-01-29
US20120206822A1 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
TW201235731A (en) Wide angle photographic lens assembly
TWI510806B (en) Optical image capturing system
TW201237500A (en) Image pick-up optical system
US20090207506A1 (en) Optical Lens System for Taking Image
TW201226964A (en) Optical image system
TW201250277A (en) Optical image capturing lens assembly
TW201235727A (en) Wide viewing angle optical lens assembly
TW201239444A (en) Image capturing optical lens assembly
TW201243386A (en) Image system lens assembly
TW201250283A (en) Optical photographing lens system
TW201232088A (en) Photographing optical lens assembly
TW201224506A (en) Optical image lens assembly
TW201224568A (en) Optical lens assembly for image taking
TW201202780A (en) Five-lens image lens and electronic device using the same
TW201248187A (en) Single focus optical image capturing system
TW201126197A (en) Optical photographing lens assembly
TWM400591U (en) Photographic lens and photographic device
TW201234068A (en) Optical image system
TW201245799A (en) Image capturing lens assembly
TW201250332A (en) Image capturing optical lens assembly
TW201241501A (en) Optical lens assembly for image taking
TWM364864U (en) Camera lens and camera device with a 3-set structure
TW201224569A (en) Optical lens system
TW201248239A (en) Optical image lens assembly
TWM487440U (en) Imaging lens and imaging apparatus including the imaging lens