TW201231045A - A composite of amorphous calcium phosphate/calcium sulfate hemihydrate (CSH/ACP) for bone implantation and process for producing the same - Google Patents

A composite of amorphous calcium phosphate/calcium sulfate hemihydrate (CSH/ACP) for bone implantation and process for producing the same Download PDF

Info

Publication number
TW201231045A
TW201231045A TW100102144A TW100102144A TW201231045A TW 201231045 A TW201231045 A TW 201231045A TW 100102144 A TW100102144 A TW 100102144A TW 100102144 A TW100102144 A TW 100102144A TW 201231045 A TW201231045 A TW 201231045A
Authority
TW
Taiwan
Prior art keywords
csh
acp
calcium
solution
bone
Prior art date
Application number
TW100102144A
Other languages
Chinese (zh)
Other versions
TWI395580B (en
Inventor
Jen-Chang Yang
Sheng-Yang Lee
Duen-Cheng Wang
Haw-Ming Huang
Wei-Jen Chang
Malosi Poma
Hong-Da Wu
Dian-Yu Ji
Original Assignee
Univ Taipei Medical
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Taipei Medical filed Critical Univ Taipei Medical
Priority to TW100102144A priority Critical patent/TWI395580B/en
Publication of TW201231045A publication Critical patent/TW201231045A/en
Application granted granted Critical
Publication of TWI395580B publication Critical patent/TWI395580B/en

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

The invention provides a composite of α -calcium sulfate (CS) hemihydrate/amorphous calcium phosphate(α -CSH/ACP), comprising α -CSH and ACP at a weight ratio of about 10: 90 to about 90: 10. Particularly, the composite of the invention has a resorption period of 3-6 months. The invention also provides a one-pot process for producing α -CSH/ACP composite of the invention. The one-pot process of the invention can produce α -CSH and ACP in a single process and easily obtain α -CSH/ACP composite.

Description

201231045 六、發明說明: 【發明所屬之技術領域】 本發明係提供一種α_半水硫酸鈣/非晶型碟酸鈣(α-CSH/ACP)複合物及其製備方法’特定言之,本發明之複 .合物包含cx-CSH與ACP且兩者之重量比係約ι〇:9〇至約 90:10。 【先前技術】 合成骨移植替代物(synthetic bone graft subsUtutes, SBGSs)因具備良好之生物相容性、骨傳導性及低疾病傳播 風險,使其逐漸的被廣泛應用於骨缺損之修復。典型的陶 莞骨移植材料如氫氧基構灰石(ha,、β_ 三鈣磷酸鹽(P-Ca3(P04)2, β-TCP)及硫酸鈣(cs,CaS〇4)等, 以粉末、顆粒、片狀、膏狀或塊狀等不同形式應用於各種 骨缺損狀況。現今已發展多種骨移植物之製備方式,總結 於表1。 表1 產品名稱 (製造商,工廠) Collagrafit (Zimmer Inc,美 國) MBCP (Biomatlante) Triosite (Zimmer Europe Ltd,英國) BCP (Bioland) Ostilit (Stryker Howmedica Osteonics,英國) 組合物(内容) 塗覆70%第I型牛膠原蛋白之 HA Replaniform(多孔陶瓷)珊瑚大 孔隙HA 200: Porites 60% HA,40% TCP 60% HA, > 40% TCP 20%HA,’ 80%TCP,不具有 大孔隙 成份(相) 吸收性R-型顆粒及條狀、 需要以骨髓穿速進行擴增 顆粒、長方形條、圓柱或 楔形 亦稱為MBCP(大孔隙雙相 磷酸鈣或BCP)201231045 VI. Description of the Invention: [Technical Field] The present invention provides an α_calcium sulfate hemihydrate/amorphous calcium silicate (α-CSH/ACP) composite and a preparation method thereof. The complex of the invention comprises cx-CSH and ACP and the weight ratio of the two is from about 〇:9〇 to about 90:10. [Prior Art] Synthetic bone graft subsutilus (SBGSs) have been widely used in the repair of bone defects because of their good biocompatibility, osteoconductivity and low risk of disease transmission. Typical pottery bone graft materials such as hydroxyapatite (ha, β_tricalcium phosphate (P-Ca3(P04)2, β-TCP) and calcium sulfate (cs, CaS〇4), etc. Different forms such as granules, flakes, pastes or lumps are used in various bone defects. A variety of bone graft preparation methods have been developed and are summarized in Table 1. Table 1 Product Name (manufacturer, factory) Collagrafit (Zimmer Inc, USA) MBCP (Biomatlante) Triosite (Zimmer Europe Ltd, UK) BCP (Bioland) Ostilit (Stryker Howmedica Osteonics, UK) Composition (Content) HA Replaniform (porous ceramic) coated with 70% Type I bovine collagen Coral macroporous HA 200: Porites 60% HA, 40% TCP 60% HA, > 40% TCP 20% HA, '80% TCP, no macroporous component (phase) Absorbent R-type particles and strips, Need to amplify particles, rectangular strips, cylinders or wedges at the rate of bone marrow perforation, also known as MBCP (macroporous biphasic calcium phosphate or BCP)

顆粒及塊狀,用於非結構 性移殖 150466.doc 201231045Granules and lumps for non-structural colonization 150466.doc 201231045

BoneSave (Stryker HowmedicaOsteonics,英 國BoneSave (Stryker HowmedicaOsteonics, UK

Cerasorb ORTHO (curasan)Cerasorb ORTHO (curasan)

Vitoss™ Scaffold (curasan)VitossTM Scaffold (curasan)

Conduit™ TCP 顆粒 (DePuy Spine) Cellplex™TCP合成之海 棉骨(Wright)ConduitTM TCP Particles (DePuy Spine) CellplexTM TCP Synthetic Sea Cotton (Wright)

Ceros 82Ceros 82

Synthes (USA) chronOS™ (Synthes)Synthes (USA) chronOSTM (Synthes)

Calciresorb (Ceraver Osteal,法國)Calciresorb (Ceraver Osteal, France)

Synthograf (Milter,美國) Augmen (Milter,美國) Skelite™ (Millenium Biologix)Synthograf (Milter, USA) Augmen (Milter, USA) SkeliteTM (Millenium Biologix)

Norian Skeletal Repair System (SRS)__ 20%HA, 80% TCP, 空隙大小400-600 μιη 純相β-TCP, 微孔隙:<80 μιη β-TCP,微孔隙:<1-1000 μπι >99% (β-TCP) Ca3(P〇4)2,Norian Skeletal Repair System (SRS)__ 20%HA, 80% TCP, void size 400-600 μιη pure phase β-TCP, microporosity: <80 μιη β-TCP, microporosity: <1-1000 μπι > 99% (β-TCP) Ca3(P〇4)2,

孔隙:1-600 μηι 由TCP製得之多孔磷酸鈣,孔 隙大小:100-400 μηι β-TCP β-TCP,孔隙大小:100-500 μηιPorosity: 1-600 μηι Porous calcium phosphate prepared by TCP, pore size: 100-400 μηι β-TCP β-TCP, pore size: 100-500 μηι

多孔隙TCPPorous TCP

體積小且緻密之TCP 體積大且緻密之TCP 多相,多孔之磷酸釣 可固化之磷酸約骨水泥 顆粒,較Ostilit強,作為空 隙填充物及移殖 顆粒大小為500-1,〇〇〇 μιη或 1,000-2,000 μηι 片狀(1-4 mm大小)及塊狀 (9x23 mm 圓柱) 不規則形顆粒,具有1.5至 3 mm的平均直徑Small and dense TCP Large and dense TCP multiphase, porous phosphate fishing solidified phosphate cement particles, stronger than Ostilit, as void filler and transfer particle size 500-1, 〇〇〇μιη Or 1,000-2,000 μηι flakes (1-4 mm size) and massive (9 x 23 mm cylinders) irregularly shaped particles with an average diameter of 1.5 to 3 mm

較Ceros 80具低的壓縮強度 顆粒、塊狀、楔形或圓枉 狀 牙周應用 牙周應用 牙周應用 顆粒及塊狀 可注射水泥、骨折物增加 在牙科領域中,對於SBGSs的吸收速率仍有改善的空 間。用於骨缺損處之SBGSs需快速地被吸收且被新骨取 代,使其可儘早執行牙科植體之放置。然而,用於牙科之 SBGSs的理想吸收期間仍然未知。依據臨床研究報導,骨 組織在無應力的療合期間為3至6個月’舉例來說,Kawai 等人在其X光檢查頜骨缺損及骨折之癒合的研究中,提出 骨癒合的時間約在3至6個月(Kawai T,Murakami S, Hiranuma H, Sakuda Μ. Healing after removal of benign cysts and tumors of the jaws. A radiologic appraisal. Oral 150466.doc 201231045Lower compressive strength particles, block, wedge or rounded periodontal application compared to Ceros 80. Application of periodontal application of granules and massive injectable cement, fracture increases in the dental field, and the absorption rate of SBGSs remains Room for improvement. SBGSs used in bone defects need to be quickly absorbed and replaced by new bones, allowing them to perform dental implant placement as early as possible. However, the ideal absorption period for SBGSs used in dentistry is still unknown. According to clinical studies, bone tissue is 3 to 6 months during stress-free therapy. For example, Kawai et al., in the study of X-ray examination of jaw defects and fracture healing, proposed time for bone healing. In 3 to 6 months (Kawai T, Murakami S, Hiranuma H, Sakuda Μ. Healing after removal of benign cysts and tumors of the jaws. A radiologic appraisal. Oral 150466.doc 201231045

Surg Oral Med Oral Pathol Oral Radiol Endod 1995; 79(4): 517-25; Kawai T, Murakami S, Hiranuma H, Sakuda M. Radiographic changes during bone healing after mandibular fractures. Br J Oral Maxillofac Surg 1997; 35(5): 312-8)° 因此在自然癒合之狀態下,頜骨缺損癒合之平均時間應為 為3至6個月,而SBGSs的吸收時間也應符合上述之骨癒合 時間才不為造成癒合上之困擾。 硫酸^(Calcium sulfate,CS)是一種可快速被吸收和生物 相容性之骨替代材,並具有骨引導功效。根據所含之結晶 水數量,硫酸鈣可分為二水硫酸鈣(CaS04.2H20,即石 膏)、半水硫酸鈣(CaSO4.0.5 H20,即熟石膏)或無水硫酸 鈣(CaS04)。以下為上述反應之化學反應方程式: 去水反應:CaSCVlHaCKsHheat—CaSCVZHbCKsHieHzO CaS〇41/2H20(s)+heat-^CaS〇4+2 H20 水合反應:CaSCV% H20(s)+3/2 H20—CaS04.2H20 (s) 半水硫酸鈣在體内的吸收時間長於二水硫酸鈣,然而,半 水硫酸鈣會透過水合反應而轉變成二水硫酸鈣,因此,在 商業上生產錠狀之硫酸鈣骨替代材時,係先將半水硫酸約 調水形成旋狀之二水硫酸妈’而後該錠狀之二水硫酸詞脫 水後轉化為半水硫酸鈣。CS與許多生物材料有關,已有報 導成骨細胞附著於c S及C S被破骨細胞吸收之體外研究, 然而,其1至2個月之體内吸收時間似乎過於迅速,因此針 對其吸收速率仍有改進之空間。。 文獻建議將CS與吸收速度較慢之磷酸鈣化合物合併使用 150466.doc 201231045 以降低CS複合材的吸收速率,如氫氧基磷灰石(HAp)、β-磷酸三鈣(β-TCP)及α-磷酸三鈣(α-TCP)之結合(Urban RM, Turner TM, Hall DJ, Inoue N, Gitelis S. Increased bone formation using calcium sulfate-calcium phosphate composite graft. Clin Orthop Relat Res 2007; 459:110-7; Nilsson M, Wang JS, Wielanek L, Tanner KE, Lidgren L. Biodegradation and biocompatibility of a calcium sulfate-hydroxyapatite bone substitute. J Bone Joint Surg 2004; 86(1):120-125) ° 美國專利公開第20050119746號提供一種人造骨礦物質替 代材,其包含至少一種陶瓷及至少一種水溶性之非離子X-射線造影劑,並提供了 一個實施例,其包括1至30%之半 水硫酸鈣及50至99%之α-TCP ’然而,該替代材之吸收率 過於缓慢。 非晶型磷酸鈣(ACP,具有近似Ca3(PO4)2-0.8H2O)的化學 式),是一種非結晶且為磷酸三鈣中溶解度最高的形式, 在體内,其通常做為骨形成時生物性骨碌灰石之前驅物; 在體外,ACP則為由快速混合含鈣及磷酸根離子溶液而得 之過飽和溶液析出之第一相。先前已有研究證實,因骨細 胞於ACP基質較結晶HAp基質有更佳之貼附、增生及分化 能力,因此ACP之生物活性更勝於HAp。然而,ACP在接 觸水後,經由相轉變,會轉變為吸收速率較長之HAp。 美國專利第7,351,280號係關於一種組合物及生產具相互 連通大孔隙、可吸收且可注射之以磷酸鈣為基底之骨水泥 (MICPCs),其係為可自我固化之碳酸約骨水泥(CPC),該 150466.doc •6- 201231045 專利之發明係添加碳酸根、鎂、鋅、氟及焦磷酸鹽離子來 穩定ACP。美國專利第7,67〇,419號揭示一種用於手術之水 性骨水泥’其以磷酸鈣為基底,其包含有A)第一成份,其 包含粉末顆粒之磷酸鈣;及B)第二成份,其包含水。該專 利之發明係將ACP預熱至5〇〇。(:,然後研磨,以縮短cpc水 合及硬化的時間。美國專利公開第2〇〇2〇183417號則關於 一種峨酸每骨移植材、製備該磷酸鈣骨移植材之方法以及 經該磷酸鈣骨移植材所製成之骨植入物,該專利係以電漿 嗅覆的方式’將ACP塗覆於HAp的表面而形成一種新的骨 植入物,此專利並非作為骨替代材之應用。美國專利公開 號第20080014242號揭示一種合成之骨替代材料,其適合 做為骨移植組合物中之海綿骨替代物,該材料包含了具有 相互連通孔洞構照之生物陶瓷支架,以及一種固體無孔之 組合物,其貫貝上填補間質孔隙體積,並與網狀骨架緊密 接觸之組合物包含了硫酸鈣。然而,上述先前技術所提供 之骨替代材之皆無令人滿意之吸收率。 因此,在技術領域中,仍需要具有吸收率與人體骨自然 癒合率相類似之改良之骨替代材。 【發明内容】 本發明係提供一種α-半水硫酸鈣/非晶型磷酸鈣 CSH/ACP)複合物,其包含a_CSH&ACp且其重量比係約 10:90至約 90:10。 本發明亦提供一種製備a-半水硫酸鈣/非晶型磷酸鈣 CSH/ACP)複合物之方法,其包含以下步驟: 150466.doc 201231045 (a) 分別將含鈣離子溶液及含硫酸根離子溶液溶於氣化鈣 溶液; (b) 將步驟(a)之溶液加熱至約80°C至l〇〇°C,及混合兩種 溶液使其反應產生α-半水硫酸妈(α-CSH); (c) 過濾步驟(b)所得之溶液以分離溶液中之α-CSH固體; (d) 加入磷酸化合物於步驟(c)之溶液,使其與步驟(a)之 氣化鈣反應產生非晶型磷酸鈣(ACP);及 (e) 混合步驟(c)之α-CSH及步驟(d)之ACP,隨後加水以製 備α-半水硫酸鈣及非晶型磷酸鈣(α-CSH/ACP)複合 物。 本發明發展一種可作為骨移植替代材之可吸收性a-半水 硫酸鈣/非晶性磷酸鈣(a-CSH/ACP)複合物,以及一種a-半 水硫酸鈣/非晶性磷酸鈣(a-CSH/ACP)可吸收性之骨移植替 代材之單槽式製備方法。令人意外地,本發明之a-CSH/ ACP複合物具有3至6個月的吸收期,其可適用於牙科植入 手術。此外,本發明之單槽式製法可在單一製程中製備a-CSH及ACP,且輕易地製得a-CSH/ACP複合物。 在一方面,本發明提供一種a-半水硫酸鈣/非晶型磷酸鈣 (a-CSH/ACP)複合物,其包含a-CSH及ACP且其重量比係 約10:90至約90:10。在一實施例中,a-CSH係a-CaS04· 0.5H2O。在另一實施例中,該α-CSH及ACP之重量比係約 10:90、約 20:80、約 30:70、約 40:60、約 50:50、約 60:40、 約70:30、約80:20或至約90:10。在本發明之另一實施例 中,本發明之α-CSH/ACP複合物係為顆粒形態、粉末形態 150466.doc 201231045 或糊劑形態。 根據本發明,用於植入之合成骨移植材(SBGS)之理想吸 收率應與人體骨之自然癒合率相類似,而本發明出人意料 地發現α-CSH與ACP在特定之比例下加水可進行水合,且 α-CSH與ACP各自不會轉化為吸收時間較長之HAp及吸收 時間較短之二水硫酸鈣(CSD)。本發明結合α-CSH與ACP以 製得一種體内吸收期為3至6個月的SBGS,因為a-CSH/ ACP複合物之吸收期符合下顎骨組織的再生速率,因此該 發明物特別適合用於牙科領域之使用。 根據本發明,將ACP加入CS中,可透過降低吸收率以及 模擬天然骨結構及礦物成份,而改善骨移植材之促進骨再 生之效能。本發明之a-CSH/ACP係生物可相容、具骨傳導 性且可吸收的骨替代材,其具有3至6個月的吸收期。本發 明的a-CSH/ACP複合物可縮短移植癒合及治療期間。其吸 收速率與下顎骨缺損再生速率相當,因此,本發明之複合 物是一種非常適合應用於牙科骨缺損之理想SBGS。 在另一方面,本發明提供一種製備a-半水硫酸鈣/非晶型 磷酸鈣(a-CSH/ACP)複合物之方法,其包含以下步驟: (a) 分別將含鈣離子溶液及含硫酸根離子溶液溶於氣化鈣 溶液; (b) 將步驟(a)之溶液加熱至約80°C至l〇〇°C,及混合兩種 溶液使其反應產生α-半水硫酸鈣(α-CSH); (c) 過濾步驟(b)所得之溶液以分離溶液中之a-CSH固體; (d) 加入填酸化合物於步驟(c)之溶液,使其與步驟(a)之 150466.doc 201231045 氣化鈣反應產生非晶型磷酸鈣(ACP);及 (e)混合步驟(c)之a_cSH及步驟(d)之ACP,隨後加水以製 備α-半水硫酸鈣及非晶型磷酸鈣(a_cSH/ACP)複合 物0 本發明提供一種製備本發明之a_CSH/ACP複合物之單槽 式製備方法’該方法同時製備a_CSH及ACP,且藉由混合 所得之a-CSH及ACP而得到a_CSH/ACP複合物。簡言之, 上述之反應可於單槽式製備方法中完成,且可透過該單槽 式製備方法輕易地製得a_CSH、ACP及a-CSH/ACP » 根據本發明,在該方法之步驟(a)中,一種含鈣離子溶液 及一種含硫酸根離子溶液溶係分別溶於氣化鈣溶液。在本 發明之-實施例中’該含觸子溶液係為石肖酸飼,但不限 於,含氣化約、氫氧化辦、硝酸約或氧化弼之溶液。較佳 地,該含約離子溶液為石肖_溶液。在本發明之另一實施 例中,該硫酸根離子溶液為硫酸_,但不限於,含硫酸 納、或硫酸鎮之硫酸根離子溶液。根據本發明,該方法中 之^㈣用於做為結晶催化劑,以確保步驟(b)中產生的 結曰s相半水硫酸鈣不會轉化為二水硫酸鈣。 根據本發明,在該方法之步驟⑻中,步驟⑷之溶液加 熱至尚於8G°C,並混合使其反 ροττ, ^ , 座生α-丰水硫酸鈣(α· CSH)。較佳地’該溶液係加熱至% 施例’該反應時間係至少2小時。 “么明之一實 根據本發明,在該方法之步驟⑷ 液係經由喊时離溶Μ之固體《_咖,=驟所得之溶 猎以分別得到 I50466.doc 201231045 α-CSH及溶液部分。 根據本發明,在該方法之步驟(句中,係將一種磷酸化 合物加入步驟(c)之溶液’使其與步驟(a)之氯化鈣反應產 生非晶型磷酸鈣(ACP)。在本發明之一實施例中,該磷酸 化合物為’但不限於,磷酸二氫鈉(Na2HP〇3)、磷酸二氫 鉀(K:2HP〇3)或磷酸(h3P〇4)。較佳地,該磷酸根化合物係 填酸二氫鈉。在發明之另一實施例中,該反應係於鹼性pH 下作用,較佳地’該pH值係介於7.5至10. 〇。 根據本發明,在該方法之步驟(e)中,係將步驟(c)之α_ CSH及步驟(d)之ACP混合以形成一混合物,隨後將水加入 該混合物中以製備α-半水硫酸鈣及非晶型磷酸鈣(α_ CSH/ACP)之複合物。在本發明之一實施例中,該〇1_(:811及 ACP係以重量比約10:90至約9〇:1〇混合。根據本發明,將 水加入α-CSH及ACP之混合物中會使其產生水合反應,並 製備且硬化α-CSH/ACP複合物。在本發明之一實施例中, 該α-CSH及ACP係以一比例範圍混合以得到所欲之吸收 期。較佳地,該α-CSH係a-CaSO4.0.5H2O。在另一實施 例中’該α-CSH及ACP係以重量比約6〇:4〇混和。較佳地, 本發明之a-CSH/ACP複合物具有3至6個月吸收期。 以下實施例不應視為過度地限制本發明。本發明所屬技 術領域中具有通常知識者可在不背離本發明之精神或範疇 的情況下對本文所討論之實施例進行修改及變化,而仍屬 於本發明之範圍。 【實施方式】 150466.doc 11 201231045Surg Oral Med Oral Pathol Oral Radiol Endod 1995; 79(4): 517-25; Kawai T, Murakami S, Hiranuma H, Sakuda M. Radiographic changes during bone healing after mandibular fractures. Br J Oral Maxillofac Surg 1997; 35(5 ): 312-8)° Therefore, in the state of natural healing, the average time for healing of the jaw defect should be 3 to 6 months, and the absorption time of SBGSs should also meet the above-mentioned bone healing time. Troubled. Calcium sulfate (CS) is a bone substitute that is rapidly absorbed and biocompatible and has bone-directing properties. Calcium sulfate can be classified into calcium sulfate dihydrate (CaS04.2H20, i.e., stone paste), calcium sulfate hemihydrate (CaSO4.0.5 H20, i.e., calcined gypsum) or anhydrous calcium sulfate (CaS04), depending on the amount of crystal water contained. The following is the chemical reaction equation for the above reaction: Dehydration reaction: CaSCVlHaCKsHheat-CaSCVZHbCKsHieHzO CaS〇41/2H20(s)+heat-^CaS〇4+2 H20 Hydration reaction: CaSCV% H20(s)+3/2 H20-CaS04 .2H20 (s) Calcium sulphate hemihydrate is longer in the body than calcium sulphate dihydrate. However, calcium sulphate hemihydrate is converted into calcium sulphate dihydrate by hydration reaction. Therefore, commercial production of ingot calcium sulphate When the bone substitute material is used, the semi-aqueous sulfuric acid is firstly adjusted to form a swirling dihydrate sulfuric acid mother', and then the ingot-shaped dihydrate sulfuric acid word is dehydrated and converted into calcium sulfate hemihydrate. CS is associated with many biological materials. It has been reported that osteoblasts are attached to cs and CS for in vitro studies by osteoclasts. However, the absorption time in vivo for 1 to 2 months seems to be too rapid, so the rate of absorption is There is still room for improvement. . The literature suggests combining CS with a slower-absorbing calcium phosphate compound using 150466.doc 201231045 to reduce the absorption rate of CS composites such as hydroxyapatite (HAp), beta-tricalcium phosphate (β-TCP) and Combination of α-tricalcium phosphate (α-TCP) (Urban RM, Turner TM, Hall DJ, Inoue N, Gitelis S. Increased bone formation using calcium sulfate-calcium phosphate composite graft. Clin Orthop Relat Res 2007; 459:110- 7; Nilsson M, Wang JS, Wielanek L, Tanner KE, Lidgren L. Biodegradation and biocompatibility of a calcium sulfate-hydroxyapatite bone substitute. J Bone Joint Surg 2004; 86(1): 120-125) ° US Patent Publication No. 20050119746 Providing an artificial bone mineral substitute comprising at least one ceramic and at least one water soluble non-ionic X-ray contrast agent, and providing an embodiment comprising 1 to 30% calcium sulfate hemihydrate and 50 to 99% alpha-TCP 'However, the absorbance of this alternative is too slow. Amorphous calcium phosphate (ACP, a chemical formula with approximately Ca3(PO4)2-0.8H2O), is a non-crystalline form and the most soluble form of tricalcium phosphate. In vivo, it is usually used as a bone-forming organism. Before the bone, the ACP is the first phase precipitated by a supersaturated solution obtained by rapidly mixing a solution containing calcium and phosphate ions. Previous studies have confirmed that ACP is more biologically active than HAp because it has better adhesion, proliferation and differentiation ability to ACP matrix than crystalline HAp matrix. However, after contacting the water, the ACP will change to a HAp with a longer absorption rate via phase transition. U.S. Patent No. 7,351,280 is directed to a composition and a bone cement (MICPCs) having interconnected macroporous, absorbable and injectable calcium phosphate-based bone cements which are self-curing carbonates ( CPC), the 150466.doc •6-201231045 patent invention adds carbonate, magnesium, zinc, fluorine and pyrophosphate ions to stabilize ACP. U.S. Patent No. 7,67,419 discloses an aqueous bone cement for surgery which is based on calcium phosphate and which comprises A) a first component comprising calcium phosphate of powder particles; and B) a second component It contains water. The patented invention preheated the ACP to 5 〇〇. (:, then grinding to shorten the time of cpc hydration and hardening. US Patent Publication No. 2, 183, 417 to a method for citrate per bone graft, a method for preparing the calcium phosphate bone graft, and the calcium phosphate Bone implant made of bone graft material. This patent applies ACP to the surface of HAp to form a new bone implant in the form of plasma odor. This patent is not used as a bone substitute. U.S. Patent Publication No. 20080014242 discloses a synthetic bone substitute material suitable for use as a sponge bone substitute in a bone graft composition comprising a bioceramic stent having interconnected pore configurations and a solid non-porous The composition comprising a calcium sulphate in a composition which fills the interstitial pore volume and is in intimate contact with the reticular skeleton. However, the bone substitutes provided by the prior art described above have no satisfactory absorption rate. In the technical field, there is still a need for an improved bone substitute material having an absorption rate similar to that of a human bone. The present invention provides an alpha. a calcium sulphate hemihydrate/amorphous calcium phosphate CSH/ACP) complex comprising a_CSH & ACp and having a weight ratio of from about 10:90 to about 90:10. The invention also provides a method for preparing a-calcium sulfate hemihydrate/amorphous calcium phosphate CSH/ACP) composite, comprising the following steps: 150466.doc 201231045 (a) respectively containing a calcium ion solution and a sulfate-containing ion The solution is dissolved in the calcium carbonate solution; (b) the solution of the step (a) is heated to about 80 ° C to 10 ° C, and the two solutions are mixed to produce α-hemihydrate sulfuric acid (α-CSH) (c) filtering the solution obtained in the step (b) to separate the α-CSH solid in the solution; (d) adding the phosphoric acid compound to the solution of the step (c) to react with the vaporized calcium of the step (a) Amorphous calcium phosphate (ACP); and (e) mixing the α-CSH of step (c) and the ACP of step (d), followed by adding water to prepare α-calcium sulfate hemihydrate and amorphous calcium phosphate (α-CSH) /ACP) Complex. The invention develops an absorbable a-calcium sulfate hemihydrate/apatic calcium phosphate (a-CSH/ACP) complex which can be used as a substitute for bone transplantation, and an a-calcium sulfate hemihydrate/amorphous calcium phosphate (a-CSH/ACP) Single-tank preparation method for absorbable bone graft substitutes. Surprisingly, the a-CSH/ACP complex of the present invention has an absorption period of 3 to 6 months, which is suitable for dental implant surgery. In addition, the single-tank process of the present invention can produce a-CSH and ACP in a single process and easily produce a-CSH/ACP composites. In one aspect, the invention provides an a-calcium sulfate hemihydrate/amorphous calcium phosphate (a-CSH/ACP) complex comprising a-CSH and ACP and having a weight ratio of from about 10:90 to about 90: 10. In one embodiment, a-CSH is a-CaS04.0.5H2O. In another embodiment, the weight ratio of the a-CSH to the ACP is about 10:90, about 20:80, about 30:70, about 40:60, about 50:50, about 60:40, about 70: 30. About 80:20 or to about 90:10. In another embodiment of the present invention, the α-CSH/ACP complex of the present invention is in the form of a granule, a powder form 150466.doc 201231045 or a paste form. According to the present invention, the ideal absorption rate of the implanted bone graft material (SBGS) should be similar to the natural healing rate of the human bone, and the present invention surprisingly finds that α-CSH and ACP can be added at a specific ratio. Hydration, and α-CSH and ACP are not converted into HAp with longer absorption time and calcium sulfate dihydrate (CSD) with shorter absorption time. The invention combines α-CSH and ACP to prepare an SBGS with an in vivo absorption period of 3 to 6 months, because the absorption period of the a-CSH/ACP complex conforms to the regeneration rate of the mandibular tissue, so the invention is particularly suitable. For use in the dental field. According to the present invention, the addition of ACP to the CS improves the bone regeneration promoting bone regeneration efficiency by reducing the absorption rate and simulating the natural bone structure and mineral composition. The a-CSH/ACP of the present invention is a biocompatible, osteoconductive and absorbable bone substitute having an absorption period of 3 to 6 months. The a-CSH/ACP complex of the present invention shortens graft healing and treatment periods. The rate of absorption is comparable to that of the mandibular defect, and therefore, the composite of the present invention is an ideal SBGS that is well suited for use in dental bone defects. In another aspect, the present invention provides a method of preparing a-calcium sulfate hemihydrate/amorphous calcium phosphate (a-CSH/ACP) complex comprising the steps of: (a) separately containing a calcium ion solution and The sulfate ion solution is dissolved in the vaporized calcium solution; (b) the solution of the step (a) is heated to about 80 ° C to 10 ° C, and the two solutions are mixed to produce α-hemihydrate calcium sulfate ( (c) filtering the solution obtained in the step (b) to separate the a-CSH solid in the solution; (d) adding the acid compound in the solution of the step (c) to the step (a) 150466 .doc 201231045 Calcium carbide reaction produces amorphous calcium phosphate (ACP); and (e) mixing a_cSH of step (c) and ACP of step (d), followed by adding water to prepare α-calcium sulfate hemihydrate and amorphous Calcium Phosphate (a_cSH/ACP) Complex 0 The present invention provides a single-tank preparation method for preparing the a_CSH/ACP complex of the present invention. The method simultaneously prepares a_CSH and ACP, and by mixing the obtained a-CSH and ACP. The a_CSH/ACP complex was obtained. Briefly, the above reaction can be carried out in a single-tank preparation process, and a_CSH, ACP and a-CSH/ACP can be easily produced by the single-tank preparation method. According to the present invention, at the step of the method ( In a), a calcium ion-containing solution and a sulfate ion-containing solution are dissolved in the vaporized calcium solution, respectively. In the present invention - the tactile solution is a shale acid feed, but is not limited to a solution containing gasification, hydrogen peroxide, nitric acid or cerium oxide. Preferably, the about ionic solution is a solution. In another embodiment of the invention, the sulfate ion solution is sulfuric acid-, but is not limited to, a sulfate-containing solution containing sodium sulfate or sulfuric acid. According to the present invention, the method (4) is used as a crystallization catalyst to ensure that the calcium sulphate hemihydrate phase produced in the step (b) is not converted into calcium sulfate dihydrate. According to the present invention, in the step (8) of the method, the solution of the step (4) is heated to a temperature of 8 G ° C, and mixed to make it inverse ροττ, ^ , and a-aqua-calcium sulfate (α·CSH). Preferably, the solution is heated to % embodiment. The reaction time is at least 2 hours. "One of the clarifications according to the present invention, in the step (4) of the method, the liquid system is separated from the dissolved solids by squeaking, and the solution is obtained by separately obtaining the I50466.doc 201231045 α-CSH and the solution portion. In the present invention, in the step of the method (in the sentence, a phosphoric acid compound is added to the solution of the step (c) to react with the calcium chloride of the step (a) to produce amorphous calcium phosphate (ACP). In the present invention In one embodiment, the phosphate compound is 'but is not limited to, sodium dihydrogen phosphate (Na2HP〇3), potassium dihydrogen phosphate (K: 2HP〇3) or phosphoric acid (h3P〇4). Preferably, the phosphoric acid The root compound is filled with sodium dihydrogenate. In another embodiment of the invention, the reaction is effected at an alkaline pH, preferably 'the pH is between 7.5 and 10. 〇. According to the invention, In the step (e) of the method, the α_CSH of the step (c) and the ACP of the step (d) are mixed to form a mixture, and then water is added to the mixture to prepare α-calcium sulfate hemihydrate and amorphous phosphoric acid. a complex of calcium (α_CSH/ACP). In one embodiment of the invention, the 〇1_(:811 and ACP are The amount ratio is about 10:90 to about 9:1 〇 mixed. According to the present invention, adding water to the mixture of α-CSH and ACP causes it to produce a hydration reaction, and prepares and hardens the α-CSH/ACP complex. In one embodiment of the present invention, the α-CSH and the ACP are mixed in a range of ratios to obtain a desired absorption period. Preferably, the α-CSH is a-CaSO4.0.5H2O. In another embodiment The α-CSH and ACP are mixed at a weight ratio of about 6 〇: 4 Torr. Preferably, the a-CSH/ACP complex of the present invention has a absorption period of 3 to 6 months. The following examples should not be regarded as excessive. The present invention is intended to be limited and modified by the embodiments of the present invention without departing from the spirit and scope of the invention. Way] 150466.doc 11 201231045

實施例1本發明α-CSH/ACP複合物之製備 製備a-CSH 將氣化鈣(CaCl2)作為晶型催化劑並以濕式沉澱法製備純 a-CSH°0.1 Μ 之硝酸鈣(Ca(N03)24H20)以及 0.1 Μ 之硫酸 鉀(K2S04)分別溶於3.5 Μ之50 ml之CaCl2溶液。兩溶液皆 預熱至95°C後,將之混合並於大氣壓下反應兩小時,詳細 流程述於美國專利第 7,700,066號。該結晶態之〇1-€811以乂 光繞射儀(XRD)、掃描式熱差分儀(DCS)以及掃描式電子 顯微鏡(SEM)分析之。α-CSH之SEM如圖1(a)所示,其具有 細長如針狀,且互相交錯之結晶型;此外,其XRD分析顯 示於圖1(c),對於結晶面(110)、(310)、(220)以及(-114)在 2Θ之14.75、25.71、29.76以及31.91有波峰,可確認其為(X-CSH。而其DCM圖譜如圖1(d))所示,約210°C有一吸熱 峰,且於230°C有一微小放熱峰,顯示α-CSH之特徵。Example 1 Preparation of α-CSH/ACP Complex of the Invention Preparation of a-CSH Calcium carbonate (CaCl 2 ) was used as a crystal form catalyst and pure a-CSH° 0.1 Μ calcium nitrate (Ca(N03) was prepared by wet precipitation method. ) 24H20) and 0.1 Μ potassium sulphate (K2S04) were dissolved in 3.5 Ca of 50 ml of CaCl 2 solution, respectively. Both solutions were preheated to 95 ° C, mixed and reacted at atmospheric pressure for two hours. The detailed procedure is described in U.S. Patent No. 7,700,066. The crystalline state of 〇1-€811 was analyzed by X-ray diffraction (XRD), scanning thermal differential (DCS), and scanning electron microscopy (SEM). The SEM of α-CSH is shown in Fig. 1(a), which has a slender, needle-like, and interlaced crystal form; in addition, its XRD analysis is shown in Fig. 1(c), for the crystal faces (110), (310). ), (220) and (-114) have peaks at 14.75, 25.71, 29.76 and 31.91 of 2Θ, which can be confirmed as (X-CSH, and its DCM spectrum is shown in Fig. 1(d)), about 210 °C There is an endothermic peak and a slight exothermic peak at 230 ° C, showing the characteristics of α-CSH.

製備ACP 將100 ml之蒸餾水加入氫氧化鈉(NaOH)以製備pH為9之 鹼性水溶液。ACP之製備係將100 ml之磷酸氫二鈉(J.T. Baker, ST,USA)水溶液(2.33 M)以及100 ml之氣化鈣溶液 (3.5 M)迅速加入鹼性水溶液中。所得非晶性磷酸鈣以高功 率過瀘、(Sibata,Circulating Aspirator WJ-20, Tokyo, Japan) 並儲存於冷凍庫中。冷凍乾燥兩天後,該結晶型態以XRD 分析確認。該溼式沉澱法所製備之磷酸鈣之XRD圖譜呈現 寬光譜(圖1 (c)),顯示其為非晶型之狀態,而圖1 (b)則顯示 ACP在SEM下呈現片狀。 150466.doc 201231045 製備 a-CSH/ACP(60/40)顆粒 a-CSH與ACP以60:40之重量比混合後,所得混合物與蒸 餾水以10:6之比例混合,該混合物溫度達室溫後,再以 80°C之烘箱乾燥。將該物質以杵在研缽中粉碎並過篩以得 到420-840 μιη之顆粒。當a-CSH與水以10:6之比例混合24 小時後,以XRD分析,顯示a-CSH經由水合反應而完全相 變為二水硫酸鈣(CSD)因為其在CSD的結晶面(020)、 (021)、(040)以及(041)在 11.64。、20.75。、23.41。以及 29.14°有新波峰。相反地,當〇1-€811/八0?(60/40)與水混合 過夜後,該水合複合物之XRD顯示其於與CSH的結晶面 (110)、(310)、(220)以及(-114)有關的 14.75。、25.66。、 29.76°以及31.91。位置具有波峰,而在顯示相轉變為CSD 的2Θ並未有可測得之波峰(見圖2)。圖3顯示a-CSH/ACP (60/40)之 SEM圖。 實施例2 a-CSH/ACP體外溶離試驗 體外溶離試驗係必不可少之等同於證明臨床上所使用可 吸收性生物材料之溶離特性。準備各種測試材料,a_ CSH/ACP(60/40)及CS各lg,樣品置於茶包袋中,並置於 聚乙烯管,並以精確度0·01 mg秤重。之後將50 ml之破酸 鹽緩衝液(PBS)添加至各管,於37°C下,轉速30 rpm之震 盪器培育(B603D,FIRSTREK,ST,USA)。三天後,將聚乙 稀管離心(Hermle,Z 323 K, United Corps,Germany)並小心 地把PBS移除。樣品以30 ml之去離子水清洗,烘乾並冷卻 後’紀錄新的重量,加入額外的5 0 ml新鮮PB S,並將其放 150466.doc 201231045 回震盪器中再過三天。計算樣品之滯留重量百分比以量測 樣品之溶離比率。3個月後,當微小的損失比率難以測得 時則停止試驗。圖4(a)顯示a-CSH/ACP(60/40)及CS浸於 PBS高達90天之不同時期之滯留重量圖表,兩者均顯示在 前20天可快速溶解,接著降解速率降低並且達到平穩期, 經過90天之降解,其殘留樣品種量百分率分別為13.5士 0.7%和40.5± 1.4%。圖4(b)則為XRD分析體外溶離試驗之殘 餘物,兩者均發現有低結晶性氫氧基填灰石(HAp),但皆 未發現CS的存在,因此,在溶解於PBS後,CS及a-CSH/ ACP(60/40)皆會轉變為低結晶性之HAp。 實施例3動物試驗 使用8隻米格魯犬(約一歲大)進行試驗。犬隻飼養於國 立屏東大學之科學及技術系。動物的挑選、管理以及手術 流程皆經由台北醫學大學動物照護及使用委員會之核准。 分別以肌肉注射0.1 mg/kg之阿托平(Tai-Yu Co·, Hsinchu, Taiwan)及 6 至 12 mg/kg 之舒泰(Zoletil)/ 維克 50(Virbac 50)(Virbac Laboratories, France)以進行全身或局部的麻 醉。注射利多卡因/腎上腺素(Ora Inj. cartridge, 2% lidocaine hydrochloride and epinephrine 1:73,000, Showa 丫过1<;111^11_1^31<;0,^{)&11)以進行局部麻醉〇取出戶斤有犬隻的雙 邊下頷第一臼齒、第二、第三以及第四前臼齒(Ml及P2至 P4),傷口予以三個月的癒合期。術後給予犬隻安比西林 以抗發炎。下頷以取骨鑽鑿出5-及8-mm之深度,並以〇1-CSH/ACP(60/40) ' Osteoset®(CS, Wright Medical Technology, 150466.doc 14 201231045Preparation of ACP 100 ml of distilled water was added to sodium hydroxide (NaOH) to prepare an alkaline aqueous solution having a pH of 9. ACP was prepared by rapidly adding 100 ml of an aqueous solution of disodium hydrogen phosphate (J.T. Baker, ST, USA) (2.33 M) and 100 ml of a calcium carbonate solution (3.5 M) to an aqueous alkaline solution. The resulting amorphous calcium phosphate was subjected to high power (Sibata, Circulating Aspirator WJ-20, Tokyo, Japan) and stored in a freezer. After two days of freeze drying, the crystalline form was confirmed by XRD analysis. The XRD pattern of the calcium phosphate prepared by the wet precipitation method exhibited a broad spectrum (Fig. 1 (c)), showing that it was in an amorphous state, and Fig. 1 (b) showed that the ACP exhibited a sheet shape under SEM. 150466.doc 201231045 Preparation of a-CSH/ACP (60/40) particles After mixing a-CSH and ACP in a weight ratio of 60:40, the resulting mixture is mixed with distilled water in a ratio of 10:6, and the temperature of the mixture reaches room temperature. Then dry in an oven at 80 °C. This material was pulverized in a mortar and sieved to obtain 420-840 μηη particles. When a-CSH was mixed with water at a ratio of 10:6 for 24 hours, XRD analysis showed that a-CSH completely converted into calcium sulfate dihydrate (CSD) via hydration reaction because it was in the crystal plane of CSD (020) , (021), (040), and (041) at 11.64. 20.75. 23.41. And there are new peaks at 29.14°. Conversely, when 〇1-€811/八0?(60/40) was mixed with water overnight, the XRD of the hydrated composite showed its crystal faces (110), (310), (220) with CSH and (-114) Related 14.75. 25.66. , 29.76° and 31.91. The position has a peak, and there is no measurable peak in the 2Θ showing phase transition to CSD (see Figure 2). Figure 3 shows an SEM image of a-CSH/ACP (60/40). Example 2 a-CSH/ACP in vitro dissolution test The in vitro dissolution test is indispensable to demonstrate the solubility characteristics of clinically usable bioabsorbable materials. Prepare various test materials, a_ CSH/ACP (60/40) and CS lg. The samples were placed in tea bags and placed in polyethylene tubes and weighed with an accuracy of 0·01 mg. Then, 50 ml of a buffered acid buffer (PBS) was added to each tube and incubated at 37 ° C in a shaker at 30 rpm (B603D, FIRSTREK, ST, USA). Three days later, the polyethylene tube was centrifuged (Hermle, Z 323 K, United Corps, Germany) and the PBS was carefully removed. The sample was washed with 30 ml of deionized water, dried and cooled, and the new weight was recorded. An additional 50 ml of fresh PB S was added and placed in the condenser for another three days. The percent retention weight of the sample is calculated to measure the dissolution ratio of the sample. After 3 months, the test was stopped when the small loss ratio was difficult to measure. Figure 4(a) shows the retention weight chart for a-CSH/ACP (60/40) and CS immersed in PBS for up to 90 days, both showing rapid dissolution in the first 20 days, followed by a decrease in degradation rate and reaching During the stationary period, after 90 days of degradation, the percentage of residual samples was 13.5 ± 0.7% and 40.5 ± 1.4%, respectively. Figure 4(b) shows the residue of the in vitro dissolution test by XRD analysis. Both of them were found to have low crystalline hydroxyl-filled limestone (HAp), but none of the CS was found. Therefore, after dissolving in PBS, Both CS and a-CSH/ ACP (60/40) are converted to low crystalline HAp. Example 3 Animal Test Eight Miguel dogs (about one year old) were used for the test. The dogs are raised in the Department of Science and Technology at National Pingtung University. Animal selection, management, and surgical procedures are approved by the Animal Care and Use Committee of the Taipei Medical University. Intramuscular injection of 0.1 mg/kg of atopine (Tai-Yu Co., Hsinchu, Taiwan) and 6 to 12 mg/kg of Zoletil/Virbac 50 (Virbac Laboratories, France) For general or local anesthesia. Injection of lidocaine/epinephrine (Ora Inj. cartridge, 2% lidocaine hydrochloride and epinephrine 1:73,000, Showa 11<;111^11_1^31<;0,^{)&11) for local anesthesia〇 The first molar, the second, third and fourth premolars (Ml and P2 to P4) of the bilateral chin of the dog were removed, and the wound was given a healing period of three months. The dog was given ampicillin after surgery to resist inflammation. The lower jaw is drilled to a depth of 5 and 8 mm, and is 〇1-CSH/ACP(60/40) ' Osteoset® (CS, Wright Medical Technology, 150466.doc 14 201231045

Arlington,TN,USA)填補,另以不填補任何物質作為空白 對照組,樣本(η為4)在3週及6週後收集,於每個收集時間 點,使用取骨鑽(直徑6毫米)來收集標本,並迅速置於1〇% 之福馬林中。切片的樣品以蘇木紅及伊紅染色。使用光學 顯微鏡檢測切片之生物相容性及骨再生性。新生骨形成的 面積百分比以ImageJ l.37c (Nati〇nal insthutes 〇f (>^1),6以1^3(^,河0,118八)軟體計算。試驗組缺損及控制 組缺損之新生骨形成之面積百分比之差異利用不成對之t_ 檢定(unpaired Student's t-test)進行試驗,p值小於〇〇5者具 有統計學意義。 圖5顯示3週時,空白對照組的傷口充滿結締組織,而市 售商品Osteoset®組及a-CSH/ACP(60/40)組則皆顯示有明顯 的骨頭形成’但兩者仍存有一些結締組織。術後六週,則 皆未觀察到有任何的纖維組織或發炎細胞,而在空白對照 組觀察到有少許的骨頭,但亦存有許多未癒合的空腔。在 a-CSH/ACP(60/40)組及Osteoset®組,則可觀察到有顯著的 骨頭產生,然而Osteoset®組較a-CSH/ACP(60/40)組有更多 的未癒合空腔。確切的骨頭形成區域則由下述之組織型態 學方法量測。 實施例4組織型態學試驗(定量測量) 新骨之形成以影像軟體來定量,結果總結於表1中。在 第3週,植入a-CSH/ACP(60/40)組別之新骨形成率為21.1土 15.0°/。,顯著高於空白對照組之13 6士9·5%(p值<〇.〇5),但 與Osteoset®組之新骨形成率29.0±16.0%則無顯著差異。因 150466.doc 15 201231045 此,在3週内,以a-CSH/ACP(60/40)或Osteoset®填充缺損 處皆可增進新骨再生率。術後六週,以a-CSH/ACP (60/40) 處理缺損處之新骨形成率為62.2±6.8%,其新骨再生率皆 較Osteoset®組之53·3±4·6%(ρ值<0.01)以及空白對照 (40.1 土 7.2%)(ρ 值 <0.0002)為高。上述結果顯示,a-CSH/ ACP(60/40)組有較好的表現,因此,將ACP加入CS中可增 進骨再生之表現。 最後,利用線性最小平方趨勢法(linear least squares fitting technique)推測在犬隻模型實驗中,以預測α-CSH/ACP(60/40)骨替代材植入後,骨缺損完全癒合之時 間。 外插圆(圖6)推估使用a-CSH/ACP(60/40)骨替代材之完全 癒合時間為10至12週(10.3週)之範圍内,而通常犬隻之骨 再生速率快於人類1.5至2倍,因此,在本試驗中10至12週 之癒合時間約等同於人體内15〜18週(3.75至4.5個月)。 表1 組別 新骨形成(%) 3 週(SD) 6 週(SD) a-CSH /ACP 21.1 (15.0)* 62.2 (6.8) *** Osteoset® 29.0(16.0)* 53.3 (4.6) * 空白對照組 13.6(9.5) 40.1 (7.2) 【圖式簡單說明】 圖1(a)顯示a-CSH之SEM圖;圖1(b)顯示ACP之SEM圖; 圖1(c)顯示a-CSH以及ACP之XRD圖譜;及圖1(d)顯示a-CSH之DSC圖譜; 150466.doc -16- 201231045 圖2顯示轉化ACP、α-CSH/ACP、CSH及CSD之XRD圖 譜; 圖3顯示本發明α-CSH/ACP之SEM圖; 圖4(a)顯示硫酸鈣(CS)單獨及a-CSH/ACP(60/40)於PBS 中之溶解試驗,及圖4(b)顯示CS和α-CSH/ACP於PBS經溶 解試驗後殘留物之XRD圖譜; 圖5顯示以a-CSH/ACP(60/40)、Osteoset®填補骨缺損及 空白對照之組織切片顯微圖(每張圖相皆為原本放大20 倍;CT :結締組織;NT :新成骨);及 圖6顯示以外插法繪製之a-CSH/ACP(60/40)骨替代材於 狗齒槽骨缺損之完全癒合期間趨勢圖。 I50466.docArlington, TN, USA) was filled, and another substance was not filled as a blank control group. The sample (η is 4) was collected after 3 weeks and 6 weeks. At each collection time point, a bone drill (diameter 6 mm) was used. Collect specimens and quickly place them in 1% of Formalin. The sliced samples were stained with hematoxylin and eosin. The biocompatibility and bone regenerability of the sections were examined using an optical microscope. The area percentage of new bone formation was calculated by ImageJ l.37c (Nati〇nal insthutes 〇f (>^1), 6 by 1^3 (^, river 0, 118 8) software. Defects of the test group and control group defects The difference in the percentage of area of new bone formation was tested using the unpaired Student's t-test, and the p-value was less than 〇〇5. Figure 5 shows that the wound in the blank control group was full of connectives at 3 weeks. Tissue, while the commercial items Osteoset® and a-CSH/ACP (60/40) showed significant bone formation' but there were still some connective tissue in the two. No observation was observed after six weeks. There were any fibrous tissue or inflammatory cells, and a few bones were observed in the blank control group, but there were also many unhealed cavities. In the a-CSH/ACP (60/40) group and the Osteoset® group, Significant bone production was observed, whereas the Osteoset® group had more unhealed cavities than the a-CSH/ACP (60/40) group. The exact bone formation area was determined by the following tissue morphology method. Example 4. Tissue Type Test (Quantitative Measurement) New bone formation with image software Quantification, the results are summarized in Table 1. At the third week, the new bone formation rate of the a-CSH/ACP (60/40) group was 21.1 ± 15.0 ° /, which was significantly higher than that of the blank control group. 9.5% (p value < 〇.〇5), but there is no significant difference between the new bone formation rate of 28.0±16.0% in the Osteoset® group. Since 150466.doc 15 201231045 Therefore, within 3 weeks, a -CSH/ACP (60/40) or Osteoset® filling defects can increase the rate of new bone regeneration. Six weeks after surgery, the new bone formation rate of the defect treated with a-CSH/ACP (60/40) was 62.2± 6.8%, the new bone regeneration rate was higher than the 53.3±4.6% (ρ value <0.01) of the Osteoset® group and the blank control (40.1 soil 7.2%) (ρ value <0.0002). It is shown that the a-CSH/ ACP (60/40) group has a good performance. Therefore, adding ACP to CS can improve the performance of bone regeneration. Finally, using the linear least squares fitting technique In the canine model experiment, the time to complete the bone defect was predicted after the α-CSH/ACP (60/40) bone substitute was implanted. The extrapolation circle (Fig. 6) was estimated to use a-CSH/ACP (60/). 40) The complete healing time of the bone substitute is 10 Within 12 weeks (10.3 weeks), the bone regeneration rate of dogs is usually 1.5 to 2 times faster than that of humans. Therefore, the healing time of 10 to 12 weeks in this test is about the same as that of human body 15 to 18 weeks (3.75). Up to 4.5 months). Table 1 Group new bone formation (%) 3 weeks (SD) 6 weeks (SD) a-CSH /ACP 21.1 (15.0)* 62.2 (6.8) *** Osteoset® 29.0(16.0)* 53.3 (4.6) * Blank Control group 13.6 (9.5) 40.1 (7.2) [Simplified illustration] Figure 1 (a) shows the SEM image of a-CSH; Figure 1 (b) shows the SEM image of ACP; Figure 1 (c) shows a-CSH and XRD pattern of ACP; and Figure 1 (d) shows DSC spectrum of a-CSH; 150466.doc -16- 201231045 Figure 2 shows XRD patterns of transformed ACP, α-CSH/ACP, CSH and CSD; SEM image of α-CSH/ACP; Figure 4(a) shows the dissolution test of calcium sulfate (CS) alone and a-CSH/ACP (60/40) in PBS, and Figure 4(b) shows CS and α- XRD pattern of CSH/ACP residue after PBS dissolution test; Figure 5 shows micrograph of tissue section with a-CSH/ACP (60/40), Osteoset® filling bone defect and blank control (each image is 20 times magnification for the original; CT: connective tissue; NT: new osteogenesis; and Figure 6 shows the a-CSH/ACP (60/40) bone substitute drawn by extrapolation during complete healing of the dog's alveolar bone defect Trend. I50466.doc

Claims (1)

201231045 七 1. 2. 3. 4. 5. 6. 7. 8. 、申請專利範圍: 種α、半水硫酸鈣/非晶型磷酸鈣(a_CSil/ACP)複合物, ”匕含cucSH及ACP且其重量比係約10:90至約9〇··ι〇。 如。月求項1之複合物,其中該a-CSH係a-CaSO4.0.5H2O。 如β求項1之複合物’其中該α-CSH及ACP之重量比係約 20.80、約 30:70、約 40:60、約 50:50、約 60:40、約 70:30 或約8〇:2〇。 如求項1之複合物,其係為顆粒型態。 如明求項1之複合物’其係為粉末型態。 如明求項1之複合物’其係為糊劑型態。 如請求項1之複合物’其於人體中具有3至6個月吸收 期。 一種製備a-半水硫酸鈣/非晶型磷酸鈣(a_CSH/ACp)複合 物之方法,其包含以下步驟: (a) 分別將含鈣離子溶液及含硫酸根離子溶液溶於氯化 鈣溶液; (b) 將步驟⑷之溶液加熱至約8〇。〇至1〇〇。〇,及混合兩 種洛液使其反應產生α_半水硫酸I弓(a_CSH); (c) 過濾步驟(b)所得之溶液以分離溶液中之a_CSH固 體; (d) 加入磷酸化合物於步驟(c)之溶液,使其與步驟(&)之 氣化鈣反應產生非晶型磷酸鈣(ACp);及 (e) 混合步驟(c)之a-CSH及步驟(d)之ACP,隨後加水以 製備a-半水硫酸鈣及非晶型填酸鈣(a_CSH/Acp)複 150466.doc 201231045 合物。 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 如知求項8之方 氫氧化鈣、硝酸鈣D該3鈣離子溶液為含氣化鈣, 月&鈣或氧化鈣之溶液。 如請求項g之大、^ 液。 、,其中該含鈣離子溶液為硝酸鈣每 如請求項8之方、土 鉀或硫醆之.、六矿> ,其中該含硫酸根離子溶液為含硫酸 如請求項士、+ . Λ 法,其中步驟(d)中,該磷酸化合物為碼 酉夂二氫納(Na^PO3)、碳酸二氫鉀(K2Hp (η3Ρ04)。 夂 月长項8之方法,其中步驟(d)中,該磷酸根化合物為 填酸二氫鈉。 如β求項8之方法,其中步驟(d)係於鹼性pH下反應。 如β求項14之方法,其中該卩11值係介於7 5至1〇 〇。 如印求項8之方法,其中步驟(幻中,該a_CSH& ACp係以 重量比約10:9〇至約90:10混合。 如请求項8之方法’其中該a-CSH及ACP之重量比係約 20:80、約 3〇:7〇、約 40:60、約 50:50、約 60:40、約 70:30 或至約80:20。 如請求項8之方法,其中步驟(e)中,該a-CSH係a_ CaS04.〇.5H20。 如請求項8之方法,其中步驟(e)中,該生成之a-CSH/ ACP複合物於人體中具有3至6個月吸收期。 150466.doc201231045 VII 1. 2. 3. 4. 5. 6. 7. 8. Patent scope: α, calcium sulfate hemihydrate/amorphous calcium phosphate (a_CSil/ACP) complex, 匕 containing cucSH and ACP And the weight ratio is about 10:90 to about 9 〇··ι〇. For example, the complex of the month 1 of the compound, wherein the a-CSH is a-CaSO4.0.5H2O. Wherein the weight ratio of the α-CSH to the ACP is about 20.80, about 30:70, about 40:60, about 50:50, about 60:40, about 70:30 or about 8:2. The composite, which is in the form of a particle. The composite of claim 1 is in the form of a powder. The composite of claim 1 is a paste type. The article 'has a 3 to 6 month absorption period in the human body. A method for preparing a-calcium sulfate hemihydrate/amorphous calcium phosphate (a_CSH/ACp) complex, comprising the following steps: (a) separately The calcium ion solution and the sulfate ion-containing solution are dissolved in the calcium chloride solution; (b) the solution of the step (4) is heated to about 8 Torr. 〇 to 1 〇〇. 〇, and the two kinds of lyoside are mixed to cause α_ Hemihydrate sulfuric acid I bow (a_CSH); (c) Filtering the solution obtained in the step (b) to separate the a_CSH solid in the solution; (d) adding the phosphoric acid compound to the solution of the step (c) to react with the calcined calcium of the step (&) to produce amorphous calcium phosphate ( ACp); and (e) mixing the a-CSH of step (c) and the ACP of step (d), followed by adding water to prepare a-calcium sulfate hemihydrate and amorphous calcium carbonate (a_CSH/Acp) complex 150466.doc 201231045. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. According to the knowledge of item 8, the calcium hydroxide, calcium nitrate D, the 3 calcium ion solution is calcium carbonate containing , Month & Calcium or Calcium Oxide Solution. If the request item g is large, liquid, etc., wherein the calcium ion solution is calcium nitrate per square of claim 8, earth potassium or sulphur. >, wherein the sulfate ion-containing solution is sulfuric acid-containing, such as the request of the formula, +. Λ method, wherein in the step (d), the phosphoric acid compound is a coded dihydrogen (Na^PO3), potassium dihydrogen carbonate (K2Hp (η3Ρ04). The method of the term 8 of the month, wherein in the step (d), the phosphate compound is sodium dihydrogenate. The method of β, wherein the step (d) is Reaction at alkaline pH, such as the method of β, wherein the value of 卩11 is between 7 5 and 1 〇〇. As in the method of claim 8, wherein the step (the illusion, the a_CSH & ACp is by weight Mixing from about 10:9 〇 to about 90:10. The method of claim 8 wherein the weight ratio of the a-CSH to the ACP is about 20:80, about 3:7, about 40:60, about 50:50, about 60:40, about 70:30 or Until about 80:20. The method of claim 8, wherein in the step (e), the a-CSH is a_CaS04.〇.5H20. The method of claim 8, wherein in the step (e), the generated a-CSH/ACP complex has a absorption period of 3 to 6 months in the human body. 150466.doc
TW100102144A 2011-01-20 2011-01-20 A composite of calcium sulfate hemihydrate/amorphous calcium phosphate (csh/acp) for bone implantation and process for producing the same TWI395580B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100102144A TWI395580B (en) 2011-01-20 2011-01-20 A composite of calcium sulfate hemihydrate/amorphous calcium phosphate (csh/acp) for bone implantation and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100102144A TWI395580B (en) 2011-01-20 2011-01-20 A composite of calcium sulfate hemihydrate/amorphous calcium phosphate (csh/acp) for bone implantation and process for producing the same

Publications (2)

Publication Number Publication Date
TW201231045A true TW201231045A (en) 2012-08-01
TWI395580B TWI395580B (en) 2013-05-11

Family

ID=47069136

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100102144A TWI395580B (en) 2011-01-20 2011-01-20 A composite of calcium sulfate hemihydrate/amorphous calcium phosphate (csh/acp) for bone implantation and process for producing the same

Country Status (1)

Country Link
TW (1) TWI395580B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522098C2 (en) * 2001-12-20 2004-01-13 Bone Support Ab Artificial bone mineral substitute material useful as an X-ray contrast medium comprises ceramic and water soluble non-ionic X-ray contrast agent

Also Published As

Publication number Publication date
TWI395580B (en) 2013-05-11

Similar Documents

Publication Publication Date Title
Kanter et al. Control of in vivo mineral bone cement degradation
Ostrowski et al. Magnesium phosphate cement systems for hard tissue applications: a review
Wu et al. Self-setting bioactive calcium–magnesium phosphate cement with high strength and degradability for bone regeneration
Klammert et al. In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model
Dorozhkin Self-setting calcium orthophosphate formulations
JP5028090B2 (en) Quick-hardening calcium phosphate cement composition
Hu et al. Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair
JP4940126B2 (en) Hydraulic cement based hydraulic phosphate for surgical use
JP6130098B2 (en) Gallium Calcium Phosphate Biomaterial
JP2011087973A (en) New bone mineral substitute
BRPI0514636A2 (en) resorbable ceramic compositions
JP2005526538A (en) New bone mineral substitute
Wu et al. A novel resorbable α-calcium sulfate hemihydrate/amorphous calcium phosphate bone substitute for dental implantation surgery
TWI651103B (en) Multiphase bone graft replacement material
Pina et al. Injectability of brushite-forming Mg-substituted and Sr-substituted α-TCP bone cements
US20190192725A1 (en) Magnesium phosphate biomaterials
Demirel et al. Effect of strontium-containing compounds on bone grafts
Chen et al. A new injectable quick hardening anti-collapse bone cement allows for improving biodegradation and bone repair
TWI327071B (en) Composite bone graft substitute cement and articles produced therefrom
Padilla et al. Novel nanostructured Zn-substituted monetite based biomaterial for bone regeneration
El-Maghraby et al. Preparation, structural characterization, and biomedical applications of gypsum-based nanocomposite bone cements
US9056097B2 (en) Composite of amorphous calcium phosphate/calcium sulfate hemihydrate (CSH/ACP) for bone implantation and process for producing the same
Pijocha et al. Physicochemical properties of the novel biphasic hydroxyapatite–magnesium phosphate biomaterial
Hu et al. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model
Fu et al. Calcium phosphate cements: Structure-related properties

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees