201230856 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種紅外線遙控技術,更進—步來說, 本發明係關於一種藉由工作電壓調整紅外線電流的遙控 器及一種藉由工作電壓調整紅外線信號強度的方法。工 【先前技術】 遙控器可以說無處不在,甚至可以說遙控器已經到了 籲會影響正常生活。回到家開車庫門用遙控器,車上鎖用遙 控器,進到屋子開電視機選節目也用遙控器,開冷氣用遙 控器,飯後打開音響聽音樂也用遙控器,所以說把遙控器 從你生活中拿掉,一定會嚴重地影響到你日常生活的行 為。 遙控器由來已久,初期的遙控器是採用超音波來動作 的,後來因為可用材料與技術的原因,超音波遙控器曰漸 凋零,最終被紅外線全面取代,紅外線發光二極體,編碼 • 積體電路化,接收解碼模組化,紅外線遙控器一直以來大 量被運用在大大小小的消費性電子產品上,像是電視機, 錄放影機,音響,冷氣等。 第1圖是先前技術的紅外線遙控器的電路方塊圖。請 參考第1圖,此紅外線遙控器包括一微處理器1〇1、一按 紐組102、一電池103、一開關104、一電阻Rl〇1、一電 晶體T101以及一紅外線發光二極體Dl〇1。電池用以 供應電力。使用者透過操作按知組102中的按鈕來控制遙 201230856 控器。微處理器1〇1用以根據按鈕組1〇2中被按下的按 奴,來決定輸出給電晶體T1(H的信號。傳統的搖控器對 於紅外線發射器都是直接用外部或内建的電晶體τ1〇1驅 動’而電流的控制則大多是由限流電阻R1 〇 1來完成。這 樣一來在電池比較沒有電的時候就會因為紅外線二極體 D101的驅電流而使得電源電壓出現不穩而讓搖控器無法 使用的現象。 鲁 【發明内容】 本發明的一目的在於提供一種藉由工作電壓調整紅 外線電流的遙控器及一種藉由工作電壓調整紅外線信號 強度的方法’用以偵測電源電壓來控制紅外線發射器的電 流來維持到一個『最大可發射電流』的平衡點。這樣一來 則可以讓低電壓的狀態之下仍可以發射訊號,雖然發射距 離變短了 ’但是可以延長使用時間。 有蓉於此’本發明提供一種藉由工作電壓調整紅外線 鲁電流的遙控器。此藉由工作電壓調整紅外線電流的遙控器 包括至少一電池、一紅外線發光二極體、一電流控制發光 一極體輸出驅動電路、一按奴組、一微處理器、以及一電 源檢測電路。電池用以供應一電源電壓。紅外線發光二極 體包括一第一端以及一第二端,其第一端麵接一電源電 壓。電流控制發光二極體輸出驅動電路耦接紅外線發光二 極體的第二端,用以驅動紅外線發光二極體,並控制流過 紅外線發光二極體的電流。按鈕組包括至少一按鈕。 201230856 微處理器耦接上述按鈕組以及上述電流控制發光二 極體輸出驅動電路,用以根據一使用者所按下的按鈕,輸 出一控制信號給電流控制發光二極體輸出驅動電路,以決 定上述釭外線發光二極體的輸出信號。電源檢測電路耦接 電池以及電流控制發光二極體輸出驅動電路,用以監測電 源電壓的大小,並根據電源電壓的大小,傳送一電源值給 電流控制發光二極體輸出驅動電路。當電源電壓低於一預 。又門捏時,電流控制發光二極體輸出驅動電路依照電源電 壓的大小,減低流過紅外線發光二極體的電流大小,以減 少紅外線發光二極體的輸出信號的強度。 依照本發明較佳實施例所述之藉由工作電壓調整紅 外線電流的遙控器,上述電源檢測電路包括一參考電壓產 生器、以及一放大器。上述參考電壓產生器用以產生一參 考電壓。上述放大器包括一第一輸入端、一第二輸入端以 及—輪出端,其中,其第一輸入端耦接參考電壓產生器以 接收參考電壓,其第二輸入端耦接電池以接收電源電壓, 其輪出端耦接電流控制發光二極體輸出驅動電路,用以將 參考電壓與該電源電壓的差值放大,以輸出一差值放大信 號,其中,電流控制發光二極體輸出驅動電路根據該差值 放大信號決定流過該红外線發光二極體的最大電流的大 /Jn 〇 在另一實施例中’電源檢測電路包括一類比數位轉換 器’此類比數位轉換器包括一輸入端以及一輸出端,其 中,其輸入端搞接電池以接收電源電壓,其輸出端耗接電 201230856 流控制發光二極體輸出驅動電路,用以將電源電壓的值轉 換為一電源數位值’其中,上述電流控制發光二極體輸出 驅動電路根據電源數位值決定流過紅外線發光二極體的 最大電流的大小。另外,在另一實施例中紅外線發光二 極體的第一端為陽極’且紅外線發光二極體的第二端為陰 極。 本發明另外提供一種藉由工作電壓調整紅外線信號 強度的方法’其中,紅外線信號系由一遙控器發射出,並 且此遙控器具有至少一電池。上述藉由工作電壓調整紅外 線信號強度的方法包括下列步驟:(a)檢測電池的一電源 電壓;(b )判斷電源電壓的大小是否小於一電源門檻;(c ) 當電源電壓的大小大於上述電源門檻,回到步驟(b );以 及(d )當電源電壓的大小小於上述電源門檻,根據電源 電壓的大小’調整紅外信信號的強度。當電源電壓的大小 越低’紅外信信號的強度被調整的越小。 依照本發明較佳實施例所述之藉由工作電壓調整紅 外線電流的方法’上述『當電源電壓的大小小於電源門 播’根據電源電壓的大小,調整紅外線信號的強度』之步 驟包括:當電源電壓的大小小於該電源門檻,根據電源電 壓的大小’調整一紅外線發光二極體所流過的電流的大 小’其中’上述紅外線發光二極體係用以發射上述紅外線 信號。 本發明之精神是藉由根據電池的電源電壓的大小調 整流過紅外線發光二極體的電流。當電池的電源電壓越小 [S] 7 201230856 時,便使流過紅外線發光二極體的電流變小。由於先前技 術t,常常電池尚未用盡,便需要換電池。此時通常電池 還具有二到四成的電力未被使用,造成浪費。另外,電、也 液體也有可能因此洩漏,造成遙控器中的電子零件的損 傷。利用本發明即可改善上述缺陷。 為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 第一實施例 第2圖是本發明第一實施例的藉由工作電壓調整紅外 線電流的遙控器的電路方塊圖。請參考第2圖,此紅外線 遙控器包括紅外線發光二極體D2(H、按鈕組201、電池2〇2 以及遙控器控制電路IC201。此遙控器的電路的耦接關係 如第2圖所繪示。電池202用以供應一電源電壓VDD給 籲遙控器控制電路1C2(H、紅外線發光二極體D2〇 i以及按鈕 組201等電路。紅外線發光二極體D2(U的陽極耦接一電 源電壓VDD。遙控器控制電路IC2〇1耦接在電池2〇2的兩 端,用以偵測電源電壓的大小,決定流過紅外線發光二極 體D201的電流idrv的大小。 遙控器控制電路IC201包括微處理器203、電源檢測 電路204以及電流控制發光二極體輸出驅動電路2〇5。微 處理器203耦接按鈕組2〇1以及電流控制發光二極體輸出 201230856 驅動電路205,用以根據一使用者所按下的按鈕,輸出一 控制彳§號CON給電流控制發光二極體輪出驅動電路2〇5 , 以決定紅外線發光二極體D201的輸出信號。電源檢測電 路.2 04耦接電池202的兩端以及電流控制發光二極體輸出 驅動電路205,用以監測電源電壓VDD的大小,並根據電 源電壓VDD的大小,傳送一電源值pv給電流控制發光二 極體輸出驅動電路205。電流控制發光二極體輸出驅動電 路205則是根據電源值pv的大小驅動紅外線發光二極體 籲 D20 1,並控制流過紅外線發光二極體的電流Idrv〇 第二實施例 第3圖是本發明第二實施例的藉由工作電壓調整紅外 線電流的遙控器的電路方塊圖。請參考第3圖,此第二實 施例與上述實施例不同點在於,此實施例的電源檢測電路 204係使用類比數位轉換器3〇1實施。此類比數位轉換器 301用以將電池的電源電壓VDD轉換為一數位值DV,並 籲 且輸出至上述電流控制發光二極體輸出驅動電路205。電 流控制發光二極體輸出驅動電路205則根據所接收的數位 值DV的大小,決定流過紅外線發光二極體D201的最大 驅動電流Idrv的大小。一般來說,電流控制發光二極體輸 出驅動電路205會有一個預設的門檻值,當數位值DV大 於此門檻值時,則最大驅動電流Idrv的大小不會改變,當 數位值DV小於此門檻值時,最大驅動電流idrv會隨著數 位值DV的大小依照比例改變。 201230856 另外’除了上述依照比例改變最大驅動電流Idrv的方 式之外’電流控制發光二極體輸出驅動電路205内部也可 以預設多個門捏值,例如可以設置第一、第二、第三、第 四門檻值’其中第一門檻值 > 第二門檻值 > 第三門檻值 >第 四門捏值。當數位值DV大於第一門捏值時,則最大驅動 電流Idrv的大小不會改變。當數位值1)¥介於第一門檻值 與第二門檻值時,則最大驅動電流Idrv的大小變為原本的 3/4。當數位值DV介於第二門檻值與第三門檻值時,則最 大驅動電流Idrv的大小變為原本的1/2。當數位值dv介 於第二門檻值與第四門檻值時,則最大驅動電流Idrv的大 小變為原本的1/4。 上述實施例雖然是以四個門檻值與四個電流大小作 舉例’然而’所屬技術領域具有通常知識者應當知道,電 的大小或門檻值的多寡取決於不同的設計與電路,因此 本發明並不以此為限。 第三實施例 第4圖疋本發明第三實施例的藉由工作電壓調整紅外 線電流的遙控器的電路方塊圖。請參考第4圖,此第三實 施例與上述實施例不同點在於,此實施例的電源檢測電路 2〇4係使用一放大器40卜第—電阻尺4〇1、第二電阻R4〇2 以及一參考電壓產生器402所實施。第—電阻R4〇l的一 端耦接電池202以接收電源電壓VDD ’第一電阻R4〇1的 第二端耦接第二電阻R402與放大器40丨的正端。第二電 201230856 阻R402的另一端接在電池2〇2的另一端。放大器4〇ι的 負端耦接上述參考電壓產生器4〇2以接收該參考電壓 VREF。當電源電壓VDD下降時,放大器4〇1所輸出的差 值放大信號VD會降低,電流控制發光二極體輸出驅動電 路205則根據所接收的差值放大信號vd的大小,決定流 過紅外線發光二極體D201的最大驅動電流idrv的大小。 第四實施例 籲 第5圖是本發明第四實施例的藉由工作電壓調整紅外 線電流的遙控器的電路方塊圖。請先參考第5圖,此紅外 線遙控器包括紅外線發光二極體D5(H、按鈕組501、電池 502以及遙控器控制電路IC5〇1。此遙控器的電路的粞接 關係如第5圖所繪示。電池502用以供應一電源電壓vdd 給遙控器控制電路IC501'紅外線發光二極體D5〇1以及按 鈕組501等電路。紅外線發光二極體D5 01的陽極耦接一 電源電壓VDD。遙控器控制電路IC5〇i耦接在電池5〇2的 籲 兩端,用以偵測電源電壓的大小,決定流過紅外線發光二 極體D501的電流Idrv的大小。遙控器控制電路tc5〇 1包 括微處理器503、電源檢測電路5〇4以及電流控制發光二 極體輸出驅動電路505。 第5圖的電路與第1圖的電路之差異在於,電源檢測 電路504將電源值PV傳送給微處理器503,由微處理器 503控制電流控制發光二極體輸出驅動電路5〇5,以根據 電源值PV的大小驅動紅外線發光二極體,並控制流 201230856 過紅外線發光一極體的電流Idrv。當電池電量越低電源 值pv也會越低,因此流過紅外線發光二極體^的電流 Idrv也相對的越小。 第6圖疋本發明第四實施例的第5圖的較詳細之電路 方塊圖。請參考第6圖,此電路與上述電路不同點在於, 電源檢測電路504係使用類比數位轉換器6〇1實施。此類 比數位轉換器601用以將電池的電源電壓VDD轉換為一 數位值DV,並且輪出至微處理器5〇3。微處理器5〇3則以 此數位值DV作為控制電流控制發光二極體輸出驅動電路 505的數據。微處理器5〇3則根據所接收的數位值dv的 大小’控制電流控制發光二極體輪出驅動電路5〇5,以決 疋流過紅外線發光二極體D5〇1的最大驅動電流Μ”的大 小。 第7圖是本發明第四實施例的第5圖的較詳細之電路 方塊圖。請參考第7圖,此第三實施例與上述實施例不同 點在於,此實施例的電源檢測電路5〇4係使用一放大器 701、第一電阻R701、第二電阻R7〇2以及一參考電壓產 生器702所實施。第一電阻R7〇1的一端耦接電池5〇2以 接收電源電壓VDD,第一電阻R701的第二端耦接第二電 阻R702與放大器701的正端。第二電阻R7〇2的另一端接 在電池502的另一端。放大器701的負端耦接上述參考電 麗產生器702以接收該參考電壓VREF。當電源電壓vdd 下降時’放大器701所輸出的差值放大信號vd會降低, 微處理器503則根據所接收的差值放大信號的大小, 201230856 控制電机控制發光二極體輸出驅動電路5〇5,以決定流尚 紅外線發光二極體D501的最大驅動電流Idrv的大小。 _第五實施你丨 第8圖是本發明第四實施例的工作電壓調整紅外線作 號強度的方法的流程圖。請參考第5圖,此方法包括下歹: 步驟: 步驟S801 :開始。 籲 步驟S802 :檢測電池的一電源電壓VDD。 步驟S803 :判斷電源電壓vdd的大小是否小於一電 源門捏。當判斷為是’則執行步驟S803。當判斷為否,執 行步驟S804 步驟S804 :當電源電壓VDD的大小大於電源門檻, 不調整紅外線的信號強度。 步驟S805 :當電源電壓VDD的大小小於電源門檻, 根據電源電壓VDD的大小,調整紅外線信號的強度,其 鲁中’隨著電源電壓VDD的大小越低,紅外線信號的強度 被調整的越小。 綜上所述’本發明之精神是藉由根據電池的電源電壓 的大小調整流過紅外線發光二極體的電流。當電池的電源 電壓越小時,便使流過紅外線發光二極體的電流變小。由 於先前技術中,常常電池尚未用盡,便需要換電池。此時 通常電池還具有二到四成的電力未被使用,造成浪費。另 外’電池液體也有可能因此洩漏,造成遙控器中的電子零 201230856 件的損傷。利用本發明即可改善上述缺陷。 用以圭實施例之詳細說明中所提出之具體實施例僅 a明本發明之技術内容’而非將本發 ==實施例,.在不超出本發明之精神及以下中請專利 範圍之情況,所傲夕接. 之種種變化實施,皆屬於本發明之範 圍。因此本發明之保護範圍當視後附之中請專利 定者為準。 【圖式簡單說明】 第1圖是先前技術的紅外線遙控器的電路方塊圖。 第2圖是本發明第一實施例的藉由工作電壓調整紅外 線電流的遙控器的電路方塊圖。 第3圖疋本發明第一實施例的藉由工作電壓調整紅外 線電流的遙控器的電路方塊圖。 第4圖疋本發明第二實施例的藉由工作電壓調整紅外 線電流的遙控器的電路方塊圖。 第5圖是本發明第四實施例的工作電壓調整紅外線作 號強度的方法的流程圖。 【主要元件符號說明】 101、 203 :微處理器 102、 201 :按鈕組 103、 202 :電池 104 :開關 R101 :電阻 201230856 ΤΙ 01 :電晶體 D101、D201 :紅外線發光二極體 IC201 :遙控器控制電路 VDD :電源電壓201230856 VI. Description of the Invention: [Technical Field] The present invention relates to an infrared remote control technology, and more particularly, the present invention relates to a remote controller for adjusting infrared current by operating voltage and an operating voltage A method of adjusting the intensity of an infrared signal. [Prior Art] The remote control can be said to be ubiquitous. It can even be said that the remote control has reached the point where it will affect normal life. Go back home to open the garage door with a remote control, use the remote control to lock the car, go to the house and turn on the TV to select the program, also use the remote control, open the air conditioner with the remote control, open the audio and listen to music after the meal, also use the remote control, so say remote control Removing it from your life will definitely affect your daily life. The remote control has been around for a long time. The initial remote control was operated by ultrasonic waves. Later, due to the available materials and technology, the ultrasonic remote control gradually faded and was completely replaced by infrared rays. The infrared light-emitting diodes were encoded. Body circuitization, receiving and decoding modularization, infrared remote control has been widely used in large and small consumer electronic products, such as televisions, video recorders, audio, air-conditioning. Figure 1 is a circuit block diagram of a prior art infrared remote controller. Referring to FIG. 1 , the infrared remote controller includes a microprocessor 1〇1, a button group 102, a battery 103, a switch 104, a resistor R1〇1, a transistor T101, and an infrared light emitting diode. Dl〇1. The battery is used to supply electricity. The user controls the remote 201230856 controller by pressing the button in the group 102. The microprocessor 1〇1 is used to determine the signal output to the transistor T1 (H according to the pressed slave in the button group 1〇2. The conventional remote controller is directly external or built-in for the infrared emitter. The transistor τ1〇1 is driven' and the current control is mostly done by the current limiting resistor R1 〇1. This way, when the battery is relatively low, the power supply voltage is caused by the driving current of the infrared diode D101. There is a phenomenon that the remote controller is unusable and the remote controller cannot be used. [Invention] It is an object of the present invention to provide a remote controller for adjusting infrared current by operating voltage and a method for adjusting infrared signal strength by operating voltage. The power supply voltage is used to control the current of the infrared emitter to maintain a balance point of "maximum transmittable current". This allows the signal to be transmitted even under low voltage conditions, although the transmission distance becomes shorter. However, the use time can be extended. The present invention provides a remote controller for adjusting the infrared Lu current by the operating voltage. The remote controller for adjusting the infrared current comprises at least one battery, an infrared light emitting diode, a current control light emitting body output driving circuit, a slave group, a microprocessor, and a power detecting circuit. The power supply voltage. The infrared light emitting diode includes a first end and a second end, and the first end surface is connected to a power supply voltage. The current control LED output driving circuit is coupled to the second end of the infrared light emitting diode. The infrared light emitting diode is driven to control the current flowing through the infrared light emitting diode. The button group includes at least one button. The 201230856 microprocessor is coupled to the button group and the current control LED output driving circuit. According to a button pressed by a user, a control signal is output to the current control LED output driving circuit to determine the output signal of the external LED. The power detection circuit is coupled to the battery and the current control LED 2 A polar body output driving circuit for monitoring the magnitude of the power supply voltage and transmitting according to the magnitude of the power supply voltage The power supply value is given to the current control LED output drive circuit. When the power supply voltage is lower than a pre-gate, the current control LED output drive circuit reduces the flow of the infrared light-emitting diode according to the magnitude of the power supply voltage. The current is sized to reduce the intensity of the output signal of the infrared illuminating diode. According to the preferred embodiment of the preferred embodiment of the present invention, the power detecting circuit includes a reference voltage generator and a remote controller for adjusting the infrared current by the operating voltage. The reference voltage generator is configured to generate a reference voltage. The amplifier includes a first input terminal, a second input terminal, and a wheel output terminal, wherein the first input terminal is coupled to the reference voltage generator to receive the reference voltage. The second input end is coupled to the battery to receive the power voltage, and the wheel end is coupled to the current control LED output driving circuit for amplifying the difference between the reference voltage and the power voltage to output a difference amplification a signal, wherein the current control LED output driving circuit determines to flow according to the difference amplification signal The maximum current of the infrared light-emitting diode is large / Jn 〇 In another embodiment, the 'power detection circuit includes an analog-to-digital converter'. The analog-to-digital converter includes an input terminal and an output terminal, wherein the input terminal thereof The battery is connected to receive the power supply voltage, and the output end consumes electricity 201230856 flow control LED output drive circuit for converting the value of the power supply voltage into a power supply digital value, wherein the current control LED output drive The circuit determines the maximum current flowing through the infrared light emitting diode according to the power source digital value. Further, in another embodiment, the first end of the infrared light emitting diode is an anode ' and the second end of the infrared light emitting diode is a cathode. The present invention further provides a method of adjusting the intensity of an infrared signal by an operating voltage, wherein the infrared signal is transmitted by a remote controller, and the remote controller has at least one battery. The method for adjusting the intensity of the infrared signal by the working voltage includes the following steps: (a) detecting a power supply voltage of the battery; (b) determining whether the power supply voltage is smaller than a power supply threshold; (c) when the power supply voltage is greater than the power supply. The threshold is returned to step (b); and (d) when the magnitude of the power supply voltage is less than the above-mentioned power supply threshold, the intensity of the infrared signal is adjusted according to the magnitude of the power supply voltage. When the magnitude of the power supply voltage is lower, the intensity of the infrared signal is adjusted to be smaller. The method for adjusting the infrared current by the operating voltage according to the preferred embodiment of the present invention includes the following steps: when the power supply voltage is smaller than the power supply gate, the intensity of the infrared signal is adjusted according to the magnitude of the power supply voltage: The magnitude of the voltage is less than the power threshold, and the magnitude of the current flowing through the infrared light emitting diode is adjusted according to the magnitude of the power supply voltage. The infrared light emitting diode system is used to emit the infrared signal. The spirit of the present invention is to rectify the current of the infrared ray emitting diode by the magnitude of the power supply voltage of the battery. When the battery's power supply voltage is smaller [S] 7 201230856, the current flowing through the infrared light-emitting diode is made smaller. Due to the prior art t, the battery is often not used up and the battery needs to be replaced. At this time, usually the battery has two to 40% of the power that is not used, resulting in waste. In addition, electric or liquid may leak as a result of damage to electronic components in the remote control. The above drawbacks can be improved by the present invention. The above and other objects, features and advantages of the present invention will become more <RTIgt; [Embodiment] FIG. 2 is a circuit block diagram of a remote controller for adjusting an infrared current by an operating voltage according to a first embodiment of the present invention. Please refer to FIG. 2, the infrared remote control includes an infrared light-emitting diode D2 (H, a button group 201, a battery 2〇2, and a remote control circuit IC201. The coupling relationship of the circuit of the remote controller is as shown in FIG. The battery 202 is used to supply a power supply voltage VDD to the remote control circuit 1C2 (H, the infrared light emitting diode D2〇i and the button group 201 and the like. The infrared light emitting diode D2 (the anode of the U is coupled to a power supply) Voltage VDD. The remote control circuit IC2〇1 is coupled to both ends of the battery 2〇2 for detecting the magnitude of the power supply voltage and determining the magnitude of the current idrv flowing through the infrared light emitting diode D201. The remote control circuit IC201 The utility model comprises a microprocessor 203, a power detection circuit 204 and a current control LED output driving circuit 2〇5. The microprocessor 203 is coupled to the button group 2〇1 and the current control LED output 201230856 driving circuit 205 for According to a button pressed by a user, a control 彳§CON is output to the current control LED driving circuit 2〇5 to determine the output signal of the infrared illuminator D201. .2 04 coupled to both ends of the battery 202 and the current control LED output drive circuit 205 for monitoring the magnitude of the power supply voltage VDD, and according to the magnitude of the power supply voltage VDD, transmitting a power value pv to the current control LED The body output driving circuit 205. The current controlling light emitting diode output driving circuit 205 drives the infrared light emitting diode to call D20 1 according to the magnitude of the power source value pv, and controls the current flowing through the infrared light emitting diode Idrv. Example 3 is a circuit block diagram of a remote controller for adjusting an infrared current by an operating voltage according to a second embodiment of the present invention. Referring to Figure 3, this second embodiment differs from the above embodiment in that the embodiment is The power detection circuit 204 is implemented using an analog-to-digital converter 3.1. The analog-to-digital converter 301 is configured to convert the power supply voltage VDD of the battery into a digital value DV, and output it to the current control LED output drive. The circuit 205. The current control LED output driving circuit 205 determines to flow through the infrared LED D201 according to the received digital value DV. The magnitude of the maximum drive current Idrv. Generally, the current control LED output drive circuit 205 has a preset threshold value. When the digital value DV is greater than the threshold value, the maximum drive current Idrv does not change. When the digital value DV is less than the threshold value, the maximum driving current idrv will be proportionally changed according to the magnitude of the digital value DV. 201230856 In addition, 'in addition to the above manner of changing the maximum driving current Idrv according to the ratio, the current-controlled light-emitting diode The output driving circuit 205 may also preset a plurality of gate pinch values, for example, the first, second, third, and fourth threshold values may be set, wherein the first threshold value > the second threshold value > the third threshold value > The fourth door pinch value. When the digital value DV is larger than the first gate value, the magnitude of the maximum drive current Idrv does not change. When the digital value 1) is between the first threshold and the second threshold, the magnitude of the maximum driving current Idrv becomes 3/4 of the original. When the digital value DV is between the second threshold value and the third threshold value, the magnitude of the maximum driving current Idrv becomes 1/2 of the original value. When the digital value dv is between the second threshold value and the fourth threshold value, the maximum driving current Idrv becomes the original 1/4. The above embodiment is exemplified by four threshold values and four current magnitudes. However, those skilled in the art should know that the size of the electrical power or the threshold value depends on different designs and circuits, and thus the present invention Not limited to this. Third Embodiment Fig. 4 is a circuit block diagram of a remote controller for adjusting an infrared current by an operating voltage according to a third embodiment of the present invention. Referring to FIG. 4, the third embodiment is different from the above embodiment in that the power detecting circuit 2〇4 of this embodiment uses an amplifier 40, a first resistor, a second resistor R4〇2, and A reference voltage generator 402 is implemented. One end of the first resistor R4〇1 is coupled to the battery 202 to receive the power supply voltage VDD. The second end of the first resistor R4〇1 is coupled to the positive terminal of the second resistor R402 and the amplifier 40丨. The second end of the relay 20120856 is connected to the other end of the battery 2〇2. The negative terminal of the amplifier 4〇 is coupled to the reference voltage generator 4〇2 to receive the reference voltage VREF. When the power supply voltage VDD drops, the difference amplification signal VD outputted by the amplifier 4〇1 is lowered, and the current control LED output driving circuit 205 determines the flow of the infrared light according to the magnitude of the received difference amplification signal vd. The size of the maximum drive current idrv of the diode D201. Fourth Embodiment FIG. 5 is a circuit block diagram of a remote controller for adjusting an infrared current by an operating voltage according to a fourth embodiment of the present invention. Please refer to FIG. 5 first. The infrared remote control includes an infrared light emitting diode D5 (H, a button group 501, a battery 502, and a remote control circuit IC5〇1. The connection relationship of the circuit of the remote controller is as shown in FIG. The battery 502 is configured to supply a power supply voltage vdd to the remote control circuit IC501 'infrared light-emitting diode D5〇1 and the button group 501. The anode of the infrared light-emitting diode D5 01 is coupled to a power supply voltage VDD. The remote control circuit IC5〇i is coupled to the two ends of the battery 5〇2 for detecting the magnitude of the power supply voltage and determining the magnitude of the current Idrv flowing through the infrared light emitting diode D501. The remote control circuit tc5〇1 The microprocessor 503, the power detecting circuit 5〇4, and the current control LED output driving circuit 505 are included. The circuit of FIG. 5 differs from the circuit of FIG. 1 in that the power detecting circuit 504 transmits the power value PV to the micro. The processor 503 controls the current-controlled LED output driving circuit 5〇5 by the microprocessor 503 to drive the infrared light-emitting diode according to the power supply value PV, and controls the flow 201230856 to emit infrared light. The current Idrv of one pole. The lower the power of the battery, the lower the power value pv, and therefore the smaller the current Idrv flowing through the infrared light-emitting diode ^ is. The sixth embodiment is the fourth embodiment of the present invention. A more detailed circuit block diagram of Figure 5. Referring to Figure 6, this circuit differs from the above-described circuit in that the power supply detection circuit 504 is implemented using an analog digital converter 6-1. Such a ratio digital converter 601 is used to battery The power supply voltage VDD is converted to a digital value DV and is rotated out to the microprocessor 5〇3. The microprocessor 5〇3 uses the digital value DV as the control current to control the data of the LED output driving circuit 505. The processor 5〇3 controls the current control LED driving circuit 5〇5 according to the magnitude of the received digital value dv to determine the maximum driving current flowing through the infrared light emitting diode D5〇1” Figure 7 is a block diagram of a more detailed circuit diagram of Figure 5 of the fourth embodiment of the present invention. Referring to Figure 7, the third embodiment differs from the above embodiment in the power detection of this embodiment. Circuit 5〇4 uses an amplification The device 701, the first resistor R701, the second resistor R7〇2, and a reference voltage generator 702. One end of the first resistor R7〇1 is coupled to the battery 5〇2 to receive the power voltage VDD, and the first resistor R701 The second end is coupled to the second resistor R702 and the positive end of the amplifier 701. The other end of the second resistor R7〇2 is connected to the other end of the battery 502. The negative end of the amplifier 701 is coupled to the reference battery generator 702 to receive the reference. Voltage VREF. When the power supply voltage vdd drops, the difference amplification signal vd output by the amplifier 701 will decrease, and the microprocessor 503 will amplify the signal according to the received difference. 201230856 Control motor control LED output drive The circuit 5〇5 determines the magnitude of the maximum drive current Idrv flowing through the infrared illuminating diode D501. _ Fifth Embodiment You Fig. 8 is a flow chart showing a method of adjusting the intensity of the infrared ray by the operating voltage according to the fourth embodiment of the present invention. Please refer to Figure 5, this method includes the following steps: Step: Step S801: Start. Step S802: Detecting a power supply voltage VDD of the battery. Step S803: determining whether the magnitude of the power supply voltage vdd is smaller than a power source pinch. When it is judged as YES, step S803 is performed. When the determination is no, step S804 is performed to step S804: when the magnitude of the power supply voltage VDD is larger than the power supply threshold, the signal strength of the infrared ray is not adjusted. Step S805: When the magnitude of the power supply voltage VDD is smaller than the power supply threshold, the intensity of the infrared signal is adjusted according to the magnitude of the power supply voltage VDD, and the lower the power supply voltage VDD is, the smaller the intensity of the infrared signal is adjusted. In summary, the spirit of the present invention is to adjust the current flowing through the infrared light emitting diode according to the magnitude of the power supply voltage of the battery. When the power supply voltage of the battery is small, the current flowing through the infrared light emitting diode is made small. Since the battery is not used up in the prior art, it is necessary to change the battery. At this time, the battery usually has two to 40% of the power that is not used, resulting in waste. In addition, the battery liquid may also leak, causing damage to the electronic zero 201230856 in the remote control. The above drawbacks can be improved by the present invention. The specific embodiments set forth in the detailed description of the embodiments are merely intended to illustrate the technical content of the present invention, and the present invention is not limited to the scope of the present invention. All of the various implementations of the changes are within the scope of the present invention. Therefore, the scope of protection of the present invention is subject to the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a circuit block diagram of a prior art infrared remote controller. Fig. 2 is a circuit block diagram of a remote controller for adjusting an infrared current by an operating voltage according to a first embodiment of the present invention. Fig. 3 is a circuit block diagram of a remote controller for adjusting an infrared current by an operating voltage according to a first embodiment of the present invention. Fig. 4 is a circuit block diagram of a remote controller for adjusting an infrared current by an operating voltage according to a second embodiment of the present invention. Fig. 5 is a flow chart showing a method of adjusting the intensity of the infrared ray by the operating voltage according to the fourth embodiment of the present invention. [Main component symbol description] 101, 203: microprocessor 102, 201: button group 103, 202: battery 104: switch R101: resistor 201230856 ΤΙ 01: transistor D101, D201: infrared light emitting diode IC201: remote control Circuit VDD: supply voltage
Idrv :流過紅外線發光二極體D20 1的電流 204 :電源檢測電路 205 :電流控制發光二極體輸出驅動電路 CON :控制信號 # PV :電源值 301 :類比數位轉換器 DV :數位值 401 :放大器 R401 :第一電阻 R402 :第二電阻 402 :參考電壓產生器 VREF :參考電壓 m S501〜S505:本發明實施例的步驟Idrv: current 204 flowing through the infrared illuminating diode D20 1 : power detecting circuit 205 : current controlling light emitting diode output driving circuit CON : control signal # PV : power supply value 301 : analog digital converter DV : digital value 401 : Amplifier R401: first resistor R402: second resistor 402: reference voltage generator VREF: reference voltage m S501~S505: steps of an embodiment of the present invention