TW201229773A - USB optical card structure - Google Patents

USB optical card structure Download PDF

Info

Publication number
TW201229773A
TW201229773A TW100125408A TW100125408A TW201229773A TW 201229773 A TW201229773 A TW 201229773A TW 100125408 A TW100125408 A TW 100125408A TW 100125408 A TW100125408 A TW 100125408A TW 201229773 A TW201229773 A TW 201229773A
Authority
TW
Taiwan
Prior art keywords
optical
usb
thin card
substrate
card structure
Prior art date
Application number
TW100125408A
Other languages
Chinese (zh)
Other versions
TWI447590B (en
Inventor
Chien-Hong Lin
Yuan-Heng Sun
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to US13/223,568 priority Critical patent/US8678673B2/en
Priority to CN201110266326.5A priority patent/CN102402710B/en
Publication of TW201229773A publication Critical patent/TW201229773A/en
Application granted granted Critical
Publication of TWI447590B publication Critical patent/TWI447590B/en

Links

Abstract

An USB optical card structure is disclosed, which comprises a substrate, having a space formed inside its sealing layer; a seat, disposed at a position on the substrate while forming an opening on the substrate; a plurality of first contact element, each being disposed on the seat to be used for connecting electrically with an external device; a plurality of second contact element, each being disposed on the seat to be used for connecting electrically with an external device; and optical transmission module, disposed inside an accommodation space formed by the enclosure of the seat and the substrate; a micro control unit, for processing data and command of the USB optical card.

Description

201229773 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種USB光學薄卡結構,尤指一種卡片 結構,特別是有關於USB連接器中具備光傳輸規格之一薄 型記憶卡片結構。 【先前技術】 隨著多媒體影音設備的普及,例如數位相機、MP3播放 機、USB隨身碟、數位錄影機、小筆電、平板電腦(Tablet PC)、智慧型手機及未來雲端運算(cl〇ud 等, 大容量記憶卡的需求逐年顯現,但也反應出現有記憶卡傳 輸速度之不足’亟_待改善。 對於内部設置有複數電子零件(未圖示)之USB規格薄 型記憶卡而言(例如:美國專利案第7,44〇,287號),由於 板上式連接晶片(Chip On Board, C0B)裝置已内建了相當 多的電子零件、晶片及焊接點,因此當進行一板上式連接 晶片裝置與一連接器之焊接作業時,其間所產生的熱量, 將會造成板上式連接晶片裝置上已黏著之電子零件、晶片 及焊接點的再次加熱,因而造成其中電子零件、晶片之移 位或損壞。 市面上有許多的卡片型記憶裝置或產品,例如: microSD、薄型USB記憶卡等,多採用了半導體製程來製 作’适些卡片型記憶裝置或產品所具有平面型金屬墊片是 可採用一體成型方式來生產,但非平面型金屬片,例如: 以衝壓製成之金屬簧片或彈片,則無法採用一體成型方式 201229773 來生產,使得生產步驟變得複雜。 近來英特爾開發者論壇(Intel Developer Forum)展示 了石夕光學連線(Silicon Photonics Link)技術,資料傳輸 速度可從USB 3. 0的4. 8G bps提升到10G bps,甚至未來達 到1TB bps ’這正解決了前述大容量儲存裝置所面臨傳輸速 度不足的問題。 且近幾年來也由於半導體雷射、光放大器及光濾波器 等光元件技術日趨成熟,使得高密度分波多工(Dense Wavelength Division Multiplexing,DWDM )技術蓬勃發 展,並可提供大容量以及多樣化之寬頻服務。在現有的光 纖通訊架構下,可將傳輸頻寬提升至16、32、64倍,更甚 至可到128倍。201229773 VI. Description of the Invention: [Technical Field] The present invention relates to a USB optical thin card structure, and more particularly to a card structure, and more particularly to a thin memory card structure having a light transmission specification in a USB connector. [Prior Art] With the popularity of multimedia audio and video equipment, such as digital cameras, MP3 players, USB flash drives, digital video recorders, small notebooks, tablet PCs, smart phones and future cloud computing (cl〇ud) Etc., the demand for large-capacity memory cards has been appearing year by year, but it also reflects the lack of memory card transmission speed. 亟 _ to be improved. For USB-compliant thin-type memory cards with multiple electronic components (not shown) installed (for example) : U.S. Patent No. 7, 44, No. 287), since a chip-on-board (C0B) device has built-in quite a number of electronic components, wafers, and solder joints, When the soldering operation of the connection between the wafer device and the connector is performed, the heat generated between the wafer device and the connector will cause reheating of the adhered electronic components, wafers and solder joints on the chip-connected wafer device, thereby causing the electronic components and the wafers therein. Shift or damage. There are many card-type memory devices or products on the market, such as: microSD, thin USB memory card, etc. As a kind of card type memory device or product, the flat metal gasket can be produced by integral molding, but the non-planar metal sheet, for example: metal reed or shrapnel made by stamping, cannot be integrated. Forming method 201229773 to produce, making the production steps complicated. Recently Intel Developer Forum (Intel Developer Forum) showcases the technology of the Silicon Photonics Link (Silicon Photonics Link), data transmission speed can be from USB 3. 0 4. 8G Bps is increased to 10G bps, and even 1TB bps in the future. This solves the problem of insufficient transmission speed of the aforementioned large-capacity storage devices. In recent years, optical components such as semiconductor lasers, optical amplifiers, and optical filters have become increasingly popular. Mature, enabling Dense Wavelength Division Multiplexing (DWDM) technology to flourish and provide high-capacity and diverse broadband services. In the existing fiber-optic communication architecture, the transmission bandwidth can be increased to 16, 32. 64 times, even more than 128 times.

Silicon Photonics Link (Siliconization DWDM)則 是捨棄使用昂貴且製造難度高的材質,改用低成本且易製 造的Si晶片所打造的光束,以實現持續開發讓光纖傳遞資 訊的新技術願景。目前雖已有電信以及其他應用採用雷射 傳送資訊,但目前的技術過於昂貴且體積龐大,不適合用 在PC上。Intel混合矽晶雷射的50G bps矽光鏈路,就“矽 化”光子(siliconizing photonics)的長遠願景而言,碟 實是一項重大的研究成果,替未來電腦、伺服器與家電的 内部及對外連線,帶來高頻寬、低成本的光通訊技術。 因此如果矽光學連線技術能應用在薄卡(Thin Card) 上,則將具有10G bps以上或更高的傳輸速度,本案除了提 出一種具有上述高傳輸效能的USB薄卡外,對於避免造成移 位、損壞及改善生產#驟上,亦有決定性的功效! 201229773 【發明内容】 基於解決以上所述習知技術的缺失,本發明為一種 USB光學薄卡結構,在於設計出一種具有光信號接收、 傳送模組與連接器(Connector )和調整腳或洞 (Alignment Pin/Hole)在同一塊電路上的USB光學薄 卡結構,利用光學資料傳輸速度較快的特性,來達到超 越USB 3. 0傳輸速度,進而達到10G bps或更快的傳輸速 度。 為達上述整合光電元件、電子元件、機構與電子封裝於 一USB薄卡上,本發明為一種USB光學薄卡結構,結構為一 Si-半導體製程技術,主要具有三部份: 1. 電子(Electronic Circuit)部份; 2. 光學模組部份; 3. 機構部份。 以下是三個部份的詳細介紹: 其中在電子電路部份: 一基板,該基板之封裝層内形成有一空間; 一座體,設置於該基板上的一適當位置,並與該基板形 成一有一開口; 一微控制單元,用以處理及控制USB光學薄卡上所有光 學傳輸模組和功能模組及電、光、電光信號之所有資 料與指令。 故本發明電子電路包含的元件如下 1.印刷電路板(Printed Circuit board) : PCB 板與 201229773 驅動電路(Drive Circuit); 2. 驅動積體電路(Driver IC):控制所有電子信號傳、 收、控制和光信號傳收信號之控制,電和光信號轉 換之控制; 3. 功能單元(Function Block):包含了I/O模組之 功能模塊(Function Block,例如:wifi, bt, gps …)或儲存模塊(Storage Function Block,例 如:NAND Flash)。 光學模組部份: 一光學傳輸模組,裝設於該座體2與基板1所形成内部空 間;並利用該座體2與該基板1有一個以上光學傳收之開口 做為光學資料之傳輸路徑; 故光學模組部份包含的元件如下: 1. 光信號來源(Light Source) 多工超石夕雷射(Multiple Hybrid Silicon Laser) 利用石夕(Si)-半導體製程的Hybrid Silicon Laser, 將製造出多個不同波長的Hybrid Si雷射光束,其中利 用光刻(lithography)的技術在 Si-substrate 對 Waveguide姓刻出不同的寬度與高度的波導 (Wavegu i de ),則如此會產生不同的波長(段)的光束。 2. Basic Light Routing (光路徑元件): 波導格欄(Waveguide Grating):它是一組等距 平行波導,通常用於產生衍射譜或多波長(段)的 6 201229773 光束。 麵合器(Couplers):其被放置在一個輸入的光 信號前端,並把輸入的光信號分裂成數個不同波 長的光輸出信號。 石夕絕緣體波導(Silicon cm insulator Waveguides,SOIWG):主要是去引導光波與承載 高頻率的光波,可用矽製造技術蝕刻不同寬高度 的Waveguide,可做出不同波長的光波。 3. 資料編碼器(DataEncoders) :SiliconModulator 利用Si-半導體製程的製造的Modulator,它可以讓 不同相位的光波轉換成不同振幅光波的調變。 4. 多工器(Multiplexer): 分波多工器 Mux (Multiplexer):透過波導 (Waveguide)將多個不同波長之光訊號射入匯集後,變 成光訊號,最後輸出至光纖(f iber)。 5. 解多工器(De-Multiplexer): 分波解多工器將光信號收進,並把不同波長最後經由 解多工器(De-Multiplexer),將不同波長的訊號解 多工至不同的光纖上,並傳送到光偵測器 (photdetector) ° 6. 光4貞測器(Light Detector): 利用Si-半導體製程的Photodetector或利用石夕 鍺SiGe-半導體製程的Photodector將產生較長的波 長的光束,將可利於資料傳輸與偵測(例如CCD cameras),並將光信號轉換成電子信號(to convert 201229773 photons to electrons) ° 7.石夕光整合電路驅動模組(Si Photonic Intergraded with Electronics : Drive module):包含Tx 和 Rx的矽光元件被整合在一起其負責光信號傳收信號 之動作,及電與光信號轉換之工作,故整合Tx/Rx Si-光的模組包含以下元件(例如:圖五A、五B、五C 所示): 人發送器晶片(Integrated Transmitter Chip) (TX module):使用半導體矽化之製程,在一矽 基板上,發送器晶片整合Hybrid矽製程化的雷射 多光束(通常4條光束),每個光束會進入一個光 學調變器,將資料編碼成光訊號;多條(通常4條) 光束透過Mux匯集後,輸出至一條光纖,整體傳 輸速率最少可達到l〇G bps ,未來可達到i〇〇〇G bps 〇 人接收器晶片(Integrated Receiver Chip) (RX module):使用半導體矽化之製程,在一矽基板 上,接收器晶片從光纖透過Ccmpler及DeMux將原 始的光信號分出多條(通常4條)光束後,並傳送 到光偵測器(Photo Detector) ’再將光信號資料 轉換成為電子訊號。 機構部份: 複數個第一接觸部件’設置於座體上’用以與應用主機 連接而產生電性連接; 201229773 複數個第二接觸部件,用以與應用主機連接而產生電性 連接。 故機構部份包含的元件如下: 1. Alignment Pin & Alignment Hole:被動對準孔 (passive aligned hole)與被動對準針(passive aligned pin):將可使發射與接收的光束固定在一 定的位置’使光束傳收不致於會有受形卜力干擾而 導致光束有散射、干涉、折射問題的發生。 2. Connector Part : USB 2.0 contact pin&USB 3. 〇 Spring contact pin 。 不 查工作有所助益 為進-步對本發明有更深人的說明,乃藉由以下圖 圖號說明及發明詳細說明,冀能肖#審查委員於審 【實施方式】 兹配合下列之圖式說明本發明之詳細結構,及盆輕 關係,以利於貴審查委員瞭解。Silicon Photonics Link (Siliconization DWDM) is a new technology vision that enables the continued development of fiber-optic transmissions by eliminating the use of expensive and difficult-to-use materials and switching to low-cost, easy-to-manufacture Si-wafers. Although telecommunications and other applications have used lasers to transmit information, current technologies are too expensive and bulky to be suitable for use on PCs. Intel's hybrid crystal laser's 50G bps optical link, in terms of the long-term vision of "siliconizing photonics", is a major research achievement for the future of computers, servers and appliances. External connection, bringing high-bandwidth, low-cost optical communication technology. Therefore, if the optical connection technology can be applied to a thin card (Thin Card), it will have a transmission speed of 10G bps or higher. In addition to the USB thin card with the above high transmission efficiency, this case avoids shifting. Position, damage and improvement of production #骤, also has a decisive effect! 201229773 SUMMARY OF THE INVENTION Based on the solution to the above-mentioned shortcomings of the prior art, the present invention is a USB optical thin card structure, which is designed to have an optical signal receiving, transmitting module and connector (Connector) and an adjustment foot or hole ( Alignment Pin/Hole) USB optical thin card structure on the same circuit, using the optical data transmission speed to achieve faster than USB 3. 0 transmission speed, and then achieve 10G bps or faster transmission speed. In order to achieve the above integrated optoelectronic component, electronic component, mechanism and electronic package on a USB thin card, the present invention is a USB optical thin card structure, the structure is a Si-semiconductor process technology, mainly has three parts: 1. Electronics ( Electronic Circuit) part; 2. Optical module part; 3. Mechanism part. The following is a detailed description of three parts: wherein in the electronic circuit part: a substrate, a space is formed in the encapsulation layer of the substrate; a body is disposed at an appropriate position on the substrate and has a form formed with the substrate Opening; a micro control unit for processing and controlling all optical transmission modules and functional modules on the USB optical thin card and all data and instructions of electrical, optical and electro-optical signals. Therefore, the electronic circuit of the present invention comprises the following components: 1. Printed Circuit Board: PCB board and 201229773 Drive Circuit; 2. Driver IC: Controls all electronic signals transmission and reception. Control and control of optical signal transmission and reception, control of electrical and optical signal conversion; 3. Function Block: Contains function blocks (such as: wifi, bt, gps ...) or storage of I/O modules Module (Storage Function Block, for example: NAND Flash). The optical module part: an optical transmission module is disposed in the internal space formed by the base 2 and the substrate 1; and the optical body is used as the optical data by using the base 2 and the substrate 1 with more than one optical transmission opening. The transmission path; therefore, the components included in the optical module are as follows: 1. Light Source multiplexed Hybrid Silicon Laser utilizes the Hybrid Silicon Laser of the Si-Semiconductor process. A plurality of different wavelengths of Hybrid Si laser beams will be fabricated, in which lithography techniques are used to create different width and height waveguides (Wavegu i de ) for the Waveguide surname in Si-substrate. The wavelength (segment) of the beam. 2. Basic Light Routing: Waveguide Grating: It is a set of equidistant parallel waveguides that are commonly used to generate diffraction spectra or multi-wavelength (segment) 6 201229773 beams. Coupler: It is placed at the front end of an input optical signal and splits the input optical signal into several optical output signals of different wavelengths. Silicon cm insulator Waveguides (SOIWG): mainly to guide light waves and carry high-frequency light waves. Waveguides with different widths can be etched by 矽 manufacturing technology to make light waves of different wavelengths. 3. Data Encoders: SiliconModulator Modulators manufactured using Si-semiconductor processes, which convert light waves of different phases into modulations of light waves of different amplitudes. 4. Multiplexer: Multiplexer Mux (Multiplexer): Waveguides are used to combine multiple optical signals of different wavelengths into a light signal, which is converted into an optical signal and finally output to the optical fiber (f iber). 5. De-Multiplexer: The demultiplexer multiplexer takes the optical signal and passes the different wavelengths to the multiplexer (De-Multiplexer) to solve the different wavelengths of the signal to different multiplexes. The fiber is transmitted to the photodetector. 6. Light Detector: Photodetector using Si-semiconductor process or Photodector using Shih-Yi SiGe-semiconductor process will produce longer The wavelength of the beam will facilitate data transmission and detection (such as CCD cameras) and convert the optical signal into an electronic signal (to convert 201229773 photons to electrons) ° 7. Shi Photonic Integrated Circuit Driver Module (Si Photonic Intergraded with Electronics : Drive module): The CX components including Tx and Rx are integrated to be responsible for the operation of optical signal transmission and the conversion of electrical and optical signals. Therefore, the integrated Tx/Rx Si-light module includes the following Components (eg, as shown in Figures 5A, 5B, and 5C): Integrated Transmitter Chip (TX module): Using a semiconductor deuteration process, on a substrate, the transmitter chip is completed. Hybrid 矽 processed laser multi-beam (usually 4 beams), each beam enters an optical modulator to encode data into optical signals; multiple (usually 4) beams are collected through Mux and output to a Fiber, the overall transmission rate can reach l〇G bps at least, in the future can reach i〇〇〇G bps Receive Receiver Chip (RX module): using semiconductor smashing process, receiving on a 矽 substrate The chip is split from the fiber through the Ccmpler and DeMux to separate the original optical signal into a plurality of (usually four) beams, and then transmitted to the Photo Detector to convert the optical signal into an electronic signal. The mechanism part: a plurality of first contact parts are disposed on the base body for connecting with the application host to make an electrical connection; 201229773 a plurality of second contact parts for connecting with the application host to make an electrical connection. Therefore, the components included in the mechanism are as follows: 1. Alignment Pin & Alignment Hole: passive aligned hole and passive aligned pin: the transmitted and received beams will be fixed at a certain level. The position 'transmits the beam so that it will not be disturbed by the force of the force, causing the beam to have scattering, interference, and refraction problems. 2. Connector Part: USB 2.0 contact pin&USB 3. 〇 Spring contact pin. If you do not check the work, it will be helpful. The following is a more in-depth description of the present invention. It is illustrated by the following figure and the detailed description of the invention. 冀能肖# Review Committee in the trial [implementation] Explain the detailed structure of the present invention and the relationship between the basin and the light to facilitate the understanding of the review committee.

請參閱圖-Α所示,係為本發明USB 結構示意圖,其中基板i上設置有—電'光銲塾1()、一 ^ ^墊U、一第二銲墊12及-封襞層13。電光銲墊10即為 負責光信號傳收之光學模組的電性連接點,第—銲塾^即 為USB 2.0的電性連接點’共有4個銲墊; ^ USB 3. G的電性連接點,共有5個銲墊。如圖示,2 ^墊、第…二銲墊(1Q、u、12)分別設置於基板 、或是—端的兩側,此電路佈局_意在將-光學傳輸模 201229773 組(42)設置於電光、第一、二銲塾(1〇、u、i2)之間, 以充份利用此設置空間以提供該光學傳輸模組(42)充份的 設置空間,且最後電光接觸部件421(圖一 f所示)將會接 上電光銲塾1G(圖—A所示),做—電性連接。圖- B所揭 露一座體2,此座體2以置有對應前述該第—銲塾^及 第二録塾12之第-接觸部件21及第二接觸部件22,該些 第二接觸部件22係為-金屬銲塾或彈簧端子,且1頂面^ 於該第一接觸部件2卜用以與應用主機連接而Μ電性連 接’此即為符合USB 3.0規格,該座體2可連接於圖一 a 中之未叹置封裝層13之處’即第一、二銲塾、a之上 方處,並使第一銲墊u與第一接觸部件21產生電性連接, 第-銲墊12與第二接觸部件22亦產生電性連接。而基板 1與座體2連接結構如圖一 c所示,座體2下方的開口 23, ^空間可供光學傳輸模組設置’且該光學傳輸模組位於該 第-銲塾與第二銲塾14之間,㈣卿光學薄卡空間配置 達到最佳程度。 請參閱圖- D、E所示,其中蓋體3用以蓋住基板1盎 座體2而成一體,該蓋體3上方及前端分別設置有窗31 ^ 孔32 ’可分別使第—接觸部件21、第二接觸部件u及開 口 23外露,以形成本案USB光學薄卡之基本結構。 _請參閱圖一 F所揭露有一光學傳輸模組42,該光學傳 輸模組42上設置有對應前述該中的電光銲墊之電光 接觸部件421 ’用以與模組42連接而產生電性連接,而定 位孔422與定位柱423可將二結構相互結合。而基板】與 座體2連接結構如圖一 c所示,而座體2下方的開口 , 201229773 其空間可供光學傳輸模組42做一設置。 圖二A係為本發明於基板1上設置電子元件之剖面側 視結構示意圖,於基板1上設置有一微控制單元(MCU)4卜 一光學傳輸模組42及一功能單元43,該些元件上再以封 裝層13來包覆,如圖二B所示。該功能單元43係可為一 記憶體模組、無線通訊模組或其它I / 0模組,而該光學傳 輸模組42係由使用石夕光學(Si-Phontoic)製程,在一石夕基 板上’含有多波長之光波(Multi-Wavelength)、波導 (Waveguide)、光學多工器(MUX)、光學解多工器(DeMux)、 光學調變器(modulator)、光偵測器(Photodector)、光纖 (Fiber)、光學鏡頭(LENS)及光源對準所需要的對準針/ 孔(Aligned Pin/Hole)所構成,上述該多波長之光波係指 多波長之雷射發光二極體發光源。 圖二C之座體2設置有第一接觸部件21及其連接線 211,以及第二接觸部件22及其連接線221。將圖二c之 座體2接合於圖二B的結構即如圖二D所示,其中連接線 211及連接線221分別與第一銲墊u及第二銲墊12連結 後’即具備了本案USB光學薄卡之USB 2. 0/3. 〇之基本功 能,其中電光接觸部件421與電光銲墊1〇連結後,即具備 了本案USB光學薄卡之光信號傳收之功能。 圖二係為本發明座體未設置防呆裝置之結構示意圖, 其中揭露一座體51未做任何防呆骏置的結構。 圖四A、B所不’係、為本發明蓋體無防呆裝置或有設置 防呆裝置之結構示意圖’若於座體加工防呆裝置較為費工 及費h的考量下’亦可於基板與座體外部所設置之蓋體上 201229773 做一防呆裝置的加工。圖四A未做防呆裝置的加工之一蓋 體、圖四β揭露—蓋體61具有段差611 ’ 612的結構’可 使本發明USB光學薄卡插置於電腦璋中時,不會產生 正、反面插錯的情況。 ^圖\五B和五c的功能塊圖,薄卡(Thin Card, TC) 又備410疋個可切換三種介面(USB 2. 0 / USB 3. 0 / Light Signal’Phot〇nic_Electr〇nic 裝置。設 備410此夠支持多種模式的操作,如那些兼容哪 應用,與至少有—個非USB (光信號)應用,其中光信號 的應㈣的是—個高速(可超過1G G bps),低功率傳輸的 介面。 薄卡 410 為—Photonic_E1ectronic interface 設 備其已括個USB 2.0支持的數據傳輸速度最高在6〇 MB/私另也包括一個USB 3. 〇支持的數據傳輸速度最高 在600 MB/秒,夺也包括一個光信號傳輸(速度超過⑽ bps)’因此,薄卡410提供高速應用,同時保持向後兼容, 至 v USB 2. G、USB 3. G 和光信號(Light Signal)之應 用。 圖五A係為本發明USB光學薄卡運作之三種信號_ 3.〇功能方塊示意圖,於USB 3.0模式中做操作。參考圖 五A’薄卡410包括一個介面(IF)模式偵測器413、觀.〇 物理層414、USB 2. (M勿理層415、光信號控制器416、USB 裝置控。制器417、功能單元418及光電控制器419。該模式 偵測器413檢測到的操作模式,以區分光信號⑴邮 signal)模式、USB 3.〇模式或USB2.〇模式。當薄卡 12 201229773 G機^機丰4U ’例如:一個筆記型電腦,-台個人 、目丨。心 機( S )。在本實施例中,該模式偵Please refer to FIG. Α, which is a schematic diagram of the USB structure of the present invention, wherein the substrate i is provided with an electric 'welding pad 1', a pad U, a second pad 12 and a sealing layer 13 . The electro-optical pad 10 is the electrical connection point of the optical module responsible for the transmission of the optical signal. The first soldering ^ is the electrical connection point of the USB 2.0 'a total of 4 pads; ^ USB 3. G electrical properties Connection point, a total of 5 pads. As shown, the 2^ pads, the second...the pads (1Q, u, 12) are respectively disposed on the substrate or on both sides of the end. This circuit layout is intended to set the optical transmission mode 201229773 group (42) to Between the electro-optical, first and second soldering rafts (1〇, u, i2), the installation space is fully utilized to provide sufficient space for the optical transmission module (42), and finally the electro-optical contact member 421 (Fig. A f) will be connected to the electro-optical soldering 1G (shown in Figure-A) to make an electrical connection. FIG. 4B discloses a body 2 having a first contact member 21 and a second contact member 22 corresponding to the first and second recording pads 12, and the second contact member 22; It is a metal soldering or spring terminal, and the top surface of the first contact member 2 is connected to the application host for electrical connection. This is in accordance with the USB 3.0 specification, and the body 2 can be connected to In the first embodiment, the first and second soldering pads, a above, and the first bonding pad u are electrically connected to the first contact member 21, and the first pad 12 is electrically disposed. An electrical connection is also made to the second contact member 22. The connection structure of the substrate 1 and the base 2 is as shown in FIG. 1c, the opening 23 under the base 2, the space is provided for the optical transmission module, and the optical transmission module is located at the first-weld and the second welding Between the 14 and the (4) Qing optical thin card space configuration to achieve the best degree. Referring to FIG. D and FIG. E, the cover body 3 is used to cover the substrate 1 and the body 2 is integrally formed. The upper and the front ends of the cover body 3 are respectively provided with windows 31 ^ holes 32 ′ for respectively making the first contact The component 21, the second contact member u and the opening 23 are exposed to form the basic structure of the USB optical thin card of the present invention. An optical transmission module 42 is disposed on the optical transmission module 42. The optical transmission module 42 is provided with an electro-optical contact member 421 ′ corresponding to the electro-optic pad of the foregoing for connecting with the module 42 to generate an electrical connection. The positioning hole 422 and the positioning post 423 can combine the two structures with each other. The connection structure between the substrate and the base 2 is as shown in FIG. 1c, and the opening under the base 2, 201229773, the space can be set by the optical transmission module 42. FIG. 2A is a schematic cross-sectional side view showing the electronic component disposed on the substrate 1 of the present invention. The micro-control unit (MCU) 4 and an optical transmission module 42 and a functional unit 43 are disposed on the substrate 1 . The upper layer is then covered with an encapsulation layer 13, as shown in FIG. 2B. The functional unit 43 can be a memory module, a wireless communication module or other I/O module, and the optical transmission module 42 is manufactured by using a Si-Phontoic process on a slate substrate. 'Multi-Wavelength, Waveguide, Optical Multiplexer (MUX), Optical Demultiplexer (DeMux), Optical Modulator, Photodector, A fiber optic (Fiber), an optical lens (LENS), and an alignment pin/hole for illuminating the light source. The multi-wavelength light wave refers to a multi-wavelength laser light emitting diode. . The seat 2 of Fig. 2C is provided with a first contact member 21 and its connecting line 211, and a second contact member 22 and its connecting line 221. The structure of FIG. 2B is bonded to the structure of FIG. 2B, that is, as shown in FIG. 2D, wherein the connection line 211 and the connection line 221 are respectively connected to the first pad u and the second pad 12, that is, The USB optical thin card USB 2. 0/3. This is the basic function, in which the electro-optical contact member 421 and the electro-optical pad 1〇 are connected, that is, the optical signal transmission function of the USB optical thin card of the present invention is provided. FIG. 2 is a schematic structural view of the seat body of the present invention without a foolproof device, wherein the structure of the body 51 is not disclosed. Figure 4A, B is not 'system, is the structure of the cover of the invention without a foolproof device or a structure with a foolproof device. 'If the seat is processed, the deadlock device is more laborious and costly.' The substrate and the cover provided on the outside of the base body are processed on a cover device at 201229773. FIG. 4A is a cover body which is not processed by the foolproof device, and FIG. 4 is disclosed. The structure of the cover body 61 having the step 611 '612 can prevent the USB optical thin card of the present invention from being inserted into the computer case. The wrong situation is inserted in the positive and negative sides. ^ Figure \ five B and five c function block diagram, thin card (Thin Card, TC) and 410 switches can be switched between three interfaces (USB 2. 0 / USB 3. 0 / Light Signal'Phot〇nic_Electr〇nic device Device 410 is capable of supporting multiple modes of operation, such as which applications are compatible, and at least one non-USB (optical signal) application, where the optical signal should be (four) high speed (can exceed 1G G bps), low The interface for power transfer. The thin card 410 is a Photonic_E1ectronic interface device that includes a USB 2.0 support for data transfer speeds up to 6〇MB/private and also includes a USB 3. 〇 Supports data transfer speeds up to 600 MB/sec The capture also includes an optical signal transmission (speeds over (10) bps). Therefore, the Thin Card 410 provides high speed applications while maintaining backward compatibility to applications of USB 2. G, USB 3. G and Light Signal. The fifth A is the three kinds of signals for the operation of the USB optical thin card of the present invention. 3. The function block diagram is operated in the USB 3.0 mode. Referring to FIG. 5A, the thin card 410 includes an interface (IF) mode detector 413, View. 〇 physical layer 414, USB 2. (M The physical layer 415, the optical signal controller 416, the USB device controller 417, the function unit 418 and the photoelectric controller 419. The mode detector 413 detects the operation mode to distinguish the optical signal (1) mail signal mode, USB 3.〇 mode or USB2.〇 mode. When the thin card 12 201229773 G machine ^ machine Feng 4U 'for example: a notebook computer, - Taiwan personal, witness. Heart machine (S). In this embodiment, the mode detection

規ΐ 用主機411與相連接薄卡410是否符合USB 主Λ控制器417利用USB匯流排412讓應用 料值你,、功此單疋418透過USB 3. 0物理層414來作資 =收二功能單元418根據不同___測,讓功 二早疋彻做為存儲器⑽“咖⑻或輸人/輸出㈠/ ”面(Interface)。最後使光電控制器419為整個光 與電的soc整合控制器(controller)。 圖五B係為本發明USB光學薄卡運作之三種信號霞 2.0功能方塊示意圖,於USB 2 〇模式令做操作。在本實 施例,模式m 413檢測應用主機411是否與相連薄卡 410符合USB規範。USB裝置控制器417利用腿匯流排 412讓應用主機411與功能單元418透過usb 2· 〇物理層 415來作資料傳收。 圖五C係為本發明USB光學薄卡運作之三種信號ught Signal功能方塊示意圖,於光信號模式中做操作,其中模 式偵測器413檢測應用主機411是否與相連薄卡主體41〇 有光信號上的連接’其遵守其中的Ught Signal的讓 原理。光信號控制器416控制應用主機411和功能單元418 -之間的(電、光或電與光轉換)數據傳輸。 圖六係為本發明USB光學薄卡運作之流程圖,且同時 參閱圖五A、B、C之揭露’當薄卡41〇透過USB匯流排 412 ( USB 2. 0/3. 0/Cable with Fiber)與應用主機 411 溝 13 201229773 通時,對光電控制器419的偵測行為依序是: 71. 電源開啟(Power 0N)(插入應用主機411後); 72. 光電控制器419是否收到光信號,若為是則進入光信號 模式(light mode)73 ;若為否則進入步驟74 ; 74.光電控制器419是否收到USB 3.0信號,若為是則進入 USB 3. 0模式75 ;若為否則進入步驟76 ; 76光電控制器419是否收到USB 2. 0信號,若為是則進入 USB 2. 0模式77 ;若為否則進入錯誤模式(error mode) 78 ° 綜上所述,本發明之結構特徵及各實施例皆已詳細揭 示,而可充分顯示出本發明案在目的及功效上均深賦實施 之進步性,極具產業之利用價值,且為目前市面上前所未 見之運用,依專利法之精神所述,本發明案完全符合發明 專利之要件。 唯以上所述者,僅為本發明之較佳實施例而已,當不 能以之限定本發明所實施之範圍,即大凡依本發明申請專 利範圍所作之均等變化與修飾,皆應仍屬於本發明專利涵 蓋之範圍内,謹請 貴審查委員明鑑,並祈惠准,是所 至禱。 14 201229773 【圖式簡單說明】 圖一 A係為本發明USB光學薄卡之基板結構示意圖; 圖一 B係為本發明USB光學薄卡之座體結構示意圖; 圖一 C係為本發明USB光學薄卡將基板與座體結合後之結 構示意圖; 圖一 D係為圖一 C結構外部加置一蓋體之分解結構示意圖; 圖一 E係為圖一 D結合後之結構示意圖; 圖一 F係為本發明USB光學薄卡之光學傳輸模組示意圖; 圖二A係為本發明於基板上設置電子元件之剖面側視結構 不意圖, 圖二B係為圖二A結構上設置一封裝層之剖面側視結構示 意圖; 圖二C係為本發明USB光學薄卡之座體剖面側視結構示意 圖; 圖二D係為將圖二B、圖二C結合後之剖面側視結構示意 圖, 圖三係為本發明座體無防呆裝置之結構示意圖上 圖四A、四B係為本發明蓋體設置防呆裝置之結構示意圖; 圖五A、五B、五C係為本發明USB光學薄卡運作之三種信 號(USB 3.0/2. Ο/Light Signal)功能方塊示意圖; 圖六係為本發明USB光學薄卡運作之流程圖。 【主要元件符號說明】 1〜基板 10〜電光銲墊 15 201229773 11〜第一銲塾 12〜第二銲墊 13〜封裝層 14〜第一銲墊、第二銲墊與電光銲墊之統稱 2〜座體 21〜第一接觸部件 211〜連接線 22〜第二接觸部件 2 21〜連接線 23〜開口 3〜蓋體 31〜窗 32〜孔 41〜微控制單元 410〜光學薄卡 411〜應用主機 412〜USB匯流排 413〜模式偵測器 414〜USB 3. 0物理層 415〜USB 2. 0物理層 416〜光信號控制器 417〜USB裝置控制器 418〜功能單元 419〜光電控制器 42〜光學傳輸模組 16 201229773 421〜電光接觸部件 422〜固定孔 423〜固定柱 43〜功能單元 51〜座體 61〜蓋體 611、612〜段差 71〜電源開啟 72〜光電控制器是否收到光信號 7 3〜光信號模式 74〜光電控制器是否收到USB3. 0信號 75〜USB 3. 0模式 76〜光電控制器是否收到USB2. 0信號 77〜USB 2. 0模式 78〜錯誤模式 17Whether the host 411 and the connected thin card 410 conform to the USB host controller 417 utilizes the USB bus 412 to allow the application to value you, and the unit 418 transmits the data via the USB 3. 0 physical layer 414. The function unit 418 makes the work 2 as a memory (10) "coffee (8) or input / output (one) /" interface (Interface) according to different ___ measurements. Finally, the photo-controller 419 is integrated with the controller for the entire optical and electrical soc. Figure 5B is a schematic diagram of three signal Xia 2.0 function blocks for the operation of the USB optical thin card of the present invention, and is operated in the USB 2 〇 mode. In the present embodiment, mode m 413 detects whether the application host 411 conforms to the USB specification with the connected thin card 410. The USB device controller 417 uses the leg bus 412 to cause the application host 411 and the function unit 418 to transmit data through the usb 2· physical layer 415. FIG. 5C is a schematic diagram of three signal ught signal function blocks of the USB optical thin card operation of the present invention, which is operated in an optical signal mode, wherein the mode detector 413 detects whether the application host 411 has an optical signal with the connected thin card main body 41. The connection on the 'its compliance with the principle of Ught Signal. The optical signal controller 416 controls (electrical, optical or electrical and optical conversion) data transmission between the application host 411 and the functional unit 418-. Figure 6 is a flow chart of the operation of the USB optical thin card of the present invention, and also refers to the disclosure of Figure 5A, B, and C. 'When the thin card 41〇 passes through the USB bus 412 (USB 2. 0/3. 0/Cable with Fiber) and the application host 411 groove 13 201229773, the detection behavior of the photoelectric controller 419 is: 71. Power on (Power 0N) (after inserting the application host 411); 72. Photoelectric controller 419 received The optical signal, if yes, enters light mode 73; if otherwise, enters step 74; 74. Whether the photoelectric controller 419 receives the USB 3.0 signal, if yes, enters USB 3. 0 mode 75; Otherwise, go to step 76; 76 whether the photoelectric controller 419 receives the USB 2. 0 signal, if yes, enter the USB 2. 0 mode 77; if it is otherwise enter the error mode (error mode) 78 ° The structural features and various embodiments of the invention have been disclosed in detail, and the invention has been fully demonstrated in terms of its purpose and efficacy, and is highly promising in industrial use, and is unprecedented in the market. The use of the invention, in accordance with the spirit of the patent law, the invention is fully compliant with Elements patent. The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the equivalent variations and modifications made by the scope of the present invention should still belong to the present invention. Within the scope of the patent, I would like to ask your review committee to give a clear understanding and pray for it. It is the prayer. 14 201229773 [Simple description of the drawings] Figure 1A is a schematic diagram of the substrate structure of the USB optical thin card of the present invention; Figure 1B is a schematic view of the structure of the USB optical thin card of the present invention; Figure 1C is the USB optical of the present invention Schematic diagram of the structure of the thin card combining the substrate and the seat; Figure 1D is a schematic view of the exploded structure of the outer cover of the structure of Figure 1C; Figure 1E is a schematic view of the structure after the combination of Figure 1D; Figure F The schematic diagram of the optical transmission module of the USB optical thin card of the present invention; FIG. 2A is a schematic cross-sectional side view of the electronic component disposed on the substrate, and FIG. 2B is an encapsulation layer disposed on the structure of FIG. FIG. 2C is a schematic side view of the structure of the USB optical thin card of the present invention; FIG. 2D is a schematic side view of the cross-sectional view of FIG. 2B and FIG. The three series are schematic diagrams of the structure of the seat without the foolproof device. Figure 4A and Figure 4B are schematic diagrams showing the structure of the cover device of the present invention; Figure 5A, 5B, and 5C are USB opticals of the present invention. Three signals for thin card operation (U SB 3.0/2. Ο/Light Signal) function block diagram; Figure 6 is a flow chart of the operation of the USB optical thin card of the present invention. [Main component symbol description] 1 to substrate 10 to electro-optical pad 15 201229773 11 to first soldering pad 12 to second pad 13 to package layer 14 to first pad, second pad and electro-optical pad collectively 2 The base 21 to the first contact member 211 to the connecting line 22 to the second contact member 2 21 to the connecting line 23 to the opening 3 to the cover 31 to the window 32 to the hole 41 to the micro control unit 410 to the optical thin card 411~ Host 412 to USB bus 413 to mode detector 414 to USB 3. 0 physical layer 415 to USB 2. 0 physical layer 416 to optical signal controller 417 to USB device controller 418 to functional unit 419 to optical controller 42 〜 optical transmission module 16 201229773 421 ~ electro-optical contact member 422 ~ fixing hole 423 ~ fixing column 43 ~ function unit 51 ~ seat body 61 ~ cover body 611, 612 ~ step 71 ~ power supply 72 ~ whether the photoelectric controller receives light Signal 7 3~ optical signal mode 74~Optoelectronic controller whether to receive USB3. 0 signal 75~USB 3. 0 mode 76~Optoelectronic controller whether to receive USB2. 0 signal 77~USB 2. 0 mode 78~ error mode 17

Claims (1)

201229773 七、申請專利範圍: 1. 一種USB光學薄卡結構,其係包括有: 一基板’具有一封裝層; -座體,設置於該基板上—適#位置’並與該基板形成 至少一開口及一空間,再包括有; 複數個第一接觸部件,設置於座體上一位置;及 複數個第二接觸部件,設置於座體上另一位置. 一光學傳輸额’設置於該座體與該基板卿成之該* 間,並利用該座體與該基板所形成之該開口作為^ 資料之傳輸路徑; 一微控制單元,用以處理及控制USB光學薄卡上 號與指令;以及 σ 一功能單元,用以提供儲存、通訊及輸出入之任一功能。 2.如申請專利範圍第丨項所述之USB光學薄卡結構,並中^ 複數個第一接觸部件係為四個導電銲墊所構成。八°" 3·如/請專利範圍第1項所述之USB光學薄卡結構,其中該 複數個第一接觸部件係為五個導電彈等、 4.如申請專利範圍第丨項所述之USB光學薄卡結構,其中該 基板與座體外部更設置一蓋體。 〃 〇κ 〕.如申請專利範圍第4項所述之USB光學薄卡結構,其中咳 蓋體具有一防呆機構。 〜 >.如申請專利範圍第1項所述之USB光學薄卡結構,其中該 基板設置有一第一銲墊與一第二銲墊,分別與該座體第/ 一接觸部件與第二接觸部件作電性連接。 .如申請專利範圍第1項所述之USB光學薄卡結構,其中續 201229773 基板設置有一電光銲墊,以與該光學傳輸模組作電性連 接。 .如申請專利範圍第丄項所述之USB光學薄卡結構,其中 該光學傳輸模組係由使用矽光學製程,在一矽基板上, 匕3有夕波長之光波、.波導、光學多工器、光學解多工 器、光學調變器、光偵測器、光纖、光學鏡頭及光源對 準所用的定位柱與定位孔。 如=請專利範圍第8項所述之USB光學薄卡結構,其中 .夕波長之光波係指多波長之雷射發光二極體發光 1〇·如中請專利範圍第1項所述之咖光學薄卡結構,其4 該光學傳輸模組是透過該微控制單元連接到該功能 元。 ’ 11.如申請專利範圍第丨項所述之USB絲薄卡結構,宜 令該功能單元係可為—記憶體模系且。 - 12兮如申請專利範㈣丨項所述之咖光學薄卡結構, 該功能單元係可為一無線通訊模組。 、 13功圍項所述之USB _卡結構,其中該 力月b早兀係可為一輸出入模組。 14. -種USB光學料結構,其係包括有: —基板,該基板之封裝層内形成有-空間; —座體’設置於該基板上的一 成至少一開口;的^位置’並與該基板形 歿數個第-接觸部件,設置於 應用主機連接而產生電性連接體上位置’用以與- 19 201229773 複數個第二接觸部件’設置於座體上另一位置,該政第 二接觸部件之頂面係高於該第一接觸部件,用以與該 應用主機連接而產生電性連接;以及 一光學傳輸模組,設置於該座體與該基板所形成内部空 間’並利用該座體與該基板之該開口做為光學資料之 傳輸路徑;以及 一微控制單元’用以處理、傳送及控制USB光學薄卡上 所有電、光,電與光信號轉換之控制及矽光模組和功 能模組。 ^ 15·如申請專利範圍第14項所述之USB光學薄卡結構,其中 該基板與座體外部更係可設置一蓋體。 16. 如申請專利範圍第15項所述之USB光學薄卡結構,其中 該蓋體具有一防呆機構,此機構係指蓋體兩側具有段差。 17. 如申請專利範圍第丨4項所述之u s β光學薄卡結構,其中 該基板設置有一第一銲塾與一第二鲜塾,分別與該座體 第一接觸部件與第二接觸部件作電性連接。 18. 如申請專利範_14項所述之·光學薄卡結構,其中 該複數個第一接觸部件係為四個導電針腳所構成。 19. 如申請專利範圍第14項所述iUSB光學薄卡結構,其中 該複數個第二接觸部件係為五個導電彈片所構成。 20. 如申請專利範圍第14項所述之USB光學薄卡結構,其中 該複數個第二接觸部件係為五個導電金屬球狀鲜塾所 構成。 21.如申請專利範圍第14項所述之USB光學薄卡結構,其中 該基板設置有-電光銲坠,以與該光學傳輸模組作電性 20 201229773 連接。 22.如申請專利範圍第14項所述之USB光學薄卡結構,其 中該光學傳輸模組係由使用矽光學製程,在一矽基板 上,包含有多波長之光波、波導、光學多工器、光學解 多工器、光學調變器、光偵測器、光纖、光學鏡頭及光 源對準所要的定位柱與定位孔。 23如申請專利範圍第22項所述之USB光學薄卡結構,其 中該多波長之光波係指多波長之雷射發光二極體發光 源。 24. 如申請專利範圍第14項所述之USB光學薄卡結構,其中 該光學傳輸模組透過該微控單元係連接到一功能單元。 25. 如申請專利範圍第24項所述之USB光學薄卡結構,其 中該功能單元係可為一記憶體模組。 26. 如申請專利範圍第24項所述之USB光學薄卡結構,其中 該功能單元係可為一無線通訊模組。 27. 如申請專利範圍第24項所述之USB光學薄卡結構,其中 該功能單元係可為一輸出入模組。 21201229773 VII. Patent application scope: 1. A USB optical thin card structure, comprising: a substrate 'having an encapsulation layer; a body disposed on the substrate - suitable for the position and forming at least one with the substrate The opening and a space further include: a plurality of first contact members disposed at a position on the base; and a plurality of second contact members disposed at another position on the base. An optical transmission amount is disposed at the seat Between the body and the substrate, and using the opening formed by the base and the substrate as a transmission path of the data; a micro control unit for processing and controlling the USB optical thin card number and instructions; And σ a functional unit for providing any function of storage, communication and input and output. 2. The USB optical thin card structure as described in the scope of the patent application, wherein the plurality of first contact members are formed by four conductive pads. The USB optical thin card structure of the first aspect of the invention, wherein the plurality of first contact members are five conductive bullets, etc., as described in the scope of claim 2 The USB optical thin card structure, wherein the substrate is further provided with a cover body outside the base. The USB optical thin card structure according to claim 4, wherein the cough cover has a foolproof mechanism. The USB optical thin card structure of claim 1, wherein the substrate is provided with a first pad and a second pad respectively, and the first contact member and the second contact of the base respectively The components are electrically connected. The USB optical thin card structure according to claim 1, wherein the 201229773 substrate is provided with an electro-optic pad for electrically connecting to the optical transmission module. The USB optical thin card structure as claimed in claim 5, wherein the optical transmission module is formed by using an optical process on a substrate, a light wave having a wavelength of 匕3, a waveguide, and an optical multiplexing Positioning post and positioning hole for the alignment of the optical demultiplexer, optical modulator, optical detector, optical fiber, optical lens and light source. For example, please refer to the USB optical thin card structure described in the eighth item of the patent scope, wherein the light wave of the radiant wavelength refers to the multi-wavelength laser emitting diode illuminator 1 〇 · The coffee according to the first item of the patent scope An optical thin card structure, wherein the optical transmission module is connected to the functional element through the micro control unit. 11. The USB thin card structure as described in the scope of the patent application is intended to be such that the functional unit can be a memory module. - 12, such as the coffee optical thin card structure described in the patent application (4), the functional unit can be a wireless communication module. The USB_card structure described in the 13th power enclosure, wherein the force month b early can be an input/output module. 14. A USB optical material structure, comprising: a substrate having a space formed in an encapsulation layer of the substrate; a body disposed at least one opening on the substrate; The substrate has a plurality of first-contact members disposed on the application host to generate an electrical connector on the position 'for use with - 19 201229773 plural second contact members' disposed on the other side of the body, the political The top surface of the two contact members is higher than the first contact member for connecting with the application host to make an electrical connection; and an optical transmission module is disposed on the internal space formed by the base body and the substrate The opening of the base and the substrate is used as a transmission path of optical data; and a micro control unit is used for processing, transmitting and controlling all electrical, optical, electrical and optical signal conversion control and twilight on the USB optical thin card. Modules and function modules. The USB optical thin card structure according to claim 14, wherein the substrate and the exterior of the base body are further provided with a cover. 16. The USB optical thin card structure according to claim 15, wherein the cover body has a foolproof mechanism, and the mechanism means that the cover body has a step on both sides. 17. The us β optical thin card structure according to claim 4, wherein the substrate is provided with a first soldering ring and a second fresh metal, respectively, and the first contact part and the second contact part of the base body. Make an electrical connection. 18. The optical thin card structure of claim 14, wherein the plurality of first contact members are formed by four conductive pins. 19. The iUSB optical thin card structure of claim 14, wherein the plurality of second contact members are comprised of five conductive shrapnel. 20. The USB optical thin card structure of claim 14, wherein the plurality of second contact members are comprised of five conductive metal spherical bright enamels. 21. The USB optical thin card structure of claim 14, wherein the substrate is provided with an electro-optic solder bump for electrical connection with the optical transmission module 20 201229773. 22. The USB optical thin card structure according to claim 14, wherein the optical transmission module comprises a multi-wavelength light wave, a waveguide, an optical multiplexer on a substrate by using a 矽 optical process. The optical demultiplexer, the optical modulator, the photodetector, the optical fiber, the optical lens, and the light source are aligned with the desired positioning post and the positioning hole. The USB optical thin card structure according to claim 22, wherein the multi-wavelength light wave refers to a multi-wavelength laser light emitting diode light source. 24. The USB optical thin card structure of claim 14, wherein the optical transmission module is coupled to a functional unit through the micro control unit. 25. The USB optical thin card structure of claim 24, wherein the functional unit is a memory module. 26. The USB optical thin card structure of claim 24, wherein the functional unit is a wireless communication module. 27. The USB optical thin card structure of claim 24, wherein the functional unit is an input/output module. twenty one
TW100125408A 2010-09-07 2011-07-19 Usb optical card structure TWI447590B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/223,568 US8678673B2 (en) 2010-09-07 2011-09-01 Optical USB thin card
CN201110266326.5A CN102402710B (en) 2010-09-07 2011-09-05 Usb optical thin card structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US38056910P 2010-09-07 2010-09-07

Publications (2)

Publication Number Publication Date
TW201229773A true TW201229773A (en) 2012-07-16
TWI447590B TWI447590B (en) 2014-08-01

Family

ID=46934029

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100125408A TWI447590B (en) 2010-09-07 2011-07-19 Usb optical card structure

Country Status (1)

Country Link
TW (1) TWI447590B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8061905B2 (en) * 1999-08-04 2011-11-22 Supertalent Electronics, Inc. Multi-level cell (MLC) dual personality extended fiber optic flash memory device
TWM371340U (en) * 2009-05-04 2009-12-21 Hon Hai Prec Ind Co Ltd Connector

Also Published As

Publication number Publication date
TWI447590B (en) 2014-08-01

Similar Documents

Publication Publication Date Title
CN102402710B (en) Usb optical thin card structure
TWI695198B (en) Method and system for a chip-on-wafer-on-substrate assembly
CN111105822B (en) Semiconductor device with electro-optic substrate
TWI610103B (en) Apparatus,processor and computing system for optical i/o system using planar light-wave integrated circuit
US8971676B1 (en) Hybrid-integrated photonic chip package
US10591689B2 (en) Reflow-compatible optical I/O assembly adapter
KR100905140B1 (en) Optical Interconnection System Using Optical Waveguide-Integrated Optical Printed Circuit Board
WO2016122870A1 (en) Packaged opto-electronic module
KR102515663B1 (en) optical integrated circuit package
US9939596B2 (en) Optical integrated circuit package
CN111103653B (en) Semiconductor package with Photonic Integrated Circuit (PIC) chip
US20230400651A1 (en) Co-packaging optical modules with surface and edge coupling
KR100978307B1 (en) Active and passive optical alignment method, optical element packaging system and optical module which it uses
KR101266616B1 (en) Optical interconnection module
TW201137425A (en) Device for converting signal
KR100941763B1 (en) Optically and eletrically wired module device and its manufacture method
TW201229773A (en) USB optical card structure
CN116195207A (en) Hybrid integration of micro LED interconnects with ICs
Happel et al. Demonstration of optical interconnection-and assembly technique for fully-embedded optical pcb at data rates of 10 gbps/ch
CN104111504B (en) Optical communication apparatus
De Dobbelaere Optoelectronic integration for reduced power dissipation in optical interconnect
KR20090092200A (en) Usb driver apparatus, usb external apparatus, usb system having the same and usb connect apparatus using light guide