TW201232216A - Dynamic control parameter adjustment in a power supply - Google Patents

Dynamic control parameter adjustment in a power supply Download PDF

Info

Publication number
TW201232216A
TW201232216A TW100133785A TW100133785A TW201232216A TW 201232216 A TW201232216 A TW 201232216A TW 100133785 A TW100133785 A TW 100133785A TW 100133785 A TW100133785 A TW 100133785A TW 201232216 A TW201232216 A TW 201232216A
Authority
TW
Taiwan
Prior art keywords
output voltage
power supply
voltage
output
compensation
Prior art date
Application number
TW100133785A
Other languages
Chinese (zh)
Other versions
TWI475348B (en
Inventor
Robert T Carroll
Venkat Sreenivas
Original Assignee
Int Rectifier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/027,062 external-priority patent/US8629666B2/en
Application filed by Int Rectifier Corp filed Critical Int Rectifier Corp
Publication of TW201232216A publication Critical patent/TW201232216A/en
Application granted granted Critical
Publication of TWI475348B publication Critical patent/TWI475348B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A power supply controller produces a compensation value based at least in part on: an estimated or known output capacitance of the power supply, a specified rate of changing a magnitude of the output voltage as specified by the voltage setting information, and/or a load-line resistance of the power supply. The power supply controller utilizes the compensation value to adjust a magnitude of the output voltage during a voltage transition in which the output voltage is changed from an initial output voltage setting to a target output voltage setting at a pre-specified rate.

Description

201232216 六、發明說明: 【發明所屬之技術領域】 本發明係關於電源供應器中之動態控制參數調整。 【先前技術】 習知電源供應器可設置需與外部負載線電阻電路搭配 之類比電流偵測電路。控制器可依據類比電流偵測電路與 外部負載線電阻來計算負載線調整電壓。可將電源供應器 之固定參考電壓減去此負載線調整電壓來產生最終參考電 壓,藉以調整電源供應器之輸出電壓。 若使用如上所揭露之負載線電壓調整方式,當電源供 應器之輸出電流相當高時,負載線電壓調整値將相當大, 而造成輸出電壓之大小將以相當大的幅度遞減。相對地, 當電源供應器之輸出電流相當低時,負載線電壓調整値將 相當小,而造成輸出電壓之大小將以相當小的幅度遞減。 因此,藉由所謂的可調整電壓定位裝置,電源供應器之輸 出電壓値將可隨著輸出電壓是否供應大量或小量之電流至 不同負載而變動。使用這種AVP調整方式,將可有助於 降低大容量輸出電容器與(或)濾波器之需求。 習知電源供應器系統亦可設計爲依據所接收之電壓設 定資訊來產生輸出電壓。例如,電源供應器可自處理器之 電源端接收所謂之VID (電壓識別,Voltage Identifier ) 値,此處理器係由輸出電壓所驅動。一般來說,VID係指 定將由電源供應器產生而被用來驅動處理器負載之輸出電 -5- 201232216 壓値。因此,處理器之電源端可提供將由電源供應器產生 而用以驅動此處理器之輸出電壓之設定値。 術常有許多缺點。例如,習 電壓値,接著,如上所述, 由一設定値變動至其他設定 VID資訊將輸出電壓設定轉 源供應器在電壓轉換期間, 器之輸出電容器之影響,來 因此,習知電源供應器之輸 應至負載之實際輸出電壓。 生之輸出電壓値達到一第一 應器在時間τ 1與T2之間以 電源供應器可在時間T1與 ,然而,習知電源供應器在 充電或放電之輸出電容。因 地產生所欲之輸出電壓。 VID値之大小可隨著時間 源端將依據第一 VID設定値請 。之後,由於操作條件變動, 調整輸出電壓至新VID設定値 作條件變化時,此處理器可在 出電壓之通知訊息。 【發明內容】 如上所揭露之習知應用技 知電源供應器係首先改變參考 利用此參考電壓値將輸出電壓 値。然而,在藉由利用接收之 換至其他設定的期間,習知電 不考慮充電或放電該電源供應 控制電源供應器之輸出電壓。 出電壓之時序將落後將要被供 換言之,假設電源供應器可產 値。處理器負載可請求電源供 特定斜率增加輸出電壓。習知 T2之間開始改變輸出電壓値 電壓轉換期間,並不考慮需被 此,習知電源供應器無法精確 而變化,例如,處理器之電 求電源供應器產生輸出電壓 此處理器可請求電源供應器 。因此,當電源供應器之操 不同條件下提供如何設定輸 -6 - 201232216 本專利之實施例將有別於習知之應用技術。例如,本 專利之實施例係主要提出一種或多種獨特方法以調整在電 源供應器中之控制信號,藉此,當電源供應器被請求其輸 出電壓由一電壓値轉換至另一電壓値之電壓轉換時,將估 算需被充電與(或)放電之輸出電容器。 更具體地,本專利之實施例係包括控制器,係可被規 劃用以控制電源供應器之輸出電壓來驅動負載。此控制器 可接收用以指定如何控制電源供應器之輸出電壓來驅動負 載之輸出電壓設定資訊。在一實施例中,此負載之電源端 可指定並通知此控制器之該輸出電壓設定資訊。在一實施 例中,輸出電壓設定資訊係指定於何時去達成一個或更多 輸出電壓設定値。此輸出電壓設定資訊更可指定電源供應 器之輸出電壓由一電壓設定値變動至另一電壓設定値之特 定比率。 在本專利之實施例範例中,爲了考慮輸出電壓在輸出 電容器上變動之影響,此控制器將產.生補償値。在一實施 例中,此補償値係至少部份基於電源供應器之輸出電容値 與變動由電壓設定資訊所指定之輸出電壓値之特定比率。 在電壓轉換期間,此控制器係利用該補償値來調整輸出電 壓大小。如上所揭露,因爲當輸出電壓値變動時,控制器 考慮需被充電與(或)放電之電源供應器之輸出電容器, 因此,電源供應器將可更精確地產生驅動負載所需之輸出 電壓値。 更依據具體之實施例,控制器可接收指定初始輸出電 201232216 壓設定値與目標輸出電壓設定値之輸出電壓設定資訊。控 制器亦可在輸出電壓轉換期間,接收表示電源供應器之輸 出電壓由初始電壓設定値變動至目標輸出電壓設定値之特 定比率之電壓斜率値。在更進一步之實施例中,輸出電壓 設定資訊係可依據不同輸出電壓設定値指定何時產生輸出 電壓之時序與(或)時間。 如前述所揭露,控制器係至少部分基於電源供應器之 輸出電容値及由電壓設定資訊所指定之輸出電壓値變動之 特定比率來產生補償値。在更多具體之實施例中,此控制 器係將電源供應器之輸出電容値乘以變動輸出電壓之特定 比率,來產生突升電流値。此突升電流値可爲正値或負値 。當在輸出電壓由初始輸出電壓設定値轉變爲目標輸出電 壓設定値時之電壓轉換時,此突升電流値係爲因輸出電容 器上其輸出電壓變動之電流量。 此控制器亦可被設置用來取得或檢索電源供應器之負 載線電阻値。應注意的.是,表示輸出電容値與負載線電阻 値的値可被儲存爲電源供應器組態資訊,其可由控制器存 取以產生如前述所揭露之計算値。 在一實施例中,此控制器係將計算之突波電流値乘以 負載線電阻値以產生補償値。例如,在一實施例中,控制 器係依據下式產生補償値VC0MP :201232216 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to dynamic control parameter adjustment in a power supply. [Prior Art] A conventional power supply can be set with an analog current detecting circuit that is matched with an external load line resistance circuit. The controller can calculate the load line regulation voltage based on the analog current detection circuit and the external load line resistance. The final reference voltage can be generated by subtracting this load line regulation voltage from the fixed reference voltage of the power supply to adjust the output voltage of the power supply. If the load line voltage adjustment method as disclosed above is used, when the output current of the power supply is relatively high, the load line voltage adjustment 値 will be quite large, and the magnitude of the output voltage will be decremented by a considerable amount. In contrast, when the output current of the power supply is relatively low, the load line voltage adjustment 値 will be relatively small, and the magnitude of the output voltage will decrease by a relatively small amount. Therefore, with the so-called adjustable voltage positioning device, the output voltage 电源 of the power supply can vary depending on whether the output voltage supplies a large or small amount of current to different loads. Using this AVP adjustment will help reduce the need for large output capacitors and/or filters. The conventional power supply system can also be designed to generate an output voltage based on the received voltage setting information. For example, the power supply can receive a so-called VID (Voltage Identifier) from the power supply of the processor, which is driven by the output voltage. In general, the VID specifies the output that will be generated by the power supply and used to drive the processor load. Therefore, the power supply terminal of the processor can provide a setting that will be generated by the power supply to drive the output voltage of the processor. There are often many disadvantages. For example, the voltage 値, then, as described above, the change from one setting 其他 to the other setting VID information sets the output voltage to the influence of the output capacitor of the converter during the voltage conversion, so that the conventional power supply The input is to the actual output voltage of the load. The raw output voltage 値 reaches a first capacitor between time τ 1 and T2 to the power supply available at time T1, however, the conventional power supply is charged or discharged at the output capacitance. The desired output voltage is generated due to the ground. The size of the VID値 can be set with the time according to the first VID. After that, the processor can issue a notification message of the voltage when the output voltage is adjusted to the new VID setting due to a change in operating conditions. SUMMARY OF THE INVENTION As is known in the art, the power supply system first changes the reference to use the reference voltage 値 to output the voltage 値. However, conventional power does not consider charging or discharging the power supply to control the output voltage of the power supply during the period of switching to other settings. The timing of the output voltage will fall behind and will be supplied. In other words, the power supply can be produced. The processor load can request a power supply for a specific slope to increase the output voltage. It is not known that the power supply cannot change accurately during the conversion of the output voltage between the conventional T2. For example, the power supply of the processor generates an output voltage, and the processor can request the power supply. Supply. Therefore, how to set the output when the power supply is operated under different conditions -6 - 201232216 The embodiment of this patent will be different from the conventional application technology. For example, embodiments of the present patent primarily propose one or more unique methods to adjust the control signal in the power supply whereby the power supply is requested to convert its output voltage from one voltage to another. At the time of conversion, the output capacitors that need to be charged and/or discharged are estimated. More specifically, embodiments of the present patent include a controller that can be programmed to control the output voltage of the power supply to drive the load. The controller can receive output voltage setting information that specifies how to control the output voltage of the power supply to drive the load. In an embodiment, the power supply terminal of the load can specify and notify the controller of the output voltage setting information. In one embodiment, the output voltage setting information is specified when to achieve one or more output voltage settings. This output voltage setting information can also specify a specific ratio of the output voltage of the power supply from one voltage setting to another voltage setting. In the example of the embodiment of the present patent, in order to consider the influence of variations in the output voltage on the output capacitor, the controller will generate a compensation 値. In one embodiment, the compensation is based at least in part on a particular ratio of the output capacitance 値 of the power supply to the output voltage 变动 specified by the voltage setting information. During voltage conversion, the controller uses this compensation 値 to adjust the output voltage. As disclosed above, since the controller considers the output capacitor of the power supply to be charged and/or discharged when the output voltage 値 fluctuates, the power supply will more accurately generate the output voltage required to drive the load. . Further, according to a specific embodiment, the controller can receive output voltage setting information specifying the initial output power 201232216 voltage setting 値 and the target output voltage setting 値. The controller may also receive a voltage slope 表示 indicating a specific ratio of the output voltage of the power supply from the initial voltage setting to the target output voltage setting 値 during the output voltage transition. In still further embodiments, the output voltage setting information can be set according to different output voltages to specify when and/or when the output voltage is generated. As disclosed above, the controller generates compensation 至少 based at least in part on the output capacitance of the power supply and the particular ratio of output voltage 値 variations specified by the voltage setting information. In more specific embodiments, the controller multiplies the output capacitance of the power supply by a specific ratio of the varying output voltage to produce a surge current 値. This sudden current 値 can be positive or negative. When the output voltage is converted from the initial output voltage setting to the target output voltage setting, the sudden current is the amount of current that varies due to the output voltage of the output capacitor. This controller can also be set to retrieve or retrieve the load line resistance of the power supply. It should be noted that the 表示 indicating the output capacitance 値 and the load line resistance 値 can be stored as power supply configuration information, which can be accessed by the controller to produce the calculations as disclosed above. In one embodiment, the controller multiplies the calculated surge current 値 by the load line resistance 値 to produce a compensation 値. For example, in one embodiment, the controller generates compensation 値VC0MP according to the following equation:

Vc〇MP = RlL * C〇UT * VSL0PE 其中,V C 0 Μ P =補償値;Vc〇MP = RlL * C〇UT * VSL0PE where V C 0 Μ P = compensation 値;

Rll =與電源供應器相關之負載線電阻; -8 - 201232216 C〇ut =電源供應器之輸出電容値; ν^οι>Ε=由初始輸出電壓設定値變動至目標電壓 設定値所依循之預定比率。 依據一實施例,控器器係將補償値應用至如電源供應 器之VID的設定點値,以產生已調整之設定點値。此設定 點値或電壓參考値可與輸出電壓之現有値比較以產生用以 控制電源供應器之誤差電壓。 在進一步之實施例中,控制器將在電壓轉換期間,利 用此補償値VC0MP調整電源供應器其輸出電壓。例如,在 電壓由VID値變動至其他値之電壓轉換期間,控制器將依 據已調整之VID値或設定點値來控制電源供應器之開關, 以估算對電源供應器之輸出電容器充電或放電所需之突升 電流。 在一實施例中,此控制器可被設置用以加總補償値與 控制參數(例如,電源供應器之誤差電壓)之和,以產生 已調整誤差電壓。因此,控制器係依據估算VC0MP之已調 整誤差電壓,來控制電源供應器之至少一電力轉換器相中 一組或多組開關之狀態。更具體地,當輸出電壓變動至由 輸出電壓設定資訊所指定之目標値以進行電壓轉換時,控 制器係利用此補償値調整由控制器所產生之控制信號。當 在輸出電壓變動至目標値之電壓轉換時,控制器係將已調 整控制信號施加至電源供應器之至少一切換電路中,以調 整電源供應器之輸出電壓。 此些與其他更多具體實施例將詳細揭露如下。 -9 - 201232216 由此可知,如本文所揭露之系統、方法、裝置等等將 可被完全地設置爲硬體、軟體與硬體之結合、或單獨用於 如處理器、操作系統或軟體應用設備中之軟體。本專利之 範例實施例將可被實施在如由 CHiL Semiconductor of Tewksbury, Massachusetts, USA公司所發展與製造之產品 與(或)軟體應用設備。 如本文所揭露,本專利之技術將可完全地適用於如交 換式電源供應器、電壓調整器、低電壓處理器、降壓型電 力轉換器、升壓型電壓調整器、升降壓電壓調整器等等應 用之中。然而,需注意本實施例之使用範圍並不限於此, 如前述之應用與如上揭露之技術亦可完全適用於其他應用 之中。 再者,注意雖然每一種相異的特性、技術與結構等, 將在本文所揭露之技術中以不同之方式表達,意即,每一 種槪念可選擇性地以彼此獨立或相互結合之方式被執行, 因此’本發明所揭露之一或更多技術可在多種相異方式中 被具體實施與檢視。 且,本實施例之初步討論係有目的地不去指定每一實 施例並(或)增加本文揭露或申請專利範圍之內容。取而 代之地’本發明內容僅提出一般實施例與習知技術上相關 之論點’對於本專利更詳細與(或)可能之觀點(或組合 )’讀者需著重於後續將討論之詳細說明段落與其相對應 本專利揭露之圖示。 -10- 201232216 【實施方式】 本實施例將包括在輸出電壓轉換時執行負 償之一種獨特且可節省成本之技術。 例如,在一實施例中,一種電源供應控制 輸出電壓設定資訊所指定之設定値來控制用以 輸出電壓。該輸出電壓設定資訊係指定例如應 出電壓設定値以及電源供應器之輸出電壓由一 變動至另一設定値之特定比率之資訊等等。 在一實施例中,電源供應控制器包括用以 線電壓補償値之電路,係至少部份基於:電源 估算或已知之輸出電容値、由電壓設定資訊所 電壓値變動之特定比率、以及(或)電源供應 電阻。電源供應器控制器係至少在進行電壓轉 補償値來調校輸出電壓,以使輸出電壓可在一 由一初始設定値變動至一目標設定値。 如上所述,由於在輸出電壓變動時,將考 器其需被充電及(或)放電之輸出電容來產生 電壓,因此,由電源供應器所產生並供應以驅 出電壓將可更精準。因此,如本文揭露之控制 應器將可更精確地供應輸出電壓以驅動不同之j 圖1係依據本實施例之電源供應器1 00電S 如圖1所示,該電源供應器10 0包括控制 制器1 40係控制複數驅動器1 1 0,以產生供應: 電源所需之輸出電壓190。驅動器110係用. 載線電阻補 器係接收由 驅動負載之 何時實施輸 電壓設定値 產生一負載 供應器之已 指定之輸出 器之負載線 換時,利用 預定比率下 量電源供應 負載線補償 動負載之輸 器與電源供 隨載。 各圖。 器140 。控 負載1 1 8之 以控制開關 -11 - 201232216 150及160各別之狀態。控制器140係接收 數之輸入121,控制器140可監控如Vin、I 參數以及如Rload-mne、C0UT等等之組態資ί 依據接收之輸入1 2 1及控制器1 40之組 制器140將透過控制信號產生器182產生不 ,此些控制信號將被輸出至驅動器1 1 〇以 150 及 160° 例如,控制器1 40輸出控制信號(由控 1 8 2所產生)來切換控制開關1 5 0 (例如, 關)及同步開關160 (例如,位於低側之 ON與OFF。適當地將控制開關150及同步 爲ON與OFF將可產生用以驅動負載1 1 8之 。依據控制器1 40所產生之控制信號,在電 中驅動器110-1將控制控制開關150之狀 1 10-2將控制同步開關160之狀態。 此外,需注意驅動器電路1 1 〇 (例如 1 10-1及驅動器電路1 10-2 )可設置在如控制 在與控制器1 40相關之終端等任何適當的位1 當控制開關1 50受到控制器140所產生 被切換爲ON (例如,被致能,此時同步開I 爲OFF)時,控制開關150將在電源120與 源側之間提供高度導電性之路徑,依據此高 徑,將使通過電感器1 44電源側之電流增加 在切換模式中,當同步開關160藉由控 如電源供應參 :L1、Vout 等等 訊。 態設定値,控 同之控制信號 分別控制開關 制信號產生器 位於高側之開 開關)分別爲 開關160切換 :輸出電壓190 源供應器100 態,且驅動器 ,驅動器電路 器140中,或 置。 之控制信號而 I 160之狀態 電感器1 44電 度導電性之路 〇 制器100所產 -12- 201232216 生之控制信號(此時控制開關1 50之狀態爲OFF )被切換 爲ON (例如,被致能)時,同步開關160將在電感器 1 44電源側與圖示之接地端之間提供高度導電性之路徑’ 依據此高度導電性之路徑,將使通過電感器144電源側之 電流減少。 控制器140係依據控制開關150與同步開關160在連 續或非連續之切換模式,來調節輸出電壓1 9 0以使其落在 驅動負載1 1 8之需求範圍內。有關控制器可實施一項或更 多之負載線電壓校正技術,將在本說明書中稍後討論。 在一實施例中,電源供應器1 00包括複數相位電路, 每一複數相位可操作之方式將類似於圖1中範例相位電路 ,在此實施例中,控制器1 00將操作相位電路以將輸出電 壓190保持在驅動負載118需求之範圍內。此些複數相位 電路可被獨立操作,相互間不受影響。 每一相位電路可包括如前述圖1之相位電路中相異之 高側開關電路以及低側開關電路,爲使相異之相位電路不 被致能’相位電路控制器1 40可將相位電路中相異之高側 開關電路與低側開關電路均設定爲OFF狀態,當相異之相 位電路爲OFF或不被致能,將不會產生用以驅動負載U8 之電流。 控制器1 40可依據負載n 8所消耗之電流量來選擇有 多少相位電路要被致能。例如,當負載1 1 8消耗相當大的 電流量’控制器1 00將致能複數之相位電路以驅動負載 1 1 8。當負載1 1 8消耗相當小的電流量時,則控制器1 4〇 -13- 201232216 致能單一相位電路或較少之相位電路以驅動負載118。 在眾多不同可用以偵測負載1 1 8所消耗之電流量與輸 出電容器125之輸出電容値C〇ut等等之方法中任何一種 ,例如,以估算或實際量測等等,均可適用於本實施例。 控制器140係由任一適當來源端接收輸出電壓設定資 訊1 70,例如,可偵知負載1 1 8之電功率或電流消耗需求 之處理器。換言之,如處理器之元件可回授在時段內將由 負載118消耗之電流量。 在一實施例中,前述之來源端係可經由前述之負載( 或其他來源端)與控制器140間之通訊鏈結而將輸出電壓 設定資訊1 70指定並通知控制器1 40。在一實施例中,輸 出電壓設定資訊170可指定例如何時實施不同之輸出電壓 設定値、電源供應器之輸出電壓由一電壓設定値變動至其 他設定値之預定比率、在不同時段中需被消耗之電流量、 輸出電壓初始値以及輸出電壓目標値等等之參數。 在更進一步之實施例中,控制器140係包括補償値產 生器1 45。在一實施例中,補償値產生器M5係至少部分 基於之電源供應器之輸出電容器125之電容値以及由該電 壓設定資訊170所指定之輸出電壓190變動之預定比率, 來產生一補償値。 在每一單次或更多之電壓轉換時,控制器140接著透 過控制信號產生器1 82,利用已產生之補償値來調校輸出 電壓1 90。如此所述,由電源供應器1 〇〇所產生且被供應 以驅動負載之輸出電壓1 90較習知技術更爲精確,其係由 -14- 201232216 於,透過由補償値產生器1 45所產生之補償値,當 實行變動輸出電壓190之値時,控制器140之控制 生器182考慮到電源供應器100之輸出電容器125 充電及(或)放電6 圖2係爲依據本實施例之控制器及補償値產生 細電路圖。 如前述,控制器1 40係接收指定如何在時段中 源供應器1〇〇之輸出電壓190之輸出電壓設定資訊 在此範例中,假設輸出電壓設定資訊170指定 出電壓設定値與目標輸出電壓設定値。如前述,自 源端接收之電壓設定資訊170可包括表示在輸出電 期間,電源供應器1 〇〇之輸出電壓1 90由一初始輸 設定値變動至一目標輸出電壓設定値之所欲比率之 率資訊。 由控制器140所接收之輸出電壓設定資訊170 電源供應器應於何時產生特定輸出電壓値之時序及 時間。 如前述,控制器140包括補償値產生器145, 少部份基於電源供應器〗〇〇之輸出電容以及由電壓 訊1 70所指定之變動輸出電壓1 90之値之所欲比率 補償値VC0MP。 更具體地,在一實施例中,透過補償値產生器 控制器140將與電容器125相關聯之輸出電容値乘 出電壓設定資訊170所指定之變動輸出電壓之所欲 控制器 信號產 必需被 器之詳 控制電 170。 初始輸 遠端來 壓轉換 出電壓 電壓斜 亦指定 (或) 用以至 設定資 來產生 145, 以由輸 比率, -15- 201232216 以產生突升電流値。此突升電流値表示在輸出電壓190之 値由初始輸出電壓設定値變動至特定之目標輸出電壓設定 値之轉換期間,輸出電壓190在輸出電容器125上變動所 估算之電流量。 在特定實施例中,控制器1 40係取得或檢索電源供應 器1 〇〇之負載線電阻値以計算補償値。 此外,需注意輸出電容値(例如,C0UT )與負載線電 阻値(例如,RL0AD.LINE )可被儲存爲可由控制器140存 取之電源供應組態資訊,以產生如此所述之計算。 在一實施例中,控制器1 40係將突升電流値乘以負載 線電阻値以產生補償値。 例如,算數操作器函數214(例如,乘法器)接收 尺1-1^、0)〇1_|1'、'^5.1_〇?£並產生補償値乂(:〇1^,如下列:Rll = load line resistance associated with the power supply; -8 - 201232216 C〇ut = output capacitance of the power supply 値; ν^οι>Ε=predetermined by the initial output voltage setting 値 change to the target voltage setting ratio. According to an embodiment, the controller applies a compensation 至 to a set point V of the VID, such as a power supply, to produce an adjusted set point 値. This set point or voltage reference 値 can be compared to the existing 输出 of the output voltage to generate an error voltage to control the power supply. In a further embodiment, the controller will adjust the output voltage of the power supply using this compensation 値VC0MP during voltage conversion. For example, during a voltage transition from VID値 to other voltages, the controller will control the power supply's switch based on the adjusted VID値 or setpoint , to estimate the charging or discharging of the output capacitor of the power supply. Sudden current needs. In one embodiment, the controller can be configured to sum the sum of the compensation 値 and control parameters (e.g., the error voltage of the power supply) to produce the adjusted error voltage. Therefore, the controller controls the state of one or more sets of switches in at least one power converter phase of the power supply based on estimating the adjusted error voltage of the VC0MP. More specifically, when the output voltage fluctuates to the target specified by the output voltage setting information for voltage conversion, the controller uses this compensation 値 to adjust the control signal generated by the controller. When the output voltage fluctuates to the target voltage, the controller applies the adjusted control signal to at least one of the switching circuits of the power supply to adjust the output voltage of the power supply. These and other more specific embodiments will be disclosed in detail as follows. -9 - 201232216 It will thus be appreciated that the systems, methods, apparatus, etc., as disclosed herein, can be fully configured as hardware, a combination of software and hardware, or used alone as a processor, operating system, or software application. Software in the device. Exemplary embodiments of the patent will be implemented in products and/or software applications as developed and manufactured by CHiL Semiconductor of Tewksbury, Massachusetts, USA. As disclosed herein, the technology of this patent will be fully applicable to, for example, switched power supplies, voltage regulators, low voltage processors, step-down power converters, step-up voltage regulators, buck-boost voltage regulators. And so on. However, it should be noted that the scope of use of the present embodiment is not limited thereto, and the above-described applications and the above-disclosed technologies are also fully applicable to other applications. Furthermore, it is noted that although each distinct feature, technique, structure, etc., will be expressed in a different manner in the techniques disclosed herein, that is, each complication can be selectively independent or in a mutually It is implemented that one or more of the techniques disclosed herein may be embodied and viewed in a variety of different ways. Further, the preliminary discussion of the present embodiments is intended to not specifically specify each embodiment and/or increase the scope of the disclosure or patent application. Instead, the present disclosure merely sets forth the general embodiments relating to the prior art. 'For more detailed and/or possible views (or combinations) of this patent', the reader should focus on the detailed paragraphs that will be discussed later. Corresponding to the illustrations disclosed in this patent. -10- 201232216 [Embodiment] This embodiment will include a unique and cost effective technique for performing compensation at the time of output voltage conversion. For example, in one embodiment, a power supply control outputs a setting specified by the output voltage setting information to control the output voltage. The output voltage setting information specifies, for example, an output voltage setting 値 and information on a specific ratio of the output voltage of the power supply from one change to another setting, and the like. In one embodiment, the power supply controller includes circuitry for line voltage compensation, based at least in part on: power supply estimates or known output capacitances, specific ratios of voltage fluctuations from voltage setting information, and/or ) Power supply resistance. The power supply controller adjusts the output voltage at least after voltage-compensation, so that the output voltage can be varied from an initial setting to a target setting. As described above, since the output voltage of the test device is charged and/or discharged to generate a voltage when the output voltage fluctuates, the voltage generated by the power supply and supplied to drive the voltage can be more accurate. Therefore, the control device as disclosed herein will supply the output voltage more accurately to drive the different j. FIG. 1 is a power supply 100 according to the present embodiment. As shown in FIG. 1, the power supply 10 includes The controller 1 40 controls the complex driver 110 to generate a supply: the output voltage 190 required for the power supply. The driver 110 is configured to receive the load line of the specified output device that generates the load supplier when the drive load is implemented, and uses a predetermined ratio to supply the load line to compensate the load line. The load of the load and the power supply are available for loading. Each figure. 140. Control the load 1 1 8 to control the state of the switch -11 - 201232216 150 and 160. The controller 140 receives the input 121 of the number, and the controller 140 can monitor the configuration parameters such as Vin, I parameters, and Rload-mne, C0UT, etc. according to the received input 1 2 1 and the controller 1 40 140 will generate a signal through the control signal generator 182. The control signals will be output to the driver 1 1 〇 at 150 and 160°. For example, the controller 1 40 outputs a control signal (generated by the control 1 8 2) to switch the control switch. 1 5 0 (eg, off) and synchronous switch 160 (eg, ON and OFF on the low side. Properly turning control switch 150 and sync ON and OFF will generate drive 1 1 8 . The control signal generated by 1 40, in the electric drive 110-1 will control the state of the control switch 150 1 10-2 will control the state of the synchronous switch 160. In addition, attention should be paid to the driver circuit 1 1 〇 (for example, 1 10-1 and The driver circuit 1 10-2 ) can be placed in any suitable bit 1 as controlled by the terminal associated with the controller 1 40. When the control switch 150 is generated by the controller 140 is switched ON (eg, enabled, this When the timing synchronization I is OFF), the control switch 150 will be at the power source 120. Providing a highly conductive path between the source side and the source side, according to the high path, the current through the power supply side of the inductor 144 is increased in the switching mode, and when the synchronous switch 160 is controlled by the power supply, the L1, Vout, etc. The state setting 値, the control signal is controlled to control the switch signal generator on the high side open switch respectively) switch 160 switch: output voltage 190 source supply 100 state, and driver, driver circuit 140, Or set. The control signal and I 160 state of the inductor 1 44 electrical conductivity of the circuit controller 100 produced -12- 201232216 raw control signal (when the state of the control switch 150 is OFF) is switched to ON (for example) When enabled, the synchronous switch 160 will provide a highly conductive path between the power supply side of the inductor 1 44 and the illustrated ground terminal. According to this highly conductive path, the power supply side of the inductor 144 will be passed. The current is reduced. The controller 140 adjusts the output voltage 1 9000 according to the switching mode of the control switch 150 and the synchronous switch 160 in a continuous or discontinuous switching mode so as to fall within the required range of the driving load 1 18 . The controller can implement one or more load line voltage correction techniques, which will be discussed later in this specification. In one embodiment, the power supply 100 includes a complex phase circuit, each of which is operable in a manner similar to the example phase circuit of FIG. 1. In this embodiment, the controller 100 will operate the phase circuit to The output voltage 190 remains within the range required to drive the load 118. These complex phase circuits can be operated independently without being affected by each other. Each phase circuit may include a different high side switching circuit and a low side switching circuit in the phase circuit of FIG. 1 as described above, in order to disable the phase circuit of the different phase circuit controller 1 40 in the phase circuit The high-side switch circuit and the low-side switch circuit are set to the OFF state. When the phase circuit is OFF or not enabled, the current used to drive the load U8 will not be generated. Controller 1 40 can select how many phase circuits are to be enabled based on the amount of current consumed by load n8. For example, when load 1 18 consumes a significant amount of current, controller 100 will enable a complex phase circuit to drive load 1 1 8 . When the load 1 18 consumes a relatively small amount of current, the controller 1 4 - 13 - 201232216 enables a single phase circuit or fewer phase circuits to drive the load 118. Any of a variety of methods that can be used to detect the amount of current consumed by the load 1 18 and the output capacitance of the output capacitor 125 値C〇ut, etc., for example, by estimation or actual measurement, etc., can be applied to This embodiment. The controller 140 receives the output voltage setting information 170 from any suitable source, for example, a processor that can detect the electrical power or current consumption requirements of the load 118. In other words, an element such as a processor can feedback the amount of current that would be consumed by the load 118 during the time period. In one embodiment, the source terminal can specify the output voltage setting information 1 70 and notify the controller 140 via the aforementioned communication link between the load (or other source) and the controller 140. In an embodiment, the output voltage setting information 170 may specify, for example, when different output voltage settings are implemented, the output voltage of the power supply is changed from a voltage setting to a predetermined ratio of other settings, and is consumed in different time periods. The amount of current, the initial value of the output voltage, and the output voltage target 値 and so on. In still further embodiments, the controller 140 includes a compensation 値 generator 145. In one embodiment, the compensation 値 generator M5 generates a compensation 至少 based at least in part on the capacitance 値 of the output capacitor 125 of the power supply and the predetermined ratio of the output voltage 190 specified by the voltage setting information 170. At each single or more voltage transitions, controller 140 then passes control signal generator 182 to modulate output voltage 1 90 using the generated compensation 値. As described above, the output voltage 1 90 generated by the power supply 1 且 and supplied to drive the load is more accurate than the prior art, which is performed by -14-20122216 through the compensation 値 generator 145 The resulting compensation 値, when the varying output voltage 190 is implemented, the control 182 of the controller 140 takes into account the charging and/or discharging of the output capacitor 125 of the power supply 100. FIG. 2 is the control according to the embodiment. And the compensation 値 produces a fine circuit diagram. As described above, the controller 140 receives the output voltage setting information specifying how the output voltage 190 of the source supplier 1 is in the period. In this example, it is assumed that the output voltage setting information 170 specifies the voltage setting 値 and the target output voltage setting. value. As described above, the voltage setting information 170 received from the source terminal may include a ratio indicating that the output voltage 1 90 of the power supply 1 値 is changed from an initial input setting to a target output voltage setting during output power. Rate information. The output voltage setting information received by the controller 140 sets the timing and timing of when the power supply should generate a particular output voltage. As previously described, the controller 140 includes a compensation 値 generator 145 that is based in part on the desired ratio of the output capacitance of the power supply 以及 and the varying output voltage 1 90 specified by the voltage SNR 値 VC0MP. More specifically, in one embodiment, the output capacitor 相关 associated with the capacitor 125 is passed through the compensation 値 generator controller 140 by the desired controller signal generator of the variable output voltage specified by the voltage setting information 170. The detailed control power 170. Initial input remote voltage conversion voltage voltage ramp is also specified (or) to set the capital to generate 145, by the ratio, -15- 201232216 to generate sudden current 値. This surge current 値 represents the amount of current that the output voltage 190 varies over the output capacitor 125 during the transition from the initial output voltage setting to the particular target output voltage setting 输出 after the output voltage 190. In a particular embodiment, controller 140 retrieves or retrieves load line resistance 电源 of power supply 1 値 to calculate compensation 値. In addition, it is noted that the output capacitance 値 (e.g., COUT) and the load line resistance 値 (e.g., RL0AD.LINE) can be stored as power supply configuration information that can be accessed by controller 140 to produce the calculations so described. In one embodiment, controller 140 multiplies the surge current 値 by the load line resistance 値 to produce a compensation 値. For example, the arithmetic operator function 214 (e.g., multiplier) receives the ruler 1-1^, 0) 〇 1_|1', '^5.1_〇? £ and generates a compensation 値乂 (: 〇 1^, as follows:

VcOMP = RlOADUNE* C〇ur*VsLOPE 其中,VCOMP =由突升電流所估算之補償値; RLL=與電源供應器相關之負載線電阻; C0UT=與電源供應器之輸出電容器125相關之輸 出電容値; VSL0PE=由初始輸出電壓設定値變動至目標電壓 設定値之所欲比率。 如此所述,控制器1 4 0在輸出電壓1 9 0由一値轉換至 另一値的期間,利用補償値VC0MP來調整電源供應器之輸 出電壓1 90。 依據一實施例,控制器140亦包括算術函數229,用 -16- 201232216 以應用補償値Vc〇MP來調整電源供應器100 Vsp。依據此實施例,控制器1 40將補償値 源供應器之參考電壓之設定點値來產生已調丨 在一實施例中,設定點値Vsp係表示輸 所欲大小之設定値之VID電壓値。輸出電壓 定比率地依循參考電壓VREF。因此,改變V 出電壓190之値的變動。 應用補償値以調整電源供應器之設定點 包括將電源供應器之設定點電壓減去補償値 輸出電壓參考値VREF,如圖所示。 ‘當輸出電壓190進行由一値轉換至其他 在電源供應器中控制器1 40之控制信號產生 調整設定點値VREF = VSP-VC0MP (相對於不提 知技術之設定點値〉來控制開關1 50及1 60 用以當電壓變動時,估算被要求來充電或放 之輸出電容器125的突升電流。 更具體地,在一實施例中,誤差電壓產 比較參考電壓VREF與輸出電壓190之値以 爲誤差電壓275-1。依據誤差電壓275-1,控 182產生控制信號以控制開關150與160。VcOMP = RlOADUNE* C〇ur*VsLOPE where VCOMP = compensation 估算 estimated by the surge current; RLL = load line resistance associated with the power supply; C0UT = output capacitance associated with the output capacitor 125 of the power supply 値; VSL0PE = the desired ratio from the initial output voltage setting 値 to the target voltage setting 値. As described above, the controller 1404 adjusts the output voltage 1 90 of the power supply by the compensation 値VC0MP while the output voltage 190 is switched from one turn to another. According to an embodiment, the controller 140 also includes an arithmetic function 229 that adjusts the power supply 100 Vsp with -16 - 201232216 to apply the compensation 値Vc 〇 MP. According to this embodiment, the controller 140 will compensate for the set point of the reference voltage of the power supply to generate the adjusted value. In one embodiment, the set point 値Vsp is the VID voltage indicating the setting of the desired size. . The output voltage is proportional to the reference voltage VREF. Therefore, the variation of the V output voltage 190 is changed. Applying compensation 値 to adjust the power supply set point includes subtracting the power supply setpoint voltage from the compensation 値 output voltage reference 値VREF as shown. 'When the output voltage 190 is switched from one turn to the other, the control signal of the controller 1 40 in the power supply generates an adjustment set point 値VREF = VSP-VC0MP (relative to the set point 不 of the unknown technology) to control the switch 1 50 and 1 60 are used to estimate the surge current required to charge or discharge the output capacitor 125 when the voltage fluctuates. More specifically, in one embodiment, the error voltage is compared to the reference voltage VREF and the output voltage 190. The error voltage is 275-1. Based on the error voltage 275-1, the control 182 generates a control signal to control the switches 150 and 160.

本實施例包括利用已產生之補償値(如 已接收之VID設定資訊,並(或)利用補償 供應器1〇〇之誤差電壓以產生更精確之輸出 圖10),即在電壓變動時,以補償値VC0MP 之設定點電壓 應用至諸如電 整設定點値。 出電壓190之 1 9 0之値係可 SP値將造成輸 値之方法,可 Vc〇MP以產生 値之轉換時, 器182依據已 供補償値之習 之切換狀態, 電電源供應器 生器電路260 產生差値,即 制信號產生器 圖2 )來調整 値來調整電源 電壓190 (如 來估算對輸出 -17- 201232216 電容器125充電並(或)放電所需之突升電流量。在一實 施例中,誤差電壓275-1係等於vREF與輸出電壓190之 差値。 圖10係爲說明依據本實施例另一種可選擇之補償方 法之範例圖示。 在此實施例中,控制器包括誤差電壓產生電路1 060。 此誤差電壓產生電路1 060係接收設定點電壓値VSP與輸 出電壓190。誤差電壓產生電路1060係產生誤差電壓 1075-1,此誤差電壓1075-1係爲輸出電壓190與設定點値 之差値。算數函數1 050 (例如,減法器或累加器等等)接 收誤差電壓1 0 7 5- 1與 VC0MP,並產生已調整誤差電壓 1 075-2。此已調整誤差電壓1 075-2係等於誤差電壓1 075-1減去補償値VC0MP。與前述相同地,此控制信號產生器 1 82亦控制開關1 50與1 60之狀態以控制輸出電壓1 90之 値。 圖3係說明依據不實行如此所述之VCOMP之習知電源 供應系統來產生輸出電壓190之理論結果的示範時序圖。 如時序圖300中所示,習知技術之電源供應器係在時 序T1與T2中改變習知電源供應器之VID設定値。VSP係 代表VID値,或在時序圖3 00中特定時段待施加之所需的 輸出電壓値。在習知技術之電源供應器中,參考電壓或 VID電壓並不是如本實施例前述依據VCOMP而被調整》 在T1與T2時段區間內進行轉換時,如上述接收新設 定點VSP,由於習知電源供應器並不估算對在習知電源供 -18- 201232216 應器中輸出電容器充電所需之突升電流量,因此,習知電 源供應器之輸出電壓190(VOUT)之値將落後設定値VSP ,故在進行電壓轉換時,習知電源供應器不會產生像處理 器負載或其他來源端所需之精確的輸出電壓。 圖4係說明依據本實施例在進行電壓轉換時實施補償 以獲得更精確輸出電壓之理論結果的示範時序圖。 如圖4中之時序電路400所示,基於使用如此所述之 VCOMP,在進行電壓轉換時,電源供應器100係在時段T3 至T4之間,改變電源供應器100之VID設定値以及(或 )誤差電壓設定値來補償對輸出電容器125充電所需之電 流量。 在一實施例中,如前述之VSP係表示爲VID値或在時 序圖400中特定時段將被施加之輸出電壓1 90。如圖所示 ,輸出電壓190之値VOUT大致上等於設定値VSP,係由於 電源供應器100將估算在電壓轉換時對輸出電容器125充 電所需之突升電流,因此,在電壓轉換時,相較於習知技 術之電源供應器,電源供應器1 00將更精確地產生如處理 器負載所需之輸出電壓190。 圖5係說明依據本實施例之電源供應器之範例電路圖 〇 —般來說,圖5中電源供應器之操作方式係與本實施 例前述之電路相似。不過,圖5中之電源供應器說明補償 値產生器145包含切換函數510與濾波電路520之實施方 式。 -19- 201232216 於操作期間,切換函數5 1 0在各別電壓轉換期間被致 能,使得VC0MP値在如前所述之輸出電壓轉換期間被用以 調整設定點値或誤差電壓。濾波電路520可被視爲一數位 低通濾波器,此數位低通濾波器係匹配控制電路中之標準 類比負載線電壓調整電路。 如前述,控制器1 40可被組態用以監控如處理器或其 他來源端以符合動態 VID ( Voltage Identification,電壓 識別)之變動請求。此VID電壓請求可由處理器(例如, 負載118)接收,或由控制在時段中輸出電壓190之値的 其他來源端來接收。 處理器可請求電源供應器產生符合特定電壓値之輸出 電壓190。且此處理器除了指定VID電壓値之外,亦可指 定在特定時段中輸出電壓變動所依循之比率。因此,如前 述,處理器或其他來源端可控制電源供應器其輸出電壓之 時序與大小値。 再者,在非限定之範例中,假設輸出電壓之初始値爲 0.8伏特,處理器可請求電源供應器將輸出電壓變動至1.2 伏特,除了此電壓値資訊之外,控制器亦可接收由處理器 所指定之將輸出電壓由初始電壓値變動至如1 .2伏特終始 値之預設比率所依循之斜率資訊。藉由非限定範例,處理 器將指定輸出電壓變動之比率爲5毫伏/微秒。此變動之 比率可被指定爲一値,其範圍爲介於1至500毫伏/微秒 間,或在其他實施例中之任何適當値。 與輸出電容器1 2 5相關聯之電容値可被編程在如電源 -20- 201232216 供應器100之暫存器之儲存設備中。由於輸出電容器之電 容値爲已知,其係取決於電源供應器之元件如何構成’因 此,c0UT係爲已知値且被儲存在電壓調整器(例如’電源 供應器)之非揮發性記億體。 在一實施例中,係依據電源供應器100之實體輸出電 容器125之容量來估算電容値C〇 UT°C ουτ可由設計電源 供應器100之管理者、使用者等等來提供。 在電壓變動時用以對電容値C0UT充電所需之突升電 流係表示如下: 突升電流=C〇uT*dv/dt’其中’ C〇ut係爲已編程之電 容値,且dv/dt係爲時段中VID變動之預期比率。 以下之實施例將估算(正向或負向)對C〇UT 充電與 (或)放電所需之突升電流。例如,當輸出電壓由較低電 壓値變動至較高之輸出電壓値時,此突升電流係爲正値; 當輸出電壓由較高之輸出電壓値變動至較低輸出電壓値時 ,此突升電流爲負値。此突升電流係爲依據輸出電壓變動 之預期比率,來對輸出電容器充電之電流估算値(由控制 器140所產生)。 突升之負載線電壓補償値(V C 0 Μ P )=突升電流乘以負 載線電阻。負載線電阻之値可被編程在電源供應器之暫存 器中。藉由無限定範例,此負載線電阻値通常爲介於〇 . 〇 1 至5 0 0毫歐姆’不過,此負載線電阻値可爲在前述範圍內 或超出範圍外之適當値》 如同在突升電流之範例中,突升負載線電壓補償値( -21 - 201232216 例如,VC0MP)可爲正値或負値,此須取決輸出電壓値之 初始與終始電壓値。 控制器電路可包括已濾波類比實施負載線電壓補償値 。濾波電路520之頻帶寬度可匹配類比實施濾波器之頻帶 寬度特性。在一實施例中,此濾波器之頻帶寬度係可被編 程在暫存器中(記憶體)。 由乘法器函數5 82所輸出之突升負載線電壓補償値可 由濾波電路5 20進行數位化濾波。 在此實施例中,包括將已濾波突升負載線電壓與數位 誤差値之累加値數位化,以消除突升負載線電壓之效應:This embodiment includes utilizing the generated compensation 値 (such as the received VID setting information, and/or using the error voltage of the compensation supplier 1 产生 to produce a more accurate output map 10), that is, when the voltage changes, The setpoint voltage of the compensation 値VC0MP is applied to, for example, the set point 値. After the voltage 190 is 1 190, the system can cause the transmission, and the Vc 〇 MP can be used to generate the 値 conversion. The 182 is based on the switching state of the compensation ,, the electric power supply generator Circuit 260 generates a difference, i.e., the signal generator (Fig. 2) adjusts the 値 to adjust the supply voltage 190 (e.g., to estimate the amount of rush current required to charge and/or discharge the output -17-201232216 capacitor 125. In the example, the error voltage 275-1 is equal to the difference between vREF and the output voltage 190. Figure 10 is a diagram illustrating an alternative compensation method in accordance with the present embodiment. In this embodiment, the controller includes an error. The voltage generating circuit 1 060. The error voltage generating circuit 1 060 receives the set point voltage 値VSP and the output voltage 190. The error voltage generating circuit 1060 generates an error voltage 1075-1, which is an output voltage 190 and Set the difference between the points 算. The arithmetic function 1 050 (for example, subtractor or accumulator, etc.) receives the error voltage 1 0 7 5- 1 and VC0MP, and produces the adjusted error voltage 1 075-2. This adjusted error voltage 1 075-2 is equal to the error voltage 1 075-1 minus the compensation 値 VC0MP. Similarly to the foregoing, the control signal generator 1 82 also controls the state of the switches 1 50 and 1 60 to control the output voltage 1 90. Figure 3 An exemplary timing diagram illustrating the theoretical results of output voltage 190 in accordance with a conventional power supply system that does not implement VCOMP as described. As shown in timing diagram 300, conventional power supplies are at timings T1 and T2. Change the VID setting of the conventional power supply. VSP stands for VID値, or the required output voltage to be applied during a specific time period in timing diagram 300. In the power supply of the prior art, the reference voltage or The VID voltage is not adjusted according to the VCOMP as described in the foregoing embodiment. When the T1 and T2 period are converted, the new set point VSP is received as described above, since the conventional power supply does not estimate the supply to the conventional power supply. 18- 201232216 The amount of sudden current required to charge the output capacitor in the inverter. Therefore, the output voltage of the conventional power supply 190 (VOUT) will fall behind the setting 値VSP, so when the voltage is converted, the conventional power supply The device does not produce an accurate output voltage as required by the processor load or other sources. Figure 4 is an exemplary timing diagram illustrating the theoretical results of implementing compensation to achieve a more accurate output voltage when performing voltage conversion in accordance with the present embodiment. As shown in the timing circuit 400 of FIG. 4, based on the use of the VCOMP as described, when the voltage conversion is performed, the power supply 100 is between the periods T3 to T4, changing the VID setting of the power supply 100 and/or The error voltage is set to compensate for the amount of current required to charge the output capacitor 125. In one embodiment, the VSP as previously described is represented as VID 値 or an output voltage 1 90 to be applied during a particular time period in the timing diagram 400. As shown, the output voltage 190 値VOUT is substantially equal to the set 値VSP because the power supply 100 will estimate the swell current required to charge the output capacitor 125 during voltage conversion, and therefore, during voltage conversion, phase The power supply 100 will more accurately generate the output voltage 190 required for the processor load, as compared to conventional power supplies. Fig. 5 is a diagram showing an exemplary circuit diagram of a power supply unit according to the present embodiment. In general, the operation mode of the power supply unit of Fig. 5 is similar to that of the circuit of the present embodiment. However, the power supply in FIG. 5 illustrates that the compensation 値 generator 145 includes the implementation of the switching function 510 and the filter circuit 520. -19- 201232216 During operation, the switching function 5 1 0 is enabled during the respective voltage transitions such that VC0MP is used to adjust the set point or error voltage during the output voltage transition as previously described. Filter circuit 520 can be viewed as a digital low pass filter that matches the standard analog load line voltage regulation circuit in the control circuit. As previously described, the controller 1 40 can be configured to monitor, for example, a processor or other source to comply with a dynamic VID (Voltage Identification) change request. This VID voltage request may be received by a processor (e.g., load 118) or by other sources that control the output voltage 190 during the time period. The processor can request the power supply to generate an output voltage 190 that is compliant with a particular voltage 値. In addition to specifying the VID voltage, the processor can also specify the ratio by which the output voltage varies during a specific time period. Therefore, as mentioned above, the processor or other source can control the timing and magnitude of the output voltage of the power supply. Furthermore, in the non-limiting example, assuming that the initial voltage of the output voltage is 0.8 volts, the processor can request the power supply to vary the output voltage to 1.2 volts, in addition to this voltage 値 information, the controller can also receive processing The slope information specified by the device to vary the output voltage from the initial voltage 至 to a preset ratio such as 1.2 volts at the end. By way of a non-limiting example, the processor will specify a ratio of output voltage variations of 5 millivolts per microsecond. The ratio of this variation can be specified as one, ranging from 1 to 500 millivolts per microsecond, or any suitable defect in other embodiments. The capacitor 相关 associated with the output capacitor 1 2 5 can be programmed into a storage device such as the register of the power supply -20-201232216 provider 100. Since the capacitance of the output capacitor is known, it depends on how the components of the power supply are constructed. Therefore, c0UT is known and stored in a voltage regulator (such as a 'power supply'). body. In one embodiment, the estimated capacitance 値C〇 UT °C ουτ is provided by the manager, user, etc. of the design power supply 100, based on the capacity of the physical output capacitor 125 of the power supply 100. The sudden rise current required to charge the capacitor 値C0UT during voltage fluctuations is expressed as follows: swell current = C〇uT*dv/dt' where 'C〇ut is the programmed capacitor 値, and dv/dt It is the expected ratio of VID changes in the period. The following example will estimate (forward or negative) the surge current required to charge and/or discharge C〇UT. For example, when the output voltage changes from a lower voltage 値 to a higher output voltage ,, the sudden current is positive; when the output voltage changes from a higher output voltage 较低 to a lower output voltage , The current is negative. This surge current is a current estimate (charged by controller 140) that charges the output capacitor based on the expected ratio of output voltage variations. Sudden load line voltage compensation 値 (V C 0 Μ P ) = sudden current multiplied by the load line resistance. The load line resistance can be programmed into the power supply's scratchpad. By way of an unrestricted example, the load line resistance 値 is usually between 〇. 〇1 to 50,000 milliohms. However, the load line resistance 値 can be within the above range or outside the range. In the case of the rising current, the sudden load line voltage compensation - ( -21 - 201232216, for example, VC0MP) can be positive or negative, depending on the initial and final voltages of the output voltage 値. The controller circuit can include a filtered analog to implement load line voltage compensation 値. The frequency bandwidth of the filter circuit 520 can be matched to the analog band width characteristics of the implementation filter. In one embodiment, the bandwidth of the filter can be programmed into the scratchpad (memory). The boost load line voltage compensation 输出 output by the multiplier function 5 82 can be digitally filtered by the filter circuit 520. In this embodiment, the accumulation of the filtered boost load line voltage and the digital error 値 is digitized to eliminate the effects of the sudden load line voltage:

^REF = ^SP ~ ^LLCOMP ~ ^COMP 其中,VREF係爲輸入至誤差電壓產生器電路260之調 整參考電壓或設定點値; VSP係爲由處理器或其他來源端接收之未調校設定點 或VID値;^REF = ^SP ~ ^LLCOMP ~ ^COMP where VREF is the adjusted reference voltage or set point 输入 input to the error voltage generator circuit 260; VSP is the unadjusted set point received by the processor or other source Or VID値;

Vm^comp係爲習知負載線補償値’係依據透過電源供 應器之電感器供應至負載之電流量:以及 VC0MP係爲用以調校如本實施例所述對輸出電容器 125充電與(或)放電之補償値。 如圖3所示,藉由累加已估算之突升負載線電壓値以 提供誤差電壓Verr()r,本實施例將可消除突升電流之效應 ,且輸出電壓190將可更精確地反應由輸出電壓設定資訊 170所指定之需求輸出電壓。 因此,圖5之控制器1 4〇係採用補償誤差電壓値或已 -22- 201232216Vm^comp is a conventional load line compensation 値 'based on the amount of current supplied to the load through the inductor of the power supply: and VC0MP is used to calibrate the output capacitor 125 as described in this embodiment (or ) Compensation for discharge 値. As shown in FIG. 3, by accumulating the estimated boost load line voltage 値 to provide the error voltage Verr()r, this embodiment will eliminate the effect of the boost current, and the output voltage 190 will be more accurately reflected by The desired output voltage is specified by the output voltage setting information 170. Therefore, the controller of Figure 5 is based on the compensation error voltage 値 or has been -22- 201232216

補償VID之方式來取代習知僅利用Verr()r項來達到控制輸 出電壓之目的。藉由(RL0ADLINE ) * ( C0UT ) * ( DVID rate或VSL0PE )來調校電源供應器之項與(或) VID値,並在輸出電壓變動時,估算由輸出電容器提供或 接收之電流,圖5中控制器1 40將可依據輸入之電源供應 指令來提供更精確之輸出電壓以驅動處理器負載。 圖6係依據本實施例之電源供應器1 〇〇之控制操作之 範例方法之流程圖600。需注意此流程圖600中將有部分 流程與本實施例前述之內容重覆,且所有步驟均可以任何 適當之順序被執行。 在步驟6 1 0中,控制器1 40接收指定如何控制電源供 應器1〇〇之輸出電壓190以驅動負載118之輸出電壓設定 資訊170 。 在步驟62〇中,控制器1 40係至少部份基於電源供應 器100之輸出電容値(例如,輸出電容器125)以及由電 壓資訊設定資訊170所指定之輸出電壓190變動之所欲比 率,來產生補償値。 在步驟63 0中,控制器140係依據輸出電壓設定資訊 1 7 〇,利用補償値來調校輸出電壓1 9 0。 圖7及圖8係結合以形成流程圖7 0 0 (例如,流程圖 7 00- 1與流程圖700-2 ),係說明依據本實施例操作電源供 應器1〇〇之詳細範例方式。需注意流程圖700中將有部分 與本實施例前述內容重覆,所有步驟可由任何適當之順序 被執行。 -23- 201232216 在流程圖700- 1之步驟710中,控制器140 如何在時段中控制輸出電壓190之値之輸出電壓 170 » 在子步驟715中,控制器140接收初始輸出 値。 在子步驟720中,控制器140接收目標輸出 値。 在子步驟725中,控制器140接收電源供應 輸出電壓由初始輸出電壓設定値變動至目標輸出 値之所欲比率所依循之電壓斜率値(例如,VSI^P 在步驟73 0中,控制器140至少部份基於電 1〇〇之輸出電容値(例如,與輸出電容器125相 容値)與由電壓設定資訊170所指定之輸出電壓 之預設比率(例如,VSLOPE)來產生補償値。 在子步驟73 5中,控制器140係將電源供應 輸出電容値乘以輸出電壓190變動之所欲比率來 値,此電流値係爲在輸出電容器125上輸出電壓 望變動時所估算之突升電流之估計電流量。換句 估計電流量係表示爲當輸出電壓1 9 0依排程由初 壓變動至目標輸出電壓時,對輸出電容器125充 需要多少電流(正或負値)之突升。 在子步驟740中,控制器140取得電源供應 負載線電阻値(例如,R L 0 A D - L_ 1 N E )。 在子步驟745中,對於與輸出電容器125相 接收指定 設定資訊 電壓設定 電壓設定 器100之 電壓設定 E ) ° 源供應器 關聯之電 1 90變動 器100之 產生電流 190依期 話說,此 始輸出電 電或放電 器100之 關之突升 -24- 201232216The way to compensate for the VID is to replace the conventional use of the Verr()r term to achieve the purpose of controlling the output voltage. Adjust the power supply term and/or VID値 by (RL0ADLINE ) * ( C0UT ) * ( DVID rate or VSL0PE ) and estimate the current supplied or received by the output capacitor when the output voltage changes, Figure 5 The middle controller 140 will provide a more accurate output voltage to drive the processor load depending on the input power supply command. Figure 6 is a flow chart 600 of an exemplary method of controlling operation of the power supply 1 according to the present embodiment. It should be noted that some of the processes in this flowchart 600 are repeated with the foregoing in this embodiment, and all steps can be performed in any suitable order. In step 61, the controller 140 receives an output voltage setting information 170 specifying how to control the output voltage 190 of the power supply 1 to drive the load 118. In step 62, the controller 140 is based at least in part on the desired ratio of the output capacitance 値 (eg, the output capacitor 125) of the power supply 100 and the output voltage 190 specified by the voltage information setting information 170. Generate compensation値. In step 63 0, the controller 140 adjusts the output voltage 1 9000 by using the compensation 値 according to the output voltage setting information 1 7 。. 7 and 8 are combined to form a flowchart 700 (e.g., flowchart 7 00-1 and flowchart 700-2), which is a detailed example of operating a power supply unit 1 in accordance with the present embodiment. It is noted that portions of flowchart 700 will be repeated with the foregoing in this embodiment, and all steps may be performed in any suitable order. -23- 201232216 In step 710 of flowchart 700-1, the controller 140 controls the output voltage between the output voltages 190 in the time period 170 » In sub-step 715, the controller 140 receives the initial output 値. In sub-step 720, controller 140 receives the target output 値. In sub-step 725, the controller 140 receives the voltage slope 依 according to the desired ratio of the power supply output voltage from the initial output voltage setting to the target output 値 (eg, VSI^P in step 73 0, the controller 140 The compensation 値 is generated based at least in part on the output capacitance 値 (eg, compatible with the output capacitor 125) and the predetermined ratio of the output voltage specified by the voltage setting information 170 (eg, VSLOPE). In step 73, the controller 140 multiplies the power supply output capacitor 値 by the desired ratio of the output voltage 190, which is the estimated surge current when the output voltage is expected to fluctuate on the output capacitor 125. Estimating the amount of current. The estimated current amount is expressed as the sudden rise of the current (positive or negative 需要) required to charge the output capacitor 125 when the output voltage is changed from the initial voltage to the target output voltage. In 740, controller 140 obtains a power supply load line resistance 値 (eg, RL 0 AD - L_ 1 NE ). In sub-step 745, a designation is received for receipt with output capacitor 125. The information off voltage setting voltage of setting voltage 100 E) associated with the power supply 190 ° source 100 fluctuates in accordance with the current of 190 words, the beginning or the discharge output power of the projection 100 liters -24-201232216

電流,控制器140係將此電流値乘以負載線電阻値Rl〇ad.uNE 以產生負載線電壓補償値VC0MP。換言之,依據一實施例 ,控制器140將計算VC0MP如下所示:Current, controller 140 multiplies this current by the load line resistance 値Rl〇ad.uNE to generate load line voltage compensation 値VC0MP. In other words, according to an embodiment, controller 140 will calculate VC0MP as follows:

Vc〇MP = RlOADUNE* SLOPE 在圖8之步驟810中,控制器140利用補償値vC0MP 來調校輸出電壓190之大小。 在子步驟8 1 5中,控制器1 4 0將此補償値V c 〇 M p施加 至設定點電壓VSP,在一實施例中,控制器係將此補償値 VCOMP施加至設定點電壓以產生已調校設定點電壓或已調 校參考値Vref。 在子步驟820中,控制器MO係依據已調整設定點電 壓VREF來控制電源供應器100之至少一組電力轉換器相 中之複數開關。 在子步驟825中,當輸出電壓190轉換至由輸出電壓 設定資訊1 70所指定之目標値時,控制器1 40將利用補償 値VCOMP來調校驅動驅動器110-1與驅動器110-2之控制 信號。 在子步驟8 3 0中,當輸出電壓轉換至目標値時,控制 器1 40係將已調校控制信號應用至電源供應器1 〇〇之至少 一開關電路(例如,控制開關1 50與同步開關1 60 ),以 對電源供應器1 〇〇之輸出電壓1 90提供補償。 需注意控制器140與(或)電源供應器可被供應或包 括在電腦、處理器、微控制器、數位信號處理器等等可被 規劃去實施與(或)支援任一或全部本實施例所揭露之操 -25- 201232216 作方法。換言之,如前述控制器140可包含一個或多個電 腦化裝置或處理器等可被編程與(或)規劃來達成前述之 操作,以實施本發明之不同實施例。 需注意本實施例更包括一套或更多軟體程式,其執行 碼係儲存在電腦可讀取之媒體,以執行前述所總結並將於 下述內容詳細揭露之步驟與操作方法。例如,其中一實施 例包括電腦程式產品,係包括電腦可儲存媒體(例如,非 暫時電腦可讀取媒介(medium )或非暫時電腦可讀取媒體 (media )),其具有可被編碼之電腦程式邏輯,以使其 在具有處理器與相對應儲存單元之電腦化裝置中被執行時 ,用以編程此處理器以執行如本實施例所揭露之操作。此 項設計可被實施在軟體、程式碼以及(或)其他資料(例 如,資料結構)等可被規劃或編碼在電腦可讀取之媒體, 例如光學媒體(例如,CD-ROM )、軟碟機或硬碟或其他 媒體如韌體或微編碼在一或更多ROM或RAM或PROM晶 片,以及應用特別積體電路(ASIC )等等。此軟體或硬體 或其他具類似性質之設備可被儲存在控制器! 40中,以使 控制器1 40據以執行前述之技術。 因此,依據本實施例所揭露方法之一特定實施例,係 針對一種電腦程式產品,其包括非暫時電腦可讀取硬體儲 存媒體(例如,記憶體、儲存庫、光碟片以及積體電路等 等),換言之,如前述揭露之控制器1 40可包括電腦可讀 取硬體媒體以儲存電流估算値與模式控制程式,此程式係 支援如前述揭露之電源供應器開關控制功能,例如,在一 -26- 201232216 實施例中,當控制器MO執行指令後,將能完成如流程圖 中之操作。 圖9係說明依據本實施例中用以完成由控制器提供之 —種或更多功能之範例架構圖》 如圖所示,控制器1 40可爲電腦化裝置,或包含有電 腦化裝置,例如,處理裝置、處理器或數位信號處理器等 等。 如圖所示,本範例之控制器1 40係包含互相連接線 8 1 1,係用以耦接電腦可讀取硬體儲存媒體8 1 2,例如可供 數位資訊儲存或讀取之非暫時型式之媒體、電腦可讀取與 硬體儲存媒體等等。控制器140可更包括處理器813、I/O 介面814以及可以網際網路191或其他通訊連線至來源端 之通訊介面8 1 7 ;此來源端,例如,由輸出電壓1 90所供 應之處理器。 I/O介面8 14提供至資料庫8 80之連接性,其可爲顯 示螢幕以及如鍵盤、電腦滑鼠等週邊設備等等。 電腦可讀取媒體8 1 2 (例如,儲存媒體硬體)可爲任 何適當之裝置及(或)硬體,如記憶體、光學儲存、硬體 驅動、軟碟片等等。電腦可儲存媒體可爲非暫時儲存媒體 以儲存與控制器應用程序1 40-1相關之指令,此些指令係 由如控制器1 40等不同之來源端所執行,以完成前述所揭 露之任何操作》 通訊介面8 1 7致能控制器1 40以與諸如網際網路1 9 1 之來源端通訊,以自遠端來源處檢索資訊並與其他電腦、 r- Λ -27- 201232216 交換器、客戶端、伺服端等通訊,I/O介面814功 處理器813以檢索或試著檢索由資料庫88〇或其仂 所儲存之資料。 由本專利技術可知控制器1 4 0可爲電腦系統, 其他步驟與(或)軟體及硬體單元,例如,用以挡 處理來源端之分配與使用,以執行控制器應用單元 之操作系統。 需再注意本專利技術係完全適用於電源供應器 序中’然而’需注意本實施例並不限於使用在前述 程序中’本專利所揭露之技術亦可完全適用於其他 序。 本發明已依較佳實施例詳細地揭露並陳述,因 依本專利之技術所爲之各種型式變化與實施細節並 申請專利範圍定義之應用精神及範疇,所有變化將 利應用範_所涵蓋,因此,前述本專利應用範疇之 並不在此限’更確切地說,本發明任何限制將由下 利申請範圍來定義。 【圖式簡單說明】 有關前述以及本發明其他物件、特徵及特點將 見於本專利較佳實施例中所陳述之更具體討論,而 過不同觀念應用相同元件之類似參考特性將被引述 圖示中’此圖示不需要依比例縮小或放大,取而代 調可被用於陳述實施例、準則及內容等等。 可致能 來源端 並包括 制硬體 140-1 應用程 之應用 應用程 此,凡 不超出 由本專 實施例 列之專 顯而易 諸如透 在附錄 之係強 -28- 201232216 圖1係依據本實施例之電源供應器之範例電路圖。 圖2係爲依據本實施例之控制器及其相關之補償電路 之範例電路圖。 圖3係說明依據習知技術來產生輸出電壓之不精確的 示範理論時序圖。 圖4係爲說明依據本實施例之動態VID補償來更精確 地產生輸出電壓之示範理論時序圖。 圖5係說明依據本實施例之控制器及其相關之補償電 路之範例電路圖。 圖6係說明依據本實施例在輸出電壓轉換時進行補償 之範例流程圖。 圖7及圖8係結合爲用以說明依據本實施例之範例方 法之詳細流程圖。 圖9係依據本實施例中用以完成補償之範例電路圖。 圖1 〇係說明依據本實施例之控制器與其相關補償電 路之範例電路圖。 【主要元件符號說明】 100 :電源供應器 1 2 0 :電壓源 140 :控制器 182 :控制信號產生器 145 :補償値產生器 170:輸出電壓設定資訊 -29 ~ 201232216 1 5 0、1 6 0 :開關 110-1、 110-2:驅動器 1 44 :電感器 1 90 :輸出電壓 125 :電容器 1 18 :負載 2 1 4 :乘法器 145 :補償値產生器 Rload_l<ine:負載線電阻 C0UT :輸出電容値 VsLOPE:電壓斜率 V s p :設定點値 V C Ο Μ P :補償値 229 :算數函數 Vref:輸出電壓參考値 2 7 5 - 1 :誤差電壓 260 :誤差電壓產生器 5 82 :乘法器 5 1 0 :切換函數 5 2 0 :濾波電路 IlNDUCTOR : 電感電流 V^COMP :習知負載線補償値 5 5 5 :算數函數 2 7 5 - 2 :誤差電壓 -30 201232216 265 :控制信號產生器 8 8 0 :資料庫 8 0 0 :電腦系統 8 1 2 :電腦可讀取儲存媒體 8 1 3 :處理器 8 1 4 : I/O 介面 8 1 1 :互相連接線 817 :通訊介面 1 9 1 :網際網路 140-1 :控制器應用單元 140-2 :控制器處理單元 1 060 :誤差電應產生器 1 075- 1 :誤差電壓 1 075-2 :已調整誤差電壓Vc 〇 MP = RlOADUNE* SLOPE In step 810 of FIG. 8, the controller 140 uses the compensation 値vC0MP to calibrate the magnitude of the output voltage 190. In sub-step 8 15 5, the controller 1 400 applies the compensation 値V c 〇M p to the set point voltage VSP. In an embodiment, the controller applies the compensation 値VCOMP to the set point voltage to generate The setpoint voltage has been adjusted or the reference 値Vref has been adjusted. In sub-step 820, controller MO controls the plurality of switches in at least one of the power converter phases of power supply 100 in accordance with adjusted setpoint voltage VREF. In sub-step 825, when the output voltage 190 transitions to the target target specified by the output voltage setting information 170, the controller 140 will utilize the compensation 値VCOMP to modulate the control of the drive driver 110-1 and the driver 110-2. signal. In sub-step 830, when the output voltage is switched to the target ,, the controller 140 applies the calibrated control signal to at least one of the switching circuits of the power supply 1 (eg, the control switch 150 and the synchronization) Switch 1 60) provides compensation for the output voltage 1 90 of the power supply 1 〇〇. It should be noted that the controller 140 and/or the power supply may be supplied or included in a computer, a processor, a microcontroller, a digital signal processor, etc., may be planned to implement and/or support any or all of the embodiments. The exposed exercise -25-201232216. In other words, controller 140, as described above, may include one or more computerized devices or processors, etc., that may be programmed and/or programmed to achieve the foregoing operations to implement different embodiments of the present invention. It should be noted that the present embodiment further includes one or more software programs, and the execution code is stored in a computer readable medium to perform the steps and operation methods summarized above and disclosed in detail below. For example, one embodiment includes a computer program product including a computer storable medium (eg, a non-transitory computer readable medium (medium) or a non-transitory computer readable medium (media)) having a computer that can be encoded Program logic to program the processor to perform the operations as disclosed in this embodiment when executed in a computerized device having a processor and a corresponding storage unit. This design can be implemented in software, code, and/or other materials (eg, data structures) that can be planned or encoded in computer readable media such as optical media (eg, CD-ROM), floppy Machine or hard disk or other media such as firmware or microcoded in one or more ROM or RAM or PROM chips, as well as application special integrated circuits (ASIC) and the like. This software or hardware or other device of similar nature can be stored in the controller! 40, so that the controller 140 executes the aforementioned technique. Therefore, a specific embodiment of the method according to the present disclosure is directed to a computer program product including a non-transitory computer readable hardware storage medium (eg, a memory, a storage, a CD, and an integrated circuit). In other words, the controller 1 40 as disclosed above may include a computer readable hardware medium for storing current estimation and mode control programs, the program supporting the power supply switch control function as disclosed above, for example, In the embodiment of -26-201232216, when the controller MO executes the instruction, the operation as in the flowchart will be completed. FIG. 9 is a diagram showing an exemplary architecture for performing one or more functions provided by the controller according to the embodiment. As shown, the controller 1 40 may be a computerized device or include a computerized device. For example, a processing device, a processor or a digital signal processor, and the like. As shown in the figure, the controller 1 40 of the present example includes an interconnecting line 81 1 for coupling to a computer readable hardware storage medium 8 1 2, for example, for storing or reading digital information. Type media, computer readable and hardware storage media, and more. The controller 140 may further include a processor 813, an I/O interface 814, and a communication interface 8 1 7 that may be connected to the source via the Internet 191 or other communication source; the source terminal is, for example, supplied by the output voltage 1 90. processor. The I/O interface 8 14 provides connectivity to the database 880, which can be a display screen and peripheral devices such as a keyboard, a computer mouse, and the like. The computer readable medium 8 1 2 (e.g., storage media hardware) can be any suitable device and/or hardware such as a memory, optical storage, hardware drive, floppy disk, and the like. The computer storable medium can be a non-transitory storage medium for storing instructions associated with the controller application 1 40-1, such instructions being executed by different sources, such as the controller 1400, to perform any of the foregoing disclosures. Operation" Communication Interface 8 1 7 Enables Controller 1 40 to communicate with a source such as Internet 1 9 1 to retrieve information from a remote source and interact with other computers, r- Λ -27- 201232216, Client, server, etc. communication, I/O interface 814 power processor 813 to retrieve or attempt to retrieve data stored by database 88 or its files. It can be seen from the patented technology that the controller 140 can be a computer system, other steps and/or software and hardware units, for example, to block the distribution and use of the source end to execute the operating system of the controller application unit. It should be noted that the patented technology is fully applicable to the power supply unit. However, it should be noted that the present embodiment is not limited to use in the foregoing procedures. The technology disclosed in this patent is also fully applicable to other sequences. The present invention has been disclosed and described in detail by the preferred embodiments of the present invention. Therefore, the scope of the aforementioned patent application is not limited thereto. More specifically, any limitation of the invention will be defined by the scope of the application. BRIEF DESCRIPTION OF THE DRAWINGS The foregoing and other objects, features, and characteristics of the present invention will be more fully discussed in the preferred embodiments of the present invention, and similar reference features that apply the same elements in different concepts will be referred to in the drawings. 'This illustration does not need to be scaled down or enlarged, and instead can be used to state embodiments, guidelines and content, and the like. The source of the application can be enabled and includes the application application of the hardware 140-1 application. Anything that does not exceed the specific features listed in this special example is as described in the Appendix -28-201232216. An example circuit diagram of a power supply of an embodiment. Fig. 2 is a circuit diagram showing an example of a controller and its associated compensation circuit in accordance with the present embodiment. Figure 3 is a diagram showing an exemplary theoretical timing diagram for inaccurate output voltage generation in accordance with conventional techniques. Fig. 4 is a diagram showing an exemplary theoretical timing chart for more accurately generating an output voltage in accordance with the dynamic VID compensation of the present embodiment. Figure 5 is a circuit diagram showing an example of a controller and its associated compensation circuit in accordance with the present embodiment. Fig. 6 is a flow chart showing an example of performing compensation at the time of output voltage conversion in accordance with the present embodiment. 7 and 8 are combined to illustrate a detailed flowchart of an exemplary method in accordance with the present embodiment. Figure 9 is a diagram showing an example circuit for completing compensation in accordance with the present embodiment. Fig. 1 is a circuit diagram showing an example of a controller and its associated compensation circuit according to the present embodiment. [Main component symbol description] 100 : Power supply 1 2 0 : Voltage source 140 : Controller 182 : Control signal generator 145 : Compensation 値 generator 170 : Output voltage setting information -29 ~ 201232216 1 5 0, 1 6 0 : Switch 110-1, 110-2: Driver 1 44: Inductor 1 90: Output voltage 125: Capacitor 1 18: Load 2 1 4: Multiplier 145: Compensation 値 generator Rload_l <ine: Load line resistance C0UT : Output Capacitance 値VsLOPE: Voltage slope V sp : Set point 値 VC Ο Μ P : Compensation 値 229 : Arithmetic function Vref : Output voltage reference 値 2 7 5 - 1 : Error voltage 260 : Error voltage generator 5 82 : Multiplier 5 1 0: switching function 5 2 0 : filter circuit IlNDUCTOR : inductor current V^COMP : conventional load line compensation 値 5 5 5 : arithmetic function 2 7 5 - 2 : error voltage -30 201232216 265 : control signal generator 8 8 0 :Database 8 0 0 : Computer system 8 1 2 : Computer readable storage medium 8 1 3 : Processor 8 1 4 : I/O interface 8 1 1 : Interconnect line 817 : Communication interface 1 9 1 : Internet Road 140-1: Controller Application Unit 140-2: Controller Processing Unit 1 060: Error Power Generator 1 075- 1 : Error voltage 1 075-2 : Adjusted error voltage

Claims (1)

201232216 七、申請專利範圍: 1. 一種方法,包括: 透過由一電源供應器中之一控制器: 接收輸出電壓設定資訊,其係指定如何控制該電 源供應器之一輸出電壓以驅動一負載; 產生一補償値,其係基於至少部份之該電源供應 器之一輸出電容値及該輸出電壓設定資訊所指定之變動該 輸出電壓値之一特定比率;以及 利用該補償値來調校該輸出電壓。 2. 如申請專利範圍第1項所述之方法,其中,利用 該補償値來調校該輸出電壓包括: 施加該補償値至該電源供應器之一設定點電壓以產生 —已調校設定點電壓,該已調校設定點電壓係表示由該輸 出電壓設定資訊所指定之該設定點電壓與該補償値之差値 :以及 依據該已調校設定點電壓,控制該電源供應器之至少 一電力轉換器相中的複數開關。 3. 如申請專利範圍第1項所述之方法,更包括: 透過該電源供應器中之該控制器: 在該輸出電壓轉換至該輸出電壓設定資訊所指定 之一目標値的期間’利用該補償値調校由該控制器所產生 之複數控制信號;以及 將該複數已調校控制信號施加至該電源供應器之 至少一切換電路’以在該輸出電壓轉換至該目標値的期間 -32- 201232216 調校該電源供應器之該輸出電壓。 4. 如申請專利範圍第1項所述之方法,其中,接收 該輸出電壓設定資訊包括接收一電壓斜率値,其係表示將 該電源供應器之該輸出電壓由一初始設定値變動至由該輸 出電壓設定資訊所指定之一目標電壓値之該特定比率。 5. 如申請專利範圍第1項所述之方法,其中,接收 輸入値包括: 從由該輸出電壓驅動之處理器來源.接收該輸出電壓設 定資訊,該輸出電壓設定資訊係指定用以控制該輸出電壓 之未來値設定;以及 從該處理器來源接收之一比率値,該比率値係表示變 動該電源供應器之該輸出電壓至一目標値之該特定比率。 6. 如申請專利範圍第1項所述之方法,其中,產生 該補償値包括: 取得該電源供應器之一負載線電阻値; 將該輸出電容値乘以變動該輸出電壓之該特定比率以 產生一電流値,該電流値係表示導致該輸出電容値上電壓 變動之電流量;以及 將該電流値乘以該負載線電阻値以產生該補償値。 7. 如申請專利範圍第1項所述之方法,其中,利用 該補償値包括: 在該輸出電壓變動至該輸出電壓設定資訊所指定之一 目標電壓値的期間,施加該補償値至該電源供應器之一誤 差電壓,以導致對該輸出電容値之充電。 -33- 201232216 8. 如申請專利範圍第1項所述之方法,其中,產生 該補償値包括估算由該電源供應器供應以對該電源供應器 之輸出電容値充電所需之一電流量,用以依據變動該輸出 電壓之該特定比率來變動該輸出電壓之値。 9. 如申請專利範圍第8項所述之方法,其中,利用 該補償値以調校該輸出電壓包括依據該補償値控制該電源 供應器中複數開關之驅動狀態。 10. 如申請專利範圍第1項所述之方法,其中,利用 該補償値以調校該輸出電壓,包括: 在該輸出電壓變動至該輸出電壓設定資訊所指定之一 目標電壓値的期間,施加該補償値至該電源供應器之一誤 差電壓,以導致對該輸出電容値之放電。 11. 如申請專利範圍第1項所述之方法,其中,產生 該補償値包括將一第一値乘以一第二値,該第一値代表該 電源供應器之該輸出電容値,該第二値代表由該輸出電壓 設定資訊所指定之變動該輸出電壓之値的該特定比率。 ' 〗2·如申請專利範圍第1項所述之方法,其中,產生 該補償値包括依據變動該輸出電壓之該特定比率,估算一 電流量以對該輸出電容値充電。 1 3 · —種方法,包括: 透過一電源供應器中乏—控制器: 接收輸入,該輸入係指定用於驅動一負載之該電 源供應器之一輸出電壓之一設定點値; 取得組態資訊,該組態資訊係指定該電源供應器 -34- 201232216 之一輸出電容値; 產生一補償値,其係依據至少部分之該輸出電容 値以及該電源供應器之該輸出電壓突增至該設定點値之一 特定比率;以及 利用該補償値以調校該輸出電壓。 1 4. 一種電源供應器系統,包括: —控制器,包括一埠,其接收輸出電壓設定資訊,該 輸出電壓設定資訊係指定如何控制該電源供應器之一輸出 電壓以驅動一負載; 該控制器係組態以: 產生一補償値,其係基於至少部份之該電源供應器之 一輸出電容値及該輸出電壓設定資訊所指定之變動該輸出 電壓之値的一特定比率;以及 利用該補償値以調校該輸出電壓。 15.如申請專利範圍第14項所述之電源供應系統, 其中,該控制器係組態以: 施加該補償値至該電源供應器之一設定點電壓以產生 一已調校設定點電壓,該已調校設定點電壓係表示由該輸 出電壓設定資訊指定之該設定點電壓與該補償値之差値; 以及 依據該已調校設定點電壓,控制該電源供應器之至少 一電力轉換器相中之複數開關。 1 6 .如申請專利範圍第1 4項所述之電源供應系統, 其中,該控制器係組態以: -35- 201232216 在該輸出電壓轉換至該輸出電壓設定資訊所指定之一 目標値的期間,利用該補償値調校由該控制器所產生之複 數控制信號;以及 將該複數已調校控制信號施加至該電源供應器之至少 一切換電路,以在該輸出電壓轉換至該目標値的期間調校 該電源供應器之該輸出電壓。 1 7 .如申請專利範圍第1 4項所述之電源供應系統, 其中,該控制器係組態以: 接收一電壓斜率値,其係表示將該電源供應器之該輸 出電壓由一初始設定値變動至由該輸出電壓設定資訊所指 定之一目標電壓値之該特定比率。 1 8 ·如申請專利範圍第1 4項所述之電源供應系統, 其中,該控制器係組態以: 從由該輸出電壓驅動之處理器來源接收該輸出電壓設 定資訊,該輸出電壓設定資訊係指定用以控制該輸出電壓 未來値設定;以及 從該處理器之來源接收一比率値,該比率値係表示變 動該電源供應器之該輸出電壓至一目標値之該特定比率。 1 9.如申請專利範圍第1 4項所述之電源供應系統, 其中,該控制器係組態以: 取得該電源供應器之一負載線電阻値; 將該輸出電容値乘以變動該輸出電壓之該特定比率以 產生一電流値,該電流値係表示導致該輸出電容値上電壓 變動之電流量;以及 -36- 201232216 將該電流値乘以該負載線電阻値以產生該補償値。 20.如申請專利範圍第14項所述之電源供應系統, 其中,該控制器係組態以: 在該輸出電壓變動至該輸出電壓設定資訊所指定之一 目標電壓値的期間,施加該補償値至該電源供應器之一誤 差電壓,以導致對該輸出電容値之充電。 2 1 .如申請專利範圍第1 4項所述之電源供應系統, 其中,該控制器係組態以: 估算由該電源供應器供應以對該電源供應器之輸出電 容値充電所需之一電流量,以依據變動該輸出電壓之該特 定比率而變動該輸出電壓之値。 2 2.如申請專利範圍第21項所述之方法,其中,該 控制器係組態以: 依據該補償値控制該電源供應器中複數開關之驅動狀 態。 23. 如申請專利範圍第14項所述之方法,其中,該 控制器係組態以: 在該輸出電壓變動至該輸出電壓設定資訊所指定之一 目標電壓値的期間,施加該補償値至該電源供應器之一誤 差電壓,以導致對該輸出電容値之放電。 24. 如申請專利範圍第14項所述之方法,其中,該 控制器係組態以: 將一第一値乘以一第二値,該第一値代表該電源供應 器之該輸出電容値,該第二値代表由該輸出電壓設定資訊 -37- 201232216 所指定之變動該輸出電壓之値的該特定比率。 25.如申請專利範圍第14項所述之方法,其中,該 控制器係組態以: 依據變動該輸出電壓之該特定比率,估算一電流量以 對該輸出電容値充電。 -38-201232216 VII. Patent application scope: 1. A method comprising: receiving, by a controller in a power supply device, receiving output voltage setting information, which specifies how to control an output voltage of the power supply to drive a load; Generating a compensation 基于 based on at least a portion of the output capacitance of the power supply and a specific ratio of the output voltage 指定 specified by the output voltage setting information; and using the compensation 値 to calibrate the output Voltage. 2. The method of claim 1, wherein the adjusting the output voltage by using the compensation 包括 comprises: applying the compensation 値 to a set point voltage of the power supply to generate a calibrated set point Voltage, the adjusted set point voltage is a difference between the set point voltage specified by the output voltage setting information and the compensation 値: and at least one of the power supply is controlled according to the adjusted set point voltage A complex switch in the phase of the power converter. 3. The method of claim 1, further comprising: transmitting the controller in the power supply: during the period in which the output voltage is switched to a target target specified by the output voltage setting information Compensating 値 calibrating a plurality of control signals generated by the controller; and applying the plurality of calibrated control signals to at least one switching circuit ' of the power supply to during the transition of the output voltage to the target - -32 - 201232216 Adjust the output voltage of the power supply. 4. The method of claim 1, wherein receiving the output voltage setting information comprises receiving a voltage slope 値, which means that the output voltage of the power supply is changed from an initial setting to The specific ratio of one of the target voltages specified by the output voltage setting information. 5. The method of claim 1, wherein receiving the input port comprises: receiving the output voltage setting information from a processor source driven by the output voltage, the output voltage setting information is specified to control the The future setting of the output voltage; and receiving a ratio 値 from the processor source, the ratio 表示 is indicative of the particular ratio of the output voltage of the power supply to a target 。. 6. The method of claim 1, wherein the generating the compensation comprises: obtaining a load line resistance 之一 of the power supply; multiplying the output capacitance by a specific ratio that varies the output voltage to A current 产生 is generated, the current 表示 is indicative of the amount of current that causes the voltage on the output capacitor to fluctuate; and the current 値 is multiplied by the load line resistance 値 to generate the compensation 値. 7. The method of claim 1, wherein the compensating means comprises: applying the compensation to the power source during a period in which the output voltage changes to a target voltage 指定 specified by the output voltage setting information One of the supply voltages is biased to cause charging of the output capacitor. The method of claim 1, wherein generating the compensation includes estimating an amount of current required to be supplied by the power supply to charge the output capacitor 値 of the power supply, The 値 of the output voltage is varied according to the specific ratio of the variation of the output voltage. 9. The method of claim 8, wherein the compensating 値 to adjust the output voltage comprises controlling a driving state of the plurality of switches in the power supply according to the compensation 値. 10. The method of claim 1, wherein the compensating 値 is used to adjust the output voltage, including: during the period when the output voltage fluctuates to a target voltage 指定 specified by the output voltage setting information, The compensation is applied to one of the error voltages of the power supply to cause a discharge of the output capacitor. 11. The method of claim 1, wherein generating the compensation comprises multiplying a first turn by a second turn, the first turn representing the output capacitance of the power supply, the first The second representation represents the specific ratio of the fluctuation of the output voltage specified by the output voltage setting information. The method of claim 1, wherein generating the compensation comprises estimating a current to charge the output capacitor based on the particular ratio of the output voltage. 1 3 · A method comprising: consuming a power supply through a controller - receiving input that specifies a set point of one of the output voltages of the power supply for driving a load; obtaining the configuration Information, the configuration information is specified by the power supply -34-201232216 one output capacitor 値; generating a compensation 突 according to at least part of the output capacitance 値 and the output voltage of the power supply is suddenly increased to Set a specific ratio of points ;; and use the compensation 値 to calibrate the output voltage. 1 4. A power supply system, comprising: - a controller, comprising: a receiver receiving output voltage setting information, the output voltage setting information specifying how to control an output voltage of the power supply to drive a load; the control The device is configured to: generate a compensation 基于 based on at least a portion of the output capacitor of the power supply and a specific ratio of the output voltage specified by the output voltage setting information; and utilizing the Compensation 値 to adjust the output voltage. 15. The power supply system of claim 14, wherein the controller is configured to: apply the compensation 値 to a set point voltage of the power supply to generate a calibrated set point voltage, The adjusted set point voltage indicates a difference between the set point voltage specified by the output voltage setting information and the compensation 値; and controlling at least one power converter of the power supply according to the adjusted set point voltage The complex switch in the phase. The power supply system of claim 14, wherein the controller is configured to: -35- 201232216, the output voltage is converted to one of the targets specified by the output voltage setting information Using the compensation 値 to adjust a plurality of control signals generated by the controller; and applying the plurality of calibrated control signals to at least one of the switching circuits of the power supply to convert the output voltage to the target The output voltage of the power supply is adjusted during the period. The power supply system of claim 14, wherein the controller is configured to: receive a voltage slope 値, which indicates that the output voltage of the power supply is set by an initial setting値 varies to the specific ratio of one of the target voltages specified by the output voltage setting information. 1 8 The power supply system of claim 14, wherein the controller is configured to: receive the output voltage setting information from a processor source driven by the output voltage, the output voltage setting information The system is configured to control the future voltage setting of the output voltage; and receive a ratio 从 from the source of the processor, the ratio 表示 indicating that the output voltage of the power supply is varied to a specific ratio of a target 値. 1 9. The power supply system of claim 14, wherein the controller is configured to: obtain a load line resistance 之一 of the power supply; multiply the output capacitance by a variable output The particular ratio of voltages produces a current 値 that represents the amount of current that causes the output capacitor to fluctuate over the voltage; and -36-201232216 multiplies the current 値 by the load line resistance 値 to produce the compensation 値. 20. The power supply system of claim 14, wherein the controller is configured to: apply the compensation during a period in which the output voltage fluctuates to a target voltage 指定 specified by the output voltage setting information An error voltage is applied to one of the power supplies to cause charging of the output capacitors. 2 1. The power supply system of claim 14, wherein the controller is configured to: estimate one of the requirements required by the power supply to charge the output capacitor of the power supply The electric current flows by varying the output voltage according to the specific ratio at which the output voltage is varied. 2. The method of claim 21, wherein the controller is configured to: control a driving state of the plurality of switches in the power supply according to the compensation 値. 23. The method of claim 14, wherein the controller is configured to: apply the compensation to the period during which the output voltage changes to a target voltage 指定 specified by the output voltage setting information One of the power supplies has an error voltage to cause a discharge of the output capacitor. 24. The method of claim 14, wherein the controller is configured to: multiply a first turn by a second turn, the first turn representing the output capacitance of the power supply値The second port represents the specific ratio of the output voltage that is specified by the output voltage setting information -37-201232216. The method of claim 14, wherein the controller is configured to: estimate a current amount to charge the output capacitor 依据 according to the particular ratio of varying the output voltage. -38-
TW100133785A 2010-10-04 2011-09-20 Method of dynamic control parameter adjustment in a power supply TWI475348B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38961910P 2010-10-04 2010-10-04
US13/027,062 US8629666B2 (en) 2010-10-04 2011-02-14 Dynamic control parameter adjustment in a power supply

Publications (2)

Publication Number Publication Date
TW201232216A true TW201232216A (en) 2012-08-01
TWI475348B TWI475348B (en) 2015-03-01

Family

ID=47069519

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100133785A TWI475348B (en) 2010-10-04 2011-09-20 Method of dynamic control parameter adjustment in a power supply

Country Status (1)

Country Link
TW (1) TWI475348B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869852A (en) * 2012-12-18 2014-06-18 宏碁股份有限公司 Voltage regulating device and electronic device
TWI483091B (en) * 2012-12-04 2015-05-01 Acer Inc Voltage regulating apparatus and electronic apparatus
WO2018000172A1 (en) * 2016-06-28 2018-01-04 张升泽 Method and system for preprocessing voltage of electronic chip
TWI715098B (en) * 2019-05-13 2021-01-01 廣達電腦股份有限公司 Electronic system and the operating method thereof, and electronic circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7254788B2 (en) * 2004-10-29 2007-08-07 Synopsys, Inc. Nonlinear driver model for multi-driver systems
TWI363946B (en) * 2007-11-30 2012-05-11 Upi Semiconductor Corp Power supplies, power supply controllers, and power supply controlling methods

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483091B (en) * 2012-12-04 2015-05-01 Acer Inc Voltage regulating apparatus and electronic apparatus
CN103869852A (en) * 2012-12-18 2014-06-18 宏碁股份有限公司 Voltage regulating device and electronic device
CN103869852B (en) * 2012-12-18 2016-10-19 宏碁股份有限公司 Voltage regulating device and electronic equipment
WO2018000172A1 (en) * 2016-06-28 2018-01-04 张升泽 Method and system for preprocessing voltage of electronic chip
TWI715098B (en) * 2019-05-13 2021-01-01 廣達電腦股份有限公司 Electronic system and the operating method thereof, and electronic circuit

Also Published As

Publication number Publication date
TWI475348B (en) 2015-03-01

Similar Documents

Publication Publication Date Title
US8629666B2 (en) Dynamic control parameter adjustment in a power supply
US9520765B2 (en) DC/DC converter, switching power supply device, and electronic apparatus,configured to include a phase detector and a phase holder
US8710815B2 (en) Adjustable voltage regulator with dynamic voltage compensation
US8760138B2 (en) DC-DC converter control circuit and DC-DC converter including same
JP5278817B2 (en) Switching power supply
TWI581547B (en) A device, a modulator, and a method for limiting current in a converter
US8193794B2 (en) Voltage regulator having an output voltage automatically adjusted according to a load current
US8022680B2 (en) Switching DC-DC converter with adaptive-minimum-on-time control and method of adaptively controlling minimum-on-time of a switching DC-DC converter
US8698476B2 (en) Control circuit and method for a current mode controlled power converter
US8760137B2 (en) DC-DC converter control circuit and DC-DC converter including same
TW201443605A (en) Predictive current sensing
US10056834B2 (en) Output capacitance calculation and control in a power supply
US20100219803A1 (en) Dc to dc converter and method for reducing overshoot
US9024610B2 (en) System and method of balanced slope compensation for switch mode regulators
US9385604B2 (en) DC/DC converter, switching power supply device, and electronic apparatus
JP2008510450A (en) Method and apparatus for regulating current between phases of a polyphase converter
JP6772980B2 (en) In-vehicle signal generation circuit and in-vehicle power supply
JP2014027832A (en) Power supply device, semiconductor device, and data processing system
US7986134B2 (en) Power supplies, power supply controllers, and power supply controlling methods
US8692535B1 (en) Control parameter adjustment in a discontinuous power mode
TW201232216A (en) Dynamic control parameter adjustment in a power supply
EP3809571A1 (en) On-time compensation in a power converter
US11601052B2 (en) Current emulation in a power supply
US11929679B2 (en) Power supply configurations and PWM edge control
US11635780B2 (en) Maximum power point tracking apparatus for energy harvesting system and maximum power point tracking control method