TW201233421A - Dynamic module system of eyeball mechanism for a humanoid robot - Google Patents

Dynamic module system of eyeball mechanism for a humanoid robot Download PDF

Info

Publication number
TW201233421A
TW201233421A TW101111045A TW101111045A TW201233421A TW 201233421 A TW201233421 A TW 201233421A TW 101111045 A TW101111045 A TW 101111045A TW 101111045 A TW101111045 A TW 101111045A TW 201233421 A TW201233421 A TW 201233421A
Authority
TW
Taiwan
Prior art keywords
actuator
eyeball
eye
eyelid
humanoid robot
Prior art date
Application number
TW101111045A
Other languages
Chinese (zh)
Inventor
Ching-Kuo Wang
Original Assignee
Hwa Hsia Inst Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hwa Hsia Inst Of Technology filed Critical Hwa Hsia Inst Of Technology
Priority to TW101111045A priority Critical patent/TW201233421A/en
Publication of TW201233421A publication Critical patent/TW201233421A/en

Links

Landscapes

  • Manipulator (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

The intelligent robotics has becomes the modern technology since the new era of the 21st century. The purpose of the proposed invention is to introduce the dynamic system with the eyeball and eyelid mechanical modules, which can exhibit dynamic emotions and interact with its environment or other people. The robotic eye module movements include eyeball movement and eyelid movement. Note that the driving forces are two independently wireless controlled and driven servo motors. Besides, driven RC-servo motors of the eyeball mechanism are small-size and only 9g net weight. The horizontal angle of the robot eye-pupil swing ranges from 55-75 degrees. Adjustable vertical angles of the robot eye-lid swing range from 65-95 degrees.

Description

201233421 六、發明說明: 【發明所屬之技術領域】 於人形機ϋ人臉部情緒仿t目技術領域’尤指應用 【先前技術】 智慧型機ϋ人是21世紀先_家優先發展的新科技產業,關 鍵技術涵雜構設計、馬達控制、影音感測技術、導航_技術、 嵌入式微處理H義技術...料整合機電知識的綱專業技術。 一般而言,機器人可分類為產㈣及服務用兩大類,智慧型機器 人屬於知識、資本與技術密集的跨領域整合型新興產業。在科技 曰新月異的現代’具有多樣化表情或動作的智慧型機器人被創作 出來,而舉凡這些智慧賴ϋ人可顧社義全或是作為娱樂 商品。 為了使智慧型機器人的動作更貼近人類的行為,或增添與人 們互動的表情,一直是從事機器人研究工作所追求之課題。人形 機器人頭部的技術發展可分類為初階、中階與高階三個領域,其 中大多數初階與中階的頭頸部技術發展主要投入在基本情緒機構 與控制的技術創新,高階技術除了著重於面部情緒與環境的互動 外,也強調細緻微調能明顯觸動機器人之所引起之情境變化,仿 生機構設計、致動器控制與互動式情緒模擬分被視為是發展高階 關鍵技術。就日本 AIST(Advanced Industrial Science and Technology) 與韓國 KAIST(Korea Advanced Institute of Science and Technology) 發展人形機器人的成功經驗可知,微型機構的製作工藝與控制為 其關鍵因素。 ⑧ 4 201233421 有關於智慧型機器人臉部眼球、眼皮、眉毛…等先前的仿生 技術多過於複雜,設計製作成本過高,造成人形機器人頭部過重, 馬達驅動減速或傳動機構…等困擾。但對於臉部表情變化的仿真 效果卻不見有突破性的進展,使得這些臉部仿生的程度大打折 扣,無法猶如人類臉部表情的逼真。先前技術在人工眼球下加裝 減速或傳動機構得做法,將配合低轉速、大扭力的微型 流5伏微型致動器得到改善。 一 【發明内容】 本發明之目的在提供應用於人形機器人臉部情緒仿真之眼部 機構系統。利用重量僅9克以下的先進微型致動器(直流5伏之遙 控(Remote Control ; RC)伺服機或超音波馬達)的低功率、低轉 速'大轉矩、微型輕量…等優勢,以簡化智慧型機器人微型機構 的複雜性,以省略減速齒輪機構的傳動困擾。本微 型致動器__器人眼球垂直與水平移動、== 的功能。當直流5伏之致動器順時鐘或逆時鐘方向旋轉時,經由 可5周整撓性連桿以及固定軸承,致動器之扭力將瞬間傳遞至曈孔 中央槓桿’經由可調整撓性四連桿及滑動機構,將眼球作垂直與 水平角度的撓性獅,而眼球瞳孔的垂直與水平擺動角度可依需 求設定為正負55〜75度。另—方面,眼皮機構係由另—組微型致 ^器所控制垂直軸的魏’ t直流5伏之致純辦鐘或逆時 釦方向旋轉時,經由可調整撓性連桿以及固定軸承,致動器之扭 力將瞬_遞錄皮拉力機構,經由可調整雜將眼皮作垂直角 度的閉合或開啟’稀皮垂直的獅肖度可依需求設定為單 65〜95度。 201233421 目的之人形機11人眼部機構之動態模組,具有兩組 :獨立移動與控制之子系統,包括:一、眼球眼球2D曲柄機構子 系統,用贿供具村調⑽直與斜雛之 ==r角度,擺動,…機構子系::用 /σ °周1撓性連桿以及固定軸承,可將眼皮作垂直角产 =閉合或開啟,以及三、微型低功率致動ϋ所㈣,肋提^ 有驅動人形機器人眼部機構之動態模組的動力來源。達到上述目、 慧韻器人眼部機構之_模組之絲來自於 直流電源池,提供的4.5.6伏(V)之直流電壓電源之平均為2 ’控制方式採用2.4GHZ無線電控麵組或使用具有20 雨出入點的乙太網路(Ethemet)訊號傳輸之8051單晶片控制模 δπ» ° 【實施方式】 八雖然本發日⑽相含有本發日驗佳實施狀所關式予 =描述,但在此贿之前應瞭解熟悉本行之人士可修 立請參閱第1圖,顯示本發明人形機器人臉部及眼部結構之示 2圖。圖中包括有臉部結構卜眼球機構2及眼皮機構3。A i可由可調整之仿真石夕膠或橡膠材料製作而眼 構2可具有瞳孔等’眼皮機構3則可具有睫毛。 良域 明參閱第2 ®及第3 ® ’第2醜示本發明人形機器人頭顧 201233421 歡:Ί 為本發明人形機11人頭顱骨結構及眼部結 ^不並配合參閱第!圖。圖中包括有眼結機構2、眼皮機 構、眼窩結構4、L型裂口 5及瞳孔結構6 =顧骨外,一 inf_ 構4的L型裂口5可提供眼部機構2的控制連 孔結構6主要包含有C③攝 ρΓίΠ4圖’第4醜示本發明人形機11人眼球機構之 不广^並配合參閱第2圖及第3圖。圖中包括有眼球 m=7、第二扭力輸入機件8、第-致動器9及第二致 ’賊機構2内含有瞳孔結構6,而眼球 ° 3 ϋ定插銷11與曲柄機構12連結 於r求機構12上,且曲柄機㈣可與第-扭力輸入“ -扭力輸人機件8連結,而第—扭力輸 第一致動器9及第二致動器1〇連結=ς 可▼動眼球機構2 _孔結構6具有垂 =;球機構2的瞳孔結構6之垂直與二;:= 機件7及Ϊ ft第—致動⑸及第二致動器1G使第—扭力輸入 ^件及,一扭力輸入機件g之旋轉角度設定為正負%度。其中 致動器9及第一致動器1〇可為直流5伏微型致動器。 η請+、t閱第5 ^ ’係顯示本發明人形機器人眼皮機構之示意圖 ^動作t並配合參閱第丨圖。圖中包括有眼皮機構3、 卜香第三扭力輸入機件14、可調整套筒15及第三致動 : 丨施财’撓性連桿13之—端連财眼皮機構3及睫 毛,其另-端可樞接於多孔圓盤17之一面之娜緣上。且眼皮機構 201233421 3之第三扭力輸入機件14亦連結於 而第三扭力輸入機件j"、 之另一面軸心處, 16於作動後使第:扭力^^置於第三致動器16,當第三致動器 尤乐—扭力輪入機件14帶動多孔 ,第三致動器16彈性調整第三扭力輸入機件?4之二= 度。可調整套筒15之内部且有 =^之扭力輸出角 調整撓性連桿13之伸縮長产mi=)’其可依需要彈性 入機件Η作動,因而一:二伽16可提供第三扭力輪 I3可將目购_,嫩性連桿 角戶—A j擺動。而該第三扭力輸入機件Η之允許旋轉 度向下擺動。其中第三致動器16可為』 來自於鐘魏㈣人眼職叙_模組之電源 2直流電源模組’提供的4.5_6伏__電 20瓦(w)之功率給予第一致動器9、第二致動器1〇及 ^動15〗6。其㈣方式採用2.4GHz無線f控麵組或使用 /、20個輸出入點的乙太網路卿咖吻訊號傳輸之8⑹單晶片 控制模組(圖未示)。 請參閱第6圖(雙眼__作),顯林發明人形機器人臉部 及眼。P機構’並配合參閱第!圖。圖中之眼球控織構之動態模 ^包含^眼賴構20、水平位频構2卜垂直婦機構22、第 -致動器23及第二致動器24 ’該目艮球機構2〇具有瞳孔結構25 及延伸端26。水平位移機構21之兩端可分別與兩眼球機構2〇之 该延伸端26樞接,且水平位移機構21之表面具有一齒部27。垂 直位移機構22之兩端樞接於兩眼球機構2〇上,第一致動器23可 搭配具有齒輪28,且齒輪28結合於齒部27。第二致動器24與垂 直位移機構22之一突起部29連結。其中,該第一致動器23作動 201233421 使齒輪28轉動,而與齒輪28結合之齒部27使水平位移機構21 產生位移,進而使兩眼球機構2〇可呈現水平的轉動,而該第二致 動器24作動使垂直位移機構22產生縱向的轉動,進而使眼球機 構20的瞳孔結構25呈現垂直的移動。其中第一致動器23及第二 致動器24可為直流5伏微型致動器。上述之智慧型機器人眼部機 狀動HHa之電源來自於㈣池串聯直流電源模組,提供的 4:5-6伏(V)直流電壓電源之平均為2() E(w)之功轉予第一致動 器23及第二致動器24。其控制方式採用21·無線電控制模組 ,使用具有20個輸出入點的乙太網路(Ethemet)訊號傳輸之觀 單晶片控麵組(圖未示)。其中’瞳孔結構25主要包含有ccd攝 影機鏡頭。 值叙j明之伽在於:改善先前技術在人㈣球下加裝減速或 傳動機構得做法,將配合低轉速、大扭力的微型機構與直流$伏 一⑽伺服機或微型 本發明將拋棄雜機器人臉部眼球、眼皮、眉毛. =對於減速齒輪機構驗賴,騎臉部表情變化的仿真效將^ 有突破性的進展。使得以往機器人臉部眼球、眼皮、^字弈、 前的仿生技術多過於複雜,設計製作成本過高,造成施$ 頭部過重,馬達驅動減速或傳動機構…等問題不再成少益 形機器人臉部仿生表情將更為逼真。 ’、'、擾,人 雖然本發明已以較佳實施例揭露如上,然Α 發明,任何熟悉此技藝者,在不脫離本發明之精二限定本 可作各種之更動與潤飾,因此,本發明之保護範圍,*二= 201233421 申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖 係顯示本發明人形機器人臉部及眼部結構之 不意圖。 第2圖 係顯示本發明人形機器人頭顱骨之示意圖。 第3圖 係顯示為本發明人形機器人頭顱骨結構及眼 部結構之示意圖。 第4圖 係顯示本發明人形機器人眼球機構之示意 圖。 第5圖 係顯示本發明人形機器人眼皮機構之示意圖 (單眼球獨立動作)。 第6圖 係顯示本發明人形機器人另一實施例之示意 圖。 【主要元件符號說明】 1 :臉部結構模組; 2 :眼球機構; 3 :眼皮機構; 4:眼窩結構; 5 : L型裂口; 201233421 6.瞳孔結構, 7:第一扭力輸入機件; 8:第二扭力輸入機件; 9:第一致動器; 10 :第二致動器; 11 :固定插銷; 12 :曲柄機構, 13 :撓性連桿; 14 :第三扭力輸入機件; 15 :可調整套筒; 16 :第三致動器; 17 :多孔圓盤; 20 :眼球機構; 21 :水平位移機構; 22 :垂直位移機構; 23 :第一致動器; 24 :第二致動器; 25 :瞳孔結構; 26 :延伸端; 27 :齒部; 201233421 28 :齒輪;以及 29 :突起部。201233421 VI. Description of the invention: [Technical field of invention] Humanoid machine, human face, emotion, imitation, technical field, especially application [prior technology] Smart machine is the first technology in the 21st century Industry, key technology and design, motor control, audio and video sensing technology, navigation _ technology, embedded micro-processing H-technology... material integration of electromechanical knowledge of the professional technology. In general, robots can be classified into two categories: production (four) and service. Smart robots are interdisciplinary and integrated industries with knowledge, capital and technology intensive. In the ever-changing modern technology of science and technology, intelligent robots with diverse expressions or movements have been created, and these wisdoms can be regarded as social entertainment or as entertainment products. In order to make the movement of intelligent robots closer to human behavior, or to add expressions that interact with people, it has always been the subject of robot research work. The technical development of the humanoid robot head can be classified into three fields: primary, intermediate and high-order. Most of the initial and intermediate-level head and neck technology development is mainly invested in technological innovation of basic emotional institutions and control. In addition to the interaction between facial emotions and the environment, it also emphasizes that fine-tuning can significantly affect the situational changes caused by robots. Bionic mechanism design, actuator control and interactive emotion simulation are regarded as the development of high-level key technologies. The successful experience of developing humanoid robots in Japan's AIST (Advanced Industrial Science and Technology) and Korea's KAIST (Korea Advanced Institute of Science and Technology) shows that the manufacturing process and control of micro-institutions are key factors. 8 4 201233421 The previous biomimetic techniques such as eyeballs, eyelids, eyebrows, etc. of intelligent robots are too complicated, and the design and production costs are too high, causing the humanoid robot head to be overweight, motor drive deceleration or transmission mechanism. However, there is no breakthrough in the simulation effect of facial expression changes, which makes the degree of bionics of these faces large and discounted, and can't be as realistic as human facial expressions. The prior art practice of adding a deceleration or transmission mechanism under the artificial eyeball will improve the micro-flow 5 volt microactuator with low speed and high torque. SUMMARY OF THE INVENTION An object of the present invention is to provide an eye mechanism system for applying facial emotion simulation of a humanoid robot. Utilizing the advantages of low power, low speed 'high torque, miniature light weight, etc., with advanced micro actuators (less than 5 volts remote control (Remote Control; RC) servo or ultrasonic motor) weighing less than 9 grams Simplify the complexity of the smart robot micro-mechanism to omit the transmission troubles of the reduction gear mechanism. This micro-actuator __ functions to vertically and horizontally move the eyeball and ==. When the DC 5 volt actuator rotates in the clockwise or counterclockwise direction, the torque of the actuator will be instantaneously transmitted to the boring center lever via the 5 week flexible link and the fixed bearing. The connecting rod and the sliding mechanism make the eyeball a flexible lion with vertical and horizontal angles, and the vertical and horizontal swing angles of the eyeball pupil can be set to plus or minus 55 to 75 degrees according to requirements. On the other hand, the eyelid mechanism is controlled by a different set of micro-actuators, and the vertical axis of the vertical axis is rotated by 5 volts or reversed, and the adjustable flexible link and the fixed bearing are used. The torque of the actuator will be set to a single 65 to 95 degrees according to the requirements of the peek force of the adjustable visceral mechanism through the adjustable angle or the opening of the eyelid. 201233421 The dynamic module of the 11-person eye mechanism of the humanoid machine has two groups: the subsystem of independent movement and control, including: 1. The eyeball 2D crank mechanism subsystem, using the bribe to provide the village tone (10) straight and oblique ==r angle, swing, ... mechanism subsystem:: with /σ ° week 1 flexible link and fixed bearing, can make the eyelid vertical angle = closed or open, and three, micro low-power actuation ( (4) , ribs ^ There is a power source for driving the dynamic module of the humanoid robot eye mechanism. To achieve the above objectives, the eye of the eye device is from the DC power supply pool, and the average voltage of the 4.5.6 volt (V) DC voltage supply is 2'. The control mode uses the 2.4GHZ radio control panel. Or use the 8051 single-chip control mode δπ» ° transmitted by the Ethemet signal with 20 rain-in points. [Embodiment] Although the date of this issue (10) contains the description of the implementation of the present day, However, before this bribe, you should understand that people familiar with the Bank can revise. Please refer to Figure 1 for a diagram showing the face and eye structure of the humanoid robot of the present invention. The figure includes a facial structure eyeball mechanism 2 and an eyelid mechanism 3. A i may be made of an adjustable simulated stone or rubber material and the eye 2 may have a pupil or the like. The eyelid mechanism 3 may have eyelashes. Liang Lu Ming see the 2 ® and 3 ® ' 2nd ugly show the humanoid robot head of the present invention 201233421 Huan: Ί For the humanoid machine of the invention, the head skull structure and the eye knot are not matched with the reference! Figure. The figure includes an eye knot mechanism 2, an eyelid mechanism, an eye socket structure 4, an L-shaped split 5, and a pupil structure 6 = outside the bone, and an L-shaped split 5 of the inf_ structure 4 can provide a control perforation structure of the eye mechanism 2 It mainly includes C3 photo Γ Π Π 图 ' ' 第 第 第 第 第 第 第 第 第 第 第 第 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本The figure includes an eyeball m=7, a second torque input member 8, a first actuator 9 and a second thief mechanism 2 including a pupil structure 6, and the eyeball 3 is fixed to the crank mechanism 12 The crank mechanism (4) is coupled to the first torque input "-torque input device 8, and the first torque input first actuator 9 and the second actuator 1" are coupled to each other. ▼ ocular mechanism 2 _ hole structure 6 has vertical =; vertical and two of the boring structure 6 of the ball mechanism 2;: = mechanism 7 and Ϊ ft first - actuation (5) and second actuator 1G to make the first torque input The rotation angle of a torque input member g is set to plus or minus %. The actuator 9 and the first actuator 1 〇 can be a DC 5 volt microactuator. η 请+, t阅第5 ^ ' shows a schematic diagram of the human eyelid mechanism of the humanoid robot of the present invention, and cooperates with the reference figure. The figure includes an eyelid mechanism 3, a third torque input member 14, a adjustable sleeve 15, and a third actuation. : 丨施财's flexible link 13 is connected to the eyelid mechanism 3 and the eyelashes, and the other end is pivotally connected to the edge of one side of the porous disk 17. And the eyelid mechanism The third torsion input member 14 of 201233421 3 is also coupled to the third torsion input member j", the other axis of the shaft, 16 after actuation, the first: torque is placed in the third actuator 16, when The third actuator, the Yule-torque wheeling member 14, drives the porous body, and the third actuator 16 elastically adjusts the third torque input member? 4== degrees. The inside of the sleeve 15 can be adjusted and has ^^ The torque output angle adjusts the telescopic length of the flexible connecting rod 13 to produce mi=)', which can be flexibly inserted into the machine part according to the need, so that one: two gamma 16 can provide the third torsion wheel I3 can be purchased _, tenderness The angle of the angle - A j swings, and the third torsion input member 允许 allows the rotation to swing downward. The third actuator 16 can be from the power of the clock (2) The power supplied by the DC power module '4.5_6 volts __ electricity 20 watts (w) is given to the first actuator 9, the second actuator 1 〇 and the moving 15 〗 6. The (4) mode uses 2.4 GHz wireless f The control panel or the 8 (6) single-chip control module (not shown) of the Ethernet transmission signal with /, 20 input and output points. Please refer to Figure 6 (both eyes __), Xianlin Ming humanoid robot face and eye. P mechanism 'and refer to the figure! Figure. The dynamic mode of the eyeball control texture in the figure contains ^ eye structure 20, horizontal bit frequency structure 2 vertical women's body 22, the first The camera 23 and the second actuator 24' have a pupil structure 25 and an extended end 26. The two ends of the horizontal displacement mechanism 21 are respectively pivotally connected to the extended end 26 of the two eyeballs 2 The surface of the horizontal displacement mechanism 21 has a tooth portion 27. The two ends of the vertical displacement mechanism 22 are pivotally connected to the two eyeball mechanisms 2, the first actuator 23 can be matched with the gear 28, and the gear 28 is coupled to the tooth portion 27. . The second actuator 24 is coupled to one of the projections 29 of the vertical displacement mechanism 22. Wherein, the first actuator 23 is actuated 201233421 to rotate the gear 28, and the tooth portion 27 combined with the gear 28 causes the horizontal displacement mechanism 21 to be displaced, so that the two eyeball mechanisms 2 can exhibit horizontal rotation, and the second Actuation of actuator 24 causes longitudinal displacement mechanism 22 to produce a longitudinal rotation that causes vertical movement of pupil structure 25 of eyeball mechanism 20. The first actuator 23 and the second actuator 24 may be DC 5 volt microactuators. The above-mentioned intelligent robot eye movement HHa power supply comes from (four) pool series DC power supply module, providing 4:5-6 volt (V) DC voltage power supply with an average of 2 () E (w) The first actuator 23 and the second actuator 24 are provided. The control method uses a 21. radio control module, which uses an Ethernet (Ethemet) signal transmission with 20 input and output points to control the single-chip control panel (not shown). Among them, the pupil structure 25 mainly includes a ccd camera lens. The value of the grammar lies in: improving the prior art to add deceleration or transmission mechanism under the human (four) ball, will cooperate with the low-speed, high-torque micro-mechanism and DC $ volt (10) servo or micro-the invention will abandon the miscellaneous robot Face eyeballs, eyelids, eyebrows. = For the reduction gear mechanism, the simulation effect of riding facial expression changes will have a breakthrough. In the past, the robot's facial eyeballs, eyelids, and the previous bionics were too complicated, and the cost of design and production was too high, causing problems such as excessive weight on the head, motor drive deceleration or transmission mechanism. The face bionic expression will be more realistic. The present invention has been described above with reference to the preferred embodiments of the present invention. However, any person skilled in the art can make various modifications and refinements without departing from the scope of the invention. The scope of protection of the invention, *2 = 201233421 The scope of the patent application shall prevail. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows the intention of the humanoid robot face and eye structure of the present invention. Fig. 2 is a schematic view showing the skull of the humanoid robot of the present invention. Fig. 3 is a schematic view showing the skull structure and the eye structure of the humanoid robot of the present invention. Fig. 4 is a schematic view showing the eyeball mechanism of the humanoid robot of the present invention. Fig. 5 is a schematic view showing the eyelid mechanism of the humanoid robot of the present invention (single eyeball independent action). Fig. 6 is a view showing another embodiment of the humanoid robot of the present invention. [Major component symbol description] 1 : Facial structure module; 2: Eyeball mechanism; 3: Eyelid mechanism; 4: Eye socket structure; 5: L-shaped slit; 201233421 6. Pupil structure, 7: First torque input mechanism; 8: second torque input mechanism; 9: first actuator; 10: second actuator; 11: fixed latch; 12: crank mechanism, 13: flexible link; 14: third torque input mechanism 15 : Adjustable sleeve; 16 : Third actuator; 17 : Porous disc; 20 : Eyeball mechanism; 21: Horizontal displacement mechanism; 22: Vertical displacement mechanism; 23: First actuator; Two actuators; 25: boring structure; 26: extended end; 27: toothed portion; 201233421 28: gear; and 29: protrusion.

Claims (1)

201233421 七、申請專利範圍: 卜-種人形機ϋ人眼賴構魏雜料統 具有可控舰部鶴之機構,包括: 且糸統 兩眼球機構,該眼球機構具有一瞳孔結構及一延伸端; 目_一禮3立移Γ構’該水平位移機構之兩端係分別與該兩 2機構之該延伸端樞接,且該水平位移機構之表面具有一 :垂纽雜構’該垂直娜機構之_樞接於該兩眼 球機構上; 部;以及 第-致動器,係具有-齒輪’且該齒輪結合於該齒 第一致動器,該第二致動器與該垂直位移機構之一突 起部連結; 其中,該第一致動器作動使該眼球機構呈現水平的轉 動,而該第二致動器作動使該眼球機構呈現垂直的移動。 2、如申請專利範圍第1項所述之人形機器人眼部機構之動態模 組系統,其中該第一致動器及該第二致動器係為直流微型致 動器’其被提供的4.5〜6伏(V)之直流電壓平均為20瓦(w), 其控制方式為2.4 GHz無線電控制模組或使用具有2〇個輸出 入點的乙太網路(Ethernet)訊號傳輸之8051單晶片控制模 組。 ' 13201233421 VII. Patent application scope: Bu-type humanoid machine ϋ human eye 赖 魏 魏 杂 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可The two ends of the horizontal displacement mechanism are respectively pivotally connected to the extended ends of the two 2 mechanisms, and the surface of the horizontal displacement mechanism has a: a vertical complex structure a mechanism pivotally coupled to the two eyeballs; a portion; and a first actuator having a gear and coupled to the tooth first actuator, the second actuator and the vertical displacement mechanism One of the protrusions is coupled; wherein the first actuator is actuated to cause the eyeball mechanism to perform a horizontal rotation, and the second actuator is actuated to cause the eyeball mechanism to exhibit a vertical movement. 2. The dynamic module system of the humanoid robot eye mechanism of claim 1, wherein the first actuator and the second actuator are DC microactuators' which are provided 4.5 The average DC voltage of ~6 volts (V) is 20 watts (w), which is controlled by a 2.4 GHz radio control module or an 8051 single chip using an Ethernet signal transmission with 2 input and output points. Control module. ' 13
TW101111045A 2009-03-18 2009-03-18 Dynamic module system of eyeball mechanism for a humanoid robot TW201233421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101111045A TW201233421A (en) 2009-03-18 2009-03-18 Dynamic module system of eyeball mechanism for a humanoid robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101111045A TW201233421A (en) 2009-03-18 2009-03-18 Dynamic module system of eyeball mechanism for a humanoid robot

Publications (1)

Publication Number Publication Date
TW201233421A true TW201233421A (en) 2012-08-16

Family

ID=47069915

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101111045A TW201233421A (en) 2009-03-18 2009-03-18 Dynamic module system of eyeball mechanism for a humanoid robot

Country Status (1)

Country Link
TW (1) TW201233421A (en)

Similar Documents

Publication Publication Date Title
Goris et al. Mechanical design of the huggable robot Probo
TWI421120B (en) Facial expression changeable robot head and method of manufacturing virtual face skin thereof
Bar-Cohen EAP as artificial muscles: progress and challenges
Weiguo et al. Development of the humanoid head portrait robot system with flexible face and expression
Trimmer et al. At the crossroads: Interdisciplinary paths to soft robots
KR101095928B1 (en) Lip driving device for robot
EP1509294B1 (en) Expressive feature mechanism for animated characters and devices
TWI383829B (en) Dynamic Module System of Human Body Robot Eye Mechanism
TW201233421A (en) Dynamic module system of eyeball mechanism for a humanoid robot
Hanson et al. Enhancement of EAP actuated facial expressions by designed chamber geometry in elastomers
Burns et al. The mechanical design of a humanoid robot with flexible skin sensor for use in psychiatric therapy
Lee et al. Development of therapeutic expression for a cat robot in the treatment of autism spectrum disorders
JP2005237522A (en) Robot
Oh et al. Automatic emotional expression of a face robot by using a reactive behavior decision model
Liu et al. Design, Analysis and experimental research of humanoid head robot
Qiu et al. Mechanical design and kinematic control of a humanoid robot face
Goris et al. The huggable robot Probo: design of the robotic head
Xie et al. Mechanical design and affective interaction of bionic robot head
Varalakshmi et al. Mems sensors controlled haptic forefinger robotic aid
Bar-Cohen EAP actuators for biomimetic technologies with humanlike robots as one of the ultimate challenges
Escribà Montagut Inmoov robot: building of the first open source 3D printed life-size robot
Chavdarov et al. Integration of artificial hand with kinect sensor for gesture imitation
Yousuf et al. Animatronics and emotional face displays of robots
Adăscăliţei et al. Expressing emotions in social robotics-a schematic overview concerning the mechatronics aspects and design concepts
Shafiq et al. Morphology and Chemical Termination of HF-Etched Si₃N₄ Surfaces