TW201235641A - Pulse radar liquid level measurement device and sampling circuit thereof - Google Patents

Pulse radar liquid level measurement device and sampling circuit thereof Download PDF

Info

Publication number
TW201235641A
TW201235641A TW100105633A TW100105633A TW201235641A TW 201235641 A TW201235641 A TW 201235641A TW 100105633 A TW100105633 A TW 100105633A TW 100105633 A TW100105633 A TW 100105633A TW 201235641 A TW201235641 A TW 201235641A
Authority
TW
Taiwan
Prior art keywords
programmable
pulse
signal
electrically connected
frequency
Prior art date
Application number
TW100105633A
Other languages
Chinese (zh)
Other versions
TWI435063B (en
Inventor
Yi-Shan Chen
yong-cheng Zhang
Qing-Ren Lai
Original Assignee
Finetek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Finetek Co Ltd filed Critical Finetek Co Ltd
Priority to TW100105633A priority Critical patent/TWI435063B/en
Publication of TW201235641A publication Critical patent/TW201235641A/en
Application granted granted Critical
Publication of TWI435063B publication Critical patent/TWI435063B/en

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

A pulse radar liquid level measurement device and a sampling circuit thereof are disclosed. The pulse radar liquid level measurement device comprises a microprocessor, a sampling circuit, a programmable controlled radio frequency transceiver unit and a programmable controlled medium frequency processing unit. The sampling circuit is a programmable controlled pulse generation unit and is electrically connected with the microprocessor. The microprocessor controls the programmable controlled pulse generation unit to generate the pulse width and pulse period precision of a pulse radar emission signal and a sampling signal so as to produce a pulse radar emission signal and a sampling signal with different period square waves for controlling the frequency precision, time resolution and distance measurement.

Description

201235641 六、發明說明: 【發明所屬之技術領域】 本發明係關於—種脈衝雷達物液位計,尤指一種採可 私式&制”有间頻率精準度、高時間解析度以及可調量測 距離的脈衝雷達裝置。 【先前技術】 應用於工業用非接觸式之雷達波物液位計,設計前提 •在於考量目前全球有許多測量物液位產品,其都是以接觸 式作為測量方式,若工礦環境為強酸或是強驗等等的艱困 環ί兄下里測儀器使用年限將大幅降低且容易受損、故障 造成許多不便利之處,近年來工業發展科技化,非接觸式 雷達波物液位計的問世,改善了接觸式物液位計的缺點, 而可應用難困環境下量測。 現有工業用脈衝雷達(Pu丨se Radar)物液位計系統包含 取樣(Sample)電路模組、射頻(Radj〇 Frequency)收發電路 籲模組、天線(Antenna)與微處理器(Microprocessor),由取 樣頻率與反射信號做取樣頻率差而產生時間展延,形成微 處理器可處理之中頻信號,然後進行信號處理,對此,於 專利US4,123,726提出了利用設計可調式電抗壓控震盪器 去改變發射頻率以及取樣頻率的差。 如圖5所示,習用的取樣電路利用同頻率之二石英震 蘆器80、90,分別電接至二電壓源81、91,並藉由外部旁 路電容82、92以及低阻值的可變電阻83、93做微調動作 控制,使一輸出埠分別輸出具有微小頻率差別的發射信號 201235641 與取樣信號,然而,利用兩石英震盛器8〇、9Q易有製程上 的變異造成不可控制的微小頻率偏移,且石英震盈器、〇、 90内部負載電容需與PCB板寄生電容做匹配動作,而⑽ 板内部寄生電容因走線位置不同所以面積部分較難估算, 所以PCB板寄生電容無法計算,當震盪源與pCB板不匹配 時,則取樣頻率也會大受影響,最重要為可變阻的調整, 此方式容易造成兩相同系統的不一致性,造成 困難度。 里座的 發射信號週期T1與取樣信號週期丁2有微小頻率差, ,利於脈衝雷達發射信號降至中頻進行解調動作,當 號的週期不同時,進杆、甚瓶吐A 4 * ^進盯此頻時會產生出時間延展因子 (Expanding Time Factor)如下式所示: 時間延展因子-— 發jjgig3^(T,) 取樣訊號週期而(A-) 時間延展因子會因發射頻率的 . q期興及取樣頻率的週期罢 所丈影響,以式一所示當兩週期 田1 W朋1口唬差值愈小時, 延展因子則會提升,在26 GHz毫f ' 雷浐佶X η二^ 宅卡波射頻技術中,頻率因 電抗值不同而改變,但電抗會 2卉的改變而造成頻率祖 差過大,形成時間延展因子數量 、 取樣困難,時間解析度變差, 益的 因此有進一步改良的必要。 星雜’ 【發明内容】 為解決現有壓控震盪器頻率誤差過大,時 差,且電路複雜的問題,本發 I目的徒供一種能夠 201235641 微處理器進行數位控 高’且降低電路設計 進現有缺失之脈衝雷達物液位計,利用 制,頻率精準度與時間解析度顯著提 的複雜度。 一種脈衝雷達物 本發明所運用的技術手段係在於提供 液位計,包含: 一微處理器; -取樣電路’係為一可程式控制脈衝產生單元並電連 接至該微處理器,該微處理器能控制該可程式控制脈衝產 籲生單元產生不同頻率之—脈衝雷達發射信號與—取樣信 號; -可程式控制射頻收發單元,係電連接至該微處理器 與該可程式控制脈衝產生單元,而包含一發射電路與一接 收電路,該發射電路用於產生可控制震盪頻率之一載波信 號,與前述的脈衝雷達發射信號混合成一發射信號,而該 接收電路則用於接收一反射信號,該反射信號包含前述發 射信號反射而成的信號,接著由該接收電路配合該取樣信 •號將該反射信號降頻至一中頻信號,利用該微處理器控制 信號於發射電路與接收電路之增益;以及 一可程式控制中頻處理單元,係電連接至該微處理器 與該可程式控制射頻收發單元’用於將類比的該中頻信號 轉換成為數位信號,利用該微處理器控制信號增益。 本發明利用所提供的脈衝雷達裝置,可以獲得的具體效 jrTL 為 _ 本發明利用微處理器進行數位控制,主要控制該取樣 電路產生一脈衝雷達發射信號與一取樣信號的脈衝寬度 201235641 (Pulse Width)與脈衝週期精準度 遙 _ 卡度以產生不同週期方波的 脈衝田達發射仏號與取樣信號,達到控制頻率精準度、時 間解析度以及所量測距離的功效。 又 【實施方式】 為能詳細瞭解本發明的技術特徵及實用功效,並可依 照δ兒明書的内容來實施,茲進一步以如圖式所示的較佳實 施例,詳細說明如后: 本發明所提供的脈衝雷達震置的第一較佳實施例係如 圖1及圖2所示’其包含一微處理器1〇、一由可程式控制 ,衝產生單元構成的取樣㈣2Q、—可程式控制射頻收發 單元30與一可程式控制中頻處理單元40。 該可程式控制脈衝產生單元20係電連接於該微處理器 而包含-石英振盪器21、一可程式控制脈衝頻率合成 器22與二可程式控制脈衝產生器23,該石英振堡器21電 連接至該可程式控制脈衝頻率合成器22,該可程式控制脈 衝頻率合成器22電連接至該二可程式控制脈衝產生器 23,該微處理器1〇電連接至該可程式控制脈衝頻率合成器 Μ與二該可程式控制脈衝產生器23,而能控制該二可程式 控制脈衝產生器23分別產生不同頻率之—脈衝雷達發射信 號與一取樣信號; 該可程式控制脈衝產生單& 20&可程式控制脈衝頻率 合成器22利用該石英振盈器21,經由微處理器1〇觸發該 可程式控制脈衝頻率合成器22產生出二輸出信號,而分別 傳送至該二可程式控制脈衝產生器23,二輸出信號的頻率 201235641 差可小於1-100 Hz ; 接著由微處理器10控制兩可程式控制脈衝產生器23 的脈衝寬度(Pulse Width)與脈衝週期精準度,以產生不同 週期方波的脈衝雷達發射信號與取樣信號,換而言之,脈 衝雷達發射信號與取樣信號之頻率也有所差別,簡化了傳 統上的取樣電路系統架構,域衝雷達發射信號週期以及 取樣信號週期由微處理!i 10所控制能使頻率較為精準,此201235641 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a pulsed radar level gauge, in particular to a private & system with frequency accuracy, high time resolution and adjustable A pulse radar device for measuring distance [Previous technique] A non-contact radar wave level gauge for industrial use, design premise • It is considered that there are many measurement liquid level products in the world, which are measured by contact type. The way, if the industrial and mining environment is a strong acid or a strong test, etc., the life of the instrument will be greatly reduced and easily damaged, and the failure will cause many inconveniences. In recent years, the industrial development has been scientific and technological, non-contact. The advent of the radar wave level gauge has improved the shortcomings of the contact level gauge and can be measured in difficult environments. The existing industrial pulse radar (Pu丨se Radar) level gauge system contains sampling ( Sample) circuit module, radio frequency (Radj〇Frequency) transceiver circuit call module, antenna (Antenna) and microprocessor (Microprocessor), sampling by sampling frequency and reflected signal The time difference is generated and the time is extended to form a microprocessor capable of processing the intermediate frequency signal, and then the signal processing is performed. For this purpose, a modified adjustable voltage-controlled oscillator is used to change the transmission frequency and sample in the patent US 4,123,726. The difference in frequency. As shown in Figure 5, the conventional sampling circuit utilizes two quartz oscillating devices 80, 90 of the same frequency, respectively connected to the two voltage sources 81, 91, and by external bypass capacitors 82, 92 and low. The variable resistances 83 and 93 of the resistance value are controlled by the fine adjustment action, so that an output 埠 respectively outputs the transmission signal 201235641 with a small frequency difference and the sampling signal, however, the use of the two quartz vibration receivers 8〇, 9Q is susceptible to variations in the process. Uncontrollable small frequency offset, and the quartz internal oscillator, 〇, 90 internal load capacitance must match the PCB board parasitic capacitance, and (10) the internal parasitic capacitance of the board is difficult to estimate due to the different trace positions, so the PCB The parasitic capacitance of the board cannot be calculated. When the oscillation source does not match the pCB board, the sampling frequency will be greatly affected. The most important is the adjustment of the variable resistance. This method is easy to cause two. The inconsistency of the same system causes difficulty. The transmitting signal period T1 of the pedestal has a small frequency difference between the sampling signal period and the sampling signal period, which facilitates the demodulation of the pulsed radar transmission signal to the intermediate frequency. When the period of the number is different, When entering the line, the bottle will spit A 4 * ^. When the frequency is entered, the Time Expansion Factor will be generated as follows: Time extension factor - - jjgig3^(T,) Sampling signal period (A- The time extension factor will be affected by the period of the transmission frequency and the period of the sampling frequency. As shown in the first formula, when the difference between the two periods of 1 W Peng 1 is smaller, the extension factor will increase. 26 GHz milli f 'Thunder X η 二 ^ House card wave RF technology, the frequency changes due to different reactance values, but the change of the reactance will cause the frequency difference is too large, forming the number of time extension factors, sampling difficulties, The time resolution is degraded, so there is a need for further improvement. Xingzao [Invention] In order to solve the problem of excessive frequency error, time difference, and complicated circuit of the existing voltage-controlled oscillator, the purpose of this invention is to provide a digital controllability for the 201235641 microprocessor and to reduce the circuit design into the existing missing. The pulse radar level gauge uses the complexity of the system, frequency accuracy and time resolution. A pulse radar object is a technique for providing a liquid level meter comprising: a microprocessor; - a sampling circuit ' is a programmable control pulse generating unit and is electrically connected to the microprocessor, the micro processing The programmable control pulse generating unit generates different frequencies - a pulse radar transmitting signal and a sampling signal; - a programmable RF transceiver unit electrically connected to the microprocessor and the programmable control pulse generating unit And comprising a transmitting circuit and a receiving circuit, the transmitting circuit is configured to generate a carrier signal of a controllable oscillation frequency, and mix with the pulsed radar transmitting signal to form a transmitting signal, and the receiving circuit is configured to receive a reflected signal, The reflected signal includes a signal reflected by the foregoing transmitting signal, and then the receiving circuit cooperates with the sampling signal to down-convert the reflected signal to an intermediate frequency signal, and the microprocessor controls the signal to be used in the transmitting circuit and the receiving circuit. Gain; and a programmable intermediate frequency processing unit electrically coupled to the microprocessor and the The program control radio frequency transceiver unit is operative to convert the analog IF signal into a digital signal with which the signal gain is controlled. The invention utilizes the provided pulse radar device, and the specific effect jrTL can be obtained. The invention uses the microprocessor to perform digital control, and mainly controls the sampling circuit to generate a pulse radar transmission signal and a sampling signal pulse width 201235641 (Pulse Width) And the pulse period accuracy _ card degree to generate the pulse of the different periodic square waves, the TD and the sampling signal, to achieve the control frequency accuracy, time resolution and measured distance. [Embodiment] In order to understand the technical features and practical effects of the present invention in detail, and in accordance with the contents of the specification, the present invention will be further described in detail as follows: The first preferred embodiment of the pulse radar oscillating provided by the invention is as shown in FIG. 1 and FIG. 2, which includes a microprocessor 1 取样, a programmable control unit, and a sampling unit (4) 2Q. The program controls the RF transceiver unit 30 and a programmable intermediate frequency processing unit 40. The programmable control pulse generating unit 20 is electrically connected to the microprocessor and includes a quartz oscillator 21, a programmable pulse frequency synthesizer 22 and a second programmable pulse generator 23, and the quartz vibrator 21 is electrically Connected to the programmable control pulse frequency synthesizer 22, the programmable control pulse frequency synthesizer 22 is electrically coupled to the two programmable control pulse generator 23, the microprocessor 1 is electrically connected to the programmable control pulse frequency synthesis And the programmable pulse generator 23 can control the two programmable pulse generators 23 to generate different frequencies of the pulse radar transmission signal and a sampling signal; the programmable control pulse generates a single & 20 & The programmable control pulse frequency synthesizer 22 uses the quartz oscillator 21 to trigger the programmable control pulse frequency synthesizer 22 to generate two output signals, which are respectively sent to the two programmable control pulses. The frequency of the two output signals 201235641 may be less than 1-100 Hz; then the microprocessor 10 controls the pulses of the two programmable control pulse generators 23. Pulse Width and pulse period accuracy to generate pulsed radar transmit and sample signals with different periodic square waves. In other words, the frequency of the pulsed radar transmit and sample signals is also different, simplifying traditional sampling. The circuit system architecture, the domain impulse radar transmit signal period and the sampling signal period are micro-processed! i 10 control can make the frequency more accurate, this

外,量測的距離可經由脈衝寬度調整而做改變,使整體系 統量測時都能達到高精度要求。 該可程式控制射頻收發單元3〇電連接至該微處理器 1〇與該可程式控制脈衝產生單A 2Q,而包含—發射電路 31、一接收電路32、一壓控震蘯器33與一搞合器%,該 發射電路包含一第一升頻器311與一功率放大器313, 該第一升頻器3”電接至該塵控震盪器33與一個前述的可 程式控制脈衝產生器23;其中該耦合器34係電連接於該第 一升頻器311及該功率放大器M3之間,該微處理器電 連接於該功率放大器313,而能控制該功率放大器313的 信致增益,該發射電路31用於產生可控制震盪頻率之一載 波信號,與前述的脈衝雷達發射信號混合成一發射信號; 开頻器321 味步貝器322 邊接收電路32包含 低雜訊放大器323與一濾波器324,該第二升頻器^ 電連接至該壓控震盪器33、該降頻器322電接至另—個前 述的可程式控制脈衝產生器23A與該低雜訊放大器 該低雜訊放大器323電接至該濾波器324與該微處理器 1 〇,忒微處理1 〇能控制該低雜訊放大器323的信號增 201235641 盈’該遽波器324電接至該耦合器34,該接收電路32用 於接收一反射信號,該反射信號包含前述發射信號反射而 成的信號,接著將該反射信號降頻至一中頻信號。 該可程式控制射頻收發單元3〇利用26 GHz進行射頻 收發從一個可程式控制脈衝產生器2 3產生的脈衝雷達發 射信號與壓控震盪器33產生的26 GHz的載波信號一同進 入第升頻器311中,將26 GHz的載波信號載至脈衝雷 達發射信號上,經由功率放大器31 3增強信號強度,經過 耦合1§ 34直接耦合至天線5〇將26 GHz的發射信號發射 出去; 該耦合器34可為枝幹耦合器、射頻開關或者是圓形分 波器,當26 GHz之發射信號遇見待測物後反射,由天線 50接收該反射信號,先由耦合器34將接收下來的反射信號 耦合至接收迴路中,接著由濾波器324做頻率的選擇,將 26 G Hz的以外的頻率信號濾除避免調變干擾,留下所需的 26 GHz信號; 接著經由低雜訊放大器323抑制信號雜訊且放大信號 進入降頻器322,壓控震盪器33震出26 GHz的載波信號 與另一個可程式控制脈衝產生器23產生的取樣信號進入第 升頻器321中進行混頻將26 GHz的載波信號載在取樣信 號上產生出26 GHz的脈衝取樣信號,此脈衝取樣信號與反 射仏號同進入降頻器322中進行混頻而降至中頻信號。 該可权式控制中頻處理單元4〇電連接至該微處理器 〇 /、滅可私式控制射頻收發單元3〇,包含依序電連接的一 可私式控制中頻放大器41、一中頻濾波器42與一類比數位 201235641 信號轉換器43’該可程式控制中頻放大器41電接至該類比 數位信號轉換器43與該降頻器322 ’該可程式控制中頻處 理單兀40用於將類比的該中頻信號轉換成為數位信號。 前述降頻器322產生的中頻信號傳至可程式控制中頻 處理單A 40,利用微處理器1〇控制可程式控制中頻放大器 41 »周正增益大小做增益補償,放大後的中頻信號進入中頻 遽波器42進行濾波,將中頻以外的信號渡除,取出所需信 號後,傳入類比數位信號轉換器43轉為數位信號,^ 微處理器1 〇進行處理。 #反射信號與取樣信號做混頻之後,能夠降至中頻, =處理it m賣取到㈣數更多則更容易進行處理解調之 因此’由於該可程式控制脈衝頻率合成器Μ的兩輸 出 <吕號的頻率差可藉蓮_ ^ w H準控制,有利於時間延展因子的與 口 ’使得微處理器1G處理時能夠增加時間解析度。a 本發明所提供的脈衝雷達裝置的取樣電路 施例係如圖3所示,姑沉和4 k 彳貫 一 '、該了私式控制脈衝產生單元20A包含 一石央振盪器21盥一可鋥彳批…y仅 英振盈器電連接至二:頻率合成器22’該石 ^ r , 以。程式控制脈衝頻率合成器22,該 了私式控制脈衝頻率合成器22 升頻器311雷姑s 一有一輸出埠,刖述的第一 輸出埴可程式控制脈衝頻率合成器22的-個 ,出皁,則述的降頻器322電接 合成芎22的s ^可釦式控制脈衝頻率 现盗22的另—個輸出埠; 該微處理器10電連接至該可裎 22,而㈣發^貝丰〇成裔 +π 式控制脈衝頻率合成器22產生出脈桥 雷達發射信號與取樣户?卢 座生出脈衝 /、頻率的差別能夠精準控 201235641 制’有利於時間延展因子的增加,使得該微處理器1〇處理 時能夠增加其時間解析度。 再如圖4所不’係為脈衝雷達裝置的取樣電路再一較 佳實施例,該可程式控制脈衝產生單元2〇b包含二可程式 控制脈衝產生器23’該微處理器1〇電連接至二該可程式控 制脈衝產生器23,前述的第—升㈣311電接至—個料 的可程式控制脈衝產生器23,前述的降頻器奶電接至另 一個前述的可程式控制脈衝產生器23,由微處理器1〇控制 ::::式控制脈衝產生器23產生出脈衝雷達發射信號與 /兩個不同週期的方波訊號,利用簡單的可程式脈 衝產生器’簡化了傳統上的取樣電路系統架構,且發射訊 號週期以及取樣訊號週期由微處理器1〇所控 為 精準》 «干又砀 綜上所述,本發明取樣電路可運用該石英振盈器Μ作 為震虚源(Crystal)進入該可程式控制脈衝頻率合成号“產 生兩輸出信號’接著由微處理器1Q觸發控制兩輸出信辭 ,產生出些微的頻率差;亦可直接配合二可程式控制 ^ 23’由微處理器1〇觸發控制兩輸出信號信號產生出 些微的頻率差’令反射信號與取樣信號混頻後降至中頻, ==^器㈣讀取的反射信號作為處理進而增加信號 1解析度,是以,本發明的取樣電路確實能有效避免採 用二石英震盈器’易有製程上的變異造成不可控制的微小 頻率偏移’或因PCB板寄生電容改變取樣頻率。再者 微處理器1〇控制可程式控制脈衝產生器23產生的脈衝雷 達發射信號與取樣信號,顯著提高頻率精準度與時間解析 10 201235641 度,且可由微處理器1 〇的控制改變所量測的距離,使得取 樣率增加且較容易由微處裡器作為處理,此外,亦降低了 電路設計的複雜度。 以上所述,僅是本發明的較佳實施例,並非對本發明 作任何形式上的限制’任何所屬技術領域中具有通常知識 者’若在不脫離本發明所提技術特徵的範圍内,利用本發 明所揭不技術内容所作出局部更動或修飾的等效實施例, 並且未脫離本發明的技術特徵内容,均仍屬於本發明技術 Φ 特徵的範圍内。 【圖式簡單說明】 圖1係本發明脈衝雷達物液位計之第一較佳實施例之 電路方塊圖。 圖2係本發明圖1之詳細電路方塊圖。 圖3係本發.明取樣電路另一較佳實施例的電路方塊圖。 圖4係本發明取樣電路再一較佳實施例的的電路方塊 # 圖。 圖5係習用取樣電路之電路圖。 【主要元件符號說明】 1 〇微處理器 2〇'20Α、20Β可程式控制脈衝產生單元 21石英振盪器 22可程式控制脈衝頻率合成器In addition, the measured distance can be changed by pulse width adjustment, so that the overall system can achieve high precision when measuring. The programmable RF transceiver unit 3 is electrically connected to the microprocessor 1 and the programmable control pulse to generate a single A 2Q, and includes a transmitting circuit 31, a receiving circuit 32, a voltage controlled oscillator 33 and a For example, the transmitting circuit includes a first up-converter 311 and a power amplifier 313. The first up-converter 3" is electrically connected to the dust-controlled oscillator 33 and a programmable programmable pulse generator 23. The coupler 34 is electrically connected between the first up-converter 311 and the power amplifier M3, and the microprocessor is electrically connected to the power amplifier 313 to control the signal-induced gain of the power amplifier 313. The transmitting circuit 31 is configured to generate a carrier signal of a controllable oscillation frequency, and is mixed with the pulsed radar transmitting signal to form a transmitting signal; the opener 321 taster 322 side receiving circuit 32 includes a low noise amplifier 323 and a filter 324, the second up-converter is electrically connected to the voltage-controlled oscillator 33, and the down-converter 322 is electrically connected to another programmable torque generator 23A and the low noise amplifier. 323 is connected to the filter The 324 and the microprocessor 1 〇, the microprocessor 1 can control the signal of the low noise amplifier 323 to be increased to the coupler 34, and the receiving circuit 32 is configured to receive a a reflected signal comprising a signal reflected by the transmitted signal, and then down-converting the reflected signal to an intermediate frequency signal. The programmable RF transceiver unit 3 utilizes 26 GHz for RF transceiving from a programmable control pulse The pulse radar transmission signal generated by the generator 23 enters the up-converter 311 together with the 26 GHz carrier signal generated by the voltage-controlled oscillator 33, and carries the 26 GHz carrier signal onto the pulse radar transmission signal via the power amplifier 31. 3 Enhance the signal strength, and directly transmit the 26 GHz transmit signal through coupling 1 § 34 directly to the antenna 5 ;; the coupler 34 can be a branch coupler, a radio frequency switch or a circular demultiplexer when 26 GHz The transmitted signal is reflected by the object to be tested, and the reflected signal is received by the antenna 50. The reflected signal received by the coupler 34 is first coupled to the receiving loop, followed by the filter 32. 4 to select the frequency, filter the frequency signal other than 26 G Hz to avoid modulation interference, leaving the required 26 GHz signal; then suppress the signal noise through the low noise amplifier 323 and amplify the signal into the downconverter 322 The voltage controlled oscillator 33 excites the carrier signal of 26 GHz and the sampling signal generated by another programmable control pulse generator 23 to enter the up-converter 321 for mixing, and the carrier signal of 26 GHz is carried on the sampling signal to generate The 26 GHz pulse sampling signal, which is mixed with the reflection enthalpy into the downconverter 322 for mixing to the intermediate frequency signal. The operative control intermediate frequency processing unit 4 is electrically connected to the microprocessor 〇/, 可 private control radio frequency transceiver unit 3〇, and includes a privately controllable intermediate frequency amplifier 41, one in series The frequency filter 42 is electrically connected to the analog-to-digital converter 43 and the down-converter 322 by an analog-like digital 201235641 signal converter 43'. The programmable intermediate frequency processing unit 40 The analog IF signal is converted into a digital signal. The intermediate frequency signal generated by the frequency reducer 322 is transmitted to the programmable intermediate frequency processing unit A 40, and the microprocessor 1 is used to control the programmable intermediate frequency amplifier 41 » the positive gain of the period is used for gain compensation, and the amplified intermediate frequency signal is used. The intermediate frequency chopper 42 is filtered to remove the signal other than the intermediate frequency, and after the desired signal is taken out, the analog digital signal converter 43 is converted into a digital signal, and the microprocessor 1 is processed. #Reflected signal and sampled signal after mixing, can be reduced to the intermediate frequency, = processing it m to sell to (four) number is more easier to process demodulation, therefore 'because of the programmable control pulse frequency synthesizer Μ two The frequency difference of the output <Lv can be controlled by the lotus _ ^ w H, which is advantageous for the time extension factor of the port to enable the time resolution of the microprocessor 1G processing. a sampling circuit embodiment of the pulse radar device provided by the present invention is shown in FIG. 3, and the private control pulse generating unit 20A includes a stone center oscillator 21; Batch...y only the British vibrator is electrically connected to two: frequency synthesizer 22' the stone ^ r, to. The program controls the pulse frequency synthesizer 22, and the private control pulse frequency synthesizer 22 upconverter 311 has an output port, and the first output program can be programmed to control the pulse frequency synthesizer 22 Soap, the frequency converter 322 is electrically coupled to the s ^ button of the 芎 22 to control the pulse frequency of another 埠 22 of the thief 22; the microprocessor 10 is electrically connected to the 裎 22, and (4) Befeng's adult + π-controlled pulse frequency synthesizer 22 produces a pulse bridge radar signal and sampler? The difference in the frequency/frequency of the pedestal can accurately control the 201235641 system to facilitate the increase of the time extension factor, so that the microprocessor can increase its time resolution when processed. 4 is not a sampling circuit of the pulse radar device. The programmable control pulse generating unit 2b includes a programmable pulse generator 23'. Up to the programmable pulse generator 23, the aforementioned first (four) 311 is electrically connected to the programmable pulse generator 23 of the material, and the aforementioned down converter milk is connected to another programmable pulse generated by the foregoing. The microprocessor 23 is controlled by the microprocessor 1:::: The control pulse generator 23 generates a pulse radar transmission signal and/or two different periodic square wave signals, which simplifies the traditional use of a simple programmable pulse generator. The sampling circuit system architecture, and the transmission signal period and the sampling signal period are controlled by the microprocessor 1 to be accurate." The sampling circuit of the present invention can use the quartz vibrator as the virtual source of vibration. (Crystal) enters the programmable control pulse frequency synthesis number "generates two output signals" and then triggers the two output letters by the microprocessor 1Q to generate a slight frequency difference; The system 23 is triggered by the microprocessor 1 to control the two output signal signals to generate a slight frequency difference. 'The reflected signal is mixed with the sampled signal and then dropped to the intermediate frequency. The ==^ device (4) reads the reflected signal as a process. Increasing the resolution of the signal 1 means that the sampling circuit of the present invention can effectively avoid the use of the two quartz oscillators, which are susceptible to uncontrollable small frequency shifts in the process variations, or to change the sampling frequency due to the parasitic capacitance of the PCB. Furthermore, the microprocessor 1 〇 controls the pulse radar transmission signal and the sampling signal generated by the programmable control pulse generator 23, and significantly improves the frequency accuracy and time resolution 10 201235641 degrees, and can be measured by the microprocessor 1 〇 control change. The distance is such that the sampling rate is increased and is easier to handle by the micro-instrument, and in addition, the complexity of the circuit design is also reduced. The above is only a preferred embodiment of the present invention, and is not in any form for the present invention. Restrictions 'anyone having ordinary skill in the art' will be able to utilize the present invention without departing from the technical features of the present invention. The equivalent embodiment of the local modification or modification of the non-technical content, and without departing from the technical features of the present invention, still falls within the scope of the feature of the present invention. [Simplified Schematic] FIG. 1 is a pulse radar of the present invention. Figure 2 is a block diagram of the circuit of Figure 1 of the present invention. Figure 3 is a block diagram of another preferred embodiment of the present invention. 4 is a circuit block diagram of a sampling circuit of a preferred embodiment of the present invention. Fig. 5 is a circuit diagram of a conventional sampling circuit. [Main component symbol description] 1 〇 Microprocessor 2 〇 '20 Α, 20 Β programmable control pulse generation Unit 21 quartz oscillator 22 programmable pulse frequency synthesizer

II 201235641 23、23A可程式控制脈衝產生器 30可程式控制射頻收發單元 31發射電路 311第一升頻器 31 2功率放大器 32接收電路 321第二升頻器 322降頻器 323低雜訊放大器 324濾波器 33壓控震盪器 34耦合器 40可程式控制中頻處理單元 41可程式控制中頻放大器 42中頻濾波器 43類比數位信號轉換器 50天線 80石英震盪器 81電壓源 82電容 83可變電阻 90石英震盪器 91電壓源 92 電容 93可變電阻II 201235641 23, 23A Programmable Control Pulse Generator 30 Programmable Control RF Transceiver Unit 31 Transmitting Circuit 311 First Upconverter 31 2 Power Amplifier 32 Receive Circuit 321 Second Upconverter 322 Downconverter 323 Low Noise Amplifier 324 Filter 33 Voltage Controlled Oscillator 34 Coupler 40 Programmable IF Processing Unit 41 Programmable IF Amplifier 42 IF Filter 43 Analog Digital Signal Converter 50 Antenna 80 Quartz Oscillator 81 Voltage Source 82 Capacitor 83 Variable Resistor 90 Quartz Oscillator 91 Voltage Source 92 Capacitor 93 Variable Resistor

Claims (1)

201235641 七、申請專利範圍: 1 · 一種脈衝雷達物液位計,其包含: 一微處理器; 一取樣電路,係為一可程式控制脈衝產生單元並電連 接至该微處理器,該微處理器能控制該可程式控制脈衝產 生單兀產生不同頻率之一脈衝雷達發射信號與一取樣信 號;201235641 VII. Patent application scope: 1 · A pulse radar liquid level gauge, comprising: a microprocessor; a sampling circuit, being a programmable control pulse generating unit and electrically connected to the microprocessor, the micro processing The device can control the programmable control pulse generating unit to generate a pulse radar transmitting signal and a sampling signal of different frequencies; 可私式控制射頻收發單元,係電連接至該微處理器 與该可程式控制脈衝產生單元’而包含一發射電路與一接 收電路’該發射電路用於產生可控制震盪頻率之—載波信 號,與前述的脈衝雷達發射信號混合成—發射信號,而該 接收電路則用於接收一反射信號,該反射信號包含前述發 射信號反射而成的信號,接著由該接收電路配合該取樣信 號將該反射信號降頻至一中頻信號,#用該微處理器控制 信號於發射電路與接收電路之增益;以及 丨'丁'电迕接至該微處》王亞 與該可程式控制射頻收發單元,用於將類比的該中頻信號 轉換成為數位信號,利用該微處理器控制信號增益。 2·如請求項1所述之脈衝雷達物液位計,其中所述的可 程式控制脈衝產生單元包含—石英振s器、—可程式 脈衝頻率合成器與二可程式控制脈衝產生器,該石英:盈 器電連接至該可程式控制脈衝頻率合成器,該可程式控制 脈衝頻率合成H電連接至:該可程以制 微處理器,二該可程式控制脈 器,由該微處理器控制該可程式電接至該微處理 飞控制脈衝頻率合成器與二 13 201235641 該可程式控制脈衝產生器產生脈衝雷達發射信號與取樣信 3.如請求項彳所述之脈衝雷達物液位計,其中所述的可 程式控制脈衝產生單元包含一石英振盪器與一可程式控制 脈衝頻率合成器,該石英振盪器電連接至該可程式控制脈 衝頻率合成器,該可程式控制脈衝頻率合成器電連接至該 微處理器,由該微處理器觸發該可程式控制脈衝頻率合成 器產生脈衝雷達發射信號與取樣信號。 4_如請求項彳所述之脈衝雷達物液位計,其中所述的可 程式控制脈衝產生單元包含二可程式控制脈衝產生器,二 該可程式控制脈衝產生器電接至該微處理器,由該微處理 器控制二該可程式控制脈衝產生器產生脈衝雷達發射信號 與取樣信號。 ° 5·如請求項2或4所述之脈衝雷達物液位計,其中所述 的可程式控制射頻收發單元進一步包含一壓控震盪器與一 耦合器,該發射電路包含一第一升頻器與一功率放大器’ 該第一升頻器電接至該壓控震盪器與一個前述的可程^控 制脈衝產生器,該第一升頻器電連接至該功率放大器,該 功率放大器電連接至該耦合器,該接收電路包含一第二: 頻盗、一降頻器、一低雜訊放大器與一濾波器,該第二升 頻器電連接至該壓控震該降頻器與另—個前述的可 程式控制脈衝產生器,該降頻器電接至該低雜訊放大哭, 該低雜訊放大器電接至該遽波器,該滤波器電接至該輕合 器’該微處理器用予控制該功率放大器與該低雜訊放大器 之信號增益。 14 201235641 6_如請求項3所述之脈衝雷達物液位計,其中所述的可 !式控制射頻收發單元進-步包含-壓控震盈器與一搞合 裔’该發射電路包含一第一斗相。 一 崎匕3弟升頻态與一功率放大器,該第 :升頻器電接至該壓控震盘器與前述的可程式控制脈衝頻 “,該^升頻11錢接至該功率放大器,該功率 :大盗電連接至該耗合器,該接收電路包含一第二升頻 降頻态、-低雜訊放大器與一濾波器,該第二升頻 器電連接至該壓控震盪器、該降頻器與前述的可程式控制 脈衝頻率合成器,肖降頻器電接至該低雜訊放大器,該低 雜訊放大器電接至該遽波器,該渡波器電接至該耗合器, 錢處理器用予控制該功率放大器與該低雜訊放大器之信 號增益。 、7·如請求項5所述之脈衝雷達物液位計,其中所述的可 程式控制中頻處理單元包含依序電連接的一可程式控制中 頻放大H、-中㈣、波器與―類比數位信號轉換器,該可 程式控制中頻放大器電接至該類比數位信號轉換器與該降 頻器,該微處理器用予控制該可程式控制中頻放大 號增益。 8_如請求項6料之脈衝雷㈣液料,其巾所述的可 程式控制中頻處理單元包含依序電連接的一可程式控制中 頻放大器、一中頻濾波器與一類比數位信號轉換器,該可 程^空制中頻放大器電接至該類比數位信號轉換器與該降 頻器’該微處理H用予控制該可程式控制中頻放大器之 號增益。 ° 9. 一種脈衝雷達物液位計的取樣電路,係為一可程式控 15 201235641 制脈衝產生單元’其控制端係電連接一微處理器,由微處 里器控制°亥可程式控制脈衝產生單元產生不同頻率之一脈 衝雷達發射信號與一取樣信號。 Ί〇·如請求項9所述之脈衝雷達物液位計的取樣電路, 其中所述的可程式控制脈衝產生單元包含一石英振盪器、一 可程式控制脈衝頻率合成器與二可程式控制脈衝產生器, 該石英振盪器電連接至該可程式控制脈衝頻率合成器該 可程式控制脈衝頻率合成器電連接至m式控制脈衝The radio frequency transceiver unit can be privately controlled, and is electrically connected to the microprocessor and the programmable control pulse generating unit to include a transmitting circuit and a receiving circuit. The transmitting circuit is configured to generate a carrier signal capable of controlling an oscillation frequency. Mixing with the pulsed radar transmit signal to generate a transmit signal, and the receiving circuit is configured to receive a reflected signal, the reflected signal comprising a signal reflected by the transmit signal, and then the receive circuit cooperates with the sampled signal to reflect the signal The signal is down-converted to an intermediate frequency signal, #using the microprocessor to control the gain of the signal to the transmitting circuit and the receiving circuit; and 丨 '丁' is electrically connected to the micro-section" Wang Ya and the programmable control transceiver unit, For converting the analog IF signal into a digital signal, the microprocessor is used to control the signal gain. 2. The pulse radar level gauge of claim 1, wherein the programmable pulse generation unit comprises a quartz oscillator, a programmable pulse frequency synthesizer and a second programmable pulse generator. Quartz: the charger is electrically connected to the programmable pulse frequency synthesizer, and the programmable pulse frequency synthesizing H is electrically connected to: the programmable microprocessor, and the programmable pulse controller, the microprocessor Controlling the programmable electrical connection to the microprocessor fly control pulse frequency synthesizer and two 13 201235641 The programmable control pulse generator generates a pulse radar transmission signal and a sampling signal 3. The pulse radar level gauge as described in claim 彳The programmable control pulse generating unit includes a quartz oscillator and a programmable pulse frequency synthesizer electrically coupled to the programmable pulse frequency synthesizer, the programmable pulse frequency synthesizer Electrically connected to the microprocessor, the microprocessor triggers the programmable control pulse frequency synthesizer to generate a pulse radar transmission signal and a sampling signal . 4) The pulse radar level gauge of claim 1, wherein the programmable control pulse generating unit comprises a two programmable pulse generator, and the programmable pulse generator is electrically connected to the microprocessor The programmable control pulse generator is controlled by the microprocessor to generate a pulse radar transmission signal and a sampling signal. The pulse radar level gauge of claim 2 or 4, wherein the programmable RF transceiver unit further comprises a voltage controlled oscillator and a coupler, the transmitting circuit comprising a first up frequency And a power amplifier 'the first up-converter is electrically connected to the voltage-controlled oscillator and a aforementioned programmable pulse generator, the first up-converter is electrically connected to the power amplifier, and the power amplifier is electrically connected To the coupler, the receiving circuit includes a second: a frequency thief, a frequency reducer, a low noise amplifier and a filter, the second up frequency device is electrically connected to the voltage controlled oscillator, the frequency reducer and the other a aforementioned programmable pulse generator, the frequency reducer is electrically connected to the low noise amplification, the low noise amplifier is electrically connected to the chopper, and the filter is electrically connected to the light combiner. The microprocessor controls the signal gain of the power amplifier and the low noise amplifier. 14 201235641 6_ The pulse radar level gauge according to claim 3, wherein the controllable RF transceiver unit further comprises a voltage-controlled oscillator and a combination of the transmitter circuit The first fight phase. A rugged 3 brother rises the frequency state and a power amplifier, the first: the upconverter is electrically connected to the voltage control disc and the aforementioned programmable control pulse frequency, and the ^ up frequency 11 money is connected to the power amplifier, The power: the thief is electrically connected to the consuming device, the receiving circuit includes a second up-converting frequency-down state, a low noise amplifier and a filter, and the second up-converter is electrically connected to the voltage-controlled oscillator, The frequency reducer and the programmable programmable pulse frequency synthesizer are electrically connected to the low noise amplifier, and the low noise amplifier is electrically connected to the chopper, and the ferroelectric is electrically connected to the consumable The money processor is used to control the signal gain of the power amplifier and the low noise amplifier. The pulse radar level gauge according to claim 5, wherein the programmable intermediate frequency processing unit comprises a programmable intermediate frequency amplifier H, - medium (four), a waver and an analog digital signal converter, wherein the programmable intermediate frequency amplifier is electrically connected to the analog digital signal converter and the frequency reducer, The microprocessor controls the programmable control IF amplification gain. 8_ As for the pulsed thunder (four) liquid material of claim 6, the programmable intermediate frequency processing unit of the towel includes a programmable IF amplifier and an intermediate frequency filter electrically connected in sequence. And a type of ratio digital signal converter electrically connected to the analog digital signal converter and the frequency reducer 'the microprocessor H is used to control the gain of the programmable intermediate frequency amplifier ° 9. A sampling circuit for a pulse radar level gauge, which is a programmable 15 201235641 pulse generation unit whose control terminal is electrically connected to a microprocessor, controlled by a micro-controller The pulse generating unit generates a pulse radar transmitting signal and a sampling signal of a different frequency. The sampling circuit of the pulse radar level gauge according to claim 9, wherein the programmable control pulse generating unit comprises a quartz An oscillator, a programmable pulse frequency synthesizer and a second programmable pulse generator, the quartz oscillator being electrically connected to the programmable pulse frequency synthesizer Program control pulse frequency synthesizer is electrically connected to a control pulse m 產生器與該微處理器,二該可程式控制脈衝產生器電接至 該微處理器,由該微處理器控制該可程式控制脈衝頻率合 成器與二該可程式控制脈衝產生器產生脈衝雷達發射信號 與取樣信號。 ua generator and the microprocessor, the programmable pulse generator is electrically connected to the microprocessor, and the microprocessor controls the programmable pulse frequency synthesizer and the programmable pulse generator to generate a pulse radar Transmit signal and sample signal. u 11·如請求項9所述之脈衝雷達物液位計的取樣電路, 其中所述的可程式控制脈衝產生單A包含一石彡振蓋器與 一可程式控制脈衝頻率合成器,該石英振盪器電連接至該 可程式控制脈衝頻率合成^ ’該可程式控制脈衝頻率合成 器電連接至該微處理器,由該微處理器觸發該可程式控制 脈衝頻率合成器產生脈衝雷達發射信號與取樣信號。 12.如請求項9所述之脈衝雷達物液位計的取樣電路, 其中所述的可程式控制脈衝產生單元包含二可程式控制脈 衝產生is,二該可程式控制脈衝產生器電接至該微 器,由該微處理器控制二該可程式控制脈衝產生器產生脈 衝雷達發射信號與取樣信號。 1611. The sampling circuit of the pulse radar level gauge according to claim 9, wherein the programmable control pulse generating unit A comprises a rocker vibrator and a programmable control pulse frequency synthesizer, the crystal oscillator Electrically coupled to the programmable control pulse frequency synthesis ^ 'the programmable control pulse frequency synthesizer is electrically coupled to the microprocessor, and the microprocessor triggers the programmable control pulse frequency synthesizer to generate a pulse radar transmission signal and a sampling signal . 12. The sampling circuit of the pulse radar level gauge according to claim 9, wherein the programmable control pulse generating unit comprises two programmable control pulse generating is, and the programmable control pulse generator is electrically connected to the The microprocessor is controlled by the microprocessor to generate a pulse radar transmission signal and a sampling signal. 16
TW100105633A 2011-02-21 2011-02-21 Pulsed radar level gauge TWI435063B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100105633A TWI435063B (en) 2011-02-21 2011-02-21 Pulsed radar level gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100105633A TWI435063B (en) 2011-02-21 2011-02-21 Pulsed radar level gauge

Publications (2)

Publication Number Publication Date
TW201235641A true TW201235641A (en) 2012-09-01
TWI435063B TWI435063B (en) 2014-04-21

Family

ID=47222657

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105633A TWI435063B (en) 2011-02-21 2011-02-21 Pulsed radar level gauge

Country Status (1)

Country Link
TW (1) TWI435063B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493214B (en) * 2013-06-26 2015-07-21
TWI646312B (en) * 2014-02-21 2019-01-01 德商Vega格里沙貝兩合公司 Radar level measuring instrument and method for determining surface topography of filler or bulk material, and application of the material level measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493214B (en) * 2013-06-26 2015-07-21
TWI646312B (en) * 2014-02-21 2019-01-01 德商Vega格里沙貝兩合公司 Radar level measuring instrument and method for determining surface topography of filler or bulk material, and application of the material level measuring instrument

Also Published As

Publication number Publication date
TWI435063B (en) 2014-04-21

Similar Documents

Publication Publication Date Title
US8223066B2 (en) Pulsed radar level gauge system and method with reduced start-up time
US6020733A (en) Two port handheld vector network analyzer with frequency monitor mode
CN203287081U (en) Frequency modulation continuous wave radar balance level achieving locked state control
CN108535540B (en) Method for instantaneously measuring transmitting frequency of magnetron radar
JPH05508751A (en) Offset frequency conversion circuit for phase/amplitude data measurement receivers
CN103633997B (en) TD-LTE-Advanced comprehensive test instrument synthesizes local oscillation device
TW201125321A (en) Apparatus comprising a recursive delayer and method for measuring a phase noise
US10620589B1 (en) Millimeter wave chip scale atomic clock
TW201235641A (en) Pulse radar liquid level measurement device and sampling circuit thereof
TWI333556B (en)
CN106569046B (en) Improved phase noise test device and method based on IF delay line frequency-discrimination method
Brumbi Low power FMCW radar system for level gaging
JP2006208355A (en) Method for measuring inter radio stations distance
TWI500256B (en) Circuit and method for detecting oscillating frequency drift
US20170370761A1 (en) Fill level measurement device
KR102323376B1 (en) FMCW radar level gauge with improved timing control
Abe et al. Evaluation of response time in ball surface-acoustic-wave hydrogen sensor using digital quadrature detector
Yu et al. A CMOS 160GHz Integrated Permittivity Sensor with Resolution of 0.05% Δε r
Melzer et al. Phase noise estimation in FMCW radar transceivers using an artificial on-chip target
Ruppalt et al. Simultaneous digital measurement of phase and amplitude noise
CN109917366A (en) Microwave motion sensor
JPH0318784A (en) Fm-cw distance measuring method
Ali et al. Impact of receiver thermal noise and PLL RMS jitter in radar measurements
Yongxiang et al. Hardware design of RF temperature measurement transceiver system based on delayed linear SAW temperature sensor
Santarelli et al. Phase transient measurement at the micro radian level for atomic fountain clocks

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees