TW201234762A - Motor control method with no sensor - Google Patents

Motor control method with no sensor Download PDF

Info

Publication number
TW201234762A
TW201234762A TW100104097A TW100104097A TW201234762A TW 201234762 A TW201234762 A TW 201234762A TW 100104097 A TW100104097 A TW 100104097A TW 100104097 A TW100104097 A TW 100104097A TW 201234762 A TW201234762 A TW 201234762A
Authority
TW
Taiwan
Prior art keywords
signal
speed
motor
estimated
electrical
Prior art date
Application number
TW100104097A
Other languages
Chinese (zh)
Other versions
TWI426698B (en
Inventor
Faa-Jeng Lin
Yue-Ming Hsin
Shih-Yang Lee
Hu-Chi Chang
Zi-Yin Kao
Original Assignee
Univ Nat Central
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Central filed Critical Univ Nat Central
Priority to TW100104097A priority Critical patent/TWI426698B/en
Publication of TW201234762A publication Critical patent/TW201234762A/en
Application granted granted Critical
Publication of TWI426698B publication Critical patent/TWI426698B/en

Links

Abstract

A motor control method with no sensor is applied to a permanent magnetic synchronous motor by combining a high frequency signal injection manner with a reference model adaptive control manner. The high frequency signal injection manner is taken as a starting strategy to achieve the function of sinusoidal driving of a compressor. When the compressor reaches a predetermined rotational speed, the system is switched to the reference model adaptive control manner suitable for intermediate and high rotational speeds, such that the compressor can be operated to reach the higher rotational speed. In addition, the intelligent artificial neural proportional differential and integral controller is taken to replace the conventional proportional differential and integral controller inside the estimators of the high frequency signal injection manner and the reference model adaptive control manner, thereby further improving the estimation performance of the motor.

Description

201234762 六、發明說明: 【發明所屬之技術領域】 本發明有關於-種無翻器之馬達㈣方法,制有關於 -種使用高齡號注人法,㈣慧賴神經關微分積分控 制器來取代傳統關微分積分㈣$,並結合料參考適應 系統轉速估測法則之無感測器之馬達㈣方法。 【先前技術】201234762 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a motor (four) method without a turnover, which is replaced by a method for using a high age number, and (4) a Huilai nerve closed differential integral controller. Traditionally, the differential integral (4)$ is used, and the combined reference material is used to adapt the system speed estimation rule to the sensorless motor (4) method. [Prior Art]

在探討應用於冷; 東空調等場合之壓縮機變頻控制技術 時’由於壓縮機時#作於高溫場合,再加上冷媒具有雜 !·生’因此在壓賴馬達之氣隙間無法安裝霍_制器或是轉 速感測器’故必須借助無感測器控制法則來實現變頻控制。 以直流變頻壓縮機而言,内部所採用的馬達為永磁同步焉 達’其中並依據轉子磁石農置之方式分為表面貼覆式、嵌入 式及内藏式永磁同步馬達,其結構上的差異造心軸電感與 q轴電感的不同’因此使得馬達模型產生些許的改變。〃 對内藏式永磁同步馬達而言,其電感Ld不等於電感Lq, -有心明顯的凸極效果,因此便有無感測器控制法則依據其 凸極之特性來估測轉子磁通角度之位置。然而表面貼覆式永 ^ 5 ^馬達之電感Ld等於電感Lq,因此其凸極效果不像内 藏式永磁同步馬達那麼㈣,所以無感卿控制法則應用於 、之凸極特性便無法應用在表面貼覆式永磁同步馬達上。 無感測器之永磁同步馬達控制技術常見的技術有三種,反 TF1004505 201234762 電動勢零父越點制法、轉子磁通估測法及參考模型適應性 控制法皆可應用於凸極式或隱極式馬達上,各技術簡述如 下。 1. 反電動勢零交越點偵測法: 以偵測壓縮機馬達之反電動勢零交越點為基礎來設計一 無感測ϋ電路,藉此獲得換相信號以取代霍爾感測器。 2. 轉子磁通估測法: 以債測馬達之三相電屋與電流等資訊,藉此估測馬達之定鲁 子磁通角度,再藉由計算轉㈣之補償而獲得轉子磁通角 度。 3·參考模型適應性控制法 以馬達模型為基礎建立一調變模型,並且以一適應性機制 動I、估測it;馬達轉速’藉由積分器間接獲得馬達轉子磁通位 置。 以上所提及之無感測器控制法則的共同缺陷在於:當馬達鲁 運轉於低轉速下或是靜止時,皆由於無法量測到反電動勢、 |測到的反電動勢太小、或是角度初始值等問題,使得上述 方式無法適用於啟動狀態,必須借助額外的啟動策略來幫助 壓和百機馬達啟動至中高轉速。 開迴路方波啟動為目前家用空調壓縮機常見之啟動方 气一優點為實現容易,缺點則是在運用這類型啟動法來啟 動壓縮機^ # 巧達時會伴隨很大的啟動電流,增加機械磨損而縮 TF1004505 4 201234762 短壓縮機運轉哥命,且由方波驅動切換為弦波驅動時,在切 換點之電流波形會產生瞬間的變化,若無經過適當設計則可 能會產生一瞬間劇烈的轉矩脈動,甚至造成壓縮機停止運 轉。 近年來所提出之高頻注入法可適用於零轉速時之無感測 态的馬達控制技術,而其已被廣泛地研究,無論是使用凸極 式馬達還是隱極式馬達,皆可有效啟動並可於低轉速範圍進 订控制’藉由此無感測器之轉子角度估測技術,即使於零轉 速,依然可藉由高頻信號調變的方式來獲得轉子磁通位置, 避免大啟動電流之問題;然而馬達在啟動後到達設定切換轉 速時’依然存在轉子追隨*上下擺動關題,無法準確 隨。 退 【發明内容】 本發明提供一種無感測器之馬達控制方法,其以智慧型之 類神經比例積分微分控㈣組來取代傳統的比例積分微分 控制模組以改善高頻信號注人法,藉此提升高頻信號注入刀 在零轉速與低轉料之㈣性能,並且將㈣經比例产 莫組結合參考模型適應性控制法’根據馬達操二 讀電流與馬達之電氣參數《訊,藉由可調«型與適應 性機制來獲得估測速度,因此只要電流取樣頻率夠高,參… ㈣適應性控制法之運算速度便不會受到限制,此相當^ 易實現在壓縮機之硬體架構的驅動控制上。 田今 TF1004505 201234762 本:㈣之第一態樣係提供一種無感測器之馬達押制方 法’邊方法操作在該馬達為靜卫 列步驟·· w轉速方法包含下 田1控制器送出-控制信號以驅動該 制器將—高頻信號座標轉換成該控制信號;〃中°亥此 器接收該馬達在被驅動操作時之-電氣信號; / 狀制器將所接收之該電氣信號進行信號處理,並進 订一類神經比例積分微分運算以得到一估測轉速及一估測 ^度,其中該類神經比例積分微分運算中之一比例參數、一 微分參數與依積分參數之個別學習權重值隨著每一次估測 誤差之改變而成比侧整大小,進而輕該比尋數、該微 分參數與該積分參數; 由該微控制H比較-命令轉速與該_轉相得到一命 令控制信號;以及 由该微控制器將該高頻信號與該命令控制信號加總以得 到該控制信號而用以驅動該馬達。 根據本發明之第一態樣之方法’其中,由該微處理器之一 k號處理及馬達速度估測模組執行下列步驟: 將該電氣信號進行一帶通濾波處理以得到為高頻信號形 式之一面頻電氣信號; 將該高頻電氣信號與高頻信號形式之該高頻信號調整值 進行一乘法運算以得到為直流電源形式之一直流電氣信 τρ1004505 6 201234762 號’其中該高頻信號調整值為如叫’叫為高頻電壓角頻率 將該直流電氣信號進行一低通濾波處理以得到與該估測 誤差角度有關之一輸入信號; 將該輸入信號進行類神經比例積分微分運算以得到—車备 速號’ 其中’該類神經比例積分微分運算之方程式為: (^) = Kp (N)e + Kd (N) ^ + Kj (A^)| edt p + = Kp (N)e + 7, S0e sgn(e) + 0 = Kd(N)e + ηλδ^ — dt (N + 1) = Kt (N)e + 77, J edt sgn(e) = e if e>〇 sgn(e) = -e if e <0When discussing the inverter variable frequency control technology applied to cold, east air conditioning and other occasions, 'because the compressor is used in high temperature, plus the refrigerant has miscellaneous! · Health', therefore, it is impossible to install the air gap between the pressure motor. The controller or the speed sensor 'has to use the sensorless control law to achieve variable frequency control. In the case of a DC inverter compressor, the internal motor is a permanent magnet synchronous motor, which is divided into surface-mounting, embedded and built-in permanent magnet synchronous motors according to the way of rotor magnetism. The difference between the mandrel inductance and the q-axis inductance makes a slight change in the motor model. 〃 For the built-in permanent magnet synchronous motor, the inductance Ld is not equal to the inductance Lq, and there is a clear salient effect. Therefore, there is no sensor control law to estimate the rotor flux angle based on the characteristics of the salient pole. position. However, the surface-mounting type 5 5 motor's inductance Ld is equal to the inductance Lq, so its salient pole effect is not as good as the built-in permanent magnet synchronous motor (4), so the non-sensing control law applied to the salient pole characteristics cannot be applied. On the surface-mounted permanent magnet synchronous motor. There are three common techniques for permanent magnet synchronous motor control technology without sensor. Anti-TF1004505 201234762 Electromotive force zero parent over-point method, rotor flux estimation method and reference model adaptive control method can be applied to salient or hidden On the pole motor, the techniques are briefly described below. 1. Back EMF Zero Crossing Detection Method: A non-sensing ϋ circuit is designed based on detecting the back electromotive zero crossing point of the compressor motor, thereby obtaining a commutation signal instead of the Hall sensor. 2. Rotor Flux Estimation Method: Estimate the motor's fixed Luzi flux angle by using the three-phase electric house and current of the motor, and obtain the rotor flux angle by calculating the compensation of (4). . 3. Reference model adaptive control method Based on the motor model, a modulation model is established, and an adaptive mechanism is used to estimate I; the motor speed 'directly obtains the motor rotor flux position by the integrator. The common defect of the above-mentioned sensorless control law is that when the motor is running at low speed or at rest, the back electromotive force cannot be measured, the measured back electromotive force is too small, or the angle is Problems such as the initial value make the above method unsuitable for the start-up state, and an additional start-up strategy must be used to help the press and the motor to start to the medium-high speed. Open circuit square wave start-up is a common starting gas for household air-conditioning compressors. The advantage is easy to achieve. The disadvantage is that when this type of start-up method is used to start the compressor ^ #巧达 will be accompanied by a large starting current, adding machinery Wear and shrink TF1004505 4 201234762 When the short compressor is running, and the square wave drive is switched to the sine wave drive, the current waveform at the switching point will change instantaneously. If it is not properly designed, it may produce a momentary violent The torque ripples and even causes the compressor to stop running. The high-frequency injection method proposed in recent years can be applied to the motor control technology of non-sensing state at zero rotation speed, and it has been extensively studied, and it can be effectively started whether using a salient-pole motor or a hidden-pole motor. The rotor can be controlled at a low speed range. By means of the rotor angle estimation technology without the sensor, even at zero speed, the rotor flux position can be obtained by means of high frequency signal modulation, avoiding a large start. The problem of current; however, when the motor reaches the set switching speed after starting, 'there is still the rotor following the up and down swing, which cannot be accurately followed. SUMMARY OF THE INVENTION The present invention provides a sensorless motor control method that replaces a conventional proportional-integral-derivative control module with a smart-type proportional-integral-integral-differential control (four) group to improve the high-frequency signal injection method. In order to improve the performance of the high-frequency signal injection knife at zero speed and low turnover, and (4) the proportional production model combined with the reference model adaptive control method 'according to the motor operation second reading current and motor electrical parameters The adjustable speed is obtained by the adjustable «type and adaptive mechanism, so as long as the current sampling frequency is high enough, the reference speed is not limited. (4) The operation speed of the adaptive control method is not limited, which is quite easy to implement in the hardware of the compressor. The drive control of the architecture. Tian Jin TF1004505 201234762 This: (4) The first aspect provides a motor-free method of sensorless operation. The side method operates in the motor as a static guard step. · w speed method includes the lower field 1 controller sends out - control signal To drive the controller to convert the high frequency signal coordinate into the control signal; the 〃 中 此 接收 接收 接收 接收 接收 接收 接收 接收 接收 接收 接收 接收 接收 接收 接收 接收 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气 电气And a class of neural proportional integral differential operation is obtained to obtain an estimated rotational speed and an estimated measurement degree, wherein one of the proportional parameter, the differential parameter and the individual learning weight value according to the integral parameter in the neural proportional integral differential operation Each time the estimated error is changed to be larger than the side size, thereby lightly comparing the ratio, the differential parameter and the integral parameter; and the micro-control H compares the commanded speed with the _phase to obtain a command control signal; The high frequency signal and the command control signal are summed by the microcontroller to obtain the control signal for driving the motor. According to the method of the first aspect of the present invention, the following steps are performed by the k-number processing and the motor speed estimation module of the microprocessor: the electrical signal is subjected to a band pass filtering process to obtain a high frequency signal form. a surface frequency electrical signal; the high frequency electrical signal and the high frequency signal form of the high frequency signal adjustment value are multiplied to obtain a DC power supply form of the DC electrical signal τρ1004505 6 201234762 'where the high frequency signal is adjusted The value is a high-frequency voltage angular frequency, and the DC electrical signal is subjected to a low-pass filtering process to obtain an input signal related to the estimated error angle; the input signal is subjected to a neural-like proportional integral differential operation to obtain —车备速号' where the equation for this type of neural proportional integral differential operation is: (^) = Kp (N)e + Kd (N) ^ + Kj (A^)| edt p + = Kp (N)e + 7, S0e sgn(e) + 0 = Kd(N)e + ηλδ^ — dt (N + 1) = Kt (N)e + 77, J edt sgn(e) = e if e>〇sgn(e ) = -e if e <0

其中’九為類神經比例積分微分運算之輸出、為比例參 數,(為微分參數,(為積分參數,誤差彻估測誤差角 度,〜為加權參數,而4設定為e,7|為權重之學習速率; ^將該轉速信號進行低通濾波處理並乘上與該馬達之 茶數有關之參數,以得到該估測轉速;以及 將該轉速信號進行-積分運算以得到該估測角度e 器執行 根據本發明之第-態樣之方法,其中,由該微控制 下列步驟: 由該微控制器之一正座椤趙 ,^ 铽轉換輪組參考該估測角度將二 相靜止座標之該電氣芦髀蝕 〜 氣信號 〜一 1 #U轉換成同步旋轉座標之-dq輛電 TF1004505 201234762 由該信號處理及馬達速度估測模組進行上述信號處理及 一類神經比例積分微分運算之步驟,將該dq軸電氣信號進 行運算以得到該估測轉速及該估測角度; 由該微控制器之一速度控制模組比較該命令轉速與該估 測轉速以得到一速度差值,並將該速度差值進行一比例積分 運算以得到一電流命令信號; 由該微控制器之一電流控制模組比較該dq軸電氣信號與 該電流命令信號以得到一電流差值,並將該電流差值進行該 比例積分運算以得到一電壓信號; 由該微控制器之電壓解耦合模組將該電壓信號進行解耦 合運算以得到一解耦合電壓信號,其中解耦合運算係抵消該 估測轉速對該dq軸電氣信號的干擾及兩者之間的耦合; 將由該微控制器之一高頻信號注入模組所產生之該高頻 信號與該解麵合電壓信號加總以得到一電壓命令信號, 其中’該南頻信號注入模組產生為南頻電壓之該南頻信 號,其表示式如下:Among them, 'nine is the output of the proportional integral differential operation of the neuron, which is the proportional parameter, (for the differential parameter, (for the integral parameter, the error is estimated by the error angle, ~ is the weighting parameter, and 4 is set to e, 7| is the weight Learning rate; ^ low-pass filtering the speed signal and multiplying the parameter related to the number of teas of the motor to obtain the estimated speed; and performing an integral operation on the speed signal to obtain the estimated angle e Executing the method according to the first aspect of the present invention, wherein the micro-control is performed by the following steps: by the one of the microcontrollers, the switching wheel set refers to the estimated angle to the two-phase stationary coordinate of the electrical Reed etch ~ gas signal ~ a 1 #U converted into synchronous rotating coordinates - dq electric TF1004505 201234762 The signal processing and motor speed estimation module performs the above signal processing and a class of neural proportional integral differential operation steps, The dq axis electrical signal is calculated to obtain the estimated rotational speed and the estimated angle; and the speed control module of the microcontroller compares the commanded rotational speed with the estimated rotational speed to obtain a speed difference, and performing a proportional integration operation on the speed difference to obtain a current command signal; wherein the current control module of the microcontroller compares the dq axis electrical signal with the current command signal to obtain a current difference And performing the proportional integral operation on the current difference to obtain a voltage signal; decoupling the voltage signal by the voltage decoupling module of the microcontroller to obtain a decoupling voltage signal, wherein the decoupling operation system Compensating for the interference of the estimated rotational speed on the electrical signal of the dq axis and the coupling between the two; and summing the high frequency signal generated by the high frequency signal injection module of the microcontroller and the combined surface voltage signal To obtain a voltage command signal, wherein the south frequency signal injection module generates the south frequency signal of the south frequency voltage, and the expression is as follows:

Vdl, 乂丨,〇- idh _ 0 zql,_ 其中,vrf/l、、分別為同步參考座標之d軸與q軸的高頻電 Μ成分’ &、◊'分別為同步參考座標之d轴與q袖的南頻電 流成分,Ζί/Λ、'分別為該馬達之同步參考座標之d軸與q 軸的高頻阻抗; TF1004505 8 201234762 同器,—反座標轉換模組參考該估測角度將為 σ/疋^之該電麼命令信號座標轉換成三 之一三相控制信號;以及 叫 -由该㈣制11之—弦波脈寬調變模組參考該估測角戶 •該二相控制信號進行弦波脈寬調變,以得到 = 根據本發明之第-紐之方法,更包含下列步驟^ 由一電源供應器提供直流電源至-換流器; 由一隔離放大器隔離由該微控制器所傳送之為電子信穿 亥控制信號,並將該控制信號放大為電氣信號^ 一电氣控制信號;以及 飞之 =換流器將直流電源轉換成三相電源,並 制信號控制三㈣社大小,讀人至料達。 ‘ = 弟1樣之方法,其中,由該微控制器根據 •二:=馬達被驅動至一預定低轉速,則該微控 Ρ制σ。不在產生該高頻信號。 、、本4明之第—態樣係提供—種無感測器之馬達控制方 法、亥方物作在該馬達為巾轉速或高轉 下列步驟: ι各 由-微控制器送出—控制信號以驅動該馬達; =:控:器接收該馬達在被驅動操作時之一電氣信號; 根據—命令電,信號、一估測電氣轉速與該 馬達之電軋參數以計算得丨— 于J估測電流信號,並根據該估測 TF1004505 9 201234762 =信號、該電氣信號、該馬達之電氣參數與—類神經比例 f分微分運算㈣之核歸料,㈣到—⑽轉速及一 測角度’其中該_經比例積分微分運算中之—比例參 文W分參數與依積分參數之個別學習權重值隨著每一次 :測誤差之改變而槪例娜大小,進而職該_參數、 5亥微分參數與該積分參數;以及 以微控制器比較一命令轉速與該估測轉速以得到該控 制信號而驅動該馬達。 士根據本發明之第二態樣之方法,其t,由賴處理器之一 旎處理及馬達速度估測模組執行下列步驟: 根據該命令㈣錢、—轉速触馬達之電氣參 ^建p可調變模型,根據該可調變模型計算得到該估測 包流4唬,其中,該可調變模型為·· ¥ d_ ~dt hi L Ld ώ.Vdl, 乂丨, 〇-idh _ 0 zql, _ where vrf/l, respectively, the d-axis and q-axis high-frequency power components ' &, ◊' of the synchronous reference coordinates are respectively d of the synchronous reference coordinates The south frequency current component of the shaft and the q sleeve, Ζί/Λ, 'the high frequency impedance of the d-axis and the q-axis of the synchronous reference coordinate of the motor respectively; TF1004505 8 201234762 same, the anti-coordinate conversion module refers to the estimation The angle will be σ/疋^ which is the command signal coordinate converted into one of the three three-phase control signals; and the call is made by the (four) 11-chord-wave width modulation module. The two-phase control signal performs sine wave pulse width modulation to obtain = according to the method of the present invention, and further comprises the following steps: providing a DC power supply to the converter by a power supply; is isolated by an isolation amplifier The microcontroller transmits an electronic signal to the electronic control signal, and the control signal is amplified into an electrical signal and an electrical control signal; and the fly=inverter converts the DC power into a three-phase power supply, and generates a signal. Control the size of the three (four) community, read the person to the expected. ‘ = brother's method, in which the microcontroller is driven to a predetermined low speed according to • 2: = the motor is controlled by σ. This high frequency signal is not generated. The fourth aspect of the present invention provides a motor control method without a sensor, and the following steps are performed on the motor for the speed or high rotation of the towel: ι Each is sent by the microcontroller - the control signal is Driving the motor; =: control: receiving an electrical signal of the motor when it is driven; according to - command electric, signal, an estimated electrical speed and the motor's electric rolling parameters to calculate 丨 - J estimated Current signal, and according to the estimated TF1004505 9 201234762 = signal, the electrical signal, the motor's electrical parameters and - the type of neural ratio f differential operation (four) of the nuclear return, (four) to - (10) speed and a measured angle 'the _ Through the proportional integral differential operation - the proportional reference W-parameter and the individual learning weight value according to the integral parameter with each time: the change of the measurement error is the size of the case, and then the _ parameter, 5 Hai differential parameter and The integration parameter; and driving the motor by comparing a commanded speed with the estimated speed to obtain the control signal. According to the second aspect of the present invention, t, the processing of the motor and the motor speed estimation module are performed by the following steps: According to the command (4) money, the electrical parameter of the speed touch motor The adjustable variable model is calculated according to the adjustable variable model, wherein the adjustable variable model is ··· d_ ~dt hi L Ld ώ.

Ss_ Ld L,Ss_ Ld L,

Ld 其中,& 9為估測電流信號,〜為估測電氣轉速, 達之電阻參數,^、々為馬達之雷$夫 v. · ……… 壓信號; 蔽一· Μ運之電感參數,W為命令電 根據該估測電流信號、該電氣信號與該馬達之電氣參數以 建立適應性機制,並根據該適應性機制進行計算以得到兮 估測電氣轉速,其中該適應性機制包含—類神經:例^分: TF1004505 10 201234762 分運异,該適應性機制為: )) Η · ’該類神經比 其中,Λ為類神經比例積分微分運算之輪出 例積分微分運算之方程式為: Λ (N) = Kp (N)e + ΚΛΝ)^ + Κ/ (Λ,} j edt Kp{N + l) = Kp^e + JlAesgn{e)Ld, where & 9 is the estimated current signal, ~ is the estimated electrical speed, the resistance parameter is reached, ^, 々 is the motor of the thunder v. · ......... pressure signal; cover one · the inductive parameters of the transport And the command circuit generates an adaptive mechanism according to the estimated current signal, the electrical signal and the electrical parameter of the motor, and calculates according to the adaptive mechanism to obtain the estimated electrical speed, wherein the adaptive mechanism includes: Neuron: Example ^ points: TF1004505 10 201234762 The difference is the following: ●) Η · 'This kind of nerve is better than the one, the Λ is the analogy of the proportional-integral differential operation. The integral equation of the differential operation is: Λ (N) = Kp (N)e + ΚΛΝ)^ + Κ/ (Λ,} j edt Kp{N + l) = Kp^e + JlAesgn{e)

Kd(N + \) = Kd(N)e + n色 dt K(m) = K(N)e + #〇jedtKd(N + \) = Kd(N)e + n color dt K(m) = K(N)e + #〇jedt

sgn(e) = e if e>〇 sgn(e) = -e if e<Q 其中,,“ 4電氣錢,(為反電動勢常數, 參數’(為微分參數為積分參數,— 誤差角度,^加權參數,而㈣為,,、^為該估測 率; 1為推重之學習速 將該估測電氣轉速進行積分運算以得到該估 將該估測電氣轉速乘上與該馬達之二及 以得到該估簡速。 数錢之參數 根據本發明之第二態樣之方 下列步驟: ,、,由该微控制器執行 由該微控制器之一正座 相靜止座標之該電氣信 氣信號; 標轉換模組參考該估測角度將三 座標之一dq軸電 號轉換成同步旋轉 TF1004505 201234762 由該信號處理及馬達速度估測模組進行上述信號處理及 一類神經比例積分微分運算之步驟,將該dq軸電氣信號進 行運算以得到該估測轉速及該估測角度; 由該微控制器之一速度控制模組比較該命令轉速與該估 測轉速以得到一速度差值,並將該速度差值進行一比例積分 運算以得到一電流命令信號; 由該微控制器之一電流控制模組比較該dq軸電氣信號與 該電流命令信號以得到 一電流差值,並將該電流差值進行該 比例積分運算以得到一電壓信號; 由該微控制器之電壓解耦合模組將該電壓信號進行解耦 合運算以得到一電壓命令信號,其中解耦合運算係抵消該估 測轉速對該dq軸電氣信號的干擾及兩者之間的搞合; 由該微控制器之一反座標轉換模組參考該估測角度將為 同步旋轉座標之該電壓命令信號經座標轉換成三相靜止座 標之一三相控制信號;以及 由該微控制器之一弦波脈寬調變模組參考該估測角度將 該三相控制信號進行弦波脈寬調變,以得到該控制信號。 根據本發明之第二態樣之方法,更包含下列步驟: 由一電源供應器提供直流電源至一換流器; 由一隔離放大器隔離由該微控制器所傳送之為電子信號 形式之該控制信號’並將該控制信號放大為電氣信號形式之 一電氣控制信號;以及 TF1004505 12 201234762 由該換流器將直流電源轉換成二相電源’並根據該電氣控 制信號控制三相電源之大小,以輸入至該馬達。 【實施方式】 參考以下附圖以說明本發明之較佳實施例。 圖1為本發明之無感測器之馬達控制方法之系統方塊 圖。在圖1中,一電源供應器22提供直流電源至一電壓源 換流器24。一隔離放大器26隔離由一微控制器28所傳送 φ 之為電子信號形式之一控制信號,並將控制信號放大為電氣 信號形式之一電氣控制信號以輸出至電壓源換流器24。使 用隔離放大器26的目的是避免電壓源換流器24的大電源信 號進入微控制器28,而造成電氣信號雜訊影響微控制器28 的運作,甚至損壞微控制器28。電壓源換流器24將直流電 源轉換成三相電源,並根據電氣控制信號來控制三相電源之 大小,而將三相電源輸入至一永磁式同步馬達30,以驅動 φ 永磁式同步馬達30運轉。微控制器28接收永磁式同步馬達 30在操作時之電流信號~、穴本實施例是使用電流信號作為 電氣信號,然而亦可使用電壓信號作為電氣信號),並經由 微控制器28之各模組的運算以產生新的控制信號,藉此新 的控制信號來驅動永磁式同步馬達3 0的運轉。 參考以下所附之流程圖及圖1之系統方塊圖,以說明本發 明之無感測器之馬達控制方法之實施步驟。 圖2為本發明之無感測器之馬達控制方法之流程圖。在圖 TF1004505 13 201234762 2中,由電源供應器22提供直流電源至電壓源換流器24(步 驟S50)。由隔離放大器26隔離由微控制器28所傳送之為 電子信號形式之控制信號,並將控制信號放大為電氣信號形 式之電氣控制信號(步驟S52)。由電壓源換流器24將直流電 源轉換成二相電源’並根據該電氣控制信號控制二相電源之 大小,而將三相電源輸入至永磁式同步馬達30,以驅動永 磁式同步馬達30運轉(步驟S54)。 永磁式同步馬達30在靜止狀態或低轉速時,微控制器28 係利用高頻信號注入法來控制永磁式同步馬達30之運轉 (步驟S56)。微控制器28利用高頻信號注入法來控制永磁式 同步馬達30之運轉的實施方式如圖3為本發明之微控制器 利用高頻信號注入法來控制永磁式同步馬達之運轉之流程 圖所示。 在圖3中,由微控制器28接收電流信號~,微控制器 28之一正座標轉換模組32參考一估測角度&將三相靜止座 標(即每相相差120度相位)之電流信號^轉換成同步旋轉 座標之一 dq軸電流信號~、Η步驟S60)。其中,估測角度《 係用以估測永磁式同步馬達30之一轉子磁通角度心。 其中,將三相靜止座標之電流信號G、卩轉換成同步旋轉 座標之一 dq軸電流信號~~之轉換矩陣以如下:Sgn(e) = e if e>〇sgn(e) = -e if e<Q where,, "4 electric money, (for the back electromotive force constant, parameter ' (for the differential parameter is the integral parameter, - error angle, ^ Weighting parameter, and (4) is , , ^ is the estimated rate; 1 is the learning speed of the weighting, the estimated electrical speed is integrated to obtain the estimated electrical speed multiplied by the motor and Obtaining the estimated speed. The parameter of counting money according to the second aspect of the present invention is as follows: ,, the microcontroller performs the electrical signal signal of the stationary coordinate of one of the microcontrollers; The standard conversion module refers to the estimated angle to convert one of the three coordinates of the dq axis into a synchronous rotation TF1004505 201234762. The signal processing and the motor speed estimation module perform the above signal processing and a step of the neural proportional integral differential operation, The dq axis electrical signal is calculated to obtain the estimated rotational speed and the estimated angle; and the speed control module of the microcontroller compares the commanded rotational speed with the estimated rotational speed to obtain a speed difference, and the speed is obtained Difference Performing a proportional integral operation to obtain a current command signal; comparing, by the current control module of the microcontroller, the dq axis electrical signal and the current command signal to obtain a current difference, and performing the current difference Integrating to obtain a voltage signal; decoupling the voltage signal by the voltage decoupling module of the microcontroller to obtain a voltage command signal, wherein the decoupling operation cancels the estimated rotational speed of the dq axis electrical signal Interference and the integration between the two; the anti-coordinate conversion module of the microcontroller refers to the estimated angle, and the voltage command signal of the synchronous rotating coordinate is converted into a three-phase static coordinate by the coordinate And controlling, by the sine wave pulse width modulation module of the microcontroller, the three-phase control signal to perform sine wave pulse width modulation on the estimated angle to obtain the control signal. According to the second aspect of the present invention The method of the aspect further includes the following steps: providing a DC power supply from a power supply to an inverter; being isolated by the isolation amplifier by the microcontroller The control signal in the form of an electronic signal 'enlarges the control signal into an electrical control signal in the form of an electrical signal; and TF1004505 12 201234762 converts the DC power source into a two-phase power source by the converter' and controls three according to the electrical control signal The size of the phase power supply is input to the motor. [Embodiment] The following drawings are used to illustrate the preferred embodiment of the present invention. Fig. 1 is a system block diagram of a motor control method without a sensor of the present invention. In a power supply 22, a power supply 22 supplies DC power to a voltage source converter 24. An isolation amplifier 26 isolates a control signal transmitted by a microcontroller 28 into an electronic signal and amplifies the control signal to One of the electrical signal forms is an electrical control signal for output to the voltage source inverter 24. The purpose of the isolation amplifier 26 is to prevent the large power supply of the voltage source converter 24 from entering the microcontroller 28, causing electrical signal noise to affect the operation of the microcontroller 28 and even damage the microcontroller 28. The voltage source converter 24 converts the DC power into a three-phase power, and controls the size of the three-phase power according to the electrical control signal, and inputs the three-phase power to a permanent magnet synchronous motor 30 to drive the φ permanent magnet synchronization. The motor 30 operates. The microcontroller 28 receives the current signal of the permanent magnet synchronous motor 30 during operation, and the current embodiment uses a current signal as an electrical signal, but may also use a voltage signal as an electrical signal, and via the microcontroller 28 The operation of the module generates a new control signal whereby the new control signal drives the operation of the permanent magnet synchronous motor 30. Referring to the flow chart attached below and the system block diagram of Fig. 1, the steps of implementing the motor control method of the sensorless sensor of the present invention will be described. 2 is a flow chart of a motor control method for a sensorless sensor of the present invention. In the figure TF1004505 13 201234762 2, DC power is supplied from the power supply 22 to the voltage source converter 24 (step S50). The control signal in the form of an electronic signal transmitted by the microcontroller 28 is isolated by the isolation amplifier 26, and the control signal is amplified into an electrical control signal in the form of an electrical signal (step S52). The voltage source converter 24 converts the DC power source into a two-phase power source' and controls the size of the two-phase power source according to the electrical control signal, and inputs the three-phase power source to the permanent magnet synchronous motor 30 to drive the permanent magnet synchronous motor 30 is operated (step S54). When the permanent magnet synchronous motor 30 is in a stationary state or a low rotational speed, the microcontroller 28 controls the operation of the permanent magnet synchronous motor 30 by means of a high frequency signal injection method (step S56). The embodiment of the micro-controller 28 uses the high-frequency signal injection method to control the operation of the permanent magnet synchronous motor 30. FIG. 3 is a flowchart of the operation of the microcontroller using the high-frequency signal injection method to control the operation of the permanent magnet synchronous motor. The figure shows. In FIG. 3, a current signal ~ is received by the microcontroller 28, and a positive coordinate conversion module 32 of the microcontroller 28 refers to an estimated angle & a current of a three-phase stationary coordinate (ie, a phase difference of 120 degrees per phase) The signal ^ is converted into one of the synchronous rotation coordinates dq axis current signal ~, Η step S60). The estimated angle is used to estimate the rotor flux angle of one of the permanent magnet synchronous motors 30. Wherein, the current signal G, 卩 of the three-phase stationary coordinate is converted into one of the synchronous rotating coordinates, and the conversion matrix of the dq axis current signal ~~ is as follows:

cos 0re cosd -120。) cosd +120。) -sin^re -s\n(9re -120°) -sin(^e +120°) TF1004505 14 201234762 由於永磁式同步馬達30在靜止狀態或低轉速運轉,由微 控制器28所輸出的控制信號具有高頻信號的成分,亦即微 控制器28之一高頻信號注入模組34產生一高頻電壓,其表 示式如下: X, 0 ' ldh 0 }φ. 其中’ %分別為同步參考座標之d軸與q轴的高頻電 壓成分’ U崎別為同步參考座標之峰與❻的高頻電 流成分,4、心,分別為永磁式同步馬達3 〇之同步參考座^ 之d軸與q軸的高頻阻抗。 ld 因此,微控制器28接收且經座標轉換之dq軸電流信號 具有高頻信號成分,其表示式如下: ^arg c〇s coscv V2Zdifrsm2dCos 0re cosd -120. ) cosd +120. ) -sin^re -s\n(9re -120°) -sin(^e +120°) TF1004505 14 201234762 Since the permanent magnet synchronous motor 30 is operated at a standstill or at a low speed, it is output by the microcontroller 28. The control signal has a component of a high frequency signal, that is, a high frequency signal injection module 34 of the microcontroller 28 generates a high frequency voltage, which is expressed as follows: X, 0 'ldh 0 } φ. where '% is synchronous The high-frequency voltage component of the d-axis and the q-axis of the reference coordinate is the peak of the synchronous reference coordinate and the high-frequency current component of the ❻, 4, the heart, respectively, the synchronous reference frame of the permanent-magnet synchronous motor 3 〇 High frequency impedance of the axis and q axis. Ld Thus, the dq-axis current signal received by the microcontroller 28 and converted by the coordinates has a high frequency signal component, which is expressed as follows: ^arg c〇s coscv V2Zdifrsm2d

V/JV/J

—)%C0SiV >其中分別為同步參考座叙d軸與q轴的叫軸 ,頻電流錢’其為叫軸電流信號&之高齡號成分, 〜為高頻電壓’ ^為永磁式同步馬達30之高頻阻抗平均 值’ Z•為永磁式同步馬達30之高頻阻抗差值,%為高頻電 壓角頻率。 其中 a、,g—)%C0SiV > which is the synchronous reference d-axis and the q-axis called the axis, the frequency current money 'which is called the axis current signal & the age component, ~ is the high-frequency voltage ' ^ for permanent magnet synchronization The average value of the high frequency impedance of the motor 30 'Z• is the high frequency impedance difference of the permanent magnet synchronous motor 30, and the % is the high frequency voltage angular frequency. Where a, g

Zdh+ zZdh+ z

Zdh - h 組36將 由微控制H 28之—信號處理及馬達速度估測模 TF1004505 15 201234762 dq軸電流信號~~進行信號處理及一類神經比例積分微分 運算以得到一估測機械轉速九及估測角度七(步驟S62)。信 號處理及馬達速度估測模組36將dq軸電流信號~~進行 信號處理及類神經比例積分微分運算之實施方式如圖4為 本發明之信號處理及馬達速度估測模組實施高頻信號注入 法之方塊圖及圖5為本發明之信號處理及馬達速度估測模 組進行信號處理及類神經比例積分微分運算之流程圖所示。 在圖4、5中,由信號處理及馬達速度估測模組36之一帶 通濾波器80將具有高頻信號之dq軸電流信號~~中之q 軸電流信號~進行一帶通濾波處理,以濾除高頻信號之頻率 以外的頻率,而得到為高頻信號形式之一高頻電流信號 b(步驟S100)。其中,高頻電流信號&表式如下: V = vm/ sin 20re Ί 2r r cos -% 厶哳 Sin fiV) ^h^dh^qh =ere~^re 其中,Α/λ、^分別為d軸與q軸之高頻定子電感,為 永磁式同步馬達30在d軸與q軸之間的高頻電阻差值,、 為永磁式同步馬達30在d軸與q軸之間的高頻電感差值,t 為轉子磁通角度位置之估測誤差角度,~為轉子磁通角度位 置之實際角度,&為轉子磁通角度位置之估測角度。 由信號處理及馬達速度估測模組3 6之一乘法器8 0將高頻 電流信號&與高頻信號形式之高頻信號調整值sin~進行一 TF1004505 16 201234762 乘法運算以得到為直流電源形式之一直流電流信號 Usin"V(步驟S102)。將高頻電流信號&乘上高頻信號調整值 sin_的目的在於消除高頻電流信號中之 cos⑺"/ —sin⑺〆)白勺影塑。 由信號處理及馬達速度估測模組36之一低通濾波器84 將直流電流信號ksin(v進行一低通濾波處理以濾除高頻信 號而得到與估測誤差角度&有關之一電流輸入信號〜(步 φ 驟 S104)。 其中, -sin 21 k]=—4从",ζ, 如果轉子位置之估測誤差非常小,Sin2&便會趨近於< 則電流輸入信號&可線性化為 Κ Θ error re 圖6為本發明之PIDNN控制器之網路架構圖。在圖4、6 中由信號處理及馬達速度估測模組36之一 PIDNN (proportional- integral-derivative neural network,比 j列積分措支 分型類神經網路)控制器86將電流輸入信號k進行類神經 比例積分微分運算以得到一轉速信號A (步驟S106)。 其中,該類神經比例積分微分運算之方程式為: y0(N) = M^] +w202+M>303=Kp(N)e + Kd(N)^ + K,(N)\edt TF1004505 Μ 201234762 為了推導各項權重M;1、W2、%之調整公式,首先定義能量 函數如下: E=X-(dm-df = X-e2 藉由以上所定義之能量函數以倒傳遞法推導權重之調整 公式如下: △W,- = -7/, dE dw,' = -7, dE dy0(N) dy0(N) ^ =7ΑΘ, 其中,77'代表第i項權重之學習速率,進一步討論加權參 數&的推導如下: „ _ dE _ dE de _ dE de dd ° dy〇(N) de dy0(N) de dd dy0(N) 計算此項偏微分必須精確求得系統的靈敏度,考量實際系 統之靈敏度不易獲得,直接將加權參數&假設為誤差e,故 權重修正公式如下所示: wi (A^ +1) = (N) + Awf 藉由以上公式推導可得類神經比例積分微分運算之輸出 與調整公式如下表示: ^0(iV) = Kp(N)e + Kd(N)^ + ΚΧΝ)1 edt Kp(N + \) = Kp(N)e + 7hSQeZdh-h group 36 will be subjected to signal processing and motor speed estimation TF1004505 15 201234762 dq axis current signal ~~ for signal processing and a kind of neural proportional integral differential operation to obtain an estimated mechanical speed and estimate Angle seven (step S62). The signal processing and motor speed estimation module 36 implements the signal processing and the neural-like proportional integral differential operation of the dq-axis current signal~~, and the high-frequency signal is implemented in the signal processing and motor speed estimation module of the present invention. The block diagram of the injection method and FIG. 5 are the flow chart of the signal processing and the motor-like proportional integral differential operation of the signal processing and motor speed estimation module of the present invention. In FIGS. 4 and 5, a band pass filter 80 of the signal processing and motor speed estimation module 36 performs a band pass filtering process on the q-axis current signal of the dq axis current signal having a high frequency signal. The frequency other than the frequency of the high frequency signal is filtered out to obtain a high frequency current signal b which is one of the high frequency signal forms (step S100). Among them, the high-frequency current signal & expression is as follows: V = vm / sin 20re Ί 2r r cos -% 厶哳Sin fiV) ^h^dh^qh =ere~^re where Α/λ, ^ respectively d The high-frequency stator inductance of the shaft and the q-axis is the high-frequency resistance difference between the d-axis and the q-axis of the permanent-magnet synchronous motor 30, and the high-frequency inductance between the d-axis and the q-axis of the permanent-magnet synchronous motor 30. The difference, t is the estimated error angle of the rotor flux angle position, ~ is the actual angle of the rotor flux angle position, and & is the estimated angle of the rotor flux angle position. A multiplier 80 of the signal processing and motor speed estimation module 36 multiplies the high frequency current signal & and the high frequency signal adjustment value sin~ in the form of a high frequency signal by a TF1004505 16 201234762 multiplication operation to obtain a DC power supply. One of the forms of the direct current signal Usin " V (step S102). The purpose of multiplying the high-frequency current signal & by the high-frequency signal adjustment value sin_ is to eliminate the shadow of cos(7)"/-sin(7)〆) in the high-frequency current signal. The low-pass filter 84 of the signal processing and motor speed estimation module 36 converts the DC current signal ksin (v to perform a low-pass filtering process to filter out the high-frequency signal to obtain a current related to the estimated error angle & Input signal ~ (step φ step S104) where -sin 21 k] = -4 from ", ζ, if the estimated error of the rotor position is very small, Sin2& will approach to < then current input signal & Linearization to Κ Θ error re Figure 6 is a network architecture diagram of the PIDNN controller of the present invention. PIDN (proportional-integral-derivative) is one of the signal processing and motor speed estimation modules 36 in Figures 4 and 6. The neural network, the controller 86 performs a neural-integral-integral-differential operation on the current input signal k to obtain a rotational speed signal A (step S106), wherein the neural proportional integral differential The equation for the operation is: y0(N) = M^] +w202+M>303=Kp(N)e + Kd(N)^ + K,(N)\edt TF1004505 Μ 201234762 In order to derive the weights M;1 , W2,% adjustment formula, first define the energy function as follows: E = X - (dm-df = X-e2 by The energy function defined above is derived by the inverse transfer method. The formula for adjusting the weight is as follows: △W, - = -7/, dE dw, ' = -7, dE dy0(N) dy0(N) ^ =7ΑΘ, where, 77 'Represents the learning rate of the weight of the i-th item. Further discussion of the weighting parameter & is derived as follows: „ _ dE _ dE de _ dE de dd ° dy〇(N) de dy0(N) de dd dy0(N) The partial differential must accurately determine the sensitivity of the system. Considering the sensitivity of the actual system is not easy to obtain, the weighting parameter & is directly assumed to be the error e, so the weight correction formula is as follows: wi (A^ +1) = (N) + Awf The output and adjustment formula of the proportional-integral differential operation can be derived by the above formula: ^0(iV) = Kp(N)e + Kd(N)^ + ΚΧΝ)1 edt Kp(N + \) = Kp(N)e + 7hSQe

Kd(N + l) = Kd(N)e + ^S0^- at (N + \) = Ki (N)e + η,δ0\ edt 由於已將加權參數&假設為誤差e,造成心之修正項 恆大於零,V2使得心不斷向上累加,故對心(〃 + 1)加以修正 TF1004505 18 201234762 為下式: Κρ{ΝΛΛ) = Κρ{Ν)β + η,δϋε sgn(e) sgn(e) = e if e>Q sgn(e) = -e if e <0 - 其中,y。為類神經比例積分微分運算之輸出,心為比例參 . 數,心為微分參數,&為積分參數,在圖4中,誤差e與電 流輸入信號〜中之估測誤差角度&成比例關係。 設計ΡΠ)ΝΝ控制器86的目的在於希望當誤差e增大時, 鲁 PIDNN控制器86之參數值夂”夂“尺,可以相對增力口,以力口 快微控制器28控制永磁式同步馬達30之響應,並且當誤差 e減小時,PIDNN控制器86之參數值心&可以相對 減小,使微控制器28控制永磁式同步馬達30平滑地進入穩 態。 由於PIDNN控制器86不需要繁雜的計算過程,因此以C 語言撰寫PIDNN控制器86可以容易地實現並應用於實作 φ 上,且與習知之比例積分微分控制器相比並不會增加太多運 算時間同時也具備適應控制之參數自我調適能力。由於高頻 信號注入法需要複雜的信號處理過程以獲取轉子磁通位 置,並且控制器之參數設計相當困難,若是採用PIDNN控 制器86,便可利用其自我調適能力來最佳化控制器之參 數,可以大大地減少設計控制器參數的時間,而且除了可以 有效縮短角度估測之暫態時間,也可以有效提升高頻信號注 入法對角度估測之效能。 TF1004505 19 201234762 接著,由信號處理及馬達速度估測模組36之一低通濾波Kd(N + l) = Kd(N)e + ^S0^- at (N + \) = Ki (N)e + η, δ0\ edt Since the weighting parameter & is assumed to be the error e, causing the heart The correction term is always greater than zero, and V2 causes the heart to accumulate upwards, so the heart (〃 + 1) is corrected. TF1004505 18 201234762 is as follows: Κρ{ΝΛΛ) = Κρ{Ν)β + η,δϋε sgn(e) sgn( e) = e if e>Q sgn(e) = -e if e <0 - where y. For the analogy of the proportional-integral differential operation, the heart is the proportional parameter, the heart is the differential parameter, and the & is the integral parameter. In Figure 4, the error e is proportional to the estimated error angle & relationship. The purpose of the design controller 86 is to ensure that when the error e is increased, the parameter value of the Lu PIDNN controller 86 is 夂"夂", and the force can be increased relative to the booster port. The response of the synchronous motor 30, and as the error e decreases, the parameter value heart & of the PIDNN controller 86 can be relatively reduced, causing the microcontroller 28 to control the permanent magnet synchronous motor 30 to smoothly enter a steady state. Since the PIDNN controller 86 does not require a complicated calculation process, writing the PIDNN controller 86 in C can be easily implemented and applied to the implementation φ, and does not increase too much compared to the conventional proportional integral derivative controller. The computing time also has the ability to adapt to the parameters of self-adaptation. Since the high-frequency signal injection method requires a complicated signal processing process to obtain the rotor flux position, and the parameter design of the controller is quite difficult, if the PIDNN controller 86 is used, the self-adaptation capability can be utilized to optimize the parameters of the controller. The time for designing the controller parameters can be greatly reduced, and in addition to effectively shortening the transient time of the angle estimation, the efficiency of the high frequency signal injection method for estimating the angle can be effectively improved. TF1004505 19 201234762 Next, low pass filtering by one of the signal processing and motor speed estimation module 36

dL 器90將轉速信號&amp;進行低通濾波處理以濾除高頻信號而 得到永磁式同步馬達30之估測電氣轉速&lt;,並由信號處理 及馬達速度估測模組36之一乘法器92將估測電氣轉速 &lt;乘 2_ 上與永磁式同步馬達30之極數有關之參數7,以得到永磁 式同步馬達30之估測機械轉速&lt;(步驟S108)。 由信號處理及馬達速度估測模組36之一積分器88將轉速 信號&amp;進行一積分運算以得到估測角度匕(步驟S109)。 再次參考圖1、3,由微控制器28之一速度控制模組38 比較一命令機械轉速ω'&quot;與估測機械轉速ω&quot;,以得到一速度差 值,並由速度控制模組38之一比例積分器(未圖示)將該速 度差值進行一比例積分運算以得到一電流命令信號〈(步驟 S64)。其中,命令機械轉速&lt;為預設值。 由微控制器28之一電流控制模組40分別比較dq軸電流 信號~、~與電流命令信號&lt;、&lt; 以得到兩個電流差值,並由 電流控制模組40的兩個比例積分器(未圖示)將該兩個電流 差值進行比例積分運算以分別得到電壓信號〜、Μ步驟 S66)。其中,電流命令信號&lt;預設為0。 由微控制器28之d軸電壓解耦合模組42將電壓信號ν&quot;與 一 d轴解耦合值進行解耦合運算(亦即減法運算)以得到 TF1004505 20 201234762 一 d軸解耦合電壓命令信號,由微控制器28之q軸電壓解 耦合模組44將電壓信號&amp;與一 q軸解耦合值4&amp;夂+ «進行 解耦合運算(亦即加法運算)以得到電壓命令信號 &lt;(步驟 S68)。其中,解耦合運算係抵消估測機械轉速 &lt;對dq軸電 流信號~〜的干擾及兩者之間的耦合。 將由高頻信號注入模組34所產生之高頻信號與該d轴解 耦合電壓命令信號加總以得到電壓命令信號&lt;(步驟S70)。 _ 由微控制器2 8之一反座標轉換模組4 6參考估測角度t將 為同步旋轉座標之電壓命令信號&lt;、v;座標轉換成三相靜止 座標之一三相控制信號(步驟S72)。其中,將同步旋轉座標 之電壓命令信號〜、v?座標轉換成三相靜止座標之三相控制 信號之轉換矩陣^為轉換矩陣巧的反矩陣,亦即為(以广。 由微控制器2 8之一弦波脈寬調變模組4 8參考估測機械角 度^&quot;'將該三相控制信號進行弦波脈寬調變,以得到輸出至隔 • 離放大器26之控制信號(步驟S74)。其中,弦波脈寬調變模 組48進行弦波脈寬調變之技術係使用目前所熟知之弦波脈 寬調變之技術。 以一操作範例來說明本實施例之高頻信號注入法結合 PIDNN控制器與高頻信號注入法結合習知PID控制器兩者 的效能差異,如圖7Α為高頻信號注入法結合習知PID控制 器在無載情況之速度測估與追隨響應之波形圖、圖7Β為高 頻信號注入法結合ΡID ΝΝ控制器在無載情況之速度測估與 TF1004505 21 201234762 追隨響應之波形圖、圖7C為高頻信號法入法結合習知pi。 控制器在加上10 k g - c m之負載情況之速度測估與追隨響應 之波形圖、圖7D為局頻信號注入法結合piDNN控制哭在 加上10kg-cm之負載情況之速度測估與追隨響應之波形圖 所示。 以高頻信號輸入法啟動永磁式同步馬達30 ’設定低轉速 之命令機械轉速&lt;為5〇〇rpm ’所注入之電壓為15V,高頻 信號頻率為280Hz。永磁式同步馬達30在無載情況從圖 7A、7B之波形可以了解,PIDNN控制器86可以隨著誤差e 的大小即時調變參數值心、A、'的設定,因此可縮短估測 機械轉速&amp;'&quot;之暫態時間與減小穩態誤差,系統之速度追隨響 應也可以變得更好,並彌補注入信號之幅量較低時,其信號 調變所獲得之轉子位置誤差信號較小的缺陷,使系統依然擁 有不錯的控制性能。 考慮永磁式同步馬達30採用磁粉式煞車所提供之 1 〇kg-cm負載的情況,從圖7C、7D之波形可以了解’高頻 信號注入法結合PIDNN控制器相較於高頻信號注入法結合 習知PID控制器,可以擁有對於驅動永磁式同步馬達30之 更好的強健性。 再次參考圖1、2,由微控制器28根據估測機械轉速ώ&quot;'判 斷出永磁式同步馬達30被驅動至一預定低轉速,則高頻信 號注入模組34不在產生高頻信號。而驅動永磁式同步馬達 TFI004505 22 201234762 30從該預定低轉速操作在中高轉速時,微控制器28係利用 參考模型適應性控制法來控制永磁式同步馬達30之運轉 (步驟S58)。微控制器28利用參考模型適應性控制法來控制 - 永磁式同步馬達30之運轉的實施方式如圖8為本發明之微 . 控制器利用參考模型適應性控制法來控制永磁式同步馬達 之運轉之流程圖所示。 在圖8之步驟S110之說明相同於在圖3之步驟S60之說 φ 明,在此不多加贅述。 由信號處理及馬達速度估測模組36根據命令電壓信號 &lt;、&lt;、估測電氣機械轉速&lt;與永磁式同步馬達30之電阻參 數~、電感參數L、&amp;等電氣參數以計算得到估測電流信號 ~~,並根據估測電流信號~dq軸電流信號~〜、永 磁式同步馬達30之電氣參數與一類神經比例積分微分運算 所需之參數進行計算,以得到估測機械轉速6&quot;,及估測角度 • &amp;(步驟S112)。信號處理及馬達速度估測模組36進行運算 之實施方式如圖9為本發明之信號處理及馬達速度估測模 組實施參考模型適應性控制法之方塊圖及圖10為本發明之 信號處理及馬達速度估測模組實施參考模型適應性控制法 之流程圖所示。 在圖9、10中,由信號處理及馬達速度估測模組36之一 可調變模組140根據命令電壓信號&lt;、v“估測電氣轉速夂·與 永磁式同步馬達30之電阻參數~、電感參數心、^等電氣參 TF1004505 23 201234762 根據該可調變模型計算 數以建立一可調變模型(步驟S150·), 得到估測電流信號乙、 其中’可調變模型為: d 7t ldThe dL unit 90 performs a low-pass filtering process on the rotational speed signal &amp; to filter out the high frequency signal to obtain an estimated electrical rotational speed of the permanent magnet synchronous motor 30, and is multiplied by one of the signal processing and motor speed estimation module 36. The controller 92 estimates the electric speed &lt; multiply 2_ the parameter 7 relating to the number of poles of the permanent magnet synchronous motor 30 to obtain the estimated mechanical rotational speed of the permanent magnet synchronous motor 30 (step S108). The integrator 88, which is one of the signal processing and motor speed estimation module 36, performs an integral operation on the rotational speed signal & to obtain an estimated angle 匕 (step S109). Referring again to FIGS. 1 and 3, a speed control module 38 of the microcontroller 28 compares a command mechanical speed ω'&quot; with an estimated mechanical speed ω&quot; to obtain a speed difference, and is controlled by the speed control module 38. A proportional integrator (not shown) performs a proportional integration operation on the speed difference to obtain a current command signal < (step S64). Wherein, the command mechanical speed &lt; is a preset value. The current control module 40 of the microcontroller 28 compares the dq axis current signals ~, ~ and the current command signals &lt;, &lt; respectively to obtain two current difference values, and integrates the two ratios of the current control module 40. The two current difference values are proportionally integrated to obtain a voltage signal 〜, Μ step S66). Wherein, the current command signal &lt; is preset to be 0. The d-axis voltage decoupling module 42 of the microcontroller 28 decouples the voltage signal ν&quot; from a d-axis decoupling value (ie, subtraction) to obtain a TD1004505 20 201234762-d-axis decoupling voltage command signal. The q-axis voltage decoupling module 44 of the microcontroller 28 decouples the voltage signal & with a q-axis decoupling value 4 &amp; + + « to perform a decoupling operation (ie, addition) to obtain a voltage command signal &lt; S68). Among them, the decoupling operation cancels the estimated mechanical rotation speed &lt;the interference to the dq axis current signal ~~ and the coupling between the two. The high frequency signal generated by the high frequency signal injection module 34 and the d-axis decoupling voltage command signal are summed to obtain a voltage command signal &lt; (step S70). _ The anti-coordinate conversion module 46 of the microcontroller 28 refers to the estimated angle t which will be the voltage command signal of the synchronous rotating coordinate &lt;, v; coordinate converted into a three-phase control signal of one of the three-phase stationary coordinates (step S72). Wherein, the conversion matrix of the three-phase control signal of the three-phase static coordinate of the voltage command signal of the synchronous rotating coordinate is converted into the inverse matrix of the three-phase static coordinate, which is the inverse matrix of the conversion matrix, that is, by the microcontroller. The 8 sine wave pulse width modulation module 4 8 refers to the estimated mechanical angle ^&quot; 'the sine wave pulse width modulation of the three-phase control signal to obtain a control signal output to the isolation amplifier 26 (step S74), wherein the sine wave pulse width modulation module 48 performs the sine wave pulse width modulation technique using the well-known sine wave pulse width modulation technique. The high frequency of the embodiment is illustrated by an operation example. The signal injection method combines the performance difference between the PIDNN controller and the high-frequency signal injection method in combination with the conventional PID controller, as shown in Fig. 7 is the high-frequency signal injection method combined with the conventional PID controller for speed measurement and follow-up in the no-load condition. The waveform of the response is shown in Fig. 7. The high-frequency signal injection method is combined with the ΡID ΝΝ controller to measure the speed of the controller in the no-load condition and the waveform of the TF1004505 21 201234762 follow-up response, and FIG. 7C is the high-frequency signal method combined with the conventional pi. Controller is adding 10 The waveform of the speed measurement and follow-up response of the load condition of kg-cm is shown in Fig. 7D, the frequency-frequency signal injection method combined with the piDNN control, and the waveform of the speed measurement and follow-up response of the load of 10 kg-cm is shown. The permanent magnet synchronous motor 30 is started by the high frequency signal input method. The commanded mechanical speed of the low speed is set to &lt; 15 rpm, the injected voltage is 15 V, and the high frequency signal frequency is 280 Hz. The permanent magnet synchronous motor 30 In the no-load situation, it can be understood from the waveforms of FIGS. 7A and 7B that the PIDNN controller 86 can instantly adjust the setting of the parameter value center, A, ' with the error e, thereby shortening the estimated mechanical speed &amp;'&quot; The transient time and the reduction of the steady-state error, the speed follow-up response of the system can also be better, and compensate for the small error of the rotor position error signal obtained by the signal modulation when the amplitude of the injected signal is low. The system still has good control performance. Consider the case where the permanent magnet synchronous motor 30 uses the load of 1 〇kg-cm provided by the magnetic powder brake. From the waveforms of Fig. 7C and 7D, it can be understood that 'the high frequency signal injection method combined with PIDNN The controller can have better robustness for driving the permanent magnet synchronous motor 30 than the high frequency signal injection method in combination with the conventional PID controller. Referring again to Figures 1, 2, the microcontroller 28 is based on the estimated machine. The rotational speed ώ&quot; 'determines that the permanent magnet synchronous motor 30 is driven to a predetermined low rotational speed, the high frequency signal injection module 34 does not generate a high frequency signal. The permanent magnet synchronous motor TFI004505 22 201234762 30 is driven from the predetermined low rotational speed. When operating at a medium to high rotational speed, the microcontroller 28 controls the operation of the permanent magnet synchronous motor 30 using the reference model adaptive control method (step S58). The microcontroller 28 is controlled by the reference model adaptive control method - an embodiment of the operation of the permanent magnet synchronous motor 30 is as shown in Fig. 8. The controller uses the reference model adaptive control method to control the permanent magnet synchronous motor The flow chart of the operation is shown. The description of step S110 of Fig. 8 is the same as that of step S60 of Fig. 3, and will not be described here. The signal processing and motor speed estimation module 36 is based on the command voltage signal &lt;, &lt;, estimating the electrical mechanical speed &lt; and the resistance parameter of the permanent magnet synchronous motor 30, the inductance parameter L, &amp; Calculate the estimated current signal ~~, and calculate according to the estimated current signal ~dq axis current signal ~~, the electrical parameters of the permanent magnet synchronous motor 30 and the parameters required for a class of neural proportional integral differential operation to obtain an estimate Mechanical speed 6 &quot;, and estimated angle • &amp; (step S112). FIG. 9 is a block diagram of a reference model adaptive control method for signal processing and motor speed estimation module of the present invention, and FIG. 10 is a signal processing of the present invention. And the motor speed estimation module implements a flow chart of the reference model adaptive control method. In FIGS. 9 and 10, the adjustable module 140 of the signal processing and motor speed estimating module 36 is based on the command voltage signal &lt;, v "estimating the electrical speed 夂 · and the resistance of the permanent magnet synchronous motor 30 Parameter ~, inductance parameter heart, ^ and other electrical parameters TF1004505 23 201234762 According to the adjustable variable model to calculate a number to establish a variable model (step S150 ·), get the estimated current signal B, where the 'adjustable variable model is: d 7t ld

_£s_ L_£s_ L

LL

Ld ώ„ t-L,Ld ώ„ t-L,

IXIX

由信號處理及馬達速度估測模組36之—適應性機制模组 142根據估測電流錢ddq軸電流 同步馬達30之電裔夂|俛4-s ^ , 磁式 電;^數與—類神經比例積分微分運算所需 之,數〃、“如請算,以建立_適触 該適應性機制進行計算以得到估測電氣轉速、步驟 S152)。其中,該適應性機制包含類神經比例積分微^軍笪 其中該適應性機制為: 刀運异The adaptive mechanism module 142 of the signal processing and motor speed estimation module 36 is based on the estimated current money ddq axis current synchronous motor 30 of the electronic 夂 | 俛 4-s ^ , magnetic type; ^ number and - class The neural proportional integral differential operation requires a number 〃, "if calculated, to establish a _ adapt to the adaptive mechanism to calculate to obtain an estimated electrical speed, step S152." wherein the adaptive mechanism includes a neural-like proportional integral Micro-arms, the adaptive mechanism is:

La L· )) 其中,/。為類神經比例積分微分運算之輸出 例積分微分運算之制參考上顧6之朗,⑽類神經比 積分微分運算之方程式為: ’神經比例 (7^) = Kp (N)e + Kd (N) ~ + K( (N)j edt p {N + \) = Kp (N)e + 7,i50esgn(e)La L· )) where /. For the case of the analogy of the proportional-integral differential operation, the system of integral differential operation is based on the reference of the 6th, and the equation of the (10)-class-integral-integral-differential operation is: 'Nerve ratio (7^) = Kp (N)e + Kd (N ) ~ + K( (N)j edt p {N + \) = Kp (N)e + 7, i50esgn(e)

Kd (N+ 1) = Kd (N)e + ^S0~ dtKd (N+ 1) = Kd (N)e + ^S0~ dt

Kt (TV +1) = Ki (N)e +δ0 J edt sgn(e) = e if e&gt;〇 sgn(e) = ~e if e &lt;〇 TF1004505 24 201234762 其中,~、&amp;為電氣信號,&amp;為反電動勢常數,心為比例 參數’心為微分麥數5 \為積分參數5誤差e設定為該估測 誤差角度,&amp;為加權參數,而&amp;設定為e,%為權重之學習速 . 率。 . 由信號處理及馬達速度估測模組36之一積分器144將估 測電氣轉速 &lt; 進行積分運算以得到估測角度&amp; (步驟S15 4)。 由信號處理及馬達速度估測模組36之一乘法器146將估 φ 測電氣轉速&lt;乘上與永磁式同步馬達30之極數有關之參數 2_ 歹,以得到估測機械轉速ώ&quot;,(步驟S156)。 再次參考圖1、8,在圖8之步驟S114、S116之說明相同 於在圖3之步驟S64、S66之說明,在此不多加贅述。 由微控制器28之d軸電壓解耦合模組42將電壓信號ν&quot;與 一 d軸解耦合值進行解耦合運算(亦即減法運算)以得到 電壓命令信號&lt;,由微控制器28之q軸電壓解耦合模組44 將電壓信號〜與一 q軸解搞合值+〜力&quot;進行解柄合運算 (亦即加法運算)以得到電壓命令信號(步驟S118)。其中, 解耦合運算係抵消估測機械轉速ώ'”對dq軸電流信號L~的 干擾及兩者之間的搞合。 ' 在圖8之步驟S120、S122之說明相同於在圖3之步驟 _ S72、S74之說明,在此不多加贅述。 永磁式同步馬達30採用參考模型適應性控制法以運轉在 TF1004505 25 201234762 中高轉速的情況如圖11為本發明之模擬永磁式同步馬達運 轉在50(h.pm至2000rpm至500rpm之情況的圖示,其中() 為實際機械轉速與估測機械轉速ώ'&quot;的圖示及胃 度心與估測角度&amp;的圖示,圖12為本發明之模擬永磁式^ 步馬達運轉在2000rpm之情況的圖示,其中(a)為實際機才戈 轉速%與估測機械轉速 &lt; 的圖式及(b)為實際角度心與估測 角度I的圖示所示。 在圖11中’永磁式同步馬達30運轉在500rpm至20〇〇rpm 至500rpm之變動的轉速情況,採用參考模型適應性控制法 之永磁式同步馬達30係具有好的速度、角度估測及追隨響 應。在圖12中,永磁式同步馬達3〇運轉在2〇〇〇卬爪的穩 態轉速情況,制參考模型適應性㈣法之永磁式同步馬達 3 〇之實際機械轉速%與估測機械轉速ώ„,的最大誤差量為 =Pm’實際角度I與估測角度、誤差介於$度之内,亦 是有良好的速度與角度估測效果。 本發明之優點係提供一種無感測器之馬達控制方法,其以 曰慧5L之類神經比例積分微分控制模組來取代傳統的比例 積刀U dn组以改善高頻信號注人,藉此提升高頻信號 注^法在零轉速與低轉速時之估難能,並且將類神經比例 積刀微刀Uj結合參考模㈣應性㈣法,根據馬達操 乍夺之電壓電流與馬達之電氣參數等資訊,藉由可調變模型 A應ί!機制來獲得估測速度’因此只要電流取樣頻率夠 TF1004505 26 201234762 高,參考模型適應性控制法之運算速度便不會受到限制,因 此相當容易實現在壓縮機之硬體架構的驅動控制上。 雖然本發明已參照較佳具體例及舉例性附圖敘述如上,惟 其應不被視為係限制性者。熟悉本技藝者對其形態及具體例 之内容做各種修改、省略及變化,均不離開本發明之申請專 利範圍之所主張範圍。 【圖式簡單說明】 圖1為本發明之無感測器之馬達控制方法之系統方塊圖; 圖2為本發明之無感測器之馬達控制方法之流程圖; 圖3為本發明之微控制器利用高頻信號注入法來控制永 磁式同步馬達之運轉之流程圖; 圖4為本發明之信號處理及馬達速度估測模組之方塊圖; 圖5為本發明之信號處理及馬達速度估測模組進行信號 處理及類神經比例積分微分運算之流程圖; 圖6為本發明之PIDNN控制器之網路架構圖; 圖7A為高頻信號注入法結合習知PID控制器在無載情況 之速度測估與追隨響應之波形圖; 圖7B為高頻信號注入法結合PIDNN控制器在無載情況 之速度測估與追隨響應之波形圖; 圖7C為高頻信號注入法結合習知PID控制器在加上 1 Okg-cm之負載情況之速度測估與追隨響應之波形圖; 圖7D為高頻信號注入法結合PIDNN控制器在加上 TF1004505 27 201234762 lOkg-cm之負載情況之速度測估與追隨響應之波形圖· 圖8為本發明之微控制器利用參考模型適應性控制j ^ 控制永磁式同步馬達之運轉之流程圖; 圖9為本發明之信號處理及馬達速度估測模組實施泉 模型適應性控制法之方塊圖; 々考 圖1 〇為本發明之信號處理及馬達速度估測模級實扩 模型適應性控制法之流程圖; 4考 圖η為本發明之模擬永磁式同步馬達運轉在5〇〇 2_啊至5_m之情況的圖示,其中(a)為實際機^至 %與估測機械轉速%的圖示及(b)為實際角度心與估測角产遂 匕的圖示;以及 '度 圖12為本發明之模擬永磁式同步馬達運轉在2000rpm之 情況的圖示,其中(a)為實際機械轉速%與估測機械轉速九 的圖式及(b)為實際角度I與估測角度^的圖示。 【主要元件符號說明】 22 電源供應器 24 電壓源換流器 26 隔離放大器 28 微控制器 30 永磁式同步馬達 32 正座標轉換模組 34 高頻信號注入模組 TF1004505 28 201234762 36 信號處理及馬達速度估測模組 38 速度控制模組 40 電流控制模組 42 d軸電壓解耦合模組 44 q軸電壓解耦合模組 46 反座標轉換模組 48 弦波脈寬調變模組 φ 80 帶通濾波器 82 乘法器 84 低通濾波器 86 PIDNN控制器 88 積分器 90 低通濾波器 92 乘法器 φ 140 可調變模組 142 適應性機制模組 144 積分器 146 乘法器 TF1004505 29Kt (TV +1) = Ki (N)e + δ0 J edt sgn(e) = e if e&gt;〇sgn(e) = ~e if e &lt;〇TF1004505 24 201234762 where ~, &amp; is an electrical signal , &amp; is the back electromotive force constant, the heart is the proportional parameter 'heart is the differential mic 5 ' for the integral parameter 5 error e is set to the estimated error angle, & is the weighting parameter, and &amp; is set to e, % is the weight Learning speed. Rate. The integrator 144, which is one of the signal processing and motor speed estimation module 36, performs an integral operation to obtain an estimated angle & (step S15 4). The multiplier 146 of the signal processing and motor speed estimation module 36 estimates the φ electrical rotation speed &lt; multiplies the parameter 2_ 有关 related to the number of poles of the permanent magnet synchronous motor 30 to obtain an estimated mechanical rotational speed ώ&quot; (Step S156). Referring again to Figures 1 and 8, the description of steps S114 and S116 of Figure 8 is the same as that of steps S64 and S66 of Figure 3, and will not be further described herein. The d-axis voltage decoupling module 42 of the microcontroller 28 decouples the voltage signal ν&quot; from a d-axis decoupling value (ie, subtraction) to obtain a voltage command signal &lt;RTIgt; The q-axis voltage decoupling module 44 performs a decompression operation (ie, addition) on the voltage signal 〜 and a q-axis decompression value +~ force to obtain a voltage command signal (step S118). Wherein, the decoupling operation cancels the interference of the estimated mechanical rotation speed ώ'" on the dq axis current signal L~ and the engagement between the two. ' The description of steps S120 and S122 in FIG. 8 is the same as the step in FIG. _ S72, S74 description, no more details here. Permanent magnet synchronous motor 30 uses the reference model adaptive control method to run at TF1004505 25 201234762 high speed. Figure 11 shows the simulated permanent magnet synchronous motor operation of the present invention. Illustration at 50 (h.pm to 2000 rpm to 500 rpm, where () is a graphical representation of the actual mechanical speed and estimated mechanical speed ώ '&quot; and a graphical representation of the stomach heart and estimated angle & 12 is a diagram showing the case where the pseudo permanent magnet type motor of the present invention is operated at 2000 rpm, wherein (a) is the actual engine speed % and the estimated mechanical speed &lt; and (b) is the actual angle As shown in the figure of the estimated angle I. In Fig. 11, the permanent magnet synchronous motor 30 is operated at a rotational speed of 500 rpm to 20 rpm to 500 rpm, and the permanent magnet type synchronization using the reference model adaptive control method is employed. Motor 30 has good speed, angle estimation and follow-up In Fig. 12, the permanent magnet synchronous motor 3 is operated at a steady state speed of 2 jaws, and the actual mechanical speed of the permanent magnet synchronous motor 3 of the reference model adaptability (four) method is estimated and estimated. Measuring the mechanical speed ώ„, the maximum error amount is =Pm' The actual angle I and the estimated angle, the error is within $degree, and there is also a good speed and angle estimation effect. The advantage of the present invention is to provide a no The motor control method of the sensor replaces the traditional proportional product knife U dn group with a neural proportional integral differential control module such as Qi Hui 5L to improve the high frequency signal injection, thereby improving the high frequency signal injection method It is difficult to estimate the zero-speed and low-speed, and the neuron proportional-knife micro-knife Uj is combined with the reference mode (four) Dependability (four) method, and the information is based on the voltage and current of the motor and the electrical parameters of the motor. Variable model A should be ί! mechanism to obtain the estimated speed' so as long as the current sampling frequency is high enough TF1004505 26 201234762, the reference model adaptive control method will not be limited in speed, so it is quite easy to implement the hardware architecture of the compressor. The present invention has been described above with reference to the preferred embodiments and the accompanying drawings, and should not be considered as a limitation. The skilled person will make various modifications and omissions to the form and specific examples thereof. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a system for controlling a motor without a sensor according to the present invention; FIG. 2 is a non-inductive method of the present invention. FIG. 3 is a flow chart of controlling the operation of the permanent magnet synchronous motor by using the high frequency signal injection method of the microcontroller of the present invention; FIG. 4 is a signal processing and motor speed estimation of the present invention; Figure 5 is a block diagram of the test module; Figure 5 is a flow chart of signal processing and motor-like proportional integral differential operation of the signal processing and motor speed estimation module of the present invention; Figure 6 is a network architecture diagram of the PIDNN controller of the present invention; Figure 7A is a waveform diagram of the high-frequency signal injection method combined with the conventional PID controller for speed measurement and follow-up response in the no-load condition; Figure 7B shows the high-frequency signal injection method combined with the PIDNN controller in the no-load Figure 7C is a waveform diagram of the high-frequency signal injection method combined with the conventional PID controller with a speed measurement of 1 Okg-cm and a follow-up response; Figure 7D shows the waveform of the high-frequency signal injection method; High-frequency signal injection method combined with the PID signal of the PIDNN controller plus the load condition of TF1004505 27 201234762 lOkg-cm. Figure 8 is the microcontroller of the present invention using the reference model adaptive control j ^ control FIG. 9 is a block diagram of a spring model adaptive control method for signal processing and motor speed estimation module of the present invention; FIG. 1 is a signal processing and motor of the present invention. Flow chart of the speed estimation model-expansion model adaptive control method; 4 Figure η is a graphical representation of the simulated permanent magnet synchronous motor running in the range of 5〇〇2_ah to 5_m, where (a) A graphical representation of the actual machine % to % and the estimated mechanical speed % and (b) a plot of the actual angular center and the estimated angle; and the degree 12 is the simulated permanent magnet synchronous motor operation of the present invention. In the case of 2000 rpm, it (A) the actual mechanical speed and estimated mechanical speed nine% of the drawings and (b) to estimate the actual angle and the angle I ^ illustration. [Main component symbol description] 22 Power supply 24 Voltage source converter 26 Isolation amplifier 28 Microcontroller 30 Permanent magnet synchronous motor 32 Positive coordinate conversion module 34 High frequency signal injection module TF1004505 28 201234762 36 Signal processing and motor Speed estimation module 38 speed control module 40 current control module 42 d-axis voltage decoupling module 44 q-axis voltage decoupling module 46 anti-coordinate conversion module 48 sine wave pulse width modulation module φ 80 band pass Filter 82 Multiplier 84 Low Pass Filter 86 PIDNN Controller 88 Integrator 90 Low Pass Filter 92 Multiplier φ 140 Adjustable Module 142 Adaptive Mechanism Module 144 Integrator 146 Multiplier TF1004505 29

Claims (1)

201234762 七、申請專利範圍: 1·一種無感測ϋ之馬達控制方法,該方法操作在該馬達為 静止或低轉速時,該方法包含下列步驟: 。由-微控制n送出—控制信號以驅動該馬達,其中該微控 制器將一高頻信號座標轉換成該控制信號; 由違微控制器接收該馬達在被驅動操作時之一電氣信號; —由該微賴触找電氣錢輯信號處理;^ 仃-類神經比例積分微分運算以得到一估測轉速及一估測 角度’其中該類神經比例積分微分運算中之—比例參數、— 微分參數與依積分參數之個別學習權重值隨著每一次估測 誤差之改變而成比例觀大小,進而調整該比例參數、該微 分參數與該積分參數; ' 由該微控制器比較一命令轉速與該估測轉速以得到—命 令控制信號;以及 P 由該微控制器將該高頻信號與該命令控制信號加總以得 到該控制信號而用以驅動該馬達。 2.如申請專利範圍第!項之方法’其中,由該微處理器之 —k號處理及馬達速度估測模組執行下列步驟: 將該電氣信號進行一帶通濾波處理以得到為高頻信號步 式之一高頻電氣信號; 將該高頻電氣信號與高頻信號形式之該高頻信號調整值 進行一乘法運鼻以得到為直流電源形式之一直流電广户 TF1004505 201234762 ,其中該高頻信號調整值為sin~,乂為高頻電 壓角頻率; 以得到與該估測 號 將該直流電氣信號進行一低通滤波處理 誤差角度有關之一輸入信號; 轉 將該輸入信號進行類神經比例積分微分運算以得到 速信號, 其中’該類神經比例積分微分運算之方程式為. (N) = KP (N)e + Kd (N) ^ + (N) { edt201234762 VII. Patent application scope: 1. A motor control method without sense sensor, the method is operated when the motor is at a static or low speed, and the method comprises the following steps: A control signal is sent by the -micro control n to drive the motor, wherein the microcontroller converts a high frequency signal coordinate into the control signal; and the electronic controller receives an electrical signal when the motor is driven to operate; The micro-laid touches the electric money series signal processing; ^ 仃-class-like proportional-integral differential operation to obtain an estimated rotational speed and an estimated angle', wherein the proportional-integral differential operation of the neuro-proportional-integral-differential operation, the differential parameter And the individual learning weight value according to the integral parameter is proportional to the change of each estimation error, thereby adjusting the proportional parameter, the differential parameter and the integral parameter; 'Comparing a command speed with the microcontroller Estimating the rotational speed to obtain a command control signal; and P summing the high frequency signal and the command control signal by the microcontroller to obtain the control signal for driving the motor. 2. If you apply for a patent scope! The method of the item wherein the microprocessor-k processing and motor speed estimation module performs the following steps: performing a band pass filtering process on the electrical signal to obtain a high frequency electrical signal as a high frequency signal step The high-frequency electrical signal and the high-frequency signal in the form of the high-frequency signal adjustment value are multiplied to obtain a DC power supply type TF1004505 201234762, wherein the high-frequency signal adjustment value is sin~, 乂a high-frequency voltage angular frequency; to obtain an input signal related to the low-pass filtering processing error angle of the DC electrical signal with the estimated number; and the input signal is subjected to a neural-like proportional integral differential operation to obtain a fast signal, The equation for the differential integral operation of this kind of neuron is (N) = KP (N)e + Kd (N) ^ + (N) { edt + \) = Kp{N)e + i-ix5Oesgn{e) Kd(N + \) = Kd(N)e + jhS0~ 尺,(7V + 1) =尺,_(Ar)e + 77i(5〇卜 sgn(e) = e if e&gt;Q sgn(e) = ~e if e &lt; 〇 其中,八為類神經比例積分微分運算之輪出,心為比例參 數’心為微分參數,3為積分參數,誤差e為該估測誤差角’ 度,&amp;為加權參數,而A設定為e,%為權重之學習速率; 將該轉速㈣進魏通濾祕理錢上與該馬達之電氣 參數有關之參數,以得到該估測轉速;以及 〃 將該轉速信號進行-積分運算以得到該估測角产。 /·如申請專利範圍第2項之方法,其中,由輪制器執 行下列步驟: 由该微控制器 々 -----〜!你得換模組參考該估測角度將二 相靜止座標之該電氣信號轉換成同步旋轉座標之 氣信號; q釉 TT1004505 31 201234762 由該信號處理及馬達速度估測模組進行如申請專利範圍 第2項之步驟,將該dq軸電氣信號進行運算以得到該估測 轉速及該估測角度; 由該微控制器之一速度控制模組比較該命令轉速與該估 測轉速以得到一速度差值,並將該速度差值進行一比例積分 運算以得到一電流命令信號; 由該微控制器之一電流控制模組比較該dq軸電氣信號與 該電流命令信號以得到一電流差值,並將該電流差值進行該 比例積分運算以得到一電壓信號; 由該微控制器之電壓解耦合模組將該電壓信號進行解耦 合運算以得到一解耦合電壓信號,其中解耦合運算係抵消該 估測轉速對該dq軸電氣信號的干擾及兩者之間的搞合; 將由該微控制器之一高頻信號注入模組所產生之該高頻 信號與該解耦合電壓信號加總以得到一電壓命令信號, 其中,該南頻信號注入模組產生為面頻電壓之該局頻信 號,其表示式如下: 乂— —Zdh 0 — ^dh -V _0 V jqh _ 其中,、ν(/Λ分別為同步參考座標之d轴與q軸的高頻電 壓成分,&amp;、&amp;分別為同步參考座標之d轴與q軸的高頻電 流成分,Ζ(/Λ、Ζ&lt;?Λ分別為該馬達之同步參考座標之d轴與q 軸的高頻阻抗; TF1004505 32 201234762 由該微控制器之—反座標轉換模組參相估測角度將為 同步旋轉錢之該電壓命令錢座標轉換成三相靜^座標 之一二相控制信號;以及 由該微控制器之—弦波脈寬調變模組參考該估測角度將 該三相控制信號進行弦波脈寬觀,以得到該控制信號。 4 ·如申請專利範圍第工至3項中任—項之方法,更包^含下 列步驟: 由一電源供應器提供直流電源至一換流器,· 由一隔離放大器隔離由該微控制器所傳送之為電子信號 形式之該控制錢,並將該控制信號放大為電氣信號形式之 一電氣控制信號;以及 由該換流H將錢電源轉換成三相電源,並根據該電氣控 制信號控制三相電源之大小,以輸入至該馬達。 5. 如申請專利範圍第!至3項中任一項之方法,其中,由 籲該微控制器根據該電氣信號判斷出該馬達被驅動至一預定 低轉速,則該微控制器不在產生該高頻信號。 6. -種無感測器之馬達控制方法,該方法操作在該馬達為 中轉速或高轉速時,該方法包含下列步驟: 由一微控制器送出一控制信號以驅動該馬達; 由該微控制器接收該馬達在被驅動操作時之一電氣信號; 由&quot;亥微控制讀據-命令電壓信號、—估測電氣轉速與該 馬達之電氣參數以計算得到—估測電流錢,並根據該估測 TF1004505 33 201234762 =信號、該電氣信號、該馬達之電氣參數與—類神經 積分微分運算所需之參數進行計算,《得到-估測轉速及一 估測角度’其令該類神經比例積分微分運算中之一比例炎 數、-微分參數與依積分參數之個· f權重值隨著每一次 估㈣差之改變而成比例難大小,進而調整該比例參數、 δ亥微分參數與該積分參數;以及 由該微控制⑽較—命令轉速與該估_速以得到該控 制指號而驅動該馬達。 7·如申請專利範圍第6項之方法,其中,由該微處理器之 一信號處理及馬達速度估測模組執行下列步驟: 根據該命令電屢信號估測電氣轉速與該馬達之電氣參 數以建立一可調變模型,柄姑 ' 雷、、ώ μ &amp;模支根據该可調變模型計算得到該估測 電仙唬,其中,該可調變模型為: d ώ ~ A - h -兑 Ld .' •-CO Lq n 厂A - id &quot;1 .1 TVd Λ. ——ώ A/ 一 JL· 4」 A u」 + q 1 . ld、h 其t 為估測電流信號,&lt;為估測電氣轉速,,為馬 達之電阻參數,A/、々盔民、去4 A ^ . · 壓信號; 一 為馬達之電感參數,v&quot;、\為命令電 根據該估測電流信號、該電氣信號與該馬達之電氣參數以 建適應H機制,並根據該適應性機制進行計算以得到該 估測電氣轉速,其中該適應性機制包含—類神經比例積分微 TF1004505 34 201234762 分運算,該適應性機制為·· • v (k j i A/ · ? y〇^idiq-~iqid~ Ld \ L 其中,Λ為類神經比例積分微分運算之钤^ 例積分微分運算之方程式為·· 别出,該類神經比 (TV) = Kp (N)e + Kd {N) ^ + Kj (Νψώ KP (N+\) = KP (N)e + ;7,^〇esgn(e) dt Kd(^ + 1) = Kd(N)e + η{δ〇 (jV +1) = Kt (N)e + 7;, s0 j edt sgn(e) = e if e&gt;〇 sgn(e) = -e if e&lt;〇 誤差β設定為該估測 %為權重之學習速 其中““為電氣信號,&amp;為反電動 參數,(為微分參數,、積分純,帛 P為比例 誤差角度’^加權參數,而^設定為e, 率; 將該估測電氣轉速進行積分運算以得到 將該估測電氣轉速乘上與該馬達有又,以及 以得到該估_速。 ^彡數有關之參數 8.如申請專利範圍第7 執 行下列步驟: 、之方法’其中,由該微控制器 由該微控制器之一正座桿韩 “ , r ,a 、τ換杈、、且芩考該估測角度將二 標之一 dq軸電 氣信號; 相靜止座標之該電氣信號轉換成同步旋轉座 TF1004505 35 201234762 由該信號處理及馬達速度估測模組進行如申請專利範圍 第7項之步驟,將該dq軸電氣信號進行運算以得到該估測 轉速及該估測角度; 由該微控制器之一速度控制模組比較該命令轉速與該估 測轉速以得到一速度差值,並將該速度差值進行一比例積分 運算以得到一電流命令信號; 由該微控制器之一電流控制模組比較該dq軸電氣信號與 該電流命令信號以得到一電流差值,並將該電流差值進行該 比例積分運算以得到一電壓信號; 由該微控制器之電壓解耦合模組將該電壓信號進行解耦 合運算以得到一電壓命令信號,其中解耦合運算係抵消該估 測轉速對該dq軸電氣信號的干擾及兩者之間的麵合; 由該微控制器之一反座標轉換模組參考該估測角度將為 同步旋轉座標之該電壓命令信號經座標轉換成三相靜止座 標之一三相控制信號;以及 由該微控制器之一弦波脈寬調變模組參考該估測角度將 該三相控制信號進行弦波脈寬調變,以得到該控制信號。 9.如申請專利範圍第6至8項中任一項之方法,更包含下 列步驟: 由一電源供應器提供直流電源至一換流器; 由一隔離放大器隔離由該微控制器所傳送之為電子信號 形式之該控制信號,並將該控制信號放大為電氣信號形式之 TF1004505 36 201234762 一電氣控制信號;以及 由該換流器將直流電源轉換成二相電源*並根據該電氣控 制信號控制三相電源之大小,以輸入至該馬達。+ \) = Kp{N)e + i-ix5Oesgn{e) Kd(N + \) = Kd(N)e + jhS0~ ruler, (7V + 1) = ruler, _(Ar)e + 77i(5 s sgn(e) = e if e&gt;Q sgn(e) = ~e if e &lt; 〇 Among them, eight is the round of the proportional-integral differential operation of the neuron, and the heart is the proportional parameter 'the heart is the differential parameter, 3 is Integral parameter, the error e is the estimated error angle 'degree, &amp; is the weighting parameter, and A is set to e, and % is the learning rate of the weight; the speed (four) is entered into the Weitong filter and the electric motor of the motor a parameter related to the parameter to obtain the estimated rotational speed; and 进行 performing an integral operation on the rotational speed signal to obtain the estimated angular production. The method of claim 2, wherein the following is performed by the wheel controller Step: By the microcontroller 々-----! You have to change the module to refer to the estimated angle to convert the electrical signal of the two-phase stationary coordinate into the synchronous rotary coordinate gas signal; q glaze TT1004505 31 201234762 The signal processing and motor speed estimation module performs the steps of the second item of the patent application scope, and the dq axis electrical signal is calculated to obtain the estimated rotation speed and The speed control module compares the commanded speed with the estimated speed to obtain a speed difference, and performs a proportional integral operation on the speed difference to obtain a current command signal; Comparing the dq axis electrical signal with the current command signal by a current control module of the microcontroller to obtain a current difference, and performing the proportional integral operation on the current difference to obtain a voltage signal; The voltage decoupling module decouples the voltage signal to obtain a decoupling voltage signal, wherein the decoupling operation cancels the interference of the estimated speed on the dq axis electrical signal and the engagement between the two; And summing the high frequency signal generated by the high frequency signal injection module of the microcontroller and the decoupling voltage signal to obtain a voltage command signal, wherein the south frequency signal injection module is generated as a surface frequency voltage The local frequency signal has the following expression: 乂—Zdh 0 — ^dh -V _0 V jqh _ where ν(/Λ is the d-axis and q-axis high-frequency power of the synchronous reference coordinate respectively The components, &, & are the high-frequency current components of the d-axis and q-axis of the synchronous reference coordinate, respectively, Ζ(/Λ,Ζ&lt;?Λ are the high-frequency of the d-axis and q-axis of the synchronous reference coordinate of the motor, respectively. Impedance; TF1004505 32 201234762 The estimated angle of the anti-coordinate conversion module of the microcontroller will be converted into a two-phase static control coordinate two-phase control signal for the voltage of the synchronous rotary money; The sine wave pulse width modulation module of the microcontroller performs the sine wave pulse width view on the three-phase control signal with reference to the estimated angle to obtain the control signal. 4 · The method of applying for the scope of the patent scope to the third item - the package includes the following steps: providing a DC power supply from a power supply to an inverter, and is isolated by the isolation amplifier by the microcontroller Transmitting the control money in the form of an electronic signal, and amplifying the control signal into an electrical control signal in the form of an electrical signal; and converting the money power source into a three-phase power source by the commutation H, and controlling according to the electrical control signal The size of the three-phase power supply is input to the motor. 5. If you apply for a patent scope! The method of any one of the preceding claims, wherein the microcontroller is not generating the high frequency signal by urging the microcontroller to determine that the motor is driven to a predetermined low speed based on the electrical signal. 6. A motor control method without a sensor, the method operating when the motor is at a medium or high speed, the method comprising the steps of: sending a control signal from a microcontroller to drive the motor; The controller receives an electrical signal of the motor when it is driven; and calculates the electrical speed and the electrical parameter of the motor to calculate the current cost, and according to The estimate TF1004505 33 201234762 = signal, the electrical signal, the electrical parameters of the motor and the parameters required for the -integration of the neural integral, the "obtained-estimated rotational speed and an estimated angle" In the integral differential operation, one of the proportional inflammation number, the -differential parameter and the integral value of the integral parameter are difficult to scale with each change of the estimated (four) difference, and then the proportional parameter, the delta differential parameter and the An integral parameter; and the motor is driven by the micro-control (10) to command the rotational speed and the estimated rotational speed to obtain the control finger. 7. The method of claim 6, wherein the signal processing and the motor speed estimation module of the microprocessor perform the following steps: estimating an electrical speed and an electrical parameter of the motor based on the command electrical signal In order to establish a tunable model, the 姑 ' 、, ώ μ & moduli branch is calculated according to the tunable model, wherein the tunable model is: d ώ ~ A - h - against Ld .' •-CO Lq n Plant A - id &quot;1 .1 TVd Λ. ——ώ A/一JL· 4” A u” + q 1 . ld, h where t is the estimated current signal, &lt;To estimate the electrical speed, for the resistance parameter of the motor, A/, 々 民, to 4 A ^ · pressure signal; one is the inductance parameter of the motor, v&quot;, \ is the command electric according to the estimated current The signal, the electrical signal and the electrical parameter of the motor are adapted to the H mechanism, and are calculated according to the adaptive mechanism to obtain the estimated electrical speed, wherein the adaptive mechanism comprises a neuro-proportional integral micro TF1004505 34 201234762 The adaptive mechanism is v·kji A/ · ? Y〇^idiq-~iqid~ Ld \ L where Λ is the analogy of the proportional-integral differential operation of the class of 类^ The integral equation of the integral differential operation is ···, the neurological ratio (TV) = Kp (N)e + Kd {N) ^ + Kj (Νψώ KP (N+\) = KP (N)e + ;7,^〇esgn(e) dt Kd(^ + 1) = Kd(N)e + η{δ〇(jV +1) = Kt (N)e + 7;, s0 j edt sgn(e) = e if e&gt;〇sgn(e) = -e if e&lt;〇 error β is set to the learning speed at which the estimated % is weight Where "" is the electrical signal, &amp; is the anti-electrical parameter, (for the differential parameter, the integral is pure, 帛P is the proportional error angle '^ weighting parameter, and ^ is set to e, rate; the estimated electrical speed is integrated The operation is performed to obtain the estimated electrical speed multiplied by the motor, and to obtain the estimated speed. The parameters related to the number of turns are as follows: 8. As claimed in the patent scope, the following steps are performed: The microcontroller is replaced by one of the microcontroller's positive seat rods ", r, a, τ, and the electrical signal of one of the two dq axes is referenced to the estimated angle; the electrical signal of the phase stationary coordinate is converted Synchronization Rotating seat TF1004505 35 201234762 The signal processing and motor speed estimating module performs the steps of item 7 of the patent application scope, and the dq axis electrical signal is calculated to obtain the estimated rotating speed and the estimated angle; One speed control module of the controller compares the commanded speed with the estimated speed to obtain a speed difference, and performs a proportional integral operation on the speed difference to obtain a current command signal; a current from the microcontroller The control module compares the dq axis electrical signal with the current command signal to obtain a current difference, and performs the proportional integral operation on the current difference to obtain a voltage signal; the voltage decoupling module of the microcontroller will The voltage signal is decoupled to obtain a voltage command signal, wherein the decoupling operation cancels the interference of the estimated rotational speed on the dq axis electrical signal and the face-to-face relationship therebetween; The conversion module refers to the estimated angle, and the voltage command signal of the synchronous rotating coordinate is converted into a three-phase control signal by one coordinate of the three-phase stationary coordinate. And the sine wave pulse width modulation module of the one of the microcontrollers performs the sine wave pulse width modulation on the three-phase control signal with reference to the estimated angle to obtain the control signal. 9. The method of any one of claims 6 to 8, further comprising the steps of: providing a DC power supply from a power supply to an inverter; isolating the transmission by the microcontroller by an isolation amplifier The control signal in the form of an electronic signal and amplifying the control signal into an electrical control signal in the form of an electrical signal TF1004505 36 201234762; and converting the DC power source into a two-phase power supply* by the converter and controlling according to the electrical control signal The size of the three-phase power supply is input to the motor. TF1004505 37TF1004505 37
TW100104097A 2011-02-08 2011-02-08 Intelligent control model for adaptive control of sensors without sensor control method TWI426698B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100104097A TWI426698B (en) 2011-02-08 2011-02-08 Intelligent control model for adaptive control of sensors without sensor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100104097A TWI426698B (en) 2011-02-08 2011-02-08 Intelligent control model for adaptive control of sensors without sensor control method

Publications (2)

Publication Number Publication Date
TW201234762A true TW201234762A (en) 2012-08-16
TWI426698B TWI426698B (en) 2014-02-11

Family

ID=47070178

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100104097A TWI426698B (en) 2011-02-08 2011-02-08 Intelligent control model for adaptive control of sensors without sensor control method

Country Status (1)

Country Link
TW (1) TWI426698B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI476409B (en) * 2012-12-25 2015-03-11 Univ Nat Central Motor speed estimation method
TWI484748B (en) * 2013-08-27 2015-05-11 Ind Tech Res Inst Apparatus and method for electric motor rotor angle estimation
TWI485973B (en) * 2013-08-08 2015-05-21 Delta Electronics Inc Estimating method for rotor position of motor and estimating device for the same
CN107086834A (en) * 2017-05-02 2017-08-22 西北工业大学 The permanent-magnet synchronous motor rotor position delay compensation method evaluation method of Square wave injection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220308531A1 (en) * 2019-09-19 2022-09-29 Mitsubishi Electric Corporation Motor controller and motor control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822418B2 (en) * 2002-08-23 2004-11-23 International Rectifier Corporation Position estimation and demagnetization detection of a permanent magnet motor
US7276877B2 (en) * 2003-07-10 2007-10-02 Honeywell International Inc. Sensorless control method and apparatus for a motor drive system
TWI373204B (en) * 2009-07-03 2012-09-21 Inergy Technology Inc Apparatus and method for driving sensorless motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI476409B (en) * 2012-12-25 2015-03-11 Univ Nat Central Motor speed estimation method
TWI485973B (en) * 2013-08-08 2015-05-21 Delta Electronics Inc Estimating method for rotor position of motor and estimating device for the same
US9143068B2 (en) 2013-08-08 2015-09-22 Delta Electronics, Inc. Estimating method for a rotor position of a motor and estimating device for the same
TWI484748B (en) * 2013-08-27 2015-05-11 Ind Tech Res Inst Apparatus and method for electric motor rotor angle estimation
CN107086834A (en) * 2017-05-02 2017-08-22 西北工业大学 The permanent-magnet synchronous motor rotor position delay compensation method evaluation method of Square wave injection

Also Published As

Publication number Publication date
TWI426698B (en) 2014-02-11

Similar Documents

Publication Publication Date Title
CN107134964B (en) Five-phase fault-tolerant permanent magnet motor position sensorless control method based on extended state observer
CN110350835B (en) Permanent magnet synchronous motor position sensorless control method
CN103872951B (en) Permanent magnet synchronous motor torque control method based on sliding mode flux linkage observer
CN110323986B (en) Estimation method for rotor position angle of permanent magnet synchronous motor
TWI476409B (en) Motor speed estimation method
CN103312255A (en) Method and device for controlling speed of permanent-magnet synchronous motor
WO2007001007A1 (en) Power conversion control device, power conversion control method, and power conversion control program
JP2003061386A (en) Synchronous motor drive system
JP2003235286A (en) Controller for synchronous machine
CN104009697B (en) Substation inspection robot uses the method for mixing observation device detection positional information
CN105471329B (en) Ac synchronous motor system torque impulse balance control method
Xu et al. A robust observer and nonorthogonal PLL-based sensorless control for fault-tolerant permanent magnet motor with guaranteed postfault performance
CN103338002A (en) Method for identifying permanent magnet flux and quadrature axis inductance of permanent magnet synchronous motor
TW200524265A (en) Controller for synchronous motor, electric appliance and module
TW201234762A (en) Motor control method with no sensor
CN108945373A (en) Impeller driven system and control method under integrated water
TWI426697B (en) Motor control method without sensor
CN105227010A (en) A kind of permagnetic synchronous motor position-sensor-free position detection error harmonic pulse removing method
WO2021174582A1 (en) Position sensorless permanent magnet synchronous motor control method and automobile power system
CN111769779A (en) PMSM direct torque control method based on improved Luenberger observer
CN112117943B (en) Novel IPMSM high-frequency square wave injection position-sensorless control
CN112886880A (en) Three-level permanent magnet synchronous motor position sensorless model prediction current control method
CN110808703A (en) Permanent magnet synchronous motor rotating speed and rotor position estimation method considering iron loss resistance
Lin et al. An improved flux observer for sensorless permanent magnet synchronous motor drives with parameter identification
CN105915142A (en) PMSM (permanent magnet synchronous motor) rotor position and rotating speed estimation method based on decoupling adaptive observer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees