TW201235623A - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
TW201235623A
TW201235623A TW100149178A TW100149178A TW201235623A TW 201235623 A TW201235623 A TW 201235623A TW 100149178 A TW100149178 A TW 100149178A TW 100149178 A TW100149178 A TW 100149178A TW 201235623 A TW201235623 A TW 201235623A
Authority
TW
Taiwan
Prior art keywords
drying
humidity
temperature
constant
value
Prior art date
Application number
TW100149178A
Other languages
Chinese (zh)
Other versions
TWI546507B (en
Inventor
Tatsuya Hori
Kazuo Gensui
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Publication of TW201235623A publication Critical patent/TW201235623A/en
Application granted granted Critical
Publication of TWI546507B publication Critical patent/TWI546507B/en

Links

Landscapes

  • Control Of Washing Machine And Dryer (AREA)
  • Drying Of Gases (AREA)
  • Drying Of Solid Materials (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A dehumidifier comprises a dehumidifier unit, an air-blower unit, a control unit, a temperature detection portion and a humidity detection portion, and includes a drying operation mode. The control unit processes the drying constant default setting control and drying constant compensation control, and the drying constant default setting control determines the default drying constant Dx when the drying operation mode is completed by setting the first temperature detection value and the first humidity detection value. The second temperature detection value, the second humidity detection value, and at least one of the difference of the first and second temperature detection value or the first and second humidity detection value of the drying operation mold during the operation are used by the drying compensation control to compensate the drying constant Dx.

Description

201235623 六、發明說明: 【發明所屬之技術領域3 發明領域 本發明係有關於一種除濕機。 【先前系好3 發明背景 習知之使用於衣物乾燥之除濕機已揭示於特開 2003-42513號公報。以下,就有關該除濕機及該除濕機之 控制方法一面參照圖面一面進行說明。 第11A圖係從前方看習知之除濕機的立體圖,第11B圖 係從後方看前述除濕機之立體圖,第12圖係前述除濕機之 塊狀電路圖。如第11A圖、第11B圖及第12圖所示,除濕機 具備有機器本體101、控制部108、溫度檢測部104、濕度檢 測部105及進行機器之運轉操作的操作部102。此處,於機 器本體101内設有除濕部112及送風部113。控制部108進行 除濕部112及送風部113之運轉控制。溫度檢測部108檢測機 器本體101之周邊溫度。濕度檢測部105檢測機器本體101之 周邊濕度。 第13圖係習知除濕機之運轉流程圖。如第13圖所示, 選擇操作部運轉開關之衣物乾燥模式(未圖示)時,於 STEP111進行開關輸入。其次於STEP112,經輸入之開關的 種類被區分,在有衣物乾燥開關106之輸入時,移至 STEP113。然後在STEP113藉由控制部108而開始乾燥運 轉,並設定乾燥常數Dx。 3 201235623 於溫度檢測部104、濕度檢測部105所檢測之溫度、濕 度藉由信號發送部而送至微電腦1〇7内之控制部108。以所 檢測之溫度 '濕度為基礎利用控制部1〇8算出乾燥係數 Tt(STEP116)。 有關乾燥係數Tt之算出(STEP116)方法,以習知除濕機 之乾燥係數Tt算出流程圖,即第14圖來詳細進行說明。首 先’從所檢測之溫度、濕度算出環境氣體之絕對濕度Xr與 總熱量Ir(STEPl21)。此處有關衣物之乾燥係使於濕度圖 (Psychrometric Chart)上進行檢討。第15圖係用以說明習知 除濕機之乾燥係數Tt的濕度圖。於第15圖中,係使環境氣 體為一般之空氣狀態。總熱量Ir未變化狀態之空氣係等焓狀 態。因為衣物乾燥時之衣物附近空氣會成為濕度100%的狀 態,所以可推測為環境氣體之等焓上的空氣狀態。 因此,如第14圖所示’從為了乾燥過程將衣物附近空 氣作為濕度100%之假設、與於STEP121所算出之環境氣體 的總熱量Ir ’算出衣物附近之絕對濕度xc(steP123)。 其次,移至STEP124,從衣物附近絕對濕度xc與環境 氣體之絕對濕度Xr算出乾燥係數Tt。乾燥係數Tt在第15圖 之濕度圖上成為衣物附近絕對濕度Xc與環境氣體之絕對濕 度Xr的差(STEP124)。乾燥係數Tt變大時,衣物内水分朝環 境氣體之轉移速度變大。因此’乾燥係數Tt變大時,衣物 之乾燥速度變大。 於第13圖’以如前述般算出之乾燥係数Tt(STEpU6)為 基礎,移至STEP117進行乾燥的判定。於STEP114之每經過 201235623 測量間隔X分鐘求取乾燥係數Tt。於STEP 117以乾燥常數Dx 為基礎進行乾燥的判定。 乾燥係数Tt之累積值超過乾燥常數Dx時,判斷為衣物 乾燥,乾燥運轉模式便成為運轉停止。且,預先準備数種 類的乾燥常數Dx,藉由運轉開始時之環境氣體而變化。 如上述般將欲使其乾燥之衣物例如吊掛於除濕機101 之吹出口上方而選擇衣物乾燥運轉時,藉由微電腦107之控 制部108而自動設定除濕控制部110、送風控制部111。然 後,藉由在STEP117進行衣物乾燥之判斷,而自動地停止 衣物乾燥運轉模式。 I:發明内容3 發明概要 於如此之習知除濕機的控制方法中,成為停止衣物乾 燥運轉之判斷基礎之乾燥常數Dx係於運轉開始時設定。但 是,對於衣物的量、牆壁、窗簾及地毯之濕氣、與外部空 氣之換氣次數等運轉開始時不明的乾燥負荷,有所謂如此 之乾燥常數Dx無法適應的課題。 因此本發明係解決上述習知之課題者,以提供一種具 備有因應運轉開始時不明之乾燥負荷,且具有更高精度之 衣物乾燥完成判斷之控制方法的除濕機為目的。 是故,本發明之除濕機係包含有乾燥運轉模式,且於 機器本體内具備有除濕部及送風部、進行除濕部及送風部 之運轉控制的控制部、檢測機器.本體之周邊溫度的溫度檢 •ύ 測部、及檢測機器本體之周邊濕度的濕度檢測部,控制部201235623 VI. Description of the Invention: [Technical Field 3 of the Invention] Field of the Invention The present invention relates to a dehumidifier. [Previously, the third aspect of the invention] The conventional dehumidifier for drying clothes is disclosed in Japanese Laid-Open Patent Publication No. 2003-42513. Hereinafter, the dehumidifier and the control method of the dehumidifier will be described with reference to the drawings. Fig. 11A is a perspective view of a conventional dehumidifier as seen from the front, and Fig. 11B is a perspective view of the dehumidifier seen from the rear, and Fig. 12 is a block circuit diagram of the dehumidifier. As shown in Figs. 11A, 11B, and 12, the dehumidifier includes a machine main body 101, a control unit 108, a temperature detecting unit 104, a humidity detecting unit 105, and an operation unit 102 that performs an operation operation of the machine. Here, the dehumidifying portion 112 and the air blowing portion 113 are provided in the machine body 101. The control unit 108 performs operation control of the dehumidifying unit 112 and the air blowing unit 113. The temperature detecting unit 108 detects the ambient temperature of the machine body 101. The humidity detecting unit 105 detects the peripheral humidity of the machine body 101. Figure 13 is a flow chart of the operation of a conventional dehumidifier. As shown in Fig. 13, when the clothes drying mode (not shown) of the operation unit operation switch is selected, the switch input is made in STEP111. Next, in STEP 112, the type of the input switch is distinguished, and when there is an input of the clothes drying switch 106, it is moved to STEP 113. Then, in STEP 113, the drying operation is started by the control unit 108, and the drying constant Dx is set. 3 201235623 The temperature and humidity detected by the temperature detecting unit 104 and the humidity detecting unit 105 are sent to the control unit 108 in the microcomputer 1 to 7 by the signal transmitting unit. The drying coefficient Tt is calculated by the control unit 1〇8 based on the detected temperature 'humidity' (STEP 116). The method for calculating the drying coefficient Tt (STEP 116) is described in detail with reference to Fig. 14 in a flow chart in which the drying coefficient Tt of the conventional dehumidifier is calculated. First, the absolute humidity Xr of the ambient gas and the total heat Ir (STEPl 21) are calculated from the detected temperature and humidity. The drying of the clothes here is reviewed on the Psychrometric Chart. Figure 15 is a humidity diagram for explaining the drying coefficient Tt of a conventional dehumidifier. In Figure 15, the ambient gas is in a normal air state. The air system in which the total heat Ir is not changed is in an enthalpy state. Since the air near the clothes when the clothes are dry becomes 100% humidity, it can be presumed to be an air state such as an ambient gas. Therefore, as shown in Fig. 14, the absolute humidity xc (steP123) in the vicinity of the laundry is calculated from the assumption that the air in the vicinity of the laundry is 100% humidity for the drying process and the total heat Ir' of the ambient gas calculated in STEP121. Next, the process proceeds to STEP 124, and the drying coefficient Tt is calculated from the absolute humidity xc near the laundry and the absolute humidity Xr of the ambient gas. The drying coefficient Tt becomes the difference between the absolute humidity Xc near the laundry and the absolute humidity Xr of the ambient gas on the humidity map of Fig. 15 (STEP 124). When the drying coefficient Tt becomes large, the transfer speed of moisture in the clothes toward the ambient gas becomes large. Therefore, when the drying coefficient Tt becomes large, the drying speed of the laundry becomes large. In the Fig. 13', based on the drying coefficient Tt (STEpU6) calculated as described above, the process proceeds to STEP 117 to determine the drying. The drying coefficient Tt is obtained for each pass of STEP 114 at a measurement interval of X minutes. The drying was judged based on the drying constant Dx in STEP 117. When the cumulative value of the drying coefficient Tt exceeds the drying constant Dx, it is determined that the laundry is dry, and the dry operation mode is stopped. Further, several kinds of drying constants Dx are prepared in advance, and are changed by the ambient gas at the start of the operation. When the laundry to be dried is hung above the air outlet of the dehumidifier 101 and the laundry drying operation is selected as described above, the dehumidification control unit 110 and the air supply control unit 111 are automatically set by the control unit 108 of the microcomputer 107. Then, the laundry drying operation mode is automatically stopped by the judgment of drying the laundry in STEP117. I. SUMMARY OF THE INVENTION In the control method of the conventional dehumidifier, the drying constant Dx which is the basis for determining the drying operation of the clothes is set at the start of the operation. However, there is a problem that the drying constant Dx cannot be adapted to the drying load at the start of the operation, such as the amount of the clothes, the moisture of the wall, the curtains, and the carpet, and the number of times of the air exchange with the outside air. Therefore, the present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a dehumidifier having a control method for determining the completion of drying of laundry in accordance with an unidentified drying load at the start of operation. Therefore, the dehumidifier of the present invention includes a dry operation mode, and includes a dehumidifying unit and a blowing unit in the machine body, a control unit that controls the operation of the dehumidifying unit and the air blowing unit, and a temperature of the peripheral temperature of the detecting device. Inspection and inspection unit, and humidity detection unit for detecting the humidity around the machine body, control unit

S 5 201235623 進行乾燥常數初期設定控制且進行乾燥常數補正控制,乾 燥常數初期設定控制從乾燥運轉模式開始時之溫度檢測部 的第1溫度檢測値與濕度檢測部之第丨濕度檢測值初期設定 用以判斷乾燥運轉模式完成之乾燥常數Dx,乾燥常數補正 控制使用乾燥運轉模式中之運轉時之溫度檢測部的第2溫 度檢測値、濕度檢測部之第2濕度檢測值、第丨溫度檢測値 與第2溫度檢測値之差及第丨濕度檢測值與第2濕度檢測值 之差中之至少一者,補正乾燥常數Dx。 通常於室内衣物乾時,濕水分放出至室内而使室内之 濕度上升。從該衣物放出之濕水分、牆壁、窗簾及地毯之 濕水分、來自外部之濕水分等之乾燥負荷、與除濕機除濕 之除濕能力的差顯現於環境氣體之絕對溫度的變化。除濕 月匕力勝過時,環體之絕對溫度便會降低,然、而通常環 境氣體之絕對溫度上升。但是,伴隨衣物乾燥之進行,來 自衣物之濕水刀的放出便會變少,除濕能力便會勝出。乾 燥負荷多f @ 燥負荷與除濕能力變成相等之變化點的 時間會II長’而少時便會變短。由於決定該變化點之乾燥 常數Dx於乾燥運轉模式中從溫度_部_、度檢測部之檢 測值Η補正’所以提供了-種具備有因應乾燥負荷之更高 精度之衣物乾燥完成判斷之控制方法的除濕、機。 圖式簡單說明 第圖係本發明實施形態之除滿機的概略斷面圖。 第2圖係别述除濕機之塊狀電路®。S 5 201235623 The drying constant initial setting control is performed, and the drying constant correction control is performed. The drying constant initial setting control is used for the first temperature detection of the temperature detecting unit and the first humidity detection value of the humidity detecting unit from the start of the dry operation mode. The drying constant Dx is determined by the dry operation mode, and the drying constant correction control uses the second temperature detection 温度 of the temperature detecting unit during the operation in the dry operation mode, the second humidity detection value of the humidity detecting unit, and the second temperature detection 値 and The drying constant Dx is corrected by at least one of the difference between the second temperature detecting enthalpy and the difference between the second humidity detecting value and the second humidity detecting value. Usually, when the clothes are dry indoors, the moisture is released into the room to increase the humidity in the room. The difference between the wet moisture released from the laundry, the wet moisture of the wall, the curtain and the carpet, the drying load of the wet moisture from the outside, and the dehumidification ability of the dehumidifier is exhibited by the change in the absolute temperature of the ambient gas. When the dehumidification is over, the absolute temperature of the ring will decrease, but the absolute temperature of the ambient gas will generally rise. However, as the drying of the clothes proceeds, the release of the wet water knife from the clothes will be less, and the dehumidification ability will be won. The dry load is much f @ The time when the dry load and the dehumidification capacity become equal change points will be longer than II and will become shorter when less. Since the drying constant Dx for determining the change point is corrected from the temperature_part_ and the detection value of the degree detecting unit in the dry operation mode, it is provided that the control for the completion of the laundry drying with higher precision in response to the drying load is provided. Method of dehumidification, machine. BRIEF DESCRIPTION OF THE DRAWINGS The drawings are schematic cross-sectional views of a full-loading machine according to an embodiment of the present invention. Figure 2 is a block circuit of the dehumidifier.

第3圖係錢除㈣之鄉肺圖。 J 6The third picture shows the lung map of the town of money (4). J 6

S 201235623 第4圖係前述除濕機之第1乾燥常數Dx補正之流程圖。 第5圖係前述除濕機之第2乾燥常數D X補正之流程圖。 第6圖係前述除濕機之第3乾燥常數Dx補正之流程圖。 第7圖係前述除濕機之第4乾燥常數Dx補正之流程圖。 第8圖係前述除濕機之第5乾燥常數D X補正之流程圖。 第9圖係前述除濕機之第6乾燥常數Dx補正之流程圖。 第10圖係前述除濕機之第7乾燥常數Dx補正之流程圖。 第11A圖係從前方看習知之除濕機的立體圖。 第11B圖係從後方看前述除濕機的立體圖。 第12圖係前述除濕機之塊狀電路圖。 第13圖係前述除濕機之運轉流程圖。 第14圖係前述除濕機之乾燥係數Tt算出流程圖。 第15圖係用以說明前述除濕機之乾燥係數Tt之濕度 圖。 L實施方式;1 較佳實施例之詳細說明 以下,就有關本發明之實施形態一面參照圖面一面進 行說明。且具有與習知除濕機之構成要件相同機能之構成 要件賦予相同符號而省略詳細說明。 (實施形態) 第1圖係本發明實施形態之除濕機的概略斷面圖,第2 圖係前述除濕機之塊狀電路圖。如第1圖、第2圖所示,除 濕機於機器本體3内具備有除濕部112、送風部113、控制部 1、溫度檢測部104、濕度檢測部105及操作部。控制部1進 201235623 行除濕部112及送風部113之運轉控制。溫度檢測部辦檢測 機器本體3之周邊溫度,濕度檢測部105檢測機器本體3之周 邊濕度。又,除濕機包含乾燥運轉模式。 第3圖係本實施形態之除濕機之運轉流程圖。如第3圖 所示,選擇操作部運轉開關之衣物乾燥模式(未圖示)時,於 STEP111會進行開關輸入。 其次於STEP112區分所輸入之開關的種類,有衣物乾 燥開關的輸入時便移至STEP113。然後,在STEpiu藉由控 制部1而開始乾燥運轉,並設定乾燥常數Dxe此處,就有關 判斷乾燥運轉模式完成之乾燥常數Dx的設定進行說明。於 控制部1進行乾燥常數初期設定控制,該乾燥常數初期設定 控制係將乾燥常數Dx初期設定成預先設定標準之試驗條件 (房間之大小、衣物的量、溫濕度等)然後藉由實驗所求得的 值0 其次,在本發明中,進行乾燥係數〇乂值的補正。依據 第14圖、第13圖從於母測疋間隔X分鐘進行檢測之機器本體 3之周邊溫度、周邊濕度(第13圖之STEP115)求取乾燥係數 Tt(第13圖之STEP116)、及乾燥常數Dx(第13圖之 STEP117),而進行乾燥之判定。 乾燥之判定係從乾燥常數Dx於每測定間隔X分鐘減去 乾燥係數Tt,在減算值為〇以上時判斷為未乾燥,在減算值 變得較0為小時判斷為乾燥。 此處,就有關本發明之乾燥係數Dx值之補正控制,使 用第4圖〜第10圖來進行說明。第4圖係本發明實施形態之 201235623 .第1乾煉常數Dx補正之流程圖。 首先,使計時器Time(STEPl)開始而開始乾燥運轉模 式,測量經過時間。其次,於溫度檢測部1〇4、濕度檢測部 105所核測之溫度、濕度藉由信號發送部而送至微電腦2内 之控制部1。以於乾燥運轉模式開始時所檢測之溫度,即第 1溫度檢測值Tempo、第1濕度檢測值Rh〇(STEp2)為基礎, 利用控制部1算出乾燥係數Tt0(STEP3),並將各個記錄作為 初始值。 然後,於每測量間隔X分鐘進入迴圈(STEP4),在乾燥 運轉模式中之運轉時的溫度檢測部丨〇 4、濕度檢測部丨〇 5中 第η次之迴圈時所檢測之第2溫度檢測值Temp(n)、第2濕度 檢測值Rh(n)(STEP5) ’藉由信號發送部而送至微電腦2内之 控制部1。以第η次之迴圈時所檢測之第2溫度檢測值 Temp⑹、第2濕度檢測值Rh⑷為基礎利用控制部丨算出絕 對溫度Xr(n)(STEP6)與算出乾燥係數Tt(STEP7),並以乾燥 常數Dx為基礎進行乾燥之判定(STEP8)。 又,判斷為未乾燥時,判斷絕對溫度χΓ(η)是否較前次 資料Xr(n-l)低(STEP9-1),為相同或不低時回到STEP4。為 低時,藉由此時之經過時間Time算出補正值Dh而補正乾燥 常數Dx(STEPlO-l)。 具體而言,補正值DH係作為經過時間Time之函數來計 算。以第η次之迴圈時的絕對濕度Xr(n)較前次資料x^nq) 低之經過時間Tx為基準,經過時間Time長時,補正值dh因 應其比例而成負值。經過時間Time短時,補正值DH因應其 201235623 比例而成正值。作為1例’採取DH=ax ( Τχ〜Tjme )的式子, a以定值來算出。然後,從乾燥常數Dx減去補正值DH而補 正乾燥常數Dx。 於室内衣物乾時,濕水分放出至室内,室内之濕度上 升。相對從該衣物放出之濕水分、牆壁、窗簾及地毯之濕 水分、來自外部之濕水分等乾燥負荷,與除濕機除濕之除 濕能力的差顯現於環境氣體之絕對濕度;χΓ的變化。除濕能 力勝出時,環境氣體之絕對濕度Xr便會降低,然而通常環 境氣體之絕對滿度Xr會上升。但是,伴隨衣物乾燥之進行, 來自衣物之濕水分的放出便會變少,除濕能力便會越勝 出。乾燥負荷多時,到乾燥負荷與除濕能力相等之變化點 的時間變長,少時則會變短。 亦即,藉由從乾燥運轉模式開始,到藉由第2溫度檢測 值Temp(n)與第2濕度檢測值Rh(n)所求得之絕對濕度Xr(n) 開始下降的時間’來補正乾燥常數Dx。因此,可因應衣物 的量、與牆壁、窗簾及地毯之濕水分、外部氣體之換氣次 數等運轉開始時不明的乾燥負荷進行更高精度之衣物乾燥 完成的判斷。 且’絕對濕度Xr(n)在本實施形態中較前次計測時之絕 對濕度Xr(n-l)降低時,判斷為降低,然而也可以複數次連 續絕對濕度Xr(n)降低時判斷為降低。又,藉由使絕對濕度 Xr(n)之降低採取複數次之平均來判斷,而可防止一時的干 擾所產生之錯誤判斷。 其次,第5圖係本發明實施形態之第2乾燥常數Dx補正S 201235623 Fig. 4 is a flow chart of the first drying constant Dx correction of the aforementioned dehumidifier. Fig. 5 is a flow chart showing the correction of the second drying constant D X of the dehumidifier. Fig. 6 is a flow chart showing the third drying constant Dx correction of the aforementioned dehumidifier. Fig. 7 is a flow chart showing the correction of the fourth drying constant Dx of the aforementioned dehumidifier. Fig. 8 is a flow chart showing the correction of the fifth drying constant D X of the aforementioned dehumidifier. Fig. 9 is a flow chart showing the sixth drying constant Dx correction of the aforementioned dehumidifier. Fig. 10 is a flow chart showing the seventh drying constant Dx correction of the aforementioned dehumidifier. Fig. 11A is a perspective view of a conventional dehumidifier viewed from the front. Fig. 11B is a perspective view of the aforementioned dehumidifier as seen from the rear. Figure 12 is a block circuit diagram of the aforementioned dehumidifier. Figure 13 is a flow chart showing the operation of the aforementioned dehumidifier. Fig. 14 is a flow chart for calculating the drying coefficient Tt of the aforementioned dehumidifier. Fig. 15 is a graph showing the humidity of the drying coefficient Tt of the aforementioned dehumidifier. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The components having the same functions as those of the conventional dehumidifier are denoted by the same reference numerals and the detailed description is omitted. (Embodiment) FIG. 1 is a schematic cross-sectional view of a dehumidifier according to an embodiment of the present invention, and FIG. 2 is a block circuit diagram of the dehumidifier. As shown in Figs. 1 and 2, the dehumidifier includes a dehumidifying unit 112, a blowing unit 113, a control unit 1, a temperature detecting unit 104, a humidity detecting unit 105, and an operating unit in the main body 3. The control unit 1 enters 201235623 to control the operation of the dehumidifying unit 112 and the air blowing unit 113. The temperature detecting unit detects the ambient temperature of the machine body 3, and the humidity detecting unit 105 detects the peripheral humidity of the machine body 3. Further, the dehumidifier includes a dry operation mode. Fig. 3 is a flow chart showing the operation of the dehumidifier of the embodiment. As shown in Fig. 3, when the clothes drying mode (not shown) of the operation unit operation switch is selected, the switch input is performed in STEP111. Next, the type of the input switch is divided in STEP 112, and when the input of the clothes dryer switch is input, it is moved to STEP 113. Then, the drying operation is started by the control unit 1 in STEpiu, and the drying constant Dxe is set here, and the setting of the drying constant Dx for determining the completion of the drying operation mode will be described. The control unit 1 performs drying constant initial setting control, which sets the drying constant Dx initially to a predetermined standard test condition (size of the room, amount of laundry, temperature and humidity, etc.) and then seeks from the experiment. The value obtained is 0. Next, in the present invention, the correction of the drying coefficient 〇乂 value is performed. According to Fig. 14 and Fig. 13, the ambient temperature and peripheral humidity of the machine body 3 (step 115 in Fig. 13) detected from the mother test interval X minutes are obtained by taking the drying coefficient Tt (STEP 116 in Fig. 13) and drying. The constant Dx (STEP 117 of Fig. 13) was judged by drying. The drying was judged to be undried by subtracting the drying coefficient Tt from the drying constant Dx at X minutes per measurement interval, and when the subtraction value was 〇 or more, it was judged to be undried, and it was judged to be dry when the calculated value became smaller than 0. Here, the correction control of the drying coefficient Dx value of the present invention will be described using Figs. 4 to 10 . Fig. 4 is a flow chart showing the correction of the first dry constant Dx in 201235623 according to the embodiment of the present invention. First, the timer Time (STEP1) is started to start the dry operation mode, and the elapsed time is measured. Then, the temperature and humidity measured by the temperature detecting unit 1〇4 and the humidity detecting unit 105 are sent to the control unit 1 in the microcomputer 2 by the signal transmitting unit. Based on the temperature detected at the start of the dry operation mode, that is, the first temperature detected value Tempo and the first humidity detected value Rh 〇 (STEp2), the control unit 1 calculates the drying coefficient Tt0 (STEP 3), and uses each record as Initial value. Then, it enters the loop at the measurement interval of X minutes (STEP 4), and the second detected in the ηth round of the temperature detecting unit 丨〇4 and the humidity detecting unit 丨〇5 during the operation in the dry operation mode. The temperature detection value Temp(n) and the second humidity detection value Rh(n) (STEP5)' are sent to the control unit 1 in the microcomputer 2 by the signal transmission unit. The control unit 丨 calculates the absolute temperature Xr(n) (STEP6) and the calculated drying coefficient Tt (STEP7) based on the second temperature detected value Temp(6) and the second humidity detected value Rh(4) detected at the nth cycle. The drying was judged based on the drying constant Dx (STEP 8). When it is judged that it is not dry, it is judged whether or not the absolute temperature η(η) is lower than the previous data Xr(n-1) (STEP9-1), and it is returned to STEP4 when it is the same or not low. When it is low, the correction value Dh is calculated by the elapsed time Time to correct the drying constant Dx (STEPlO-1). Specifically, the correction value DH is calculated as a function of the elapsed time Time. The absolute humidity Xr(n) at the nth cycle is lower than the elapsed time Tx of the previous data x^nq). When the elapsed time is long, the correction value dh becomes a negative value in accordance with the ratio. When the elapsed time is short, the correction value DH is positive in response to its 201235623 ratio. As an example, the formula of DH=ax ( Τχ~Tjme ) is taken, and a is calculated by a fixed value. Then, the correction value DH is subtracted from the drying constant Dx to correct the drying constant Dx. When the indoor clothes are dry, the wet moisture is released into the room, and the humidity in the room rises. The difference between the drying load of the wet moisture released from the clothes, the wet moisture of the wall, the curtains and the carpet, the wet moisture from the outside, and the dehumidification ability of the dehumidifier is shown by the absolute humidity of the ambient gas; When the dehumidification capacity is exceeded, the absolute humidity Xr of the ambient gas is lowered, but usually the absolute fullness Xr of the ambient gas rises. However, as the drying of the clothes proceeds, the release of moisture from the clothes is reduced, and the dehumidification ability is more won. When the drying load is large, the time to the change point of the drying load and the dehumidification capacity becomes long, and when it is small, it becomes short. In other words, the correction is made from the dry operation mode to the time when the absolute temperature Xr(n) obtained by the second temperature detection value Temp(n) and the second humidity detection value Rh(n) starts to decrease. Dry constant Dx. Therefore, it is possible to judge the completion of the clothes drying with higher precision depending on the amount of the clothes, the wet moisture of the walls, the curtains and the carpet, and the number of times of the air exchange of the outside air. In the present embodiment, the absolute humidity Xr(n) is determined to be lower than the absolute humidity Xr(n-1) at the time of the previous measurement. However, the decrease may be determined when the continuous absolute humidity Xr(n) is decreased. Further, by determining the reduction of the absolute humidity Xr(n) by a plurality of times, it is possible to prevent erroneous judgment due to temporary interference. Next, Fig. 5 is a second drying constant Dx correction of the embodiment of the present invention.

S 201235623 -之流程圖。如第5圖所示,第2乾燥常數Dx補正係藉由從乾 燥運轉模式開始到第2濕度檢測值Rh (幻開始下降的時間來 進行。在第5圖中刪除算出絕對溫度之STEP6,且乾燥負荷 與除濕此力變成相等之變化點的判斷係以第η次之迴圈時 濕度檢測部105所檢測之第2濕度檢測值濕度 Rh(n)(STEP9-2)來進行。 具體而έ,補正值DH係作為經過時間Time的函數來計 算。以第η-欠之迴圈時之第2濕度檢測值Rh(n)較前次資料 Rh(n-l)降低之經過時間丁乂為基準,經過時間Time長時,因 應其比率補正值DH成負值。又,經過時間Time短時,因應 其比率補正值DH成正值。作為1例,採取DH=ax(Tx—Time) 的式子,a以定數而算出。然後,從乾燥常數Dx減去補正值 DH而補正乾燥常數〇)^7^10-1)。 藉此’由於依據相對濕度之乾燥負荷與除濕能力變成 相等的變化點置換到依據絕對濕度之變化點而被檢測,所 以不進行複雜之計算而得到相同的效果。 其次,第6圖係本發明實施形態之第3乾燥常數〇乂補正 之流程圖。如第6圖所示,第3乾燥常數Dx補正係藉由從乾 燥運轉模式開始到第2溫度檢測値Rh(n)開始下降的時間與 第1溫度檢測値Tempo進行。在第6圖中相對第5圖,只有補 正值Dfi之算出係使用經過時間Time與第1溫度檢測値 TempO進行,以補正乾燥常數Dx(STEpi〇 2)的點相異。 具體而言’補正值DH係作為經過時間Time與第1溫度 檢測値Tempo之函數來計算。作為基準之經過時間1^係藉 201235623 由第η次迴圈時之第2溫度檢測値Rh⑻較前次資料Rhh-D 降低之經過時間Tx、及室溫Trx與第1溫度檢測値TempO之差 而補正。作為1例,採取Tx=Tx+bx (Trx~TempO)式子,b 以定數來算出。 以如此補正之經過時間Tx為基準,經過時間Time長 時,因應其比率補正值DH成負值,經過時間Time短時,因 應其比率補正值DH成正值。作為1例,採取j)H=ax ( Tx — Time)的式子,a以定數來算出。然後,從乾燥常數以減去 補正值DH而補正乾燥常數Dx。 藉此,到依據相對濕度之乾燥負荷與除濕能力成為相 等之變化點的經過時間係乾燥負荷多時變長,少時變短。 又,室溫高時,到變化點的時間變短,室溫低時,到變化 點之時間變長。如此,由於進行到因應室溫之變化點的經 過時間的補正,所以乾燥負荷會更正確地被判斷。 又,雖然使用STEP9-2(相對濕度Rh)作為變化點之判 斷,然而也可使用STEP9-1(絕對濕度Xr),其作用效果不生 差異》 其次,第7圖係本發明實施形態之第4乾燥係數1^補正 之流程圖。如第7圖所示,第4乾燥常數1^補正係藉由從第1 溫度檢測値Tempo與第1濕度檢測值Rh〇所算出之乾燥係數 TtO、與從第2溫度檢測値Temp(n)與第2濕度檢測值Rh(n)所 算出之乾燥係數Tt之差到超過一定値C1的第【時間來進 行。在第7圖中相對於第5圖,係只在使乾燥負荷與除濕能 力成為相等的變化點之判斷為乾燥係數T t與初期之乾燥^系S 201235623 - The flow chart. As shown in Fig. 5, the second drying constant Dx correction is performed from the dry operation mode to the second humidity detection value Rh (the time when the magical start is lowered. In Fig. 5, STEP 6 for calculating the absolute temperature is deleted, and The determination of the change point of the drying load and the dehumidification force is performed by the second humidity detection value humidity Rh(n) detected by the humidity detecting unit 105 at the nth cycle (STEP 9-2). The correction value DH is calculated as a function of the elapsed time Time. The second humidity detection value Rh(n) at the time of the η-under lap is lower than the elapsed time of the previous data Rh(nl). When the elapsed time is long, the ratio correction value DH is negative. In addition, when the elapsed time is short, the ratio correction value DH is positive. As an example, the formula of DH=ax(Tx—Time) is adopted. , a is calculated as a constant. Then, the correction constant DH is subtracted from the drying constant Dx to correct the drying constant 〇)^7^10-1). By this, the change point which becomes equal to the dehumidification capacity according to the relative humidity is replaced by the change point based on the absolute humidity, so that the same effect is obtained without performing complicated calculation. Next, Fig. 6 is a flow chart showing the third drying constant 〇乂 correction in the embodiment of the present invention. As shown in Fig. 6, the third drying constant Dx correction is performed by the time from the start of the dry operation mode to the start of the second temperature detection 値Rh(n) and the first temperature detection 値Tempo. In Fig. 6, in contrast to Fig. 5, only the correction value Dfi is calculated using the elapsed time Time and the first temperature detection 値 TempO to correct the difference of the drying constant Dx (STEpi 〇 2). Specifically, the correction value DH is calculated as a function of the elapsed time Time and the first temperature detection 値Tempo. The elapsed time as a reference is the difference between the elapsed time Tx when the second temperature detection 値Rh(8) is lower than the previous data Rhh-D, and the difference between the room temperature Trx and the first temperature detection 値TempO. And correct. In one example, Tx=Tx+bx (Trx~TempO) is adopted, and b is calculated by a fixed number. Based on the elapsed time Tx thus corrected, when the elapsed time is long, the ratio correction value DH becomes a negative value, and when the elapsed time is short, the ratio correction value DH becomes a positive value. As an example, j) H = ax (Tx - Time) is taken, and a is calculated as a fixed number. Then, the drying constant Dx is corrected by subtracting the correction value DH from the drying constant. As a result, the elapsed time when the drying load and the dehumidifying capacity according to the relative humidity become equal changes are long, and the drying load is long and becomes short. Further, when the room temperature is high, the time until the change point becomes short, and when the room temperature is low, the time until the change point becomes long. In this way, since the correction of the elapsed time in response to the change in the room temperature is performed, the drying load is judged more correctly. Further, although STEP9-2 (relative humidity Rh) is used as the judgment point of change, STEP9-1 (absolute humidity Xr) may be used, and the effect is not different. Next, Fig. 7 is the embodiment of the present invention. 4 drying coefficient 1 ^ correction of the flow chart. As shown in Fig. 7, the fourth drying constant 1 correction is obtained by detecting the drying coefficient TtO from the first temperature detection 値Tempo and the first humidity detection value Rh 、 and the second temperature detection 値Temp(n). The difference from the drying coefficient Tt calculated by the second humidity detection value Rh(n) is longer than the first time 値C1. In Fig. 7, with respect to Fig. 5, it is judged that the drying coefficient T t and the initial drying point are changed only at the change point where the drying load and the dehumidification capacity are equal.

S 12 201235623 數™的差為—定値C UX上(STEP9-3)的點相異。 具 ft a + ' a 、 舌,補正值DH係作為經過時間Time之函數來計 鼻以第n次迴圈時之乾燥係數Tt與初期之乾燥係數Tt〇的 (定數)以上之經過時間仏為基準,經過時間Time 〜、比率補正值1)1^成為負值。又,經過時間Time短 '比率補正值DH成為正值。作為1例,採取 DH=axrTv τ.、 ~Tlme)的式子,似定數來算出。_,從乾燥常 ^去補正值〇幵而補正乾燥常數Dx。 j.L . 、6,乾燥係數Tt變得較初期之乾燥係數Tt〇大時,由 =不至内之乾燥負荷變少’所以乾燥負荷會更正確地被 判斷。 、-^國料發明實施形態之第5乾燥係數^補正 係數τ—》第8圖所不,第5乾燥常數Dx補正係藉由乾燥 猶,、乾燥係_之差到超過依據乾燥係數τ_設定 負進行。在第8圖中相對於第7圖,係只在使乾燥 初力成為相等的變化點之判斷為乾燥 數Τ,差為藉由初期之乾燥係數爾算出 之值以上(STEP9-4)的點相異。 算。正值DH係作為經過時之函數來計 定之乾燥常數DX時之乾燥係数 門Τχ為料纟差成為C2X™(C2為定數)以上之經過時 :為基準’㈣日術ime長日㈣认中 負值。又’經過時間w短時因應其比率 成為 值。作糊,採取DH=ax(Tx_Time)^正細成為正 ’叫子,㈣定數來算S 12 201235623 The difference between the number of TMs is different from that of the fixed point C UX (STEP9-3). With ft a + ' a , tongue, and correction value DH is used as a function of the time of time to calculate the elapsed time of the drying coefficient Tt at the nth cycle and the initial drying coefficient Tt ( (fixed number). For the reference, the elapsed time Time~, the ratio correction value 1)1^ becomes a negative value. Further, the elapsed time Time is short 'the ratio correction value DH becomes a positive value. As an example, the formula of DH=axrTv τ., ~Tlme) is used, and is calculated as a fixed number. _, from the dry often ^ to correct the value 〇幵 and correct the drying constant Dx. j.L. and 6, when the drying coefficient Tt becomes larger than the initial drying coefficient Tt, the drying load is reduced from = to the inside, so the drying load is judged more accurately. -^ The fifth drying coefficient of the embodiment of the invention is corrected by the correction coefficient τ - "8th, the fifth drying constant Dx correction is made by drying the difference between the drying system and the drying system _ to exceed the drying coefficient τ_ Set negative to proceed. In Fig. 8, with respect to Fig. 7, it is judged that the dryness is equal to the change point of the drying initial force, and the difference is the value calculated by the initial drying coefficient (STEP 9-4). Different. Count. The positive value DH is the drying coefficient DX measured as a function of the elapsed time. The drying coefficient threshold is C2XTM (C2 is a fixed number) or more: the reference '(4) Japanese ime long day (four) recognition Negative value. In addition, the elapsed time w is short-lived in response to the ratio. Make a paste, take DH=ax(Tx_Time)^正正细 becomes positive ‘叫子, (4) fixed number

S 13 201235623 …W ’從乾燥常數Dx減去補正值dh而補正乾燥常數S 13 201235623 ...W 'subtracts the correction constant dh from the drying constant Dx to correct the drying constant

Dx。 藉此乾燥係數Tt變得較初期之乾燥係數Tt〇大時,顯 示所明室内之乾燥負荷變少之變化點。該變化點之變化的 程度在初期之乾燥係数了①大時變小初期之乾燥係数丁⑴ 小時變大。由於成為所謂室内之乾燥負荷變少之變化點的 判斷係因應初期之乾燥係數TtG而補正,所以乾燥負荷會更 正確地被判斷。 其次,第9圖係本發明實施形態之第6乾燥係數1^補正 之机私圖。如第9圖所示,第6乾燥常數〇\補正係藉由乾燥 係數TtO與乾燥係數Tt之差到超過一定值ci的第丨時間及 從乾燥運轉模式之開始時起經過第丨時間時之溫度檢測部 104之檢測値與第】溫度檢測値Temp〇所算出之每單位時間 的平均溫度變化值而進行。在第9圖中相對於第7圖,只在 補正值DH之算出係使用此時之經過時間Time、及從第n次 迴圈時之溫度檢測部104之地2溫度檢測値Temp(n)與溫度 檢測部104之第1溫度檢測値Temp〇所算出之每單位時間的 平均溫度變化值,補正乾燥常數Dx(STEpi〇_3)的點相異。 具體而言,補正值DH係作為經過時間Time之函數來計 算。補正值DH係藉由經過時間Τχ、經過時間Time、及每單 位時間之平均溫度變化值來補正。此處,經過時間Τχ係求 取最初設定之乾燥常數1>^時之乾燥係數^與初期之乾燥係 數Tto之差到超過C1(定數)的時間,即第丨時間。每單位時間 之平均溫度變化值係由從乾燥運轉模式之開始時起經過第 201235623 ^時間時之溫度檢測部104的檢測值Temp(n)、與溫度檢測部 104之第1溫度檢測値Temp〇所算出。作為1例採取 TX=TX+bM(Temp⑷_Temp0)/Ti跡c}的式子,b、c以定數來 算出。 以如此補正之經過時ra1Tx為基準,經過時間w長時 因應其比率補正值DH成負值,經過時間Time短時因應其比 率補正值DH成正值。作為_,採取咖㈣㈣㈣的式 子’ a以定數來算出。,然後,從乾燥常數以減去補正值DH 而補正乾燥常數Dx。 藉此,乾燥係數Tt變得較初期之乾燥係數Tt〇為大時, 顯示所謂室内之乾燥負荷變少之變化點。於到該變化點的 時間’室内之空間狹小時有室溫之平均溫度變化值變大的 傾向,室内之空間寬廣時有室溫之平均溫度變化值變小的 傾向。由於成為因應該室内之平均溫度變化值乾燥係數Dx 被補正,所以乾燥負荷會更正確地被判斷。 其-人’第10圖係本發明實施形態之第7乾燥係數Dx補正 之流程圖。如第10圖所示,第6乾燥常數Dx補正係使藉由乾 燥係數TtO與乾燥係數Tt之差到超過依據乾燥係數Tt〇之設 定值的第2時間、及從乾燥運轉模式之開始時起經過第2時 間時之溫度檢測部1 〇 4之檢測値與第丨溫度檢測値Temp 〇所 算出之每單位時間的平均溫度變化值進行。在第丨〇圖中相 對於第9圖,只有變化點之判斷係使乾燥係數Tt、與初期之 乾燥係數TtO之差為藉由初期之乾燥係數Tt〇所算出之值以 上的點相異。Dx. When the drying coefficient Tt becomes larger than the initial drying coefficient Tt, the change in the drying load in the room is small. The degree of change in the change point is small when the initial drying coefficient is one large, and the drying coefficient at the initial stage is increased by one (1) hour. Since the judgment that the change in the drying load in the room is small is corrected by the initial drying coefficient TtG, the drying load is more accurately determined. Next, Fig. 9 is a private diagram of the sixth drying coefficient 1^ correction of the embodiment of the present invention. As shown in Fig. 9, the sixth drying constant 〇\correction is obtained by the difference between the drying coefficient TtO and the drying coefficient Tt to the third time exceeding a certain value ci and the third time from the start of the dry operation mode. The detection by the temperature detecting unit 104 and the average temperature change value per unit time calculated by the temperature detection 値Temp〇 are performed. In Fig. 9, with respect to Fig. 7, the calculation of the correction value DH is performed using the elapsed time Time at this time and the temperature detection of the temperature detecting unit 104 from the nth cycle. 値 Temp(n) The average temperature change value per unit time calculated by the first temperature detection 値Temp〇 of the temperature detecting unit 104 is different from the point at which the drying constant Dx (STEpi〇_3) is corrected. Specifically, the correction value DH is calculated as a function of the elapsed time Time. The correction value DH is corrected by the elapsed time Τχ, the elapsed time Time, and the average temperature change value per unit time. Here, the elapsed time is obtained by the time difference between the drying coefficient of the first set drying constant 1 > and the initial drying coefficient Tto to a time exceeding C1 (fixed number), that is, the second time. The average temperature change value per unit time is the detected value Temp(n) of the temperature detecting unit 104 after the passage of the 201235623^ time from the start of the dry operation mode, and the first temperature detection 値Temp〇 of the temperature detecting unit 104. Calculated. As an example, TX=TX+bM(Temp(4)_Temp0)/Ti trace c} is taken, and b and c are calculated by a fixed number. When the elapsed time ra1Tx is used as the reference, the time-correction value DH becomes a negative value when the elapsed time w is long, and the ratio time correction value DH becomes a positive value when the elapsed time Time is short. As _, the formula 'a' of coffee (4), (4), and (4) is calculated by a fixed number. Then, the drying constant Dx is corrected by subtracting the correction value DH from the drying constant. Thereby, when the drying coefficient Tt becomes larger than the initial drying coefficient Tt〇, the change point of the so-called dry load in the room is shown. When the space in the room is small, the average temperature change value at room temperature tends to be large, and when the space in the room is wide, the average temperature change value at room temperature tends to be small. Since the drying coefficient Dx is corrected in response to the average temperature change value in the room, the drying load is judged more accurately. Fig. 10 is a flow chart showing the seventh drying coefficient Dx correction in the embodiment of the present invention. As shown in Fig. 10, the sixth drying constant Dx correction is such that the difference between the drying coefficient TtO and the drying coefficient Tt exceeds the second time according to the set value of the drying coefficient Tt, and from the start of the dry operation mode. The detection of the temperature detecting unit 1 〇 4 at the second time and the average temperature change value per unit time calculated by the second temperature detection 値 Temp 进行 are performed. In the first diagram, with respect to Fig. 9, only the change point is judged such that the difference between the drying coefficient Tt and the initial drying coefficient TtO is different from the point calculated by the initial drying coefficient Tt.

lS 15 201235623 具體而言,補正值DH係作為經過時間Time之函數而計 算。補正值DH係藉由經過時間Τχ、經過時間Time、及每單 位時間之平均溫度變化值來補正。此處,經過時間τχ係求 取最初設定之乾燥常數Dx時之乾燥係數〇與初期之乾燥係 數TtO之差成為C2xTt0(C2為定數)以上的時間。每單位時間 之平均溫度變化值係緒乾燥運轉模式之開始時起經過第 2時間時之溫度檢測部刚的檢測射卿⑻、與溫度檢測部 104之第1溫度檢測値Temp〇所算出。作為丨例採取lS 15 201235623 Specifically, the correction value DH is calculated as a function of the elapsed time Time. The correction value DH is corrected by the elapsed time Τχ, the elapsed time Time, and the average temperature change value per unit time. Here, the difference between the drying coefficient 〇 when the first drying constant Dx is obtained and the initial drying coefficient TtO is C2xTt0 (C2 is a constant number). The average temperature change value per unit time is calculated from the first detection temperature (8) of the temperature detecting unit and the first temperature detection 値 Tempm of the temperature detecting unit 104 when the second time elapses from the start of the drying operation mode. Take as an example

Tx=TX+bx{(Temp⑻_Temp〇)/Time_c}的式子,卜 c以定數來 算出。 以如此補正之經過時Pb1Tx為基準,經過時間丁^長時 因應其比率補正值Μ成負值,經過時間Time短時因應其比 :補正值DH成正值。作為_,採取的式 ::以定數來算出。然後’從乾燥常數Dx減去補正讎 而補正乾燥常數Dx。 海— 變得較初期之乾燥係數加為大日; 的:::至Γ之乾燥負荷變少之變化點。該變化點之, 彻小=1=^數加大時變小,於初期之_ 月至内之乾燥負荷變少的變化點之判| 化點之。乾燥常數Dx被補正。又,5 變大的傾θ A 4則、時有冑溫之平均溫度變+ 變小二室溫之平均溫度變彳Tx = TX + bx {(Temp(8)_Temp〇) / Time_c}, and c is calculated by a fixed number. Based on the Pb1Tx at the time of such correction, the elapsed time is long and the ratio is corrected to a negative value. When the elapsed time is short, the ratio is corrected to the positive value DH. As _, the formula taken :: is calculated by a fixed number. Then, the correction constant 减 is subtracted from the drying constant Dx to correct the drying constant Dx. Sea - becomes the initial drying coefficient added to the big day; the::: to the point where the drying load of the crucible becomes less. The change point is as small as =1 = when the number is increased, the change is small, and the change in the dry load at the beginning of the month is reduced. The drying constant Dx is corrected. In addition, when the 5 becomes larger, the inclination θ A 4 is the same as the average temperature of the temperature change + the temperature is changed.

Dx被補正,㈣_;;;/内之平均溫錢化值乾❸ /、負崎會更正確地被判斷。Dx is corrected, (4) _;;; / within the average temperature value of dry / / negative negative will be judged more correctly.

S 16 201235623 如上述,本發明之除濕機的控制部i使用乾燥運轉模式 中之運轉時之第2溫度檢測値Temp(n)、第2濕度檢測值 Rh(n)、第1溫度檢測値TempO與第2溫度檢測値Temp(n)的差 及第1濕度檢測値RhO與第2濕度檢測值Rh(n)的差中至少一 個,來補正乾燥常數Dx。 【國式簡單說明3 第1圖係本發明實施形態之除濕機的概略斷面圖。 第2圖係前述除濕機之塊狀電路圖。 第3圖係前述除濕機之運轉流程圖。 第4圖係前述除濕機之第1乾燥常數Dx補正之流程圖。 第5圖係前述除濕機之第2乾燥常數D X補正之流程圖。 第6圖係前述除濕機之第3乾燥常數D X補正之流程圖。 第7圖係前述除濕機之第4乾燥常數Dx補正之流程圖。 第8圖係前述除濕機之第5乾燥常數Dx補正之流程圖。 第9圖係前述除濕機之第6乾燥常數Dx補正之流程圖。 第10圖係前述除濕機之第7乾燥常數Dx補正之流程圖。 第11A圖係從前方看習知之除濕機的立體圖。 第11B圖係從後方看前述除濕機的立體圖。 第12圖係前述除濕機之塊狀電路圖。 第13圖係前述除濕機之運轉流程圖。 第14圖係前述除濕機之乾燥係數Tt算出流程圖。 第15圖係用以說明前述除濕機之乾燥係數Tt之濕度 圖。 . 【主要元件符號說明】S 16 201235623 As described above, the control unit i of the dehumidifier of the present invention uses the second temperature detection 値Temp(n), the second humidity detection value Rh(n), and the first temperature detection 値TempO during the operation in the dry operation mode. The drying constant Dx is corrected by at least one of the difference between the second temperature detection 値Temp(n) and the difference between the first humidity detection 値RhO and the second humidity detection value Rh(n). [State Style Simple Description 3] Fig. 1 is a schematic cross-sectional view of a dehumidifier according to an embodiment of the present invention. Fig. 2 is a block circuit diagram of the aforementioned dehumidifier. Fig. 3 is a flow chart showing the operation of the aforementioned dehumidifier. Fig. 4 is a flow chart showing the correction of the first drying constant Dx of the dehumidifier. Fig. 5 is a flow chart showing the correction of the second drying constant D X of the dehumidifier. Fig. 6 is a flow chart showing the third drying constant D X correction of the aforementioned dehumidifier. Fig. 7 is a flow chart showing the correction of the fourth drying constant Dx of the aforementioned dehumidifier. Fig. 8 is a flow chart showing the fifth drying constant Dx correction of the aforementioned dehumidifier. Fig. 9 is a flow chart showing the sixth drying constant Dx correction of the aforementioned dehumidifier. Fig. 10 is a flow chart showing the seventh drying constant Dx correction of the aforementioned dehumidifier. Fig. 11A is a perspective view of a conventional dehumidifier viewed from the front. Fig. 11B is a perspective view of the aforementioned dehumidifier as seen from the rear. Figure 12 is a block circuit diagram of the aforementioned dehumidifier. Figure 13 is a flow chart showing the operation of the aforementioned dehumidifier. Fig. 14 is a flow chart for calculating the drying coefficient Tt of the aforementioned dehumidifier. Fig. 15 is a graph showing the humidity of the drying coefficient Tt of the aforementioned dehumidifier. [Main component symbol description]

S 17 201235623 1.. .控制部 2.. .微電腦 3.. .機器本體 101.. .機器本體 102.. .操作部 104.. .溫度檢測部 105.. .濕度檢測部 106.. .衣物乾燥開關 107.. .微電腦 108.. .控制部 110.. .除濕控制部 111.. .送風控制部 112.. .除濕部 113.. .送風部 DH...補正值 Dx…乾燥常數 RhO第1濕度檢測值 Rh(n)...第2濕度檢測值 Tempo...第1溫度檢測值 Temp(n)…第2溫度檢測值 Tt...乾燥係數S 17 201235623 1.. Control unit 2. Microcomputer 3.. Machine body 101.. Machine body 102.. Operation unit 104.. Temperature detecting unit 105.. Humidity detecting unit 106.. Clothes drying switch 107.. Microcomputer 108.. Control unit 110.. Dehumidification control unit 111.. Air supply control unit 112.. Dehumidifying unit 113.. Air supply unit DH... Correction value Dx... Drying constant RhO first humidity detection value Rh(n)...second humidity detection value Tempo...first temperature detection value Temp(n)...second temperature detection value Tt...drying coefficient

TtO...乾燥係數 18TtO...drying factor 18

Claims (1)

201235623 七、申請專利範圍: 1. 一種除濕機,包含有乾燥運轉模式,且於機器本體内具 備有: 除濕部及送風部; 控制部,進行前述除濕部及前述送風部之運轉控 制; 溫度檢測部,檢測前述機器本體之周邊溫度;及 濕度檢測部,檢測前述機器本體之周邊濕度, 其特徵在於: 前述控制部進行乾燥常數初期設定控制且進行乾 燥常數補正控制,前述乾燥常數初期設定控制從前述乾 燥運轉模式開始時之前述溫度檢測部的第1溫度檢測値 與前述濕度檢測部之第1濕度檢測值初期設定用以判斷 前述乾燥運轉模式完成之乾燥常數Dx,前述乾燥常數 補正控制使用前述乾燥運轉模式中之運轉時之前述溫 度檢測部的第2溫度檢測値、前述濕度檢測部之第2濕度 檢測值、前述第1溫度檢測値與前述第2溫度檢測値之差 及前述第1濕度檢測值與前述第2濕度檢測值之差中之 至少一者,補正前述乾燥常數Dx。 2. 如申請專利範圍第1項之除濕機,其中前述乾燥常數補 正控制係藉由從前述乾燥運轉模式開始到藉由前述第2 溫度檢測値與前述第2濕度檢測值所求取之絕對濕度開 ,始下降的時間,補正前述乾燥常數Dx。 3. 如申請專利範圍第1項之除濕機,其中前述乾燥常數補 19 201235623 工制係藉由從刚述乾燥運轉模式開始到前述第2濕度 檢測值開始下降的時間,補正前述乾燥常數Dx。 申。月專利㈣第1項之除濕機,其中前述乾燥常數補 控制係藉由從則述乾燥運轉模式開始到前述第2濕度 二則值開始下降的時間、與前述第^溫度檢測値,補正 前述乾燥常數Dx。 士申明專利項之除濕機,其巾前述乾燥常數補 正控制係藉由前述第1溫度檢剛値與前述第1濕度檢測 值所算出之乾燥係數Tt〇、與前述第2溫度檢測値與前述 第2濕度檢測值所算出之乾燥係數Tt之差到超過-定值 的時間,補正前述乾燥常數Dx。 6·如申請翻項之除_,其帽述乾燥常數補 控制係藉^述第丨溫度檢魏與前述帛旧度檢測 值所算出之乾燥係數Tt〇、與前述第2溫度檢測値與前述 第2濕度檢測值所算出之乾燥係_之差到超過依據前 述乾燥係數Tt〇之設定值的時間,補正前述乾燥常數Dx。 7·如f請專· 項之除濕機’其中前述乾燥常數補 正控,係藉由剛述第!溫度檢測値與前述第丄濕度檢測 值所算出之乾燥係數TtO、與前述第2溫度檢測值與前述 第2濕度檢測值所算出之乾燥係數^之差到超過一定值 的第1時間、以及從前述乾燥運轉模式開始時經過前述 第1時間時之前述溫度檢測部的檢測值與前述第i溫度 檢測値所算出之每S位時_平均溫度變化值,補正前 述乾燥常數Dx。 S 20 201235623 8.如申請專利範圍第1項之除濕機,其中前述乾燥常數補 正控制係藉由前述第1溫度檢測値與前述第1濕度檢測 值所算出之乾燥係數Tto、與前述第1溫度檢測値與前述 第1濕度檢測值所算出之乾燥係數T t之差到超過依據前 述乾燥係數Tto之設定值的第2時間、以及從前述乾燥運 轉模式開始時經過前述第2時間時之前述溫度檢測部的 檢測值與前述第1溫度檢測値所算出之每單位時間的平 均溫度變化值,補正前述乾燥常數Dx。 21201235623 VII. Patent application scope: 1. A dehumidifier, comprising a dry operation mode, and having a dehumidifying portion and a blowing portion in the machine body; a control unit for performing operation control of the dehumidifying portion and the air blowing portion; temperature detecting And detecting the ambient temperature of the apparatus main body; and the humidity detecting unit detects the peripheral humidity of the main body of the apparatus, wherein the control unit performs drying constant initial setting control and performs drying constant correction control, and the drying constant initial setting control is performed The first temperature detection 温度 of the temperature detecting unit at the start of the drying operation mode and the first humidity detection value of the humidity detecting unit are initially set to determine a drying constant Dx at which the drying operation mode is completed, and the drying constant correction control uses the aforementioned The second temperature detection 前述 of the temperature detecting unit during the operation in the dry operation mode, the second humidity detection value of the humidity detecting unit, the difference between the first temperature detecting 値 and the second temperature detecting 及, and the first humidity The difference between the detected value and the aforementioned second humidity detection value At least one of, for compensating the drying constant Dx. 2. The dehumidifier according to claim 1, wherein the drying constant correction control is performed by using the dry humidity operation mode to determine the absolute humidity obtained by the second temperature detection and the second humidity detection value. The time from the start to the fall is corrected by the aforementioned drying constant Dx. 3. The dehumidifier according to claim 1, wherein the drying constant supplement 19 201235623 is used to correct the drying constant Dx from a time immediately after the drying operation mode to when the second humidity detection value starts to decrease. Shen. The dehumidifier according to Item 1, wherein the drying constant compensation control corrects the drying by the time from the drying operation mode to the time when the second humidity value starts to decrease, and the temperature detection time. Constant Dx. In the dehumidifier of the patent application, the drying constant correction control of the towel is the drying coefficient Tt 算出 calculated by the first temperature inspection 値 and the first humidity detection value, and the second temperature detection 値 and the (2) The difference between the drying coefficient Tt calculated by the humidity detection value reaches a time exceeding the constant value, and the drying constant Dx is corrected. 6. If the application for the reversal of the item is removed, the cap drying constant compensation control system calculates the drying coefficient Tt〇 calculated by the second temperature detection and the above-mentioned detection value, and the second temperature detection 値 and the foregoing The drying constant Dx is corrected when the difference between the drying system _ calculated by the second humidity detection value exceeds the set value of the drying coefficient Tt 。. 7·If you want to use the dehumidifier of the item, the above-mentioned drying constant correction control is just mentioned! The difference between the temperature detection 値 and the drying coefficient TtO calculated by the second humidity detection value, and the difference between the second temperature detection value and the drying coefficient ^ calculated by the second humidity detection value, exceeds a certain value, and the first time The drying constant Dx is corrected by the detection value of the temperature detecting unit at the first time and the _average temperature change value per S-bit calculated by the ith temperature detecting 开始 at the start of the drying operation mode. The dehumidifier according to claim 1, wherein the drying constant correction control is a drying coefficient Tto calculated by the first temperature detecting enthalpy and the first humidity detecting value, and the first temperature. The difference between the detected enthalpy and the drying coefficient T t calculated by the first humidity detection value is longer than a second time based on the set value of the drying coefficient Tto and the temperature at the second time from the start of the dry operation mode The detection value of the detection unit and the average temperature change value per unit time calculated by the first temperature detection 补 are corrected for the drying constant Dx. twenty one
TW100149178A 2011-02-16 2011-12-28 Dehumidifier TWI546507B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011030489A JP5333480B2 (en) 2011-02-16 2011-02-16 Dehumidifier

Publications (2)

Publication Number Publication Date
TW201235623A true TW201235623A (en) 2012-09-01
TWI546507B TWI546507B (en) 2016-08-21

Family

ID=46654880

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100149178A TWI546507B (en) 2011-02-16 2011-12-28 Dehumidifier

Country Status (4)

Country Link
JP (1) JP5333480B2 (en)
CN (1) CN102641648B (en)
HK (1) HK1174298A1 (en)
TW (1) TWI546507B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI585266B (en) * 2012-09-20 2017-06-01 松下知識產權經營股份有限公司 Clothes dryer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105026636B (en) * 2013-03-05 2017-03-08 三菱电机株式会社 Dehumidifier
JP7489579B2 (en) 2021-02-26 2024-05-24 パナソニックIpマネジメント株式会社 Dehumidifier
TWI806661B (en) * 2022-06-15 2023-06-21 國立臺灣師範大學 Dehumidifier with compensation and controlling method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131904A (en) * 1989-10-18 1991-06-05 Hitachi Ltd Method and device for correcting operation control detecting data for electric apparatus
JPH08141290A (en) * 1994-11-28 1996-06-04 Matsushita Electric Ind Co Ltd Method for detecting volume of clothing to be dried in clothing dryer and method for estimating drying time
JP2002282595A (en) * 2001-03-26 2002-10-02 Toto Ltd Clothes dryer
JP4786075B2 (en) * 2001-07-31 2011-10-05 パナソニックエコシステムズ株式会社 Drying control method and drying apparatus
JP4305349B2 (en) * 2004-09-28 2009-07-29 パナソニック株式会社 Bathroom ventilation dryer
JP4710313B2 (en) * 2004-12-01 2011-06-29 パナソニック株式会社 Dehumidifier
JP2007181585A (en) * 2006-01-10 2007-07-19 Matsushita Electric Ind Co Ltd Dehumidifier
JP2009112558A (en) * 2007-11-07 2009-05-28 Panasonic Corp Dehumidifier
JP2010145064A (en) * 2008-12-22 2010-07-01 Panasonic Corp Dehumidifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI585266B (en) * 2012-09-20 2017-06-01 松下知識產權經營股份有限公司 Clothes dryer

Also Published As

Publication number Publication date
TWI546507B (en) 2016-08-21
JP2012165939A (en) 2012-09-06
CN102641648B (en) 2014-07-30
CN102641648A (en) 2012-08-22
JP5333480B2 (en) 2013-11-06
HK1174298A1 (en) 2013-06-07

Similar Documents

Publication Publication Date Title
JP6089202B2 (en) Dehumidifier
TW201235623A (en) Dehumidifier
CN109541984B (en) Clothes solarization degree control algorithm suitable for intelligent clothes hanger
CN106679081A (en) Air conditioner and drying control method thereof
JP6182083B2 (en) Dehumidifier
EP2977504A1 (en) Dehumidifier
JP4305349B2 (en) Bathroom ventilation dryer
JP2009250527A (en) Bathroom heating dryer
JP5446174B2 (en) Bathroom Dryer
JP4794766B2 (en) Dehumidifier
CN110779184A (en) Operation control method and device, air conditioner and storage medium
EP2966216A1 (en) Dehumidifier
JP6559545B2 (en) Ventilation equipment
JP2020070997A (en) Control system, control method, and program
WO2021039490A1 (en) Ventilator
CN104204338A (en) Air conditioner
CN113739374B (en) Air conditioner dehumidification control method and device, controller and air conditioner
JP7489579B2 (en) Dehumidifier
JP7453028B2 (en) Outside air processing equipment and air conditioning system
JP2013061106A (en) Bathroom heating dryer
JP2023061598A (en) bathroom drying system
JP2012163293A (en) Bathroom heater and dryer
JP2014124202A (en) Bathroom heating apparatus
JP2015194283A (en) Dew condensation detector and dew condensation detection method
JP6511641B2 (en) Bathroom ventilation dryer