TW201229146A - Paste composition for forming electrode of solar cell and electrode using the same - Google Patents

Paste composition for forming electrode of solar cell and electrode using the same Download PDF

Info

Publication number
TW201229146A
TW201229146A TW100147728A TW100147728A TW201229146A TW 201229146 A TW201229146 A TW 201229146A TW 100147728 A TW100147728 A TW 100147728A TW 100147728 A TW100147728 A TW 100147728A TW 201229146 A TW201229146 A TW 201229146A
Authority
TW
Taiwan
Prior art keywords
silver
resin
solar cell
silver powder
coated
Prior art date
Application number
TW100147728A
Other languages
Chinese (zh)
Inventor
Kun-Ho Hwang
Young-Il Park
Min-Soo Ko
Original Assignee
Dongjin Semichem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongjin Semichem Co Ltd filed Critical Dongjin Semichem Co Ltd
Publication of TW201229146A publication Critical patent/TW201229146A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a paste composition used for forming an electrode of a solar cell, and to an electrode using same. The contact resistance between a solar cell electrode and a board may be improved using conductive particles coated with a compound containing silver as a dopant to improve the efficiency of the solar cell.

Description

201229146 六、發明說明: 【發明所屬之技術領域】 ' 本發明涉及一種用於形成太陽能電池電極之膏狀組合 物及利用所述膏狀組合物的電極,所述膏狀組合物包含被 覆有摻雜劑的銀粉末。 【先前技術】 為降低太陽能電池之銀電極與矽基板之間的接觸電 阻,現有技術中引入用於η型半導體雜質之磷酸鹽及五氧 化二填(P2〇5, Phosphorous pentoxide)。然而,在引入該磷酸 鹽和P2〇5時,主要是將所述物質直接混合於銀膏中,或者 在用於形成太陽能電池電極之組合物的傳導性粒子,例如 銀粉末(Ag powder)中使用磷酸溶液及磷酸鹽,以被覆碟 (P)。 然而’若將填酸鹽直接混合於導電膏中使用,鹽類化 合物會與用於形成電極之組合物進行反應,影響導電膏之 黏性變化’從而可能引起導電膏的穩定性問題。而且當使 用所述Ρζ〇5等粒子時’在電極與基板之間的擴散並不均 勻’因而具有無法有效降低接觸電阻之缺點。 此外,焙燒電極時,磷(P)必須從傳導性粒子之間全部 脫離,從而擴散至基板,以降低線電阻及接觸電阻。但是, 使用所述方法時’由於磷無法完全擴散而導致剩餘磷(P)粒 子殘留在傳導性粒子之間,以致不當增高電阻。 另外’在美國公開專利第2007-0289626號和韓國公開 專利第2010-0080614號中揭示可將磷酸鹽被覆於銀粉 201229146 末,且可將其作為太陽能電池電極材料來使用。在這種情 況下,雖然可以考慮將磷酸鹽被覆於電極組合物之傳導性 粒子,例如銀粉末(Ag power)上,以達到分散性好及擴散 均勻之效果,但是被覆有磷酸溶液或磷酸鹽之傳導性粒^ 會含有磷(P)以外之大量雜質,且與傳導性粒子之結合不穩 定而發生脫離現象,從而對導電膏之黏性以及物理性質^ 生不良影響。 【發明内容】 本發明目的在於提供一種用於形成太陽能電池電極之 膏狀組合物及利用所述膏狀組合物之電極,所述組合物使 用同時被覆有銀鹽(silver salt)和磷(p)鹽,或者是被覆有作 為摻雜劑之磷酸銀(silver phosphate)等的特定含銀化合物 的傳導性粒子,藉以降低太陽能電池電極與基板之間的接 觸電阻,從而提高太陽能電池的效率。 本發明提供一種用於形成太陽能電池電極的膏狀組合 物,其包含被覆有摻雜劑之銀粉末、無機黏合劑、金屬氧 化物、黏合劑以及有機溶劑。 優選地,所述被覆有摻雜劑之銀粉末,係透過在平均 粒徑為0.3 μιη至10 μιη之銀粉末表面被覆摻雜劑而形成。 此時,所述摻雜劑最好為選自由偏磷酸銀(sUver metaphosphate)、正填酸銀(siiver 〇rth〇phosphate)、焦填酸 銀(silver pyrophosphate)、磷化銀(siiver phosphide)、六氟鱗 酸銀(silver hexafluorophosphate)、亞銻酸銀(silver antimonite)、六氟録酸銀(siiver hexafluoroantimonate)、石申 ⑧ 4 201229146 酸銀(silver arsenate)、銀錢合金(silver-bismuth alloy)、鉻酸 銀(silver chromate)、氰化銀(silver cyanide)、蛾酸銀(silver iodate)、破化銀(silver iodide)、銦酸銀(silver molybdate)、 二氰銀化卸(potassium silver cyanide)、撕埃化銀(rubidium silver iodide)、溴酸銀(silver bromate)、溴化銀(silver bromide)、亞砸酸銀(silver selenite)、蹄化銀(silver telluride) 以及砸化銀(silver selenide)所構成之族群中的至少一種含 銀化合物。 所述膏狀組合物可包含5至90重量百分比(wt%)之被 覆有摻雜劑的銀粉末、1至10 wt°/〇的無機黏合劑、0.1至 10 wt%的金屬氧化物、1至20 wt%的黏合劑以及餘量有機 溶劑。 此外,本發明之膏狀組合物可進一步包含平均粒徑為 〇.3 μπι至10 μιη但未被覆有摻雜劑的銀粉末。此時,所述 銀膏組合物包括有5至90 wt%之含有被覆有摻雜劑之銀粉 末以及未被覆有摻雜劑之銀粉末的銀粉末混合物、1至1〇 wt%的無機黏合劑、0.1至1〇 wt%的金屬氧化物、1至2〇 wt0/。的黏合劑、以及餘量有機溶劑。所述銀粉末混合物中, 未被覆有摻雜劑之銀粉末可占85 wt%以下,而餘量為被覆 有摻雜劑之銀粉末。 此外’本發明還提供用於太陽能電池之電極,其利用 所述膏狀組合物製成。 此外’本發明還提供包含所述電極之太陽能電池。 【實施方式】 201229146 下面進一步詳細說明本發明。 本發明涉及一種用於形成太陽能電池電極之膏狀組合 物及利用所述膏狀組合物之電極,所述組合物將被覆有特 定摻雜劑(dopant)之銀粉末作為傳導性粒子來使用表現出 優異穩雜及均勻塗布性,從而確保在纽組合物中的優 異分散性,以實現低線電㈣及接觸電阻,最終提高電池 效率。 尤具更 狀組合物時直接添加磷酸鹽或者 使用被覆有鱗酸溶液及碟酸鹽之傳導性粒子的習知方法招 比,本發明將被覆有作為摻雜劑之含銀化合物的銀粉末作 為傳導性粒子來細,_展現出崎的敎性以及優秀 时散性。此外,所勒作掺_之含純合物有助於提 南銀電極财基板之_雜叹降低接觸電阻。 有特定摻_德財作為伙 覆 此外,本發明射進-步選擇―的料性粒子。 之銀粉末,其同樣作為傳包括有未被覆有_ 本發明較佳實施例i所提 極之膏狀組合物,係包含被於形成太陽能電池電 合劑、金屬氧化物、黏合劑以及有=銀… 狀組合物較佳宜包含5至9 劑。此時,所述膏 末、1至⑺峨之無_合劑摻雜劑之銀粉 物、1至之黏合劑、::1,%讀^ 本發明之4有機溶劑。 ,、心物必須包含作為傳導性粒子之被覆有摻 ⑧ 6 201229146 雜劑的銀粉末,以展現出與習知技術相比時,較低的線電 阻和接觸電阻,藉以提高電性特性,從而提高太陽能電池 的效率。 此時’所述被覆有摻雜劑之銀粉末,係可透過在平均 粒徑為0·3 μηι至10 μηι之銀粉末表面被覆摻雜劑而形成。 在所述被覆有推雜劑之銀粉末(silver-dopant coating silver powder)中,所述摻雜劑係使用特定的含銀化合物, 且係穩定且均勻地被覆於傳導性粒子,亦即銀粉末,因此 具有提高基板(例如石夕基板)黏性及降低接觸電阻的作用。 在所述被覆有摻雜劑之銀粉末中,所述摻雜劑可為同 、 時包含有銀鹽(silver salt)和磷(P)鹽的含銀化合物,或者可 為磷酸銀(silverphosphate)類的含銀化合物。優選地,所述 摻雜劑可選自由偏填酸銀(silver metaphosphate)、正磷酸銀 (silver orthophosphate)、焦磷酸銀(Silver Pyroph〇sphate)、碟 化銀(silver phosphide)、六氟磷(V)酸銀(siiver hexafluorophosphate)、亞銻酸銀(silver antimonite)、六氟銻 (V)酸銀(silver hexafluoroantimonate)、砷酸銀(siiver arsenate)、銀·絲合金(silver-bismuth alloy)、鉻酸銀(silver chromate)、氰化銀(silver cyanide)、峨酸銀(silver iodate)、 磁化銀(silver iodide)、I目酸銀(silver molybdate)、二氰銀化 鉀(potassium silver cyanide)、铷碘化銀(rubidium silver iodide)、溴酸銀(silver bromate)、溴化銀(silver bromide)、 亞硒酸銀(silver selenite)、碲化銀(silver telluride)及硒化銀 (silver selenide)所構成之族群中的至少一種含銀化合物。 201229146 更優選地,所述被覆有摻雜劑之銀粉末係使用被覆有 磷酸銀之銀粉末(silver phosphate coated silver powder)、被 覆有亞錄 銀之銀粉末(silver antimonite coated silver powder)、被覆有神酸銀之銀粉末(snver arsenate c〇atecj silver powder)、或者是被覆有銀_鉍合金之銀粉末(silver bismuth coated silver powder),最優選為被覆有磷酸銀之銀 粉末。 在此,若將所述被覆有磷酸銀之銀粉末作為傳導性粒 子使用,則在太陽能電池焙燒系統中,由於磷的擴散現象 可防止以雜質存在於太陽能電池n型半導體之填(p)的擴 散’因此可維持電極與基板之間的低接觸電阻。不僅如此, 當使用所述被覆有磷酸銀之銀粉末時,因為所有的填都被 擴散’沒有任何磷殘留在傳導性粒子内,所以能獲得優異 的線電阻及接觸電阻,以提高電性特性,進而提高太陽能 電池之效率。換言之,本發明所提供之被覆有磷酸銀(Ag-P) 之傳導性粒子係利用銀的凝聚現象(aggregati〇n)特性,因此 與習知被覆磷酸液及磷鹽之傳導性粒子相比,具有穩定性 好以及被覆均勻之優點,是故可確保在膏狀組合物中具有 優異的分散性。此外,以此方式被覆之磷(P)係以奈米(nm) 或埃(A)的大小存在於傳導性粒子表面,所以在電極焙燒系 統中可完全擴散,降低殘留在傳導性粒子内的可能性,從 而實現低線電阻以及低接觸電阻。 此外’製備所述被覆有摻雜劑之銀粉末時,所使用之 銀粉末只要是本技術領域中常使用之銀粒子即可,並無任 ⑧ 8 201229146 何限制。優選地,所述銀粉末之平均 ,敲緊密度(tap densitym 2 至 6 .‘、、.3 叫至 特定雜劑之銀粉末的製備灿^ 符疋限制,可使由—般浸潰法、 製備。例如,優選地,所述被覆有或疋還原法等來 ==平___—之銀粉末表面被 ϋ被霜稳ΓΓ 摻_娜成。料,優選地,所 之銀粉末中,以100重量份的銀粉末為基 準,摻雜劑的含量為〇·][至3〇重量份。 此外,當所述被財摻_之銀粉末單獨包含於所述 合物中時’以全部膏狀組合物的量為基準,其用量 可為5至90 wt/o。若所述被覆有摻雜劑之銀粉末之含量低 於5 wt%,則相傳導錄子的含量不足,致使金屬電極 與石夕基板之間的接觸電阻及線電阻增加,進而導致太陽能 電池的效率降低,絲過9Gwt%,則雖能降低接觸電阻: 但是可能會存在殘留在金屬電極内部之磷,導致串聯電阻 (Rs)值增大、轉換效率降低以及黏度過高等齡,進而造 成印刷不良和產品價格上升之問題。 此外,本發明之膏狀組合物係使用1至10 wt%之所述 無機黏合劑。若無機黏合劑之含量低於1 wt%,則在除去 抗反射麟會有舰性,從而難以發制於形成金屬電極 與石夕基板之間的黏附功能,導致轉換效率降低之問題。若 超過10 wt% ’雖可增加金屬電極與矽基板之間的黏附性’ 卻導致晶片與膏狀電極材料的接觸電阻增加,致使轉換效 201229146 率下降。 所述無機黏合劑可以使用在本技術領域中常使用之玻 璃粉’優選地,使用選自由矽錯(si_B_pb)類、石夕务 鋅(Si-B卜Zn)類及石夕备銘鋅(Si_pb_A1_z_玻璃粉所構成 的族群中的至少一種玻璃粉。 在所述發明之膏狀組合物中,若金屬氧化物的含量低 於0.1 Wt/ο ’則具有難以充分降低串聯電阻(Rs)之問題,若 超過10 wt% ’則金屬之燒結受到f彡響,導致電極電阻等電 特性降低之問題。 此外’所述金屬氧化物可使用選自由氧化辞氧化锡、 氧化鐵以及氧化鎂所構成之族群中的至少—種金屬氧化 物。 本發明之膏狀組合物中,黏合劑的含量為丨至2〇 wt%。右黏合劑之含量低於丨wt%,則網印作業難以順利 進行,且具有不易完成印刷厚度及形狀均勻之問題。若超 過20 wt%,則進行印刷作業時,會發生墨線之線幅擴散, 以致難以形成精緻隨’而錢結時,_未揮發之黏合 劑將會導致電極電阻的損失。所述黏合劑係用於將所述: 成分混合製成錄,因關财以使用本技術領域所習知 的物質。 所述黏合劑的範例包含甲基纖維素(methylcelluk)se)、 乙基纖維素(ethylcellulose)、砩化纖維素(nitr〇cellul〇se)、氧 化纖維素(hydroxycdlulose)的纖維素衍生物;包含曱基丙 烯酸異丁酯(isobutyl methacrylate)的丙烯酸樹脂;醇酸 201229146 (alkyd)樹脂;聚丙烯基(polypropylene)樹脂;聚氯乙烯 (polyvinyl chloride)樹脂;聚胺基甲酸酯(polyurethane)樹 脂;環氧(epoxy)樹脂;聚石夕氧烧(silicone)樹脂;松香(rosin) 樹脂;萜烯(terpene)樹脂;酴齡(phenolic)樹脂;脂肪族石 油(aliphatic petroleum)樹脂;丙稀酸酯(acrylic ester)樹脂; 二曱苯(xylene)樹脂;苯并咬喃-茚(Coumarone-Indene)樹 脂;苯乙稀(styrene)樹脂;二環戊二烯(dicyclopentadiene) 樹脂;聚丁稀(polybutene)樹脂;聚醚(polyether)樹脂;脲 (urea)樹脂;蜜胺(melamine)樹脂;聚醋酸乙烯酯(p〇lyVinyi acetate)樹脂;以及聚異丁基(polyisobutyl)樹脂所構成之族 群中的至少一種化合物。優選地,所述黏合劑係使用乙基 纖維素(ethylcellulose)或者丙晞酸(acrylic)樹脂。 本發明之膏狀組合物中,有機溶劑係可以餘量形式包 含於前述膏狀組合物中,優選地,其含量可為2至30 wt%。 若有機溶劑之含量低於2 wt%,則具有黏合劑溶解不良以 及膏狀組合物分散性差之問題,若超過30 wt%,雖然膏狀 組合物之分散性會變好,但印刷時容易發生漏印或者線幅 擴散之問題。 所述有機溶劑係可使用選自由二甘醇丁醚醋酸酉旨 (butyl carbitol acetate)、丁卡必醇(butyl carbitol),丙二醇單 甲醚(propylene glycol monomethyl ether),二丙二醇單甲鱗 (dipropylene glycol monomethyl ether) ’ 丙二醇單甲醚丙酸 酉旨(propylene glycol monomethyl ether propionate),乙鍵丙 酸酯(ethyl ether propionate),丙二醇單曱醚醋酸酯 201229146 (propylene glycol monomethyl ether acetate),松油醇 (terpineol) ’ 十二醇酯(texanol),二曱胺基曱醛(dimethyi amino formaldehyde) ’ 甲基乙基酮(methyl ethyl ketone),γ- 丁内酯(γ-butyrolactone)、以及乳酸乙酯(ethyl lactate)所構 成之族群中的至少一種溶劑。 另外,本發明之膏狀組合物可進一步選擇性地包含有 作為傳導性粒子之未被覆摻雜劑的銀粉末。 本發明較佳實施例2所提供之用於形成太陽能電池電 極之膏狀組合物,係包含被覆有摻雜劑之銀粉末、未被覆 摻雜劑之銀粉末、無機黏合劑、金屬氧化物、黏合劑以及 有機溶劑。此時,所述膏狀組合物包含有5至9〇 wt%之含 有被覆有摻雜劑之銀粉末以及未被覆摻雜劑之銀粉末的銀 粉末混合物、1至1〇 Wt%之無機黏合劑、〇丨至1〇 wt%2 金屬黏合劑、1至20 wt%之黏合劑、以及餘量有機溶劑。 優選地’所紐粉末混合物_量中,未被覆摻雜劑之銀 粉末占85 wt%以下,餘量為被覆有摻雜劑之銀粉末。 此外’所絲被覆摻_之轉末可錢用普通粒 如所述實施例1,可使用平均粒徑為〇 3叫至ι〇叫, 敲緊密度為2至6 g/cm3之銀粉末。 具體來說,如所述實施例2,同時使用被覆有摻雜劑 之銀粉末絲被祕雜狀紐末時 (銀粉末齡物)占5至9_%,優縣 此時’未破覆摻雜劑之銀粉末的含量可占全部銀粉末含量 (銀粉末混合物)(5至9G祕)之85痛以下優選地 ⑧ 12 201229146 可占30至85 wt%。以所職㈣摻_之銀粉末之含 罝為所速全部銀粉末含4 (5至9_%)巾除去所述未被 覆換雜劑之銀粉末含4之餘量,㈣可為U 5〇 wt%。 β田斤述未被覆摻雜劑之銀粉末含量超過全部銀粉末含 量中之85%時,會_被覆有摻雜劑之銀粉末的含量不足 而導致接觸電阻&大,且傳導性粒子含量過多會導致印刷 不良及產品祕上料麵。麵述未被歸雜劑之銀粉 末含量低於全部銀粉末含量之3〇爾時,會由於傳導性粒 子真充量不足而電阻變大,結果發生轉換效率降低之問 題。此外’若所賴覆麵雜劑之銀粉末含量在全部銀粉 末3量中過乂 a夺會因無法正常發揮摻雜劑之功能而使得 接觸電阻變大,進而產生轉換效率降__,若盆含量 過高’則频未被祕轉之轉核面上之有機物之間 會產生相雜問題,導財狀組合物财性下降,進而使 得黏性增加。在所述實施例2之本發财,除了被覆有所 述掺雜劑之銀粉末與未被覆摻雜劑之銀粉末的使用量之 外’所述實施例2中之各成分含量範圍與其臨界含義皆與 所—U相同1且’所述實施例2中之各成分也可 使用與所述實施例1相同之物質。 此外,基於本發明之實施例i及實施例2,各組合物 可根據需要進-步包含作為添加劑之其他成分的傳導性金 屬粒子、消泡劑、分散劑、或可塑劑等。 另外,本發明之膏狀組合物之製備方法的條件並無特 別限制,其可透過常齡絲完成。例如,可❹三親研 13 201229146 磨機(3 roll mill)均勻混合所述實施例丨或實施例2之成 分,以製備膏狀組合物。 而且,本發明還提供利用上述製備之膏狀組合物來製 造的電極。 所述電極可以在具有抗反射膜之基板上,以預定圖案 被覆所述膏狀組合物並進行焙燒而形成。如此製成之電極 可為石夕太陽能電池的前面電極。 此外,所述基板可使用製造常規半導體元件時所使用 之基板’例如,優選係可使用矽基板。 此外,本發明提供一種太陽能電池,其包含利用所述 膏狀組合物製成之電極。所述太陽能電池可為矽太陽能電 池。例如,所述矽太陽能電池可包含形成於矽半導體基板 上部之發射極層、形成於所述發射極層上之抗反射膜、貫 穿所述抗反射膜且與發射極層上部表面接觸之前面電極、 以及與所述基板之背面接觸的後面電極。惟,所述太陽能 電池之具體結構為本技術領域所習知之結構,因此不再贅 述。 本發明使用將被覆有摻雜劑之銀粉末作為傳導性粒子 膏狀組合物,所述摻雜劑為含銀化合物,藉以防止以雜質 存在於太陽能電池η型半導體中之卿)的擴散,以維持電 f與基板之間的低接觸電阻。此外,與習知單純直接添加 «4鹽或者使用被覆有磷酸溶液及磷酸鹽之傳導性粒子相 比’本發明之穩定性顯著,分散性優秀,因此可提高電特 性,從而提高太陽能電池之效率。此外,由於本發明之膏 201229146 狀組合物的傳導性粒子係穩定並均勻地塗布於基板上,因 此不僅可以有效地除去抗反射膜,而且可以提高電極與石夕 基板之間的黏性,並可降低接觸電阻。 下面’參照下述實施例及比較例對本發明進行詳細之 說明’但這些實施例僅用於敘述本發明,本發明之申請專 利範圍並不侷限於此。201229146 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a paste composition for forming a solar cell electrode and an electrode using the paste composition, the paste composition comprising a coated doped Silver powder for the dopant. [Prior Art] In order to reduce the contact resistance between the silver electrode and the tantalum substrate of the solar cell, a phosphate and a phosphorus pentoxide (P2〇5) for the n-type semiconductor impurity are introduced in the prior art. However, when introducing the phosphate and P2〇5, the substance is mainly mixed directly in the silver paste, or in the conductive particles of the composition for forming the electrode of the solar cell, such as silver powder (Ag powder). Use a phosphoric acid solution and phosphate to cover the dish (P). However, if the acid salt is directly mixed in the conductive paste, the salt compound reacts with the composition for forming the electrode to affect the viscosity change of the conductive paste, which may cause stability problems of the conductive paste. Further, when the particles of the crucible 5 or the like are used, the diffusion between the electrode and the substrate is not uniform, and thus there is a disadvantage that the contact resistance cannot be effectively reduced. Further, when the electrode is fired, phosphorus (P) must be completely separated from the conductive particles to diffuse to the substrate to lower the line resistance and the contact resistance. However, when the method is used, the residual phosphorus (P) particles remain between the conductive particles due to the incomplete diffusion of phosphorus, so that the resistance is improperly increased. Further, it is disclosed in the U.S. Patent Publication No. 2007-0289626 and the Korean Patent Publication No. 2010-0080614 that phosphate can be coated on the end of the silver powder 201229146, and can be used as a solar cell electrode material. In this case, although it is conceivable to coat phosphate on the conductive particles of the electrode composition, for example, silver powder, to achieve good dispersibility and uniform diffusion, it is coated with a phosphoric acid solution or phosphate. The conductive particles may contain a large amount of impurities other than phosphorus (P), and the bonding with the conductive particles is unstable and detachment occurs, thereby adversely affecting the viscosity and physical properties of the conductive paste. SUMMARY OF THE INVENTION An object of the present invention is to provide a paste composition for forming a solar cell electrode and an electrode using the paste composition, which is coated with both a silver salt and phosphorus (p). The salt is a conductive particle coated with a specific silver-containing compound such as silver phosphate as a dopant, thereby reducing the contact resistance between the solar cell electrode and the substrate, thereby improving the efficiency of the solar cell. The present invention provides a paste composition for forming a solar cell electrode comprising a silver powder coated with a dopant, an inorganic binder, a metal oxide, a binder, and an organic solvent. Preferably, the dopant-coated silver powder is formed by coating a surface of a silver powder having an average particle diameter of 0.3 μm to 10 μm. In this case, the dopant is preferably selected from the group consisting of sUver metaphosphate, siiver 〇rth〇phosphate, silver pyrophosphate, and Siiver phosphide. Silver hexafluorophosphate, silver antimonite, siiver hexafluoroantimonate, shishen 8 4 201229146 silver arsenate, silver-bismuth alloy, Silver chromate, silver cyanide, silver iodate, silver iodide, silver molybdate, potassium silver cyanide , rubidium silver iodide, silver bromate, silver bromide, silver selenite, silver telluride, and silver selenide At least one silver-containing compound in the group formed. The paste composition may comprise 5 to 90 weight percent (wt%) of a silver powder coated with a dopant, an inorganic binder of 1 to 10 wt/min, a metal oxide of 0.1 to 10 wt%, and 1 Up to 20 wt% binder and the balance of organic solvents. Further, the paste composition of the present invention may further comprise a silver powder having an average particle diameter of from 0.3 μm to 10 μm but not coated with a dopant. At this time, the silver paste composition includes 5 to 90% by weight of a silver powder mixture containing a silver powder coated with a dopant and a silver powder not coated with a dopant, and 1 to 1% by weight of an inorganic bond. Agent, 0.1 to 1% by weight of metal oxide, 1 to 2 〇 wt0/. Binder, and the balance of organic solvents. In the silver powder mixture, the silver powder not coated with the dopant may account for 85 wt% or less, and the balance is silver powder coated with the dopant. Further, the present invention also provides an electrode for a solar cell, which is produced using the paste composition. Further, the present invention also provides a solar cell comprising the electrode. [Embodiment] 201229146 The present invention will be described in further detail below. The present invention relates to a paste composition for forming a solar cell electrode and an electrode using the paste composition, which composition is used as a conductive particle by coating a silver powder coated with a specific dopant (dopant) Excellent stabilizing and uniform coating properties to ensure excellent dispersibility in the composition, to achieve low wire (four) and contact resistance, and ultimately improve battery efficiency. In particular, a conventional method in which a phosphate is added to a composition or a conductive particle coated with a scaly acid solution and a disc acid salt is used, and the present invention is coated with a silver powder containing a silver compound as a dopant. Conductive particles are fine, _ exhibits the ambiguity of the sultry and excellent time dispersion. In addition, the inclusion of the pure compound is helpful to reduce the contact resistance of the silver electrode. There is a specific blend of _ _ _ _ as a partner. In addition, the present invention shoots - step selection - the material particles. The silver powder, which also comprises a paste composition which is not coated with the preferred embodiment i of the present invention, comprises a solar cell electrical compound, a metal oxide, a binder, and a silver compound. Preferably, the composition preferably contains from 5 to 9 doses. At this time, the paste, the silver powder of the mixture of 1 to (7), the binder of 1 to the binder, the binder of 1 to 1, and the organic solvent of the present invention are read. , the core material must contain as a conductive particle coated with silver powder doped with 8 6 201229146 dopant to exhibit lower wire resistance and contact resistance when compared with the prior art, thereby improving electrical properties, thereby Improve the efficiency of solar cells. At this time, the silver powder coated with the dopant is formed by coating a surface of a silver powder having an average particle diameter of 0.3 μm to 10 μm. In the silver-dopant coating silver powder, the dopant is a specific silver-containing compound and is stably and uniformly coated on the conductive particles, that is, silver powder. Therefore, it has an effect of improving the viscosity of the substrate (for example, the Shih-ray substrate) and reducing the contact resistance. In the dopant-coated silver powder, the dopant may be a silver-containing compound containing a silver salt and a phosphorus (P) salt, or may be silver phosphate. Class of silver-containing compounds. Preferably, the dopant is optionally free of silver metaphosphate, silver orthophosphate, silver pyroph〇sphate, silver phosphide, hexafluorophosphorus (silver phosphide). V) siiver hexafluorophosphate, silver antimonite, silver hexafluoroantimonate, siiver arsenate, silver-bismuth alloy, Silver chromate, silver cyanide, silver iodate, silver iodide, silver molybdate, potassium silver cyanide , rubidium silver iodide, silver bromate, silver bromide, silver selenite, silver telluride, and silver selenide At least one silver-containing compound in the constituent group. More preferably, the dopant-coated silver powder is coated with a silver phosphate coated silver powder, a silver antimonite coated silver powder, and coated with silver powder. The silver bismuth coated silver powder or the silver bismuth coated silver powder is most preferably a silver powder coated with silver phosphate. Here, when the silver powder coated with silver phosphate is used as the conductive particles, in the solar cell firing system, the diffusion of phosphorus can prevent the presence of impurities in the filling (p) of the solar cell n-type semiconductor. Diffusion' thus maintains a low contact resistance between the electrode and the substrate. Moreover, when the silver powder coated with silver phosphate is used, since all the fillers are diffused 'without any phosphorus remaining in the conductive particles, excellent line resistance and contact resistance can be obtained to improve electrical characteristics. , thereby improving the efficiency of the solar cell. In other words, the conductive particles coated with silver phosphate (Ag-P) provided by the present invention utilize the agglomerating property of silver, and thus are compared with the conductive particles of the conventionally coated phosphoric acid solution and the phosphorus salt. It has the advantages of good stability and uniform coating, so that it can ensure excellent dispersibility in the paste composition. Further, the phosphorus (P) coated in this manner exists on the surface of the conductive particles in the size of nanometer (nm) or angstrom (A), so that it can be completely diffused in the electrode baking system, and the residual in the conductive particles can be reduced. Possibility to achieve low line resistance and low contact resistance. Further, in the case of preparing the silver powder coated with the dopant, the silver powder to be used may be any silver particle which is commonly used in the art, and there is no limitation as to 8 8 201229146. Preferably, the average of the silver powder, the tap density (tap density m 2 to 6. ',, .3 is called the preparation of the silver powder of the specific impurity, which can be made by the general impregnation method, For example, preferably, the surface of the silver powder coated with or with a reduction method or the like == ___ is entangled with sputum, preferably, in the silver powder, The content of the dopant is 〇·] [to 3 〇 by weight based on 100 parts by weight of the silver powder. Further, when the silver-doped silver powder is separately contained in the compound, The amount of the composition may be from 5 to 90 wt/o. If the content of the silver powder coated with the dopant is less than 5 wt%, the content of the phase-conducting recording is insufficient, resulting in a metal electrode. The contact resistance and the line resistance between the substrate and the stone substrate increase, which leads to a decrease in the efficiency of the solar cell. If the wire is over 9 Gwt%, the contact resistance can be lowered: but there may be phosphorus remaining inside the metal electrode, resulting in series resistance ( Increased Rs) value, reduced conversion efficiency, and high viscosity, etc. In addition, the paste composition of the present invention uses 1 to 10% by weight of the inorganic binder. If the content of the inorganic binder is less than 1 wt%, the anti-reflection is removed. It is ship-like, so it is difficult to develop the adhesion function between the metal electrode and the stone substrate, resulting in a problem of reduced conversion efficiency. If it exceeds 10 wt%, it can increase the adhesion between the metal electrode and the germanium substrate. The contact resistance of the wafer and the paste electrode material is increased, resulting in a decrease in the conversion efficiency 201229146. The inorganic binder may use a glass frit commonly used in the art, preferably, selected from the class of Si_B_pb, stone. At least one glass powder of the group consisting of Si-B Zn and Si Xi Bei Ming zinc (Si_pb_A1_z_ glass frit). In the paste composition of the invention, if the content of metal oxide Below 0.1 Wt/ο ', there is a problem that it is difficult to sufficiently reduce the series resistance (Rs), and if it exceeds 10 wt% 'the sintering of the metal is f彡, resulting in a problem that the electric resistance of the electrode resistance is lowered. As the metal oxide, at least one metal oxide selected from the group consisting of oxidized tin oxide, iron oxide, and magnesium oxide can be used. In the paste composition of the present invention, the binder is contained in an amount of from 丨 to 2% by weight. If the content of the right binder is less than 丨wt%, the screen printing operation is difficult to carry out smoothly, and the problem of uneven printing thickness and uniform shape is difficult to be achieved. If it exceeds 20 wt%, the line width of the ink line occurs when the printing operation is performed. Diffusion, so that it is difficult to form a fine, and the _ non-volatile binder will cause loss of electrode resistance. The binder is used to mix the ingredients: A substance known in the art. Examples of the binder include a cellulose derivative of methyl cellulose (se), ethyl cellulose, nitr〇cellulse, and hydroxycdlulose; Acrylic resin of isobutyl methacrylate; alkyd 201229146 (alkyd) resin; polypropylene resin; polyvinyl chloride resin; polyurethane resin; Epoxy resin; polysilicon resin; rosin resin; terpene resin; phenolic resin; aliphatic petroleum resin; (acrylic ester) resin; xylene resin; Coumarone-Indene resin; styrene resin; dicyclopentadiene resin; polybutene a resin; a polyether resin; a urea resin; a melamine resin; a p〇ly Vinyi acetate resin; and a polyisobutyl resin in the group at least Compounds. Preferably, the binder is ethylcellulose or an acrylic resin. In the paste composition of the present invention, the organic solvent may be contained in the above-mentioned paste composition in a balance form, and preferably, it may be contained in an amount of 2 to 30% by weight. When the content of the organic solvent is less than 2% by weight, there is a problem that the binder is poorly dissolved and the dispersibility of the paste composition is poor. If it exceeds 30% by weight, the dispersibility of the paste composition becomes good, but it is likely to occur during printing. Missing printing or spread of wire. The organic solvent may be selected from the group consisting of butyl carbitol acetate, butyl carbitol, propylene glycol monomethyl ether, dipropylene glycol monomethyl scale (dipropylene). Glycol monomethyl ether propionate, propylene glycol monomethyl ether propionate, ethyl ether propionate, propylene glycol monomethyl ether acetate 201229146 (propylene glycol monomethyl ether acetate) (terpineol) 'texanol, dimethyi amino formaldehyde' methyl ethyl ketone, γ-butyrolactone, and ethyl lactate (ethyl lactate) at least one solvent in the group formed. Further, the paste composition of the present invention may further optionally contain silver powder as an uncoated dopant of the conductive particles. The paste composition for forming a solar cell electrode provided by the preferred embodiment 2 of the present invention comprises a silver powder coated with a dopant, a silver powder not coated with a dopant, an inorganic binder, a metal oxide, Adhesives and organic solvents. At this time, the paste composition contains 5 to 9% by weight of a silver powder mixture containing a silver powder coated with a dopant and a silver powder not coated with a dopant, and an inorganic bond of 1 to 1 〇 Wt%. Agent, 〇丨 to 1 〇 wt% 2 metal binder, 1 to 20 wt% binder, and the balance of organic solvents. Preferably, the amount of the silver powder which is not coated with the dopant is 85 wt% or less, and the balance is the silver powder coated with the dopant. Further, in the case of the above-mentioned Example 1, the silver powder having an average particle diameter of 〇 3 to ι , and a knocking degree of 2 to 6 g/cm 3 can be used. Specifically, as in the second embodiment, when the silver powder coated with the dopant is used, it is 5 to 9% of the silver-colored age (the silver powder age), and the county is not broken. The content of the silver powder of the dopant may be 85 or less of the total silver powder content (silver powder mixture) (5 to 9 G secret), preferably 8 12 201229146 may account for 30 to 85 wt%. The silver powder containing 4% (5 to 9%) of all silver powders contained in the (4) silver-containing powder is removed by the amount of 4 (5 to 9%) of the silver powder, and (4) may be U 5〇 Wt%. When the content of the silver powder of the uncoated dopant exceeds 85% of the total silver powder content, the content of the silver powder coated with the dopant is insufficient, resulting in a large contact resistance & large, and too large conductive particles. Lead to poor printing and product secrets. When the silver powder content of the non-hybrid agent is less than 3 mils of the total silver powder content, the electric resistance becomes large due to insufficient conductive charge of the conductive particles, and as a result, the conversion efficiency is lowered. In addition, if the silver powder content of the coating agent in the total amount of silver powder is too large, the contact resistance will become larger due to the failure to function as a dopant, and the conversion efficiency will decrease. If the pot content is too high, there will be a problem between the organic matter on the nucleus that is not secretly transferred, and the financial property of the fuel-conducting composition is lowered, thereby increasing the viscosity. In the present invention of the second embodiment, except for the amount of the silver powder coated with the dopant and the silver powder not coated with the dopant, the content range of each component in the second embodiment is critical The meanings are the same as those of the above-mentioned U and the same as in the above-mentioned Example 1 can be used for each component in the above-mentioned Example 2. Further, according to the examples i and 2 of the present invention, each of the compositions may further contain conductive metal particles, an antifoaming agent, a dispersing agent, a plasticizer or the like as an additional component of the additive as needed. Further, the conditions for the preparation method of the paste composition of the present invention are not particularly limited, and it can be completed by the filament of a normal age. For example, the components of the example or the embodiment 2 may be uniformly mixed by a three-roll mill 13 201229146 mill to prepare a paste composition. Moreover, the present invention also provides an electrode produced by using the paste composition prepared above. The electrode may be formed by coating the paste composition in a predetermined pattern on a substrate having an antireflection film and baking it. The electrode thus produced can be the front electrode of the Shi Xi solar cell. Further, the substrate may use a substrate used in the manufacture of a conventional semiconductor element. For example, a germanium substrate may preferably be used. Further, the present invention provides a solar cell comprising an electrode made using the paste composition. The solar cell can be a tantalum solar cell. For example, the tantalum solar cell may include an emitter layer formed on an upper portion of the tantalum semiconductor substrate, an anti-reflection film formed on the emitter layer, a front surface electrode penetrating the anti-reflection film and contacting the upper surface of the emitter layer And a rear electrode in contact with the back surface of the substrate. However, the specific structure of the solar cell is a structure known in the art, and therefore will not be described again. The present invention uses a silver powder coated with a dopant as a conductive particle paste composition, the dopant being a silver-containing compound, thereby preventing diffusion of impurities in the n-type semiconductor of the solar cell. The low contact resistance between the electric f and the substrate is maintained. Further, compared with the conventional direct addition of the «4 salt or the use of the conductive particles coated with the phosphoric acid solution and the phosphate, the stability of the present invention is remarkable, and the dispersibility is excellent, so that the electrical characteristics can be improved, thereby improving the efficiency of the solar cell. . Further, since the conductive particles of the paste 201229146 composition of the present invention are stably and uniformly coated on the substrate, not only the antireflection film can be effectively removed, but also the viscosity between the electrode and the Asahi substrate can be improved, and The contact resistance can be reduced. The present invention is described in detail below with reference to the following examples and comparative examples, but these examples are only intended to illustrate the invention, and the scope of the invention is not limited thereto.

[實施例1-18及比較例1-5J 以下表1至4之組成和含量混合各成分以製備實施例 及比較例的膏狀組合物(單位:wt%)。 【表1】 實施例 1 2 3 4 傳導性粒子 銀粉末1 銀粉末2 傳導性粒子1 銀粉末3 85 銀粉末4 85 銀粉末5 85 銀粉末6 85 無機黏合劑 矽-鉛-硼-錯(Zr)類 3 3 3 3 金屬氧化物 ZnO 1 1 1 1 黏合劑 乙基纖維紊 3 3 3 3 溶劑 丁卡必醇 8 8 8 8 多晶體Cell (6 叶,inch) 串聯電阻,Rs(mQ) 2.72 2.73 2.67 2.68 開路電壓,Voc(V) 0.622 0.621 0.621 0.621 填充因子,F.F(%) 77.68 77.67 77.67 77.66 組件效率,Effi0/。) 16.54 16.53 16.52 16.52 單晶體Cell (6 对,inch) 串聯電阻,Rs〇nQ) 2.30 2.31 2.30 2.31 開路電壓,VocCV> 0.624 0.624 0.624 0.624 一填充因子,F.F(%) 78.02 78.01 78.00 78.68 —組件效率,Effi%) 17.70 17.69 17.69 17.68 15 201229146 註) --- 銀粉末1 .平均粒徑2.5 μπι,球形 銀粉末2 :平均粒徑〇.5 μιη,球形 銀粉末3 .平均粒控2.5 μηι,被覆有構酸銀之銀粉末(silver phosphate coated silver powder) 銀粉末4 :平均粒徑2.5 μηι,被覆有亞銻酸銀之銀粉末(silver antim〇nate coated silver powder) ,粉末5 ·平均粒徑2.5 μιη ’被覆有珅酸銀之銀粉末(silver arsenate coated silver powder) ,私末6 .平均粒徑2.5 μιη ’被覆有銀雀合金之銀粉末(silver bismuth coated silver powder) 【表2】 ί ^施例 5 6 7 8 9 10 11 傳導性粒子 銀粉末1 65 50 65 50 65 50 65 銀粉末2 15 15 15 15 15 15 15 傳導性粒子1 銀粉末3 5 20 銀粉末4 5 20 銀粉末5 5 20 銀粉末6 5 無機黏合劑 矽-鉛-硼-锆(Zr)類 3 3 3 3 3 3 3 金屬氧化物 ZnO 1 1 1 1 1 1 1 黏合劑 乙基纖維素 3 3 3 3 3 3 3 溶劑 丁卡必醇 8 8 8 8 8 8 8 多晶體Cell (6 叶,inch) 串聯電阻,Rs(mD) 2.85 2.75 2.87 2.78 2.86 2.77 2.90 開路電壓,Voc〇〇 — 0.621 0.622 0.621 0.621 0.620 0.622 0.621 填充因子,F.F(%) 77.63 77.65 77.62 77.64 77.63 77.65 77.64 組件效平,Effii%) 16.45 16.53 16.48 16.51 16.49 15.51 16.49 單晶體Cell (6 叫·,inch) 弔聯電阻,Rs〇nQ) 2.42 2.34 2.42 2.35 2.43 2.35 2.41 開路電壓,V〇c(V) 0.623 0.624 0.623 0.623 0.624 0.623 0.623 因子,F.F(%) 17.94 78.01 77.94 79.98 77.93 77.97 77.95 組件效率,Eff(%) 17 64 17 70 17.65 17.69 17.63 17.68 17.64 201229146 ϋ) '——- 銀粉末1 :平均粒徑2.5 μπι,球形 銀粉末2 :平均粒徑0.5 μιη,球形 銀粉末3 :平均粒徑2.5 μιη,被覆有磷酸銀之銀粉末(silver phosphate coated silver powder) 銀粉未4 :平均粒徑2.5 μιη,被覆有亞銻酸銀之銀粉末(silver antimonate coated silver powder) 銀粉末5 .平均粒徑2.5 μπι,被覆有珅酸銀之銀粉末(silver arsenate coated silver powder) ,粉末6 ·平均粒徑2.5 μηι ’被覆有銀-麵合金之銀粉末(Silver bismuth coated silver powder) 【表3】 銀粉末1 :平均粒徑2.5 μηι,球形 銀粉末2 :平均粒徑〇.5㈣,球形 ,私末3 .平均粒徑2,5 μηι ’被覆有填酸銀之銀粉末(Silver phosphate coated silver powder) 實施例 12 13 14 15 16 17 18 傳導性粒子 銀粉末1 50 60 60 60 60 60 60 銀粉末2 15 15 15 15 15 15 15 傳導性粒子1 銀粉末3 5 5 5 銀粉末4 5 5 5 銀粉末5 5 5 5 銀粉末6 20 5 5 5 無機黏合劑 石夕-錯-删-錯(Zr)類 3 3 3 3 3 3 3 金屬氧化物 ZnO 1 1 1 1 1 1 1 黏合劑 乙基纖維素 3 3 3 3 3 3 3 溶劑 丁卡必醇 8 8 8 8 8 8 8 多晶體Cell (6 时,inch) 串聯電阻,RsimQ) 2.79 2.76 2.78 2.77 2.78 2.82 2.84 開路電壓,Voc(V) 0.620 0.622 0.620 0.621 0.621 0.620 0.621 填充因子,FM0/^ 77.62 77.67 77.66 77.67 77.65 77.64 77.64 組件效率,EffT%) 16.50 16.53 16 S? 16 50 16.49 16.48 16.48 單晶體Cell (6 叶,inch) 爭聯電阻,Rs(mQ) 2.34 2.30 2.31 2.32 2.34 2.34 2.33 紐路電壓,Voc(V) 0.623 0.624 0.624 0.624 0.623 0.624 0.623 填充因子,F.F(%) 77.98 78.03 78.02 78.01 78.00 78.01 78.00 組件效率,EffT%) 17.67 17.71 17.70 17.70 17.69 17.70 17.69 17 201229146 5 μΠ1 ’被覆有亞錄酸銀之銀粉末丨丨ver antimonate ^粒徑2.5 ’被覆有珅酸銀之銀粉末(Silver arsenate coated 【表4】 句粒徑Μ叫,被覆有銀-絲合金之銀粉末(SUver bismuth coated 比較例 1 2 ' 3 4 5 傳導性粒子 銀粉末1 70 85 65 50 銀粉~ 15 15 15 傳導性粒子 銀粉太3 "" 5 20 85 無機黏合劑 矽-鉛·導5¾¾ 3 3 3 3 3 金屬氧化物 ZnO 1 1 1 1 1 黏合劑 G基纖維素 3 3 3 3 3 溶劑 丁卡必_ 8 8 8 8 8 多晶體Cell (60寸,inch) 串聯電阻,Rs(mfX) 3.45 3.89 3.56 3.85 4.52 開路電壓,VoW、 0.619 0.619 0.619 0.620 0.19 填充因子,F.F(%) 77.10 76.98 76.95 76.90 76.78 組仵效率,Eff(%) 16.21 卜16.18 16.25 16.20 16.10 單晶體Cell (6 口寸,inch) 爭聯電阻,Rs(mQ) 3.10 3.25 3.08 3.25 3.68 開路電壓,Voc(V) 0.623 0.622 0.623 0.623 0.620 填充因子,F.F(0/。) 77.20 77.15 77.34 77.33 76.58 組件效率,Eff(%) 17.48 17.45 17.44 17.49 17.12 銀粉末1 :平均粒徑2.5 μηι,球形 銀粉末2 :平均粒徑0.5 μιη,球形 銀粉末3 :平均粒徑2.5 μηι,被覆有磷之銀粉末(ph〇sph〇ms coated silver powder)_ 從上表1至4的結果可以看出,本發明包含被覆有摻 雜物之銀粉末的實施例1至18 ’與比較例1至5相比,本 發明實施例之膏狀組合物具有較優異的穩定性和分散性, 因此展現出低電阻特性。此外’就本發明而言,電特性也 得到提高,致使太陽能電池效率展現出等於或高於習知太 陽能電池效率之水準。[Examples 1 to 18 and Comparative Examples 1-5J The ingredients and contents of the following Tables 1 to 4 were mixed to prepare a paste composition (unit: wt%) of the examples and the comparative examples. [Table 1] Example 1 2 3 4 Conductive particles Silver powder 1 Silver powder 2 Conductive particles 1 Silver powder 3 85 Silver powder 4 85 Silver powder 5 85 Silver powder 6 85 Inorganic binder 矽-lead-boron-wrong ( Zr) class 3 3 3 3 metal oxide ZnO 1 1 1 1 binder ethyl fiber turbulence 3 3 3 3 solvent butyl carbitol 8 8 8 8 polycrystalline Cell (6 leaves, inch) series resistance, Rs (mQ) 2.72 2.73 2.67 2.68 open circuit voltage, Voc(V) 0.622 0.621 0.621 0.621 fill factor, FF (%) 77.68 77.67 77.67 77.66 component efficiency, Effi0/. 16.54 16.53 16.52 16.52 Single Crystal Cell (6 pairs, inch) Series Resistance, Rs〇nQ) 2.30 2.31 2.30 2.31 Open Circuit Voltage, VocCV> 0.624 0.624 0.624 0.624 A Fill Factor, FF (%) 78.02 78.01 78.00 78.68 — Component Efficiency, Effi %) 17.70 17.69 17.69 17.68 15 201229146 Note) --- Silver powder 1. Average particle size 2.5 μπι, spherical silver powder 2: average particle size 〇.5 μιη, spherical silver powder 3. Average particle size 2.5 μηι, coated with structure Silver phosphate coated silver powder Silver powder 4: average particle size 2.5 μηι, coated with silver antim〇nate coated silver powder, powder 5 · average particle size 2.5 μιη ' Silver arsenate coated silver powder coated with a silver bismuth coated silver powder. [Table 2] ί ^Example 5 6 7 8 9 10 11 Conductive particle silver powder 1 65 50 65 50 65 50 65 Silver powder 2 15 15 15 15 15 15 15 Conductive particles 1 Silver powder 3 5 20 Silver powder 4 5 20 Silver powder 5 5 20 Silver powder 6 5 Inorganic binder 矽-lead-boron-zirconium (Zr) class 3 3 3 3 3 3 3 Metal oxide ZnO 1 1 1 1 1 1 1 Adhesive ethyl cellulose 3 3 3 3 3 3 3 Solvent butyl carbitol 8 8 8 8 8 8 8 Polycrystalline Cell (6-leaf, inch) Series resistance, Rs (mD) 2.85 2.75 2.87 2.78 2.86 2.77 2.90 Open circuit voltage, Voc 〇〇 - 0.621 0.622 0.621 0.621 0.620 0.622 0.621 Fill factor, FF (%) 77.63 77.65 77.62 77.64 77.63 77.65 77.64 Component level, Effii%) 16.45 16.53 16.48 16.51 16.49 15.51 16.49 Single crystal Cell (6 call ·, inch) Hanging resistance, Rs〇nQ) 2.42 2.34 2.42 2.35 2.43 2.35 2.41 open circuit voltage, V〇c(V) 0.623 0.624 0.623 0.623 0.624 0.623 0.623 factor, FF(%) 17.94 78.01 77.94 79.98 77.93 77.97 77.95 Component efficiency, Eff(%) 17 64 17 70 17.65 17.69 17.63 17.68 17.64 201229146 ϋ) '——- Silver powder 1: average particle size 2.5 μπι, spherical silver powder 2: average particle diameter 0.5 μιη, spherical silver powder 3: average particle diameter 2.5 μιη, coated with silver phosphate coated silver powder Silver powder 4: flat Particle size 2.5 μηη, coated with silver antimonate coated silver powder, silver powder 5. Average particle size 2.5 μπι, coated with silver arsenate coated silver powder, powder 6 · Silver bismuth coated silver powder with an average particle size of 2.5 μηι '[Table 3] Silver powder 1: average particle size 2.5 μηι, spherical silver powder 2: average particle diameter 〇.5 (four), spherical, Private 3. The average particle size of 2,5 μηι 'coated with silver phosphate coated silver powder Example 12 13 14 15 16 17 18 Conductive particle silver powder 1 50 60 60 60 60 60 60 Silver Powder 2 15 15 15 15 15 15 15 Conductive particles 1 Silver powder 3 5 5 5 Silver powder 4 5 5 5 Silver powder 5 5 5 5 Silver powder 6 20 5 5 5 Inorganic binder Shi Xi- wrong-deleted-wrong ( Zr) class 3 3 3 3 3 3 3 metal oxide ZnO 1 1 1 1 1 1 1 binder ethyl cellulose 3 3 3 3 3 3 3 solvent tetracarbitol 8 8 8 8 8 8 8 polycrystalline Cell ( 6 o'clock, inch) series resistance, RsimQ) 2.79 2.76 2.78 2.77 2.78 2.82 2.84 open circuit Voltage, Voc(V) 0.620 0.622 0.620 0.621 0.621 0.620 0.621 Fill factor, FM0/^ 77.62 77.67 77.66 77.67 77.65 77.64 77.64 Module efficiency, EffT%) 16.50 16.53 16 S? 16 50 16.49 16.48 16.48 Single crystal Cell (6 leaves, inch) Competition resistance, Rs(mQ) 2.34 2.30 2.31 2.32 2.34 2.34 2.33 Newway voltage, Voc(V) 0.623 0.624 0.624 0.624 0.623 0.624 0.623 Fill factor, FF (%) 77.98 78.03 78.02 78.01 78.00 78.01 78.00 Component efficiency, EffT%) 17.67 17.71 17.70 17.70 17.69 17.70 17.69 17 201229146 5 μΠ1 'Silver arsenate coated with silver powder coated with silver yttrium acid powder 丨丨ver antimonate ^ particle size 2.5' (Silver arsenate coated [Table 4] It is coated with silver-silver alloy silver powder (SUVER bismuth coated Comparative Example 1 2 ' 3 4 5 Conductive particle silver powder 1 70 85 65 50 Silver powder ~ 15 15 15 Conductive particle silver powder too 3 "" 5 20 85 Inorganic Adhesives 矽-Lead·Guide 53⁄43⁄4 3 3 3 3 3 Metal Oxide ZnO 1 1 1 1 1 Adhesive G-Based Cellulose 3 3 3 3 3 Solvent Dingkabi _ 8 8 8 8 8 Polycrystalline Cell (60 Inch, Inch) series resistance, Rs(mfX) 3.45 3.89 3.56 3.85 4.52 open circuit voltage, VoW, 0.619 0.619 0.619 0.620 0.19 fill factor, FF (%) 77.10 76.98 76.95 76.90 76.78 Group efficiency, Eff (%) 16.21 Bu 16.18 16.25 16.20 16.10 Single Crystal Cell (6-inch inch, inch) Competition resistance, Rs(mQ) 3.10 3.25 3.08 3.25 3.68 Open circuit voltage, Voc(V) 0.623 0.622 0.623 0.623 0.620 Fill factor, FF (0/. 77.20 77.15 77.34 77.33 76.58 Module efficiency, Eff (%) 17.48 17.45 17.44 17.49 17.12 Silver powder 1: average particle size 2.5 μηι, spherical silver powder 2: average particle size 0.5 μιη, spherical silver powder 3: average particle size 2.5 μηι, 〇 〇 〇 coated coated silver powder _ From the results of the above Tables 1 to 4, it can be seen that the present invention includes Examples 1 to 18' of the silver powder coated with the dopant and the comparative example The paste composition of the embodiment of the present invention has superior stability and dispersibility as compared with 1 to 5, and thus exhibits low resistance characteristics. Further, in the case of the present invention, the electrical characteristics are also improved, so that the solar cell efficiency exhibits a level equal to or higher than that of the conventional solar cell.

Claims (1)

201229146 七、申請專利範圍: 1. -種用於形成太陽能電池電極之纽組合物,包含 有被覆有摻雜劑之銀粉末、無機黏合劑、金屬氧化物、黏 合劑以及有機溶劑。 1如㈣專·㈣丨項所述之用於形成太陽能電池 電極之膏狀組合物,其中該被覆有摻雜劑之銀粉末係於銀 粉末表面被覆摻雜劑而形成者,該銀粉末之平均粒徑為〇 3 至 1〇 μιη。 3.如申請專利範圍第丨項所述之用於形成太陽能電池 電極之膏狀組合物,其中該摻雜劑係選自由偏磷酸銀、正 磷酸銀、焦磷酸銀、磷化銀、六氟磷(v)酸銀、亞銻酸銀、 六氟銻(V)酸銀、砷酸銀、銀-鉍合金、鉻酸銀、氰化銀、 碘酸銀、破化銀、鉬酸銀、二氰銀化钾、條蛾化銀、溴醆 銀、溴化銀、亞硒酸銀、碲化銀以及硒化銀所構成之族群 中的至少一種含銀化合物。 4·如申請專利範圍第丨項所述之用於形成太陽能電池 電極之膏狀組合物,係包含有: 5至90 wt%之被覆有摻雜劑之銀粉末; 1至10 wt%之無機黏合劑; 0.1至10 wt%之金屬氧化物; 1至20 wt%之黏合劑;以及 餘量的有機溶劑。 5·如申請專利範圍第1項所述之用於形成太陽能電池 電極之膏狀組合物,其中該膏狀組合物進一步包含有平均 201229146 粒徑為0.3 μιη至10 μιη且未被覆摻雜劑之銀粉末。 6. 如申請專利範圍第5項所述之用於形成太陽能電池 電極之膏狀組合物,係包含有: 5至90 wt%之銀粉末混合物,該銀粉末混合物包含被 覆有摻雜劑之銀粉末以及未被覆摻雜劑之銀粉末. 1至10 wt%之無機黏合劑; 0.1至10 wt%之金屬氧化物; 1至20 Wt%之黏合劑;以及 餘量的有機溶劑; 其中,該銀粉末混合物包含有85 wt%以下之未被覆換 雜劑的銀粉末以及餘量之被覆有摻雜劑的銀粉末。 ^ 7. 如申請專利範圍第1項所述之用於形成太陽能電池 電極之膏狀組合物,其中該無機黏合劑係選自由Si_B_pb 類、Si-Bi-Zn類、以及Si_Pb_A1_Zn類玻璃粉所構成之族群 中的至少一種玻璃粉。 8. 如申請專利範圍第1項所述之用於形成太陽能電池 電極之膏狀組合物,其中該黏合劑係選自由纖維素衍生 物、丙稀酸樹脂、醇酸樹脂、聚丙烯基樹脂、聚氣乙婦樹 脂、聚胺基甲酸酯樹脂、環氧樹脂、聚矽氧烷樹脂、松香 樹脂;萜烯樹脂;酚醛樹脂;脂肪族石油樹脂;丙烯酸酯 树脂,二曱苯樹脂;苯并呋喃茚(Coumarone-Indene)樹脂; 笨乙烯樹脂;二環戊二烯樹脂;聚丁烯樹脂;聚醚樹脂; 脲樹脂;蜜胺樹脂;聚醋酸乙烯酯樹脂以及聚異丁基樹脂 所構成之族群中的至少一種化合物。 (D 20 201229146 如申明專利|ε園第1項所述之用於形成太陽能電池電 ,極之膏狀組合物,其中該有機溶劑係選自由二甘醇丁㈣酸 ,酉曰、丁卡必醇、丙二醇單甲越、二丙二醇單尹基趟、丙二醇尹 鱗丙酸酯、乙醚丙酸酯、丙二酸單甲細醋酸醋、松油醇、十 二醇醋、二嶋f搭、,基乙基m内醋、以及乳酸 乙酯所構成之族群中的至少一種溶劑。 H).如申請專利範圍第!項所述之用於形成太陽能電池電 極之膏狀組合物’其中該金屬氧化物係選自由氧化辞、氧化 錫、氧化鐵以及氧化麟構成之族群中的至少1金屬氧化 物。 11. 一種太陽能電池電極,係利用申請專利範圍第 第10項中之任一項所述之膏狀組合物製成。 12. -種太陽能電池,係包括申請專利範圍第⑼ 之太陽能電池電極。 21 201229146 四、指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明: 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: ⑧ 2201229146 VII. Patent Application Range: 1. A new composition for forming a solar cell electrode, comprising a silver powder coated with a dopant, an inorganic binder, a metal oxide, a binder, and an organic solvent. (1) The paste composition for forming a solar cell electrode according to (4), wherein the silver powder coated with a dopant is formed by coating a surface of a silver powder with a dopant, the silver powder The average particle size is 〇3 to 1〇μιη. 3. The paste composition for forming a solar cell electrode according to the invention of claim 2, wherein the dopant is selected from the group consisting of silver metaphosphate, silver orthophosphate, silver pyrophosphate, silver phosphide, hexafluoride. Phosphorus (v) silver acid, silver tellurite, hexafluoroantimony (V) acid silver, silver arsenate, silver-antimony alloy, silver chromate, silver cyanide, silver iodate, silver cracked, silver molybdate, At least one silver-containing compound in the group consisting of potassium dicyanide, silver moth, silver bromide, silver bromide, silver selenite, silver telluride, and silver selenide. 4. The paste composition for forming a solar cell electrode according to the scope of claim 2, comprising: 5 to 90 wt% of a silver powder coated with a dopant; 1 to 10 wt% of an inorganic substance Adhesive; 0.1 to 10 wt% of metal oxide; 1 to 20 wt% of binder; and the balance of organic solvent. 5. The paste composition for forming a solar cell electrode according to claim 1, wherein the paste composition further comprises an average of 201229146 particle size of 0.3 μm to 10 μm and is not coated with a dopant. Silver powder. 6. The paste composition for forming a solar cell electrode according to claim 5, comprising: a silver powder mixture of 5 to 90 wt%, the silver powder mixture comprising silver coated with a dopant a powder and a silver powder not coated with a dopant. 1 to 10 wt% of an inorganic binder; 0.1 to 10 wt% of a metal oxide; 1 to 20 wt% of a binder; and a balance of an organic solvent; The silver powder mixture contains 85 wt% or less of the silver powder which is not coated with the dopant and the balance of the silver powder which is coated with the dopant. The paste composition for forming a solar cell electrode according to claim 1, wherein the inorganic binder is selected from the group consisting of Si_B_pb, Si-Bi-Zn, and Si_Pb_A1_Zn glass powder. At least one glass frit in the group. 8. The paste composition for forming a solar cell electrode according to claim 1, wherein the binder is selected from the group consisting of a cellulose derivative, an acrylic resin, an alkyd resin, a polypropylene-based resin, Polyurethane resin, polyurethane resin, epoxy resin, polyoxyalkylene resin, rosin resin; terpene resin; phenolic resin; aliphatic petroleum resin; acrylate resin, diphenyl resin; Coumarone-Indene resin; stupid vinyl resin; dicyclopentadiene resin; polybutene resin; polyether resin; urea resin; melamine resin; polyvinyl acetate resin and polyisobutyl resin At least one compound in the population. (D 20 201229146, for example, a method for forming a solar cell electric, extremely paste-like composition, wherein the organic solvent is selected from the group consisting of diethylene glycol butyl (tetra) acid, hydrazine, and butyl carbene. Alcohol, propylene glycol monomethyl phthalate, dipropylene glycol mono-indenyl hydrazine, propylene glycol fluorenyl propionate, diethyl ether propionate, malonic acid monomethyl acetate, terpineol, dodecanol vinegar, diterpene f, At least one solvent in the group consisting of ketone in the base ethyl group and ethyl lactate. H). The paste composition for forming a solar cell electrode wherein the metal oxide is selected from at least one metal oxide in the group consisting of oxidized, tin oxide, iron oxide, and oxidized lin. A solar cell electrode produced by using the paste composition according to any one of the claims of claim 10. 12. A solar cell comprising a solar cell electrode of the scope of claim (9). 21 201229146 IV. Designated representative map: (1) The representative representative of the case is: None (2) The symbol of the symbol of the representative figure is simple: 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: 8 2
TW100147728A 2010-12-30 2011-12-21 Paste composition for forming electrode of solar cell and electrode using the same TW201229146A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100139390A KR20120077439A (en) 2010-12-30 2010-12-30 Paste composition for forming electrode of solar cell and electrode using the same

Publications (1)

Publication Number Publication Date
TW201229146A true TW201229146A (en) 2012-07-16

Family

ID=46383631

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100147728A TW201229146A (en) 2010-12-30 2011-12-21 Paste composition for forming electrode of solar cell and electrode using the same

Country Status (3)

Country Link
KR (1) KR20120077439A (en)
TW (1) TW201229146A (en)
WO (1) WO2012091331A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456592B (en) * 2012-12-04 2014-10-11
CN104167237A (en) * 2013-05-20 2014-11-26 比亚迪股份有限公司 Conductive slurry used for solar cell back electrode, preparation method of conductive slurry and solar cell sheet
CN105190904A (en) * 2013-05-06 2015-12-23 韩化石油化学株式会社 Method of manufacturing electrode of solar cell and solar cell using same
TWI616898B (en) * 2013-04-02 2018-03-01 黑拉耶烏斯貴金屬公司 Particles comprising al, si and mg in electro-conductive pastes and solar cell preparation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853567A1 (en) * 2013-09-27 2015-04-01 Heraeus Precious Metals GmbH & Co. KG Solar cells produced from high ohmic wafers and paste comprising Ag metal-oxide additive
US10636540B2 (en) 2015-03-27 2020-04-28 Heraeus Deutschland GmbH & Co. KG Electro-conductive pastes comprising an oxide additive
US10056508B2 (en) 2015-03-27 2018-08-21 Heraeus Deutschland GmbH & Co. KG Electro-conductive pastes comprising a metal compound
KR101733161B1 (en) * 2015-10-31 2017-05-08 엘에스니꼬동제련 주식회사 Electrode Paste Composition For Solar Cell's Electrode And Solar Cell
KR20170064570A (en) * 2015-10-31 2017-06-12 엘에스니꼬동제련 주식회사 Electrode Paste For Solar Cell's Electrode And Solar Cell
KR101859017B1 (en) 2015-12-02 2018-05-17 삼성에스디아이 주식회사 Method of forming electrode, electrode manufactured therefrom and solar cell
CN112786235A (en) * 2021-01-06 2021-05-11 上海银浆科技有限公司 Special organic carrier for front silver paste for fine textured silicon wafer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280489B1 (en) * 2007-05-09 2013-07-01 주식회사 동진쎄미켐 A paste for producing electrode of solar cell
JP2011503772A (en) * 2007-10-18 2011-01-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Conductive composition and method of use in manufacturing semiconductor devices: Mg-containing additive

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456592B (en) * 2012-12-04 2014-10-11
TWI616898B (en) * 2013-04-02 2018-03-01 黑拉耶烏斯貴金屬公司 Particles comprising al, si and mg in electro-conductive pastes and solar cell preparation
CN105190904A (en) * 2013-05-06 2015-12-23 韩化石油化学株式会社 Method of manufacturing electrode of solar cell and solar cell using same
TWI550891B (en) * 2013-05-06 2016-09-21 韓華化學股份有限公司 Method of manufacturing electrode of solar cell and solar cell using the same
CN104167237A (en) * 2013-05-20 2014-11-26 比亚迪股份有限公司 Conductive slurry used for solar cell back electrode, preparation method of conductive slurry and solar cell sheet

Also Published As

Publication number Publication date
KR20120077439A (en) 2012-07-10
WO2012091331A3 (en) 2012-09-07
WO2012091331A2 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
TW201229146A (en) Paste composition for forming electrode of solar cell and electrode using the same
US9899545B2 (en) Composition for forming solar cell electrode and electrode produced from same
JP5817827B2 (en) Conductive paste
US10164128B2 (en) Composition for solar cell electrodes and electrode fabricated using the same
TWI576863B (en) A conductive paste containing lead-free glass frit
TW201007771A (en) Aluminum pastes and use thereof in the production of silicon solar cells
TW201144250A (en) Thick-film pastes containing lead-tellurium-lithium-titanium-oxides, and their use in the manufacture of semiconductor devices
TWI505294B (en) A conductive paste containing lead-free glass frit
TWI521548B (en) A conductive paste containing lead-free glass frit
TWI591652B (en) A conductive paste containing lead-free glass frit
KR101434167B1 (en) Silver paste composition used in the preparation of an electrode for a solar cell
JP2018078120A (en) Thick-film composition containing antimony oxides and their use in manufacture of semiconductor devices
TWI651289B (en) Composition for solar cell electrode and electrode fabricated using the same
TWI521546B (en) A conductive paste containing lead-free glass frit
JP2017092253A (en) Conductive composition
US20200266308A1 (en) Solar cell
KR101868638B1 (en) Paste composition for front electrode of silicon solar cell
JP2014078594A (en) Paste composition and solar battery
KR20170079848A (en) Glass frit and conductive paste composition having the same
CN111462940A (en) Composition for forming solar cell electrode, electrode and solar cell
JP5134722B1 (en) Solar cell and paste material used therefor
TWI681410B (en) Composition for solar cell electrode and solar cell electrode prepared using the same
WO2023190084A1 (en) Conductive aluminum paste composition for topcon-type solar cell electrode and topcon-type solar cell layered with reverse surface electrode being fired body of composition
TWI778141B (en) Conductive paste for forming solar cell electrodes
TWI646695B (en) Front electrode for solar cell and solar cell including the same