TW201229559A - Optical zoom assembly for a non-imaging illumination application and luminaire using same - Google Patents

Optical zoom assembly for a non-imaging illumination application and luminaire using same Download PDF

Info

Publication number
TW201229559A
TW201229559A TW100124369A TW100124369A TW201229559A TW 201229559 A TW201229559 A TW 201229559A TW 100124369 A TW100124369 A TW 100124369A TW 100124369 A TW100124369 A TW 100124369A TW 201229559 A TW201229559 A TW 201229559A
Authority
TW
Taiwan
Prior art keywords
optical
lens
light
conductor
lenses
Prior art date
Application number
TW100124369A
Other languages
Chinese (zh)
Inventor
Richard Kenneth Steele
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201229559A publication Critical patent/TW201229559A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/06Controlling the distribution of the light emitted by adjustment of elements by movement of refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/008Combination of two or more successive refractors along an optical axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/40Lighting for industrial, commercial, recreational or military use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

An optical zoom assembly for a non-imaging illumination application and luminaire using the same are disclosed. In one embodiment, a light emitting diode chip provides light to an optical conductor having a plurality of transmission paths that enable the mixing of the light. A collector lens is disposed serially and coaxially with the optical conductor to the mixed light received from the optical conductor. A zoom subassembly, including one or more optical lenses located serially and coaxially with the central optical axis, is movable coaxially with respect to the optical lens to create a beam of light having a divergence profile controlled by a variable spacing between the one or more optical lenses and the collector lens.

Description

201229559 六、發明說明: 【發明所屬之技術領域】 本發明大體上係關於建立人造光或照明,且尤其係關於 一非成像照明應用之一光學遠近調整組件,及使用其之照 明器,其控制光能量的分佈。 【先前技術】 關於非成像照明應用,對環境及永續性之曰益增長的責 任反映在從燈絲及高強度放電燈至發光二極體(led)的轉 變中。與燈絲及尚強度放電燈相反,LED解決方案包含每 封裝通常含有多個LED晶片的LED晶片封裝。此等LED晶 片封裝在該封裝本身上具有相對簡單的光學器件,其必須 使用一次要光學系統,以提供任何需要的色彩混合準 直、遠近調整或其他光束成型。近期在發光源中的改變必 須使用新的遠近調整透鏡,其等考慮包含溫度及光譜之 LED發光源的獨特性質。 【發明内容】 達成一非成像照明應用之一光學遠近調整組件及使用其 之照明器將為有利的。亦期望促成一固態解決方案,其在 具有特疋色衫混合及準直要求的LED光源之背景中控制光 能量的分佈。為以更好的方式解決一個或多個此等問題, 在本發明之一態樣中,提出一光學遠近調整組件之一實施 例,其具有一發光二極體晶片’其提供光至具有複數個傳 輸路徑的-光學導體’其促成錢混合…集光透鏡與該 光學導體對從該光學導體處接收的混合光_聯且共軸安 157484.doc 201229559 置。一遠近調整子組件包含與中央光輛串聯且共轴放置的 一個或多個光學透鏡’可相對於該光學透鏡而共軸移動, 以建立具有一發散輪廓的一光束,該發散輪廓由該一個或 多個光學透鏡與該集光透鏡之間的一可變間距控制。 再者,為以更好的方式解決一個或多個前文提及之問 題,在本發明之一態樣中,提出一照明器之一實施例,其 可對於多種應用提供一完全的發光器具。本發明之此等態 樣及其他態樣將參考下文中描述之實施例而顯而易見及闡 明。 【實施方式】 為了對本發明之特徵及優點獲得更完全的理解,現參考 本發明之詳細描述及附圖,其中不同圖中的對應數字指對 應的部分。 雖然在下文中詳細討論製造及使用本發明之多種實施 例,應瞭解,本發明提供許多應用發明性概念,其等可以 多種特殊背景體現。在本文中討論之特定實施例僅為說明 製造及使用本發明的特定方式,但並不限定本發明之範 圍。 首先參考圖1至圖3,其中描繪根據本文中所提出之教示 的一照明器之一實施例,其示意性繪示且大體上指定為 10。一外殼12經調適以容納一框架14及光學遠近調整組 件,該等光學遠近調整組件共同編號為16,且由該框架Μ 固定於該外殼12中。該框架14包含一基部18、一 示歹1j之平 台20、22、24及一末端件26,其由一系列之軸向撐條互 157484.doc 201229559 連’诸如樓條28。該等光學遠近調整組件16包含個別光學 遠近調整組件16-1、16-2及16-3。一散熱器子組件3〇(其亦 安裝至該基部18且封入該外殼12中)吸收及消散由該等光 學遠近調整組件16產生之熱》在一實施例中,該散熱器子 組件30包含實質的無聲扇,其等對於包含該等光學遠近調 整組件16的内部元件提供強制通風冷卻。 該外殼12由一軛32套合到位’該軛旋轉連接至一支撐钟 構33。位於貫穿該框架14的一電子子組件34對該照明器提 供機動化的移動及電子器件。該電子子組件34可包含多個 内建處理器,其提供診斷及自校準功能以及内部測試常式 及軟體更新能力《•該照明器1G亦可包含任意其他需要的電 子器件,諸如至電源的連接。如所繪示,可包含一或多個 最後透鏡36,以添加末端效應。 該等光學遠近調整組件丨6安 38中,該等光學遠近調整組件16-1至16-3以一三角形定位 放置’其中每—光學遠近調整組件16之-側面與定位^與 另一光學遠近調整組件16接觸之—邊緣或側面。應瞭解:、 儘管描繪具有某—數目及位置之光學遠近調整組㈣的一 特定集群或嵌套,光學遠近調整組件Μ之數目及定位可在 本文中所提出之教示内有所變化。應瞭解,該等光 調整組件16模組可配置成除了圖1至圖3中所繪示之陣 :的㈣。在―陣财可㈣任意數目之光學遠近調整植 ’且該陣列可採用不同形式,包含:在該等 整組件之間提供緊密接觸的形式、及在該等光學遠近調: 157484.doc 201229559 組件之間提供空間的形式、及甚至提供其等之—纟人 、 、·且合之形 式。此外,該等光學遠近調整組件16可以一成角度的方 式、具有線性位移、或其等之組合配置。 圖4至圖7以額外細節描繪光學遠近調整組件Η·〗。— LED晶片封裝40提供光源,且在一單一伸長基部部件^上 包含以一陣列42配置的多個彩色led晶片G、R、B、w, 封裝40可包含用於接合導線(未作圖式)的設備。如所繪 示,該等LED晶片G、R、B、W已經定位以相對於光學遠 近調整組件16-1而提供一期望角度的發射模式,以增加色 彩混合。然而應瞭解’取決於應用,該等LED晶片G、r、 B、W可以其他類型之陣列配置。 該陣列42之s亥4 LED晶片G、R、B、w包括習知的綠 色、紅色、藍色及白色LED晶片,其等分別發射綠光、紅 光、藍光及白光。此等LED晶片促進至該光學遠近調整組 件16-1中的有效注入,且強烈增強色彩混合。如所描繪, 為進一步增強由該LED晶片封裝產生之白光的品質,利用 包含一紅色LED晶片(R)、一綠色晶片(G)、一藍色lED晶 片(B)及一白色LED晶片(W)的四個LED晶片。然而,預期 隨著LED晶片設計的進步’在陣列中可使用不同數目之 LED晶片及/或不同色彩之LED晶片,以最佳化由該LED晶 片封裝4 0產生之光的品質。舉例而言,在一實施例中,利 用包含一紅色LED晶片(R)、一綠色晶片、一藍色LED 晶片(B)及一琥珀色LED晶片(A)的四個LED晶片。進一步 舉例而言’在另一實施例中,利用包含一紅色LED晶片 157484.doc 201229559 (R)、兩個綠色晶片(Gi、G2)及一藍色LED晶片(B)的四個 LED晶片。進一步預期可在LED晶片封裝40中使用較低功 率及較高功率之LED晶片二者。 在本文所提出教示的一實施例中,該伸長基部部件 44(其耦接至該平台2〇)可包括一電絕緣外殼,其例如由包 裝金屬政熱器且其上安置一石夕子基板的塑膠或陶兗製 造。該金屬散熱器對安置於其上之該]LED晶片封裝4〇提供 散熱°進一步的熱消散由散熱器子組件30提供,其如所暗 指,包含一實質的無聲扇,其在該金屬散熱器附近供應強 制通風冷卻。該伸長基部部件44可進一步包含導線,其等 利用該外殼而與該金屬散熱器及該等led晶片G、R、B、 W電隔離。接合線將該等LED晶片G、R、B、贾電連接至 該等導線。 該光學遠近調整組件16_丨包含一光學導體46、一集光透 鏡48及一遠近調整子組件50〇該光學導體牝從該平台延 伸且通過該等平台22、24。一輕接套環52及密封件將該集 光透鏡48固定至該光學導體46。如所展示’與垂直支撐件 60、62組合之基礎部件56、58保持該耦接套環52之位置, ' 且由扣件64、66而固定至耦接套環52。該遠近調整子組件 • 50以與該集光透鏡48之可變空間的關係(如由箭頭78展示) 放置’且可相對於該集光透鏡48而共軸移動。麵接至該撐 條28的-延長臂70支揮該遠近調整子組件5〇,且該遠近調 整子組件50藉由固定套環72、74而耦接至延長臂7〇。如所 展不,该可變空間78或距離由一線性致動器致動該延長臂 157484.doc 201229559 70而調整,該線性致動器可包含例如由一伺服電動機致動 之螺紋傳動軸。該延長臂70之此移動由一箭頭76描繪, 其移動對應於該可變間距或空間78中的一改變。 其他類型之致動器亦在本文中所提出之教示内。此等致 動器取決於應用包含但不限於電動伺服電動機、氣動或液 壓致動器、或甚至手動操作的致動器。此等相同類型之致 動器可用於控制該遠近調整子組件5〇中光學透鏡之個別移 動,如將以進一步細節在下文中討論。該照明器1〇之控制 系統可獨立於一監視控制台而操作,或甚至自由運行(若 如此期望),以在兩個行進廣度之間振盪。在一操作實施 例中,具有該光學遠近調整組件的該照明器1〇形成一自動 化夕參數之發光陣列之一部分,其提供遠端控制且協調 的方位角及上升調整、以及光控制的光東呈現。 該光學導體46在一第一末端80具有一橫截面積為灯】2的 一輸入孔徑82,其中半徑係Γι,及在一第二末端討的一第 二橫截面積πι·22的一輸出孔徑86,其中半徑係Q。該光學 導體46疊置於該LED晶片封裝40及該等LED晶片G、R、 B、W上,以接收在該輸入孔徑82處之源的光,且將該光 遞送至該輸出孔徑86。該第一橫截面積町严可實質上等於 該第二橫截面積町/,使得該輸入孔徑82及輸出孔徑86具 有實質上相等的直徑’且Γ丨可等於。。或者,t亥第一橫截 面積πι*】可漸縮至該第二橫截面積町/,其中q大於〇。作 為另一替代,該第二橫截面積町尸可漸縮至該第一橫截面 積πΓι2,其中〇大於Γι。一壁部分88(其可為一圓柱壁部分 157484.doc201229559 VI. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to the creation of artificial light or illumination, and more particularly to an optical proximity adjustment component for a non-imaging illumination application, and an illuminator using the same, The distribution of light energy. [Prior Art] Regarding non-imaging lighting applications, the responsibility for the growth of environmental and resilience benefits is reflected in the transition from filaments and high-intensity discharge lamps to light-emitting diodes (LEDs). In contrast to filament and intensity discharge lamps, LED solutions include LED chip packages that typically contain multiple LED wafers per package. These LED wafer packages have relatively simple optics on the package itself, which must use a primary optical system to provide any desired color mixing alignment, near-far adjustment, or other beam shaping. Recent changes in illuminating sources have necessitated the use of new near-field adjustment lenses that take into account the unique properties of LED illuminators that include temperature and spectrum. SUMMARY OF THE INVENTION It would be advantageous to achieve an optical proximity adjustment assembly and an illuminator using the same for a non-imaging illumination application. It is also desirable to facilitate a solid state solution that controls the distribution of light energy in the context of an LED light source with special color mixing and collimation requirements. In order to solve one or more of these problems in a better manner, in one aspect of the invention, an embodiment of an optical proximity adjustment assembly is provided having a light-emitting diode wafer that provides light to a plurality The optical path of the transmission path's which contributes to the money mixing...the collecting lens and the pair of optical conductors receive the mixed light from the optical conductor and are coaxially mounted 157484.doc 201229559. A near-and-near adjustment subassembly includes one or more optical lenses in series with the central light and coaxially placed to be coaxially movable relative to the optical lens to create a light beam having a diverging profile from the one Or a variable pitch control between the plurality of optical lenses and the collection lens. Furthermore, in order to solve one or more of the aforementioned problems in a better manner, in one aspect of the invention, an embodiment of a luminaire is provided which provides a complete illuminating device for a variety of applications. These and other aspects of the invention will be apparent and <RTIgt; DETAILED DESCRIPTION OF THE INVENTION For a fuller understanding of the features and advantages of the invention, reference should be Although various embodiments of the invention have been described and illustrated in detail herein below, it will be understood that the invention may be The specific embodiments discussed herein are merely illustrative of specific ways of making and using the invention, but are not intended to limit the scope of the invention. Referring first to Figures 1-3, an embodiment of a luminaire in accordance with the teachings presented herein is depicted, schematically depicted and generally designated 10. A housing 12 is adapted to receive a frame 14 and an optical proximity adjustment assembly, commonly designated 16 and secured by the frame Μ in the housing 12. The frame 14 includes a base 18, a platform 20, 22, 24 and an end piece 26 of the 歹1j, which are connected by a series of axial struts 157484.doc 201229559, such as a floor 28. The optical proximity adjustment assemblies 16 include individual optical proximity adjustment components 16-1, 16-2, and 16-3. A heat sink subassembly 3 (which is also mounted to the base 18 and enclosed in the outer casing 12) absorbs and dissipates heat generated by the optical proximity adjustment assembly 16 in an embodiment, the heat sink subassembly 30 comprising Substantially silent fans provide forced air cooling for the internal components that include the optical proximity adjustment assemblies 16. The outer casing 12 is snapped into place by a yoke 32 which is rotatably coupled to a support bell 33. An electronic subassembly 34 located throughout the frame 14 provides motorized mobile and electronic components to the illuminator. The electronic sub-assembly 34 can include a plurality of built-in processors that provide diagnostic and self-calibration functions as well as internal test routines and software update capabilities. • The illuminator 1G can also include any other desired electronic components, such as to a power source. connection. As illustrated, one or more last lenses 36 may be included to add end effects. In the optical proximity adjustment components 丨6A, the optical proximity adjustment components 16-1 to 16-3 are positioned in a triangular position, wherein each of the optical proximity adjustment components 16 is laterally positioned and positioned with another optical The adjustment component 16 contacts the edge or side. It should be understood that, although a particular cluster or nesting of optical proximity adjustment groups (4) having a certain number and position is depicted, the number and location of optical proximity adjustment components can vary within the teachings presented herein. It should be understood that the modules of the light adjustment components 16 can be configured to be in addition to the array shown in Figures 1 through 3. Any number of optical distances can be adjusted and the array can take different forms, including: providing a form of close contact between the components, and the optical proximity modulation: 157484.doc 201229559 components Provide a form of space between them, and even provide them in the form of 纟人, 、、合合. Moreover, the optical proximity adjustment assemblies 16 can be configured in an angled manner, with linear displacement, or a combination thereof. Figures 4 through 7 depict the optical proximity adjustment component in additional detail. The LED chip package 40 provides a light source and comprises a plurality of colored LED wafers G, R, B, w arranged in an array 42 on a single elongated base member, the package 40 may comprise wires for bonding (not illustrated) )device of. As illustrated, the LED chips G, R, B, W have been positioned to provide a desired angle of emission mode relative to the optical proximity adjustment component 16-1 to increase color mixing. It should be understood, however, that the LED chips G, r, B, W can be configured in other types of arrays depending on the application. The array of LEDs G, R, B, w of the array 42 includes conventional green, red, blue, and white LED chips that emit green, red, blue, and white light, respectively. These LED wafers facilitate efficient implantation into the optical proximity adjustment component 16-1 and strongly enhance color mixing. As depicted, to further enhance the quality of white light produced by the LED chip package, a red LED chip (R), a green chip (G), a blue lED wafer (B), and a white LED chip are used. ) four LED chips. However, it is expected that with the advancement of LED chip design, a different number of LED chips and/or different color LED chips can be used in the array to optimize the quality of the light produced by the LED wafer package 40. For example, in one embodiment, four LED chips comprising a red LED wafer (R), a green wafer, a blue LED wafer (B), and an amber LED wafer (A) are utilized. Further by way of example, in another embodiment, four LED wafers comprising a red LED wafer 157484.doc 201229559 (R), two green wafers (Gi, G2), and a blue LED wafer (B) are utilized. It is further contemplated that both lower power and higher power LED chips can be used in LED chip package 40. In an embodiment of the teachings herein, the elongate base member 44 (which is coupled to the platform 2A) can include an electrically insulative housing, such as a plastic packaged metallurgy and a plastic substrate disposed thereon. Or made by pottery. The metal heat sink provides heat dissipation to the LED chip package 4 disposed thereon. Further heat dissipation is provided by the heat sink subassembly 30, which, as implied, includes a substantial silent fan that dissipates heat in the metal. Forced ventilation cooling is provided near the unit. The elongated base member 44 can further include a wire that is electrically isolated from the metal heat sink and the led wafers G, R, B, W by the outer casing. The bonding wires electrically connect the LED chips G, R, B, and Jia to the wires. The optical proximity adjustment assembly 16_丨 includes an optical conductor 46, a collection lens 48, and a proximity adjustment subassembly 50 from which the optical conductor extends and passes through the platforms 22, 24. A light-collecting collar 52 and a seal secure the collecting lens 48 to the optical conductor 46. The base members 56, 58 as shown in combination with the vertical supports 60, 62 maintain the position of the coupling collar 52, and are secured to the coupling collar 52 by fasteners 64,66. The proximity adjustment subassembly 50 is placed in a relationship with the variable space of the collection lens 48 (as shown by arrow 78) and is coaxially movable relative to the collection lens 48. The extension arm 70, which is attached to the stay 28, pivots the proximity adjustment subassembly 5A, and the proximity adjustment subassembly 50 is coupled to the extension arm 7A by the retaining collars 72, 74. As shown, the variable space 78 or distance is adjusted by actuating the extension arm 157484.doc 201229559 70 by a linear actuator, which may include a threaded drive shaft actuated, for example, by a servo motor. This movement of the extension arm 70 is depicted by an arrow 76 whose movement corresponds to a change in the variable spacing or space 78. Other types of actuators are also within the teachings presented herein. Such actuators depend on applications including, but not limited to, electric servo motors, pneumatic or hydraulic actuators, or even manually operated actuators. These same type of actuators can be used to control the individual movement of the optical lens in the near and far adjustment subassembly 5, as will be discussed below in further detail. The illuminator control system can operate independently of a monitoring console, or even free running, if so desired, to oscillate between two travel breadths. In an operational embodiment, the illuminator 1 having the optical proximity adjustment component forms a portion of an illumination array of automated day parameters that provides remote control and coordinated azimuth and rise adjustment, and optical control of the light Presented. The optical conductor 46 has a first aperture 80 having an input aperture 82 having a cross-sectional area of the lamp 2, wherein the radius is Γι, and an output of a second cross-sectional area πι 22 at a second end Aperture 86, wherein the radius is Q. The optical conductor 46 is superposed on the LED chip package 40 and the LED chips G, R, B, W to receive light from the source at the input aperture 82 and deliver the light to the output aperture 86. The first cross-sectional area can be substantially equal to the second cross-sectional area, such that the input aperture 82 and the output aperture 86 have substantially equal diameters and Γ丨 can be equal. . Alternatively, the first cross-sectional area of πι* can be tapered to the second cross-sectional area /, where q is greater than 〇. As a further alternative, the second cross-sectional area may be tapered to the first cross-sectional area πΓι2, where 〇 is greater than Γι. a wall portion 88 (which may be a cylindrical wall portion 157484.doc

S •10· 201229559 或一不規則壁或漸縮壁之一部分)將該輸入孔徑82與該輸 出孔徑86連接,且可包含大體上形成一圓柱的一旋轉面。 該壁部分88包含一反射性材料,其定義多個傳輸路徑, 促成光在一内部空間102内從該輸入孔徑82至該輸出孔徑 86的混合。在一實施中,該壁部分88可為混合光且將該輸 入孔徑82與該輸出孔徑86連接之壁構件。該光學導體46之, 長度11由有關s亥專光源發射之光的混合的設計參數決定。 再者,該光學導體46之長度丨,沿著該光學導體46之一縱軸 或中央光軸而量測,其在一實施例中實質上與該LED晶片 封裝4 0之一水平轴正交。 套离100連接至該LED晶片封裝4〇(或僅LED晶片40), 且定位在該光學導體46周圍,使得一環形物位在該套筒 100與光學導體46之間。此外,在一實施例中,該光學導 體46之縱轴與該套筒100之一縱軸對準。一密封件(其例如 可為一 0環密封件)在該環形物之一上端處放置於該套筒 100與光學導體46之間《—套環可放置在該環形物的一下 端處,且繞該光學導體46而安置,以在此處形成一密封。 然而應瞭解,可代替該密封件及該套環,或除該密封件及 該套環之外,使用替代的密封技術。 —支撐結構104可耦接至該基部44,以設 學導體46及該套筒剛。特定言之,_肩環可設置^筒 100。一密封墊片可將該支樓結構104密封至該LED晶片封 裝40’且扣件112、114將該支撐結構1〇4耗接至該LED晶 片封裝40。在該LED晶片40與該套筒1〇〇之間存在一導熱 157484.doc • 11 - 201229559 路徑,以提供用於熱消散。 在一實施例中,該集光透錆兮土 慫鏡48在該先學導體46之輸出孔 徑86處與該光學㈣46之中央光轴串聯且共軸安置。關於 該集光透鏡48,-本體12()可包含球面或非球面⑵、 m。在此實施例中,具有聚集光的幾何形狀的該集光透 鏡48可包括由一稜鏡、透明、低傳輸損失之介電材料製成 的一反射材料126。應瞭解,其他幾何形狀在本文所提出 之實施例範圍中。 該遠近調整子組件50包含位於一外殼142中的一個或多 個光學透鏡130、132,其在一實施中具有與該光學導體扑 之中央光軸對準的孔徑。此等透鏡可與此中央光轴串聯及 共軸安置。該遠近調整子組件50可相對於光學透鏡13〇、 132而共軸移動。該遠近調整子組件5〇從來自該集光透鏡 48之混合、聚集的光形成一光束。如將在下文中以進一步 細節讨論’該光束具有一發散輪廓’其由該一個或多個光 學透鏡130、132與該集光透鏡48之間的一可變間距控制。 如所展示,光進入該外殼142,在從最後透鏡36之平面146 射出之前通過該光學透鏡130之表面134、136及該光學透 鏡132之表面138、140。應瞭解,該等表面134至140取決 於特定應用可具有類似或不同的曲率。再者,在該等光學 透鏡130、132之間的間距將取決於該應用。此外,該遠近 調整子組件50可包含多種機械裝置,以使該等光學透鏡 13 0、13 2相對於彼此而重新定位》在此實施中,不僅該等 光學透鏡130、132之間的間距有所變化,且該遠近調整子 157484.doc -12· 201229559 組件50與該集光透鏡48之間的間距亦有所變化。 圖8至圖10描繪橫穿該光學遠近調整組件16-1的多個光 束。首先參考圖8,其係圖4及圖5之一操作實施例,該光 學導體46(其可為一光混合桿或光管)使由該等光源傳輸於 其内的光束150均質化。該光束15〇之強度質心從該輸入孔 徑82以一縱向方式在與該中央光軸154 一致的一方向中移 動至該輸出孔徑86。沿著該光學導體46而安置之反射材料 之反射表面包含相對於從中通過之光運動的縱向或轴向方 向為垂直或傾斜的表面法線。該反射性材料供應通路,諸 如通路U2,使光束行進,且藉此彼此混合。如前文所 提及,該等LED晶片(G、R、B、w)可具有朝向該光學導 體46之内。卩空間1 〇2之配向的至少一部分方向,以開始反 射及混合。 更特定言之,該光學導體46提供多個通路152,其等由 多個光束(統稱為光束150)橫穿。該等多個通路152混合所 接收之光束,且致使該光束15〇之強度質心從該輸入孔徑 82以縱向方式移動至該輸出孔徑86。該光束150接著從 該光子導體46出去’且在從表面124出去之前在表面122處 進入該集光透鏡48。在一實施例中,該集光透鏡48可促成 該集光透鏡48内的單反射、準直傳輸。在該集光透鏡牦 處,聚集該光束150,使得在表面124處出去,該光束15〇 被變換成聚集光束15卜該聚集光束158之混合、聚集的光 k穿距離dl,其係該集光透鏡48與該光學透鏡13〇之間的 分隔。在此圖中’該遠近調整子組件5G之位置由該遠近調 157484.doc 13 201229559 整子組件50之該外殼142之以方括弧框起的位置指示。 該聚集光束158入射於該光學透鏡130之平面表面134 上’該光學透鏡130描繪為一次要集光透鏡。在光學透鏡 130處,當從該表面134通過光學透鏡130而到達該表面ι36 時’該聚集光束158進一步聚集。該光束(其由内部遠近調 整子組件光束1 60代表)接著橫穿距離1,其代表該遠近調 整子組件150内的該等光學透鏡13〇、132之間的距離。該 内部遠近調整子組件光束160通過該光學透鏡132之表面 138、140 ’該光學透鏡132描繪為一準直透鏡。然而應瞭 解,光學透鏡130及132可取決於應用而具有與本實施例中 描繪之功能不同的功能。接著出現該光束準直之傳輸,以 攸其產生貫質上均質的光瞳或光束162,其具有由該一 個或多個光學透鏡130、132與該集光透鏡48之間之可變間 距d〗、旬控制之一發散輪廓148。即,該可變間距…、心控 制該遠近調整。 應瞭解,繪示於圖丨至圖8中之LED準直光學模組之構造 可有所變化。例如,該光學導體46及集光透鏡48可整合地 形成或接合在一起,以形成整體單元。在此實例中,這兩 個7G件仍然稱為光學導體46及集光透鏡48。諸如特定應用 特性及成本等因素可決定較佳的構造技術。 然而應瞭解,該等光學導體並不限於圓柱壁部分。該等 光學導體亦可包括非圓柱形狀,其等建立不同的壁部分及 各自的内部空間。舉例而言,一光學導體可包含具有6個 側面的一琢面壁部分。進一步舉例而言,該光學導體可包 157484.docS 10 / 201229559 or a portion of an irregular wall or tapered wall) connects the input aperture 82 to the output aperture 86 and may include a rotating surface that generally forms a cylinder. The wall portion 88 includes a reflective material that defines a plurality of transport paths that facilitate mixing of light from the input aperture 82 to the output aperture 86 within an interior space 102. In one implementation, the wall portion 88 can be a wall member that mixes light and connects the input aperture 82 to the output aperture 86. The length 11 of the optical conductor 46 is determined by the design parameters of the mixing of the light emitted by the singular source. Moreover, the length of the optical conductor 46 is measured along one of the longitudinal axes of the optical conductor 46 or the central optical axis, which in one embodiment is substantially orthogonal to a horizontal axis of the LED chip package 40. . The sleeve 100 is coupled to the LED chip package 4 (or only the LED wafer 40) and positioned around the optical conductor 46 such that an annular level is between the sleeve 100 and the optical conductor 46. Moreover, in one embodiment, the longitudinal axis of the optical conductor 46 is aligned with one of the longitudinal axes of the sleeve 100. A seal (which may be, for example, an 0 ring seal) is placed between the sleeve 100 and the optical conductor 46 at one of the upper ends of the ring "the collar may be placed at the lower end of the ring, and It is placed around the optical conductor 46 to form a seal there. It should be understood, however, that the seal and the collar may be replaced, or an alternative sealing technique may be used in addition to or in addition to the seal and the collar. - The support structure 104 can be coupled to the base 44 to design the conductor 46 and the sleeve just. In particular, the _ shoulder ring can be set with the tube 100. A gasket can seal the wrap structure 104 to the LED wafer package 40' and the fasteners 112, 114 draw the support structure 110 to the LED wafer package 40. A path of heat conduction 157484.doc • 11 - 201229559 exists between the LED wafer 40 and the sleeve 1〇〇 to provide for heat dissipation. In one embodiment, the concentrating boring mirror 48 is disposed in series with the central optical axis of the optical (46) 46 and coaxially disposed at the output aperture 86 of the pilot conductor 46. Regarding the collecting lens 48, the body 12() may include a spherical surface or an aspherical surface (2), m. In this embodiment, the collection lens 48 having the geometry of the concentrated light may comprise a reflective material 126 made of a dielectric material that is transparent, low transmission loss. It should be understood that other geometries are within the scope of the embodiments presented herein. The proximity adjustment subassembly 50 includes one or more optical lenses 130, 132 in a housing 142 that, in one implementation, have an aperture that is aligned with the central optical axis of the optical conductor. These lenses can be placed in series and coaxially with the central optical axis. The proximity adjustment subassembly 50 is coaxially movable relative to the optical lenses 13A, 132. The proximity adjustment subassembly 5A forms a light beam from the mixed, concentrated light from the collection lens 48. As will be discussed in further detail below, the beam has a diverging profile that is controlled by a variable spacing between the one or more optical lenses 130, 132 and the collection lens 48. As shown, light enters the outer casing 142 and passes through the surfaces 134, 136 of the optical lens 130 and the surfaces 138, 140 of the optical lens 132 prior to exiting from the plane 146 of the final lens 36. It should be understood that the surfaces 134 through 140 may have similar or different curvatures depending on the particular application. Again, the spacing between the optical lenses 130, 132 will depend on the application. Moreover, the proximity adjustment subassembly 50 can include a variety of mechanical means to reposition the optical lenses 130, 13 2 relative to one another. In this implementation, not only are the spacing between the optical lenses 130, 132 The distance between the assembly 50 157484.doc -12· 201229559 assembly 50 and the collection lens 48 also varies. 8 through 10 depict a plurality of beams that traverse the optical proximity adjustment assembly 16-1. Referring first to Figure 8, which is an operational embodiment of Figures 4 and 5, the optical conductor 46 (which may be a light mixing rod or light pipe) homogenizes the light beam 150 transmitted by the light sources. The intensity centroid of the beam 15 is moved from the input aperture 82 in a longitudinal direction to the output aperture 86 in a direction that coincides with the central optical axis 154. The reflective surface of the reflective material disposed along the optical conductor 46 includes a surface normal that is vertical or oblique with respect to the longitudinal or axial direction of movement of light therethrough. The reflective material supply path, such as path U2, causes the beam to travel and thereby mix with one another. As mentioned previously, the LED chips (G, R, B, w) may have towards the optical conductor 46. At least a portion of the alignment of the space 1 〇 2 to initiate reflection and mixing. More specifically, the optical conductor 46 provides a plurality of vias 152 that are traversed by a plurality of beams (collectively referred to as beams 150). The plurality of paths 152 mix the received beam and cause the center of mass of the beam 15 to move longitudinally from the input aperture 82 to the output aperture 86. The beam 150 then exits from the photonic conductor 46&apos; and enters the collection lens 48 at surface 122 prior to exiting from surface 124. In one embodiment, the collection lens 48 facilitates single reflection, collimated transmission within the collection lens 48. At the collecting lens ,, the light beam 150 is concentrated such that it exits at the surface 124, and the light beam 15 is transformed into a concentrated light beam 15 and the mixed light 158 of the concentrated light beam 158 is penetrated by a distance dl, which is the set The separation between the optical lens 48 and the optical lens 13A. In this figure, the position of the near-distance adjustment sub-assembly 5G is indicated by the position of the outer casing 157484.doc 13 201229559 of the outer casing assembly 142 in square brackets. The focused beam 158 is incident on a planar surface 134 of the optical lens 130. The optical lens 130 is depicted as a primary collection lens. At the optical lens 130, the focused beam 158 is further concentrated as it reaches the surface ι 36 from the surface 134 through the optical lens 130. The beam, which is represented by the inner and near adjustment subassembly beam 166, is then traversed by a distance 1, which represents the distance between the optical lenses 13A, 132 within the near and far adjustment subassembly 150. The inner proximity adjustment subassembly beam 160 passes through the surface 138, 140' of the optical lens 132. The optical lens 132 is depicted as a collimating lens. It should be understood, however, that optical lenses 130 and 132 may have different functions than those depicted in this embodiment depending on the application. The beam collimation then occurs to produce a homogenously uniform pupil or beam 162 having a variable spacing d between the one or more optical lenses 130, 132 and the collection lens 48. One of the ten control divergence contours 148. That is, the variable pitch..., the heart controls the distance adjustment. It should be understood that the construction of the LED collimating optical module illustrated in Figures 8 through 8 may vary. For example, the optical conductor 46 and the collection lens 48 can be integrally formed or joined together to form an integral unit. In this example, the two 7G pieces are still referred to as optical conductor 46 and collecting lens 48. Factors such as specific application characteristics and cost can determine the preferred construction technique. It should be understood, however, that the optical conductors are not limited to cylindrical wall portions. The optical conductors may also include a non-cylindrical shape that establishes different wall portions and respective internal spaces. For example, an optical conductor can comprise a face wall portion having six sides. By way of further example, the optical conductor can be packaged 157484.doc

S 14· 201229559 括具有8個側面的一壁部分。即,該光學導體可包含任竟 數目之侧面或琢面,且其可進一步包含圓形或圓柱壁部 分。此外’如前文所討論,該光學導體可漸縮。 用於與該等光學遠近調整組件16配合使用的光學導體46 之其他實施例在本文所提出之教示内。如前文所討論,該 光學導體46可採用多種形狀。除了具有多種形狀之外,該 光學導體46可例如為一管狀或具有一側壁的混合管狀、一 桿、其内具有一本體的一管狀 '或其等之一組合。 類似於該光學導體46,一集光透鏡48之本體可具有多種 形式,包含例如具有一侧壁的一本體、一本體為具有該壁 部分及反射性材料的一固體部件、該本體具有一側壁部件 及安置於其内的具有壁部分及反射性材料的一固體部件、 或其等之組合。同樣,如所提及’該等光學透鏡13〇、132 之構造及佈置可類似地有所變化。 現參考圖9,該光學遠近調整組件5〇之該等光學透鏡 130、132已相互更接近地移動。特定言之,該次要集光透 鏡130及該遠近調整透鏡132已—致朝向該集光透鏡鄉 動,使得在該集光透鏡48與該次要集光透鏡13〇之間之可 變空間dl減小’且在該次要集光透鏡130與該遠近調整透 鏡132之間之可變空間(12保持不變。如所展示,該光束15〇 隨著其通過該光學導體46而混合,且接著在該集光透鏡48 處聚集。該混合、聚集的光158入射於該次要集光透鏡13〇 之平面表面134上,且當從中通過時進一步聚集。該光束 16〇接著橫穿距離d2’ i在作為具有一發散輪廊148的一光 157484.doc -15- 201229559 束162而出去之前通過該遠近調整透鏡丨32。 如將注意,該發散輪廓148由該一個或多個光學透鏡 130、132與該集光透鏡48之間的可變間距1,七控制。在 此實施例中’因為該可變間距d!減小,圖9中之發散輪廊 148大於圖8中之發散輪廓148。光束162之該發散輪廓148 隨著該一個或多個光學透鏡130、132與該集光透鏡48之間 的可變間距d丨、d2減小而加寬。例如,從圖§至圖9之該光 學遠近調整組件16-1的一致動。另一方面,該光束162之 該發散輪廓148隨著該一個或多個光學透鏡13〇、132與該 集光透鏡48之間的可變間距山、d2增加而變窄。例如,從 圖9至圖8之該光學遠近調整組件16_丨之一致動。 在圖10中,該聚光或集光透鏡48儘可能定位接近該光學 導體40,且類似地,該集光透鏡48、該光學透鏡13〇及該 光學遠近調整透鏡132定位儘可能接近,以形成一緊密容 積内的一嵌套配置。在此實施例中,當最小化該等透鏡 48、130、132之間之距離時,折射效應導致最大化該光束 162之該發散輪廓148之一淨效應。 圖10以其中調整兩個可變間距di,d2的實例描繪。此由 該遠近調整子組件50用以調整可變間距di之一致動及該遠 近調整子組件50内用以調整該可變間距d2之一内部致動而 達成°應理解,通過光學器件鏈之發散輪廓148的發散量 取決於該等透鏡48、130、132之表面間的分隔距離與該等 透鏡48、130、132本身的組成物。此外,光束通過透鏡序 列之發展及行為受斯奈耳定律(Snell,s iaw)支配,根據斯 157484.doc -16- 201229559 不耳疋律,從空氣通過到達玻璃(或更一般地從一更稠密 介質通過到達一較不稠密介質)的一光線從表面法線處折 射開。在所繪示之實施例中’給出該等光學器件之動態, 隨著該等透鏡48、130、132定位更接近在一起,該發散輪 廟148增加。即’隨著該等透鏡48、13〇、ι32之間的分隔 大體上增加’該發散輪廓148大體上減小。 圖11及圖12描繪橫穿一光學遠近調整組件16之另一實施 例的多個光束1 5 〇。在此實施例中,該遠近調整子組件 5〇(其包含在此實施例中具有表面172、174的一單一遠近 調整透鏡170)具有相對於該集光透鏡48的一可變間距…。 如由比較圖11及圖12所展示,選擇性地控制及減小在該集 光透鏡48與該遠近調整透鏡17〇間之可變間距七,以增加 該光束的發散輪廓148。應瞭解,可藉由增加該距離七以 減小該光束178之一發散輪廓176,而選擇性地控制該可變 間距d!。應理解,該遠近調整子組件5〇在其内可包含任意 數目及配置之光學透鏡,使得建立可變間距山…七以如需 要提供穩健的一光學器件鏈及發散輪廓148。此外,在該 遠近調整子組件5G内之該等光學透鏡之形式及功能亦可隨 應用而有所變化。S 14· 201229559 includes a wall portion having 8 sides. That is, the optical conductor can comprise any number of sides or sides, and it can further comprise a circular or cylindrical wall portion. Furthermore, as discussed above, the optical conductor can be tapered. Other embodiments of optical conductors 46 for use with the optical proximity adjustment assemblies 16 are within the teachings set forth herein. As discussed above, the optical conductor 46 can take a variety of shapes. In addition to having a variety of shapes, the optical conductor 46 can be, for example, a tubular or mixed tubular having a side wall, a rod, a tubular shape having a body therein, or a combination thereof. Similar to the optical conductor 46, the body of a collecting lens 48 can have various forms including, for example, a body having a side wall, a body having a solid portion of the wall portion and a reflective material, the body having a side wall A component and a solid component having a wall portion and a reflective material disposed therein, or a combination thereof. Again, the construction and arrangement of the optical lenses 13A, 132 can be similarly varied as mentioned. Referring now to Figure 9, the optical lenses 130, 132 of the optical proximity adjustment assembly 5 have moved closer to each other. In particular, the secondary collecting lens 130 and the near-and-near adjusting lens 132 have been moved toward the collecting lens such that a variable space between the collecting lens 48 and the secondary collecting lens 13〇 The dl decreases 'and the variable space between the secondary collecting lens 130 and the near-far adjusting lens 132 (12 remains unchanged. As shown, the beam 15 is mixed as it passes through the optical conductor 46, And then accumulating at the collecting lens 48. The mixed, concentrated light 158 is incident on the planar surface 134 of the secondary collecting lens 13 and further aggregates as it passes therethrough. The beam 16 then traverses the distance D2'i passes through the distance adjustment lens 丨32 before exiting as a light 157484.doc -15-201229559 bundle 162 having a diverging wheel 148. As will be noted, the diverging profile 148 is comprised of the one or more optical lenses The variable spacing between the 130, 132 and the collecting lens 48 is controlled by seven. In this embodiment, 'the divergence wheel 148 in Fig. 9 is larger than the divergence in Fig. 8 because the variable spacing d! is reduced. Contour 148. The diverging profile 148 of the beam 162 along with the one or more The variable pitch d丨, d2 between the optical lenses 130, 132 and the collecting lens 48 is reduced and widened. For example, the optical proximity adjusting component 16-1 of Fig. § to Fig. 9 is in unison. Aspect, the diverging profile 148 of the beam 162 narrows as the variable spacing mountain, d2 between the one or more optical lenses 13A, 132 and the collecting lens 48 increases. For example, from Figure 9 to Figure 8. The optical proximity adjustment component 16_丨 is in unison. In FIG. 10, the concentrating or collecting lens 48 is positioned as close as possible to the optical conductor 40, and similarly, the concentrating lens 48, the optical lens 13 The optical proximity adjustment lens 132 is positioned as close as possible to form a nested configuration within a compact volume. In this embodiment, the refractive effect is minimized when the distance between the lenses 48, 130, 132 is minimized. This results in maximizing the net effect of one of the diverging contours 148 of the beam 162. Figure 10 depicts an example in which two variable spacings di, d2 are adjusted. This is used by the proximity adjustment subassembly 50 to adjust the uniformity of the variable spacing di And the proximity adjustment subassembly 50 for adjusting the variable It is understood that the amount of divergence of the diverging profile 148 through the optic chain depends on the separation distance between the surfaces of the lenses 48, 130, 132 and the lenses 48, 130, 132 themselves. In addition, the development and behavior of the beam through the lens sequence is governed by Snell's law (Snell, s iaw), according to 157484.doc -16-201229559, from the air to the glass (or more generally A ray of light passing from a denser medium to a less dense medium is refracted from the surface normal. The dynamics of the optics are given in the illustrated embodiment, as the lenses 48, 130, 132 are positioned closer together, the divergence wheel temple 148 is increased. That is, the divergence profile 148 is substantially reduced as the separation between the lenses 48, 13A, ι 32 is substantially increased. 11 and 12 depict a plurality of beams 15 〇 across another embodiment of an optical proximity adjustment assembly 16. In this embodiment, the proximity adjustment subassembly 5 (which includes a single approach adjustment lens 170 having surfaces 172, 174 in this embodiment) has a variable spacing relative to the collection lens 48. As shown by comparing Fig. 11 and Fig. 12, the variable pitch VII between the collecting lens 48 and the near and far adjusting lens 17 is selectively controlled and reduced to increase the divergence profile 148 of the beam. It will be appreciated that the variable pitch d! can be selectively controlled by increasing the distance seven to reduce one of the diverging profiles 176 of the beam 178. It should be understood that the proximity adjustment subassembly 5 can include any number and configuration of optical lenses therein such that a variable pitch mountain is created to provide a robust optical chain and divergence profile 148 as needed. Moreover, the form and function of the optical lenses within the proximity adjustment subassembly 5G can vary from application to application.

圖13描繪橫穿一光學遠近調整組件16之一進一步實施例 之多個光束。如所展示’與圖12相比,該光學透鏡170具 有不同的内部光學性質。此導致該光學透鏡i7Q内不同的 聚光模式’且亦對該光束m導致一不同發散輪廊H 現將提出及從建模—原型光學遠近調整配置所獲得 157484.doc •17· 201229559 的實驗結果。圖14描繪代表一單一層緊密封裝配置之基線 強度的角度對遠近調整行進的一曲線圖。在本文中,光入 射之垂直角度以度數表達,且遠近調整行進以毫米表達, 使得角度係遠近調整行進的一函數,如由線190展示。圖 15描繪具有一輪廓192的一照度圖,且圖16展示具有該照 度圖沿著X軸的一輪廓194的一橫截面或片段。 雖然本發明已參考例證性實施例而描述,此描述並不意 欲以一限制性意義解譯。熟習此項技術者在參考描述後, 將明白本發明之該等例證性實施例以及其他實施例之多種 修改及組合。因此,隨附申請專利範圍意欲涵蓋任意此等 修改或實施例。 【圖式簡單說明】 圖1係整合根據本文中所提出教示的一光學遠近調整組 件的一照明器的—實施例的一透視圖; 圖2係圖1中描述之該照明器以一部分剖視的一透視圖, 以更佳方式顯露内部元件; 圖3係以進一步細節展示最初展示於圖1及圖2中的一嵌 套陣列之光學遠近調整組件的一透視圖; 圖4係一本成、去、〆 尤子遠近調整組件之一實施例之—正面 圖; 叫® 圖5係繪示+ 於圖4中之該光學遠近調整組件之—橫向戴面 圃6及圖7後给- 矛'、會不於圖4中之該光學遠近調整組件牧 有利點的俯視平面圖; 157484.docFigure 13 depicts a plurality of light beams traversing a further embodiment of an optical proximity adjustment assembly 16. The optical lens 170 has different internal optical properties as compared to Figure 12 as shown. This results in different concentrating modes in the optical lens i7Q' and also results in a different diverging rim of the beam m which will now be proposed and obtained from the modeling-prototype optical proximity adjustment configuration 157484.doc •17· 201229559 result. Figure 14 depicts a plot of the angle of the baseline intensity representing a single layer tightly packed configuration versus the near and far adjustment travel. In this context, the vertical angle of light incidence is expressed in degrees, and the near and far adjustment travel is expressed in millimeters such that the angle is a function of the distance adjustment travel, as shown by line 190. Figure 15 depicts an illuminance map having a contour 192, and Figure 16 shows a cross section or segment having a contour 194 along the X-axis of the illuminance map. Although the present invention has been described with reference to the exemplary embodiments, this description is not intended to be interpreted in a limiting sense. A variety of modifications and combinations of the illustrative embodiments of the invention, as well as other embodiments, will be apparent to those skilled in the art. Accordingly, the appended claims are intended to cover any such modifications or embodiments. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an embodiment of an illuminator incorporating an optical proximity adjustment assembly as taught herein; FIG. 2 is a partial cross-sectional view of the illuminator depicted in FIG. Figure 1 is a perspective view showing the optical proximity adjustment assembly of a nested array originally shown in Figures 1 and 2 in further detail; Figure 4 is a perspective view One, one, and one of the embodiments of the 〆 子 远 调整 调整 调整 ; ; ; ; ; 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图', will not be in the top view of the optical proximity adjustment component of Figure 4; 157484.doc

S • 18 · 201229559 圖8至圖1 〇係傳播通過該光學遠近調整組件之一系列透 鏡的光的一實施例的側視圖; 圖11至圖13係傳播通過該光學遠近調整組件之一系列透 鏡之光的另一實施例之側視圖; 圖14係該光學遠近調整組件之角度對遠近調整行進的一 曲線圖; 圖15係代表一 LED準直光學模組之一最佳化基線強度的 強度對垂直角度的一曲線圖;及 圖16係代表對於LED準直光學模組之一圓形間隔封裝陣 列的一基線強度的強度對垂直角度的一曲線圖。 【主要元件符號說明】 10 照明器 12 外殼 16-3 光學遠近調整組件 14 框架 16-2 光學遠近調整組件 16-1 光學遠近調整組件 16 光學遠近調整組件 18 基部 20 平台 22 平台 24 平台 26 末端件 28 撐條 157484.doc -19· 201229559 30 散熱器子組件 32 輕 33 支撐結構 34 電子子組件 36 透鏡 38 單一層緊密封裝配置 40 發光二極體晶片封裝 42 陣列 44 單一伸長基部部件 46 光學導體 48 集光透鏡 50 遠近調整子組件 52 搞接套環 56 基礎部件 58 基礎部件 60 垂直支標件 62 垂直支撐件 64 扣件 66 扣件 70 延長臂 72 套環 74 套環 76 箭頭 78 可變間距 157484.doc -20- 201229559 80 第一末端 82 輸入孔徑 84 第二末端 86 輸出孔徑 88 壁部分 100 套筒 102 内部空間 104 支撐結構 112 扣件 114 扣件 120 本體 122 球形或非球形表面 124 球形或非球形表面 126 反射材料 130 光學透鏡 132 光學透鏡 134 表面 136 表面 138 表面 140 表面 142 外殼 146 平面 148 發散輪廓 150 光束 157484.doc -21- 201229559S • 18 · 201229559 Figure 8 to Figure 1 is a side view of an embodiment of light propagating through a series of lenses of one of the optical proximity adjustment components; Figures 11 through 13 are series of lenses that propagate through the optical proximity adjustment assembly A side view of another embodiment of the light; FIG. 14 is a graph of the angle of the optical proximity adjustment assembly for the near and far adjustment travel; FIG. 15 is representative of the intensity of one of the LED collimation optical modules to optimize the baseline intensity. A graph of vertical angles; and FIG. 16 is a graph representing intensity versus vertical angle for a baseline intensity of a circularly spaced package array of LED collimating optics modules. [Main component symbol description] 10 Illuminator 12 Housing 16-3 Optical distance adjustment component 14 Frame 16-2 Optical distance adjustment component 16-1 Optical distance adjustment component 16 Optical distance adjustment component 18 Base 20 Platform 22 Platform 24 Platform 26 End piece 28 Struts 157484.doc -19· 201229559 30 Heat sink subassembly 32 Light 33 Support structure 34 Electronic subassembly 36 Lens 38 Single layer tight package configuration 40 Light emitting diode package 42 Array 44 Single elongated base member 46 Optical conductor 48 Collector lens 50 Proximity adjustment subassembly 52 Engagement collar 56 Base part 58 Base part 60 Vertical support 62 Vertical support 64 Fastener 66 Fastener 70 Extension arm 72 Collar 74 Collar 76 Arrow 78 Variable spacing 157484 .doc -20- 201229559 80 First End 82 Input Aperture 84 Second End 86 Output Aperture 88 Wall Section 100 Sleeve 102 Internal Space 104 Support Structure 112 Fastener 114 Fastener 120 Body 122 Spherical or aspherical surface 124 Spherical or non- Spherical surface 126 reflective material 130 optical lens 132 light Lens 134 Surface 136 Surface 138 Surface 140 Surface 142 Shell 146 Plane 148 Divergence profile 150 Beam 157484.doc -21- 201229559

152 154 158 160 162 170 172 174 176 178 190 192 194 B G R W 通路 中央光軸 聚集光束 内部遠近調整子組件光束 光瞳或光束 單一遠近調整透鏡 表面 表面 發散輪廓 光束 線 輪廓 輪廓 藍色LED晶片 綠色LED晶片 紅色LED晶片 白色LED晶片 157484.doc -22-152 154 158 160 162 170 172 174 176 178 190 192 194 BGRW path central optical axis concentrating beam internal distance adjustment sub-assembly beam 瞳 or beam single far and near adjustment lens surface surface divergence contour beam line contour contour blue LED chip green LED wafer red LED chip white LED chip 157484.doc -22-

Claims (1)

201229559 七、申請專利範圍: 1. 一種光學遠近調整組件,其包括: 一發光二極體晶片,其提供複數個光源; 光學導體,其具有一輸入孔徑及一輸出孔徑,該光 子導體用於在該輸入孔徑處接收光,且從中沿著一中央 . 光轴將光傳播至該輸出孔徑,該光學導體提供與該中央 光轴相交的複數個傳輸路徑,且促成從該複數個光源接 收的光從該輸入孔徑至該輸出孔徑的混合; 集光透鏡’其在該輸出孔徑處與該中央光轴串聯及 共軸安置,該集光透鏡將從該光學導體處接收的該混合 光聚集; 一运近調整子組件,其包含與該中央光軸串聯及共轴 放置的一個或多個光學透鏡,該遠近調整子組件可相對 於該光學透鏡而共軸移動,該遠近調整子組件將從該集 光透鏡處接收之該混合、聚集光形成一光束;及 該光束具有由該一個或多個光學透鏡與該集光透鏡之 間的一可變間距控制的一發散輪廓。 2. 如請求項1之光學遠近調整組件,其中該光束之該發散 . 輪廓隨著該一個或多個光學透鏡與該集光透鏡之間之該 可變間距減小而加寬。 3. 如請求項1之光學遠近調整組件,其中該光束之該發散 輪廓隨著該一個或多個光學透鏡與該集光透鏡之間之該 可變間距增加而變窄》 4 ·如请求項1之光學遠近調整組件,其進一步包括一線性 157484.doc 201229559 致動器,其用於與該中央光軸相對共I*移動該-個或多 個光學透鏡。 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 如請=項4之光學遠近調整組件,其中該線性致動器包 伺服電動機致動的—螺紋傳動軸。 如凊求項1之光學組件’其中該光學導體具有一圓柱形 式。 如凊求項i之光學組件,其中該光學導體具有一漸縮形 式。 如請求項1之光學組件,其中該集光透鏡具有-球形形 式。 #4求項1之光學組件’其中該—個或多個光學透鏡包 括一次要集光透鏡。 如Μ求項1之光學組件’其中該—個或多個光學透鏡包 括至少一遠近調整透鏡。 如明求項1之光學組件,其中該光學導體之一縱軸實質 上與在該輸入孔徑處提供光之一發光二極體晶片之一水 平軸正交。 如凊求項1之光學組件’其中該光學導體及該集光透鏡 整合地形成。 如凊求項1之光學組件’其中該光學導體及該集光透鏡 分開形成且耦接至一起。 一種用於控制光學遠近調整的方法,其包括: 提供一光學導體,其具有一中央光軸及在該光學導體 處與該中央光軸串聯及共軸安置的一集光透鏡; 157484.doc -2 - 201229559 提供一遠近調整子組件,其包含與該中央光軸串聯及 共軸放置的一個或多個光學透鏡,該遠近調整子組件可 相對於該光學透鏡而共轴移動; 經由沿著該中央光軸傳播通過該光學導體而混合光; 在該集光透鏡處將從該光學導體接收的該混合光聚 • 集;及 藉由變化該一個或多個光學透鏡與該集光透鏡之間的 間距而控制在該遠近調整子組件處接收的該混合、聚集 光的發散輪麼。 15. 如請求項14之方法,其中控制混合、聚集光之該發散輪 廓進一步包括用該一個或多個光學透鏡之線性致動而調 整該一個或多個光學透鏡與該集光透鏡之間的間距。 16. 如請求項14之方法,其進一步包括藉由減小該一個或多 個光學透鏡與該集光透鏡之間的可變間距而加寬混合、 聚集光之該發散輪廓。 17. 如請求項14之方法,其進一步包括藉由增加該一個或多 個光子透鏡與該集光透鏡之間的可變間距而使混合、聚 集光之該發散輪廓變窄。 . 18· 一種光學遠近調整組件,其包括: ' 一光學導體,其具有一中央光軸; 一集光透鏡,其在該光學练栌考命―I丄,* 千等體處與該中央光轴串聯及 共軸安置; 遠近調整子組件’其包含與該中央光軸串聯及共轴 放置的一個或多個光學透鏡,該遠近調整子組件可相對 157484.doc 201229559 於該光學透鏡而共軸移動;及 該遠近調整子組件包含用於變化該一個或多個光學透 鏡與該集光透鏡之間的間距的構件, 其中在該光學導體處接收之光經由沿著該中央光轴傳 播通過該光學導體而混合,聚集在該Μ透鏡處從該光 學導體接收的該混合光,且藉㈣於變化該間距之該構 件控制在該遠近調整子組件處接收之該混合、聚集光的 發散輪廟。 19. 如請求項18之方法,其中用於變化該一個或多個光學透 鏡與該集光透鏡間之該間距之該構件減小以加寬該混 合、聚集光之該發散輪廓。 20. 如請求項18之方法,其中用於變化該一個或多個光學透 鏡與該集光透鏡間之該間距之該構件增加以使該混合、 聚集光之該發散輪廓變窄。 21. —種照明器,其包括: 一基部; 複數個光學遠近調整組件’其等分別安置於該基部 上,以提供一光束,該複數個光學遠近調整組件之各者 包括: 一光學導體,其具有一中央光軸, 一集光透鏡,其在該光學導體處與該中央光轴率聯 及共軸安置,及 一遠近調整子組件,其包含與該中央光軸奉聯及丑 軸放置的一個或多個光學透鏡,該遠近調整子組件可 157484.doc S 201229559 相對於該光學透鏡而共軸移動, t 該光束具有由該一個或多個光學透鏡與該集光透鏡之 間的一可變間距控制的一發散輪廓;及 一外殼,其經調適以容納該基部及該複數個光學遠近 調整組件。 22.如請求項21之照明器,其中該複數個光學遠近調整組件 經配置使得由該照明器發射之該光束形成一單一均質光 瞳。 157484.doc201229559 VII. Patent application scope: 1. An optical proximity adjustment assembly, comprising: a light emitting diode chip, which provides a plurality of light sources; an optical conductor having an input aperture and an output aperture, the photonic conductor being used in Receiving light at the input aperture and propagating light therefrom to the output aperture along a central optical axis, the optical conductor providing a plurality of transmission paths intersecting the central optical axis and facilitating light received from the plurality of light sources a mixing from the input aperture to the output aperture; a collecting lens 'which is disposed in series and coaxial with the central optical axis at the output aperture, the collecting lens collecting the mixed light received from the optical conductor; An approach adjustment subassembly comprising one or more optical lenses placed in series and coaxially with the central optical axis, the proximity modulation subassembly being coaxially movable relative to the optical lens, the proximity adjustment subassembly from The mixed, concentrated light received at the collecting lens forms a light beam; and the light beam has the optical lens and the collecting lens A divergent contour of a variable spacing control. 2. The optical proximity adjustment component of claim 1, wherein the divergence of the beam. The profile is widened as the variable spacing between the one or more optical lenses and the collection lens decreases. 3. The optical proximity adjustment component of claim 1, wherein the diverging profile of the beam is narrowed as the variable spacing between the one or more optical lenses and the collection lens increases. An optical proximity adjustment assembly further comprising a linear 157484.doc 201229559 actuator for moving the one or more optical lenses relative to the central optical axis. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. The optical proximity adjustment assembly of item 4, wherein the linear actuator comprises a servo drive-actuated-threaded drive shaft. An optical component of claim 1 wherein the optical conductor has a cylindrical shape. An optical component of claim i, wherein the optical conductor has a tapered shape. The optical component of claim 1, wherein the collecting lens has a -spherical shape. #4 The optical component of claim 1 wherein the one or more optical lenses comprise a primary light collecting lens. An optical component of claim 1 wherein the one or more optical lenses comprise at least one near and far adjustment lens. An optical component according to claim 1, wherein one of the longitudinal axes of the optical conductor is substantially orthogonal to a horizontal axis of one of the light-emitting diode chips providing light at the input aperture. An optical component of claim 1 wherein the optical conductor and the collecting lens are integrally formed. An optical component of claim 1 wherein the optical conductor and the collecting lens are separately formed and coupled together. A method for controlling optical proximity adjustment, comprising: providing an optical conductor having a central optical axis and a collection lens disposed in series with the central optical axis and coaxially disposed at the optical conductor; 157484.doc - 2 - 201229559 provides a proximity adjustment subassembly comprising one or more optical lenses placed in series and coaxially with the central optical axis, the proximity modulation subassembly being coaxially movable relative to the optical lens; a central optical axis propagating through the optical conductor to mix light; at the collecting lens, the mixed light received from the optical conductor is collected; and by varying between the one or more optical lenses and the collecting lens The spacing controls the divergence wheel of the mixed, concentrated light received at the near-far adjustment subassembly. 15. The method of claim 14, wherein controlling the diverging profile of the blending, collecting light further comprises adjusting a linear actuation of the one or more optical lenses to adjust the optical lens between the one or more optical lenses and the collecting lens spacing. 16. The method of claim 14, further comprising widening the diverging profile of the mixed, concentrated light by reducing a variable spacing between the one or more optical lenses and the collection lens. 17. The method of claim 14, further comprising narrowing the diverging profile of the mixed, concentrated light by increasing a variable spacing between the one or more photonic lenses and the collecting lens. 18. An optical proximity adjustment assembly, comprising: 'an optical conductor having a central optical axis; a concentrating lens at which the optical light is applied to the I-, 千, etc. Axial series and coaxial arrangement; a proximity adjustment subassembly 'which includes one or more optical lenses placed in series and coaxially with the central optical axis, the proximity adjustment sub-assembly being coaxial with the optical lens 157484.doc 201229559 Moving; and the proximity adjustment subassembly includes means for varying a spacing between the one or more optical lenses and the collection lens, wherein light received at the optical conductor propagates through the central optical axis The optical conductor is mixed to collect the mixed light received from the optical conductor at the Μ lens, and the member that varies the spacing controls the divergent wheel temple of the mixed, concentrated light received at the near-and-near adjustment sub-assembly . 19. The method of claim 18, wherein the means for varying the spacing between the one or more optical lenses and the collection lens is reduced to widen the diverging profile of the mixed, concentrated light. 20. The method of claim 18, wherein the means for varying the spacing between the one or more optical lenses and the collection lens is increased to narrow the diverging profile of the mixed, concentrated light. 21. An illuminator comprising: a base; a plurality of optical proximity adjustment components disposed on the base to provide a beam, each of the plurality of optical proximity adjustment components comprising: an optical conductor, The utility model has a central optical axis, a collecting lens, and the central optical axis is coaxially and coaxially disposed at the optical conductor, and a near-distance adjusting sub-assembly, which comprises the central optical axis and the ugly axis One or more optical lenses, the near-and-near adjustment sub-assembly 157484.doc S 201229559 is coaxially moved relative to the optical lens, t the light beam having a light between the one or more optical lenses and the collection lens a diverging profile of variable pitch control; and a housing adapted to receive the base and the plurality of optical proximity adjustment components. 22. The illuminator of claim 21, wherein the plurality of optical proximity adjustment components are configured such that the beam emitted by the illuminator forms a single homogeneous aperture. 157484.doc
TW100124369A 2010-07-09 2011-07-08 Optical zoom assembly for a non-imaging illumination application and luminaire using same TW201229559A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US36280310P 2010-07-09 2010-07-09

Publications (1)

Publication Number Publication Date
TW201229559A true TW201229559A (en) 2012-07-16

Family

ID=44653367

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100124369A TW201229559A (en) 2010-07-09 2011-07-08 Optical zoom assembly for a non-imaging illumination application and luminaire using same

Country Status (4)

Country Link
EP (1) EP2591282A1 (en)
CN (1) CN102959326A (en)
TW (1) TW201229559A (en)
WO (1) WO2012004760A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391456A (en) * 2021-08-16 2021-09-14 山东省科学院海洋仪器仪表研究所 Electronic angle mirror that expands of laser initiative formation of image illumination light source

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2856236B1 (en) * 2012-06-03 2019-08-07 Robe Lighting s.r.o. Collimation and homogenization system for an led luminaire
WO2015051031A2 (en) * 2013-10-01 2015-04-09 Robe Lighting, Inc. Collimation and homogenization system for an led luminaire
US10161599B2 (en) 2014-03-10 2018-12-25 Robe Lighting S.R.O. Resonance movement dampening system for an automated luminaire
US10408402B2 (en) 2014-03-10 2019-09-10 Robe Lighting S.R.O. Optical system for a LED luminaire
CN105334702A (en) * 2014-08-06 2016-02-17 叙丰企业股份有限公司 Light source module of exposure equipment
WO2016025844A1 (en) * 2014-08-15 2016-02-18 Fraen Corporation Optic holder with integrated light premixer
EP3227601B1 (en) 2014-10-01 2021-12-15 Robe Lighting s.r.o. Collimation and homogenization system for an led luminaire
US20170074489A1 (en) * 2015-03-16 2017-03-16 Pavel Jurik System and method for controlling light output in a led luminaire
CN104748010B (en) * 2015-03-19 2017-11-17 佛山市百特思舞台设备有限公司 A kind of LED light projection method and light projection device used
EP3433535B1 (en) * 2016-03-23 2019-12-04 Robe Lighting s.r.o. System and method for controlling light output in a led luminaire
FR3056697B1 (en) * 2016-09-28 2018-11-09 Valeo Vision AUTOMOTIVE LIGHTING MODULE WITH ADJUSTABLE FOCUS LENS
CN110325788B (en) * 2017-01-17 2021-06-08 昕诺飞控股有限公司 Adjustable spot light position generation
EP3583352B1 (en) * 2017-02-14 2023-12-27 Zumtobel Lighting GmbH Lighting unit and method for controlling emission characteristics thereof
CN107390479A (en) * 2017-09-01 2017-11-24 东莞科视自动化科技有限公司 A kind of exposure machine light source optical module
TR201722480A1 (en) * 2017-12-28 2019-07-22 Mylaser Mekanik Elektronik Optik Ve Medikal Sistemleri Ltd Sirketi DUAL LENS ADJUSTABLE LIGHTING AREA LED COLLIMATION SYSTEM

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1662773B (en) * 2002-06-20 2010-10-27 永备电池有限公司 Lighting device with adjustable spotlight beam
JP4376289B2 (en) * 2005-06-01 2009-12-02 シーシーエス株式会社 Light irradiation device
US20100097802A1 (en) * 2008-10-20 2010-04-22 Robe Lighting S.R.O. Light collection system for an led luminaire
EP2211089A1 (en) * 2009-01-26 2010-07-28 GLP German Light Products GmbH Apparatus and method for outputting a mixed-colored light beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391456A (en) * 2021-08-16 2021-09-14 山东省科学院海洋仪器仪表研究所 Electronic angle mirror that expands of laser initiative formation of image illumination light source

Also Published As

Publication number Publication date
CN102959326A (en) 2013-03-06
EP2591282A1 (en) 2013-05-15
WO2012004760A1 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
TW201229559A (en) Optical zoom assembly for a non-imaging illumination application and luminaire using same
KR101810235B1 (en) Light emitting device and luminaire
US8215802B2 (en) Multiple-tier omnidirectional solid-state emission source
EP2128660B1 (en) Luminaire and method of operation
US7403680B2 (en) Reflective light coupler
JP5909608B2 (en) Light-guided LED device
JP5220743B2 (en) Illumination device having light source and light guide
EP2414728A1 (en) Led collimation optics module and luminaire using same
US20140218957A1 (en) Linear illumination devices having light guides and led-based illumination modules
US20140268802A1 (en) Optical device and system for solid-state lighting
KR20130078348A (en) Lighting device
US9903562B2 (en) Light emitting apparatus
EP2414874A1 (en) Optics device for stage lighting
TW200916692A (en) LED-based luminaire with adjustable beam shape
JP2012518279A (en) Light emitting diode device
TW200846600A (en) Folded light path LED array collimation optic
US20130187528A1 (en) Multiple-tier Omnidirectional Solid-State Emission Source
US20100080002A1 (en) Color homogenizing optical assembly
CN102913781B (en) Light-emitting device and lighting device
US20150316703A1 (en) Dual edge coupler
CN109073206B (en) Light-emitting device and operating lamp
EP2414875A1 (en) Led collimation optics module providing an isolation fitting
WO2015011105A1 (en) A lens for a light source
US11846413B2 (en) Illumination device light collector and converging optical system
EP3914852B1 (en) Led filament arrangement