TW201231667A - Method for producing brazzein by using controllably acid-inducible system - Google Patents

Method for producing brazzein by using controllably acid-inducible system Download PDF

Info

Publication number
TW201231667A
TW201231667A TW100103349A TW100103349A TW201231667A TW 201231667 A TW201231667 A TW 201231667A TW 100103349 A TW100103349 A TW 100103349A TW 100103349 A TW100103349 A TW 100103349A TW 201231667 A TW201231667 A TW 201231667A
Authority
TW
Taiwan
Prior art keywords
acid
medium
lactic acid
protein
producing
Prior art date
Application number
TW100103349A
Other languages
Chinese (zh)
Other versions
TWI472622B (en
Inventor
Chuan-Mei Yeh
Original Assignee
Univ Nat Chunghsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chunghsing filed Critical Univ Nat Chunghsing
Priority to TW100103349A priority Critical patent/TWI472622B/en
Publication of TW201231667A publication Critical patent/TW201231667A/en
Application granted granted Critical
Publication of TWI472622B publication Critical patent/TWI472622B/en

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A method of producing brazzein by using the controllably acid-inducible system is disclosed. A recombinant plasmid that comprises an acid-inducible promoter and a polynucleotide encoding brazzein is introduced into Lactococcus lactis. The culture medium is adjusted to control the pH value of 6.5 to 7.5. When the growth of bacteria reaches OD600 of 0.6 to 4.5, lactic acid is added to induce the production of brazzein.

Description

201231667 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種甜味蛋白質的製造方法,特別是 有關於一種利用可控制的酸誘導系統製造甜味蛋白質之方 法。 【先前技術】 乳酸菌(Lactic acid bacteria)是一群相當龐雜的菌群, • 廣泛分布於自然界中,可利用碳水化合物進行醱酵產生乳 酸。自古即被廣泛應用於乳製品、食品加工或保存,也被 視為食品級(food grade)菌株,為應用最多、經濟效益最大 的工業用菌之一。乳酸菌也可用於食品、醫藥用蛋白之生 產,例如:甜味蛋白質的生產,乳酸菌具有分泌蛋白質的 能力’用以產生胞外蛋白質,被認為是良好的蛋白質表現 系統。 許多乳酸菌表現系統已被描述,目前用作異源蛋白表 • 現的系統可粗略分為持續型表現系統與誘導型表現系統。 前者可持續引發外源基因表現;後者則需於特定環境下才 能誘發外源基因表現。 持續蜇表現系統可持續表現外源蛋白質,但若其對宿 主有害,則會傷害宿主乳酸菌甚至造成死亡。而使用誘導 型表現系統4避免持續表現具細胞毒性的蛋白質所引起的 傷害。 酸誘導表現系統為誘導系統的一種,苴啟動子受pH 值誘導,可於生長期間代謝產酸而自—導⑽⑹偷仙⑹ 201231667 生產蛋白質。然而自我誘導所需時間長,且不便於控制誘 導時間,以致於酸誘導表現系統欲應用於例如生產甜味蛋 白質時,難以於適當的時間點誘導生產蛋白質。 【發明内容】 因此,本發明是在提供一種利用可控制的酸誘導系統 製造甜味蛋白質之方法,可於適當時間點進行誘導以生產 蛋白質。 本發明之一態樣是在提供一種利用可控制的酸誘導系 統製造甜味蛋白質之方法,包含下列步驟。首先,構築一 重組質體,其包含酸誘導啟動子及如序列辨識編號2所示 的去氧核糖核酸片段。接著,將此重組質體導入乳酸鏈球 菌⑽,以獲得一轉型株。然後,培養轉形株 於培養基中,其中培養基之pH值係維持在6.5-7.5。當轉 形株生長於波長600 nm之光學密度(OD6G())值為0.6-4.5 時,於培養基中添加0.1重量百分比至0.5重量百分比乳酸 以啟動此酸誘導啟動子,從而由去氧核糖核酸片段產生甜 味蛋白質(brazzein)。 根據本發明之一實施例,其中酸誘導啟動子具有如序 列辨識編號1所示之去氧核糖核酸片段。 根據本發明之一實施例,其中培養基為醱酵培養基B (fermentation medium B ; FMB)。 根據本發明之一實施例,其中乳酸於培養基中之含量 為0.1重量百分比至0.3重量百分比,用以誘導乳酸菌產生 蛋白質。 201231667 因此’使用本方法可在提升轉型株菌量後,再於 時間點(例如適當的g體密度)進行誘導,可大量產生甜ς 蛋白質°再者,本方法的誘導劑為乳酸,不僅便宜易取得, 又為食品級試劑’故利於食品或醫藥用蛋白之生產。 【實施方式】 /本發明係利料養基將乳酸㈣量提高至適當菌體 度後’再添加乳酸誘導,從而使乳酸菌之酸誘 得以生產甜味蛋白質。 兄糸、先 以下將分為兩大部分,第一部分鬧述本發明實施 之應用基礎’第二部分則以實關說明在乳賴球菌 利用酸誘導表現系統表現甜味蛋自質的方法。 第一部分: Ρ170啟動子之基因表現系統為酸誘導表現系統的— 種,此天然啟動子受ρΗ值誘導,以葡萄糖為碳源。菌體 在生長期時,由後指數期(p〇steXp〇nential phaSe)轉為平穩 期(stationary phase)間代謝產酸,使環境的pH值小於6 了 藉此啟動自我誘導而可生產蛋白質(以下簡稱為「自我誘 導」)。倘若環境的pH值大於6,則菌體内的pi7〇啟^ 不會被啟動。 在誘導表現的蛋白質部份,brazzein為一種甜味蛋白 質,其作為甜味劑具有甜度高、低熱量、水溶性佳、耐熱 性好和pH穩定性佳等優點。且其口感與嚴糖相近又 被微生物所利用,不會引起口腔蛀牙並適合糖尿病患者食 201231667 用 > 叮成為食品中營養性碳水化合物的代替品。brazzein 目月ϋ此從天然水果中純化,利用基因工程的方法生產 bi*azzein绅味蛋白質,可使其於食品工業應用上有更大的 發展^下所稱之甜味蛋白質係指brazzein。 ^發明係利用pH值大於6的培養基,先將乳酸菌菌 量提间至適當菌體密度後,再添加乳酸誘導乳酸菌之酸誘 =表現系統’從而控制乳酸菌以大量生產甜味蛋白質(以下 簡稱為「強制酸誘導」)。 在礼酸菌誘導試驗中,首先構築一可轉譯出如序列辨 識編號1之甜味蛋白質的重組質體,此重組質體包含甜味 蛋白質的基因序列(序列辨識編號2)及P170啟動子(序列辨 識編號3)。將此質體轉形入乳酸鍵球菌, 用以進行後續之自我誘導試驗和強制酸誘導試驗。 請參照第1圖’為乳酸鏈球菌之自我誘導試驗結果。 將隔夜培養16小時之帶有重組質體的乳酸鏈球菌菌液接 種至新鮮的醱酵培養基B (fermentation medium B ; FMB), 其配方為1.5%大豆蛋白(SOyt〇ne)、ι〇/〇葡萄糖(giuc〇se)、17 mM 璘酸二氫卸(ΚΗ2Ρ04)、72 mM 構酸氫二_(κ2ΗΡ04) ' 1%酵母萃取物(yeast extract)、1 mM七水硫酸鎂(MgS〇4 . 祝2〇)和o.imM —水硫酸錳(M11SO4 · H20)。並調整起始波 長600 nm之光學密度(OD_)值為〇.〇1,繼續進行培養。(a) 為測量培養2、4、6、8、10、12及24小時之〇d_值, (B)為測1上述時間點之培養液pH值’(C)則是於上述時間 點取卤液’離心分離菌體與上清液’進行西方墨點法,以 偵測甜味蛋白質的表現。 第1圖(A)部份結果顯示’乳酸鏈球菌之生長於〇D⑽ 7 201231667 之吸光值達到4.5時趨於平緩,對照(B)部份,P170啟動 子之誘導pH值大約介於5.5-6.5之間,在(C)部份顯示於第 10小時可偵測到重組甜味蛋白質的表現。 第2圖為乳酸鏈球菌之強制酸誘導試驗結果。將隔夜 培養16小時之帶有重組質體的乳酸鏈球菌菌液接種至新 鮮的FMB培養基,並調整起始OD6〇〇值為0.01,繼續進行 培養。於第5小時(約OD_值為0.673,pH6.93)分別加入 0.1重量百分比、0.3重量百分比、0.5重量百分比、0.7重 量百分比或1重量百分比之乳酸,使pH值分別改變為 6.67、6.23、5.57、4.74、4.12。(A)為測量不同時間點之 〇D6〇〇吸光值;(B)為測量不同時間點之培養液pH值;(C) 則是於上述時間點取菌液,離心分離菌體與上清液,進行 西方墨點法,以偵測甜味蛋白質的表現。 第2圖(A)部份結果顯示,加入0.1重量百分比與0.3 重量百分比乳酸之乳酸菌呈現繼續生長;(B)部份顯示加入 乳酸,培養液之pH值下降速度較未加乳酸的組別快速, 在(C)部份顯示添加0.1重量百分比乳酸於第8小時即可偵 測到重組甜味蛋白質的表現,添加0.3重量百分比乳酸則 可於第10小時偵測到重組甜味蛋白質的表現。相較之下, 添加0.5重量百分比以上乳酸的組別,則無法偵測到甜味 蛋白質的表現。 第二部份: 承上所述,本發明之一實施方式為將一段可編碼產生 甜味蛋白質的去氧核糖核酸片段轉形入乳酸鏈球菌中。藉 201231667 由添加乳酸,使乳酸菌強騎誘導而生產甜味蛋白質。 適用於本發明之帶有可編碼產生異綠蛋白質j 體’其包含酸誘導啟動子,受pH值轉導 、、且質 質。除非特別指明,否則本文中所述「=蛋白 合 ΓΝΑ p°lymerase)所辨識:啟動:Ϊ 表現型啟動子序列、轉錄起始點序列。 碭導 適用於本發日狀宿主乳_可包含衫錄於 =。適用之菌株為具有酸誘導系統之乳酸菌株,其帶= 適虽之_因子和其他啟動㈣導系統必備之要素。 適用於本發明之培養基包括但不限於酿酵培養基 需說明的是’醱酵培養基Β具緩衝液之功用,因此㈣於ί 他習知之培養基’即使紐上升’ ρΗ值不會快速地急遽變 化而使乳酸菌生長停滯甚至下降,因而可增加菌體密度。 此外,根據所需之培養和表現需求,以及不同啟動子 具有相異之誘導條件,維持菌體生長之培養液ρΗ值和菌 體岔度可適當調整,再於適當時間點進行誘導以達到所需 之蛋白質表現量。 例如’根據第一部份之試驗結果,ρ17()啟動子之誘導 pH值大約介於5·5_6 5之間,因此,在一例示中,菌體生 長之培養液pH值維持在6.5_7.5,以利增加菌體密度。當 上述轉形株之菌量於波長6〇〇 nm之光學密度(〇d6gq)值達 到0.6-4.5時,可於培養基中添加乳酸以啟動酸誘導啟動 子,從而產生甜味蛋白質。 以下將提供本發明之一實施例,以表現甜味蛋白質來 201231667 說明本發明之方法及效果。 實施例: 一、質體(pNZABBA)之構築 苐3圖為質體(pNZABBA)之構築流程圖。在本實施例 中’係以帶有枯草桿菌&//&)之果聚醣蔗糖酶 (levansucrase)訊息胜肽(SPsacB)及甜味蛋白質基因片段之 質體pNZNSS為模板,利用如序列辨識編號4及序列辨識編 φ 號5所示之引子對進行基因擴增,其中所得之擴增產物如序 列辨識編號6所示之核酸片段,且序列辨識編號6所示之核 酸片段是設計成直接與P170啟動子相接。 接著,再以序列辨識編號6所示之核酸片段為模板,利 用如序列辨識編號7及序列辨識編號8所示之引子對擴增基 因,以得到如序列辨識編號9所示之核酸片段,其中序列辨 識編號9所示之核酸片段為酸誘導啟動子-甜味蛋白質表現 卡匣(expression cassette)之去氧核醣核酸片段,以代號 • ABB A稱之。 擴增出之片段先以截切,再與經由同樣限制 酶截切的載體pNZDSASm-SacBA2-4利用T4接合酶(T4 DNA ligase)以適當莫耳數比例進行接合,得到構築完成的 pNZABBA質體。載體pNZDSASm-SacBA2-4可參照「增進 第一型重組抗凍蛋白質類似物於乳酸鏈球菌之分泌表現」 (參閱黃馨慧,2007年),其啟動子及轉錄終止子來自嗜酸 乳得菌(LactobacUlus acidophilus’,Lb. acidophiius)的表Μ 蛋 白 質(Surface layer protein ; S-layer protein) 201231667 (PslpAl,TslpA) ’訊息胜肽(spsacB)係來自枯草桿菌之果聚 醣嚴糖酶’篩選標記為氣黴素(chloramphenicol)之抗性基 因。 上述質體選殖操作,可以包含但不限定以下列步驟完 成: 聚合酶連鎖反應擴增後的基因產物可先以商業化套組 進行純化,純化後的產物可進行後續之剪切反應。 剪切係依照限制酶廠商提供之流程進行。簡言之,取 適量DNA樣品、滅菌去離子水、乙醯化之牛血清蛋白及限 制酶緩衝液加入微量離心管,再加入適量限制酶,混合均 勻後置於酵素最佳反應溫度下作用1-4小時,作用完畢後以 瓊脂醣膠體電泳進行分離。 之後,將含有目標片段之膠體切下,並利用本技術領 域中常用回收DN A的方法或商。口化套組進行回收。回收後 的產物即可進行接合反應。 DNA接合反應是取載體DNA及欲嵌入之片段,以 適當比例混合後,加入適量接合酶緩衝液及滅菌去離子水 混合均勻,再加入適量接合酶混合均勾,於酵素最適反應 溫度下反應一段時間後,再以65°C加熱1〇分鐘終止反應, 待混合物冷卻後即可進行轉形作用,轉形入大腸桿菌之 JM109勝任細胞中。 二、大腸桿菌之轉形作用 將質體轉形入大腸桿菌,可以包含但不限定以下列步 驟完成: (一)大腸桿菌電勝任細胞之製備 201231667 大腸桿菌電勝任細胞(electr〇competent cell)之製備參 考Miller (1994)所發表之方法加以修改而成。挑取單一菌落 接種於適量LB培養液(1%胰蛋白(tryptone)、0.5%酵母萃取 物(yeast extract)、1〇/。氯化鈉(NaCl))中,於37Ϊ、150 rpm . 轉速條件下震盪培養。接種隔夜培養(12-16 hr)菌液體積之 百分之一於新鮮LB培養液中,於37〇C、150rpm轉速震盪培 養至OD^oo值到達〇.4-〇·6,將菌液冰浴30分鐘’倒入已滅菌 之離心瓶’以離心力7〇〇〇xg、4〇C離心15分鐘,棄除上清液。 φ 分別以與原培養菌液等體積、原培養菌液體積一半及1 mL 之冰冷滅菌的10%甘油清洗菌體3次(充分懸浮菌體後以離 心力7000 xg、4°C離心15分鐘並棄除上清液)。最後以原培 養菌液體積之五百分之一的冰冷滅菌10%甘油懸浮菌體, 並分裝成數管(40 μί/管),以液態氮急速冷凍後置於_80〇c 保存。 (一)質體轉形入大腸桿菌 取40 pL之電勝任細胞於冰上融解,並加入1 之質 φ 體’吸取勝任細胞與質體的混合液,置入預冷之電極管 (cuvette)中。冰浴5分鐘後,於電場強度2.25 kV、電阻200 T、電容25 pF下進行電轉形。再生培養於1 mL SB培養基 (35 g/L胰蛋白、20 g/L酵母萃取物、5 g/L氣化鈉)中,於 37 C、120 rpm轉速震盈培養1小時。以離心力loooo Xg 離心10分鐘’去除多餘培養液後,塗抹於含適量抗生素之 LB培養基上’於37。(:培養16小時。 (三)轉形株之篩選 使用菌落聚合酶鏈鎖反應(colony PCR)篩選(screening) 201231667 轉形株。此法為利用特異性引子對目標去氧核醣核酸進行 聚合酶鏈鎖反應,以偵測菌落是否含有目標去氧核醣核酸 片段。在1.5 mL微量離心管中加入dNTPs、引子對、Gen TaqTM DNA polymerase (GeneMark Technology Co., Ltd 5 Taipei,Taiwan)、1 〇x Gen Taq buffer 及滅菌去離子水調整 反應總體積’混合均勻後分裝於PCR小管中(10 μΐ^/管)。 將挑取之菌落以牙籤自培養基中點至PCR小管,進行PCR 反應。反應條件為:95°C反應3或15分鐘(大腸桿菌為3 分鐘;後續篩選乳酸鏈球菌之轉形株則為15分鐘),以下 進行25個循環:95°C反應30秒、引子黏合溫度(Tm)反應 30秒、72°C聚合酶反應(反應時間視增幅片段大小而定,201231667 VI. Description of the Invention: [Technical Field] The present invention relates to a method for producing a sweet protein, and more particularly to a method for producing a sweet protein using a controllable acid-inducing system. [Prior Art] Lactic acid bacteria are a group of quite complex bacteria. • Widely distributed in nature, they can be fermented with carbohydrates to produce lactic acid. It has been widely used in dairy products, food processing or preservation since ancient times. It is also regarded as a food grade strain and is one of the most widely used and economically effective industrial bacteria. Lactic acid bacteria can also be used for the production of foods and pharmaceutical proteins, for example, the production of sweet protein, and the ability of lactic acid bacteria to secrete proteins to produce extracellular proteins, which is considered to be a good protein expression system. Many lactic acid bacteria expression systems have been described, and current systems for heterologous protein expression can be roughly classified into continuous performance systems and inducible expression systems. The former can continue to trigger the expression of foreign genes; the latter needs to induce foreign gene expression in a specific environment. Continuous 蜇 performance systems can consistently represent foreign proteins, but if they are harmful to the host, they can harm the host lactic acid bacteria and even cause death. The use of an inducible expression system 4 avoids the damage caused by the continued expression of cytotoxic proteins. The acid-induced expression system is a kind of induction system. The sputum promoter is induced by pH, and can metabolize acid production during growth. (10) (6) Stealing (6) 201231667 Protein production. However, the time required for self-induction is long, and it is not convenient to control the induction time, so that when the acid-induced expression system is to be applied, for example, to produce a sweet protein, it is difficult to induce production of a protein at an appropriate time point. SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a method for producing a sweet protein using a controllable acid-inducing system which can be induced at an appropriate time to produce a protein. One aspect of the present invention is to provide a method of making a sweet protein using a controllable acid-inducing system comprising the following steps. First, a recombinant plastid comprising an acid-inducible promoter and a deoxyribonucleic acid fragment as shown in SEQ ID NO: 2 is constructed. Next, this recombinant plasmid was introduced into Streptococcus mutans (10) to obtain a transformed strain. Then, the transformed strain is cultured in a medium in which the pH of the medium is maintained at 6.5 to 7.5. When the transformant grows at an optical density (OD6G()) value of 0.6-4.5 at a wavelength of 600 nm, 0.1% by weight to 0.5% by weight of lactic acid is added to the medium to activate the acid-inducible promoter, thereby deoxyribonucleic acid The fragment produces a sweet protein (brazzein). According to an embodiment of the invention, wherein the acid-inducible promoter has a deoxyribonucleic acid fragment as shown in SEQ ID NO: 1. According to an embodiment of the invention, wherein the medium is fermentation medium B (FMB). According to an embodiment of the present invention, the content of lactic acid in the medium is from 0.1% by weight to 0.3% by weight to induce the production of protein by the lactic acid bacteria. 201231667 Therefore, 'this method can be used to increase the amount of transformed strains, and then induce at a time point (for example, appropriate g body density) to produce a large amount of sweet glutinous protein. Furthermore, the inducer of the method is lactic acid, which is not only cheap. It is easy to obtain, and it is a food-grade reagent, which is beneficial to the production of food or pharmaceutical protein. [Embodiment] / The present invention is to increase the amount of lactic acid (tetra) to an appropriate bacterial body and then add lactic acid to induce the acid of lactic acid bacteria to induce the production of sweet protein. The brothers and sisters will be divided into two parts. The first part will explain the application basis of the implementation of the present invention. The second part will explain the method of expressing the sweet egg self-quality in the drug-induced expression system in the larvae. Part I: The gene expression system of the Ρ170 promoter is a species of acid-induced expression system. This natural promoter is induced by ρΗ value and uses glucose as a carbon source. During the growth phase, the bacteria are converted from the post-exponential phase (p〇steXp〇nential phaSe) to the stationary phase to produce acid, so that the pH of the environment is less than 6, thereby initiating self-induction to produce protein ( Hereinafter referred to as "self-induction". If the pH of the environment is greater than 6, the pi7〇 in the bacteria will not be activated. In the protein part of the induced expression, brazzein is a sweet protein which has the advantages of high sweetness, low calorie, good water solubility, good heat resistance and good pH stability as a sweetener. Its taste is similar to that of strict sugar and is used by microorganisms. It does not cause oral tooth decay and is suitable for diabetic patients. 201231667 Use > 叮 to become a substitute for nutritive carbohydrates in food. Brazzein is purified from natural fruits and genetically engineered to produce bi*azzein astringent protein, which enables it to be further developed in the food industry. The sweet protein is brazzein. ^Inventive system uses a medium with a pH greater than 6, first extracts the amount of lactic acid bacteria to the appropriate cell density, and then adds lactic acid to induce the acid-induced lactic acid bacteria = expression system' to control the lactic acid bacteria to mass produce sweet protein (hereinafter referred to as "Compulsory acid induction"). In the acid-fast bacteria induction test, a recombinant plastid that can be transduced with the sweet-sweet protein of sequence identification number 1 containing the gene sequence of the sweet-sweet protein (SEQ ID NO: 2) and the P170 promoter ( Sequence identification number 3). This plastid was transformed into L. lactis for subsequent self-induction test and forced acid induction test. Please refer to Figure 1 for the results of the self-induced test of Streptococcus lacticus. The recombinant plastid-resistant S. mutans solution was inoculated overnight to a fresh fermentation medium B (FMB) formulated as 1.5% soy protein (SOyt〇ne), ι〇/〇. Glucose (giuc〇se), 17 mM dihydrogen hydride (ΚΗ2Ρ04), 72 mM acid hydrogen di-(κ2ΗΡ04) '1% yeast extract, 1 mM magnesium sulfate heptahydrate (MgS〇4. I wish 2〇) and o.imM — manganese sulfate (M11SO4 · H20). The optical density (OD_) value of the initial wavelength of 600 nm was adjusted to 〇.〇1, and the cultivation was continued. (a) to measure the d_ value after 2, 4, 6, 8, 10, 12, and 24 hours of culture, (B) to measure the pH of the culture solution at the above time point '(C) is at the above time point Take the halogen 'centrifugation of the cells and supernatant' to carry out the Western blot method to detect the performance of the sweet protein. Part (A) of the results in Figure 1 shows that 'the growth of Streptococcus mutans on 〇D(10) 7 201231667 tends to be flat when the absorbance reaches 4.5. In the control (B) part, the pH of the P170 promoter is about 5.5- Between 6.5, the performance of recombinant sweet protein was detected in the 10th hour in part (C). Figure 2 shows the results of the forced acid induction test of Streptococcus lacticus. The lactic acid-producing bacterium of the bacterium having a recombinant plastid cultured overnight was inoculated to fresh FMB medium, and the initial OD6 enthalpy value was adjusted to 0.01, and the culture was continued. Adding 0.1% by weight, 0.3% by weight, 0.5% by weight, 0.7% by weight or 1% by weight of lactic acid at 5 hours (about OD_value of 0.673, pH 6.93), respectively, changing the pH to 6.67, 6.23, respectively. 5.57, 4.74, 4.12. (A) to measure the absorbance of 〇D6〇〇 at different time points; (B) to measure the pH of the culture solution at different time points; (C) to take the bacterial solution at the above time point, and centrifuge the isolated cells and supernatant Liquid, Western blotting method to detect the performance of sweet protein. Part of the results in Figure 2 (A) shows that the addition of 0.1% by weight and 0.3% by weight of lactic acid lactic acid bacteria continued to grow; (B) showed that the addition of lactic acid, the pH of the culture solution decreased faster than the group without lactic acid. In the (C) part, it was shown that the addition of 0.1% by weight of lactic acid could detect the performance of the recombinant sweet protein at the 8th hour, and the addition of 0.3% by weight of lactic acid could detect the expression of the recombinant sweet protein at the 10th hour. In contrast, when a group containing 0.5% by weight or more of lactic acid was added, the expression of the sweet protein could not be detected. Part II: As stated above, one embodiment of the invention converts a segment of a DNA fragment encoding a sweet-sweet protein into S. lacticis. Borrowing 201231667, lactic acid is added to induce the lactic acid bacteria to induce the production of sweet protein. Applicable to the present invention is a coded-producing heterologous protein j body which comprises an acid-inducible promoter, is transduced by pH, and is of a quality. Unless otherwise specified, "= protein ΓΝΑ p°lymerase" as described herein: start: 表现 phenotype promoter sequence, transcription start point sequence. 砀 适用 适用 适用 适用 适用 适用 适用 _ _ _ _ _ _ Recorded in =. Applicable strains are lactic acid strains with an acid-inducing system, with the elements of the appropriate factor and other starting (four) guiding systems. The medium suitable for the present invention includes but is not limited to the fermentation medium to be described It is the function of the buffer of the fermentation medium, so (4) in the medium of his knowing that 'even if the rise' is not rapid and rapid, the growth of the lactic acid bacteria will be stagnant or even decreased, thus increasing the density of the bacteria. According to the required culture and performance requirements, and different promoters have different induction conditions, the pH value and the bacterial body temperature of the culture medium for maintaining the growth of the cells can be appropriately adjusted, and then induced at the appropriate time to achieve the desired The amount of protein expression. For example, according to the test results of the first part, the induced pH of the ρ17() promoter is between about 5·5_6 5 , so, in an example The pH of the culture medium for the growth of the cells is maintained at 6.5 7.5 to increase the density of the cells. When the amount of the above-mentioned transformed strain is at an optical density (〇d6gq) at a wavelength of 6 〇〇 nm, the value reaches 0.6-4.5. Lactic acid may be added to the medium to activate the acid-inducible promoter to produce a sweet protein. An embodiment of the present invention will now be provided to express the sweet protein to 201231667 to illustrate the method and effect of the present invention. The construction of the body (pNZABBA) is a flow chart of the plastid (pNZABBA). In this example, the 'flavinucrase' message with Bacillus subtilis &//& The peptide (SPsacB) and the plastid pNZNSS of the sweet protein gene fragment are used as templates, and the gene amplification is carried out by using a primer pair as shown in SEQ ID NO: 4 and sequence identification φ No. 5, wherein the obtained amplification product is, for example, a sequence identification number. The nucleic acid fragment shown in Figure 6, and the nucleic acid fragment shown in SEQ ID NO: 6 is designed to directly interface with the P170 promoter. Next, the nucleic acid fragment shown by SEQ ID NO: 6 is used as a template, such as sequence identification number 7 and The primer pair shown in Figure 8 recognizes the amplified gene to obtain a nucleic acid fragment as shown in SEQ ID NO: 9, wherein the nucleic acid fragment represented by SEQ ID NO: 9 is an acid-inducible promoter-sweet protein expression cassette (expression) The deoxyribonucleic acid fragment of cassette is called the code ABB A. The amplified fragment is first cut, and then the T4 ligase is used with the vector pNZDSASm-SacBA2-4 which is cleaved by the same restriction enzymes (T4 DNA ligase) The bonding was carried out at a suitable molar ratio to obtain a constructed pNZABBA plastid. The vector pNZDSASm-SacBA2-4 can be referred to "Improving the Secretory Expression of the First Type Recombinant Antifreeze Protein Analogs in Streptococcus Mutans" (see Huang Xinhui, 2007), whose promoter and transcription terminator are from LactobacUlus. Acidophilus', Lb. acidophiius) Surface layer protein; S-layer protein 201231667 (PslpAl, TslpA) 'Message peptide (spsacB) is derived from Bacillus subtilis fructanase Resistance gene of chloramphenicol. The above plastid selection operation may include, but is not limited to, the following steps: The gene product amplified by the polymerase chain reaction may be first purified in a commercial kit, and the purified product may be subjected to a subsequent cleavage reaction. The shearing system is carried out according to the procedure provided by the restriction enzyme manufacturer. In short, take appropriate amount of DNA sample, sterile deionized water, acetylated bovine serum albumin and restriction enzyme buffer into a microcentrifuge tube, add appropriate amount of restriction enzymes, mix well and place at the optimal reaction temperature of the enzyme. -4 hours, after the completion of the action, separation was carried out by agarose gel electrophoresis. Thereafter, the colloid containing the target fragment is cleaved and the method or quotient for recovering DN A commonly used in the art is utilized. The oral kit is recycled. The recovered product can be subjected to a bonding reaction. The DNA ligation reaction is to take the carrier DNA and the fragment to be embedded, mix it in an appropriate ratio, add an appropriate amount of ligase buffer and sterilized deionized water to mix evenly, and then add an appropriate amount of ligase to mix and knead, and react at a suitable reaction temperature of the enzyme. After the time, the reaction was terminated by heating at 65 ° C for 1 Torr. After the mixture was cooled, the transformation was carried out and transformed into JM109 competent cells of Escherichia coli. 2. Transformation of Escherichia coli Transformation of plastid into Escherichia coli can be included but not limited by the following steps: (1) Preparation of E. coli electric competent cells 201231667 E. coli electric competent cells (electr〇competent cell) The preparation was modified by the method published by Miller (1994). A single colony was picked and inoculated into an appropriate amount of LB medium (1% tryptone, 0.5% yeast extract, 1% sodium chloride (NaCl)) at 37 ° C, 150 rpm. Under the shock culture. Inoculate one-hundredth of the volume of the overnight culture (12-16 hr) in fresh LB medium, shake at 37 ° C, 150 rpm until the OD^oo value reaches 〇.4-〇·6, the bacterial solution Ice bath for 30 minutes 'pour into a sterilized centrifuge bottle' by centrifugation at 7 〇〇〇 xg, centrifuge at 4 ° C for 15 minutes, discard the supernatant. φ Wash the cells three times with an equal volume of the original culture solution, half the volume of the original culture solution, and 1 mL of ice-cold sterilized 10% glycerol (the cells were fully suspended, centrifuged at 7000 xg for 15 minutes at 4 ° C and Discard the supernatant). Finally, the cells were suspended by ice-cold sterilization of 10% glycerol in the original culture medium volume, and packed into several tubes (40 μί/tube), frozen in liquid nitrogen, and stored in _80〇c. (1) The plastid is transformed into E. coli and 40 pL of electric competent cells are thawed on ice, and a mixture of competent cells and plastids is taken in by adding 1 φ body, and placed into a pre-cooled electrode tube (cuvette). in. After 5 minutes of ice bathing, electrical transformation was performed at an electric field strength of 2.25 kV, a resistance of 200 T, and a capacitance of 25 pF. The cells were regenerated in 1 mL of SB medium (35 g/L trypsin, 20 g/L yeast extract, 5 g/L sodium), and cultured at 37 C, 120 rpm for 1 hour. Centrifuge at loooo Xg for 10 minutes to remove excess culture solution and apply to LB medium containing appropriate antibiotics at 37. (: Culture for 16 hours. (C) Screening of transgenic plants using colony polymerase chain reaction (colony PCR) screening (screening) 201231667 Transformed strain. This method uses a specific primer to polymerize the target DNA. Chain reaction to detect whether the colony contains the target DNA fragment. Add dNTPs, primer pair, Gen TaqTM DNA polymerase (GeneMark Technology Co., Ltd 5 Taipei, Taiwan), 1 〇x to a 1.5 mL microcentrifuge tube. The total volume of the reaction was adjusted by Gen Taq buffer and sterilized deionized water. After mixing, the mixture was dispensed into a PCR tube (10 μΐ^/tube). The picked colonies were picked up from the medium by a toothpick to the PCR tube for PCR reaction. The conditions were: reaction at 95 ° C for 3 or 15 minutes (3 minutes for Escherichia coli; 15 minutes for subsequent screening of the transformed strain of Streptococcus faecalis), followed by 25 cycles of 95 ° C reaction for 30 seconds, primer adhesion temperature ( Tm) reaction for 30 seconds, 72 ° C polymerase reaction (reaction time depends on the size of the fragment,

Gen TaqTMDNApolymerase : 1 kb/分鐘),再於 72°C 反應 7 分鐘。聚合酶鏈鎖反應之產物以瓊脂醣膠體電泳觀察有無 預估大小之DNA片段。 (四)重組質體之確認 利用商品化套組或以習知萃取方法萃取經菌落聚合酶 鏈鎖反應確認之轉形株質體,並經由限制酶剪切觀察片段 大小,以確認確實嵌入有目標去氧核醣核酸片段。將經確 認片段大小無誤之質體委由Tri-I Biotech,Inc. (Taipei, Taiwan)進行去氧核酿核酸定序。 三、將質體轉形入乳酸菌 將pNZABBA質體轉形至乳酸菌,可以包含但不限定以 下列步驟完成: (一)乳酸菌電勝任細胞之製備: 201231667 製備方式參照Holo及Ness (1995)所發表之方法修改而 成。挑取單一菌落接種於GM17培養液(購自Difco,滅菌後 再加入0.5%乳糖)中,於30。(:靜置隔夜培養(12-16小時),再 接種菌液體積之百分之一於含1%甘胺酸(glyCine)之新鮮 SGM17培養液(於GM17培養液中再加入0.5V[嚴糖)中,於30 °C靜置培養至OD_之吸光值到達0.2-0.7,將菌液冰浴3〇分 鐘後’以離心力7000xg、4°C離心10分鐘,棄除上清液。分 別以與原培養液等體積之冰冷滅菌沖洗緩衝液I (0 5 M蔗 糖、0.1%甘油)、原培養液體積一半之冰冷滅菌沖洗緩衝液 II (0.5M蔗糖、10 %甘油、0.05M乙二胺四乙酸 (Ethylenediaminetetraacetic acid,EDTA))、原培養液體積一 半之冰冷滅菌沖洗緩衝液I及1 mL之冰冷滅菌沖洗緩衝液工 清洗ΐ體4次(懸浮菌體後以離心力7〇〇〇Xg、4。〇離心15分鐘 並去除上清液),再以原培養液體積的千分之一至五百分之 一之冰冷滅菌沖洗緩衝液I重新懸浮並分裂成數管(4〇^l), 以液態氮急速冷凍後保存於-8(TC。 (二)質體轉形: 取40吣之電勝任細胞置於冰上融解,加入1μΙ^欲轉形 之ρΝΖΑΒΒΑ質體,吸取勝任細胞與質體的混合液,置入預 冷之電極管(cuvette)中,冰浴5分鐘後,於電場強度2 25kv、 電阻200T、電容25卟下進行電轉形。再生培養於i mL SGMHMC培養液(於SGMn培養液中再加入2〇 _氯化鎂 (PH6.8)和2 mM氯化約(PH6.8))中,3(rc靜置培養3小時,將 菌體以離^力10_xg _濃縮並㈣於含適量抗生素之 SR培養基(1%姨蛋白(tryptone)、〇.5%酵母萃取物、2〇%蔑 14 201231667 糖、1%葡萄糠、2.5〇/°明膠(gelatin)、l.5〇/o agar)上,於30°C 厭氧培養16小時。 四、酸誘導系統表現重組甜味蛋白質於乳酸鏈球菌宿主 將帶有PNZABBA質體的乳酸鏈球菌NZ9000前培養於 ^ 含適量抗生素之醱酵培養基B培養液中,於3(TC靜置隔夜培 養後,將菌液接種於不含抗生素之新鮮醱酵培養基B培養液 中,菌體生長之培養液pH值維持在6.5-7.5,以利增加菌體 魯 密度。於第5小時加入0.1重量百分比至〇.5重量百分比的乳 酸,持續生長至第8小時,以離心力l〇〇〇〇xg、4ΐ離心15 分鐘並收集上清液,將上清液進行膜過濾去除菌體及酸分 子而得到濃縮液,將此濃縮液進行西方墨點法可偵測到甜 味蛋白質的表現。 本發明之重組質體構築、轉形作用及轉形株之筛選, 為此技術領域中具有通常知識者,依照現有發展的知識與 技術即可輕易完成,故此處不多贅述。 • 雖然本發明已以實施方式揭露如上,然其並非用以限 定本發明,在本發明所屬技術領域中任何具有通常知識 者,在不脫離本發明之精神和範圍内,當可作各種之更動 與潤飾,因此本發明之保護範圍當視後附之申請專利範圍 所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下: 15 201231667 第1圖為乳酸鏈球菌之自我誘導試驗結果。 第2圖為乳酸鏈球菌之強制酸誘導試驗結果。 第3圖為質體(pNZABBA)之構築流程圖。 【主要元件符號說明】 (無)Gen TaqTM DNA polymerase: 1 kb/min), then react at 72 ° C for 7 minutes. The product of the polymerase chain reaction was observed by agarose gel electrophoresis for the presence or absence of a DNA fragment of an estimated size. (IV) Confirmation of recombinant plastids The plastids confirmed by colony polymerase chain reaction were extracted by commercial kits or by conventional extraction methods, and the fragment size was observed by restriction enzyme cleavage to confirm that it was indeed embedded. Target DNA fragment. The deacetylated nucleic acid sequencing was performed by Tri-I Biotech, Inc. (Taipei, Taiwan). 3. Transformation of plastids into lactic acid bacteria The transformation of pNZABBA plastids into lactic acid bacteria can be included but not limited by the following steps: (1) Preparation of lactic acid bacteria competent cells: 201231667 Preparation method refers to Holo and Ness (1995) The method was modified. A single colony was picked and inoculated into GM17 medium (purchased from Difco, sterilized and then added with 0.5% lactose) at 30. (: Allow overnight culture (12-16 hours), then inoculate one percent of the volume of the bacterial solution to fresh SGM17 medium containing 1% glycine (glyCine) (add 0.5V to the GM17 medium) In the sugar), the solution was allowed to stand at 30 ° C until the absorbance of OD_ reached 0.2-0.7, and the bacterial solution was ice-bathed for 3 minutes, then centrifuged at 7000 x g for 10 minutes at 4 ° C, and the supernatant was discarded. Iso-sterilized rinse buffer I (0 5 M sucrose, 0.1% glycerol) in the same volume as the original culture solution, and ice-cold sterilized rinse buffer II (0.5 M sucrose, 10% glycerol, 0.05 M ii) in half the volume of the original culture solution. Ethylenediaminetetraacetic acid (EDTA), half of the original culture medium, ice-cold sterilized rinse buffer I and 1 mL of ice-cold sterilized rinse buffer for cleaning the corpus callosum 4 times (after suspension of the cells, the centrifugal force is 7〇〇〇Xg) 4. Centrifuge for 15 minutes and remove the supernatant), then resuspend and split into several tubes (4〇^l) with one thousandth to one-fifth of the volume of the original culture solution. It is quickly frozen in liquid nitrogen and stored in -8 (TC. (2) plastid transformation: take 40 吣The cells were thawed on ice, and 1 μΙ^ 转 欲 欲 ΝΖΑΒΒΑ , , , , , , , , 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜 胜25kv, resistance 200T, capacitance 25卟 under electric transformation. Regenerated and cultured in i mL SGMHMC medium (add 2〇_magnesium chloride (PH6.8) and 2 mM chlorination (PH6.8) to SGMn medium) Medium, 3 (rc was statically cultured for 3 hours, the cells were concentrated at a force of 10_xg_ and concentrated in an SR medium containing appropriate amounts of antibiotics (1% tryptone, 〇.5% yeast extract, 2%%)蔑14 201231667 Sugar, 1% grape vine, 2.5 〇 / ° gelatin (gelatin), 1.5 〇 / o agar), anaerobic culture for 16 hours at 30 ° C. Fourth, the acid-induced system expresses recombinant sweet protein The nisin host is cultured in the broth of the fermentation medium B containing the appropriate amount of antibiotics, and is inoculated into the broth of the fermentation medium B containing the appropriate amount of antibiotics. After culturing overnight, the bacterium is inoculated with antibiotics. In the fresh fermentation medium B culture solution, the pH of the culture medium for the growth of the cells is maintained at 6.5-7.5 to increase the bacterial cells. Density. Add 0.1% by weight to 5% by weight of lactic acid at the 5th hour, continue to grow to the 8th hour, centrifuge at 1000 μg for 10 minutes, collect the supernatant, and collect the supernatant. Membrane filtration removes the bacteria and acid molecules to obtain a concentrate, and the concentrate is subjected to Western blotting to detect the expression of the sweet protein. The recombinant plastid construction, the transformation effect and the screening of the transformed strain of the present invention can be easily accomplished according to the existing knowledge and technology in the technical field, and therefore will not be described here. The present invention has been disclosed in the above-described embodiments, and is not intended to limit the invention. Any one of ordinary skill in the art to which the invention pertains can make various changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above and other objects, features, advantages and embodiments of the present invention more obvious, the description of the drawings is as follows: 15 201231667 Figure 1 shows the results of self-induction test of Streptococcus lacticus . Figure 2 shows the results of the forced acid induction test of Streptococcus lacticus. Figure 3 is a flow chart of the construction of the plastid (pNZABBA). [Main component symbol description] (none)

16 201231667 序列表 <110>國立中興大學 <120>利用可控制的酸誘導系統製造甜咮蛋白質之方法 <160>9 <210>SEQ ID NO: 1 <211>16 201231667 Sequence Listing <110> National Chung Hsing University <120> Method for producing sweet glutinous protein using a controllable acid induction system <160>9 <210> SEQ ID NO: 1 <211>

<212>PRT <213> <220> <223>甜味蛋白質(brazzein)之胺基酸序列 <400>1<212>PRT <213><220><223> Amino acid sequence of brazzein <400>

Asp Lys Cys Lys Lys Val Tyr Glu Asn Tyr Pro Val Ser Lys Cys 15 10 15Asp Lys Cys Lys Lys Val Tyr Glu Asn Tyr Pro Val Ser Lys Cys 15 10 15

Gin Leu Ala Asn Gin Cys Asn Tyr Asp Cys Lys Leu Asp Lys His 20 25 30Gin Leu Ala Asn Gin Cys Asn Tyr Asp Cys Lys Leu Asp Lys His 20 25 30

Ala Arg Ser Gly Glu Cys Phe Tyr Asp Glu Lys Arg Asn Leu Gin 35 40 45Ala Arg Ser Gly Glu Cys Phe Tyr Asp Glu Lys Arg Asn Leu Gin 35 40 45

Cys lie Cys Asp Tyr Cys Glu Tyr 50 <210>SEQIDNO:2 <211>165Cys lie Cys Asp Tyr Cys Glu Tyr 50 <210> SEQ ID NO: 2 <211>165

<212>DNA <213><212>DNA <213>

< 220 > CDS <223 >甜味蛋白質(brazzein)之基因序列 <400>2 60 120 gataaatgta aaaaagttta tgaaaattat cctgtttcaa aatgtcaact tgcaaatcaa tgtaattatg actgcaaact tgataagcat gcgcgttcag gagaatgttt ttatgatgaa aaacgtaatc ttcaatgtat ttgtgattat tgtgaatatt aataa 165 <210>SEQ ID NO: 3 <211>57 <212>DNA <213> < 220 > promoter 201231667 <223>P170啟動子 <400>3 atttttggtt gccatttgtt aacgctgnnn nnnnnnnnnn ntgctataat nnnnnng 57 <210>SEQ ID NO: 4 <211>89 <2I2>DNA <213>人工序列 < 220 > primer <223>進行PCR增幅序列辨識編號6片段的引子(forward) <400>4< 220 > CDS <223 > gene sequence of sweet protein (brazzein) <400>2 60 120 gataaatgta aaaaagttta tgaaaattat cctgtttcaa aatgtcaact tgcaaatcaa tgtaattatg actgcaaact tgataagcat gcgcgttcag gagaatgttt ttatgatgaa aaacgtaatc ttcaatgtat ttgtgattat tgtgaatatt aataa 165 <210> ID NO: 3 <211>57 <212>DNA<213><220> promoter 201231667 <223>P170 promoter <400>3 atttttggtt gccatttgtt aacgctgnnn nnnnnnnnnn ntgctataat nnnnnng 57 <210> SEQ ID NO: 4 < 211 > 89 < 2I2 > DNA < 213 > Artificial Sequence < 220 > Primer < 223 > Carrying PCR Amplification Sequence Identification No. 6 Fragment of Forward <400>

cctcctctcc ctagtgctat aatacatatg agagctccag acaaaggagg tataaccata 60 tgaacatcaa aaagtttgca aaacaagca 89 <210>SEQ ID NO: 5 <211>86 <212>DNA <213>人工序列 < 220 > primer <223〉進行PCR增幅序列辨識編號6片段的引子(reversed) <400>5 tttatactcg agtctagaaa aaagacagag ctttcgctct gcctttttca aagcttctgc 60 agttattaat attcacaata atcaca 86 <210>SEQIDNO:6 <211>373 <212〉DNA <213>人工序列 <220> <223> <400 >6 cctcctctcc ctagtgctat aatacatatg agagctccag acaaaggagg tataaccata 60 tgaacatcaa aaagtttgca aaacaagcaa cagtattaac ctttactacc gcactgctgg 120 caggaggcgc aactcaagcg tttgcggata aatgtaaaaa agtttatgaa aattatcctg 180 2 201231667 tttcaaaatg tcaacttgca aatcaatgta attatgactg caaacttgat aagcatgcgc gttcaggaga atgtttttat gatgaaaaac gtaatcttca atgtatttgt gattattgtg aatattaata actgcagaag ctttgaaaaa ggcagagcga aagctctgtc ttttttctag actcgagtat aaa 373 240 300 360 <210>SEQ ID NO: 7 <211>69 <212>DNA <213>人工序列 <220〉primer <223>進行PCR增幅序列辨識編號9片段的引子(forward)Cctcctctcc ctagtgctat aatacatatg agagctccag acaaaggagg tataaccata 60 tgaacatcaa aaagtttgca aaacaagca 89 <210> SEQ ID NO: 5 <211>86 <212>DNA<213>Artificial sequence<220>primer<223> Recognized number 6 fragment (ltured) <400>5 tttatactcg agtctagaaa aaagacagag ctttcgctct gcctttttca aagcttctgc 60 agttattaat attcacaata atcaca 86 <210> SEQ ID NO: 6 <211>373 <212>DNA <213> artificial sequence< 220 > < 223 > < 400 > 6 cctcctctcc ctagtgctat aatacatatg agagctccag acaaaggagg tataaccata 60 tgaacatcaa aaagtttgca aaacaagcaa cagtattaac ctttactacc gcactgctgg 120 caggaggcgc aactcaagcg tttgcggata aatgtaaaaa agtttatgaa aattatcctg 180 2 201231667 tttcaaaatg tcaacttgca aatcaatgta attatgactg caaacttgat aagcatgcgc gttcaggaga atgtttttat gatgaaaaac gtaatcttca atgtatttgt gattattgtg aatattaata actgcagaag ctttgaaaaa Ggcagagcga aagctctgtc ttttttctag actcgagtat aaa 373 240 300 360 <210> SEQ ID NO: 7 <211>69 <212>D NA < 213 > artificial sequence < 220 >primer < 223 > performs PCR amplification sequence identification number 9 segment of the forward (forward)

<400>7 ttataaagat ctatttttgg ttgccatttg ttaacgctgc ctcctctccc tagtgctata atacatatg 69 60 <210>SEQIDNO:8 <211>29 <212>DNA <213>人工序列 < 220 > primer <223〉進行PCR增幅序列辨識編號9片段的引子(reversed) <400>8 tttatactcg agtctagaaa aaagacaga 29<400>7 ttataaagat ctatttttgg ttgccatttg ttaacgctgc ctcctctccc tagtgctata atacatatg 69 60 <210> SEQ ID NO: 8 <211>29 <212>DNA <213> Artificial Sequence<220 > Primer <223> Repliced sequence identification number 9 fragment <400>8 tttatactcg agtctagaaa aaagacaga 29

<210>SEQ ID NO:9 <211>412 <212>DNA <213>人工序列<220> <223 >酸誘導啟動子_甜味蛋白質表現卡匣 <400>9 ttataaagat ctatttttgg ttgccatttg ttaacgctgc ctcctctccc tagtgctata atacatatga gagctccaga caaaggaggt ataaccatat gaacatcaaa aagtttgcaa aacaagcaac agtattaacc tttactaccg cactgctggc aggaggcgca actcaagcgt ttgcggataa atgtaaaaaa gtttatgaaa attatcctgt ttcaaaatgt caacttgcaa atcaatgtaa ttatgactgc aaacttgata agcatgcgcg ttcaggagaa tgtttttatg atgaaaaacg taatcttcaa tgtatttgtg attattgtga atattaataa ctgcagaagc 60 120 180 240 300 360 3 412 201231667 tttgaaaaag gcagagcgaa agctctgtct tttttctaga ctcgagtata aa<210> SEQ ID NO: 9 <211>412 <212>DNA<213>Artificial sequence<220><223> Acid-induced promoter_sweet protein expression cassette<400>9 ttataaagat ctatttttgg ttgccatttg ttaacgctgc ctcctctccc tagtgctata atacatatga gagctccaga caaaggaggt ataaccatat gaacatcaaa aagtttgcaa aacaagcaac agtattaacc tttactaccg cactgctggc aggaggcgca actcaagcgt ttgcggataa atgtaaaaaa gtttatgaaa attatcctgt ttcaaaatgt caacttgcaa atcaatgtaa ttatgactgc aaacttgata agcatgcgcg ttcaggagaa tgtttttatg atgaaaaacg taatcttcaa tgtatttgtg attattgtga atattaataa 60 120 180 240 300 360 3 412 201231667 tttgaaaaag gcagagcgaa agctctgtct ctgcagaagc tttttctaga ctcgagtata Aa

44

Claims (1)

201231667 七、申請專利範圍: 1. 一種利用可控制的酸誘導系統製造甜味蛋白質之 方法,包含: 構築一重組質體,其包含酸誘導啟動子及如序列辨識 編號2所示的去氧核糖核酸片段; 將該重組質體導入乳酸鍵球菌(ZaciococciAS· ,以獲 得一轉型株; φ 培養該轉形株於培養基中,其中該培養基之pH值係 維持在6.5 - 7.5,以及 當該轉形株之一菌量於波長600 nm之光學密度(OD600) 值為0.6-4.5時,於該培養基中添加0.1重量百分比至0.5 重量百分比之乳酸以啟動該酸誘導啟動子,從而由該去氧 核糖核酸片段產生該甜味蛋白質(brazzein)。 2. 如請求項1所述之利用可控制的酸誘導系統製造甜 • 味蛋白質之方法,其中該酸誘導啟動子具有如序列辨識編 號1所示之去氧核糖核酸片段。 3. 如請求項1所述之利用可控制的酸誘導系統製造甜 味蛋白質之方法,其中該培養基為醱酵培養基B (fermentation medium B ; FMB)。 4. 如請求項1所述之利用可控制的酸誘導系統製造甜 味蛋白質之方法,其中該乳酸於該培養基中之含量為0.1 f L 201231667 重量百分比至0.3重量百分比。201231667 VII. Scope of Application: 1. A method for producing sweet protein using a controllable acid-inducing system, comprising: constructing a recombinant plastid comprising an acid-inducible promoter and deoxyribose as shown in SEQ ID NO: 2 a nucleic acid fragment; introducing the recombinant plastid into a lactic acid bacterium (ZaciococciAS.) to obtain a transformed strain; φ cultivating the transformed strain in a medium, wherein the pH of the medium is maintained at 6.5 - 7.5, and when the transformation When the optical density (OD600) value of the strain is 0.6-4.5 at a wavelength of 600 nm, 0.1% by weight to 0.5% by weight of lactic acid is added to the medium to activate the acid-inducing promoter, thereby deoxyribose The nucleic acid fragment produces the sweet protein (brazzein) 2. The method of claim 1, wherein the acid-inducible promoter has a sequence as shown in sequence identification number 1. a DNA fragment. 3. A method for producing a sweet protein using a controllable acid induction system according to claim 1, wherein the medium Fermentation medium B (FMB) 4. A method for producing a sweet protein using a controllable acid-inducing system according to claim 1, wherein the content of the lactic acid in the medium is 0.1 f L 201231667 by weight Percentage to 0.3 weight percent.
TW100103349A 2011-01-28 2011-01-28 Method for producing brazzein by using controllably acid-inducible system TWI472622B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100103349A TWI472622B (en) 2011-01-28 2011-01-28 Method for producing brazzein by using controllably acid-inducible system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100103349A TWI472622B (en) 2011-01-28 2011-01-28 Method for producing brazzein by using controllably acid-inducible system

Publications (2)

Publication Number Publication Date
TW201231667A true TW201231667A (en) 2012-08-01
TWI472622B TWI472622B (en) 2015-02-11

Family

ID=47069331

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100103349A TWI472622B (en) 2011-01-28 2011-01-28 Method for producing brazzein by using controllably acid-inducible system

Country Status (1)

Country Link
TW (1) TWI472622B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472615B (en) * 2014-01-17 2015-02-11 Univ Nat Chunghsing Transformant for producing soluble recombinant trefoil factor 1 and preparing method for soluble recombinant trefoil factor 1

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326580A (en) * 1993-02-16 1994-07-05 Wisconsin Alumni Research Foundation Brazzein sweetener
WO2000078922A2 (en) * 1999-06-21 2000-12-28 North Carolina State University Acid-inducible promoters for gene expression

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472615B (en) * 2014-01-17 2015-02-11 Univ Nat Chunghsing Transformant for producing soluble recombinant trefoil factor 1 and preparing method for soluble recombinant trefoil factor 1

Also Published As

Publication number Publication date
TWI472622B (en) 2015-02-11

Similar Documents

Publication Publication Date Title
Morello et al. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion
JP3950196B2 (en) Alcohol dehydrogenase and its use for enzymatic production of chiral hydroxy compounds
Sridhar et al. Identification of endopeptidase genes from the genomic sequence of Lactobacillus helveticus CNRZ32 and the role of these genes in hydrolysis of model bitter peptides
US10308925B2 (en) Methionine lyase, encoding gene and biosynthetic method thereof
US20230235340A1 (en) Process for extracellular secretion of Brazzein
Stentz et al. Controlled release of protein from viable Lactococcus lactis cells
WO1996032487A1 (en) Method for the construction of vectors for lactic acid bacteria like lactobacillus such that the bacteria can efficiently express, secrete and display proteins at the surface
Christensson et al. Cloning and expression of an oligopeptidase, PepO, with novel specificity from Lactobacillus rhamnosus HN001 (DR20)
CN110791522B (en) Double-plasmid food-grade lactobacillus plantarum expression system and application thereof
TW201231667A (en) Method for producing brazzein by using controllably acid-inducible system
CN111978407A (en) Heterologous expression method of lysine decarboxylase from thermophilic bacteria and application thereof
WO1994000581A1 (en) Lactobacillus expression system using surface protein gene sequences
JPH11500604A (en) Production of modified herring
CA2730741C (en) Self-replicating vector lacking an antibiotic-resistance gene
TW201224144A (en) Cell for preparing a competent cell and the use thereof, novel Escherichia coli and the use thereof, and method for preparing a competent cell
JP2850033B2 (en) Novel L-lactate dehydrogenase and gene encoding the same
WO2019004702A2 (en) Method for manufacturing functional sweetener
Le et al. Properties of β-Galactosidase from Lactobacillus zymae GU240, an Isolate from Kimchi, and Its Gene Cloning
Yao et al. Expression of bovine trypsin in Lactococcus lactis
CN110699340A (en) Recombinant aminopeptidase T derived from Listeria monocytogenes and application thereof
JP3173619B2 (en) Method for producing pyroglutamyl aminopeptidase
JP4275383B2 (en) Novel plasmid and shuttle vector containing the plasmid
JP2007228934A (en) Method for transforming bacterium belonging to genus rhodococcus
KR100652784B1 (en) 1 Novel C1 repressor binding promoter to be controlled by glucose expression vector containing the said promoter host containing the said vector and method for production of protein by using the said host
JP4161236B2 (en) Novel L-α-glycerophosphate oxidase and method for producing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees