201233895 六、發明說明: 【發明所屬之技術領域】 本發明係關於具有各種組態之帶殼式流體渦輪機。 此申凊案主張於2010年11月曰申請之美國臨時專利申 清案第61/415,626號及於20 11年4月1曰申請之美國專利申 請案第13/078,382號之優先權。此申請案亦是主張於2〇〇7 年3月23曰申請之美國臨時專利申請案第6〇/919 588號之優 先權之於2008年3月24曰申請之美國專利申請案第 12/054,050號之一部分接續申請案。此等申請案之揭示内 容係以引用的方式全部併入本文中。 【先前技術】 用於發電之習知水平軸風渦輪機(HAWT)具有如一螺旋 槳配置之兩個至五個開放葉片,該等葉片安裝於附接至驅 動一發電機之一齒輪箱之一水平桿。HAWT在捕獲貫穿其 之風之潛在能量方面不會超過59 3%效率之Betz極限。 HAWT亦是沉重的,需要實質的支撐件並增加組件之運輸 成本。將期望藉由從該流體收集額外能量以增加一流體渦 輪機之效率》 【發明内容】 本發明係關於各種組態之帶殼式流體渦輪機。該等流體 渦輪機包含在各種組態中之一葉輪、一渦輪機外殼及一喷 射器外殼。在一些組態中,複數個流體導管用以替代一喷 射器外殼。在其他組態中’一外在定子從該喷射器外殼徑 向延伸。 160360.doc 201233895201233895 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a shell-type fluid turbine having various configurations. This application claims priority to U.S. Patent Application Serial No. 61/415,626, filed on Nov. 2010, and U.S. Patent Application Serial No. 13/078,382, filed on Apr. 1, 2011. U.S. Patent Application Serial No. 12/ filed on March 24, 2008, which is incorporated herein by reference. Part of 054,050 continues the application. The disclosures of these applications are hereby incorporated by reference in their entirety. [Prior Art] A conventional horizontal axis wind turbine (HAWT) for power generation has two to five open blades as in a propeller configuration, the blades being mounted to a horizontal rod attached to one of the gearboxes of a generator . HAWT does not exceed the Betz limit of 59 3% efficiency in capturing the potential energy through the wind. HAWT is also heavy, requiring substantial support and increasing the transportation cost of the assembly. It would be desirable to increase the efficiency of a fluid turbine by collecting additional energy from the fluid. SUMMARY OF THE INVENTION The present invention is directed to a shell fluid turbine of various configurations. The fluid turbines include one of various configurations, an impeller, a turbine housing, and an injector housing. In some configurations, a plurality of fluid conduits are used in place of an injector housing. In other configurations, an external stator extends radially from the injector housing. 160360.doc 201233895
殼之一喷射器外殼, 流體渦輪機包括:一葉輪;環繞 成’ β亥渴輪機外殼包括一前緣及形成 個遇合葉瓣;及完全環繞該渦輪機外 該嘴射器外殼包括一前緣及一後緣。 在一實把例中,該渦輪機外殼之前緣與該喷射器外殼 之前緣共面。在其他實施例中,該渦輪機外殼之前緣處於 該噴射器外殼之前緣之下游。 在特定方案中,該渦輪機外殼之前緣具有一實質上圓形 形狀。在其他方案中,該噴射器外殼之前緣具有一實質上 圓形形狀。該噴射器外殼可具有一環流線形形狀。 該流體渦輪機可進一步包括一引擎罩體,該葉輪環繞該 引擎罩體,該引擎罩體具有一後緣,其中該引擎罩體、渦 輪機外殼及喷射器外殼彼此共軸。該引擎罩體之後緣可處 於該喷射器外殼之後緣之上游或下游。 該葉輪可為一轉子/定子總成。 另外揭示之一流體渦輪機包括:一葉輪;環繞該葉輪之 一渦輪機外殼’該渦輪機外殼包括處於該葉輪之下游之複 數個開放槽;及用於引導流體流動從該渦輪機外殼之外側 通過複數個開放槽之一外部結構。 在一些實施例中,用於引導流體流動之外部結構為繞該 渦輪機外殼佈置之一喷射器外殼,該渦輪機外殼及該喷射 器外殼於複數個開放槽之下游彼此密封。 在其他實施例中,用於引導流體流動之外部結構為沿著 160360.doc 201233895 該渦輪機外殼之一外部表面而定位之複數個流體導管,各 流體導管包括一入口及一出口 ’該出口連接至該渦輪機外 殼中之開放槽之一者。 各流體導管可進一步包括一流體導管葉輪。 該複數個流體導管之入口處於該渦輪器外殼之一入口端 之下游且平行於該渦輪機外殼之入σ端。 另外揭示之一流體滿輪機包括:一葉輪;環繞該葉輪之 一渦輪機外殼;於該渦輪機外殼之下游之一噴射器外殼, 該渦輪機外殼之一後緣延伸至該喷射器外殼之一入口端 中;及連接至該喷射器外殼之一外部表面之一定子。 在右干貫施例中’該滿輪機外殼包括一實質上圓形前緣 及形成一鋸齒形後緣之複數個混合葉瓣。 該定子可具有一環流線形形狀。該喷射器外殼可具有一 環流線形形狀。 下文中將更一步描述本發明之此等及其他非限制性特性 或特徵。 【實施方式】 以下是圖式之一簡潔描述,該等圖式經呈現用於繪示本 文中提及之揭示内容之目的而非用於限制該揭示内容之目 的。 參考附加圖可獲得對本文中所揭示之組件、製程及裝置 之一更完全理解。此等圖意欲展示本發明而非意欲顯示相 對大小及尺寸或限制例示性實施例之範疇。 雖然以下描述中使用4寺定術語,Μ匕等術語意欲僅僅指 160360.doc 201233895 圖式中之特定結構而非意欲限制本發明之範疇。應瞭解相 同之數字表示法指相同功能之組件。 當術語「約」與一數量一起使用時,其包含所陳述之數 值並亦具有由上下文指示之意思。例如,其至少包含與特 定數量之量測相關聯之誤差度。當在一範圍之上下文使用 時,亦應將該術語「約」看成揭示由兩個端點之絕對值界 定之範圍。例如’「從約2至約4」之範圍亦揭示從2至4之 範圍。 屈*合器喷射器電力系統(Mixer_Eject〇1· pQWer>An ejector casing of a casing, the fluid turbine comprising: an impeller; a casing surrounded by a 'beta sea' including a leading edge and forming a plucking lobes; and completely surrounding the turbine, the ejector casing includes a leading edge and a Trailing edge. In one embodiment, the leading edge of the turbine casing is coplanar with the leading edge of the injector casing. In other embodiments, the leading edge of the turbine casing is downstream of the leading edge of the injector casing. In a particular aspect, the leading edge of the turbine casing has a substantially circular shape. In other aspects, the front edge of the injector housing has a substantially circular shape. The injector housing can have a toroidal shape. The fluid turbine may further include a hood surrounding the hood, the hood having a trailing edge, wherein the hood, the turbine casing, and the ejector casing are coaxial with each other. The trailing edge of the hood may be upstream or downstream of the trailing edge of the injector housing. The impeller can be a rotor/stator assembly. Further disclosed is a fluid turbine comprising: an impeller; a turbine casing surrounding the impeller', the turbine casing including a plurality of open slots downstream of the impeller; and for directing fluid flow from the outside of the turbine casing through a plurality of openings One of the outer structures of the slot. In some embodiments, the outer structure for directing fluid flow is one of the injector housings disposed about the turbine housing, the turbine housing and the injector housing being sealed to each other downstream of the plurality of open slots. In other embodiments, the outer structure for directing fluid flow is a plurality of fluid conduits positioned along an outer surface of one of the turbine casings of 160360.doc 201233895, each fluid conduit including an inlet and an outlet 'the outlet is connected to One of the open slots in the turbine casing. Each fluid conduit can further include a fluid conduit impeller. The inlet of the plurality of fluid conduits is downstream of one of the inlet ends of the turbine casing and parallel to the inlet σ end of the turbine casing. Further disclosed is a fluid full turbine comprising: an impeller; a turbine casing surrounding one of the impellers; and an injector casing downstream of the turbine casing, a trailing edge of the turbine casing extending into an inlet end of the injector casing And a stator coupled to one of the outer surfaces of one of the injector housings. In the right-handed embodiment, the full turbine casing includes a substantially circular leading edge and a plurality of mixing lobes forming a zigzag trailing edge. The stator may have a toroidal shape. The injector housing can have a toroidal shape. These and other non-limiting features or characteristics of the present invention are described in further detail below. [Embodiment] The following is a brief description of the drawings, which are presented for the purpose of illustrating the disclosure herein, and are not intended to limit the disclosure. A more complete understanding of one of the components, processes and devices disclosed herein may be obtained by reference to the appended drawings. The drawings are intended to be illustrative of the present invention and are not intended to be Although the term "Temple" is used in the following description, the terms "Μ匕" are intended to refer only to the specific structures in the drawings, and are not intended to limit the scope of the invention. It should be understood that the same numerical representation refers to components of the same function. When the term "about" is used in connection with a quantity, it includes the stated value and also has the meaning indicated by the context. For example, it contains at least the degree of error associated with a particular number of measurements. The term "about" should also be taken to mean a range defined by the absolute values of the two endpoints when used in a context. For example, the range "from about 2 to about 4" also reveals a range from 2 to 4. Flexor injector power system (Mixer_Eject〇1·pQWer>
SyStem(MEPS))提供從風帶產生電力之一改良式構件。一 主要外.殼含有從一主要風流中擷取電力之一葉輪。包含一 混合器喷射器泵,其攝取來自該主要風流及次要流動之流 動並促進擾流混合的。此藉由增加通過該系統之空氣流動 量、減少渴輪機葉片上之背壓及減少來自該系統之噪音傳 播增強該電力系統。 本文中使用術語「葉輪」指其中葉片附接至一桿並能轉 動而允許從轉動該等葉;^之流體產生電力或能量之任何總 成。例示性葉輪包含-螺旋轉子/定子總成。可將 任何類型之葉輪封閉於本發明之流體渦輪機中之渦輪機外 殼内。 可將抓體進入其中以轉動該葉輪之流體渦輪機之端看成 該流體渴輪機之正面,並可將流體在貫穿該葉輪之後退出 之該流體渦輪機之端看成該流體渦輪機之背面。可將位於 更靠近該渴輪機之正面之該流體渦輪機之—第—組件看成 160360.doc 201233895 位於更靠近該渦輪機之背面之一第二組件之「上游。換 言之’該第二組件處於該第一組件之「下游」。 本發明係關於一帶殼式流體渦輪機之不同組態。可將該 等流體渦輪機用作一風渦輪機或一水渦輪機。圖j及圖2初 始呈現該帶殼式流體渦輪機之若干細節,其等將幫助討論 不同組態之各種態樣》 該帶殼式流體渴輪機100包括一具空氡動力輪廓之渦輪 機外殼110、一具空氣動力輪廓之引擎罩體15〇、一葉輪 140及一具空氣動力輪廓之喷射器外殼12〇。支樓部件1〇6 將該渦輪機外殼110連接至該喷射器外殼12〇。該葉輪14〇 環繞該引擎罩體150❶該引擎罩體15〇通過該葉輪14〇或藉 由其他構件連接至該渦輪機外殼110。 該渦輪機外殼具有一流線形之截面形狀且該吸力側 (即,低壓側)於該外殼之内部上。該渦輪機外殼之背面端 114亦具有混合葉瓣116。該等混合葉瓣於下游延伸超出該 等轉子葉片。換言之,該渦輪機外殼之後緣118由複數個 混合葉瓣116形成。該渦輪機外殼之背面或下游端經成形 以形成兩組不同的混合葉瓣116。高能混合葉瓣ι17朝向該 混合器外殼之中心軸105向内延伸。低能混合葉瓣n9遠離 該中心軸105向外延伸。圖2中可更容易地看到此等混合葉 瓣。 一混合器噴射器泵(由元件符號1 01指示)包括環繞該渦 輪機外殼110上之混合葉瓣116之環之一噴射器外殼uo。 該等混合葉瓣116於下游延伸並至該噴射器外殼12〇之一入 160360.doc 201233895 而2中。此混合器/喷射器泵提供用於一致地超過該流 體渦輪機之操作效率之Betz限制之構件。 在本發明之額外實施例中,該噴射H外殼完全環繞該滿 輪機外设°通常,該渦輪機外殼位於該喷射H外殼之前緣 與後緣之間。 圖3至圖6係翁器外&完全環繞該渦輪機外殼之一例示 !·生實施例之不同視圖。此處’該帶殼式流體渦輪機3〇〇包 括%繞一引擎罩體35〇之一葉輪34〇。此處將葉輪描繪成一 轉子/定子總成。該引擎罩體35〇具有一後緣352,在此實 施例中s亥後緣352看起來似一逐漸變細之點。該葉輪34〇由 渦輪機外殼310環繞。喷射器外殼32〇從而完全環繞該渦輪 機外殼310。該渦輪機外殼31〇之前緣314具有一實質上圓 形之形狀。該噴射器外殼32〇之前緣324亦具有一實質上圓 形之形狀。該引擎罩體350、葉輪340、渦輪機外殼310及 喷射器外殼320彼此共軸,即,共用一共同軸。 如圖4及圖5中可視,該渦輪機外殼之背面端上存在複數 個混合葉瓣316導致一鋸齒形後緣318。 如圖6中可視,該渦輪機外殼具有一前緣314及一後緣 318。類似地,該噴射器外殼具有一前緣324及一後緣 328。該渦輪機外殼之前緣314與該喷射器外殼之前緣324 共面。此外,該喷射器外殼之後緣328處於該渦輪機外殼 之後緣318之下游。該渦輪機外殼之後緣318處於該葉輪 340之下游。該喷射器外殼320具有一環流線形形狀,即, 具有一流線形之截面形狀且該吸力側(即,低壓側)於該喷 160360.doc 201233895 射器外殼之内部上。 圖7至圖9係該喷射器外殼完全環繞該渦輪機外殼之一第 二例示性實施例之不同視圖。此處,該帶殼式流體渦輪機 400包括環繞一引擎罩體450之一葉輪440。此處將葉輪描 繪成一轉子/定子總成。該引擎罩體450具有一後緣452, 在此實施例中該後緣452看起來似一逐漸變細之點。該葉 輪440由渦輪機外殼410環繞。喷射器外殼420從而完全環 繞該渦輪機外殼410。該渦輪機外殼410之前緣414具有一 實質上圓形之形狀。該喷射器外殼420之前緣424亦具有一 實質上圓形之形狀。該引擎罩體450、葉輪440、渦輪機外 殼410及噴射器外殼420彼此共軸,即,共用一共同軸。 如圖8中可視,該渦輪機外殼之背面端上存在複數個混 合葉瓣416導致一鋸齒形後緣418。 如圖9中可視,該渦輪機外殼具有一前緣414及一後緣 418。類似地,該喷射器外殼具有一前緣424及一後緣 428。該渦輪機外殼之前緣414處於該喷射器外殼之前緣 424之下游。此外,該喷射器外殼之後緣428處於該渦輪機 外殼之後緣418之下游。該渦輪機外殼之後緣418處於該葉 輪440之下游。該喷射器外殼420具有一環流線形形狀, 即,具有一流線形之截面形狀且該吸力側(即,低壓側)於 該喷射器外殼之内部上。 應注意在圖6中,該引擎罩體350之後緣352處於該噴射 器外殼320之後緣328之上游。在圖9中,該引擎罩體450之 後緣452處於該喷射器外殼420之後緣428之下游。該引擎 160360.doc -10- 201233895 罩體之後緣之位置可變化。 在本發明之其他額外實施例中’該流體渦輪機包含一渦 輪機外殼,該渦輪機外殼於該葉輪之下游包括複數個開放 槽。一「開放槽」允許流體沿著該渦輪機外殼之一外部表 面流動以從該外部徑向經過至該渦輪機外殼之内部。該流 體渴輪機亦包含引導流體流動從該渦輪機外殼外側通過複 數個開放槽的一外部結構。 圖10至圖12顯示此一流體渦輪機之一例示性實施例之不 同視圖。該帶殼式流體渦輪機5〇〇包括環繞一引擎罩體55〇 之一葉輪540。此處將葉輪描繪成一轉子/定子總成。該引 擎罩體550具有一後緣552,在此實施例中該後緣552看起 來似一逐漸變細之點。該葉輪540由渦輪機外殼510環繞。 在此實施例中’喷射器外殼520作為用於引導流體流動之 外部結構。該渦輪機外殼510之前緣514具有一實質上圓形 之形狀。該喷射器外殼520之前緣524亦具有一實質上圓形 之形狀。該引擎罩體550、葉輪540、渦輪機外殼510及噴 射器外殼520彼此共軸,即,共用一共同軸。 如圖12中可視’該渦輪機外殼510具有一環流線形形狀 且該吸力側於該渴輪機外殼之内部上。複數個開放槽560 位於葉輪540之下游。此處之開放槽係沿著該流體渦輪機 之一後緣504而定位。該渦輪機外殼510及噴射器外殼520 於該等開放槽560之下游彼此密封。換言之,該流體渦輪 機僅僅具有一後緣而非該渦輪機外殼及喷射機外殼具有分 離的後緣,如(例如)圖2之實施例中可視。沿著該渦輪機外 160360.doc 201233895 殼510之一外部表面517流動之高能流體568由該喷射器外 殼520通過該等開放槽560引導。 如圖12中所繪製,該渦輪機外殼之前緣514與該噴射器 外殼之前緣524共面。該喷射器之前緣524如所需可處於該 渦輪機外殼之前緣514之上游(見圖9)或該渦輪機外殼之前 緣之下游(見圖1)。類似地,所示之該等開放槽560係沿著 該流體渦輪機之後緣504而定位。此態樣並非必須的。反 而,該等開放槽560必須位於葉輪540之下游。 圖13至圖15顯示具有開放槽之一流體渦輪機之另一例示 性實施例之不同視圖。該帶殼式流體渦輪機600包括環繞 一引擎罩體650之一葉輪640。此處將葉輪描繪成一轉子/ 定子總成。該葉輪640由渦輪機外殼610環繞。該渦輪機外 殼610之前緣614具有一實質上圓形之形狀。該引擎罩體 650、葉輪640及渦輪機外殼610彼此共軸,即,共用一共 同轴。 如圖15中可視,該渦輪機外殼610具有一環流線形形狀 且該吸力側於該渦輪機外殼之内部上。複數個開放槽660 位於葉輪640之下游。相比圖12之實施例,此處之開放槽 660與該渦輪機外殼之後緣604分離。此處將該等開放槽視 為具有一橢圓形狀,然而原則上可使用任何形狀。 複數個流體導管670係沿著該渦輪機外殼之外部表面617 而定位。各流體導管670包括一入口 672及一出口 674。一 流體導管之出口 674連接至該渦輪機外殼中之一開放槽 660。該入口 672於該渦輪機外殼之入口端611之下游並亦 160360.doc -12- 201233895 平行於該入口端。 圖16至圖18顯示類似於圖13至圖15之流體渦輪機之一流 體渦輪機之另一例示性實施例之不同視圖。此實施例之不 同之處在於各流體導管670具有一流體導管葉輪675。該流 體導管葉輪675經供電,使得流體通過該等開放槽660被迫 至該渦輪機外殼之排氣流中。 圖19顯示類似於圖1之流體渦輪機但具有一外在定子之 一流體渦輪機800之另一組態。該帶殼式流體渦輪機800包 括環繞一引擎罩體850之一葉輪840。此處將葉輪描繪成一 轉子/定子總成。定子輪葉844及轉子葉片848係可見的。 渦輪機外殼810環繞該葉輪840。該渦輪機外殼具有形成一 鋸齒形後緣818之複數個混合葉瓣816。該渦輪機外殼810 之前緣814具有一實質上圓形形狀。 一喷射器外殼820處於該渦輪機外殼810之下游。該渦輪 機外殼之該等混合葉瓣816於下游延伸並至該噴射器外殼 820之一入口端822中。該噴射器外殼820之前緣824亦具有 一實質上圓形形狀。該引擎罩體850、葉輪840、渦輪機外 殼810及喷射器外殼820彼此共轴,即,共用一共同軸。該 喷射器外殼820具有一環流線形形狀,即,具有一流線形 之截面形狀且該吸力側(即,低壓側)於該喷射器外殼之内 部上。 一定子880連接至該噴射器外殼之一外部表面827。該定 子亦可具有一環流線形形狀。 該渦輪機外殼及該喷射器外殼可經形成而為輕量級。例 160360.doc 13 201233895 如,其等可藉由用一外皮覆蓋一剛性框架或骨架而形成。 該等外殼可包括相同或不同的材料。用於該等外殼之外皮 之材料可包含聚合的薄膜。例示性聚合的薄膜包含高密度 聚乙烯(HDPE);諸如聚對苯二甲酸乙二醇酯(pET)、聚對 苯一甲酸丁二醇酯(PBT)或聚對笨二甲酸丙二醇酯(pTT)之 聚酯;及聚胺酯薄膜。可將脂族及芳族聚胺酯兩者連同聚 醚及聚酯多元醇一起利用。亦可使用一玻璃基質中之過氧 固化不飽和聚酯聚合物。該玻璃可為£或§玻璃。一複合基 質亦可含有環氧樹脂系統以改良複合物之強度。 其他例不性材料包含聚乙烯氣化物(pvc)、聚氨酯、多 氟聚合物及類似組合物之多層薄膜。亦可運用可伸縮織 物’諸如’彈性絲類型織物或含有織物之聚氨酯—聚脲共 聚物。 聚氨酯薄膜堅韌並具有良好的耐候性。聚酯類型聚氨酯 薄膜傾向比聚喊類型聚氨酯薄膜對於親水性劣化更為敏 感。此等聚氨酯薄膜之脂族方案通常亦為抗紫外線的。 例不性多氟聚合物包含聚偏二氟乙烯(pvDF)及聚氟乙烯 (PVF)。可在商標名KYNAR.RTM·及TEDLAR.RTM.下購得 商用方案。多良聚合物通常具有極低的表面能量,相比於 具有一更向表面能量之材料’此允許其等之表面在一定程 度上可更谷易地維持無汙物及碎片以及脫落冰塊。 外皮可用一加強材料加強。加強材料之實例包含但不限 於咼結晶聚乙烯纖維、聚芳基胺纖維及聚醯胺。 該外皮可獨立地為多層,包括一、二、三或更多層。多 160360.doc • 14. 201233895 層構造可添加強度、防水性、uv穩定性及其他功能性β 然而’多層構造亦可能更為昂貴並添加整體流體渦輪機之 重量。 亦考慮連同一背襯(諸如,發泡體)之薄膜/織物複合物。 圖1至圖2及圖20至圓22繪示本發明之帶殼式流體渦輪機 之不同組態之各種額外態樣。同樣地,該帶殼式流體渦輪 機100包括一具空氣動力輪廓之渦輪機外殼110、一具空氣 動力輪廓之引擎罩體15〇 ' 一葉輪14〇及一具空氣動力輪廓 之噴射器外殼120。該渦輪機外殼11〇包含一正面端ιΐ2及 一背面端114。該喷射器外殼12〇包含一入口端122及一排 氣端124。支撐部件1〇6將該渦輪機外殼11〇連接至該噴射 器外殼120。 Τ葉輪140環繞該引擎罩體15〇。此處,該葉輪為包括具 有定子輪葉144之一定子142及具有轉子葉片148之一轉子 Μ6之一轉子/定子總成。該轉子146處於該等定子輪葉144 之下游並與該等定子輪葉144「成行」。換言之,該等轉子 葉片之前緣實質上與該等定子輪f之後緣對齊。該等轉子 葉片由—内環及一外環(不可見)固持於-起及該轉子146安 裝於該引擎罩體150上。該引擎罩體ls〇通過該定子142或 藉由其他構件連接至㈣輪機外殼11G。在—些實施例 中,一令心通道152亦可延伸通過該引擎罩體ls()。 該渦輪機外殼之進人口面積及退出σ面積將等於或大於 ::亥葉輪佔據之環形物之面積。由該引擎罩體與該渦輪機 卜或之内部表面之間之環形物形成之内在流動路徑截面區 I60360.doc 201233895 域經空氣動力^以於該渴輪機之平面處具有—最小截面 區域並以其他方式從其等之各自之進入口平面平滑地變化 至其等之退出口平面。該嘴射器外殼進入口面積大於該满 輪機外殼之退出口平面面積。 该帶殼式流體渦輪機中可包含若干可選特徵。呈一輪狀 結構之形式之-輔助電力輸出可於該葉輪之一外輪緣處機 械地鏈接至一發電機。可將聲音吸收材料貼附至該等外殼 之内表面,並吸收及防止由該渦輪機產生之相對高頻率之 聲波之傳播。該流體渦輪機亦可含有用於添加安全之葉片 包護結構。該等外殼將具有一空氣動力輪廓以增強至該系 統中且通過該系統之流動量。該等外殼之入口及出口區域 在截面可能為非圓形使得藉由對齊該兩個外殼容易地容納 外殼裝入。該渦輪機之一較低外表面上可包含一轉結用於 安裝一垂直支架/掛架,允許該渦輪機轉入該流體以最大 化電力擷取。可將垂直空氣動力穩定器輪葉安裝於該等外 殼之外部上以協助保持該渦輪機被指向該流體中。 如由該喷射器外殼12〇退出口面積除以該渦輪機外殼110 退出口面積界定之該喷射器泵之面積比將在15至3 〇之範 圍中。混合葉瓣之數量可在6與28之間。該等葉瓣通道之 高度對寬度比將在0.5與4.5之間。該混合葉瓣透入深度將 在50%與80%之間。該引擎罩體15〇栓塞後緣角度將為三十 度或更小。整體流體渦輪機之長度對直徑(L/D)將在〇·5與 1.25之間。 現參考圖22,該渦輪機外殼11〇具有一組朝向該渦輪機 160360.doc 201233895 之中心軸105向内延伸之九個高能混合葉瓣117。該渦輪機 外殼亦具有一組遠離該中心轴向外延伸之九個低能混合葉 瓣119。該高能混合葉瓣與該等低能混合葉瓣交替而圍繞 該渦輪機外殼之後緣118。該葉輪140、該渦輪機外殼11〇 及該喷射器外殼120彼此共軸,即,其等共用一共同中心 軸 105。 如圖2中所視,該渦輪機外殼11〇之前緣112具有一實質 上圓形形狀。如圖22中所視,該渦輪機外殼11〇之後緣118 具有一圓形鋸齒形形狀。該後緣可被描述成包含若干個内 圓周間隔之弧形部分181,其等各具有相同的曲率半徑。 該等内弧形部分181彼此均等地間隔開。在該等部分之間 為若干外弧形部分183,其等各具有相同的曲率半徑。内 弧形部分181之曲率半徑不同於外弧形部分183之曲率半 徑,但該等内弧形部分及該等外弧形部分具有相同中心 (即,Λ著该中心軸卜該等内弧形部分181及該等外弧形部 分183接著藉由徑向延伸部分185彼此連接。此造成一圓形 鋸齒形形狀。如本文中使用之術語「鋸齒形」並不要求内 ^形部分、外弧形部分及徑向延伸部分為直線,而相反地 才曰該後緣之-般上τ或料形狀^此㈣形結構形成兩組 混合葉瓣:高能混合葉瓣117及低能混合㈣119。 該等外弧形部分183位於—外平面中,此處用元件符號 190指示該外平面。該内狐形部分朗立於-内平面中,此 處用元件符號192指示》如從此觀&可目兮& τ 攸此硯點可見,該外平面190及 该内平面192通常為圓柱形 1再等之軸為s亥令心轴1 〇5。該 160360.doc 201233895 外平面190及該内平面192亦為共軸的。 該渦輪機外殼之前緣(此處如虛線圓194指示)具有一正 面曲率半徑199。該外弧形部分之外曲率半徑195大於該内 弧形部分之内曲率半徑197。該渦輪機外殼之前緣之正面 曲率半徑199可大於(實質上等於)或小於該外曲率半徑 195。 現參考圖20,貫穿該定子142之自由流流體(通常由箭頭 160指示’其可為(例如)風或水)具有由該轉子146擷取之其 之能量。由箭頭162指示之高能流體旁通該渦輪機外殼n〇 及定子142、在該渦輪機外殼no之外部上方流動,並藉由 該高能混合葉瓣117向内引導。該低能混合葉瓣119導致該 低能流體從該轉子146於下游退出以與該高能流體162混 合0 現參考圖21A,沿著該高能混合葉瓣117之通常指示於 172處之内部後緣繪製一切線m。存在該渦輪機外殼u〇 之一背面平面173。一線174垂直於該背面平面173而形成 並與一低能混合葉瓣119及一高能混合葉瓣117相遇之點 171相切。一角度由切線171及線174相交而形成。此角 度02在5。與65。之間。換言之,一高能混合葉瓣117相對於 該滿輪機外殼110之一縱向軸形成在5。與65。之間之一角度 02 °在特定之實施例中,該角度02係從約35。至約5〇。。 在圖21B中,沿著該低能混合葉瓣1Ϊ9之通常指示於1今7 處之内部後緣繪製一切線17^。一角度0由切線ί76及線1,4 相父而形成。此角度0在5。與65。之間。換言之’一低能混 r. 160360.doc 201233895 向軸形成在5。與 該角度0係從約 。葉瓣m相對於該渦輪機外殼⑽之一縱 65之間之—角度0。在特定之實施例中, 35°至約 5〇。。 *混合葉辦存在於該渦輪機外殼上。儘管,如所需,混合 葉瓣亦可形成於該喷射器外殼之一後緣128上。 本發明已參考例示性實施例而描述。顯錢,在其他人 閱讀並瞭解上述詳細描述之後將想到修改及變更。吾人意 欲將本發明視為包含所有此等修改及變更,只要其等在隨 附申請專利範圍或其之等效物之範疇内。 【圖式簡單說明】 圖1係一帶殼式流體渦輪機之一正面左透視圖。 圖2係圖1之帶殼式流體渦輪機之一背面右透視圖。 圖3係一第一例示性帶殼式流體渦輪機之一正面透視 圖0 圖4係圖3之流體渦輪機之一第一右側透視截面圖。 圖S係圖3之流體渦輪機之一第二右側透視截面圖。 圖6係圖3之流體渦輪機之一側截面圖。 圖7係一第二例示性帶殼式流體渦輪機之一正面透視 圖。 圖8係圖7之流體渦輪機之一右側透視截面圖。 圖9係圖7之流體渦輪機之一側截面圖。 圖係一第三例示性帶殼式流體渦輪機之一左正面透視 圖0 圖11係圖ίο之帶殼式流體渦輪機之一正面圖。 160360.doc -19· 201233895 圖12係圖10之帶殼式流體渦輪機之一左截面圖。 圖13係具有流體導管之一第三例示性帶殼式流體渦輪機 之一左正面透視圖。 圖14係圖13之帶殼式流體渦輪機之一正面圖。 圖15係圖13之帶殼式流體渦輪機之一左截面圖。移除引 擎罩體使得該渦輪機之態樣為可見。 圖16係於流體導管中具有葉輪之一第三例示性帶殼式流 體渦輪機之一左正面透視圖。 圖17係圖16之帶殼式流體渴輪機之一正面圖。 圖18係圖16之帶殼式流體渦輪機之一左截面圖。移除引 擎罩體使得該渦輪機外殼之態樣為可見。 圖19係具有一外在定子之—帶殼式流體渦輪機之一透視 圖。 圖20係圖2之帶殼式流體渦輪機之一截面圖。 圖21係圖20之一更小視圖。 圖21A及圖21B係圖21之流體渦輪機之混合葉瓣之放大 圖。 圖22係圖2之帶殼式流㈣輪機之-背關。該葉輪從 此圖中移除使得可更清晰地看到及解釋該流體渴輪機之其 他態樣。 【主要元件符號說明】 100 帶殼式流體渦輪機 101 混合器喷射器泉 105 中心軸 160360.doc -20. 201233895 106 支撐部件 110 渦輪機外殼 112 渦輪機外殼之正面端 114 渦輪機外殼之背面端 116 混合葉瓣 117 高能混合葉瓣 118 渦輪機外殼之後緣 119 低能混合葉瓣 120 噴射器外殼 122 喷射器外殼之入口端 124 喷射器外殼之排氣端 128 噴射器外殼之後緣 140 葉輪 142 定子 144 定子輪葉 146 轉子 148 轉子葉片 150 引擎罩體 • 160 自由流流體 : 171 切線 173 該渦輪機外殼之背面平面 174 線 176 切線 181 内弧形部分 160360.doc -21 - 201233895 183 外弧形部分 185 徑向延伸部分 190 外平面 192 内平面 194 渦輪機外殼之前緣 195 外弧形部分之外曲率半徑 197 内弧形部分之内曲率半徑 199 渦輪機外殼之前緣之正面曲率半徑 300 帶殼式流體渦輪機 310 渦輪機外殼 314 渦輪機外殼之前緣 316 混合葉瓣 318 渦輪機外殼之後緣 320 喷射器外殼 324 喷射器外殼之前緣 328 喷射器外殼之後緣 340 葉輪 350 引擎罩體 352 引擎罩體之後緣 400 帶殼式流體渦輪機 410 渦輪機外殼 414 渦輪機外殼之前緣 416 混合葉瓣 418 渦輪機外殼之後緣 160360.doc -22- 201233895 420 喷射器外殼 424 喷射器外殼之前緣 428 噴射器外殼之後緣 440 葉輪 450 引擎罩體 452 引擎罩體之後緣 500 帶殼式流體渦輪機 504 渦輪機外殼之後緣 510 渦輪機外殼 514 渦輪機外殼之前緣 520 喷射器外殼 524 噴射器外殼之前緣 540 葉輪 550 引擎罩體 552 引擎罩體之後緣 560 開放槽 568 南能流體 600 帶殼式流體渦輪機 610 渦輪機外殼 611 渦輪機外殼之入口端 614 渦輪機外殼之前緣 617 渦輪機外殼之外部表面 640 葉輪 650 引擎罩體 160360.doc -23- 201233895 660 開放槽 670 流體導 672 流體導 674 流體導 675 流體導 800 帶殼式 810 渦輪機 814 渴輪機 816 混合葉 818 渦輪機 820 噴射器 822 喷射器 824 喷射器 827 喷射器 840 葉輪 844 定子輪 848 轉子葉 850 引擎罩 880 定子 管 管之入口 管之出口 管葉輪 流體渦輪機 外殼 外殼之前緣 瓣 外殼之後緣 外殼 外殼之入口端 外殼之前緣 外殼之外部表面 葉 片 體 160360.doc • 24·SyStem (MEPS) provides an improved component that generates electricity from the wind belt. A primary outer shell contains an impeller that draws electricity from a major wind stream. A mixer ejector pump is included that draws flow from the primary and secondary flows and promotes turbulent mixing. This enhances the power system by increasing air flow through the system, reducing back pressure on the turbine blades, and reducing noise propagation from the system. As used herein, the term "impeller" refers to any assembly in which a blade is attached to a rod and can be rotated to permit the generation of electricity or energy from the fluid that rotates the blades. An exemplary impeller includes a helical rotor/stator assembly. Any type of impeller can be enclosed within the turbine casing of the fluid turbine of the present invention. The end of the fluid turbine into which the gripper can be rotated to rotate the impeller can be viewed as the front face of the fluid thirst turbine, and the fluid can be viewed as the back of the fluid turbine at the end of the fluid turbine exiting the impeller. The -component of the fluid turbine located closer to the front of the thirteenth turbine can be viewed as 160360.doc 201233895 located "upstream" of the second component closer to the back of the turbine. In other words, the second component is in the "Downstream" of a component. The present invention relates to different configurations of a shell-and-shell fluid turbine. The fluid turbines can be used as a wind turbine or a water turbine. Figures j and 2 initially present some details of the shelled fluid turbine, which will help to discuss various aspects of the different configurations. The shelled fluid thirst turbine 100 includes a turbine casing 110 having an open power profile, An aerodynamically contoured hood 15 〇, an impeller 140 and an aerodynamically contoured ejector casing 12 〇. The branch housing 1〇6 connects the turbine housing 110 to the injector housing 12〇. The impeller 14A surrounds the hood 150, the hood 15 is passed through the impeller 14 or is coupled to the turbine casing 110 by other means. The turbine casing has a predominantly linear cross-sectional shape and the suction side (i.e., the low pressure side) is on the interior of the casing. The rear end 114 of the turbine casing also has a mixing vane 116. The mixing vanes extend downstream beyond the rotor blades. In other words, the turbine casing trailing edge 118 is formed by a plurality of mixing lobes 116. The back or downstream end of the turbine casing is shaped to form two different sets of mixing vanes 116. The high energy mixing leaf ι 17 extends inwardly toward the central axis 105 of the mixer housing. The low energy mixing vane n9 extends outwardly away from the central axis 105. These hybrid leaflets are more easily seen in Figure 2. A mixer ejector pump (indicated by reference numeral 01) includes an injector housing uo that surrounds the ring of mixing lobes 116 on the turret housing 110. The mixing vanes 116 extend downstream and into the injector housing 12 into one of 160360.doc 201233895 and 2. This mixer/injector pump provides a means for consistently exceeding the Betz limit of the operational efficiency of the fluid turbine. In an additional embodiment of the invention, the injection H outer casing completely surrounds the turbine peripheral. Typically, the turbine casing is located between the leading edge and the trailing edge of the injection H casing. Figures 3 through 6 are different views of an embodiment of the turbine housing & Here, the shelled fluid turbine 3 includes an impeller 34 turns around an engine casing 35. The impeller is depicted here as a rotor/stator assembly. The hood 35 has a trailing edge 352 which, in this embodiment, appears to be a tapered point. The impeller 34 is surrounded by a turbine casing 310. The injector housing 32 is so as to completely surround the turbine housing 310. The turbine casing 31 has a substantially circular shape at the leading edge 314. The front edge 324 of the injector housing 32 also has a substantially circular shape. The hood 350, the impeller 340, the turbine casing 310, and the ejector casing 320 are coaxial with each other, i.e., share a common axis. As can be seen in Figures 4 and 5, a plurality of mixing vanes 316 are present on the rear end of the turbine casing resulting in a serrated trailing edge 318. As seen in Figure 6, the turbine casing has a leading edge 314 and a trailing edge 318. Similarly, the injector housing has a leading edge 324 and a trailing edge 328. The turbine casing leading edge 314 is coplanar with the injector casing leading edge 324. In addition, the injector housing trailing edge 328 is downstream of the turbine housing trailing edge 318. The turbine casing trailing edge 318 is downstream of the impeller 340. The ejector casing 320 has a toroidal shape, i.e., has a cross-sectional shape of a superior linear shape and the suction side (i.e., the low pressure side) is on the interior of the ejector housing. Figures 7 through 9 are different views of the second exemplary embodiment of the injector housing completely surrounding the turbine casing. Here, the shelled fluid turbine 400 includes an impeller 440 that surrounds a hood 450. The impeller is depicted here as a rotor/stator assembly. The hood 450 has a trailing edge 452 which, in this embodiment, appears to be a tapered point. The impeller 440 is surrounded by a turbine casing 410. The injector housing 420 thus completely surrounds the turbine housing 410. The leading edge 414 of the turbine casing 410 has a substantially circular shape. The front edge 424 of the injector housing 420 also has a substantially circular shape. The hood 450, impeller 440, turbine casing 410, and injector casing 420 are coaxial with each other, i.e., share a common axis. As can be seen in Figure 8, the presence of a plurality of hybrid vanes 416 on the rear end of the turbine casing results in a serrated trailing edge 418. As seen in Figure 9, the turbine casing has a leading edge 414 and a trailing edge 418. Similarly, the injector housing has a leading edge 424 and a trailing edge 428. The turbine casing leading edge 414 is downstream of the injector casing leading edge 424. In addition, the injector housing trailing edge 428 is downstream of the turbine housing trailing edge 418. The turbine casing trailing edge 418 is downstream of the impeller 440. The injector housing 420 has a toroidal shape, i.e., has a cross-sectional shape of a superior linear shape and the suction side (i.e., the low pressure side) is on the interior of the injector housing. It should be noted that in Figure 6, the trailing edge 352 of the hood 350 is upstream of the trailing edge 328 of the injector housing 320. In Figure 9, the trailing edge 452 of the hood 450 is downstream of the trailing edge 428 of the injector housing 420. The engine 160360.doc -10- 201233895 The position of the trailing edge of the cover can vary. In other additional embodiments of the invention, the fluid turbine includes a turbine casing that includes a plurality of open slots downstream of the impeller. An "open slot" allows fluid to flow along an outer surface of one of the turbine casings to radially pass from the exterior to the interior of the turbine casing. The fluid thirteen turbine also includes an outer structure that directs fluid flow from outside the turbine casing through a plurality of open slots. Figures 10 through 12 show different views of one exemplary embodiment of such a fluid turbine. The shelled fluid turbine 5 includes an impeller 540 that surrounds a hood 55 。. The impeller is depicted here as a rotor/stator assembly. The hood 550 has a trailing edge 552 which, in this embodiment, appears to be tapered. The impeller 540 is surrounded by a turbine casing 510. In this embodiment, the injector housing 520 acts as an external structure for directing fluid flow. The leading edge 514 of the turbine casing 510 has a substantially circular shape. The front edge 524 of the injector housing 520 also has a substantially circular shape. The hood 550, impeller 540, turbine casing 510, and injector casing 520 are coaxial with each other, i.e., share a common axis. As seen in Figure 12, the turbine casing 510 has a toroidal shape and the suction side is on the interior of the tire casing. A plurality of open slots 560 are located downstream of the impeller 540. The open channel here is positioned along a trailing edge 504 of the fluid turbine. The turbine casing 510 and injector casing 520 are sealed to each other downstream of the open slots 560. In other words, the fluid turbine has only a trailing edge rather than the turbine casing and the injector casing having separate trailing edges as seen, for example, in the embodiment of Figure 2. A high energy fluid 568 flowing along an outer surface 517 of one of the turbines 160360.doc 201233895 shell 510 is directed by the injector housing 520 through the open slots 560. As depicted in Figure 12, the turbine casing leading edge 514 is coplanar with the injector casing leading edge 524. The injector leading edge 524 can be upstream of the turbine casing leading edge 514 (see Figure 9) or downstream of the turbine casing leading edge (see Figure 1). Similarly, the open slots 560 are shown positioned along the trailing edge 504 of the fluid turbine. This aspect is not required. Instead, the open slots 560 must be located downstream of the impeller 540. 13 through 15 show different views of another exemplary embodiment of a fluid turbine having one of the open slots. The shelled fluid turbine 600 includes an impeller 640 that surrounds a hood 650. The impeller is depicted here as a rotor/stator assembly. The impeller 640 is surrounded by a turbine casing 610. The leading edge 614 of the turbine casing 610 has a substantially circular shape. The hood 650, impeller 640, and turbine casing 610 are coaxial with each other, i.e., share a common coaxial. As can be seen in Figure 15, the turbine casing 610 has a toroidal shape and the suction side is on the interior of the turbine casing. A plurality of open slots 660 are located downstream of the impeller 640. In contrast to the embodiment of Figure 12, the open slot 660 herein is separated from the trailing edge 604 of the turbine casing. Here, the open grooves are regarded as having an elliptical shape, but in principle any shape can be used. A plurality of fluid conduits 670 are positioned along an outer surface 617 of the turbine casing. Each fluid conduit 670 includes an inlet 672 and an outlet 674. An outlet 674 of fluid conduit is coupled to one of the open slots 660 of the turbine housing. The inlet 672 is downstream of the inlet end 611 of the turbine casing and is also parallel to the inlet end 160360.doc -12- 201233895. 16 through 18 show different views of another exemplary embodiment of a fluid turbine similar to the fluid turbine of Figs. 13-15. This embodiment differs in that each fluid conduit 670 has a fluid conduit impeller 675. The fluid conduit impeller 675 is energized such that fluid is forced through the open slots 660 into the exhaust stream of the turbine casing. Figure 19 shows another configuration of a fluid turbine 800 similar to the fluid turbine of Figure 1 but having an external stator. The shelled fluid turbine 800 includes an impeller 840 that surrounds an engine casing 850. The impeller is depicted here as a rotor/stator assembly. Stator vanes 844 and rotor vanes 848 are visible. A turbine casing 810 surrounds the impeller 840. The turbine casing has a plurality of mixing vanes 816 that form a serrated trailing edge 818. The front edge 814 of the turbine casing 810 has a substantially circular shape. An injector housing 820 is downstream of the turbine housing 810. The mixing vanes 816 of the turbine casing extend downstream and into an inlet end 822 of the injector casing 820. The front edge 824 of the injector housing 820 also has a substantially circular shape. The hood 850, impeller 840, turbine casing 810, and injector casing 820 are coaxial with each other, i.e., share a common axis. The injector housing 820 has a toroidal shape, i.e., has a cross-sectional shape of a superior linear shape and the suction side (i.e., the low pressure side) is internal to the injector housing. A stator 880 is coupled to one of the outer surfaces 827 of the injector housing. The stator may also have a toroidal shape. The turbine casing and the ejector casing can be formed to be lightweight. Example 160360.doc 13 201233895 For example, they may be formed by covering a rigid frame or skeleton with a skin. The outer casings may comprise the same or different materials. The material used for the outer skin of the outer casing may comprise a polymeric film. Exemplary polymeric films comprise high density polyethylene (HDPE); such as polyethylene terephthalate (pET), polybutylene terephthalate (PBT) or poly(p-propylene succinate) (pTT) Polyester; and polyurethane film. Both aliphatic and aromatic polyurethanes can be utilized in conjunction with polyethers and polyester polyols. It is also possible to use a peroxygenated unsaturated polyester polymer in a glass matrix. The glass can be £ or § glass. A composite matrix may also contain an epoxy resin system to improve the strength of the composite. Other exemplary materials include multilayer films of polyethylene vapor (pvc), polyurethane, polyfluoropolymer, and the like. Retractable fabrics such as 'elastic silk type fabrics or fabric-containing polyurethane-polyurea copolymers can also be used. The polyurethane film is tough and has good weatherability. The polyester type polyurethane film tends to be more sensitive to hydrophilic deterioration than the poly-type polyurethane film. Aliphatic solutions for such polyurethane films are also generally UV resistant. Examples of non-polyfluoropolymers include polyvinylidene fluoride (pvDF) and polyvinyl fluoride (PVF). Commercial solutions are available under the trade names KYNAR.RTM· and TEDLAR.RTM. The Poran polymer generally has an extremely low surface energy compared to a material having a more surface energy. This allows the surface of the surface to be more free to maintain dirt and debris and to shed ice. The outer skin can be reinforced with a reinforcing material. Examples of reinforcing materials include, but are not limited to, fluorene crystalline polyethylene fibers, polyarylamine fibers, and polyamines. The outer skin may independently be a plurality of layers including one, two, three or more layers. Multiple 160360.doc • 14. 201233895 Layer construction adds strength, water resistance, uv stability and other functionalities. However, the multilayer construction may also be more expensive and add the weight of the overall fluid turbine. Film/fabric composites of the same backing (such as a foam) are also contemplated. Figures 1 through 2 and Figures 20 through 22 illustrate various additional aspects of different configurations of the shelled fluid turbine of the present invention. Similarly, the shelled fluid turbine 100 includes an aerodynamically contoured turbine casing 110, an aerodynamically contoured hood 15', an impeller 14A, and an aerodynamically contoured ejector casing 120. The turbine casing 11A includes a front end ι 2 and a rear end 114. The injector housing 12A includes an inlet end 122 and an exhaust end 124. A support member 1〇6 connects the turbine casing 11〇 to the injector casing 120. The impeller 140 surrounds the hood 15 〇. Here, the impeller is a rotor/stator assembly including a stator 142 having stator vanes 144 and a rotor Μ6 having one of the rotor blades 148. The rotor 146 is downstream of the stator vanes 144 and "walks" with the stator vanes 144. In other words, the leading edges of the rotor blades are substantially aligned with the trailing edges of the stator wheels f. The rotor blades are held by the inner ring and an outer ring (not visible) and the rotor 146 is mounted to the hood 150. The hood ls is connected to the (four) turbine casing 11G through the stator 142 or by other members. In some embodiments, a wicking channel 152 can also extend through the hood ls(). The area of the population of the turbine casing and the area of the exit σ will be equal to or greater than the area of the ring occupied by the ::Hai impeller. The inner flow path section I60360.doc 201233895 is formed by the ring between the hood and the inner surface of the turbine or the aerodynamic force to have a minimum cross-sectional area at the plane of the thirteen turbine and The mode changes smoothly from its respective entrance port plane to its exit port plane. The mouthpiece housing inlet area is greater than the exit port plane area of the full turbine casing. Several optional features may be included in the shelled fluid turbine. The auxiliary power output in the form of a wheel structure can be mechanically linked to a generator at one of the outer rims of the impeller. The sound absorbing material can be attached to the inner surface of the outer casing and absorb and prevent the propagation of relatively high frequency sound waves generated by the turbine. The fluid turbine may also contain a blade containment structure for added safety. The enclosures will have an aerodynamic profile to enhance the amount of flow into and through the system. The inlet and outlet regions of the housing may be non-circular in cross-section such that the housing is easily accommodated by aligning the two housings. One of the lower outer surfaces of the turbine may include a swivel for mounting a vertical bracket/hanger that allows the turbine to divert the fluid for maximum power draw. Vertical aerodynamic stabilizer vanes may be mounted on the exterior of the outer casing to assist in maintaining the turbine directed into the fluid. The area ratio of the ejector pump as defined by the ejector casing 12 〇 exit port area divided by the turbine casing 110 exit port area will be in the range of 15 to 3 。. The number of mixing lobes can be between 6 and 28. The height to width ratio of the lobes will be between 0.5 and 4.5. The depth of penetration of the mixed leaflets will be between 50% and 80%. The hood 15 〇 embolization trailing edge angle will be thirty degrees or less. The length to diameter (L/D) of the overall fluid turbine will be between 〇·5 and 1.25. Referring now to Figure 22, the turbine casing 11 has a plurality of nine high energy mixing lobes 117 extending inwardly toward a central axis 105 of the turbine 160360.doc 201233895. The turbine casing also has a plurality of nine low energy mixing vanes 119 extending axially outwardly from the center. The high energy mixing vanes alternate with the low energy mixing vanes to surround the trailing edge 118 of the turbine casing. The impeller 140, the turbine casing 11A and the injector casing 120 are coaxial with each other, i.e., they share a common central axis 105. As seen in Figure 2, the front edge 112 of the turbine casing 11 has a substantially circular shape. As seen in Figure 22, the turbine casing 11 has a circular zigzag shape at its trailing edge 118. The trailing edge can be described as comprising a plurality of inner circumferentially spaced arcuate portions 181, each having the same radius of curvature. The inner curved portions 181 are equally spaced from each other. Between the portions are a plurality of outer curved portions 183 which each have the same radius of curvature. The radius of curvature of the inner curved portion 181 is different from the radius of curvature of the outer curved portion 183, but the inner curved portion and the outer curved portion have the same center (ie, the inner curved portion is next to the central axis) The portion 181 and the outer curved portions 183 are then joined to each other by a radially extending portion 185. This results in a circular zigzag shape. The term "zigzag" as used herein does not require an inner portion or an outer arc. The shaped portion and the radially extending portion are straight lines, and conversely the upper end of the trailing edge is τ or the shape of the material. The (four)-shaped structure forms two sets of mixed vanes: a high-energy mixing vane 117 and a low-energy mixing (four) 119. The outer curved portion 183 is located in the outer plane, where the outer plane is indicated by the element symbol 190. The inner fox portion is erected in the inner plane, here indicated by the symbol 192, as seen from here.兮& τ 攸 砚 可见 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The 192 is also coaxial. The front edge of the turbine casing (here As indicated by the dashed circle 194, there is a front radius of curvature 199. The outer curved portion has a radius of curvature 195 that is greater than the inner radius of curvature 197 of the inner curved portion. The front curvature radius 199 of the leading edge of the turbine casing can be greater than (essentially Equal to) or less than the outer radius of curvature 195. Referring now to Figure 20, a free-flowing fluid through the stator 142 (generally indicated by arrow 160, which may be, for example, wind or water) has its own Energy. The high energy fluid indicated by arrow 162 bypasses the turbine casing n and the stator 142, flows over the exterior of the turbine casing no, and is directed inwardly by the high energy mixing lobes 117. The low energy mixing lobes 119 result The low energy fluid exits downstream from the rotor 146 to mix with the high energy fluid 162. Referring now to Figure 21A, a line m is drawn along the inner trailing edge of the high energy mixing lobes 117, generally indicated at 172. The turbine casing is present. One of the back planes 173. A line 174 is formed perpendicular to the back plane 173 and is tangent to a point 171 where a low energy mixing leaf 119 and a high energy mixing leaf 117 meet. The degree is formed by the intersection of the tangent line 171 and the line 174. This angle 02 is between 5. and 65. In other words, a high energy mixing vane 117 is formed at 5 with respect to one of the longitudinal axes of the full turbine casing 110. An angle of between 02 °. In a particular embodiment, the angle 02 is from about 35 to about 5 〇. In Figure 21B, the interior of the low energy mixing lobes 1 Ϊ 9 is generally indicated at 1 to 7 The trailing edge draws the line 17^. An angle of 0 is formed by the tangent ί76 and the line 1,4. The angle 0 is between 5. and 65. In other words, a low energy mixture r. 160360.doc 201233895 At 5. With this angle 0 is from about . The angle m of the blade m is relative to the longitudinal direction 65 of one of the turbine casings (10). In a particular embodiment, 35° to about 5〇. . * The hybrid leafwork is present on the turbine casing. Although, as desired, a mixing lobes may be formed on the trailing edge 128 of one of the injector housings. The invention has been described with reference to the exemplary embodiments. Explicit changes will occur to others after reading and understanding the above detailed description. It is intended that the present invention be construed as being limited by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a front left perspective view of one of the shelled fluid turbines. 2 is a rear right perspective view of one of the shelled fluid turbines of FIG. 1. 3 is a front perspective view of one of the first exemplary shell-and-shell fluid turbines. FIG. 4 is a first right perspective cross-sectional view of one of the fluid turbines of FIG. Figure S is a second right perspective cross-sectional view of one of the fluid turbines of Figure 3. Figure 6 is a side cross-sectional view of one of the fluid turbines of Figure 3. Figure 7 is a front perspective view of one of the second exemplary shelled fluid turbines. Figure 8 is a perspective, right side perspective view of one of the fluid turbines of Figure 7. Figure 9 is a side cross-sectional view of one of the fluid turbines of Figure 7. Figure 1 is a front view of one of the third exemplary shelled fluid turbines. Figure 0 Figure 11 is a front view of one of the shelled fluid turbines of Figure ί. 160360.doc -19· 201233895 Figure 12 is a left side cross-sectional view of the shelled fluid turbine of Figure 10. Figure 13 is a left front perspective view of one of the third exemplary shell-and-shell fluid turbines having one of the fluid conduits. Figure 14 is a front elevational view of one of the shelled fluid turbines of Figure 13. Figure 15 is a left side cross-sectional view of the shelled fluid turbine of Figure 13. Removing the hood body makes the turbine look visible. Figure 16 is a left front perspective view of one of the third exemplary shelled fluid turbines having one of the impellers in the fluid conduit. Figure 17 is a front elevational view of one of the shelled fluid thirteen turbines of Figure 16. Figure 18 is a left side cross-sectional view of the shelled fluid turbine of Figure 16. Removing the hood body makes the turbine casing visible. Figure 19 is a perspective view of a shelled fluid turbine having an external stator. Figure 20 is a cross-sectional view of the shelled fluid turbine of Figure 2. Figure 21 is a smaller view of one of Figure 20. 21A and 21B are enlarged views of the mixing vanes of the fluid turbine of Fig. 21. Figure 22 is a back-to-back closure of the shelled flow (four) turbine of Figure 2. The impeller is removed from this figure so that other aspects of the fluid thirst turbine can be more clearly seen and explained. [Main component symbol description] 100 Shelled fluid turbine 101 Mixer injector spring center shaft 160360.doc -20. 201233895 106 Support member 110 Turbine casing 112 Front end of turbine casing 114 Back end of turbine casing 116 Mixed lobes 117 high energy mixing lobes 118 turbine casing trailing edge 119 low energy mixing lobes 120 ejector casing 122 ejector casing inlet end 124 ejector casing exhaust end 128 ejector casing trailing edge 140 impeller 142 stator 144 stator blade 146 rotor 148 rotor blade 150 hood • 160 free-flow fluid: 171 tangential line 173 the rear face of the turbine casing 174 line 176 tangential line 181 inner curved portion 160360.doc -21 - 201233895 183 outer curved portion 185 radially extending portion 190 outside Plane 192 Inner plane 194 Turbine casing leading edge 195 Outer curved portion Outside radius of curvature 197 Inner curved portion Inner radius of curvature 199 Turbine casing leading edge front curvature radius 300 Shelled fluid turbine 310 Turbine casing 314 Turbine casing leading edge316 Mixed Blade 318 Turbine Housing Trailing Edge 320 Injector Housing 324 Injector Housing Leading Edge 328 Injector Housing Trailing Edge 340 Impeller 350 Engine Shell 352 Engine Shell Back Edge 400 Shelled Fluid Turbine 410 Turbine Housing 414 Turbine Housing Before Edge 416 Mixed leaf 418 Turbine casing trailing edge 160360.doc -22- 201233895 420 Injector casing 424 Injector casing leading edge 428 Injector casing trailing edge 440 Impeller 450 Engine casing 452 Engine casing trailing edge 500 Shell fluid Turbine 504 Turbine casing trailing edge 510 Turbine casing 514 Turbine casing leading edge 520 Ejector casing 524 Ejector casing leading edge 540 Impeller 550 Engine casing 552 Engine casing trailing edge 560 Open slot 568 South Energy Fluid 600 Shelled fluid turbine 610 Turbine housing 611 turbine housing inlet end 614 turbine housing leading edge 617 turbine housing outer surface 640 impeller 650 hood 160360.doc -23- 201233895 660 open slot 670 fluid guide 672 fluid guide 674 fluid guide 675 Fluid Guide 800 Shelled 810 Turbine 814 Thirsty Turbine 816 Mixed Blade 818 Turbine 820 Injector 822 Injector 824 Injector 827 Injector 840 Impeller 844 Stator Wheel 848 Rotor Blade 850 Engine Cover 880 Outlet Tube Impeller of the Inlet Tube of the Stator Tube Fluid turbine housing shell front edge flap housing trailing edge housing shell inlet end housing front edge outer surface of the outer shell leaf body 160360.doc • 24·