201229619 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種顯示面奴,且特別是有關於一種 觸控式顯示面板。 【先前技術】 隨著科技日新月異的進步,消費性電子產品的應用也 越來越多樣化,目前的許多電子產品中,除了以輕、薄、 短、小為主外,許多可攜式的電子產品(例如個人數位助理 (personal digital assistant,PDA)或行動電話)已廣泛地使用 觸控式面板(touch panel)。 傳統的觸控式顯示面板係將觸控面板與顯示面板分 開製作’再將觸控面板與顯示面板組裝在一起,而觸控式 面板又可分為電阻式(Resistive)、電容式(Capacitive)、超音 波式(Surface Acoustic Wave)及光學式(〇ptics)等四種,其中 電容式又可分為表面電容式(Surface Capacitive)與投射式 電容(Projective Capacitive)兩種。 請參見第1圖,此為習知電容觸控式顯示面板的剖面 圖’電容觸控式顯示面板1 〇包括液晶顯示面板2〇與設置 於液晶顯示面板20之上的觸控面板40,兩面板之間藉由 一黏著層30(例如雙面膠或是水膠)進行黏合,其中液晶顯 示面板20包括薄膜電晶體基板21、液晶層23與彩色渡光 基板25,觸控面板40包括基板4卜金屬層43、絕緣層 氧化銦錫層(ITO)47、保護層49等各層,由於觸控面板4〇 的基板41具有一定厚度,使得整體觸控式面板的厚度與重 91 〇9-A35829TWF_JN20100025 201229619 量無法降低。再者,當光線通過黏著層時,會造成反射, 使得觸控式顯示面板的反射率上升,進而影響光線穿透品 質。此外,當液晶顯示面板20與觸控面板4〇黏合時,亦 會有對準的問題。 因此,業界亟需發展-種觸控式顯示面板,此面板能 夠解決上述之問題,且能降低顯示命板的厚度與重量,進 而簡化製程與降低製程成本。 ® 【發明内容】 本發明提供一種觸控式顯示面板(t〇uchpand),包括· 一薄膜電晶體基板(TFT subs她)…彩色濾光基板,相對 於溥膜電晶體基板設置,其中薄膜電晶體基板或彩色滤光 基板之厚度小於或等於0.3毫米(mm); 一液晶層,設置於 /專膜電晶體基板與彩色濾光基板之間;以及一觸控感測元 件(touch sensor),直接(directly)形成於彩色濾光基板之一 遠離液晶層之表面上,其中該觸控感測元件包括一圖案化 鲁 透明導電層(patterned transparent conducting layer)。 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳 細說明如下: 【實施方式】 以下特舉出本發明之實施例,並配合所附圖式作詳細 說明,而在圖式或說明中所使用的相同符號表示相同或類 似的部分,且在圖式中,實施例之形狀或是厚度可擴大, 9109-A35829TWF JM20100025 5 201229619 並以簡化或是方便標示。再者,圖式中各元件之部分將以 分別描述說明之,值得注意的是,圖式中未繪示或描述之 元件,為所屬技術領域中具有通常知識者所知的形狀,另 外,特定之實施例僅為揭示本發明使用之特定方式,其並 非用以限定本發明。 請參見第2A圖,其顯示本發明一實施例之觸控式顯 示面板200的剖面圖。觸控式顯示面板200包括一薄膜電 晶體基板(TFT substrate) 210、一彩色濾光基板230、一液 晶層220及一觸控感測元件(touch sensor) 240,其中彩色濾 光基板230相對於薄膜電晶體基板210設置;液晶層220 設置於薄膜電晶體基板210與彩色濾光基板230之間。本 發明之主要特徵為觸控感測元件240係直接(directly)形成 於彩色濾光基板230之一遠離液晶層220之表面232上, 其中觸控感測元件240包括一圖案化透明導電層(patterned transparent conducting layer) ° 上述薄膜電晶體基板210包括基板與陣列層(array layer)(圖中未顯示),而基板包括玻璃、石英、塑膠、樹脂 或其他適合的材料,常用的基板例如為玻璃。陣列層包括 薄膜電晶體結構、晝素電極、掃描線與資料線等畫素控制 結構(圖中未顯示)。 彩色濾光基板230與液晶層220之間尚包括彩色濾光 片與黑色矩陣(black matrix, BM)(圖中未顯示),其中彩色濾 光片包括紅色濾光片、藍色濾光片與綠色濾光片,而黑色 矩陣(BM)介於各種不同顏色濾光片之間。 須注意的是,本案第2A圖中之薄膜電晶體基板210 9109-A35829TWF JN20100025 6 201229619 與彩色濾光基板230之厚度為約〇5〇毫米此兩基板 的總合厚度會決定整體觸控式面板的厚度(液晶層22〇之厚 度為約2-5 m’相對小於薄臈電晶體基板21〇與彩色濾光 基板230許多)’因此,觸控式顯示面板的厚度會侷限於 (limited)薄膜電晶體基板21〇與彩色濾光基板23〇之總合厚 度。 於本發明其他實施例中,可將本案第2A圖中的薄膜 電晶體基板210或彩色濾光基板23〇之厚度加以調整,請 麥見本案第2B-2D圖’利用薄化(thinning)步驟形成薄化的 薄膜電晶體基板(TFT substrate) 210a或彩色濾光基板 230a’其中薄化步驟例如物理方式(如研磨方法)或化學方式 (如蝕刻方法)。 於第2B圖中係提供薄化的薄膜電晶體基板(TFT substrate) 210a ’其厚度為小於或等於〇 3〇毫米(rnm),較 佳為約0· 15〜0.30宅米(mm)。 於第2C圖中係提供薄化的彩色濾光基板23〇a,其厚 度為小於或等於0.30毫米(mm),較佳為約〇 15〜〇3〇毫米 (mm) ° 於第2D圖中係同時提供薄化的薄膜電晶體基板(TFT substrate) 210a與薄化的彩色濾光基板23〇a,其厚度為小於 或等於0.30毫米(mm) ’較佳為約ο·。〜0·30毫米。 如此一來’如第2B-2D圖中之觸控式面板200的厚度 更可降低至約0.80〜0.30 mm,達到更輕薄之需求。 請參見第3A圖,此圖顯示本發明一實施例之觸控感 測元件240形成於彩色濾光基板230之上的剖面圖,其中 9109-A35829TWF JN20100025 201229619 觸控感測元件240包括圖案化透明導電層241、金屬層 243、介電層245與保護層247,其中圖案化透明導電層241 包括平面圖案化透明導電層241a與橋接圖案化透明導電 層 241b 。 第3A圖之形成步驟如下,首先,先利用沉積製程形 成透明導電層,再藉由圖案化製程形成平面圖案化透明導 電層241a。之後利用沉積製程,於平面圖案化透明導電層 241a之外部側邊形成金屬層243。接著,於平面圖案化透 明導電層241a之間形成介電層245。再經由沉積製程於欲 連接的平面圖案化透明導電層241a之間形成橋接(bridge) 圖案化透明導電層241b。最後,再沉積一保護層247,用 以保護觸控感測元件240内的各個元件,以使各個元件免 受外界濕氣或塵埃污染。 另外,請參見第3B圖,此圖顯示本發明另一實施例 之觸控感測240形成於彩色濾光基板230之上的剖面圖, 其中觸控感測元件240包括圖案化透明導電層241、金屬 層243、介電層245與保護層247,其中金屬層243包括平 面金屬層243a與橋接(bridge)金屬層243b。 第3B圖之形成步驟如下,首先,先利用沉積製程形 成透明導電層,再藉由圖案化製程形成圖案化透明導電層 241。之後利用沉積製程,於圖案化透明導電層241之間形 成介電層245。接著,於圖案化透明導電層241a之外部側 邊形成平面金屬層243a,以及於欲連接的圖案化透明導電 層241之間形成橋接金屬層243b。最後,再沉積一保護層 247,用以保護觸控感測元件内的各個元件,以使各個元件 9109-A35829TWF JN20100025 8 201229619 免受外界濕氣或塵埃污染。 須注意的是,第3A圖與第3B圖之差別在於,第3A 圖使用橋接圖案化透明導電層24]b電性連接欲連接的平 面圖案化透明導電層241a,而第3B圖則使用橋接金屬層 243b電性連接欲連接的圖案化透明導電層241。 上述圖案化製程藉由微影製程(photolithography)而達 成’微影製程包括光阻塗佈(photoresist coating)、軟烘烤 (soft baking)、光罩對準(mask aligning)、曝光(exposure)、 曝光後供烤(post-exposure)、光阻顯影(developing photoresist)與硬烘烤(hard baking),這些製程為本領域人士 所熟知,在此不再贅述。 本發明之圖案化透明導電層241之材料包括氧化銦錫 (indium tin oxide, IT0)、氧化銦鋅(indium zinc oxide, IZO)、氧化編錫(cadmium tin oxide, CTO)、氧化 辞 (aluminum zinc oxide, AZO)、氧化銦錫鋅(indium tin zinc oxide, ITZO)、氧化鋅(zinc oxide)、氧化録(cadmium oxide,201229619 VI. Description of the Invention: [Technical Field] The present invention relates to a display surface slave, and more particularly to a touch display panel. [Prior Art] With the rapid advancement of technology, the application of consumer electronic products is becoming more and more diversified. Many portable electronic products are not only light, thin, short, and small, but also many portable electronic products. Products such as personal digital assistants (PDAs) or mobile phones have widely used touch panels. The conventional touch display panel separates the touch panel from the display panel and then assembles the touch panel and the display panel. The touch panel can be further divided into a resistive type (Resistive) and a capacitive type (Capacitive). There are four types, namely, Surface Acoustic Wave and Optical (Pictics). Capacitance can be divided into Surface Capacitive and Projective Capacitive. Please refer to FIG. 1 , which is a cross-sectional view of a conventional capacitive touch display panel. The capacitive touch display panel 1 includes a liquid crystal display panel 2 and a touch panel 40 disposed on the liquid crystal display panel 20 . The bonding between the panels is performed by an adhesive layer 30 (such as a double-sided tape or a water-repellent substrate). The liquid crystal display panel 20 includes a thin film transistor substrate 21, a liquid crystal layer 23 and a color light-emitting substrate 25. The touch panel 40 includes a substrate. 4 layers of metal layer 43, insulating layer indium tin oxide layer (ITO) 47, protective layer 49, etc., since the substrate 41 of the touch panel 4 has a certain thickness, the thickness and weight of the overall touch panel are 91 〇9- A35829TWF_JN20100025 201229619 The amount cannot be reduced. Moreover, when the light passes through the adhesive layer, it will cause reflection, which causes the reflectivity of the touch display panel to rise, thereby affecting the light penetration quality. In addition, when the liquid crystal display panel 20 is bonded to the touch panel 4A, there is also a problem of alignment. Therefore, there is an urgent need in the industry to develop a touch display panel that can solve the above problems and reduce the thickness and weight of the display panel, thereby simplifying the process and reducing the process cost. The present invention provides a touch display panel, including a thin film transistor substrate (TFT subsher), a color filter substrate, which is disposed relative to a germanium film transistor substrate, wherein the thin film is electrically The thickness of the crystal substrate or the color filter substrate is less than or equal to 0.3 millimeters (mm); a liquid crystal layer disposed between the /-specific transistor substrate and the color filter substrate; and a touch sensor Directly formed on a surface of the color filter substrate away from the liquid crystal layer, wherein the touch sensing element comprises a patterned transparent conducting layer. The above and other objects, features, and advantages of the present invention will become more fully understood from The same reference numerals are used to designate the same or similar parts in the drawings or the description, and in the drawings, the shape or thickness of the embodiment may be expanded, 9109-A35829TWF JM20100025 5 201229619 and is simplified or conveniently marked. Further, portions of the various elements in the drawings will be described separately, and it is noted that elements not shown or described in the drawings are shapes known to those of ordinary skill in the art and, in addition, The embodiments are merely illustrative of specific ways of using the invention and are not intended to limit the invention. Referring to FIG. 2A, a cross-sectional view of a touch display panel 200 in accordance with an embodiment of the present invention is shown. The touch display panel 200 includes a TFT substrate 210, a color filter substrate 230, a liquid crystal layer 220, and a touch sensor 240. The color filter substrate 230 is opposite to the touch sensor. The thin film transistor substrate 210 is disposed; the liquid crystal layer 220 is disposed between the thin film transistor substrate 210 and the color filter substrate 230. The main feature of the present invention is that the touch sensing component 240 is formed directly on the surface 232 of the color filter substrate 230 away from the liquid crystal layer 220. The touch sensing component 240 includes a patterned transparent conductive layer ( The above-mentioned thin film transistor substrate 210 includes a substrate and an array layer (not shown), and the substrate includes glass, quartz, plastic, resin or other suitable materials, and a commonly used substrate is, for example, glass. . The array layer includes a thin film transistor structure, a halogen electrode, a scanning line, and a data line such as a pixel control structure (not shown). The color filter substrate 230 and the liquid crystal layer 220 further include a color filter and a black matrix (BM) (not shown), wherein the color filter includes a red filter and a blue filter. The green filter, while the black matrix (BM) is between the various color filters. It should be noted that the thickness of the thin film transistor substrate 210 9109-A35829TWF JN20100025 6 201229619 and the color filter substrate 230 in the second embodiment of the present invention is about 〇5 mm. The total thickness of the two substrates determines the overall touch panel. The thickness (the thickness of the liquid crystal layer 22 is about 2-5 m' is relatively smaller than that of the thin germanium transistor substrate 21 and the color filter substrate 230). Therefore, the thickness of the touch display panel is limited to the limited film. The total thickness of the transistor substrate 21A and the color filter substrate 23〇. In other embodiments of the present invention, the thickness of the thin film transistor substrate 210 or the color filter substrate 23 in FIG. 2A of the present invention can be adjusted, and the second thinning step of the second embodiment of the present invention can be used. A thinned thin film transistor substrate (TFT substrate) 210a or a color filter substrate 230a' is formed in which the thinning step is, for example, a physical method (such as a grinding method) or a chemical method (such as an etching method). In Fig. 2B, a thinned TFT substrate 210a' is provided having a thickness of less than or equal to 〇 3 〇 mm (rnm), preferably about 0·15 to 0.30 house size (mm). In FIG. 2C, a thinned color filter substrate 23〇a having a thickness of less than or equal to 0.30 millimeters (mm), preferably about 15 to 3 mm (mm) is provided in FIG. 2D. At the same time, a thinned TFT substrate 210a and a thinned color filter substrate 23a having a thickness of less than or equal to 0.30 mm (mm) are preferably provided. ~0·30 mm. As a result, the thickness of the touch panel 200 in the 2B-2D can be reduced to about 0.80 to 0.30 mm, which is required for thinner and lighter. FIG. 3A is a cross-sectional view showing the touch sensing component 240 formed on the color filter substrate 230 according to an embodiment of the present invention, wherein the 9109-A35829TWF JN20100025 201229619 touch sensing component 240 includes patterned transparent The conductive layer 241, the metal layer 243, the dielectric layer 245 and the protective layer 247, wherein the patterned transparent conductive layer 241 comprises a planar patterned transparent conductive layer 241a and a bridge patterned transparent conductive layer 241b. The forming step of Fig. 3A is as follows. First, a transparent conductive layer is formed by a deposition process, and a planar patterned transparent conductive layer 241a is formed by a patterning process. Thereafter, a metal layer 243 is formed on the outer side of the planar patterned transparent conductive layer 241a by a deposition process. Next, a dielectric layer 245 is formed between the planar patterned transparent conductive layers 241a. A bridge patterned transparent conductive layer 241b is then formed between the planar patterned transparent conductive layers 241a to be joined via a deposition process. Finally, a protective layer 247 is deposited to protect the various components within the touch sensing component 240 to protect the components from external moisture or dust. In addition, please refer to FIG. 3B , which shows a cross-sectional view of the touch sensing 240 formed on the color filter substrate 230 according to another embodiment of the present invention, wherein the touch sensing component 240 includes a patterned transparent conductive layer 241 . The metal layer 243, the dielectric layer 245, and the protective layer 247, wherein the metal layer 243 includes a planar metal layer 243a and a bridge metal layer 243b. The forming step of Fig. 3B is as follows. First, a transparent conductive layer is formed by a deposition process, and a patterned transparent conductive layer 241 is formed by a patterning process. A dielectric layer 245 is then formed between the patterned transparent conductive layers 241 by a deposition process. Next, a planar metal layer 243a is formed on the outer side of the patterned transparent conductive layer 241a, and a bridge metal layer 243b is formed between the patterned transparent conductive layers 241 to be connected. Finally, a protective layer 247 is deposited to protect the various components in the touch sensing component so that the individual components 9109-A35829TWF JN20100025 8 201229619 are protected from external moisture or dust. It should be noted that the difference between FIG. 3A and FIG. 3B is that the 3A diagram electrically connects the planar patterned transparent conductive layer 241a to be connected using the bridge patterned transparent conductive layer 24]b, and the 3B diagram uses the bridge. The metal layer 243b is electrically connected to the patterned transparent conductive layer 241 to be connected. The above patterning process is achieved by photolithography. The lithography process includes photoresist coating, soft baking, mask aligning, exposure, Post-exposure, developing photoresist, and hard baking are well known to those skilled in the art and will not be described herein. The material of the patterned transparent conductive layer 241 of the present invention includes indium tin oxide (IT0), indium zinc oxide (IZO), cadmium tin oxide (CTO), and aluminum zinc. Oxide, AZO), indium tin zinc oxide (ITZO), zinc oxide, cadmium oxide,
CdO)、氧化铪(hafnium oxide,HfO)、氧化銦鎵辞(indilim gallium zinc oxide, InGaZnO)、氧化銦鎵鋅鎂(indium gallium zinc magnesium oxide,InGaZnMgO)、氧化銦鎵鎂 (indium gallium magnesium oxide, InGaMgO)或氧化銦鎵在呂 (indium gallium aluminum oxide, InGaAlO)。 於一較佳實施例中’由於氧化銦錫層(IT〇)於可見光具 有大於90%的穿透率,因此使用氧化銦錫層作為透明導電 層之材料。 此外’本案之圖案化透明導電層241可為獨立矩陣或 9109-A35829TWF JN20100025 9 201229619 交錯矩陣之結構。於一實施例中,本發明之觸控感測元件 包括一層ITO透明導電矩陣,為一種獨立矩陣感測單元 (Independent_matrix sense elements)。於另一實施例中,本 發明之觸控感測元件包括兩層相互隔離水平(列)及垂直(欄) ITO透明導電層組成交錯矩陣,為一種交錯矩陣感測單元 (Intersection-matrix of row and column sense elements) ° 觸控感測元件240之圖案化透明導電層241係藉由'一 沉積法直接形成於彩色濾光基板230之上,沉積法包括化 學氣相沉積法(chemical vapor deposition, CVD)或物理氣相 沉積法(physical vapor deposition, PVD)。 於一較佳實施例,係可使用物理氣相沉積法(例如減:鍵 (sputter))將透明導電層直接(directly)沉積於彩色濾光基板 230之上’再藉由圖案化製程,形成圖案化透明導電層241。 此外,請再次參見第1圖,於習知技術中,觸控面板 20與顯示面板40組藉由黏著層30組裝在一起,亦即顯示 面板40之基板41具有一定厚度,且兩面板之結合需要額 外黏著層30之輔助。 須注意的是,相對於習知技術,本發明將觸控感測元 件240直接整合於彩色濾光基板230之上,不但可以減少 習知觸控面板之基板厚度(如第1圖之基板41),且不需要 黏著層(如第1圖之黏著層30)。此外,由於本發明之圖案 化透明導電層作為電極時(例如,通入交流電(AC)) ’會有 一自身頻率產生,此自身頻率不會受到下方液晶顯示面板 (由薄膜電晶體基板210、液晶層220與彩色濾光基板230 所組成)的影響’因此,本發明之圖案化透明導電層241不 9109-A35829TWFJN20 ] 00025 201229619 但可作為電極,亦可同時扮演訊號屏蔽層(shidding ]ayer) 的角色。 於本發明之一實施例中,本發明之觸控式面板之製程 係可先於彩色濾光基板230之上形成如第3a圖或第3B圖 所述的觸控感測元件240,再將彩色濾光基板23()翻轉 (flip),再依序形成黑色矩陣(BM)與彩色濾光片,之後再將 彩色;慮光基板230與薄膜電晶體基板21 〇相對設置並組裝 之,使液晶層220填入薄膜電晶體基板21〇與彩色濾光基 板230之間。於此實施例中,可於組裝彩色濾光基板23〇 與薄膜電晶體基板210之後,亦即未填入液晶層22〇之前, 對薄膜電晶體基板210進行薄化步驟,以得到薄化的薄膜 電晶體基板210a。上述製程步驟中會利用習知之微影製程 (photolithography),此亦為本領域人士所熟知,在此不再 贅述。於本發明另一實施例中’亦可將彩色濾光基板23〇 與薄膜電晶體基板210先相對設置並組裝後,進行單側基 板或雙侧基板之薄化步驟,藉此得到薄化的薄膜電晶體基 板21〇a與彩色濾光基板23〇&後,再於彩色濾光基板23〇& 之上直接形成觸控感測元件240。須注意的是,於觸控式 面板的製程過程中,可依實際應用之需要,對薄膜電晶體 基板210或彩色處光基板21 〇進行薄化步驟,以得到薄化 的薄膜電晶體基板210a或薄化的彩色濾光基板230a (請參 見第2B-2D圖)。 本發明之觸控式顯示面板200可繼續進行後續製程, 例如包括形成一偏光片(polarizer)於觸控感測元件之上,以 及形成一破璃(coverglass),於偏光片之上。亦可依據實際 91〇9-A35829TWFJhn〇|〇〇〇25 n 201229619 製程之需求, 之下。 形成其他元件於觸控式顯示面板2GG之上或 本發縣觸控❹彳元件_直接整合於彩 230 =,此設計亦可稱為顯示㈣上之(_eu)觸控式面反 板於“作和’使用者可藉由手指或是觸控筆等方式碰觸 於觸控感測元# 240之外側表面,使圖案化透明導電層24ι 受到感應而導致電容的變化,以產生感測訊號。所產生的 感測訊號可傳送顺號處理電路,料定㈣碰觸處的位 置。 須注意的是,先前技術之觸控式顯示面㈣將觸控面 板與顯不面板分開製作’再將觸控面板與顯示面板組裝在 起,兩面板之間需藉由黏著層(例如雙面膠或是水膠)進 行黏合’然而,當光線通過不同介質時(如黏著層或是觸控 面板的玻璃基材),會產生部分反射,而造成整體元件反射 率上升。 相較於先前技術,本發明之觸控感測元# 24〇 (内有圖 案化透明導電@ 241)係直接形成於純濾光絲⑽之 上,因此,可降低觸控式顯示面板之反射率,提高穿透率, 以提升觸控式顯示面板之光學顯示品質。 綜上所述,本發明之觸控式顯示面板由於不需額外設 置觸控面板的基板(例如玻璃),因此,整體觸控式顯示面 板的厚度與重量得⑽低,制是可使_電晶體基板或 彩色濾光基板之厚度降低至小於或等於〇3毫米(mm),以 達到輕薄的目的,此外亦能降低觸控面板的製程複雜度與 降低製程成本。 9109-A35829TWFJN20100025 ,2 201229619 本發明之觸控式顯示面板可應用於液晶顯示器(liquid crystal display, LCD),例如平面切換液晶顯示器(in-plane switching, IPS LCD)或邊緣電場開關液晶顯示器(fringe field switching, FFS LCD)。 雖然本發明已以數個較佳實施例揭露如上,然其並非 用以限定本發明,任何所屬技術領域中具有通常知識者, 在不脫離本發明之精神和範圍内,當可作任意之更動與潤 飾,因此本發明之保護範圍當視後附之申請專利範圍所界 籲定者為準。 【圖式簡單說明】 第1圖為一剖面圖,用以說明習知之觸控式顯示面板。 第2A-2D圖為一系列剖面圖,用以說明本發明一實施 例之觸控式顯示面板。 第3A-3B圖為一系列剖面圖,用以說明本發明觸控感 測元件之結構。 【主要元件符號說明】 10〜觸控式顯示面板; 20〜液晶顯示面板; 21〜薄膜電晶體基板; 23〜液晶層; 25〜彩色滤光基板; 30〜黏著層; 40〜觸控面板; 9I09-A35829TWF .IN20100025 201229619 41〜基板; 43〜金屬層; 4 5〜絕緣層, 47〜氧化銦錫層; 4 9〜保護層; 200〜觸控式顯示面板; 210〜薄膜電晶體基板; 210a〜薄化的薄膜電晶體基板; 220〜液晶層, 230〜彩色濾光基板; 230a〜薄化的彩色濾光基板; 232〜表面; 240〜觸控感測元件; 241〜圖案化透明導電層; 241a〜平面圖案化透明導電層; 241b〜橋接圖案化透明導電層; 243〜金屬層; 243a〜平面金屬層; 243b〜橋接金屬層; 245〜介電層; 247〜保護層。 9109-A35829TWF JN20100025 14CdO), hafnium oxide (HfO), indigal gallium zinc oxide (InGaZnO), indium gallium zinc magnesium oxide (InGaZnMgO), indium gallium magnesium oxide (indium gallium magnesium oxide, InGaMgO) or indium gallium aluminum oxide (InGaAlO). In a preferred embodiment, since the indium tin oxide layer (IT〇) has a transmittance of more than 90% in visible light, an indium tin oxide layer is used as the material of the transparent conductive layer. In addition, the patterned transparent conductive layer 241 of the present invention may be an independent matrix or a 9109-A35829TWF JN20100025 9 201229619 interlaced matrix structure. In one embodiment, the touch sensing device of the present invention comprises a layer of ITO transparent conductive matrix, which is an independent matrix sense element. In another embodiment, the touch sensing device of the present invention comprises two layers of mutually separated horizontal (column) and vertical (column) ITO transparent conductive layers to form an interlaced matrix, which is an intersection-matrix of row. The patterning transparent conductive layer 241 of the touch sensing element 240 is directly formed on the color filter substrate 230 by a deposition method, and the deposition method includes chemical vapor deposition (chemical vapor deposition, CVD) or physical vapor deposition (PVD). In a preferred embodiment, the transparent conductive layer can be directly deposited on the color filter substrate 230 by physical vapor deposition (for example, a sputtering), and then formed by a patterning process. The transparent conductive layer 241 is patterned. In addition, referring to FIG. 1 again, in the prior art, the touch panel 20 and the display panel 40 are assembled by the adhesive layer 30, that is, the substrate 41 of the display panel 40 has a certain thickness, and the combination of the two panels. Additional adhesive layer 30 is required. It should be noted that, compared with the prior art, the touch sensing component 240 is directly integrated on the color filter substrate 230, which can reduce the substrate thickness of the conventional touch panel (such as the substrate 41 of FIG. 1 ). ), and does not require an adhesive layer (such as the adhesive layer 30 of Figure 1). In addition, since the patterned transparent conductive layer of the present invention functions as an electrode (for example, an alternating current (AC)), a self frequency is generated, and the self frequency is not received by the lower liquid crystal display panel (by the thin film transistor substrate 210, liquid crystal). The effect of the layer 220 and the color filter substrate 230 is formed. Therefore, the patterned transparent conductive layer 241 of the present invention is not 9109-A35829TWFJN20 ] 00025 201229619 but can be used as an electrode or as a signal shielding layer (shidding ]ayer) Character. In an embodiment of the present invention, the touch panel of the present invention can form the touch sensing component 240 as described in FIG. 3a or FIG. 3B before the color filter substrate 230, and then The color filter substrate 23 (flip) is flipped, and then a black matrix (BM) and a color filter are sequentially formed, and then the color is placed; the light-receiving substrate 230 and the thin film transistor substrate 21 are disposed opposite each other and assembled. The liquid crystal layer 220 is filled between the thin film transistor substrate 21A and the color filter substrate 230. In this embodiment, after the color filter substrate 23 and the thin film transistor substrate 210 are assembled, that is, before the liquid crystal layer 22 is not filled, the thin film transistor substrate 210 is thinned to obtain a thinned portion. Thin film transistor substrate 210a. The above-mentioned process steps utilize conventional photolithography, which is also well known to those skilled in the art and will not be described herein. In another embodiment of the present invention, the color filter substrate 23A and the thin film transistor substrate 210 may be disposed opposite each other and assembled, and then the thinning step of the single-sided substrate or the double-sided substrate may be performed. After the thin film transistor substrate 21〇a and the color filter substrate 23〇&, the touch sensing element 240 is directly formed on the color filter substrate 23〇& It should be noted that during the manufacturing process of the touch panel, the thin film transistor substrate 210 or the color light substrate 21 〇 may be thinned to obtain a thinned thin film transistor substrate 210a according to actual application requirements. Or thinned color filter substrate 230a (see Figure 2B-2D). The touch display panel 200 of the present invention can continue the subsequent process, for example, including forming a polarizer on the touch sensing component and forming a cover glass on the polarizer. It can also be based on the actual needs of the process of 91〇9-A35829TWFJhn〇|〇〇〇25 n 201229619. Forming other components on the touch display panel 2GG or the local sensor touch element _ directly integrated in the color 230 =, this design can also be called the display (four) on the (_eu) touch surface reflector The user and the user can touch the outer surface of the touch sensing element #240 by means of a finger or a stylus, so that the patterned transparent conductive layer 24 is induced to cause a change in capacitance to generate a sensing signal. The generated sensing signal can transmit a smooth processing circuit to determine the position of the (4) touch. It should be noted that the touch display panel of the prior art (4) separates the touch panel from the display panel to make a touch. The control panel and the display panel are assembled, and the two panels need to be bonded by an adhesive layer (such as double-sided tape or water glue). However, when the light passes through different media (such as the adhesive layer or the glass of the touch panel) The substrate has a partial reflection, which causes the reflectivity of the overall component to rise. Compared with the prior art, the touch sensing element #24〇 (with patterned transparent conductive @241) is directly formed in the pure filter. Above the filament (10), therefore, The optical display quality of the touch display panel is improved, and the optical display quality of the touch display panel is improved. In summary, the touch display panel of the present invention does not need to additionally provide a substrate for the touch panel. (for example, glass), therefore, the thickness and weight of the overall touch display panel are lower than (10), so that the thickness of the _ transistor substrate or the color filter substrate can be reduced to less than or equal to 〇3 mm (mm) to achieve The purpose of thinness and lightness can also reduce the process complexity of the touch panel and reduce the process cost. 9109-A35829TWFJN20100025, 2 201229619 The touch display panel of the present invention can be applied to a liquid crystal display (LCD), such as plane switching. In-plane switching (IPS LCD) or fringe field switching (FFS LCD). Although the invention has been disclosed above in several preferred embodiments, it is not intended to limit the invention, any Those skilled in the art can make any changes and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention is subject to the scope of the appended claims. [Simplified Schematic] FIG. 1 is a cross-sectional view for explaining a conventional touch display panel. 2D is a series of cross-sectional views for explaining a touch display panel according to an embodiment of the present invention. FIGS. 3A-3B are a series of cross-sectional views for explaining the structure of the touch sensing element of the present invention. DESCRIPTION OF REFERENCE NUMERALS 10 to touch display panel; 20 to liquid crystal display panel; 21 to thin film transistor substrate; 23 to liquid crystal layer; 25 to color filter substrate; 30 to adhesive layer; 40 to touch panel; 9I09-A35829TWF .IN20100025 201229619 41~substrate; 43~metal layer; 4 5~insulation layer, 47~indium tin oxide layer; 4 9~protective layer; 200~ touch display panel; 210~film transistor substrate; 210a~ thinning Thin film transistor substrate; 220~ liquid crystal layer, 230~ color filter substrate; 230a~ thinned color filter substrate; 232~ surface; 240~ touch sensing element; 241~ patterned transparent conductive layer; 241a~ Plane patterned transparent Dielectric layer; 241b~ bridge patterned transparent conductive layer; 243~ metal layer; 243a~ planar metal layer; 243b~ bridged metal layer; 245~ dielectric layer; 247~ protective layer. 9109-A35829TWF JN20100025 14