TW201230123A - Field emission cathod device and field emission display - Google Patents

Field emission cathod device and field emission display Download PDF

Info

Publication number
TW201230123A
TW201230123A TW100100763A TW100100763A TW201230123A TW 201230123 A TW201230123 A TW 201230123A TW 100100763 A TW100100763 A TW 100100763A TW 100100763 A TW100100763 A TW 100100763A TW 201230123 A TW201230123 A TW 201230123A
Authority
TW
Taiwan
Prior art keywords
electrode
field emission
cathode
emitter
secondary electron
Prior art date
Application number
TW100100763A
Other languages
Chinese (zh)
Other versions
TWI427662B (en
Inventor
Peng Liu
Duan-Liang Zhou
Pi-Jin Chen
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW100100763A priority Critical patent/TWI427662B/en
Publication of TW201230123A publication Critical patent/TW201230123A/en
Application granted granted Critical
Publication of TWI427662B publication Critical patent/TWI427662B/en

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

The invention relates to a field emission cathode device and a field emission display. The field emission cathode device includes an insulated substrate, a first electrode, a second electrode and a cathode emitter. The insulated substrate includes a surface where the first electrode and the second electrode are located. The first electrode and the second electrode are spaced apart from each other. The cathode emitter is electrical connection with the first electrode. The field emission cathode device further includes a second electron emission material. At least a portion of the second electron emission material is located between the first electrode and the second electrode. The cathode emitter is opposite to the second electron emission material. The cathode emitter is spaced apart from the second electron emission material. The invention also relates to a field emission display which includes the above-described field emission cathode device.

Description

201230123 六、發明說明: 【發明所屬之技術領域】 [讎1] 本發明涉及一種場發射陰極裝置及場發射顯示器。 【先前技術] [0002] 場發射陰極裝置在低溫或者室溫下工作,與電真空器件 中的熱發射裝置相比具有能耗低、回應速度快及低放電 等優點,因此用場發射陰極裝置替代電真空器件中的熱 發射裝置成為了人們研究的一熱點。 [0003] 先前的場發射陰極裝置一般包括一導電基體和一根奈米 碳管,該奈米碳·官的一端作為場發射尖端,奈米碳管的 另一端與該導電基體電聯接’請參見〃Gr〇wth 〇f single-walled Carbon nanotubes on the given Locations for AFM Tips", Chin Li Cheung , Appl. Phys. Lett., V〇l. 76, No. 21, 22 May 2000.然而,上述場發射陰極裝丨置的發射原理為施加一 電場於所述場發射陰極裝置,場發射瞒極裝置中的奈米 碳管在電場的作用下發射出電子。然而,由於奈米碳管 的場發射能力有限,採用奈米碳管直接發射電子導致該 種場發射陰極裝置的場發射電流較小,所需的工作電壓 較高,導致場發射陰極裝置的壽命較短。採用該種場發 射陰極裝置的場發射顯示器也存在同樣的問題。 【發明内容】 [0004] 有鑒於此,提供一種場發射電流較大,所需的工作電壓 較低,且壽命較長的場發射陰極裝置及場發射顯示器實 有必要。 100100763 表單編號A0101 第4頁/共33頁 1002001371-0 201230123 [0005]—種場發射陰極裝置,所述場發射陰極裝置包括:—絕 緣基板,該絕緣基板具有一表面;一第一電極與—第二 電極相互間隔地設置於所述絕緣基板的所述表面;_陰 極發射體’該陰極發射體與所述第一電極電連接;所述 場發射陰極裝置進一步包括一次級電子發射材料,所述 次級電子發射材料至少部份設置於所述第一電極和第二 電極之間’且所述陰極發射體與所述次級電子發射材料 相對且間隔設置。 0 [0006]—種場發射陰極裝置,所述場發射陰極裝置包括:一絕 緣基板,該絕緣基板具有-表面;一第一電極設置於所 述絕緣基板的所述表面;一陰極發射體,該陰極發射體 與所述第一電極電連接;所述場發射陰極裝置進一步包 括一第二電極,所述第二電極為導電材料與所述次級電 子發射材料複合形成一複合結構。 [0007] —種場發射陰極裝置,其包括:一絕緣基底;複數行電 極引線與列電極引線分別平行且等間隔設置於絕緣基底 €) 上,該複數行電極引線輿複數列電極引線相互交叉設置 ,每二相鄰的行電極引線與二相鄰的列電極引線形成一 網格,行電極引線與列電極引線之間電絕緣;複數場發 射單元,每一場發射單元對應一網格設置,每/場發射 單元進一步包括一第一電極;一陰極發射體,該陰極發 射體與第一電極電連接;一第二電極’該第二電極與所 述第一電極之間形成一電場,在該電場作用下由所述陰 極發射體發射電子;所述陰極發射體平行於所述絕緣基 底的表面,所述場發射陰極裝置進一步包括一次級電子 100100763 表單編號A_1 第5頁/共33頁 1002001371-0 201230123 發射材料’所述陰極發射體與所述次級電子發射材料間 隔且相對設置’由所述陰極發射體發射的電子為擊所述 二欠級電子發射材料。 [0008] [0009] 一種場發射顯示器,其包括:_勞光屏陽極結構及與該 勞光屏陽極結構間隔設置的—場發射陰極裂置,該場發 射陰極裝置包括:-絕緣基底;複數行電極引線與列電 極引線分別平行且等間隔設置於絕緣基底上該複數行 電極引線與複數列電極引線相互交又設置,每二相鄰的 H㈣線與二相鄰的列電極引線形成_網格行電極 引線與列電極引線之間電絕緣;複數場發射單元 ,每一 場發射單元對應-網格設置.,每—場發射單元進一步包 括一第一電極;一陰極發射體,該陰極發射艎與第一電 極電連接,一第二電極,該第二電極與所述第一電極之 間形成一電場,在該電場作用下由所述陰極發射體發射 電子;所述陰極發射體平行於所述絕緣基底的表面,所 述場發射單元進一步包括一次級電子發私材料 ,所述陰 極發射體與所述次級電子锋射材料間隔且相對設置,由 . ::. ...... 所述陰極發射體發射的電子轟擊所述次級電子發射材料 〇 相較於先前技術’本發明提供的場發射陰極裝置及場發 射顯不器具有以下優點:其一,通過次級電子發射材料 的電流放大性能’該場發射陰極裝置在較小的工作電壓 下就可以獲得較大的場發射電流;其二,所述陰極發射 體與所述次級電子發射材料相對設置,且所述次級電子 發射材料設置於所述第一電極和第二電極之間,因此, 100100763 表單編號A0101 第6頁/共33頁 1002001371-0 201230123 陰極發射體發射出的電子極易在第一電極和第二電極的 電場作用下轟擊所述次級電子發射材料,從而择大了所 述場發射陰極裝置的發射電流;其三,通過次級電子發 射材料的電流放大性能’可減小施加於所述第一電極和 第二電極上的電壓,從而使整個場發射陰極裝置的壽命 增長’進而使採用該種場發射陰極裝置的場發射顯示器 的壽命也增長。 【實施方式】 [0010] ο [0011] 以下將結合附圖對本發明的場發射陰極装置及場發射顯 示器作進一步的詳細說明。 ο 請參閱圖1及圖2 ’本發明第一實施例提供一種場發射陰 極裝置10。所述場發射陰極裝置1〇包括:一絕緣基板u 及設置於絕緣基板11上的一第一電極12、一第二電極 至陰極發射體1 6及一次級電子發射材料18。所述 第一電極12、一第二電極14、至少一陰極發射體16及一 次級電子發射材料18共同構成一場發射單元1〇〇 ^該絕緣 基板11具有-第-表面112。所述第—電極ι2和所述第二 電極14設置於所述絕緣基板u的—第—表面ιι2且相互間 隔設置。該陰極發㈣16與第-電極12電連接,且與第 一電極14間隔叹置。該次級電子發射材料η至少部份設 置在所述第-電極12與第二電極14之間。該次級電子發 射材料18與所述陰極發射體16_且相對設置。 所述絕緣基板11用於承栽所述第-電極12和第二電極I4 等設置於其上的元件m緣純11可為喊基板、 玻璃基板、樹絲板、石赵板等。所⑽緣基板η的 100100763 表單編號Α0101 第7頁/共33頁 1002001371-0 [0012] 201230123 大小與厚度不限’本領域技術人員可根據實際需要選擇 。本實施例中’所述絕緣基板11為一玻璃基板。 [0013] [0014] 所述第一電極12與所述第二電極14的形狀可為正方體、 長方體或圓柱ϋ。所述第一電極12與帛二電極14的形狀 沒有限制。所述第一電極12與第二電極14均為導電體, 具雜地,其材料可選擇為銅、鋁、金或銀等金屬,或者 銦錫氧化物(ΙΤ〇)、導電漿料等。本實施例中,該第〜 電橾12與第二電極14的材料為烘乾後或燒結後的導電漿 科。 所述陰極發射體1 6設置於所述第一電極12的遠離絕緣基 板11的表面。所述場發射陰極裝置10可包括一陰極發射 雜16或複數陰極發射體16。所迷陰極發射體“為線狀電 孑發射體,如:❺線、奈米碳管、碳纖維及奈米碳管綠 等中的一種或複數種。所述陰極發射體16基本平行於所 述絕緣基底11的第—表面Π 2辱通過所述第一電極12與所 述絕緣基底11間隔設置。議陰極發射魏16的一端與所塊 第电極1 2電性連接,該缓择杳射I攀1 6的另一端向所迷 第二電極14延伸作為一電子發射端162,該電子發射端 162為陰極發射體16遠離第一電極12的一端。該電子發射 端162與所述次級電子發射材料18間隔且相對設置。本實 施例中,所述場發射陰極裝置10包括複數奈米碳管線作 為所述複數陰極發射體16,該複數陰極發射體16可以相 立平行且等間隔設置也可以不平行等間隔設置。所述奈 米破管線為由複數奈米碳管組成的純奈米碳管結構所 述奈米碳管線包括複數奈米碳管相互通過凡得瓦力結合 100100763 表單編號Α0101 第8頁/共33頁 1002001371 201230123 形成一自支撐結構。 [⑻ 15] Ο 所述次級電子發射材料18至少部份位於所述第一電極12 與所述第二電極14之間。所述次級電子發射材料18可設 置在所述第二電極14的表面,或者,所述次級電子發射 材料18可設置在所述絕緣基底11的第一表面112。所述次 級電子發射材料18與所述陰極發射體16相對設置,所謂 相對設置”係指所述陰極發射體16的延長線與所述級 電子發射層18相交。所述次級電子發射材料18的形狀沒 有限制。所述次級電子發射材料18的材料為可以在電子 的轟擊下發射出次級電子的材料。所述次級電極發材料 18的材料可為氧化鎂、氧化鈹、氧化鎖、氧化绝、氧化 約、氧化锶、氟化鎂或氟化鈹。本實施例中,所述次級 電子發射材料18直接設置在所述絕緣基底11的第一表面 112並與所述陰極發射髏16相對且間隔設置’且所述次級 電子發射材料18設置於所述第二電極14的表面。 [0016] Ο 進一步地,所述次級電子發射材料18具有至少一電子發 射表面182面對所述陰極發射體16設置。所述次級電子發 射材料18的所述電子發射表面182可為平面或曲面。所述 電子發射表面182可形成有凹凸結構,其增大所述電子發 射表面182的表面積。所述電子發射表面182可背向所述 絕緣基板11設置。當所述電子發射表面182為平面時,所 述電子發射表面182與所述絕緣基板11的第一表面112形 成一角度α,該角度α大於0度且小於等於90度。即,所 述陰極發射體16的延長線與所述電子發射表面I82形成一 角度α,該角度α大於〇度且小於等於90度。本實施例中 100100763 表單編號Α0101 第9頁/共33頁 1002001371-0 201230123 ’所迷電子發射表面182垂直於所述絕緣基底丨丨的第 ::=ΤΓ6設置。所述場發射㈣ ' 電極板19,該第三電極板19與 所述絕緣基板11_設置。該第三電極板19包括—基板 192及一第三電極丨91,所述第三電極191設置於所述基 板192面對所述絕緣基板u的表面。可以理解所述^三 電極板191係可選擇的結構。 [0017] 所述場發射陰極裝置1〇在應用時,所述第一電極12與所 述第二電極14可分別用作陰極電極與栅極電極,施加一 電塵在第—電極12和第二電極14之間,以在第一電極! 2 和第二電極14之間形成一電場。在第一電極.12和第二電 極14的電場作用下,陰極發射體1&發射出初級電子。所 述電場的電力線為由第一電極12指向第二電極14。陰極 發射體16與次級電子發射材料18間隔且相對設置,且所 述次級電子發射材料18位於所述障極發射體16和第二電 極14之間,因此,次級電手發射材料18位於第一電極12 和所述第二電極14的電力線上,進而初級電子會在電場 作用下飛向次級電子發射材料18且轟擊在次級電子發射 材料18上。次級電子發射材料18在初級電子的轟擊下發 射出次級電子。由於次級電子發射材料18的電流放大性 能,其可以在初級電子的轟擊下發射出遠大於初級電子 數量的次級電子,從而將初級電子的電流進行了 一次放 大。所述第三電極191可用作陽極電極,在應用中,可於 第二電極191上施加一電壓,次級電子發射材料Η發射出 的電子在第二電極191的電壓吸引下飛向第三電極“I, 100100763 表單編號Α0101 第10買/共33頁 1002001371-0 201230123 通過第三電極191可以控制次級電子發射材料18發射出的 次級電子的運動方向。 [0018] 請參閱圖3 ’本發明第二實施例提供一種場發射陰極裝置 20 ’所述場發射陰極裝置2〇包括:一絕緣基板21及設置 於絕緣基板21上的一第一電極22、一第二電極24、至少 一陰極發射體26及一次級電子發射材料28。所述第一電 極22 —第—電極24、至少一陰極發射體26及一次級電 子發射材料28組成一場發射單元。第二實施例提供的場 Ο 發射陰極裝置20的結構與第一實施例的場發射陰極裝置 .... 10相似,其區別在於:所迷次級電子發•材料28獨立設 置在所述絕緣基底21表面並與所述第三電極24間隔設置 。所述次級電子發射材料28具有的電子發射表面282為一 面對所述陰極發射體26且背向所述絕緣基底21的斜面, 該電子發射表面282與所述陰極發射體26的延長線相交且 形成一角度α為45度。沿遠離所述陰極發射體26的方向 ο [0019] ’所述次級電子發射材料28的電子發射表面282的高度逐 漸增加。 由於電子發射表面282與所述陰極發射體26的延長線形成 一45度的夾角’因此,所述電子發射表面282與陰極發射 體26相對的面積增大,即所述電子發射表面282的有效發 射面積增加’由電子發射表面282發射出的電流也將增大 [0020] 請參閱圖4,本發明第三實施例提供一種場發射陰極裝置 30 ’所述場發射陰極裝置30包括:一絕緣基板31及設置 於絕緣基板31上的一第一電極32、一第二電極34、至少 100100763 表單蝙號Α0101 第11頁/共33頁 1002001371-0 201230123 -陰極發射體36及-次級電^射材料⑽。所述第一電 極32、一第二電極34、至少-陰極發射體36及一次級電 子發射材料38組成—場發射單元。第三實施例提供的場 發射陰極裝置30的結構與第1施例的場發射陰極裝置 ίο相似,魏別在於:㈣錢電子發射㈣38設置在 所述第二電極34的與陰極發㈣36相對的表面所述次 級電子發射材額還同時設置於所述絕緣基板31的表面 。且所述次級電子發射材料38具有的電子發射表面⑽為 一階梯形狀表面。這種具有階梯形狀電子發射表面382的 次級電子發射材料38_備方法為:顧印刷圖案的大 小遞減且複數次印刷的細印顯方.法襲t通過次級 電子發射材料38的階梯形狀電子發射表面咖,可進一步 增大次級電子發射材料38的有效發射面積,進而增大了 場發射陰極裝置30發射出的電流。 [0021] 請參閱圖5,本發明第四實施例提供一種場發射陰極裝置 40,所述場發射陰極裝置4〇包括:一絕緣基板41及設置 於絕緣基板41上的一第一電極42、一第二電極44、至少 ' ; ; . Ί: 一陰極發射體46及一次級電子發射材料48。所述第一電 極42、一第二電極44、至少一陰極發射體46及一次級電 子發射材料48組成一場發射單元。第三實施例提供的場 發射陰極裝置40的結構與第一實施例的場發射陰極裝置 1 0相似,其區別在於:所述次級電子發射材料4 8僅設置 在所述第二電極44的表面,且包住第二電極44的暴露的 表面,所述次級電子發射材料48至少部份位於所述第一 電極42與第二電極44之間’且部份面對說述陰極發射體 100100763 表單編號A0101 第12頁/共33頁 100200137卜〇 46°201230123 [0022] Ο 請參閱圖6,本發明第五實施例提供一種場發射陰極裝置 50,所述場發射陰極裝置50包括:一絕緣基板51及設置 於絕緣基板51上的一第一電極52、一第二電極54、至少 —陰極發射體56。所述第一電極52、一第二電極54、至 少一陰極發射體56形成一場發射單元。第三實施例提供 的%發射陰極裝置50的結構與第一實施例的場發射陰極 裝置10基本相同,其區別在於:所述第二電極54為導電 材料542與所述次級電子發射材料544複合形成一複合結 構,具體地’所述次級電子發射材料544為複合結構的基 體,所述導電材料542為複敖導電材料顆粒分散在次級電 子發射材料544中。或者,以所述導電材料542為複合結 構的基體,所述次級電子發射材料58分散在所述導電材 料542中。該複合結構既具備導電的性能又具備可以發射 次級電子的性能。 [0023] ❹ 請參閱圖7及圖8,本發明第六實施例提供一種場發射陰 極裝置60,其包括一絕緣基底61,及設置在所述絕緣基 底61上的複數場發射單元61〇0,該複數場發射單元61〇〇 呈陣列排列’每一場發射單元6100包括一第一電極62、 一第二電極64、至少一陰極發射體66及一次級電子發射 材料68。每一場發射單元61〇〇的具體結構與第一實施例 中場發射單元1〇〇相同。也可採用第二至第六實施例中的 場發射單元。所述場發射陰極裝置60進一步包括:複數 行電極引線612與複數列電極引線614。複數行電極引線 612平行且等間隔設置於絕緣基底61上,複數列電極引線 100100763 表單編號Α0101 第13頁/共33頁 1002001371-0 201230123 614平行且等間隔設置於絕緣基底61上,且所述複數行電 極引線612與複數列電極引線6丨4相互交叉設置,而且, 在行電極引線61 2與列電極引線614交又處設置有一介質 絕緣層616,該介質絕緣層616將行電極引線612與列電 極引線614電隔離,以防止短路。每二相鄰的行電極引線 614與二相鄰的列電極引緩612形成一網格61〇,且每一 網格114定位一場發射單元61〇〇。 [0024] 所述複數場發射單元61 〇〇對應設置於上述網格61 〇中,且 每一網格610中設置一場發射單元&1〇〇。該陰極發射體 66設置於第一電極64與第一電極、62之間,且,陰極發射 體66 —端與第一電極62電連接,另一端指向第二電極64 。該陰極發射體66平行於所述絕緣基底w的表面。該陰 極發射體6 6可與絕緣基底& 1間隔設置或直接設置於絕緣 基底61上。所述次級電子發射材料68與所述陰極發射體 6 6相互間隔且相對設置。夸實施例中,同一行的場發射 單元61 00中的第二電極64#同一行電極引線61 2電連接 ,同一列的場發射單元61 0 0中的第一電極62與同一列電 極引線614電連接。 [0025] 所述的絕緣基底61為一絕緣基板,如陶曼基板、玻璃基 板、·樹脂基板、石英基板等。所述絕緣基底61的大小與 厚度不限,本領域技術人員可根據實際需要選擇。本實 施例中,所述絕緣基底61優選為一玻璃基板,其厚度大 於1毫米,邊長大於1厘米。 [0026] 所述行電極引線612與列電極引線614為導體,如金屬層 等。本實施例中,該複數行電極引線612與複數列電極引 100100763 表單編號 A0101 第 14 頁/共 33 頁 100200137卜0 201230123 線614優選為採用導電漿料印製的平面電極,Β^、 且垓複數行 電極引線614的行間距為50微米〜2厘米,複數列電極丨 614的列間距為50微米〜2厘米。該行電極引線6ΐ2與列 '線 極引線614的寬度為30微米~100微米,厚度為1〇德^電 微米。本實施例中’該行電極引線612與列電極^線^ 的交又角度為10度到90度,優選為90度。本實施$ Ο 可通過絲網印刷法將導電漿料印製於絕緣基底61上^$ 行電極引線612與列電極引線614。該導電衆料的成八~ 括金屬粉、低熔點玻璃粉和黏結劑。其中,該金屬粉 選為銀粉,該黏結劑優選為松油醇或乙基纖維素: 電漿料中,金屬粉的重量比為,50%〜9G%,低炫 重量比為2%~10%,黏結劑的重量比為8¾〜4〇%。 的 [0027] 所述第一電極62與第二電極64的材料為金屬等本 例中’該第一電極62與第二電極64均為平面導體, 寸依據網格610的尺寸決定。該第一電極62和第_ 、 直接與上述電極引線連接,,,從而實現電連接。所述第 Ο 電極62與第二電極64的長度為20微米〜1.5厘半, 、寬度為 30微米~1厘米,厚度為1〇微米〜500微米。 攻選地,所述 第一電極62與第二電極64的長度為1〇〇微米〜7〇〇微米 寬度為50微米~500微米,厚度為20微米〜1〇〇微米 施例中,該第一電極62與第二電極64的材料為導電漿料 ,通過絲網印刷法印製於絕緣基底61上。該導電漿料的 成分與上述電極引線所用的導電漿料的成分相同。 所述陰極發射體66可為一陰極發射體66或複數陰極發射 體66,所述陰極發射體16可為矽線、奈米破管'碳纖維 100100763 表單編號A0101 第15頁/共33頁 1002001371-0 [0028] 201230123 及奈米碳管線料的-種或數種。而且,每—陰極發射 體66包括-電子發射端662,該電子發射端啦為陰極發 射體66遠離第一電極62的一端。 [0029] [0030] 本實施例中’陰極發射體66包括複數平行排列的奈米礙 管線。採賴數平行卿的奈米碳#線作為陰極發射體 66時,每一奈米碳管線的—端與第—電極62電連接另 一端指向第二電極64,作為陰極發射體66的電子發射端 662。該電子發射端662與第二電極64之間的距離為1微 米~1000微米。该陰極發射蠢^端.與第一電極μ的電 連接方式可為通過一導電膠電連接,亦可通過分子間力 或者其他方式實現。該奈米碳管線的長度為10微米〜^^厘 米’且相鄰的奈米碳管線之間的間距為1微米〜1000微米 。該奈米碳管線包括複數沿奈米碳管長度方向排列的奈 米碳管。具體地,該奈米碳管線包括複數奈米碳管片段 ’該複數奈米碳管片段通過凡得瓦力首尾相連,每一奈 米碳管片段包括複數相互平行並通過凡得瓦力緊密結合 的奈米碳管。所述奈米碳管線中的奈米碳管包括單壁、 雙壁及多壁奈米碳管中的一種或數種。所述奈米碳管的 長度範圍為10微米微米,且奈米碳管的直徑小於15 奈米。 請參閱圖9,本發明第七實施例提供一種使用上述第六實 施例場發射陰極裝置60的場發射顯示器70,該場發射顯 示器70包括一陽極裝置710及與該陽極裝置710間隔設置 的一場發射陰極裝置720。所述陽極裝置710與所述場發 射陰極裝置720相對且保持一定距離設置。 100100763 表單編號Α0101 第16頁/共33頁 1002001371-0 201230123 [0031] [0032] Ο [0033] Ο [0034] 所述陽極裝置710包括—絕緣透明基底712,一透明陽極 714及塗覆於透明陽極714上的螢光層716。所述透明陽 極714可為氧化銦錫薄骐、氧化鋅薄膜、奈米碳管薄膜或 者石墨稀薄膜。所述陽極裝置71〇通過一絕緣支撐體718 與場發射陰極裝置720中的絕緣基底722的四周封接。所 述場發射陰極裝置720中的次級電子發射材料78與陽極裝 置710中的榮光層716相對設置。 可選擇地,所述陽極裝置710還可以包括一絕緣透明基底 ,一設置於所述絕緣透明基底表面上的螢光粉層及一設 置於所述螢光粉層上的鏡弟電極層。該鏡面電極層的材 料可為鋁》 " 所述場發射陰極裝置720為第六實施例中的塲發射陰極裝 置60。所述場發射陰極裝置72〇包括一絕緣基底722、複 數行電極引線與複數列電極引線724,每二相鄰的行電極 引線與二相鄰的列電極引線724形成一網格。複數場發射 單元7300分別設置於所述網格72_8的内部。每一網格728 的内部均設置有一場發射單元7300。 %發射顯示器70在應用時,分別施加不同電壓給行電極 引線、列電極引線724和陽極714。場發射單元73〇〇在行 電極引線和列電極引線724的電壓作用下發射出電子。由 場發射單元7300發射出的電子在陽極714的電場作用下, 最終打到陽極714上,打在塗覆透明陽極714上的螢光層 Ή6,發出螢光,實現場發射顯示器7〇的顯示功能。由於 行電極引線之間相互絕緣、列電極引線724之間相互絕緣 ,因此,通過選擇性地在不同的行電極引線和列電極引 100100763 表單編號Α0101 第17頁/共33頁 1002001371-0 201230123 線724之間施加不同的電壓,可控制不同位置的場發射單 元7300發射電子,電子打在陽極裝置710的螢光層716的 不同位置,從而使螢光層716的不同位置發光,使場發射 顯不器70根據需要顯示不同的畫面。 [0035] [0036] 本發明提供的場發射陰極裝置及場發射顯示器具有以下 優點:其―’通過次級電子發射材料的電流放大性能, 該場發射陰極裝置在較小的工作電壓下就可以獲得較大 的場發射電流,採用該場發射陰極裝置的場發射顯示器 也可以獲得較大的電流;其二,所'述陰極發射體與所述 次級電子發射材料相對設置,且所迷次級電子發射材料 設置於所述第一電極和第二電極之間,因此,陰極發射 體發射出的電子極易在第一電極和第二電極的電場作用 下森擊所述次級電子發射材料’從而增大了所述場發射 陰極裝置的發射電流,進而增大了採用該場發射陰極穿 置的場發射顯示器的電流;其三,通過次級電子發射材 料的電流放大性能,可減小施加於所述拿一電極和第二 電極上的電壓’從而使整個場發射陰極裝置的壽命增長 ,進而使採用該種場發射陰極裝置的場發射顯示器的壽 命也增長。 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 100100763 表單編號A0101 第18頁/共33頁 1002001371-0 201230123 [0037] 圖1係本發明第一實施例的場發射陰極裝置的側視圖。 [0038] 圖2係本發明第一實施例的場發射陰極裝置的俯視圖。 [0039] 圖3係本發明第二實施例的場發射陰極裝置的側視圖。 [0040] 圖4係本發明第三實施例的場發射陰極裝置的側視圖。 • [0041] 圖5係本發明第四實施例的場發射陰極裝置的側視圖。 [0042] 圖6係本發明第五實施例的場發射陰極裝置的側視圖。 [0043] 〇 [0044] 圖7係本發明第六實施例的場發射陰極裝置的俯視圖。 圖8係本發明第六實施例的場發射陰極裝置的側視圖。 [0045] 圖9係本發明第七實施例的場發射顯示器的侧視圖。 [0046] 【主要元件符號說明】 10、20、30、40、50、60、720 :場發射陰極裝置 [0047] 11、21、31、41、51 :絕緣基板 [0048] 12、22、32、42、52、62 :第一電極 〇 [0049] 14、24、34、44、54、64 :第二電極 [0050] 16、26、36、46、56、66 :陰極發射體 [0051] 18、28、38、48、68、78、544 :次級電子發射材料 [0052] 19 :第三電極板 [0053] 61、722 :絕緣基底 [0054] 70 :場發射顯示器 [0055] 100、6100、7300 :場發射單元 100100763 表單編號A0101 第19頁/共33頁 1002001371-0 201230123 [0056] 1 12 :絕緣基板的第一表面 [0057] [0058] [0059] [0060] [0061] [0062] [0063] [0064] [0065] [0066] [0067] [0068] [0069] [0070] [0071] 162、662 :電子發射尖端 182、282、382 :電子發射表面 191 :第三電極 192 :基板 542 :導電材料 610 :網格 612、724 :行電極引線 614 :列電極引線 616 :介質絕緣層 624 :固定件 710 :陽極裝置 712 :絕緣透明基底 714 :透明陽極 716 :螢光層 718 :絕緣支撐體 100100763 表單編號A0101 第20頁/共33頁 1002001371-0201230123 VI. Description of the invention: [Technical field to which the invention pertains] [雠1] The present invention relates to a field emission cathode device and a field emission display. [Prior Art] [0002] A field emission cathode device operates at a low temperature or a room temperature, and has advantages of low power consumption, fast response speed, and low discharge compared with a heat-emitting device in an electric vacuum device, and thus a field emission cathode device is used. The replacement of thermal emitters in electric vacuum devices has become a hot topic. [0003] The prior field emission cathode device generally comprises a conductive substrate and a carbon nanotube, one end of which is a field emission tip, and the other end of the carbon nanotube is electrically coupled to the conductive substrate. See 〃Gr〇wth 〇f single-walled Carbon nanotubes on the given Locations for AFM Tips", Chin Li Cheung , Appl. Phys. Lett., V〇l. 76, No. 21, 22 May 2000. However, the above field The emission principle of the emitter cathode device is to apply an electric field to the field emission cathode device, and the carbon nanotubes in the field emission gate device emit electrons under the action of an electric field. However, due to the limited field emission capability of the carbon nanotubes, the direct emission of electrons by the carbon nanotubes causes the field emission current of the field emission cathode device to be small, and the required operating voltage is high, resulting in the lifetime of the field emission cathode device. Shorter. The same problem exists with field emission displays using such a field emission cathode device. SUMMARY OF THE INVENTION [0004] In view of the above, it is necessary to provide a field emission cathode device and a field emission display having a large field emission current, a low required operating voltage, and a long lifetime. 100100763 Form No. A0101 Page 4 of 33 1002001371-0 201230123 [0005] A field emission cathode device comprising: an insulating substrate having a surface; a first electrode and - a second electrode is disposed at intervals from the surface of the insulating substrate; a cathode emitter 'the cathode emitter is electrically connected to the first electrode; the field emission cathode device further includes a primary electron emission material, The secondary electron emission material is at least partially disposed between the first electrode and the second electrode 'and the cathode emitter is opposite to and spaced apart from the secondary electron emission material. [0006] a field emission cathode device, the field emission cathode device comprising: an insulating substrate having a surface; a first electrode disposed on the surface of the insulating substrate; a cathode emitter, The cathode emitter is electrically connected to the first electrode; the field emission cathode device further includes a second electrode, and the second electrode is a composite material formed by combining a conductive material and the secondary electron emission material. [0007] A field emission cathode device comprising: an insulating substrate; the plurality of row electrode leads and the column electrode leads are respectively parallel and equally spaced on the insulating substrate (), the plurality of row electrode leads and the plurality of column electrode leads cross each other Providing that each two adjacent row electrode leads forms a grid with two adjacent column electrode leads, and the row electrode leads are electrically insulated from the column electrode leads; the plurality of field emission units each of which has a grid arrangement, Each of the field emission units further includes a first electrode; a cathode emitter electrically connected to the first electrode; and a second electrode forming an electric field between the second electrode and the first electrode The cathode emitter emits electrons under the action of the electric field; the cathode emitter is parallel to the surface of the insulating substrate, and the field emission cathode device further includes primary electrons 100100763. Form No. A_1 Page 5 of 33 1002001371 -0 201230123 emissive material 'the cathode emitter is spaced apart from the secondary electron-emitting material and disposed oppositely' from the cathode emitter The emitted electrons strike the two under-stage electron-emitting materials. [0009] [0009] A field emission display, comprising: a launch screen anode structure and a field emission cathode cleavage disposed apart from the slab anode structure, the field emission cathode device comprising: - an insulating substrate; The row electrode lead and the column electrode lead are respectively disposed in parallel and equally spaced on the insulating substrate. The plurality of row electrode leads and the plurality of column electrode leads are disposed to overlap each other, and each two adjacent H (four) lines and two adjacent column electrode leads are formed. The row electrode lead and the column electrode lead are electrically insulated; the plurality of field emission units, each field emission unit corresponding to the grid arrangement. Each field emission unit further comprises a first electrode; a cathode emitter, the cathode emitter Electrically connected to the first electrode, a second electrode, an electric field is formed between the second electrode and the first electrode, and electrons are emitted by the cathode emitter under the electric field; the cathode emitter is parallel to the The surface of the insulating substrate, the field emission unit further comprising a primary electron emitting material, the cathode emitter being spaced apart from the secondary electron emitting material and For the arrangement, the electrons emitted by the cathode emitter are bombarded with the secondary electron-emitting material 〇 compared to the prior art 'field-emitting cathode device provided by the present invention and the field emission is not The device has the following advantages: First, the current amplification performance through the secondary electron-emitting material 'the field emission cathode device can obtain a larger field emission current at a smaller operating voltage; second, the cathode emitter and The secondary electron emission materials are disposed opposite to each other, and the secondary electron emission material is disposed between the first electrode and the second electrode, and therefore, 100100763 Form No. A0101 Page 6 / Total 33 Page 1002001371-0 201230123 Cathode The electrons emitted by the emitter easily bombard the secondary electron-emitting material under the electric field of the first electrode and the second electrode, thereby increasing the emission current of the field emission cathode device; third, through the secondary electron The current amplification performance of the emissive material 'reduces the voltage applied to the first and second electrodes, thereby increasing the lifetime of the entire field emission cathode device' The lifetime of field emission displays employing such field emission cathode devices has also increased. [Embodiment] [0010] The field emission cathode device and the field emission display of the present invention will be further described in detail below with reference to the accompanying drawings. Referring to Figures 1 and 2, a first embodiment of the present invention provides a field emission cathode device 10. The field emission cathode device 1A includes an insulating substrate u and a first electrode 12 disposed on the insulating substrate 11, a second electrode to the cathode emitter 16 and a primary electron emitting material 18. The first electrode 12, a second electrode 14, at least one cathode emitter 16 and a secondary electron-emitting material 18 together form a field emission unit 1 . The insulating substrate 11 has a - surface 112. The first electrode ι2 and the second electrode 14 are disposed on the first surface ιι of the insulating substrate u and are spaced apart from each other. The cathode (four) 16 is electrically connected to the first electrode 12 and is spaced apart from the first electrode 14. The secondary electron-emitting material η is at least partially disposed between the first electrode 12 and the second electrode 14. The secondary electron-emitting material 18 is disposed opposite the cathode emitter 16_. The insulating substrate 11 is used to load the element m edge pure 11 on which the first electrode 12 and the second electrode I4 are placed, such as a shim substrate, a glass substrate, a tree plate, a stone plate, and the like. (10) Edge substrate η 100100763 Form number Α 0101 Page 7 / Total 33 1002001371-0 [0012] 201230123 Size and thickness are not limited 'The person skilled in the art can choose according to actual needs. In the present embodiment, the insulating substrate 11 is a glass substrate. [0014] The shape of the first electrode 12 and the second electrode 14 may be a square, a rectangular parallelepiped or a cylindrical crucible. The shape of the first electrode 12 and the second electrode 14 is not limited. The first electrode 12 and the second electrode 14 are both electrically conductive and have a mixed material, and the material thereof may be selected from a metal such as copper, aluminum, gold or silver, or indium tin oxide (yttrium), a conductive paste or the like. In this embodiment, the material of the first electrode 12 and the second electrode 14 is a conductive paste after drying or sintering. The cathode emitter 16 is disposed on a surface of the first electrode 12 remote from the insulating substrate 11. The field emission cathode device 10 can include a cathode emission impurity 16 or a plurality of cathode emitters 16. The cathode emitter is "one or more of a linear electrophoretic emitter such as a krypton line, a carbon nanotube, a carbon fiber, and a carbon nanotube green. The cathode emitter 16 is substantially parallel to the The first surface of the insulating substrate 11 is spaced apart from the insulating substrate 11 by the first electrode 12. The one end of the cathode emitting Wei 16 is electrically connected to the first electrode 12, and the selective sputtering is performed. The other end of the I climbing 16 extends toward the second electrode 14 as an electron emitting end 162 which is an end of the cathode emitter 16 remote from the first electrode 12. The electron emitting end 162 and the secondary The electron emission materials 18 are spaced apart and disposed oppositely. In the present embodiment, the field emission cathode device 10 includes a plurality of nanocarbon pipelines as the plurality of cathode emitters 16, and the plurality of cathode emitters 16 may be arranged in parallel and at equal intervals. The nano-crushed pipeline is a pure carbon nanotube structure composed of a plurality of carbon nanotubes, and the nano carbon pipeline includes a plurality of carbon nanotubes mutually coupled by van der Waals force 100100763 form No. 101 0101 8th Pages / Total 33 pages 1002001371 201230123 Form a self-supporting structure. [(8) 15] Ο The secondary electron-emitting material 18 is at least partially located between the first electrode 12 and the second electrode 14. The electron emission material 18 may be disposed on a surface of the second electrode 14, or the secondary electron emission material 18 may be disposed on the first surface 112 of the insulation substrate 11. The secondary electron emission material 18 and The cathode emitters 16 are disposed opposite each other, and the so-called relative arrangement means that the extension line of the cathode emitter 16 intersects the level electron-emitting layer 18. The shape of the secondary electron-emitting material 18 is not limited. The material of the secondary electron-emitting material 18 is a material that can emit secondary electrons under the bombardment of electrons. The material of the secondary electrode hair material 18 may be magnesium oxide, cerium oxide, oxidative lock, oxidized, oxidized, cerium oxide, magnesium fluoride or cesium fluoride. In this embodiment, the secondary electron emission material 18 is directly disposed on the first surface 112 of the insulating substrate 11 and is opposite to and spaced apart from the cathode emission stack 16 and the secondary electron emission material 18 is disposed on The surface of the second electrode 14. [0016] Further, the secondary electron-emitting material 18 has at least one electron-emitting surface 182 disposed facing the cathode emitter 16. The electron emission surface 182 of the secondary electron emission material 18 may be a flat surface or a curved surface. The electron emission surface 182 may be formed with a textured structure that increases the surface area of the electron emission surface 182. The electron emission surface 182 may be disposed facing away from the insulating substrate 11. When the electron emission surface 182 is planar, the electron emission surface 182 forms an angle α with the first surface 112 of the insulating substrate 11, the angle α being greater than 0 degrees and less than or equal to 90 degrees. That is, the extension line of the cathode emitter 16 forms an angle α with the electron-emitting surface I82 which is greater than the twist and less than or equal to 90 degrees. In this embodiment, 100100763 Form No. Α 0101 Page 9 / Total 33 1002001371-0 201230123 The electron emission surface 182 of the invention is disposed perpendicular to the ::=ΤΓ6 of the insulating substrate 丨丨. The field emission (four) 'electrode plate 19, the third electrode plate 19 and the insulating substrate 11_ are disposed. The third electrode plate 19 includes a substrate 192 and a third electrode 191, and the third electrode 191 is disposed on a surface of the substrate 192 facing the insulating substrate u. It can be understood that the three-electrode plate 191 is an optional structure. [0017] When the field emission cathode device 1 is applied, the first electrode 12 and the second electrode 14 can be used as a cathode electrode and a gate electrode, respectively, and an electric dust is applied to the first electrode 12 and the first electrode Between the two electrodes 14 to the first electrode! An electric field is formed between the second electrode 14 and the second electrode 14. Under the action of the electric field of the first electrode .12 and the second electrode 14, the cathode emitter 1 & emits primary electrons. The electric power line of the electric field is directed from the first electrode 12 to the second electrode 14. The cathode emitter 16 is spaced apart from and opposite the secondary electron-emitting material 18, and the secondary electron-emitting material 18 is located between the barrier emitter 16 and the second electrode 14, and thus, the secondary hand-emitting material 18 Located on the power lines of the first electrode 12 and the second electrode 14, the primary electrons then fly toward the secondary electron-emitting material 18 under the action of an electric field and bombard the secondary electron-emitting material 18. The secondary electron-emitting material 18 emits secondary electrons under the bombardment of primary electrons. Due to the current amplification performance of the secondary electron-emitting material 18, it can emit secondary electrons much larger than the number of primary electrons under the bombardment of primary electrons, thereby amplifying the current of the primary electrons. The third electrode 191 can be used as an anode electrode. In the application, a voltage can be applied to the second electrode 191, and electrons emitted from the secondary electron emission material 飞 fly to the third position under the voltage attraction of the second electrode 191. Electrode "I, 100100763 Form No. 101 0101 10th Buy/Total 33 Page 1002001371-0 201230123 The direction of movement of the secondary electrons emitted from the secondary electron-emitting material 18 can be controlled by the third electrode 191. [0018] Please refer to FIG. The second embodiment of the present invention provides a field emission cathode device 20'. The field emission cathode device 2 includes an insulating substrate 21, a first electrode 22, a second electrode 24, and at least one disposed on the insulating substrate 21. The cathode emitter 26 and the primary electron emissive material 28. The first electrode 22 - the first electrode 24, the at least one cathode emitter 26 and the primary electron emissive material 28 constitute a field emission unit. The structure of the transmitting cathode device 20 is similar to that of the field emission cathode device of the first embodiment, except that the secondary electron emitting material 28 is independently disposed on the insulating substrate 21 And disposed at a distance from the third electrode 24. The secondary electron emission material 28 has an electron emission surface 282 which is a slope facing the cathode emitter 26 and facing away from the insulating substrate 21, the electron emission surface 282 intersects the extension of the cathode emitter 26 and forms an angle a of 45 degrees. In a direction away from the cathode emitter 26, the electron-emitting surface 282 of the secondary electron-emitting material 28 The height gradually increases. Since the electron emission surface 282 forms an angle of 45 degrees with the extension of the cathode emitter 26, the area of the electron emission surface 282 opposite to the cathode emitter 26 is increased, that is, the electron emission. The effective emission area of the surface 282 is increased 'The current emitted by the electron emission surface 282 will also increase. [0020] Referring to FIG. 4, a third embodiment of the present invention provides a field emission cathode device 30'. The invention comprises: an insulating substrate 31 and a first electrode 32 disposed on the insulating substrate 31, a second electrode 34, at least 100100763, a form bat number 101 0101, a page 11 / a total of 33 pages 1002001371-0 20123012 3 - a cathode emitter 36 and a secondary electroluminescent material (10). The first electrode 32, a second electrode 34, at least a cathode emitter 36 and a primary electron emissive material 38 comprise a field emission unit. The structure of the field emission cathode device 30 provided by the embodiment is similar to that of the field emission cathode device of the first embodiment, and the difference is that: (4) the money electron emission (four) 38 is disposed on the surface of the second electrode 34 opposite to the cathode (four) 36. The secondary electron-emitting material is also disposed on the surface of the insulating substrate 31 at the same time. And the secondary electron-emitting material 38 has an electron-emitting surface (10) which is a stepped surface. The secondary electron-emitting material 38 having the step-shaped electron-emitting surface 382 is prepared by reducing the size of the printed pattern and the fine-grained display of the plurality of prints. The step shape of the secondary electron-emitting material 38 is passed. The electron emission surface coffee can further increase the effective emission area of the secondary electron emission material 38, thereby increasing the current emitted by the field emission cathode device 30. [0021] Referring to FIG. 5, a fourth embodiment of the present invention provides a field emission cathode device 40. The field emission cathode device 4 includes an insulating substrate 41 and a first electrode 42 disposed on the insulating substrate 41. A second electrode 44, at least ' ; 一: a cathode emitter 46 and a primary electron emissive material 48. The first electrode 42, a second electrode 44, at least one cathode emitter 46, and primary electron emissive material 48 form a field emission unit. The structure of the field emission cathode device 40 provided by the third embodiment is similar to that of the field emission cathode device 10 of the first embodiment, except that the secondary electron emission material 48 is disposed only at the second electrode 44. a surface, and enclosing an exposed surface of the second electrode 44, the secondary electron emissive material 48 being at least partially located between the first electrode 42 and the second electrode 44 and partially facing the cathode emitter 100100763 Form No. A0101 Page 12 of 33 100200137 Divination 46°201230123 [0022] Referring to FIG. 6, a fifth embodiment of the present invention provides a field emission cathode device 50, which includes: The insulating substrate 51 and a first electrode 52, a second electrode 54, and at least a cathode emitter 56 are disposed on the insulating substrate 51. The first electrode 52, a second electrode 54, and at least one cathode emitter 56 form a field emission unit. The structure of the %-emitting cathode device 50 provided by the third embodiment is substantially the same as that of the field-emission cathode device 10 of the first embodiment, except that the second electrode 54 is a conductive material 542 and the secondary electron-emitting material 544. The composite forms a composite structure, specifically 'the secondary electron-emitting material 544 is a matrix of a composite structure, and the conductive material 542 is a reticular conductive material particle dispersed in the secondary electron-emitting material 544. Alternatively, the conductive material 542 is a matrix of a composite structure, and the secondary electron-emitting material 58 is dispersed in the conductive material 542. The composite structure is both electrically conductive and capable of emitting secondary electrons. Referring to FIG. 7 and FIG. 8, a sixth embodiment of the present invention provides a field emission cathode device 60 including an insulating substrate 61 and a plurality of field emission units 61 设置 0 disposed on the insulating substrate 61. The plurality of field emission units 61 are arranged in an array. Each field emission unit 6100 includes a first electrode 62, a second electrode 64, at least one cathode emitter 66, and a primary electron emission material 68. The specific structure of each field emission unit 61A is the same as that of the field emission unit 1A in the first embodiment. The field emission unit in the second to sixth embodiments can also be employed. The field emission cathode device 60 further includes a plurality of row electrode leads 612 and a plurality of column electrode leads 614. The plurality of row electrode leads 612 are disposed in parallel and equally spaced on the insulating substrate 61, the plurality of column electrode leads 100100763, the form number Α0101, the 13th page, and the 33rd page 1002001371-0 201230123 614 are disposed in parallel and equally spaced on the insulating substrate 61, and the The plurality of row electrode leads 612 and the plurality of column electrode leads 6丨4 are disposed to cross each other, and a dielectric insulating layer 616 is disposed at the intersection of the row electrode leads 61 2 and the column electrode leads 614, and the dielectric insulating layer 616 sets the row electrode leads 612. Electrically isolated from column electrode leads 614 to prevent short circuits. Each two adjacent row electrode leads 614 and two adjacent column electrode depressions 612 form a grid 61 〇, and each grid 114 positions a field emission unit 61 〇〇. [0024] The plurality of field emission units 61 〇〇 are correspondingly disposed in the above-mentioned grid 61 ,, and one field emission unit & 1 设置 is disposed in each grid 610. The cathode emitter 66 is disposed between the first electrode 64 and the first electrode 62, and the cathode emitter 66 is electrically connected to the first electrode 62 and the other end is directed to the second electrode 64. The cathode emitter 66 is parallel to the surface of the insulating substrate w. The cathode emitter 66 may be spaced apart from the insulating substrate & 1 or disposed directly on the insulating substrate 61. The secondary electron-emitting material 68 and the cathode emitter 66 are spaced apart from each other and disposed opposite each other. In the embodiment, the second electrode 64# of the field emission unit 61 00 in the same row is electrically connected to the same row electrode lead 61 2 , and the first electrode 62 and the same column electrode lead 614 of the field emission unit 610 0 in the same column. Electrical connection. [0025] The insulating substrate 61 is an insulating substrate such as a Tauman substrate, a glass substrate, a resin substrate, a quartz substrate, or the like. The size and thickness of the insulating substrate 61 are not limited, and those skilled in the art can select according to actual needs. In the present embodiment, the insulating substrate 61 is preferably a glass substrate having a thickness of more than 1 mm and a side length of more than 1 cm. The row electrode lead 612 and the column electrode lead 614 are conductors such as a metal layer or the like. In this embodiment, the plurality of row electrode leads 612 and the plurality of column electrodes 100100763 Form No. A0101 Page 14 of 33 100200137 Bu 0 201230123 Line 614 is preferably a planar electrode printed with a conductive paste, Β^, and 垓The row spacing of the plurality of row electrode leads 614 is 50 micrometers to 2 centimeters, and the column spacing of the plurality of column electrodes 614 is 50 micrometers to 2 centimeters. The row electrode lead 6ΐ2 and the column 'wire lead 614 have a width of 30 μm to 100 μm and a thickness of 1 μm. In the present embodiment, the row electrode lead 612 and the column electrode line ^ are at an angle of 10 to 90 degrees, preferably 90 degrees. In this embodiment, the conductive paste can be printed on the insulating substrate 61 by a screen printing method to form the electrode lead 612 and the column electrode lead 614. The conductive material is composed of a metal powder, a low-melting glass powder and a binder. Wherein, the metal powder is selected as silver powder, and the binder is preferably terpineol or ethyl cellulose: in the electric slurry, the weight ratio of the metal powder is 50%~9G%, and the low weight ratio is 2%~10 %, the weight ratio of the binder is 83⁄4~4〇%. [0027] The material of the first electrode 62 and the second electrode 64 is metal or the like. In the example, the first electrode 62 and the second electrode 64 are planar conductors, and the size is determined according to the size of the grid 610. The first electrode 62 and the first electrode are directly connected to the electrode lead to realize electrical connection. The second electrode 62 and the second electrode 64 have a length of 20 μm to 1.5 cm, a width of 30 μm to 1 cm, and a thickness of 1 μm to 500 μm. Selectively, the first electrode 62 and the second electrode 64 have a length of 1 μm to 7 μm and a width of 50 μm to 500 μm, and a thickness of 20 μm to 1 μm. The material of one of the electrodes 62 and the second electrode 64 is a conductive paste which is printed on the insulating substrate 61 by screen printing. The composition of the conductive paste is the same as that of the conductive paste used for the electrode lead. The cathode emitter 66 can be a cathode emitter 66 or a plurality of cathode emitters 66. The cathode emitter 16 can be a twisted wire, a nanotube, a carbon fiber 100100763, Form No. A0101, Page 15 of 33, 1002001371- 0 [0028] One or several of 201230123 and nano carbon pipeline materials. Moreover, each of the cathode emitters 66 includes an electron-emitting end 662 which is an end of the cathode emitter 66 away from the first electrode 62. [0030] In the present embodiment, the cathode emitter 66 includes a plurality of parallel arranged nano barrier lines. When the parallel carbon nanowires are used as the cathode emitter 66, the end of each nanocarbon line is electrically connected to the first electrode 62 and the other end is directed to the second electrode 64 as electron emission of the cathode emitter 66. End 662. The distance between the electron-emitting end 662 and the second electrode 64 is from 1 micrometer to 1000 micrometers. The cathode can be electrically connected to the first electrode μ by electrical connection through a conductive adhesive or by intermolecular force or other means. The length of the nanocarbon line is 10 μm to ^^cm and the spacing between adjacent nanocarbon lines is from 1 μm to 1000 μm. The nanocarbon pipeline includes a plurality of carbon nanotubes arranged along the length of the carbon nanotubes. Specifically, the nanocarbon pipeline includes a plurality of carbon nanotube segments. The plurality of carbon nanotube segments are connected end to end by a van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel parallels and is tightly coupled by van der Waals force. Carbon nanotubes. The carbon nanotubes in the nanocarbon pipeline include one or more of single-walled, double-walled, and multi-walled carbon nanotubes. The carbon nanotubes have a length in the range of 10 micrometers and the carbon nanotubes have a diameter of less than 15 nanometers. Referring to FIG. 9, a seventh embodiment of the present invention provides a field emission display 70 using the field emission cathode device 60 of the sixth embodiment described above. The field emission display 70 includes an anode device 710 and a field spaced apart from the anode device 710. A cathode device 720 is emitted. The anode device 710 is disposed opposite the field emission cathode device 720 and maintained at a distance. 100100763 Form No. 1010101 Page 16 of 33 1002001371-0 201230123 [0032] [0033] The anode device 710 includes an insulating transparent substrate 712, a transparent anode 714 and is coated on a transparent A phosphor layer 716 on the anode 714. The transparent anode 714 may be an indium tin oxide thin film, a zinc oxide film, a carbon nanotube film or a graphite thin film. The anode device 71 is sealed to the periphery of the insulating substrate 722 in the field emission cathode device 720 through an insulating support 718. The secondary electron emissive material 78 in the field emission cathode device 720 is disposed opposite the glory layer 716 in the anode device 710. Alternatively, the anode device 710 may further include an insulating transparent substrate, a phosphor layer disposed on the surface of the insulating transparent substrate, and a mirror electrode layer disposed on the phosphor layer. The material of the mirror electrode layer may be aluminum " The field emission cathode device 720 is the xenon emission cathode device 60 of the sixth embodiment. The field emission cathode device 72A includes an insulating substrate 722, a plurality of row electrode leads and a plurality of column electrode leads 724, and each of the two adjacent row electrode leads forms a grid with two adjacent column electrode leads 724. The complex field emission units 7300 are respectively disposed inside the grid 72_8. A field transmitting unit 7300 is disposed inside each of the grids 728. The % emissive display 70, when applied, applies different voltages to the row electrode leads, the column electrode leads 724, and the anode 714, respectively. The field emission unit 73 emits electrons under the action of the voltages of the row electrode lead and the column electrode lead 724. The electrons emitted by the field emission unit 7300 are finally applied to the anode 714 under the electric field of the anode 714, and the fluorescent layer Ή6 coated on the transparent anode 714 is emitted to emit fluorescence to realize the display of the field emission display 7〇. Features. Since the row electrode leads are insulated from each other and the column electrode leads 724 are insulated from each other, by selectively connecting the row electrode electrodes and the column electrodes 100100763, the form number Α0101 page 17/33 page 1002001371-0 201230123 line Different voltages are applied between 724, and the field emission unit 7300 at different positions can be controlled to emit electrons, and the electrons are placed at different positions of the fluorescent layer 716 of the anode device 710, thereby causing different positions of the fluorescent layer 716 to emit light, so that the field emission is significantly The device 70 displays different screens as needed. [0036] The field emission cathode device and the field emission display provided by the present invention have the following advantages: "the current amplification performance of the secondary electron emission material, the field emission cathode device can be operated at a small operating voltage. Obtaining a large field emission current, a field emission display using the field emission cathode device can also obtain a larger current; second, the cathode emitter is disposed opposite to the secondary electron emission material, and The electron-emitting material is disposed between the first electrode and the second electrode, and therefore, the electrons emitted from the cathode emitter are extremely easy to attack the secondary electron-emitting material under the electric field of the first electrode and the second electrode. ' thereby increasing the emission current of the field emission cathode device, thereby increasing the current of the field emission display through which the field emission cathode is placed; and third, reducing the current amplification performance of the secondary electron emission material. Applying a voltage to the one electrode and the second electrode to increase the lifetime of the entire field emission cathode device, thereby enabling the use of the field emission The life of the field emission display of the pole device has also increased. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view of a field emission cathode device according to a first embodiment of the present invention. 100100763 Form No. A0101 Page 18 of 33 1002001371-0 201230123 [0037] FIG. 2 is a plan view of a field emission cathode device according to a first embodiment of the present invention. 3 is a side view of a field emission cathode device of a second embodiment of the present invention. 4 is a side view of a field emission cathode device according to a third embodiment of the present invention. [0041] FIG. 5 is a side view of a field emission cathode device of a fourth embodiment of the present invention. 6 is a side view of a field emission cathode device according to a fifth embodiment of the present invention. [0044] FIG. 7 is a plan view of a field emission cathode device according to a sixth embodiment of the present invention. Figure 8 is a side view of a field emission cathode device of a sixth embodiment of the present invention. 9 is a side view of a field emission display of a seventh embodiment of the present invention. [Explanation of main component symbols] 10, 20, 30, 40, 50, 60, 720: Field emission cathode device [0047] 11, 21, 31, 41, 51: Insulating substrate [0048] 12, 22, 32 , 42, 52, 62: first electrode 〇 [0049] 14, 24, 34, 44, 54, 64: second electrode [0050] 16, 26, 36, 46, 56, 66: cathode emitter [0051] 18, 28, 38, 48, 68, 78, 544: secondary electron emission material [0052] 19: third electrode plate [0053] 61, 722: insulating substrate [0054] 70: field emission display [0055] 100, 6100, 7300: Field emission unit 100100763 Form number A0101 Page 19/33 page 1002001371-0 201230123 [0056] 1 12: First surface of the insulating substrate [0058] [0060] [0060] [0061] 162, 662: electron emission tips 182, 282, 382: electron emission surface 191: third electrode [0070] [0070] 192: substrate 542: conductive material 610: grid 612, 724: row electrode lead 614: column electrode lead 616: dielectric insulating layer 624: fixing member 710: anode device 712: insulating transparent substrate 714: transparent anode 716: fluorescent layer 71 8: Insulating support 100100763 Form number A0101 Page 20 of 33 1002001371-0

Claims (1)

201230123 七、申請專利範圍: -種場發射陰極裝置’所述場發射陰極裝置包括 一絕緣基板,該絕緣基板具有-表面; 二電極相互間隔地設 一第一電極與一第 的所述表面; 置於所述絕緣基板 至乂陰極發射體,該陰極發射體與所述第— ; 極電連接 次教電子 於所述第 迷次級電201230123 VII. Patent application scope: - Field emission cathode device 'The field emission cathode device comprises an insulating substrate, the insulating substrate has a surface; the two electrodes are spaced apart from each other to provide a first electrode and a first surface; And disposed on the insulating substrate to the cathode emitter, the cathode emitter and the first pole electrically connected to the secondary electron 其改良在於,所述場發射陰極裴置進一步包括一 發射材料,所述次級電子發射材料至少部份設置 一電極和第二電極之間,直靖述陰極發射體與所 子發射材料相對且間隔設置《X 如申請專利範圍第1項所述之場發射陰極裝置,其中 述次級電子發射材料設置在所述絕緣基板袭面並與所述第 一電極間隔設置。 如申請專利範圍第1項所述之場發射陰極裝置,其中,所 述次級電子發射材料設置在所述第二電極表面。 如申請專利範圍第1項所述之場發射陰極裝置,其中,所 述陰極發射體平行於絕緣基板的所述表面。 5.如申請專利範圍第4項所述之場發射陰極裝置,其中,所 述陰極發射體為線狀發射體,包括矽線、奈米碳管、碳纖 維及奈米碳管線中的一種或複數種。 6. 如申請專利範圍第5項所述之場發射陰極裝置,其中,所. 述陰極發射體的延長線與所述次級電子發射材料相交。 7. 如申請專利範圍第6項所述之場發射陰極裝置,其中,所 述次級電子發射材料具有至少一表面面對所述陰極發射體 100100763 表單編號A0101 第21頁/共33頁 1002001371-0 201230123 且背對所述絕緣基板。 8 ·如申請專利範圍第7項所述之場發射陰極裝置,其中,所 述次級電子發射材料的所述表面為平面或曲面。 9.如申請專利範圍第7項所述之場發射陰極裝置,其中,所 述次級電子發射材料的所述表面與所述陰極發射體的延長 線形成一角度α,該角度α大於〇度小於等於9〇度。 10 .如申明專利範圍第7項所述之場發射陰極裝置,其中沿 遠離所述陰極發射體的方向,所述次級電子發射材料的所 述表面的高度逐漸增加。 11 .如申請專利範圍第7項所述之場發射陰極裝置其中,所 述次級電子發射材料的所述表面為階梯形狀表面。 12 .如申請專利範圍第i項所述之赛發射陰極裝置其中所 述%發射陰極裝置進一步包括一第三電極板與所述絕緣基 板的所述表面間隔且相對設置,該第三電極板包括—第三 電極與所述絕緣基板相對設置。 13 .如申請專利範圍第1項所述岌場發射陰極裝置,其中,所 述次級電極發射體的材料為氧化鎖、氧化鍵、氧化銷、氧 化鉋、氧化鈣、氧化锶、氟祀g或氟化鈹。 14·-種場發射陰極裝置’所述場發射陰極裝置包括:一絕 緣基板’該絕緣基板具有一表面; 一第一電極設置於所述絕緣基板的所述表面; —陰極發射體,該陰極發射體與所述第一電極電連接;其 改良在於,所述場發射陰極裝置進一步包括一第二電極, 所述第-電極為導電材料與所述次級電子發射材料複合形 成的一複合結構。 15 . 如申明專利㈣第14項所述之場發射陰極裝置,其中,所 100100763 表單编號删1 第22頁/共33頁 1002001371-0 201230123 16 . 17 . Ο Ο 18 100100763 述複合結構中所述次 所導泰 電子發射材料為複合結構的基體, 料中。%料為㈣導電材料雌分散在次級電子發射材 t申請專利範圍第14項所述之場發射陰極裝置,其中,所 :D構巾所述導電材料為複合結構的基體,所述次級 電子發射㈣分散在所述導電材料中。 —種場發射陰極裝置,其包括:一絕緣基底; 複數仃電極引線與列電極引線分別平行且等間隔設置於絕 緣基底上,《數行電_線純_電極⑽相互交叉 叹置,每二相鄰的行電極引線與二相鄰的列電極引線形成 '網格,行電極引線與列電極引線之間電絕緣; 複數場發射單元,每一場發射單元對應一網格設置,每一 場發射單元進一步包括一第一電極;一陰極發射體,該陰 極發射體與第一電極電連接;一第二電極,該第二電極與 所述第一電極分別與所述行電極引線與列金極引線電連接&gt; 其改良在於,所述場發射單元進一步包括一次級電子發射 材料’所述陰極發射體與所述次級電子發射材料間隔且相 街設置,由所述陰極發射體發射的電子轟擊所述次級電子 發射材料。 〜種場發射顯示器’其包括:一螢光屏陽極結構及與該螢 光屏陽極結構間隔設置的一場發射陰極裝置,該場發射陰 極裝置包括: 一絕緣基底; 複數行電極引線與列電極引線分別平行且等間隔設置於絕 第23貢/共33頁 表單編號A0101 1002001371-0 201230123 緣基底上,該複數行電極引線與複數列電極引線相互交叉 設置,每二相鄰的行電極引線與二相鄰的列電極引線形成 一網格,行電極引線與列電極引線之間電絕緣; 複數場發射單元,每一場發射單元對應一網格設置,每一 場發射單元進一步包括一第一電極;一陰極發射體,該陰 極發射體與第一電極電連接;一第二電極,該第二電極與 所述第一電極之間形成一電場,在該電場作用下由所述陰 極發射體發射電子; 其改良在於,所述陰極發射體平行於所述絕緣基底的表面 ,所述場發射單元進一步包括一次級電子發射材料,所述 陰極發射體與所述次級電子發射材料間隔且相對設置,由 所述陰極發射體發射的電子轟擊所述次級電子發射材料。 100100763 表單編號A0101 第24頁/共33頁 1002001371-0The improvement is that the field emission cathode device further comprises an emission material, and the secondary electron emission material is at least partially disposed between an electrode and the second electrode, and the cathode emitter is opposite to and spaced apart from the sub-emission material. The field emission cathode device of claim 1, wherein the secondary electron emission material is disposed on the insulating substrate and spaced apart from the first electrode. The field emission cathode device of claim 1, wherein the secondary electron emission material is disposed on the surface of the second electrode. The field emission cathode device of claim 1, wherein the cathode emitter is parallel to the surface of the insulating substrate. 5. The field emission cathode device of claim 4, wherein the cathode emitter is a linear emitter, including one or a plurality of tantalum wires, carbon nanotubes, carbon fibers, and carbon nanotubes. Kind. 6. The field emission cathode device of claim 5, wherein the extension line of the cathode emitter intersects the secondary electron emission material. 7. The field emission cathode device of claim 6, wherein the secondary electron emission material has at least one surface facing the cathode emitter 100100763. Form No. A0101 Page 21 / Total 33 Page 1002001371- 0 201230123 and facing away from the insulating substrate. The field emission cathode device of claim 7, wherein the surface of the secondary electron emission material is a flat surface or a curved surface. 9. The field emission cathode device of claim 7, wherein the surface of the secondary electron emissive material forms an angle a with an extension of the cathode emitter, the angle a being greater than the twist Less than or equal to 9 degrees. 10. The field emission cathode device of claim 7, wherein the height of the surface of the secondary electron-emitting material is gradually increased in a direction away from the cathode emitter. 11. The field emission cathode device of claim 7, wherein the surface of the secondary electron emission material is a stepped surface. 12. The spur cathode device of claim i, wherein the % emitter cathode device further comprises a third electrode plate spaced apart from and opposite the surface of the insulating substrate, the third electrode plate comprising The third electrode is disposed opposite to the insulating substrate. 13. The field emission cathode device according to claim 1, wherein the material of the secondary electrode emitter is an oxidation lock, an oxidation bond, an oxidation pin, an oxidation planer, a calcium oxide, a barium oxide, a fluorine barium Or cesium fluoride. a field emission cathode device comprising: an insulating substrate having a surface; a first electrode disposed on the surface of the insulating substrate; a cathode emitter, the cathode The emitter is electrically connected to the first electrode; the improvement is that the field emission cathode device further comprises a second electrode, wherein the first electrode is a composite structure formed by combining a conductive material and the secondary electron emission material . 15 . The field emission cathode device according to item 14 of the patent (4), wherein the 100100763 form number is deleted 1 page 22 / 33 pages 1002001371-0 201230123 16 . 17 . Ο Ο 18 100100763 The sub-guided electron-emitting material is a matrix of composite structure, in the material. The material is a (4) conductive material, the female is dispersed in the secondary electron-emitting material, and the field-emitting cathode device according to claim 14, wherein the conductive material of the D-shaped towel is a matrix of a composite structure, the secondary Electron emission (d) is dispersed in the conductive material. a field emission cathode device comprising: an insulating substrate; the plurality of germanium electrode leads and the column electrode leads are respectively parallel and equally spaced on the insulating substrate, and the plurality of rows of electric_line pure_electrodes (10) are mutually slanted, each two The adjacent row electrode leads and the two adjacent column electrode leads form a 'grid, and the row electrode lead and the column electrode lead are electrically insulated; the plurality of field emission units, each field emission unit corresponding to a grid setting, each field emission unit Further comprising a first electrode; a cathode emitter electrically connected to the first electrode; a second electrode, the second electrode and the first electrode and the row electrode lead and the column gold lead respectively Electrical connection&gt; The improvement is that the field emission unit further comprises a primary electron emission material, wherein the cathode emitter is spaced apart from the secondary electron emission material and disposed in a street, and electrons are emitted by the cathode emitter The secondary electron emission material. a field emission display </ RTI> comprising: a phosphor screen anode structure and a field emission cathode device spaced apart from the phosphor screen anode structure, the field emission cathode device comprising: an insulating substrate; a plurality of row electrode leads and column electrode leads Parallel and equally spaced on the 23rd tribute/total 33 page form number A0101 1002001371-0 201230123 on the edge substrate, the plurality of row electrode leads and the plurality of column electrode leads are arranged to cross each other, each two adjacent row electrode leads and two The adjacent column electrode leads form a grid, and the row electrode lead and the column electrode lead are electrically insulated; the plurality of field emission units, each field emission unit is corresponding to a grid, and each field emission unit further comprises a first electrode; a cathode emitter electrically connected to the first electrode; a second electrode, an electric field formed between the second electrode and the first electrode, and electrons emitted by the cathode emitter under the electric field; The improvement is that the cathode emitter is parallel to the surface of the insulating substrate, and the field emission unit further includes one time a class of electron-emitting materials, the cathode emitter being spaced apart from and opposite to the secondary electron-emitting material, the electrons emitted by the cathode emitter bombarding the secondary electron-emitting material. 100100763 Form No. A0101 Page 24 of 33 1002001371-0
TW100100763A 2011-01-10 2011-01-10 Field emission cathod device and field emission display TWI427662B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100100763A TWI427662B (en) 2011-01-10 2011-01-10 Field emission cathod device and field emission display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100100763A TWI427662B (en) 2011-01-10 2011-01-10 Field emission cathod device and field emission display

Publications (2)

Publication Number Publication Date
TW201230123A true TW201230123A (en) 2012-07-16
TWI427662B TWI427662B (en) 2014-02-21

Family

ID=46934116

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100100763A TWI427662B (en) 2011-01-10 2011-01-10 Field emission cathod device and field emission display

Country Status (1)

Country Link
TW (1) TWI427662B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471890B (en) * 2012-12-29 2015-02-01 Hon Hai Prec Ind Co Ltd Field emission cathode device and driving method of the field emission cathode device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737696B2 (en) * 2000-11-17 2006-01-18 株式会社東芝 Method for manufacturing horizontal field emission cold cathode device
CN101540260B (en) * 2008-03-19 2011-12-14 清华大学 Field emission display
TWI368248B (en) * 2008-07-25 2012-07-11 Hon Hai Prec Ind Co Ltd Electron emission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471890B (en) * 2012-12-29 2015-02-01 Hon Hai Prec Ind Co Ltd Field emission cathode device and driving method of the field emission cathode device

Also Published As

Publication number Publication date
TWI427662B (en) 2014-02-21

Similar Documents

Publication Publication Date Title
US7990042B2 (en) Field emission display
TWI467616B (en) Field emission cathode device and field emission equipment using the same
JP4865434B2 (en) Electron emitter for thermionic emission, electron-emitting device including the same, and flat panel display device including the same
EP2079095B1 (en) Method of manufacturing a field emission display
CN102768930A (en) Field emission electron device
JP5504246B2 (en) Field emission cathode device and field emission display device using the same
TWI471890B (en) Field emission cathode device and driving method of the field emission cathode device
TW201230123A (en) Field emission cathod device and field emission display
TW483016B (en) Manufacturing method of electron emitter stack and structure of field emission display
TWI393160B (en) Field emission cathode structure and display using the same
TWI246103B (en) Carbon nanotube substrate structure and the manufacturing method thereof
TWI421896B (en) Field emission device and field emission display
TWI360831B (en) Field emission electron device
US9000662B2 (en) Field emission device and field emission display having same
TWI421895B (en) Field emission device and field emission display
KR20070105491A (en) A composition for preparing an electron emitter, the electron emitter prepared using the composition, and backlight unit having the emitter
TWI421897B (en) Field emission display
KR20070075659A (en) Method of manufacturing electron emission device, electron emission device prepared using the method, and backlight unit and electron emission display device adopting the electron emission device
TWI383420B (en) Electron emitter and displaying device using the same
TWI386964B (en) Electron emitter and displaying device using the same
TWI489507B (en) Field emission device and field emission display
TW472284B (en) Field emission display and the manufacturing method thereof
KR101151600B1 (en) Field emission device(fed) including carbon nanotube field emitter having a high electron emission
JP2012195112A (en) Field emission light-emitting device, manufacturing method of field emission light-emitting device, and light-emitting device
TWI390575B (en) Field emission cathode structure and display device for using the same