TW201228633A - Physiological detecting device and system - Google Patents

Physiological detecting device and system Download PDF

Info

Publication number
TW201228633A
TW201228633A TW100100581A TW100100581A TW201228633A TW 201228633 A TW201228633 A TW 201228633A TW 100100581 A TW100100581 A TW 100100581A TW 100100581 A TW100100581 A TW 100100581A TW 201228633 A TW201228633 A TW 201228633A
Authority
TW
Taiwan
Prior art keywords
signal
light
infrared
red light
red
Prior art date
Application number
TW100100581A
Other languages
Chinese (zh)
Inventor
Yue-Der Lin
Li-Chung Yang
Hu-Ying Ho
Original Assignee
Univ Feng Chia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Feng Chia filed Critical Univ Feng Chia
Priority to TW100100581A priority Critical patent/TW201228633A/en
Publication of TW201228633A publication Critical patent/TW201228633A/en

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present invention provides a physiological detecting device comprising a photo-emitter, a photo-detector, an analog signal conditioner, and a microcontroller. After the photo-emitter alternatively emits an infrared beam, and a red light beam to an organism, the photo-detector receives the infrared beam and the red light beam from the organism and generates an infrared signal and a red light signal, respectively. After the infrared signal and the red light signal are processed by the analog signal conditioner, according to these signals, the microcontroller calculates the physiological parameters.

Description

201228633 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種生理檢測裝置及其系統,特別是關於 一種利用使用光體積描記技術(Photoplethysmognphy, PPG)的生理檢測裝置及其系統。 【先前技術】201228633 VI. Description of the Invention: The present invention relates to a physiological detecting device and a system thereof, and more particularly to a physiological detecting device using a photoplethysmography (PPG) and a system thereof. [Prior Art]

台灣社會邁向老人化也造成相當龐大的醫療資源支出, 目前的醫學檢測大都是在醫療院所完成,不但增加病患來 回奔波的時間,也浪費不少社會資源。目前血氧機雖在各 大醫院、診所中已經相當普遍,但目前僅能提供現場量測, 無法讓醫院、診所或一般使用者,隨時掌握受測者之血氧 濃度數據資料做長期身體含氧狀況監測。根據研究報告指 $,長期的組織缺氧會導致心、腦缺損,以及延長傷口癒合 時間。尤其是患有疾病的中老年患者,長期氧氣不足將導 致身體機能急劇退化。有鑑於此 ,7'此長期身體含氧狀況監測 便顯得十分重要。 -般的血氧機本身體積較大,且需要配備一定體積重量 的電:方能提供微處理與顯示單元所需的電力,如此將造 成血氧機的體積與重量辦加 加’亦造成血氧機本身的成本增 加。隨著科技的進步,朝 』揭式且輕溥短小的目標時, 如何減少測量裝置元件但 B§夕一 、字其基本功旎便成為重要的課 0此外’使用時的方便性 生抓斗Θ 民1王〇便用後數據的可用性亦 …、°又。十測罝裝置時所需考量的因素之一。 此外,習知的血氧機所能提 j王往芩數有限,大部分 201228633 的血氧機只能提供血氧濃度(Sp〇2)及脈搏速率。因此無法 針對特定疾病廣泛性地定期收集其他重要的生理參數,如 灌流指標(perfusion index, ΡΙ)、呼吸率(respirat〇ry rate)、 脈搏反射指標(reflection index, RI)以及血管硬化指標 (stiffness index,si)等臨床上重要生理參數。 此外,傳統的血氧機由於無法提供上述其他臨床上重要 的生理參數,亦無法根據上述生理參數提供類似中醫脈診The socialization of Taiwanese society has also resulted in considerable medical resources. The current medical tests are mostly completed in medical institutions, which not only increases the time for patients to travel back, but also wastes a lot of social resources. At present, although the oximeter is quite common in major hospitals and clinics, it can only provide on-site measurement. It is impossible for hospitals, clinics or general users to keep abreast of the blood oxygen concentration data of the subjects for long-term body inclusion. Oxygen status monitoring. According to the study report, long-term tissue hypoxia leads to heart and brain defects and prolongs wound healing time. Especially in middle-aged and elderly patients with diseases, long-term lack of oxygen will lead to a sharp deterioration of bodily functions. In view of this, 7' monitoring of long-term physical oxygen conditions is very important. The general oximeter itself is large in size and needs to be equipped with a certain volume of weight: it can provide the power required for the micro-processing and display unit, which will cause the volume and weight of the oximeter to increase. The cost of the oxygen machine itself increases. With the advancement of technology, how to reduce the components of the measuring device when the goal is revealed and scorned, but the basic function of the word becomes an important lesson. In addition, the convenience of use is difficult. The availability of data after the use of the 1st king of the people is also..., ° again. One of the factors to consider when measuring the device. In addition, the conventional oximeter can provide a limited number of sputum, most of the 201228633 oximeter can only provide blood oxygen concentration (Sp 〇 2) and pulse rate. Therefore, it is not possible to regularly collect other important physiological parameters for a specific disease, such as perfusion index (ΡΙ), respiration rate (respirat〇ry rate), pulse reflex index (RI), and vascular sclerosis index (stiffness). Index, si) and other clinically important physiological parameters. In addition, the traditional oximeter cannot provide similar TCM pulse diagnosis based on the above physiological parameters because it cannot provide the above other clinically important physiological parameters.

的諧波分析,同時也無法進一步了解人體的五臟六腑與循 %系統的和諧共振程度的訊息,以供中醫辨症論治的科學 依據。 【發明内容】 本發明之係提供一生理檢測裝置,其利用光體積描記技 術的光學方法量測血液體積變化量,由於本發明之生理檢 測裝置利用光學裝置進行量測,因此,本發明可有效地降 低裝置體積並減少重量,以供使用者隨時進行量測。由於 本,明之微控制器可藉由分析紅外光訊號及紅光訊號,而 推算出許多臨床上重要的生理參數,本發日月亦可提供類似 中醫脈診的諸波分析’而當成中醫辨症論治的科學依據。 為達上述㈣,本發明揭示一種生理檢測裝置,其包含 一光發射器、-光感測器、—類比訊號處理器及—微控制 器。該光發射器交互發射-紅外光束及—紅光光束至—生 物體後,該光感測器接收自該生物體反射或透射之該紅外 光束及該紅光光束而分別產生—紅外光訊號及—红光訊 號。該類比訊號處理器處理該紅外光t«及該紅光訊號, 201228633 並分離該紅外光訊號之一直流電訊號與該紅外光訊號之一 交流電訊號,又分離該紅光訊號之一直流電訊號與該紅光 訊號之一交流電訊號。該微控制器控制該光發射器發射該 紅外光束及該紅光光束,該微控制器藉由該紅外光訊號之 該直流電訊號與該交流電訊號以及該紅光訊號之該直流電 訊號與該交流電訊號推算生理參數。 本發明揭示一種生理檢測系統,其包含一生理檢測裝 置、一電腦以及一資料擷取單元。該生理檢測裝置包含— 光發射器、一光感測器、一類比訊號處理器及一微控制器 以。該微控制器控制該光發射器交互發射一紅外光束及一 红光光束至一生物體後,該光感測器接收自該生物體反射 或透射之該紅外光束及該紅光光束而分別產生一紅外光訊 號及一紅光訊號。接著,該類比訊號處理器處理該紅外光 訊號及3玄紅光訊5虎’並分離該紅外光訊號之一直流電訊號 與S亥紅外光訊號之一交流電訊號,又該類比訊號處理器亦 分離該紅光訊號之一直流電訊號與該紅光訊號之一交流電 訊號。該微控制器藉由該紅外光訊號之該直流電訊號與該 交流電訊號以及該紅光訊號之該直流電訊號與該交流電訊 號推鼻生理參數。該資料擷取單元傳輸該紅外光訊號及該 紅光訊號之該些直流電訊號與該些交流電訊號至該電腦 後,該電腦儲存該紅外光訊號及該紅光訊號之該些直流電 訊號與該些交流電訊號、分析該些生理參數,並即時顯示 該些生理參數。 【實施方式】 201228633 在下文中本發明的實施例係配合所附圖&以閣述細節。 以下舉-些實施例做為本發明的描述,但是本發明不受限 於所舉的-些實施例。χ,所舉的多個實施例之間有= 相互適當結合’達成另-些實施例。說明書所提及的「實 施例」、「範例實施例」、「各種實施例」等等,意指包含在 本發明之該實施例所述有關之特殊特性、構造、或特徵。 ,明書中各處出現之「實施例中」的片語,.並不必然全部 指相同的實施例。於說明書中所運用諸如「過濾」、「保留」、 「分離」、「處理」、「控制」、「推算」、「轉換」'「儲存」、 析」傳輸」分開」或類似者的術語係指電腦或電腦系 統、或類似的電子計算裝置之動作或處理,上述電腦、電 腦系統或電子計算裝置操縱或變換電腦系統的暫存器或是 記憶體内之物理(諸如:電子)量的資料而成為類似表示為 於電腦系統記憶體、暫存器或其他該種資訊儲存器、傳輸 或顯示裝置内的物理量之其他資料。 當心臟收縮與舒張時,動脈也跟著收縮與舒張,使得血 管内單位面積的血流量成週期性的變化。血液體積產生變 動時,若利用光學量測方法量測時,所感測到的光強度也 會隨著血液體積的變化而變化。所得之訊號的振幅會隨血 液進出組織成正比的變化,猶如一交流成分。而接收這種 隨時間、組織中血液量變化之光訊號波形就稱作光體積描 記(photoplethysmography,PPG)訊號,而本非侵入式生理 檢測裝置即利用此PPG訊號來分析心血管參數。 如圖1A所示,PPG訊號的波形通常都擁有兩個波峰, 201228633 第一個波峰是沿著主動脈的路徑直接到達生物體的量測部 位(如手指)^第二個波峰則是傳輸到下半部身體後,由末 梢血官往心臟輸送血流所反射回來的訊號,如圖丨B所示。 如圖2所示,PPG訊號中,除了隨著血液體積的變化而 變化之交流成分(AC成分)透露出生理訊息外,還包含了靜 脈血液、組織血液及動脈非脈搏血液等部分一直維持不變 的血液體積之直流部分(DC成分)。 參照圖3之實施例所示,圖3揭示本發明之生理檢測裝 置1〇的實施架構圖。生理檢測裝置1〇包含光發射器2〇、 光感測器3 0、類比訊號處理器4〇 '微控制器5 〇以及顯示 器60。光體積描記技術(ph〇t〇plethysm〇graphy,ppG)係使 用光學方&量測血液體積變化量,t是—種用》量測人體 手指局部的血液流經組織血管變化之非侵入式的生理感測 技術。此種非侵入式的生理感測技術的光發射器2〇及光感 測器30可分為兩種實施方式,如圖4A所示之穿透式檢測 方式及如圖4B所示之反射式檢測方式。 如圖4A所不之穿透式檢測方式中,光發射器2〇設置於 丈檢測生物體(如手指100)的頂端,光發射器2〇在此實施 例中包含一紅光二極體201、一紅外光二極體2〇2及一驅 動電路(圖未示)。驅動電路電耦合微控制器5〇(於圖3中), 微控制器50係控制該驅動電路交互驅動紅光二極體2〇1 與紅外光二極體202,而使紅光二極體2〇1與紅外光二極 體202相互照明與關閉。㈣在其他實施例中(圖未示), 亦可將紅光二極體201與红外光二極體2〇2整合為單一光 201228633 發射器20(於圖3中),此種光發射器2〇可交互發射一紅外 光束,及一紅光光束至一生物體内。復參照圖4A,手指i〇〇 底部設置光感測器30,此光感測器3〇包含光接收二極體 3〇1與電流轉電壓電路(圖未示),光接收二極體3〇1接收自 手指100透射之該紅外光束及該紅光光束,而分別產生至 > 一電流,該電流轉電壓電路(圖未示)根據該電流轉換而 產生該紅外光訊號及該紅光訊號。如圖4B所示之反射式 仏測方式中,光發射器2〇設置於受檢測生物體(如皮膚n〇) 的頂端,光發射器20在此實施例中包含一紅光二極體 20卜一紅外光二極體202及一驅動電路(圖未示)。驅動電 路電耦合微控制器50(於圖3中),微控制器50係控制該驅 動電路交互驅動紅光二極體201與紅外光二極體202,而 使紅光二極體20 1與紅外光二極體202相互照明與關閉。 復參照圖4B ’光感測器30設置皮膚丨10頂端並鄰近光發 射斋20,此光感測器3〇包含光接收二極體3〇 1與電流轉 電廢電路(圖未示),光接收二極體301接收自皮膚11〇反 射之該紅外光束及該紅光光束’而分別產生至少一電流, 該電流轉電壓電路(圖未示)根據該電流轉換而產生該紅外 光訊號及該紅光訊號。 光體積描記技術的原理相似於脈波原理,光體積描記技 術原理係使用特定光源,如光譜波長為930〜950奈米(較佳 為940奈米)的紅外光二極體202,或是使用光譜波長為 650〜670奈米(較佳為660奈米)的紅光二極體2(H,作為輸 入光打入皮膚組織或其他組織,而後再使用光感測器30 201228633 接收反射或透射的該紅外光束及該紅光光束。 復參照圖3所示,生理檢測裝置1 〇進一步包含類比多工 器70 ’該類比多工器70電耦合光感測器30並可分開由光 感測器30產生的紅外光訊號IR及紅光訊號R,以供輸入 該類比訊號處理器40。當紅外光訊號IR及紅光訊號R傳 輸至類比訊號處理器4〇後,類比訊號處理器40可處理紅 外光訊號IR及紅光訊號R並分離紅外光訊號IR之直流電 訊號IR—DC與紅外光訊號之交流電訊號IR_AC,類比訊號 處理器40亦可分離紅光訊號r之直流電訊號r_dC與紅 光訊號R之交流電訊號R_AC。具體而言,類比訊號處理 器40包含低通濾波電路401及帶通濾波電路402。低通濾 波電路401保留紅外光訊號ir及紅光訊號r之該些直流 電訊號IR_DC,R-DC,而過濾掉紅外光訊號ir及紅光訊 號R之該些交流電訊號IR 一 AC,R_AC,帶通濾波電路402 保留紅外光訊號IR及紅光訊號r之該些交流電訊號 IR—AC,R—AC,而過濾掉紅外光訊號IR及紅光訊號r之該 些直流電訊號IR—DC,R—DC。其中低通濾波電路401之一 實施例截止頻率範圍為0.1赫茲至1〇赫茲之間,而帶通 濾波電路402之一實施例截止頻率範圍為1 〇赫茲至2〇赫 茲之間。 這四組電訊號將個別地傳輸至微控制器5〇。微控制器5〇 除了可藉由紅光時脈控制訊號CLK—R及紅外光時脈控制 sfl號CLK_IR控制光發射器2〇交互發射該紅外光束及該紅 光光束外,微控制器50的主要功能可藉由該紅外光訊號 • 10- 201228633 IR之該直流電訊號IR_DC與該交流電訊號IR—Ac以及該 紅光訊號R之該直流電訊號R—DC與該交流電訊號r_ac 推算一生理參數。而顯示器60則可即時顯示該生理參數。 生理參數中以血氧濃度而言,血氧濃度係表示為血液中 血紅素含氧的飽和程度,一般是量測含氧血紅素 (oxyhemoglobin,Hb〇2)與血紅素(hem〇globin,Hb)的比例 多寡。利用間接的方式量測時則標示企氧濃度為Sp〇2,經 推導含氧血紅素與全部血紅素的比例,可得血氧濃度公式 為·Harmonic analysis, at the same time, can not further understand the human body's internal organs and the degree of harmonious resonance of the system, for the scientific basis of TCM syndrome differentiation. SUMMARY OF THE INVENTION The present invention provides a physiological detecting device that measures an amount of blood volume change by an optical method of photoplethysmography. Since the physiological detecting device of the present invention uses an optical device for measurement, the present invention is effective. The device reduces the volume of the device and reduces the weight for the user to measure at any time. Because of this, Ming's microcontroller can calculate many clinically important physiological parameters by analyzing infrared light signals and red light signals, and this wave can also provide waveform analysis similar to traditional Chinese medicine pulse diagnosis. The scientific basis for the treatment of symptoms. In order to achieve the above (4), the present invention discloses a physiological detecting device comprising a light emitter, a light sensor, an analog signal processor and a micro controller. After the light emitters mutually transmit the infrared beam and the red light beam to the living body, the light sensor receives the infrared light beam and the red light beam reflected or transmitted from the biological body to generate an infrared light signal and - Red light signal. The analog signal processor processes the infrared light t« and the red light signal, 201228633 and separates one of the infrared light signals from the direct current signal and one of the infrared light signals, and separates one of the red light signals from the direct current signal and the One of the red light signals is an alternating current signal. The microcontroller controls the light emitter to emit the infrared light beam and the red light beam, and the microcontroller uses the DC signal of the infrared light signal and the alternating current signal and the direct current signal of the red light signal and the alternating current signal Estimate physiological parameters. The invention discloses a physiological detection system comprising a physiological detecting device, a computer and a data capturing unit. The physiological detecting device comprises a light emitter, a light sensor, a analog signal processor and a microcontroller. After the microcontroller controls the light emitter to mutually transmit an infrared light beam and a red light beam to a living body, the light sensor receives the infrared light beam and the red light beam reflected or transmitted from the living body to generate a Infrared light signal and a red light signal. Then, the analog signal processor processes the infrared light signal and the 3 Xuanhong optical signal 5 tiger' and separates one of the infrared light signals and one of the infrared signals of the infrared light signal, and the analog signal processor is also separated. One of the red light signals is an alternating current signal and one of the red light signals is an electrical signal. The microcontroller pushes the nasal physiological parameters by the DC signal of the infrared light signal, the DC signal of the AC signal and the red signal, and the AC signal. After the data acquisition unit transmits the infrared light signals and the red light signals of the red light signals and the alternating current signals to the computer, the computer stores the infrared light signals and the direct current signals of the red light signals and the The electrical signals are exchanged, the physiological parameters are analyzed, and the physiological parameters are displayed in real time. [Embodiment] 201228633 In the following, embodiments of the present invention are described in conjunction with the accompanying drawings. The following examples are taken as a description of the invention, but the invention is not limited to the embodiments. That is, there are = mutually appropriate combinations between the various embodiments presented to achieve other embodiments. The "embodiment", "example embodiment", "various embodiments" and the like referred to in the specification are intended to encompass the particular features, constructions, or characteristics described in this embodiment of the invention. The phrase "in the examples" appearing throughout the specification does not necessarily refer to the same embodiment. Terms such as "filter", "reserved", "separate", "process", "control", "calculation", "conversion", "storage", "transfer", "transfer" or the like are used in the specification. Means the operation or processing of a computer or computer system, or a similar electronic computing device, which manipulates or transforms a temporary memory of a computer system or a physical (such as electronic) amount of data in a memory It becomes a similar material that is similar to the physical quantity in a computer system memory, scratchpad or other such information storage, transmission or display device. When the heart contracts and relaxes, the artery also contracts and relaxes, causing a periodic change in blood flow per unit area of the blood vessel. When the blood volume changes, when measured by optical measurement, the sensed light intensity also changes with the volume of the blood. The amplitude of the resulting signal changes proportionally with the flow of blood into and out of the tissue, just like an alternating component. The optical signal waveform that receives such changes in blood volume over time and in the tissue is called a photoplethysmography (PPG) signal, and the non-invasive physiological detecting device uses the PPG signal to analyze cardiovascular parameters. As shown in Figure 1A, the waveform of the PPG signal usually has two peaks. The first peak of 201228633 is the measurement part of the organism directly along the path of the aorta (such as a finger). The second peak is transmitted to the second peak. After the lower part of the body, the signal reflected by the bloodstream from the peripheral blood to the heart is shown in Figure B. As shown in Figure 2, in addition to the physiological component of the AC component (AC component) that changes with the change in blood volume, the PPG signal also contains venous blood, tissue blood, and non-pulse blood. The DC portion of the changed blood volume (DC component). Referring to the embodiment of Fig. 3, Fig. 3 is a view showing an embodiment of the physiological detecting device 1 of the present invention. The physiological detecting device 1A includes a light emitter 2A, a photo sensor 30, an analog signal processor 4', a microcontroller 5, and a display 60. Photoplethysmography (ppG) uses the optical side & measure the volume change of blood, t is a kind of non-invasive measurement of the blood flow through the tissue of the human finger. Physiological sensing technology. The non-invasive physiological sensing technology of the light emitter 2 and the light sensor 30 can be divided into two embodiments, such as the through-type detection mode shown in FIG. 4A and the reflective type as shown in FIG. 4B. Detection method. In the transmissive detection mode as shown in FIG. 4A, the light emitter 2 is disposed at the top end of the detecting organism (such as the finger 100), and the light emitter 2 includes a red diode 201 in this embodiment. An infrared photodiode 2〇2 and a driving circuit (not shown). The driving circuit is electrically coupled to the microcontroller 5 (in FIG. 3), and the microcontroller 50 controls the driving circuit to alternately drive the red diode 2〇1 and the infrared diode 202 to make the red diode 2 〇1 and infrared light diode 202 illuminate and turn off each other. (d) In other embodiments (not shown), the red LED 201 and the infrared diode 2〇2 may also be integrated into a single light 201228633 transmitter 20 (in FIG. 3), such a light emitter 2 The 〇 can alternately emit an infrared beam and a red light beam into a living body. Referring to FIG. 4A, a photo sensor 30 is disposed at the bottom of the finger i, and the photo sensor 3 includes a light receiving diode 3〇1 and a current converting voltage circuit (not shown), and the light receiving diode 3 The 〇1 receives the infrared light beam and the red light beam transmitted from the finger 100, and respectively generates a current, and the current-to-voltage circuit (not shown) generates the infrared light signal and the red light according to the current conversion. Signal. In the reflective detection mode shown in FIG. 4B, the light emitter 2 is disposed at the top end of the detected organism (eg, skin n〇), and the light emitter 20 includes a red diode 20 in this embodiment. Bu-infrared diode 202 and a driving circuit (not shown). The driving circuit electrically couples the microcontroller 50 (in FIG. 3), and the microcontroller 50 controls the driving circuit to alternately drive the red diode 201 and the infrared diode 202, and the red diode 20 1 and the infrared The light diodes 202 are illuminated and turned off each other. Referring to FIG. 4B, the photo sensor 30 is disposed at the top end of the skin 丨10 and adjacent to the light emission illuminator 20, and the photo sensor 3 〇 includes a light receiving diode 3〇1 and a current transfer electric circuit (not shown). The light receiving diode 301 receives the infrared light beam reflected from the skin 11 及 and the red light beam ′ respectively to generate at least one current, and the current converting voltage circuit (not shown) generates the infrared light signal according to the current conversion. The red light signal. The principle of photoplethysmography is similar to the principle of pulse wave. The principle of photoplethysmography uses a specific light source, such as infrared light diode 202 with a spectral wavelength of 930~950 nm (preferably 940 nm), or using spectrum. A red light diode 2 (H, having a wavelength of 650 to 670 nm (preferably 660 nm), is used as input light to penetrate into skin tissue or other tissues, and then receives a reflection or transmission using a photosensor 30 201228633 The infrared light beam and the red light beam. Referring to FIG. 3, the physiological detecting device 1 further includes an analog multiplexer 70'. The analog multiplexer 70 electrically couples the light sensor 30 and can be separated by the light sensor. 30. The infrared signal IR and the red signal R are generated for input to the analog signal processor 40. When the infrared signal IR and the red signal R are transmitted to the analog signal processor 4, the analog signal processor 40 can process The infrared signal IR and the red signal R separate the IR signal IR-DC of the infrared signal IR and the IR signal AC_AC of the infrared signal. The analog signal processor 40 can also separate the DC signal r_dC and red light of the red signal r. The AC signal R_AC of the number R. Specifically, the analog signal processor 40 includes a low pass filter circuit 401 and a band pass filter circuit 402. The low pass filter circuit 401 retains the DC signals IR_DC of the infrared light signal ir and the red light signal r. , R-DC, and filtering out the alternating current signals IR-AC, R_AC, and band-pass filter circuit 402 of the infrared light signal ir and the red light signal R, and retaining the alternating current signals IR of the infrared light signal IR and the red light signal r- AC, R-AC, and filtering out the DC signals IR-DC, R-DC of the infrared light signal IR and the red light signal r. One embodiment of the low-pass filter circuit 401 has a cutoff frequency range of 0.1 Hz to 1 〇. Between Hertz, and one of the bandpass filter circuits 402, the cutoff frequency range is between 1 Hz and 2 Hz. The four sets of electrical signals are individually transmitted to the microcontroller 5. The microcontroller 5 is removed. The main function of the microcontroller 50 can be controlled by the red light clock control signal CLK-R and the infrared light clock control sfl number CLK_IR controlling the light emitter 2 to mutually transmit the infrared light beam and the red light beam. Infrared light signal • 10- 201228 633 IR of the DC signal IR_DC and the AC signal IR-Ac and the red signal R of the DC signal R-DC and the AC signal r_ac to calculate a physiological parameter, and the display 60 can display the physiological parameter in real time. In terms of blood oxygen concentration, the blood oxygen concentration is expressed as the saturation degree of hemoglobin in the blood, and is generally measured by oxyhemoglobin (Hb〇2) and hemoglobin (Hb). The ratio of the oxygen concentration is Sp〇2, and the ratio of oxygenated hemoglobin to total heme is derived by using the indirect method.

Sp〇2 = -^_xl00% 式 i ^Hb02 ^ UHb 其中cHb〇2表示血液中含氧血紅素濃度、cHb表示血液中 不含氧血紅素濃度。 血液基本上是由血球和血漿所組成,其中血球裡的990/0 以上為紅血球,所以白血球對血液的物理特性的影響並不 大。Lambert利用數學方程式表示吸收度與介質之間的關 係’直到Beer確定了吸收光度與介質濃度的關係,因而建 立光吸收度的基本定律,一般稱Sp〇2 = -^_xl00% Formula i ^Hb02 ^ UHb where cHb〇2 indicates the concentration of oxygenated hemoglobin in the blood and cHb indicates the concentration of oxygen-free heme in the blood. The blood is basically composed of blood cells and plasma, and more than 990/0 of the blood cells are red blood cells, so the white blood cells have little effect on the physical properties of the blood. Lambert uses mathematical equations to express the relationship between absorbance and the medium' until Beer determines the relationship between absorbance and medium concentration, thus establishing the basic law of light absorbance, generally called

Beer-Lambert’s Law。依 此定律’物質對光的吸收量與光路徑和物質的濃度呈指數 關係如公式2:Beer-Lambert’s Law. According to this law, the absorption of light by matter is exponentially related to the concentration of light path and matter, as in Equation 2:

It=I〇.e,d 式2 其中It表示穿透光強度、I。表示入射光強度、c表示待 測物濃度、d表示光路徑長度、ε表示物質的光吸收係數。 從式2可知只要得知入射光強度J。與穿透光強度It和已 [S] -11 - 201228633 知的吸收係數ε及光路徑長度d,即可算出待測物溶液濃 度c。务·再定義光學強度(〇pticai density,OD)如公式3: OD = Ιηγ = sxcxd 式 3 式3是在假設量測條件不變下(即ε與d為常數),則可 知到光學強度與待測物濃度的線性關係。如此便可從光學 強度的大小得到未知待測物濃度。 血氧濃度的量測主要是根據Hb〇2和Hb在光吸收頻譜上It=I〇.e,d Equation 2 where It represents the transmitted light intensity, I. Indicates incident light intensity, c indicates the concentration of the analyte, d indicates the length of the optical path, and ε indicates the light absorption coefficient of the substance. It can be seen from Equation 2 that the incident light intensity J is known. The concentration c of the analyte solution can be calculated from the transmitted light intensity It and the absorption coefficient ε and the optical path length d known as [S] -11 - 201228633. Re-defining the optical intensity (〇pticai density, OD) as shown in Equation 3: OD = Ιηγ = sxcxd Equation 3 Equation 3 is based on the assumption that the measurement conditions are constant (ie, ε and d are constant), then the optical intensity is known. The linear relationship of the concentration of the analyte. Thus, the unknown analyte concentration can be obtained from the magnitude of the optical intensity. The measurement of blood oxygen concentration is mainly based on Hb〇2 and Hb on the light absorption spectrum.

的差異’以一個波長的光(如紅外光及紅光)分別打入人體 組織中(通常是手指100 ’如圖4A所示),另一端則以光感 測益3 0感測穿透光強度。選擇雙波長的另—個原因是實際 應用中’準確的量測入射光和反射後的光強度極為不便, 所以利用雙波長推導進而形成百分比的形式。 本發明之生理檢測裝置1 〇分別由紅光r和紅外光IR照 射’可以分別得到兩者的OD為下列公式: OD(R) = ^〇2 cm〇2 d+ ^. CHb. d 式4 〇〇卿 _ fHb〇2 CHb〇2.^ CRb · d 式5 其中:Hb〇2表示為含氧血紅素對紅外光的吸故係數、 cHb〇2表示為含氧血紅素的濃度、^黑表示為不含氧血紅素對 紅外光的吸收係數、cHb表示為不含氧血紅素的濃度、 表示為含氧血紅素對紅光的吸收係數、^表示為不含氧血 紅素對紅光的吸收係數。 再定義溶液光強度之比(吸光度變化率比、光電信號的幅 度變化量)Ros如下: m -12- 201228633The difference 'is one wavelength of light (such as infrared light and red light) into the human tissue (usually the finger 100 ' as shown in Figure 4A), and the other end senses the transmitted light with the light sense strength. Another reason for choosing dual wavelengths is that it is extremely inconvenient to accurately measure the incident light and the reflected light intensity in practical applications, so the two-wavelength derivation is used to form a percentage form. The physiological detecting device 1 of the present invention is irradiated with red light r and infrared light IR respectively, and the OD of each of them can be obtained as follows: OD(R) = ^〇2 cm〇2 d+ ^. CHb. d Equation 4 〇 〇卿_ fHb〇2 CHb〇2.^ CRb · d Equation 5 where: Hb〇2 is the absorption coefficient of infrared light for oxygenated hemoglobin, cHb〇2 is expressed as the concentration of oxygenated heme, and black is expressed. The absorption coefficient of infrared light for non-hemoglobin, cHb is expressed as the concentration without oxygen hemoglobin, the absorption coefficient of oxygenated hemoglobin for red light, and ^ is the absorption of red light without oxygen hemoglobin. coefficient. Redefining the ratio of the light intensity of the solution (the ratio of change in absorbance to the amplitude of the photoelectric signal) Ros is as follows: m -12- 201228633

ros=M 〇_ 式6 就成年人而言1 940nm的紅外光和66〇nm的紅光為 例,Hb對紅外光及紅光的吸收係數分別為〇2及〇86;= Hb〇2對紅外光及紅光的吸收係數分別為ο.”及〇12。上 述吸收係數的單位為公升/毫莫爾*公分。將式4及式$代 入式6後’再代入式3及Hb和削2對紅外光及紅光的吸 收係數’可得到公式7如下:Ros=M 〇_ Equation 6 For adults, 1 940 nm infrared light and 66 〇 nm red light are taken as examples. The absorption coefficients of Hb for infrared light and red light are 〇2 and 〇86, respectively; = Hb〇2 pairs The absorption coefficients of infrared light and red light are ο.” and 〇12, respectively. The unit of absorption coefficient above is liter/mmol*cm. Substituting formula 4 and formula $ into equation 6 and then substituting into type 3 and Hb and cutting 2 pairs of infrared light and red light absorption coefficient ' can be obtained as follows:

Sp〇2 = —86"Q-2xRgL 0.74 +0.09xRos 公式 7Sp〇2 = —86"Q-2xRgL 0.74 +0.09xRos Equation 7

若將動脈血中非脈搏部分(如圖2所式)的吸收光強度與 靜脈血及組織血液的吸收光強度合併,則為不隨脈搏及時 間而改變的光強度部分可視為DC成分(公式中用DC表 示)’然而若隨著動脈壓力的變化而改變的光強度部分則定 義為脈搏性動脈血液的吸收光強度AC成分(公式中用AC 表示)’則R〇s可表示為公式8:If the intensity of the absorbed light in the non-pulse portion of the arterial blood (as shown in Fig. 2) is combined with the absorbed light intensity of the venous blood and the tissue blood, the portion of the light intensity that does not change with the pulse and time can be regarded as a DC component (in the formula) Expressed by DC) 'However, if the portion of the light intensity that changes with changes in arterial pressure is defined as the AC component of the absorbed light intensity of the pulse arterial blood (indicated by AC in the formula)' then R〇s can be expressed as Equation 8:

Ros = ACr + DCr、 OD(R) _ DCr ' DCir 式 其中ACR表示為圖3所示之微控制器50所處理的交流 電訊號R_AC ’相對應地DCr則為直流電訊號R_DC,ACir 則為交流電訊號IR_AC,DC1r則為直流電訊號IR_DC,是 故微處理器50可藉由式7及式8推算出生理參數中的血氧 濃度sPo2。 參照圖1A、圖1B及圖5所示的PPG訊號中,該些交流 [S] -13- 201228633 電訊號IR—AC,R—AC(如圖3所示)包含複數個單位脈衝波 200,單位脈衝波200包含第一波峄A、第二波峰B及兩 波谷C,D。波谷C至第一波峰A的垂直距離為單位脈衝波 200之第一振幅AM’第一振幅八河與相對應之直流電訊號 DC的比值則定義為生理參數中的一灌流指標(perfusi〇n index)。灌肌彳a彳示代表ppg訊號中脈搏振幅AM與直流(DC) 成分的比值。末梢灌流指標(peripheral perfusi(>n index,ρρι) 則是末梢血液流量的變化,PPI可以用以預測動脈循環時 所引起的心搏量變化,但PPI的變化會受到量測位置與受 測者生理狀況的影響。此外,灌流指標對近端交感神經 (proximal sympathectomy)、動脈前段阻塞(pr〇ximal arteHal clamping)、新生兒左心室阻塞等症狀具有很高的識別效 果’因此可以用來預測或診斷這些疾病的發生。 再者,脈搏反射指標(reflecti〇n index,RI)與血管硬化指 標(stiffness index,SI)皆有關於血管硬化的生理參數。經過 近年來的研究,血管硬化是心血管疾病病變前期的症狀, 與心臟疾病和腦血管疾病有很大關連《如圖5所示,在ppG 訊號中,第一波峰A是血液動力波沿著主動脈的路徑連接 傳遞到手指,第二波峰B則是血液動力波傳送到下半部身 體後’反射回來的重搏波(dicr〇tic wave),如圖及圖⑺ 所示。第一波峰A延遲到第二波峰b的延遲時間,是由 脈搏經鎖骨動脈的路徑傳導後,經反射波再度回到鎖骨動 脈的傳導時間而決定。假設傳導的距離與受測者的身言 (height)成正比,因此脈搏在主動脈及大動脈的傳遞時間, 201228633 。血管硬化指標參數反應了大Ros = ACr + DCr, OD(R) _ DCr ' DCir where ACR is represented by the AC signal R_AC processed by the microcontroller 50 shown in FIG. 3, and the corresponding DCr is the DC signal R_DC, and ACir is the AC signal. IR_AC and DC1r are DC signals IR_DC. Therefore, the microprocessor 50 can calculate the blood oxygen concentration sPo2 in the physiological parameters by Equations 7 and 8. Referring to the PPG signals shown in FIG. 1A, FIG. 1B and FIG. 5, the alternating currents [S] -13 - 201228633 electrical signals IR-AC, R-AC (shown in FIG. 3) comprise a plurality of unit pulse waves 200, The unit pulse wave 200 includes a first wave A, a second peak B, and two waves C, D. The vertical distance from the valley C to the first peak A is the first amplitude AM of the unit pulse wave 200. The ratio of the first amplitude eight rivers to the corresponding DC signal DC is defined as a perfusion index in the physiological parameters (perfusi〇n index ). The 彳 a 彳 indicates the ratio of the pulse amplitude AM to the direct current (DC) component in the ppg signal. Peripheral perfusion (peripheral perfusi (>n index, ρρι) is a change in peripheral blood flow. PPI can be used to predict changes in stroke volume caused by arterial circulation, but changes in PPI are subject to measurement and measurement. In addition, the perfusion index has a high recognition effect on symptoms such as proximal sympathectomy, pr〇ximal arteHal clamping, and neonatal left ventricular occlusion. Therefore, it can be used to predict Or diagnose the occurrence of these diseases. Furthermore, the pulse reflectance index (RI) and the sclerosing index (SI) have physiological parameters about vascular sclerosis. After recent studies, arteriosclerosis is the heart. Symptoms of pre-vessel disease are closely related to heart disease and cerebrovascular disease. As shown in Figure 5, in the ppG signal, the first peak A is the blood-powered wave connected to the finger along the path of the aorta. The second peak B is the dicr〇tic wave that is reflected back after the hemodynamic wave is transmitted to the lower half of the body, as shown in the figure and figure (7). As shown, the delay time from the first peak A to the second peak b is determined by the conduction time of the pulse back through the clavicular artery and back to the clavicular artery by the reflected wave. The distance of the conduction and the subject are assumed. The height of the body is proportional to the transmission time of the pulse in the aorta and aorta, 201228633. The parameters of the atherosclerosis index reflect large

AM的比值為生理參數中的脈搏反射指標。 reflection index = 可以用來計算血管硬化指標。 動脈的硬化程度,而脈搏反射 的緊縮程度。透過PPG訊號名The ratio of AM is the pulse reflectance index in the physiological parameters. Reflection index = can be used to calculate indicators of vascular sclerosis. The degree of hardening of the arteries, and the degree of contraction of the pulse reflex. Through the PPG signal name

stiffiiess index 二^^ ι.· 1Λ △t 式 10 各參數示意如圖5所示:為兩波峰間延遲時間、AM 為第一波峰A的振幅、DW為第二波峰]b的振幅。 參如、圖6所示,本發明揭露一生理檢測系統丨丨,其包含 種生理檢測裝置10,、資料擷取單元8〇及電腦9〇。生理檢 測裝置10,包含光發射器20、光感測器3〇、類比訊號處理 40微控制器5〇及類比多工器70。光發射器2〇交互發 射紅外光束及紅光光束至生物體後,光感測器3〇接收自該 生物體反射或透射之該紅外光束及該紅光光束而分別產生 一紅外光訊號及一紅光訊號。類比多工器7〇電耦合該光感 測器30並可分開該紅外光訊號ir及該紅光訊號r,以供 輸入該類比訊號處理器40。類比訊號處理器40包含低通 濾波電路401及帶通濾波電路402,類比訊號處理器40處 理該紅外光訊號IR及該紅光訊號R並分離該紅外光訊號 IR之一直流電訊號IR_DC與該紅外光訊號IR之一交流電 -15- 201228633 訊號IR_AC,分離該紅光訊號R之直流電訊號R—DC與該 紅光訊號R之交流電訊號R_AC。微控制器50藉由該紅外 光訊號IR之該直流電訊號IR_DC與該交流電訊號iR Ac 以及該紅光訊號R之該直流電訊號IR_DC與該交流電訊號 R_AC推算一生理參數。資料擷取單元80傳輸該紅外光訊 號IR及該紅光訊號R之該些直流電訊號IR—DC,R_DC與 該些交流電訊號IR_AC,R_AC至該電腦90。電腦90儲存 該紅外光訊號IR及該紅光訊號R之該些直流電訊號 IR—DC,R—DC與該些交流電訊號IR—AC,R_AC、分析該生 理參數及即時顯示上述生理參數《並根據上述生理參數中 的該些交流電訊號IR-AC,R—AC分段,例如以兩個單位脈 衝波200或三個單位脈衝波200分段後’利用傅立葉轉換 上述分段後的該些交流電訊號,並將分段後的每段傅立葉 轉換數值平均後所得之平均值為脈診判斷指標。脈診判斷 指標可提供類似中醫脈診的諸波分析,而了解人體的五臟 六腑與循環系統的和諧共振程度的訊息,以供中醫辨症論 治的科學依據。 本發明之技術内容及技術特點已揭示如上,然而熟悉本 項技術之人士仍可能基於本發明之教示及揭示而作種種不 背離本發明精神之替換及修飾。因此,本發明之保護範圍 應不限於實施例所揭示者,而應包括各種不背離本發明之 替換及修飾,並為以下之申請專利範圍所涵蓋。 【圖式簡單說明】 圖ΙΑ、1B為PPG訊號的產生機制示意圖; • 16 - 201228633 圖2係ppg訊號的交流成分(AC成分)與直流成分pc 成分)的訊號區分; 圖3係本發明一實施例之生理檢測裝置之架構圖; 圖4A係本發明一實施例之光發射器及光感測器之示意 圖; 圖4B係本發明另一實施例之光發射器及光感測器之示 意圖; 圖5係本發明一實施例之單位脈衝波中第一波導、第二 波峰及兩波谷 之示意圖;以及 圖6係本發明一實施例之生理檢測系統之架構示意圖。 【主要元件符號說明】 1〇 生理檢測裝置 1〇| 生理檢測裝置 11 生理檢測系統 20 光發射器 2〇1 紅光二極體 2〇2 紅外光二極體 3〇 光感測器 3〇ι 光接收二極體 4〇 類比訊號處理器 4〇1 低通渡波電路 402 帶通濾波電路 5〇 微控制器 201228633Stiffiiess index Two ^^ ι.· 1Λ △t Equation 10 The parameters are shown in Figure 5: the delay between two peaks, AM is the amplitude of the first peak A, and DW is the amplitude of the second peak]b. As shown in FIG. 6, the present invention discloses a physiological testing system comprising a physiological detecting device 10, a data capturing unit 8 and a computer 9A. The physiological detecting device 10 includes a light emitter 20, a light sensor 3A, an analog signal processing 40 microcontroller 5A, and an analog multiplexer 70. After the light emitters 2 〇 mutually transmit the infrared light beam and the red light beam to the living body, the light sensor 3 〇 receives the infrared light beam reflected by or transmitted from the living body and the red light beam to generate an infrared light signal and a Red light signal. The analog multiplexer 7 is electrically coupled to the photo sensor 30 and can separate the infrared signal ir and the red signal r for input to the analog signal processor 40. The analog signal processor 40 includes a low pass filter circuit 401 and a band pass filter circuit 402. The analog signal processor 40 processes the infrared light signal IR and the red light signal R and separates the infrared light signal IR, a DC signal IR_DC, and the infrared signal. One of the optical signals IR -15- 201228633 signal IR_AC, separates the DC signal R-DC of the red signal R and the AC signal R_AC of the red signal R. The microcontroller 50 estimates a physiological parameter by the DC signal IR_DC of the infrared light signal IR and the alternating current signal iR Ac and the direct current signal IR_DC of the red light signal R and the alternating current signal R_AC. The data acquisition unit 80 transmits the DC signals IR-DC, R_DC and the AC signals IR_AC, R_AC of the infrared signal IR and the red signal R to the computer 90. The computer 90 stores the infrared light signals IR and the red light signals R of the DC signals IR-DC, R-DC and the alternating current signals IR-AC, R_AC, analyzes the physiological parameters and instantly displays the physiological parameters "and according to The alternating current signals IR-AC, R-AC segments in the above physiological parameters are segmented by, for example, two unit pulse waves 200 or three unit pulse waves 200, and then the Fourier transforms the segmented AC signals. And the average value obtained after averaging the Fourier transform values after segmentation is the pulse diagnosis judgment index. The pulse diagnosis index can provide similar wave analysis of TCM pulse diagnosis, and understand the information of the harmonious resonance degree of the human body's internal organs and the circulatory system, so as to provide scientific basis for TCM syndrome diagnosis. The technical contents and technical features of the present invention have been disclosed as above, and those skilled in the art can still make various substitutions and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the present invention should be construed as being limited by the scope of the appended claims. [Simple diagram of the diagram] Figure ΙΑ, 1B is a schematic diagram of the generation mechanism of the PPG signal; • 16 - 201228633 Figure 2 is the signal distinction between the AC component (AC component) of the ppg signal and the DC component pc component; Figure 3 is a FIG. 4A is a schematic diagram of a light emitter and a light sensor according to an embodiment of the present invention; FIG. 4B is a schematic diagram of a light emitter and a light sensor according to another embodiment of the present invention; FIG. 5 is a schematic diagram of a first waveguide, a second peak, and two valleys in a unit pulse wave according to an embodiment of the present invention; and FIG. 6 is a schematic structural diagram of a physiological detection system according to an embodiment of the present invention. [Main component symbol description] 1〇 Physiological detection device 1〇| Physiological detection device 11 Physiological detection system 20 Light emitter 2〇1 Red light diode 2〇2 Infrared light diode 3 fluorescent sensor 3〇ι light Receiver diode 4〇 analog signal processor 4〇1 low pass wave circuit 402 band pass filter circuit 5〇microcontroller 201228633

60 顯示器 70 類比多工器 80 資料擷取單元 90 電腦 100 手指 110 皮膚 200 單位脈衝波 A 第一波峰 AM 弟·一振幅 B 第二波峰 DW 弟二振幅 C, D 波谷 DC 直流電訊號 At 延遲時間 IR 紅外光訊號 R 紅光訊號 IR_DC 紅外光訊號之直流電 訊號 IR_AC 紅外光訊號之交流電 訊號 R_DC 紅光訊號之直流電訊 號 R_AC 红光訊號之交流電訊 號 -18- 201228633 CLK_R 紅光時脈控制訊號 CLK IR紅外光時脈控制訊號60 Display 70 Analog multiplexer 80 Data capture unit 90 Computer 100 Finger 110 Skin 200 Unit pulse wave A First peak AM Young · One amplitude B Second peak DW Second two amplitude C, D Valley DC DC signal At Delay time IR Infrared light signal R red light signal IR_DC Infrared light signal DC signal IR_AC Infrared light signal AC signal R_DC Red light signal DC signal R_AC Red light signal AC signal -18- 201228633 CLK_R Red light clock control signal CLK IR infrared light Clock control signal

•19-•19-

Claims (1)

201228633 七、申請專利範圍: 1 · 一種生理檢測裝置,包含: 一光發射器,交互發射一紅外光束及一紅光光束至一 生物體; 一光感測器,接收自該生物體反射或透射之該紅外光 束及該紅光光束而分別產生一紅外光訊號及一紅光訊號; 一類比訊號處理器,處理該紅外光訊號及該紅光訊號 並分離該紅外光訊號之一直流電訊號與該紅外光訊號之 一父流電訊號,分離該紅光訊號之一直流電訊號與該紅光 訊號之一交流電訊號;以及 一微控制器’控制該光發射器發射該紅外光束及該紅 光光束’該微控制器藉由該紅外光訊號之該直流電訊號與 該交流電訊號以及該紅光訊號之該直流電訊號與該交流 電訊號推算一生理參數。 2.根據請求項1之生理檢測裝置,進一步包含一類比多工 器,該類比多工器電耦合該光感測器並可分開該紅外光訊 號及該紅光訊號’以供輸入該類比訊號處理器。 3·根據請求項1之生理檢測裝置,其中該光發射器包含一紅 光二極體、一紅外光二極體及一驅動電路,該驅動電路電 耦合該微控制器,該微控制器控制該驅動電路交互驅動該 紅光二極體與該紅外光二極體。 4.根據請求項1之生理檢測裝置,其中該光感測器包含—光 接收二極體與一電流轉電壓電路,該光接收二極體接收自 該生物體反射或透射之該紅外光束及該紅光光束,而分別 -20- 201228633 產生至少一電流’該電流轉電壓電路根據該電流轉換而產 生該紅外光訊號及該紅光訊號。 5.根據請求項丨之生理檢測裝置,其中該類比訊號處理器包 含一低通濾波電路及一帶通濾波電路,該低通濾波電路保 留該紅外光訊號及該紅光訊號之該些直流電訊號,而過濾 掉該紅外光訊號及該紅光訊號之該些交流電訊號,該帶通 渡波電路保留該紅外光訊號及該紅光訊號之該些交流電 訊號’而過濾掉該紅外光訊號及該紅光訊號之該些直流電 訊號。201228633 VII. Patent application scope: 1 · A physiological detection device comprising: a light emitter that mutually emits an infrared beam and a red light beam to a living body; a light sensor received or reflected from the living body The infrared light beam and the red light beam respectively generate an infrared light signal and a red light signal; a analog signal processor processes the infrared light signal and the red light signal and separates one of the infrared light signals from the direct current signal and the infrared light a parent flow signal of the optical signal, separating one of the red light signal and one of the red light signals; and a microcontroller 'controlling the light emitter to emit the infrared light beam and the red light beam' The microcontroller estimates a physiological parameter by the DC signal of the infrared light signal and the alternating current signal and the direct current signal of the red light signal and the alternating current signal. 2. The physiological detection device of claim 1, further comprising an analog multiplexer electrically coupled to the optical sensor and separating the infrared light signal and the red light signal for inputting the analog signal processor. 3. The physiological detection device of claim 1, wherein the light emitter comprises a red LED, an infrared diode, and a driving circuit, the driving circuit is electrically coupled to the microcontroller, and the microcontroller controls the The driving circuit alternately drives the red LED and the infrared photodiode. 4. The physiological detecting device according to claim 1, wherein the photo sensor comprises a light receiving diode and a current converting voltage circuit, the light receiving diode receiving the infrared light beam reflected or transmitted from the living body and The red light beam, and -20-201228633 respectively generates at least one current. The current converting voltage circuit generates the infrared light signal and the red light signal according to the current conversion. 5. The physiological detection device according to the claim, wherein the analog signal processor comprises a low pass filter circuit and a band pass filter circuit, wherein the low pass filter circuit retains the infrared signal and the DC signal of the red signal. And filtering out the alternating current signals of the infrared light signal and the red light signal, the band pass wave circuit retaining the infrared light signals and the alternating current signals of the red light signals to filter out the infrared light signals and the red light These DC signals of the signal. 根據請求項5之生理檢測裝置,其中該低通濾波電路之截 止頻率範圍為0.1赫茲至1 ·〇赫茲之間,而該帶通濾波電路 之截止頻率範圍為1〇赫茲至2〇赫茲之間。 根據凊求項1之生理檢測裝置,其中該些交流電訊號包含 複數個早位脈衝波’該單位脈衝波包含一第一波峰、一第 二波峰及兩波谷,該波谷至該第一波峰的垂直距離為該單 位脈衝波之一第一振幅,該第一振幅與相對應之該直流電 訊號的比值為該生理參數中的一灌流指標。 根據請求項7之生理檢測裝置,其中該波谷至該第二波峰 的垂直距離為該單位脈衝波之一第二振幅,該第二振幅與 該第一振幅的比值為該生理參數中的一脈搏反射指標。 根據請求項丨之生理檢測裝置,進一步包含一能顯示1亥生 理參數之顯示器。 10. —種生理檢測系統,包含: 一種生理檢測裝置,包含: -21 · 201228633 一光發射器,交互發射一紅外光束及一紅光光束至 一生物體; 一光感測器,接收自該生物體反射或透射之該紅外 光束及該紅光光東而分別產生一紅外光訊號及一紅 光訊號; 一類比訊號處理器,處理該紅外光訊號及該紅光訊 號並分離該紅外光訊號之一直流電訊號與該紅外光 訊號之一交流電訊號,分離該紅光訊號之一直流電訊 號與該紅光訊號之一交流電訊號;以及 一微控制器,控制該光發射器發射該紅外光束及該 紅光光束’該微控制器藉由該紅外光訊號之該直流電 訊號與該交流電訊號以及該紅光訊號之該直流電訊 號與該交流電訊號推算一生理參數; 一電腦’儲存該紅外光訊號及該紅光訊號之該些直流 電訊號與該些交流電訊號、分析該生理參數及即時顯示該 生理參數;以及 一資料操取單元’傳輸該紅外光訊號及該紅光訊號之 該些直流電訊號與該些交流電訊號至該電腦。 11. 根據請求項1 〇之生理檢測系統,進一步包含一類比多工 !§ ’該類比多工器電耦合該光感測器並可分開該紅外光訊 號及該紅光訊號’以供輸入該類比訊號處理器。 12. 根據請求項1〇之生理檢測系統,其中該光發射器包含一紅 光二極體、—紅外光二極體及一驅動電路,該驅動電路電 麵合該微控制器’該微控制器控制該驅動電路交互驅動該 -22- 201228633 紅光二極體與該紅外光二極體。 13.根據請求項10之生理檢測系統,其中該光感測器包含一光 接收二極體與一電流轉電壓電路,該光接收二極體接收自 該生物體反射或透射之該紅外光束及該紅光光束,而分別 產生至少一電流,該電流轉電壓電路根據該電流轉換而產 生該紅外光訊號及該紅光訊號。 I4·根據請求項1 0之生理檢測系統,其中該類比訊號處理器包 含一低通濾波電路及一帶通濾波電路,該低通濾波電路保 留該紅外光訊號及該紅光訊號之該些直流電訊號,而過濾 掉該紅外光訊號及該紅光訊號之該些交流電訊號,該帶通 慮波電路保留該紅外光訊號及該紅光訊號之該些交流電 訊號’而過濾掉該紅外光訊號及該紅光訊號之該些直流電 訊號。 15. 根據請求項1 4之生理檢測系統,其中該低通濾波電路之截 止頻率範圍為0.1赫茲至1.0赫茲之間,而該帶通濾波電路 之截止頻率範圍為1〇赫茲至20赫茲之間。 16. 根據請求項10之生理檢測系統,其中該些交流電訊號包含 複數個單位脈衝波’該單位脈衝波包含一第一波峰、—第 一波峰及兩波谷,該波谷至該第一波峰的垂直距離為該單 位脈衝波之一第—振幅,該苐一振幅與相對應之該直流.電 訊號的比值為該生理參數中的一灌流指標。 17. 根據請求項16之生理檢測系統,其中該波谷至該第二波峰 的垂直距離為該單位脈衝波之一第二振幅,該第二振幅與 該第一振幅的比值為該生理參數中的一脈搏反射指標。 -23· 201228633 1 8.根據請求項丨6之生理檢測系統,其中該生物體的身高與該 第一振幅到該第二振幅之延遲時間的比值,為該生理參數 中的一血管硬化指標。 19.根據請求項10之生理檢測系統,其中該些交流電訊號經傅 立葉轉換後之一平均值為一脈診判斷指標。The physiological detecting device according to claim 5, wherein the low-pass filter circuit has a cutoff frequency ranging from 0.1 Hz to 1 〇 Hz, and the band pass filter circuit has a cutoff frequency ranging from 1 Hz to 2 Hz. . The physiological detecting device according to claim 1, wherein the alternating current signals comprise a plurality of early pulse waves, wherein the unit pulse wave comprises a first peak, a second peak and two valleys, and the valley is perpendicular to the first peak The distance is a first amplitude of the unit pulse wave, and the ratio of the first amplitude to the corresponding DC signal is a perfusion index in the physiological parameter. The physiological detecting device according to claim 7, wherein a vertical distance from the trough to the second peak is a second amplitude of the unit pulse wave, and a ratio of the second amplitude to the first amplitude is a pulse in the physiological parameter Reflective indicator. According to the physiological detection device of the request item, a display capable of displaying a parameter of 1 liter is further included. 10. A physiological detection system comprising: a physiological detection device comprising: -21 · 201228633 a light emitter that alternately emits an infrared beam and a red light beam to a living body; a light sensor received from the organism The infrared light beam and the red light light respectively reflect and transmit an infrared light signal and a red light signal; and the analog signal processor processes the infrared light signal and the red light signal and separates the infrared light signal An alternating current signal and an alternating current signal of the infrared light signal, separating a direct current signal of the red light signal and one of the red light signals; and a microcontroller controlling the light emitting device to emit the infrared light beam and the red light The light beam is used by the microcontroller to calculate a physiological parameter from the DC signal of the infrared light signal and the alternating current signal and the red light signal and the alternating current signal; a computer 'storing the infrared light signal and the red The DC signals of the optical signals and the alternating current signals, analyzing the physiological parameters, and instantly displaying the physiological parameters ; And a data fetch unit operations' transmits the infrared light signal and the red signal of the plurality of the plurality of AC signal and DC signal to the computer. 11. According to the physiological detection system of claim 1, further comprising an analogy multiplex! § 'The analog multiplexer electrically couples the optical sensor and can separate the infrared light signal and the red light signal' for input Analog signal processor. 12. The physiological detection system according to claim 1, wherein the light emitter comprises a red LED, an infrared diode, and a driving circuit electrically coupled to the microcontroller. Controlling the driving circuit to interactively drive the -22-201228633 red light diode with the infrared light diode. 13. The physiological detection system of claim 10, wherein the light sensor comprises a light receiving diode and a current converting voltage circuit, the light receiving diode receiving the infrared light beam reflected or transmitted from the living body and The red light beam generates at least one current, and the current-to-voltage circuit generates the infrared light signal and the red light signal according to the current conversion. I4. The physiological detection system according to claim 10, wherein the analog signal processor comprises a low pass filter circuit and a band pass filter circuit, wherein the low pass filter circuit retains the infrared signal and the DC signal of the red signal And filtering out the alternating current signals of the infrared light signal and the red light signal, the band pass wave circuit retaining the infrared light signals and the alternating current signals of the red light signals to filter out the infrared light signals and the These DC signals of red light signals. 15. The physiological detection system according to claim 14, wherein the low pass filter circuit has a cutoff frequency ranging from 0.1 Hz to 1.0 Hz, and the band pass filter circuit has a cutoff frequency ranging from 1 Hz to 20 Hz. . 16. The physiological detection system according to claim 10, wherein the alternating current signals comprise a plurality of unit pulse waves 'the unit pulse wave comprises a first peak, a first peak and two valleys, and the valley is perpendicular to the first peak The distance is one of the unit pulse waves, and the ratio of the amplitude to the corresponding DC signal is a perfusion index in the physiological parameter. 17. The physiological detection system of claim 16, wherein a vertical distance from the trough to the second peak is a second amplitude of the unit pulse wave, and a ratio of the second amplitude to the first amplitude is in the physiological parameter A pulse reflex indicator. -23. 201228633 1 8. The physiological detection system according to claim 6, wherein the ratio of the height of the living body to the delay time of the first amplitude to the second amplitude is an index of hardening of the blood vessel in the physiological parameter. 19. The physiological detection system according to claim 10, wherein one of the average values of the alternating current signals after Fourier transform is a pulse diagnosis indicator. •24·•twenty four·
TW100100581A 2011-01-07 2011-01-07 Physiological detecting device and system TW201228633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100100581A TW201228633A (en) 2011-01-07 2011-01-07 Physiological detecting device and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100100581A TW201228633A (en) 2011-01-07 2011-01-07 Physiological detecting device and system

Publications (1)

Publication Number Publication Date
TW201228633A true TW201228633A (en) 2012-07-16

Family

ID=46933729

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100100581A TW201228633A (en) 2011-01-07 2011-01-07 Physiological detecting device and system

Country Status (1)

Country Link
TW (1) TW201228633A (en)

Similar Documents

Publication Publication Date Title
Ray et al. A review of wearable multi-wavelength photoplethysmography
CA2676271C (en) Method and device for measuring parameters of cardiac function
US20060224073A1 (en) Integrated physiological signal assessing device
JP5377320B2 (en) Medical measuring device
EP1344488A2 (en) Diagnostic method and apparatus using light
US20140066732A1 (en) System and method for determining cardiac output
US8463348B2 (en) System and method for non-invasive monitoring of cerebral tissue hemodynamics
JP2014039875A (en) Portable diagnosis device
JP2006158974A (en) Integral type physiologic signal evaluation apparatus
CN103429153A (en) Determination of tissue oxygenation in vivo
US8788005B1 (en) System and method for non-invasive monitoring of cerebral tissue hemodynamics
CN101224107A (en) Method for measuring blood pressure and oxygen, and device thereof
WO2014039377A1 (en) System and method for determining stroke volume of an individual
JP2023532318A (en) Method and apparatus for assessing peripheral arterial tone
US20150223736A1 (en) System & method for determining blood component concentration
JP2024511975A (en) hemodilution detector
Campbell Development of non-invasive, optical methods for central cardiovascular and blood chemistry monitoring.
Botman et al. Photoplethysmography-based device designing for cardiovascular system diagnostics
TWI409050B (en) Pulse sensing device
TWI432175B (en) Multi - channel physiological signal measuring device for ear and its method
KR101484542B1 (en) inspection system for a pulsation, an anemic, a vein elasticity and oxygensaturation using a smart phone
Kyriacou et al. Pilot investigation of photoplethysmographic signals and blood oxygen saturation values during blood pressure cuff-induced hypoperfusion
CN213406028U (en) Wearable wireless continuous reflection type oxyhemoglobin saturation monitoring device
TW201228633A (en) Physiological detecting device and system
Pulluri et al. Performance Evaluation of Ten SpO2 Measurement Equations Using Estimation Error Range Metric and Different Signal Lengths