TW201228396A - A motion compensation deinterlacing image processing apparatus and method thereof - Google Patents

A motion compensation deinterlacing image processing apparatus and method thereof Download PDF

Info

Publication number
TW201228396A
TW201228396A TW99146972A TW99146972A TW201228396A TW 201228396 A TW201228396 A TW 201228396A TW 99146972 A TW99146972 A TW 99146972A TW 99146972 A TW99146972 A TW 99146972A TW 201228396 A TW201228396 A TW 201228396A
Authority
TW
Taiwan
Prior art keywords
time
pixel
field
interpolated
spatial
Prior art date
Application number
TW99146972A
Other languages
Chinese (zh)
Other versions
TWI471010B (en
Inventor
Yu-Jen Wang
Chung-Yi Chen
Original Assignee
Mstar Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mstar Semiconductor Inc filed Critical Mstar Semiconductor Inc
Priority to TW99146972A priority Critical patent/TWI471010B/en
Priority to US13/337,453 priority patent/US9277167B2/en
Publication of TW201228396A publication Critical patent/TW201228396A/en
Application granted granted Critical
Publication of TWI471010B publication Critical patent/TWI471010B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0117Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
    • H04N7/012Conversion between an interlaced and a progressive signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0135Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
    • H04N7/014Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes involving the use of motion vectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Graphics (AREA)
  • Television Systems (AREA)

Abstract

The present invention discloses a motion compensation de-interlaced image processing apparatus. The apparatus comprises a motion compensation module, a still compensation module, a motion detection module and a de-interlaced blending module. The motion compensation module generates a motion compensation pixel according to at least one of the field, the previous field and the next field of a target pixel. The still compensation module generates a still compensation pixel according to the previous field and the next field of the target pixel. The motion detection module determines a motion index according to the previous field and the next field of the target pixel. The de-interlaced blending module generates a pixel value for the target pixel by weighted averaging the motion compensation pixel and the still compensation pixel according to the motion index.

Description

201228396201228396

1 w /HAir/\iv!Y 六、發明說明: 【發明所屬之技術領域】 本發明係指一種影像解交錯處理裝置,尤指一種具有 移動補償的解交錯影像處理裝置及其相關方法。 【先前技術】 隨著數位電視時代來臨,電視不僅可以收看電視,還 可以同時使用電視瀏覽網頁等網際網路應用。且數位電視 能提供超越傳統類比電視的影音品質與個人化使用服 務。根據現有各國數位電視的規範,電視訊號格式包含循 序式(Progressing)及交錯式(interlacing)掃描的訊號格式。 這兩種掃描的訊號格式各有其優缺點。其中,交錯式掃描 的最大優點是所需傳輸的資料量較小,動態影像的色彩鮮 明度和對比也比較好。因此,在講究高解析度及大晝面電 視的場合下,特別是1080條掃描線的情況下,交錯式掃 瞄的訊號格式被使用較廣泛,且其資訊傳輸量也比較少, I 節省傳輸的頻寬。 /詳細地說,請參考第1圖,交錯式掃瞄的訊號格式傳 送係將每一個圖框(Frame )分解成一個奇圖場(〇dd Fidd ) 及-個偶圖場(EvenField) ’其中奇圖場僅包含該圖框中 奇數線(Odd Line)之晝素’而偶圖場僅包含該圖框衝偶 數線(Even Line)之晝素。在傳輸時,奇圖場與偶圖場係 交替傳送’單位時間内的資料傳輸量可以減半。但影像接 收端所接收到的影像資料為奇圖場或偶圖場資料,非完整 之圖框旦面,舄透過解交錯(De-Interlace )的處理,補1 w /HAir/\iv!Y VI. Description of the Invention: [Technical Field] The present invention relates to an image deinterlacing processing apparatus, and more particularly to a deinterlacing image processing apparatus with motion compensation and related methods. [Prior Art] With the advent of the digital TV era, television can not only watch TV, but also use Internet to access web applications such as web pages. And digital TV can provide audio and video quality and personalized service beyond traditional analog TV. According to the specifications of digital televisions in various countries, the television signal format includes a progressive (intergressing) and interlacing scanning signal format. The signal formats of these two scans have their own advantages and disadvantages. Among them, the biggest advantage of interlaced scanning is that the amount of data to be transmitted is small, and the color vividness and contrast of the moving image are also better. Therefore, in the case of high-resolution and large-screen TVs, especially in the case of 1080 scan lines, the interlaced scan signal format is widely used, and its information transmission amount is relatively small, I save transmission. The bandwidth. / In detail, please refer to Figure 1. The signal format transmission of the interlaced scan decomposes each frame into a singular field (〇dd Fidd) and an even field (EvenField). The odd field contains only the elements of the odd line (Odd Line) in the frame, and the even field contains only the elements of the frame that are even lines. During transmission, the odd and vertical fields are alternately transmitted. The amount of data transferred per unit time can be halved. However, the image data received by the image receiving end is an odd field or an even field data, and the incomplete frame is processed by de-interlace.

201228396 TW7421PAMY 足在同一個時間里丄 素資料,以產\有傳輸過來的偶數線或奇數線的晝 μ。咅S卩於疋整的圖框晝面,進而顯示在影像顯示器 〇<、則奇圖場(OddField)中僅有第1、3、5、7、 圖場中僅有2、4、6、8、1 框,在第1、2 在輸出影像時,都必須為循序格式的圖 素資料。 3、4、5、6、7、8、9、10...行中皆有晝 Θ理二,,解^錯的處理有空間解交錯或時間解交錯的 =s水交錯處理係使用同一時間點的圖場的 t::點的it置的晝素進行待補行畫素的插補,以 -點直接作ί插2均值作為插補的晝素值,亦可使用其中 Fn的晝素Α為素舉例來說,第-圖中奇圖場 將上一行的書中的-晝素’空間解交錯處理係 素a的晝素值、,或直接:订佥的音晝素c的晝素平均值作為畫 畫素A的晝素值。另外二A或晝素B的畫素值作為 相同位置的晝素進行待補行::父錯處理係使用前後圖續 相同:3晝素平均值作為插補的畫素值。舉例來說: -圖中的晝素八為待插補行中的—"1 解交錯處理係將前-偶圖場FiM中相同位置的書素= 後-偶圖場Fn+1中相同位置的晝素㈣平均值=佥 A?素:。但空間解交錯或時間解交錯的處理,對:: 態的里面插補無法插補出真實的畫素,會導致 =真出利量的估算,並據= 補出真實的晝素’以提幵影像的品質。 201228396201228396 TW7421PAMY The data in the same time is enough to produce 偶 μ with even or odd lines transmitted.咅S卩 疋 疋 疋 疋 , , , , , , , , 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像, 8, and 1 frames, when the first and second images are output, they must be in the format of the pixel data. 3, 4, 5, 6, 7, 8, 9, 10... all have the same reason, the solution of the solution is spatial deinterlacing or time deinterlacing = s water interlacing is the same At the time point, the t:: point of the field of the map is used to interpolate the pixel to be complemented, and the point is directly used as the interpolation value of the mean value, and the Fn can also be used. For example, in the first graph, the odd map field will deinterlace the 昼 prime value of the 昼 prime' space in the book of the previous line, or directly: the ordered phonocin c The average value of the halogen is taken as the pixel value of the drawing element A. In addition, the pixel values of the second A or the alizarin B are to be compensated as the elements of the same position: the parent error processing system is the same as before and after the graph: the average value of the 3 elements is used as the pixel value of the interpolation. For example: - The prime in the figure is the -"1 in the line to be interpolated. The deinterlacing process is the same in the book of the same position in the pre-even field FiM = the back-even field Fn+1 The average value of the position of the element (four) = 佥A? However, the spatial deinterlacing or time deinterlacing process can not interpolate the real pixels for the :: interpolation of the state, which will lead to the estimation of the true profit, and according to = the real 昼 '幵 The quality of the image. 201228396

1 w /Hzir/AiVlY 【發明内容】 因此,本發明的目的之一在於提供一種具有移動補償 的解交錯影像處理裝置及其相關方法,以解決上述的問 題。 依據本發明的實施例,揭露一種具有移動補償之解交 錯影像處理裝置,該裝置包含有一時間移動補償模組、一 空間移動補償模組、一空間移動補償模組以及一移動補償 I 混合模組。其中,時間移動補償模組,用於依據一待插補 晝素的前一圖場及後一圖場,產生一時間插補畫素及一時 間移動向量品質指標;空間移動補償模組,用於依據該待 插補畫素的圖場,產生一空間插補晝素及一鋸齒指標;以 及移動補償混合模組,用於依據該時間插補晝素、該空間 插補晝素、該時間移動向量品質指標以及該鋸齒指標,產 生該待插補晝素。 依據本發明的實施例,其另揭露一種具有移動補償之 φ 解交錯影像處理方法,該方法包含有依據一待插補畫素的 前一圖場及後一圖場,產生一時間插補畫素及一時間移動 向量品質指標;依據該待插補晝素的圖場,產生一空間插 補晝素及一鋸齒指標;以及依據該時間插補晝素、該空間 插補畫素、該時間移動向量品質指標以及該鋸齒指標,產 生該待插補晝素。 依據本發明的實施例,其另揭露一種具有移動補償之 解交錯影像處理裝置。該裝置包含有一移動補償模組、一 靜止補償模組、一移動彳貞測模組以及一解交錯混合模組。1 w / Hzir / AiVlY SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a deinterlaced image processing apparatus with motion compensation and related methods for solving the above problems. According to an embodiment of the invention, a de-interlaced image processing device with motion compensation is disclosed, which includes a time movement compensation module, a spatial motion compensation module, a spatial motion compensation module, and a motion compensation I hybrid module. . The time shift compensation module is configured to generate a time interpolation pixel and a time movement vector quality indicator according to a previous scene and a subsequent field of the pixel to be interpolated; the spatial motion compensation module is used. Generating a spatial interpolation element and a sawtooth index according to the field to be interpolated pixels; and a motion compensation mixing module, configured to interpolate the pixel according to the time, the spatial interpolation element, the time The motion vector quality indicator and the sawtooth indicator generate the to-be-interpolated pixel. According to an embodiment of the present invention, a method for processing a φ de-interlaced image with motion compensation is disclosed, which comprises generating a time interpolation picture according to a previous field and a subsequent field of a pixel to be interpolated. And a time-shifting vector quality indicator; generating a spatial interpolation element and a sawtooth indicator according to the field of the pixel to be interpolated; and interpolating the pixel according to the time, the spatial interpolation pixel, the time The motion vector quality indicator and the sawtooth indicator generate the to-be-interpolated pixel. According to an embodiment of the present invention, there is further disclosed a deinterlaced image processing apparatus with motion compensation. The device comprises a motion compensation module, a static compensation module, a mobile measurement module and a deinterlacing hybrid module.

201228396 TW7421PAMY 其中,移動_組,用於至少依據-待插補書素的所在 圖場、前-圖場及後1場,產生—移動書的= 補償模組,驗依__補晝 料^止 場,產生一靜止補償晝素;敕^ _减设圖 插補晝素的前-圖場及後=組’詩依據該待 解交錯混合肋,㈣依生—移純標;以及 ^及該靜止補償晝素崎加卿均計算,產线待 依據本發明的實施例,其另揭露-種具有移動補償之 解交錯影像處理方法,該方法包含有至少依據 素的所在圖場、前-圖場及後1場,產生—移動補償查 素:依據該待插補晝素的前—圖場及後一圖場,產生一二 止補償畫素;依據該待插補晝素的前—圖場及後一圖場, 產生移動&以及依據該移動指標,對該移動補償晝 素及該靜止補償晝錢行加縣均計算,產生該待插補書 素0 — 依據本發明的實施例,其另揭露—種具有移動補償之 解交錯影像處理裝置。料置包含有—時間移動補償模 組,用於依據一待插補晝素的一前一圖場及一後一圖場, 產生-時間插補畫素及-時間移動向量品質指標;一空間 移動補償模組,用於依據該待插補晝素所在的一圖場,產 生一空間插補畫素;以及一移動補償混合模組,用於依據 該時間插補晝素、該空間插補晝素以及該時間移動向量品 質才曰私c ’產生該待插補晝素。 依據本發明的實施例,其另揭露一種具有移動補償之 201228396201228396 TW7421PAMY Among them, the mobile_group is used to generate the mobile book=compensation module according to at least the field of the to-be-incorporated book, the front-picture field and the last field. Stop the field, generate a static compensation element; 敕^ _ reduce the picture of the pre-picture field of the interpolation element and the group = the poem according to the to-be-interlaced hybrid rib, (4) the bio-shift pure standard; The static compensation 昼素崎加卿 calculates that the production line is to be in accordance with an embodiment of the present invention, and another method for deinterlacing image processing with motion compensation is disclosed, which method includes at least the field of the prime, the front - The field and the last field, the generation-movement compensation check: according to the front-picture field and the latter picture field of the to-be-interpolated element, one or two compensation pixels are generated; according to the front of the to-be-interpolated element The field and the latter field generate a movement & and according to the movement indicator, calculate the movement compensation element and the static compensation money and the county, and generate the to-be-interpolated book 0 - according to the implementation of the invention For example, it further discloses a deinterlaced image processing device with motion compensation. The material includes a time-shifting compensation module for generating a time-interpolated pixel and a time-moving vector quality indicator according to a previous field and a subsequent field of the pixel to be interpolated; a motion compensation module, configured to generate a spatial interpolation pixel according to a field in which the pixel to be inserted is located; and a motion compensation hybrid module, configured to interpolate the pixel according to the time, and perform the spatial interpolation The alizarin and the time-moving vector quality are only privately generated to generate the to-be-interpolated element. According to an embodiment of the present invention, another method for mobile compensation is disclosed.

1 w /HiSirAiVlY 解又錯衫像處理襄置。該裝置包含有一時間移動補償模 組用於依據-待插補畫素的一前一圖場及一後一圖場, 產生-時間插補晝素;一空間移動補償模組,用於依據該 _晝素所在的1場,產生一空間插補晝素及一鋸齒 指標;以及-移動補償混合模組,用於依據該時間插補晝 素、該空間插補晝素以及該鑛齒指標,產生該待插補晝素。 本發明之實施例的優勢利用移動向量的估算,並據以 以正確插補出真實的晝素,以提昇影像的品質。 • 為了對本發明之上述及其他方面有更佳的瞭解,下文 特舉較佳實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 請參照第2圖,其繪示係為本發明一較佳實施例之具 有移動補償的解交錯影像處理裴置10之功能方塊圖。解 父錯衫像處理裝置10係用於將交錯掃目苗(interiaced scan) 的圖場轉換成循序掃瞄(progressive scan)的圖框,意即將 鲁交錯處理的奇圖場或偶圖場中缺少的偶數行或奇數行的 畫素插補生成’還原成一完整的圖框。解交錯影像處理裝 置10包含時間移動補償模組(time_domainmotion compensation unit)100、空間移動補償模組(space_doinain motion compensation unit)200以及移動補償混合模組 (motion compensation blending unit)300。為更清楚說明本 發明運作’請另參照第3圖,其繪示係為本發明一較佳實 施例之具有移動補償的解交錯影像處理的流程圖。首先, 在步驟310中’時間移動補償模組100用於依據當前圖場 201228396 TW7421PAMY , ,1 w /HiSirAiVlY The solution is also the same as the processing device. The device includes a time shift compensation module for generating a time-interpolated pixel according to a previous field and a subsequent field of the pixel to be interpolated; a spatial motion compensation module for _ 昼 所在 所在 , , , , , , 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在 所在The to-be-interpolated element is generated. The advantages of embodiments of the present invention utilize the estimation of the motion vector and thereby properly interpolate the real pixels to improve the quality of the image. In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below in detail with reference to the accompanying drawings, in which: FIG. A functional block diagram of a de-interlaced image processing device 10 with motion compensation in accordance with a preferred embodiment of the present invention. The image-discharging device 10 is used to convert the field of the inspected scan into a progressive scan frame, which is intended to be interlaced in the odd or even field. The pixel interpolation of the missing even or odd rows is generated 'reduced into a complete frame. The deinterlaced image processing device 10 includes a time_domain motion compensation unit 100, a space_doinain motion compensation unit 200, and a motion compensation blending unit 300. In order to more clearly illustrate the operation of the present invention, please refer to FIG. 3, which is a flow chart of deinterlaced image processing with motion compensation according to a preferred embodiment of the present invention. First, in step 310, the 'time shift compensation module 100 is used according to the current field 201228396 TW7421PAMY ,

Fn的前一圖場Fn-1及後一圖場Fn+1,產生圖場Fn中的 時間插補畫素P3di及對應的時間移動向量品質指標I3di, 包含時間移動估測單元110、時間晝素插補單元120以及 時間移動向量品質指標產生單元130。接著,在步驟320 及330中,空間移動補償模組200用於依據圖場Fn中待 補償行Ln的上一行Ln-Ι及下一行Ln+Ι,產生行Ln中空 間插補晝素P2di及對應的鋸齒指標(Jaggy Index) Ij,包 含空間移動估測單元210、空間晝素插補單元220以及鋸 齒偵測單元230。最後,在步驟340中,移動補償混合模 組300用於依據時間插補畫素P3di、空間插補晝素P2di、 時間移動向量品質指標I3di以及鋸齒指標Ij,產生移動補 償晝素PMCDi。 請參照第4圖,進一步說明時間移動補償模組1〇〇的 運作流程。在步驟312中,時間移動估測單元11〇對一待 插補晝素Pxy的前一圖場Fn-Ι及後一圖場Fn+Ι進行區塊 比對運算’以決定一時間移動向量MV3D。另參照第5A 圖’其為決定時間移動向量的示意圖。當前圖場Fn中晝 素Pxy為一待插補晝素,區塊52〇、540為一比較區塊尺 寸’區域510、530為一比對區域。在決定晝素pxy的時 間移動向量時’係在區域510、530中,以區塊520、540 的尺寸進行區塊比對。該時間移動向量估測處理的方式可 為找尋前一圖場Fn-Ι與後一圖場Fn+Ι中最相似的區塊, 而搜尋範圍可以是整個圖場或部份圖場。考慮運算量的情 形下’本發明較佳實施例採用絕對值誤差總和(Sum〇f Absolute Difference ; SAD )演算法,當某兩區塊的絕對值 201228396The previous picture field Fn-1 of Fn and the latter picture field Fn+1 generate the time interpolation pixel P3di and the corresponding time movement vector quality indicator I3di in the picture field Fn, including the time movement estimation unit 110, time 昼The prime interpolation unit 120 and the time movement vector quality indicator generation unit 130. Next, in steps 320 and 330, the spatial motion compensation module 200 is configured to generate a spatial interpolation pixel P2di in the row Ln according to the upper row Ln-Ι and the next row Ln+Ι of the row Ln to be compensated in the field Fn. The corresponding sawtooth index (Jaggy Index) Ij includes a spatial motion estimation unit 210, a spatial pixel interpolation unit 220, and a sawtooth detection unit 230. Finally, in step 340, the motion compensated mixing module 300 is configured to generate a motion compensated pixel PMCDi based on the time interpolation pixel P3di, the spatial interpolation pixel P2di, the time motion vector quality indicator I3di, and the sawtooth index Ij. Please refer to Fig. 4 to further explain the operation flow of the time shift compensation module 1〇〇. In step 312, the time movement estimating unit 11 performs a block comparison operation on the previous picture field Fn-Ι and the subsequent picture field Fn+Ι of the to-be-interpolated pixel Pxy to determine a time movement vector MV3D. . Referring additionally to Fig. 5A', it is a schematic diagram for determining a time shift vector. In the current picture field Fn, the pixel Pxy is a to-be-interpolated pixel, and the blocks 52〇, 540 are a comparison block size 'area 510, 530 is an alignment area. When the time shift vector of the pixel pxy is determined, the region is multiplexed in the regions 510, 530, and the block is aligned in the size of the blocks 520, 540. The time motion vector estimation processing may be to find the most similar block in the previous field Fn-Ι and the latter field Fn+Ι, and the search range may be the entire field or part of the field. Considering the amount of computation, the preferred embodiment of the present invention uses the Sum〇f Absolute Difference (SAD) algorithm, when the absolute value of a certain two blocks 201228396

1 w /H-^ir/\ivIY 誤差總和為最小,則該兩區塊為最佳相似區塊,其對應向 量即為晝素Pxy的時間移動向量,演算法如下: N-'N-\ SAD(i,j) = XX|C(x + k,y + l)-R(x + i + k,y + j + /J -p<i,j<p k-0 /-0 移動向量為(w,AJ),使得f = = n時的S AD為最小,其 中 (1) N代表區塊的長與寬; (2) c〇c + b + 〇代表在目標影像圖場中,目標影像區塊 中的點; • (3)外+ / +以+ / + /)代表在參考影像圖場中,參考影像 區塊中的點; (4) p代表搜尋範圍。 以本案發明較佳實施例為例,為降低複雜度及節省成 本的考量,選擇區塊520、540為1*5的一維區塊,而區 域510、530為5*10的區域。假設比較結果前一圖場Fn-1 中的區塊520與後一圖場Fn+1中的區塊540的SAD最 小,則移動向量MV3D為晝素Pxy的時間移動向量 • MV3D。值得注意的是,區塊520、540及區域510、530 的大小可因應實作的需求而有所不同,非本案發明之限制 條件。 接著,在步驟314中,時間晝素插補單元120依據時 間移動向量MV3D,先找到前一圖場Fn-Ι中晝素Pn-1及 後一圖場Fn+Ι中晝素Pn+1,再據以產生一時間插補晝素 P3di給晝素Pxy。該時間插補晝素P3di的產生方法,可以 選擇畫素Pn-1或晝素Pn+1其中之一,或將晝素Pn-1及晝 201228396 TW7421PAMY 1 ' 素Pn+1加權平均所產生的晝素值。 接著,在步驟316中,請另參照第5B圖,其為決定 時間移動向量品質指標的示意圖。時間移動向量品質指標 產生單元130依據該待插補畫素Pxy的時間移動向量 MV3D及該上一行、下一行及前一圖場對應畫素的移動向 量MV1〜MV3,產生一時間移動向量品質指標I3di,用於 提供移動補償混合模組300判斷時間插補晝素P3di的可信 度。本案較佳實施例的時間移動向量品質指標I3di決定的 公式如下: I3di = |MV3D- MV1| + |MV3D- MV2| + |MV3D- MV3| 本案另一實施例的時間移動向量品質指標I3di決定 的公式亦可如下: I3di = Max (|MV3D- MV1|, |MV3D- MV2|, |MV3D> MV3)| 當時間移動向量品質指標I3di小時,表示該待插補畫 素Pxy的時間移動向量MV3D與周圍及前一圖場對應的晝 素的移動向量相近’也意謂移動趨勢相近,故時間移動向 量MV3D及時間插補畫素P3di的可信度很高;相反的, 當時間移動向量品質指標I3di大時,表示該待插補晝素 Pxy的時間移動向量MV3D與周圍及前一圖場對應的晝素 的移動向量不同’也意謂沒有相同的移動趨勢,故時間移 動向量MV3D及時間插補畫素P3di的可信度很低。 接下來,進一步空間移動補償處理,請先參照第6 圖,其為產生空間補償晝素的流程圖。在步驟322中,空 間移動估測單元210對當前圖場Fn中的待插補畫素Pxy 2012283961 w /H-^ir/\ivIY The sum of the errors is the smallest, then the two blocks are the best similar blocks, and the corresponding vector is the time shift vector of the pixel Pxy. The algorithm is as follows: N-'N-\ SAD(i,j) = XX|C(x + k,y + l)-R(x + i + k,y + j + /J -p<i,j<p k-0 /-0 movement vector For (w, AJ), let S AD be the smallest when f = = n, where (1) N represents the length and width of the block; (2) c〇c + b + 〇 represents the target image field, Points in the target image block; • (3) Outside + / + with + / + /) represents the point in the reference image block in the reference image field; (4) p represents the search range. Taking the preferred embodiment of the present invention as an example, in order to reduce complexity and save cost considerations, the blocks 520, 540 are selected as 1*5 one-dimensional blocks, and the regions 510, 530 are 5*10 regions. Assuming that the comparison result is that the block 520 in the previous field Fn-1 and the SAD in the block 540 in the latter field Fn+1 are the smallest, the motion vector MV3D is the time shift vector of the pixel Pxy • MV3D. It is worth noting that the size of blocks 520, 540 and areas 510, 530 may vary depending on the requirements of the implementation, and is not a limitation of the invention of the present invention. Next, in step 314, the time pixel interpolation unit 120 first finds the pixel Pn-1 in the previous field Fn-Ι and the pixel Pn+1 in the latter field Fn+Ι according to the time movement vector MV3D. Then according to the generation of a time to interpolate the halogen P3di to the halogen Pxy. The time interpolation method for generating the alizarin P3di may select one of the pixels Pn-1 or the alizarin Pn+1, or the weighted average of the alizarin Pn-1 and the 昼201228396 TW7421PAMY 1 'prime Pn+1 The value of the element. Next, in step 316, please refer to FIG. 5B, which is a schematic diagram for determining a time shift vector quality indicator. The time-shifting vector quality indicator generating unit 130 generates a time-shifting vector quality indicator according to the time-shifting vector MV3D of the pixel to be interpolated Pxy and the motion vectors MV1 to MV3 of the pixel corresponding to the previous row, the next row, and the previous field. I3di is used to provide the mobile compensation hybrid module 300 to determine the credibility of the time interpolation pixel P3di. The formula of the time-shift vector quality indicator I3di of the preferred embodiment of the present invention is as follows: I3di = |MV3D- MV1| + |MV3D- MV2| + |MV3D- MV3| The time-shift vector quality indicator I3di of another embodiment of the present invention determines The formula can also be as follows: I3di = Max (|MV3D- MV1|, |MV3D- MV2|, |MV3D> MV3)| When the time shift vector quality indicator I3di is small, it indicates the time shift vector MV3D of the pixel Pxy to be interpolated The moving vectors of the pixels corresponding to the surrounding and previous scenes are similar, which means that the moving trend is similar, so the time-moving vector MV3D and the time-interpolated pixel P3di have high credibility; on the contrary, when the time moves the vector quality index When I3di is large, it indicates that the time shift vector MV3D of the pixel to be interpolated is different from the motion vector of the pixel corresponding to the surrounding and previous fields. It also means that there is no same moving tendency, so the time shift vector MV3D and time interpolation The reliability of the patch P3di is very low. Next, for further spatial motion compensation processing, please refer to FIG. 6 first, which is a flow chart for generating a spatial compensation element. In step 322, the space motion estimation unit 210 pairs the pixel to be inserted Pxy 201228396 in the current field Fn.

1 W /421 尸八 ινΙΥ 的至少上一行及下一行間(本案發明較佳 A1 W / 421 corpse ινΙΥ at least the previous line and the next line (the invention is better A

Ly-3〜Ly+3間)進行區塊比對,產生_空間移β仃 著,請參照第8圖,Pxy為一待插補晝素,。角度。接 比較區塊尺寸,區域810為一比對區坺。東820為一 ' ^ 實施例中,為降低複雜度及節省成本的考量,、琴明較佳 為1*5的一維區塊,而區域810為7*1〇的區^ ,區塊82〇Between Ly-3 and Ly+3), block alignment is performed, and _space shift β仃 is generated. Please refer to Fig. 8, Pxy is a to-be-interpolated morpheme. angle. Comparing the block size, the area 810 is a comparison area. East 820 is a '^ In the embodiment, in order to reduce complexity and cost-saving considerations, Qinming is preferably a 1*5 one-dimensional block, and area 810 is a 7*1〇 area ^, block 82 〇

Ly-3〜Ly+3間)。且區塊比對亦採用絕對值誤差綱# of Absolute Difference ; SAD)演算法,依據上二和(知坊Ly-3~Ly+3). And the block comparison also uses the absolute value error # of Absolute Difference; SAD) algorithm, based on the second and the

及下一行Ln+1,所產生的SAD最小的兩區塊,、夫 素Pxy的空間移動角度。值得注意的是,區塊82〇、疋^晝 810的大小可因應實作的需求而有所不同,非本案發日區域 限制條件。接著,在步驟324中,空間晝素插補單元 依據該晝素Pxy的空間移動角度,先找到上—行Ln l ^ 及And the next line Ln+1, the two blocks with the smallest SAD, and the spatial movement angle of the Pxy. It is worth noting that the size of blocks 82〇 and 疋^昼 810 may vary depending on the requirements of the implementation, and is not a regional limitation condition. Next, in step 324, the spatial pixel interpolation unit first finds the upper line Ln l ^ according to the spatial movement angle of the pixel Pxy.

下一行Ln+1中對應的兩晝素,再據以產生一空間插補金 素P2di給晝素Pxy。該空間插補畫素P2di的產生方法, 可以選擇該兩畫素其中之一,或將該兩晝素加權平均所產 生的晝素值。The corresponding two elements in the next line Ln+1 are used to generate a spatial interpolation element P2di for the halogen Pxy. The method of generating the spatial interpolation pixel P2di may select one of the two pixels or a weighted average of the two pixels.

接者’請參照第7圖,其為決定鑛齒指標的流程圖。 在步驟332中,空間移動估測單元210於區塊比對的過程 中,產生一最大比對差值Max SAD及一最小比對差值Min SAD。然後,鋸齒偵測單元230依據該最大對差值Max sAD 及該最小比對差值Min SAD,產生一鋸齒指標y,用於提 供移動補償混合模組300判斷空間移動插補晝素P2di的可 信度。本案較佳實施例的鋸齒指標Ij決定的公式如^ :Receiver' Please refer to Figure 7, which is a flow chart for determining the mineral tooth index. In step 332, the spatial motion estimation unit 210 generates a maximum alignment difference value Max SAD and a minimum comparison pair value Min SAD in the block alignment process. Then, the sawtooth detecting unit 230 generates a sawtooth index y according to the maximum pair difference value Max sAD and the minimum comparison value Min SAD for providing the motion compensation hybrid module 300 to determine the spatial motion interpolation pixel P2di. Reliability. The formula determined by the sawtooth index Ij of the preferred embodiment of the present invention is as follows:

Ij = Max SAD - Min SAD 201228396 TW7421PAMY , ,, 當鋸齒指標Ij小時’表示該待插補晝素PXy的上一 行Ln-1 1及下一行Ln+1非處在邊緣地帶(edge),故空間 移動插補晝素P2di的可信度高;相反地,當鋸齒指標y 大時,表示該待插補晝素Pxy的上一行Ln-1 1及下一行 Ln+Ι處在邊緣地帶(edge),故空間移動插補晝素P2di的可 信度低。 最後’在步驟340中,移動補償混合模組3〇〇用於依 據時間插補晝素P3di、空間插補晝素P2di、時間移動向量 品質指標I3di以及鑛齒指標Ij,產生一移動補償書素 PMCDi給該待補償畫素Pxy。移動補償混合模組3〇〇可依 據時間移動向量品質指標I3di以及鋸齒指標幻,選定為時 間插補畫素P3di或空間插補晝素P2di其中之一做為該移 動補償晝素PMCDi ;或可由時間移動向量品質指標I3di 以及鋸齒指標ij決定一加權數α,對時間插補晝素p3di 及空間插補晝素P2di進行加權平均計算,以產生該移動補 償晝素PMCDi。然本案發明較佳實施例的移動補償晝素 PMCDi決定採用後者方式,公式如下: | μ PMCDi = a*P3di + (1-a)* P2di 其中 ct = f (I3di,Ij ) = min max (a*I3di 〜,〇, j) 上述本發明較佳實施例的說明,係為移動補償解交錯 影像處理裝置及方法,在考量晝面移動的影響,用於產^ —圖場中待補償晝素的畫素值。但若加入靜止補償的機 制,在晝面靜止的情形,會有更好的補償效果,詳見下述 說明。 請參照第9圖,其繪示本發明另一較佳實施例之具有 12 201228396Ij = Max SAD - Min SAD 201228396 TW7421PAMY , ,, when the sawtooth index Ij hour ' indicates that the upper row Ln-1 1 and the next row Ln+1 of the pixel to be imputed PXy are not at the edge, so space The mobility of the imputed pixel P2di is high; conversely, when the sawtooth index y is large, it indicates that the upper row Ln-1 1 and the next row Ln+Ι of the pixel to be interpolated Pxy are at the edge. Therefore, the spatial mobility interpolation 昼素 P2di has low credibility. Finally, in step 340, the motion compensation mixing module 3 is configured to generate a motion compensation book according to the time interpolation pixel P3di, the spatial interpolation pixel P2di, the time movement vector quality indicator I3di, and the mineral tooth index Ij. PMCDi gives the pixel Pxy to be compensated. The motion compensation hybrid module 3〇〇 can select one of the time interpolation pixel P3di or the spatial interpolation pixel P2di as the motion compensation element PMCDi according to the time movement vector quality index I3di and the sawtooth index magic; or The time-shifting vector quality indicator I3di and the sawtooth index ij determine a weighting number α, and perform a weighted average calculation on the time-interpolated pixel p3di and the spatially-interpolated pixel P2di to generate the motion-compensated element PMCDi. However, the mobile compensation element PMCDi of the preferred embodiment of the present invention determines the latter method, and the formula is as follows: | μ PMCDi = a*P3di + (1-a)* P2di where ct = f (I3di, Ij ) = min max (a *I3di~,〇, j) The above description of the preferred embodiment of the present invention is a motion compensated deinterlaced image processing apparatus and method for considering the influence of the movement of the facet, and is used to generate the pixels to be compensated in the field. The pixel value. However, if a static compensation mechanism is added, there will be better compensation when the surface is still. See the description below for details. Please refer to FIG. 9 , which illustrates another preferred embodiment of the present invention having 12 201228396

1 w /HXir/u^V1 w /HXir/u^V

移動補领的解交錯影像處理裝置之功能方塊圖。同樣 地解交錯衫像處理裝置9〇係用於將交錯掃瞒(interlaced 似11)的圖場轉換成猶序掃晦(progressive靡)的圖框,意 =將交錯處理的奇圖場或偶圖場中缺少的奇數行或偶數 行的旦素插補生成’還原成-完整的圖框。解交錯影像處 理裝置9〇包含移動補償模組910、靜止補償模、组920、移 動债測模組93G以及解交錯混合模組94()。為更清楚說明 =發明運作’請另參照第1()圖’其緣示本發明另一較佳 實施例之具有移動補償的解交錯影像處理流程圖 。首先, 二驟1010中’移動補償模組9iq用於產生—移動補償 旦'PMCDi’包含任何考量時間或空間移動因素,所產生 ^動補償4素的方法。該移動補償晝素PMCDi可由前述 ^圖及第3圖所揭示的裝置及其方法所產生,但不限於 1方式、。接著,在步驟1020中,靜止補償模組920以 j動侦測模組930分別產生一靜止補償晝素PSCDi及一 指標Im。最後,在步驟1〇3〇中,解交錯混合模组_ :巧移動補償晝素PMCDi、靜止補償晝素_以及移 動指標Im,產生一解交錯晝素pDi。 _更詳細地說,請參照第u圖,其繪示為產生一靜止 PSCDi及—移動指標Im的詳細流程圖。在步驟 ^靜止補償模組92〇選擇該待補晝素吻的前一圖 二:二圖場Fn+1相同位置的晝素’做為該靜止補 鬥:罢沾金匕或計算前一圖場1^1和後一圖場Fn+1相 同置的晝素平均值,做為該靜止補償晝素PSCDi。在步 驟1024中’移動彳貞測模組93G依據該待補晝I pxy的相 13A functional block diagram of a mobile-prepared deinterlaced image processing device. Similarly, the interlaced shirt image processing device 9 is used to convert the interlaced (interlaced 11) field into a progressive frame, meaning = interlaced odd field or even The odd-interpolation of the odd-numbered or even-numbered rows that are missing in the field produces 'reduced to-complete frames. The deinterlaced image processing device 9 includes a motion compensation module 910, a static compensation mode, a group 920, a mobile debt test module 93G, and a deinterlacing hybrid module 94(). For a clearer explanation of the invention operation, please refer to FIG. 1 for a flowchart of the deinterlaced image processing with motion compensation according to another preferred embodiment of the present invention. First, in the second step 1010, the 'motion compensation module 9iq is used to generate - the motion compensation 'PMCDi' includes any consideration time or space movement factor, and a method of generating a motion compensation factor. The motion compensation element PMCDi can be generated by the apparatus and method disclosed in the above figures and Fig. 3, but is not limited to the 1 mode. Next, in step 1020, the static compensation module 920 generates a static compensation element PSCDi and an index Im respectively by the motion detection module 930. Finally, in step 1〇3〇, the deinterlacing hybrid module _: Qiao mobile compensation element PMCDi, static compensation element _ and moving index Im, produces a de-interlaced pixel pDi. _ In more detail, please refer to the figure u, which is shown as a detailed flow chart for generating a stationary PSCDi and a moving indicator Im. In the step ^ static compensation module 92 〇 select the first picture 2 of the to-be-replenished scent kiss: the second position field Fn +1 the same position of the 昼 ' ' as the static compensation: strike the gold 匕 or calculate the previous picture The average value of the pixel in the field 1^1 and the latter field Fn+1 is used as the static compensation element PSCDi. In step 1024, the mobile measurement module 93G is based on the phase of the Ipxy to be compensated.

-I 201228396-I 201228396

1W7421PAMY « 關晝素,以產生該移動指標Im。本案發明較佳實施例為計 算前一圖場Fn-Ι和後一圖場Fn+i相同位置的晝素的差 值’做為該移動指標,計算式如下:1W7421PAMY « Guan Yusu, to generate the mobile indicator Im. In the preferred embodiment of the present invention, the difference value of the pixel at the same position in the previous field Fn-Ι and the latter field Fn+i is calculated as the moving index, and the calculation formula is as follows:

Im = |Pn-l -Pn+l| 本案發明另一實施例為計算為依據該待補晝素Pxy 的至少一周圍及前後圖場中相關晝素的移動指標,計算該 移動指標Im。其中在本實施例中,相關畫素為該待補畫素Im = |Pn-l -Pn+l| Another embodiment of the present invention is to calculate the movement index Im according to the movement index of the relevant element in the at least one surrounding and the front and rear map fields of the to-be-compensated Pxy. Wherein in this embodiment, the relevant pixel is the pixel to be complemented

Pxy上一行及下一行相同水平位置的周圍晝素(Pxy-l,n、 Px-ly-l,n、px+iy_i,n、Pxy+l n、px ly+l n、px+ly l n), 以及前一圖場及後一圖場相同位置的周圍畫素、 Px-ly,n-l > Px+ly,n-l ^ Pxy,n+1 . px.ly,n+l ' Px+ly,n+l) » 計算式如下:Pxy-l (n, Px-ly-l, n, px+iy_i, n, Pxy+ln, px ly+ln, px+ly ln) of the same horizontal position of the upper row and the next row of Pxy, and Pix-ly, nl > Px+ly, nl ^ Pxy, n+1 . px.ly, n+l ' Px+ly, n+l ) » The calculation is as follows:

Ixy,n -p*Ixy,n-2 + (1-β)*|Ρχγ η_ι _ p xy,n+l|Ixy,n -p*Ixy,n-2 + (1-β)*|Ρχγ η_ι _ p xy,n+l|

Im,xy,n =avg(Ixy-l,n, Ix-ly-i^ lx+ly-l,n, Ixy+l,n,Im,xy,n =avg(Ixy-l,n, Ix-ly-i^ lx+ly-l,n, Ixy+l,n,

Ix-ly+l,n, Ix+ly+l,n, Ixy,n-1, Ιχ.1γ?η_ΐ, Ix+ly,n, Ixy,n+1, lx- ly,n+l,ix+ly,n+1) 虽移動指標Im小時,表示在連續畫面中該待插補晝 素Pxy位於靜止區域的可能性高,故靜止補償晝素psCDi 的可信度高;相反地,當移動指標im大時,表示在連續 畫面中该待插補晝素Pxy位於移動區域的可能性高,故靜 止補償晝素pSCDi的可信度低。 另外’在本案發明較佳實施例中,解交錯混合模組 940在決疋解交錯晝素時,依據移動指標Im,決定一加權 數p,再對移動補償晝素PMCDi及靜止補償晝素PSCDi 進打加權平均計算,以產生該解交錯畫素roi。計算公式 201228396Ix-ly+l,n, Ix+ly+l,n, Ixy,n-1,Ιχ.1γ?η_ΐ, Ix+ly,n, Ixy,n+1, lx- ly,n+l,ix+ Ly,n+1) Although the moving index Im is small, it means that the probability that the pixel to be interpolated Pxy is located in the stationary region is high in the continuous picture, so the reliability of the static compensation element psCDi is high; conversely, when the moving indicator When im is large, it means that the probability that the pixel to be interpolated Pxy is located in the moving region is high in the continuous picture, so the reliability of the stationary compensation element pSCDi is low. In addition, in the preferred embodiment of the present invention, the de-interlacing hybrid module 940 determines a weighting number p according to the moving index Im, and then compensates the mobile PM 10i and the static compensation pixel PSCDi. The weighted average calculation is performed to generate the deinterlaced pixel roi. Calculation formula 201228396

1 w /H^ir/\ivlY 如下: PDi = y*PMCDi + (l-γ)* PSCDi 其中 γ = f (Im ) 但解交錯混合模組940可依據移動指標Im,選定為 移動補償晝素PMCDi或靜止補償晝素PSCDi其中之一做 為該解交錯晝素PDi。然,上述產生解交錯畫素PDi的方 式,僅為兩個較佳實施態樣,不作為本發明之限制條件。 綜上所述,雖然本發明已以較佳實施例揭露如上,然 φ 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 【圖式簡單說明】 第1圖為解交錯影像處理的示意圖。 第2圖為本發明一較佳實施例之具有移動補償之解 I 交錯影像處理裝置的功能方塊圖。 第3圖為本發明一較佳實施例之具有移動補償之解 交錯影像處理方法的流程圖。 第4圖為時間移動補償模組的運作流程圖。 第5 A圖為決定時間移動向量的示意圖。 第5B圖為決定時間移動向量品質指標的示意圖。 第6圖為產生空間補償晝素的流程圖。 第7圖為決定鑛齒指標的流程圖。 第8圖為本發明影像處理方法之流程圖。 15 201228396 TW7421PAMY 1 " 第9圖為本發明另一較佳實施例之具有移動補償的 解交錯影像處理裝置的功能方塊圖。 第10圖為本發明另一較佳實施例之具有移動補償的 解交錯影像處理的流程圖。 第11圖為產生一靜止補償晝素及一移動指標的流程 圖。 【主要元件符號說明】 10 解交錯影像處理裝置 100 時間移動補償模組 110 時間移動估測單元 120 時間畫素插補單元 130 時間移動向量品質指標產生單元 200 空間移動補償模組 210 空間移動估測單元 220 空間晝素插補單元 230 鋸齒偵測單元 300 移動補償混合模組 90 解交錯影像處理裝置 910 移動補償模組 920 靜止補償模組 930 移動偵測模組 940 解交錯混合模組1 w /H^ir/\ivlY is as follows: PDi = y*PMCDi + (l-γ)* PSCDi where γ = f (Im ) but the deinterlacing hybrid module 940 can be selected as the mobile compensation element according to the movement index Im One of PMCDi or static compensation alizarin PSCDi is used as the de-interlaced pixel PDi. However, the above-described manner of generating the deinterlaced pixel PDi is only two preferred embodiments and is not a limitation of the present invention. In summary, although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. [Simple description of the drawing] Fig. 1 is a schematic diagram of deinterlacing image processing. FIG. 2 is a functional block diagram of a solution I interlaced image processing apparatus with motion compensation according to a preferred embodiment of the present invention. FIG. 3 is a flow chart of a method for processing a deinterlaced image with motion compensation according to a preferred embodiment of the present invention. Figure 4 is a flow chart of the operation of the time movement compensation module. Figure 5A is a diagram of the decision time shift vector. Figure 5B is a schematic diagram of determining the time movement vector quality indicator. Figure 6 is a flow chart for generating spatial compensation elements. Figure 7 is a flow chart for determining the mineral tooth index. Figure 8 is a flow chart of the image processing method of the present invention. 15 201228396 TW7421PAMY 1 " FIG. 9 is a functional block diagram of a deinterlaced image processing apparatus with motion compensation according to another preferred embodiment of the present invention. Figure 10 is a flow chart of deinterlacing image processing with motion compensation in accordance with another preferred embodiment of the present invention. Figure 11 is a flow chart showing the generation of a static compensation element and a movement indicator. [Description of main component symbols] 10 Deinterlaced image processing device 100 Time movement compensation module 110 Time movement estimation unit 120 Time pixel interpolation unit 130 Time movement vector quality indicator generation unit 200 Spatial motion compensation module 210 Spatial movement estimation Unit 220 spatial pixel interpolation unit 230 sawtooth detection unit 300 motion compensation hybrid module 90 deinterlaced image processing device 910 motion compensation module 920 static compensation module 930 motion detection module 940 deinterlacing hybrid module

Claims (1)

201228396 1 w ir/\i\4Y 七、申請專利範圍: 1. 一種具有移動補償之解交錯影像處理裝置,該裝置包含 有: 一時間移動補償模組,用於依據一待插補畫素的一前 一圖場及一後一圖場,產生一時間插補晝素及一 時間移動向量品質指標; 一空間移動補償模組,用於依據該待插補晝素所在的 一圖場,產生一空間插補晝素及一鋸齒指標;以 • 及 一移動補償混合模組,用於依據該時間插補畫素、該 空間插補畫素、該時間移動向量品質指標以及該 鑛齒指標,產生該待插補晝素。 2. 如申請專利範圍第1項所述之解交錯影像處理裝置,其 中該時間移動補償模組包含有: 一時間移動估測單元,用於對該待插補畫素的該前一 | 圖場及該後一圖場進行區塊比對,以決定一時間 移動向量; 一時間畫素插補單元,用於依據該時間移動向量,對 該前一圖場及該後一圖場進行插補計算,產生該 時間插補畫素;以及 一時間移動向量品質指標產生單元,用於依據該時間 移動向量,以及該待插補畫素的至少一相關晝素 的移動向量,產生一時間移動向量品質指標。 17 201228396 TW7421PAMY ^ ' 3. 如申請專利範圍第2項所述之解交錯影像處理裝置,其 中該時間移動估測單元係以一維區塊大小在該前一圖場 及該後一圖場的預定區域内進行區塊比對,並以區塊比對 最接近的向量為該時間移動向量。 4. 如申請專利範圍第2項所述之解交錯影像處理裝置,其 中該時間晝素插補單元利用該時間移動向量,於該前一圖 場及該後一圖場分別獲得一第一晝素及一第二畫素,並將 該第一晝素和該第二畫素平均計算後,產生該時間插補晝 素。 5. 如申請專利範圍第2項所述之解交錯影像處理裝置,其 中該時間移動向量品質指標產生單元,利用該時間移動向 量,與該待插補晝素的一上一行、一下一行及該前一圖場 對應晝素的移動向量進行比較,產生該時間移動向量品質 指標。 6. 如申請專利範圍第1項所述之解交錯影像處理裝置,其 中該空間移動補償模組更包含有: 一空間移動估測單元,用於依據該待插補畫素的至少 包含一上一行及一下一行的一預定區域内進行一 維區塊比對,產生複數個比對差值及一空間移動 角度; 一空間晝素插補單元,用於依據該空間移動角度,對 該預定區域進行插補計算,產生該空間插補晝 201228396 1 w /HzirAMY 素;以及 一鋸齒偵測單元,用於依據該複數個比對差值,產生 該鑛齒指標。 7·如申清專利範圍第6項所述之解交錯影像處理裝置,其 中該空間移動估測單元係以一維區塊大小在該上一行及 該下一行的區域内進行區塊比冑,並以區祕對最接近的 角度為該空間移動角度。 8.如申请專利範圍第6項所述之解交錯影像處理裝置,其 ^空^晝素插補單元利用該空間移動角度,於該上一^ 一別獲传—第三晝素及-第四晝素’並將該第 二旦素和_四晝素平均計算後’產生該空間插補畫素。 中該ιΓ齒圍第6項所述之解交錯影像處理裝置,其 差值與最小比對差值的差值,以產生_齒^取大比對 :中==第1項所述之解交錯影像處理裝置, 以及該鋸凿指二:!組’先以該時間移動向量品質指標 插補畫素及該空間:補’再依據該加權數對該時間 補畫素。間插補晝素進行加權平均,以產生該待插 11. 具有移動補償之解交錯影像處理 方法,該方法包 201228396 TW7421PAMY ^ * 含有·· 依據一待插補晝素的一前一圖場及一後一圖場,產生 一時間插補晝素及一時間移動向量品質指標; 依據該待插補晝素所在的一圖場,產生一空間插補晝 素及一鋸齒指標;以及 依據該時間插補畫素、該空間插補畫素、該時間移動 向量品質指標以及該鋸齒指標,產生該待插補畫 素。 12. 如申請專利範圍第11項所述之解交錯影像處理方 法,其中產生該時間插補晝素及該時間移動向量品質指標 的步驟更包含對該待插補晝素的該前一圖場及該後一圖 場進行區塊比對,以決定一時間移動向量。 13. 如申請專利範圍第12項所述之解交錯影像處理方 法,其中該時間插補畫素係依據該時間移動向量,對該前 一圖場及該後一圖場進行插補計算所產生,以及時間移動 籲 向量品質指標係依據該時間移動向量,以及該待插補晝素 的至少一相關畫素的移動向量所產生。 14. 如申請專利範圍第12項所述之解交錯影像處理方 法,其中該時間移動向量係為以一維區塊大小在該前一圖 場及該後一圖場的預定區域内進行區塊比對,所得到區塊 比對最接近的向量。 S 20 201228396 1 w /Hzir/\ivIY is.如申請專利範圍第12項所述之解 法,其中該時間插補晝素係為利用該時間= 象^方 前-圖場及該後一圖場分別獲得一第 動向置’於該 素’並將該第一晝素和該第二晝素平均;算畫 16·如巾料鄉I2項料之解交 移動向量品質指標係為利用=向 二;=素的一上一行、—下-行及該前-圖場 對應晝素的移動向量進行比較所產生。 17.如申請專利範圍第U項所述之解交錯影像處理方 其中該產生—空間插補畫素及—_指標的步驟更包 3依據該待插補晝素的一上一行及一下一行的一預定區 域内進行-維區塊比對,產生複數個比對差值及一*門移 籲18.如申睛專利範圍第17項所述之解交錯影像處理方 法,其十該空間插補晝素係利用該空間移動角度,進行插 補计算所產生,以及該鑛齒指標係依據該複數個比對差值 中,計算最大比對差值與最小比對差值的差值所產生。 19.如申請專利範圍第17項所述之解交錯影像處理方 法,其中該空間移動角度係為以一維區塊大小在該預定區 域内進行區塊比對,所得到區塊比對最接近的角度。 21 201228396 TW7421PAMY * ' 20. 如申請專利範圍第11項所述之解交錯影像處理方 法,其中該產生該待插補畫的步驟更包含先以該時間移動 向量品質指標以及該鑛齒指標決定一加權數,再依據該加 權數對該時間插補晝素及該空間插補畫素進行加權平 均,以產生該待插補晝素。 21. —種具有移動補償之解交錯影像處理裝置,該裝置包 含有: 一移動補償模組,用於至少依據一待插補晝素的一所 籲 在圖場、一前一圖場及一後一圖場,產生一移動 補償畫素; 一靜止補償模組,用於依據該待插補晝素的該前一圖 場及該後一圖場,產生一靜止補償晝素; 一移動偵測模組,用於依據該待插補晝素的相關晝 素,產生一移動指標;以及 一解交錯混合模組,用於依據該移動指標,對該移動 補償晝素及該靜止補償晝素進行加權平均計算, 籲 產生該待插補晝素。 22. 如申請專利範圍第21項所述之解交錯影像處理裝 置,其中該移動補償模組包含有: 一時間移動補償模組,用於依據該待插補晝素的該前 一圖場及該後一圖場,產生一時間插補晝素及一 時間移動向量品質指標; 一空間移動補償模組,用於依據該待插補晝素的該所。 22 201228396 1 w /Hz.ir/\iVlY 在圖場,產生一空間插補晝素及一鋸齒指標;以 及 一移動補償混合模組,用於依據該時間插補畫素、該 空間插補晝素、該時間移動向量品質指標以及該 鋸齒指標,產生該移動補償晝素。 23. 如申請專利範圍第21項所述之解交錯影像處理裝 置,其中該靜止補償模組選擇該待插補晝素的該前一圖場 φ 或該後一圖場相同位置的晝素其中之一為該靜止補償畫 素。 24. 如申請專利範圍第21項所述之解交錯影像處理裝 置,其中該移動偵測模組比較該待插補晝素的該前一圖場 及該後一圖場相同位置的晝素,以產生一移動指標。 25. —種具有移動補償之解交錯影像處理方法,該方法包 φ 含有: 至少依據一待插補畫素的一所在圖場、一前一圖場及 一後一圖場,產生一移動補償晝素; 依據該待插補晝素的該前一圖場及該後一圖場,產生 一靜止補償晝素; 依據該待插補畫素的相關晝素,產生一移動指標;以 及 依據該移動指標,對該移動補償晝素及該靜止補償晝 素進行加權平均計算,產生該待插補晝素。 23 201228396 TW7421PAMY 26. 如申請專利範圍第25項所述之解交錯影像處理方 法,其中該產生該移動補償畫素的步驟更包含: 依據該待插補晝素的該前一圖場及該後一圖場,產生 一時間插補晝素及一時間移動向量品質指標; 依據該待插補畫素的圖場,產生一空間插補畫素及一 鋸齒指標;以及 依據該時間插補晝素、該空間插補晝素、該時間移動 向量品質指標以及該鋸齒指標,產生該移動補償 籲 晝素。 27. 如申請專利範圍第25項所述之解交錯影像處理方 法,其中該產生該靜止補償晝素的步驟更包含選擇該待插 補晝素的該前一圖場或該後一圖場相同位置的晝素其中 之一為該靜止補償晝素。 28. 如申請專利範圍第25項所述之解交錯影像處理方 · 法,其中該產生該待插補晝素的步驟更包含比較該待插補 晝素的該前一圖場及該後一圖場相同位置的晝素,以產生 一移動指標。 29. —種具有移動補償之解交錯影像處理裝置,該裝置包 含有: 一時間移動補償模組,用於依據一待插補畫素的一前 一圖場及一後一圖場,產生一時間插補晝素及一 P 24 201228396 l w /4zirAMY 時間移動向量品質指標; 一空間移動補償模組,用於依據該待插補晝素所在的 一圖場’產生一空間插補晝素;以及 一移動補償混合模組,用於依據該時間插補晝素、該 空間插補晝素以及該時間移動向量品質&標,= 生該待插補畫素。 曰不 30.如申請專利範圍第μ項所述之解交錯影像處理裝 置,其中該時間移動補償模組包含有: 又 一時間移動估測單心用於對該待插補畫素的該前_ 圖場及該後-圖場進行區塊比對,以蚊 移動向量; ' -時間晝素插補單元,用於依據該時間移動向量,對 該前一圖場及該後一圖場進行插補計算’產生該 時間插補畫素;以及 Λ 一時動向量品質指標產生單元,用於依據該時間 移動向量,以及該待插補晝素的至少一相關 的移動向量,產生-時間移動向量品質指標。、 3置範圍第3°項所述之解交錯影像處理裝 圖場及該後一圖:=!!單元係以一維區塊大小在該前-比對最接近的向量區塊比對’並以區塊 32.如 月專利範®帛29項所述之解交錯f彡像處理裝 25 201228396 TW7421PAMY - , 置,其中該空間移動補償模組更包含有: 一空間移動估測單元,用於依據該待插補畫素的至少 包含一上一行及一下一行的一預定區域内進行一 維區塊比對,產生複數個比對差值及一空間移動 角度;以及 一空間晝素插補單元,用於依據該空間移動角度,對 該預定區域進行插補計算,產生該空間插補晝素。 33. —種具有移動補償之解交錯影像處理裝置,該裝置包 鲁 含有: 一時間移動補償模組,用於依據一待插補晝素的一前 一圖場及一後一圖場,產生一時間插補晝素; 一空間移動補償模組,用於依據該待插補晝素所在的 一圖場,產生一空間插補晝素及一鋸齒指標;以 及 一移動補償混合模組,用於依據該時間插補畫素、該 空間插補晝素以及該鋸齒指標,產生該待插補晝 鲁 素。 34. 如申請專利範圍第33項所述之解交錯影像處理裝 置,其中該時間移動補償模組包含有: 一時間移動估測單元,用於對該待插補晝素的該前一 圖場及該後一圖場進行區塊比對,以決定一時間 移動向量;以及 一時間晝素插補單元,用於依據該時間移動向量,對P 26 201228396 I W /^ΖΙίΆΐνΙΥ 該前一圖場及該後一圖場進行插補計算,產生該 時間插補晝素。 35.如申請專利範圍第34項所述之解交錯影像處理裝 置,其中該時間移動估測單元係以一維區塊大小在該前一 圖場及該後一圖場的預定區域内進行區塊比對,並以區塊 比對最接近的向量為該時間移動向量。 φ 36.如申請專利範圍第33項所述之解交錯影像處理裝 置,其中該空間移動補償模組更包含有: 一空間移動估測單元,用於依據該待插補晝素的至少 包含一上一行及一下一行的一預定區域内進行一 維區塊比對,產生複數個比對差值及一空間移動 角度; 一空間晝素插補單元,用於依據該空間移動角度,對 該預定區域進行插補計算,產生該空間插補畫 φ 素;以及 一鋸齒偵測單元,用於依據該複數個比對差值,產生 該鑛齒指標。 27201228396 1 w ir/\i\4Y VII. Patent application scope: 1. A de-interlaced image processing device with motion compensation, the device comprises: a time-shift compensation module for using a pixel to be interpolated a previous picture field and a subsequent picture field, generating a time interpolation element and a time moving vector quality indicator; a spatial motion compensation module for generating a field according to the picture to be interpolated a spatial interpolation element and a sawtooth index; and a motion compensation hybrid module for interpolating pixels according to the time, the spatial interpolation pixel, the time moving vector quality indicator, and the mineral tooth index, The to-be-interpolated element is generated. 2. The deinterlaced image processing device of claim 1, wherein the time shift compensation module comprises: a time movement estimation unit for the previous image of the pixel to be interpolated The field and the latter field perform block alignment to determine a time movement vector; a time pixel interpolation unit for inserting the previous picture field and the subsequent picture field according to the time movement vector Complementing the calculation, generating the time interpolation pixel; and a time-shifting vector quality indicator generating unit, configured to generate a time shift according to the time movement vector and the motion vector of the at least one related element of the pixel to be interpolated Vector quality indicator. The deinterlaced image processing device of claim 2, wherein the time movement estimation unit is in a one-dimensional block size in the previous field and the latter field. The block alignment is performed in the predetermined area, and the vector is moved by the nearest vector in the block comparison. 4. The deinterlaced image processing device according to claim 2, wherein the time morphological interpolation unit obtains a first 昼 in the previous field and the subsequent field by using the time shift vector. And a second pixel, and the first pixel and the second pixel are averaged to calculate the time-interpolated element. 5. The deinterlaced image processing apparatus according to claim 2, wherein the time shift vector quality indicator generating unit uses the time shift vector to interact with a previous line, a line and the line of the pixel to be inserted. The previous field corresponds to the moving vector of the element, and the time-moving vector quality indicator is generated. 6. The de-interlaced image processing device of claim 1, wherein the spatial motion compensation module further comprises: a spatial motion estimation unit, configured to include at least one on the pixel to be interpolated Performing one-dimensional block comparison in a predetermined area of one row and one row, generating a plurality of comparison differences and a spatial movement angle; a spatial element interpolation unit for using the spatial movement angle to the predetermined area Interpolation calculation is performed to generate the spatial interpolation 昼201228396 1 w / HzirAMY element; and a sawtooth detection unit is configured to generate the mineral tooth index according to the plurality of comparison differences. The deinterlacing image processing device of claim 6, wherein the spatial motion estimation unit performs a block comparison in a region of the upper row and the next row in a one-dimensional block size. And move the angle to the space with the closest angle to the zone. 8. The deinterlaced image processing apparatus according to claim 6, wherein the space interpolation unit utilizes the spatial movement angle to obtain the third element and the third element. Tetracycline' and the average calculation of the second and _tetracyclines' produces the spatial interpolated pixels. In the deinterlaced image processing device according to item 6 of the ιΓ齿, the difference between the difference and the minimum comparison difference is generated to generate a large ratio of the _ tooth ^: the solution described in the first item Interlaced image processing device, and the sawing finger 2:! The group 'first moves the vector quality indicator at this time to interpolate the pixel and the space: complement' and then complement the pixel according to the weight. The interpolated enthalpy is subjected to weighted averaging to generate the deinterlaced image processing method with motion compensation. The method package 201228396 TW7421PAMY ^ * contains a previous field according to a to-be-interpolated pixel and a subsequent field, generating a time interpolation element and a time moving vector quality indicator; generating a spatial interpolation element and a sawtooth indicator according to the field in which the element to be interpolated is located; and according to the time The interpolation pixel, the spatial interpolation pixel, the time movement vector quality indicator, and the sawtooth index generate the pixel to be interpolated. 12. The method according to claim 11, wherein the step of generating the time-interpolated element and the time-moving vector quality indicator further comprises the previous field of the pixel to be interpolated. And the latter field performs block alignment to determine a time shift vector. 13. The deinterlaced image processing method according to claim 12, wherein the time interpolation pixel is generated by interpolating the previous field and the subsequent field according to the time movement vector. And the time shifting vector quality indicator is generated according to the time moving vector and the motion vector of the at least one related pixel of the pixel to be interpolated. 14. The deinterlaced image processing method according to claim 12, wherein the time shift vector is a block in a predetermined area of the previous field and the subsequent field in a one-dimensional block size. The comparison, the resulting block compares the closest vector. S 20 201228396 1 w /Hzir/\ivIY is. The solution as claimed in claim 12, wherein the time interpolating element is to utilize the time = image square front field and the latter field Obtaining a first moving direction 'in the prime' and averaging the first element and the second element; calculating 16 · such as the towel material I2 item of the intersection of the mobile vector quality indicator is the use of = two ; = the upper row of the prime, the lower-row and the front-map field corresponding to the moving vector of the element are compared. 17. The method of deinterlacing image processing according to item U of the patent application scope, wherein the step of generating the spatial interpolation pixel and the -_ indicator further comprises 3 according to a previous row and a row of the pixel to be interpolated. Performing a -dimensional block comparison in a predetermined area, generating a plurality of comparison differences and a *door shifting 18. The deinterlacing image processing method described in claim 17 of the scope of the patent application, the spatial interpolation of the ten The alizarin system uses the spatial movement angle to perform an interpolation calculation, and the mineral tooth index is generated by calculating a difference between the maximum comparison difference and the minimum comparison difference according to the plurality of comparison differences. 19. The method of deinterlacing image processing according to claim 17, wherein the spatial movement angle is a block alignment in the predetermined area by a one-dimensional block size, and the obtained block comparison is closest. Angle. The method for generating the to-be-interpolated image according to claim 11, wherein the step of generating the image to be interpolated further comprises first moving the vector quality indicator with the time and determining the mineral tooth index. The weighted number is further weighted and averaged according to the weighted number and the spatial interpolation pixels to generate the to-be-interpolated pixel. 21. A de-interlaced image processing device with motion compensation, the device comprising: a motion compensation module, configured to: at least according to a call scene, a previous field, and a In the latter field, a motion compensation pixel is generated; a static compensation module is configured to generate a static compensation element according to the previous field and the subsequent field of the pixel to be interpolated; a measurement module, configured to generate a movement indicator according to the relevant element of the to-be-interpolated element; and a deinterlacing hybrid module, configured to compensate the movement element and the static compensation element according to the movement indicator A weighted average calculation is performed, and the to-be-interpolated element is called. 22. The de-interlaced image processing device of claim 21, wherein the motion compensation module comprises: a time movement compensation module, configured to: according to the previous field of the pixel to be inserted In the latter field, a time interpolation element and a time movement vector quality indicator are generated; a spatial motion compensation module is used to determine the location of the element to be interpolated. 22 201228396 1 w /Hz.ir/\iVlY In the field, a spatial interpolation element and a sawtooth index are generated; and a motion compensation hybrid module is used to interpolate the pixels according to the time, and the space interpolation The time, the moving vector quality indicator, and the sawtooth indicator generate the motion compensation element. 23. The deinterlaced image processing device of claim 21, wherein the static compensation module selects the previous field φ of the pixel to be interpolated or the same position of the latter field. One of them is the stationary compensation pixel. The de-interlaced image processing device of claim 21, wherein the motion detection module compares the pixels of the previous field to be decoded and the same position of the latter field, To generate a mobile indicator. 25. A method for processing a deinterlaced image with motion compensation, the method package φ comprising: generating a motion compensation based on at least one picture field, one previous picture field and one subsequent picture field of a pixel to be interpolated And generating a static compensation element according to the previous picture field and the subsequent picture field of the to-be-interpolated pixel; generating a movement indicator according to the relevant element of the pixel to be interpolated; The moving indicator performs a weighted average calculation on the motion compensation element and the static compensation element to generate the to-be-interpolated element. The method for generating the motion-compensated pixel according to the method of claim 25, wherein the step of generating the motion-compensated pixel further comprises:: according to the previous field of the pixel to be inserted and the latter a field, generating a time interpolation pixel and a time moving vector quality indicator; generating a spatial interpolation pixel and a sawtooth index according to the field of the pixel to be interpolated; and interpolating the pixel according to the time The spatial interpolation element, the time movement vector quality indicator, and the sawtooth indicator generate the motion compensation. 27. The deinterlaced image processing method of claim 25, wherein the step of generating the static compensation element further comprises selecting the previous field of the pixel to be interpolated or the same field of the latter field. One of the elements of the position is the stationary compensation element. 28. The method according to claim 25, wherein the step of generating the to-be-interpolated pixel further comprises comparing the previous field of the pixel to be interpolated and the latter one. The pixels in the same position of the field are used to generate a moving indicator. 29. A de-interlaced image processing device with motion compensation, the device comprising: a time-shift compensation module for generating a picture according to a previous picture field and a subsequent picture field of a pixel to be interpolated Time interpolation and a P 24 201228396 lw /4zirAMY time movement vector quality indicator; a spatial motion compensation module for generating a spatial interpolation element according to a field where the pixel to be interpolated is located; A motion compensation hybrid module is configured to interpolate the pixels according to the time, the spatial interpolation element, and the time movement vector quality & The deinterlaced image processing device of claim 19, wherein the time shift compensation module comprises: another time shift estimation single center for the front of the pixel to be interpolated _ field and the back-picture field for block comparison, mosquito movement vector; '-time pixel interpolation unit for moving the vector according to the time, performing the previous field and the latter field Interpolation calculation 'generates the time interpolation pixel; and Λ momentary motion vector quality indicator generation unit for generating a time-shift vector according to the time movement vector and at least one related motion vector of the pixel to be interpolated Quality indicators. 3, the deinterlaced image processing loading field described in the 3rd item of the range and the latter picture: =!! The unit is aligned in the first-aligned vector block with the one-dimensional block size. And the block de-interlacing image processing device 25 201228396 TW7421PAMY - is described in the block 32. The monthly mobile motion compensation module further includes: a spatial motion estimation unit, Performing a one-dimensional block comparison according to the predetermined area of the at least one row and the next row to be interpolated, generating a plurality of comparison differences and a spatial movement angle; and a spatial pixel interpolation unit And performing interpolation calculation on the predetermined area according to the spatial movement angle, and generating the spatial interpolation element. 33. A de-interlaced image processing device with motion compensation, the device includes: a time-shift compensation module for generating a previous image field and a subsequent image field of a pixel to be interpolated a time-interpolating element; a spatial motion compensation module for generating a spatial interpolation element and a sawtooth index according to a field in which the element to be inserted is located; and a motion compensation hybrid module The interpolation pixel, the spatial interpolation element, and the sawtooth index are generated according to the time, and the to-be-interpolated ruthenium is generated. 34. The deinterlaced image processing device of claim 33, wherein the time shift compensation module comprises: a time movement estimation unit, configured to: the previous field of the pixel to be interpolated And the latter field performs block alignment to determine a time movement vector; and a time pixel interpolation unit for moving the vector according to the time, to P 26 201228396 IW /^ΖΙίΆΐνΙΥ the previous field and The latter field performs interpolation calculations to generate the time-interpolated pixels. 35. The deinterlaced image processing apparatus of claim 34, wherein the time movement estimation unit performs a zone in a predetermined area of the previous field and the subsequent field in a one-dimensional block size. The blocks are aligned, and the vector closest to the block is the vector of motion for that time. Φ 36. The de-interlaced image processing device of claim 33, wherein the spatial motion compensation module further comprises: a spatial motion estimation unit, configured to include at least one according to the to-be-interpolated pixel Performing one-dimensional block comparison in a predetermined area of the previous row and the next row, generating a plurality of comparison differences and a spatial movement angle; a spatial element interpolation unit for using the spatial movement angle to the predetermined The region performs interpolation calculation to generate the spatial interpolation φ element; and a sawtooth detection unit is configured to generate the mineral tooth index according to the plurality of comparison differences. 27
TW99146972A 2010-12-30 2010-12-30 A motion compensation deinterlacing image processing apparatus and method thereof TWI471010B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99146972A TWI471010B (en) 2010-12-30 2010-12-30 A motion compensation deinterlacing image processing apparatus and method thereof
US13/337,453 US9277167B2 (en) 2010-12-30 2011-12-27 Compensation de-interlacing image processing apparatus and associated method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99146972A TWI471010B (en) 2010-12-30 2010-12-30 A motion compensation deinterlacing image processing apparatus and method thereof

Publications (2)

Publication Number Publication Date
TW201228396A true TW201228396A (en) 2012-07-01
TWI471010B TWI471010B (en) 2015-01-21

Family

ID=46380769

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99146972A TWI471010B (en) 2010-12-30 2010-12-30 A motion compensation deinterlacing image processing apparatus and method thereof

Country Status (2)

Country Link
US (1) US9277167B2 (en)
TW (1) TWI471010B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413509B2 (en) 2014-09-03 2018-10-31 株式会社Ihi Aircraft electric drive unit cooling system
US9819900B2 (en) * 2015-12-30 2017-11-14 Spreadtrum Communications (Shanghai) Co., Ltd. Method and apparatus for de-interlacing television signal
TWI692980B (en) * 2019-01-17 2020-05-01 瑞昱半導體股份有限公司 Image processing system and method for image processing
US11570397B2 (en) * 2020-07-10 2023-01-31 Disney Enterprises, Inc. Deinterlacing via deep learning

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122017A (en) * 1998-01-22 2000-09-19 Hewlett-Packard Company Method for providing motion-compensated multi-field enhancement of still images from video
AU2001247574A1 (en) * 2000-03-27 2001-10-08 Teranex, Inc. Temporal interpolation of interlaced or progressive video images
US8064520B2 (en) * 2003-09-07 2011-11-22 Microsoft Corporation Advanced bi-directional predictive coding of interlaced video
CN1914913A (en) * 2004-02-04 2007-02-14 皇家飞利浦电子股份有限公司 Motion compensated de-interlacing with film mode adaptation
EP1889472A2 (en) * 2005-05-23 2008-02-20 Nxp B.V. Spatial and temporal de-interlacing with error criterion
US20070206117A1 (en) * 2005-10-17 2007-09-06 Qualcomm Incorporated Motion and apparatus for spatio-temporal deinterlacing aided by motion compensation for field-based video
US20100039556A1 (en) * 2008-08-12 2010-02-18 The Hong Kong University Of Science And Technology Multi-resolution temporal deinterlacing

Also Published As

Publication number Publication date
TWI471010B (en) 2015-01-21
US9277167B2 (en) 2016-03-01
US20120170657A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
KR100902315B1 (en) Apparatus and method for deinterlacing
US8144778B2 (en) Motion compensated frame rate conversion system and method
KR101536794B1 (en) Image interpolation with halo reduction
US6985187B2 (en) Motion-adaptive interpolation apparatus and method thereof
De Haan IC for motion-compensated de-interlacing, noise reduction, and picture-rate conversion
US20100177239A1 (en) Method of and apparatus for frame rate conversion
US8144248B2 (en) Scan conversion apparatus
JP4575431B2 (en) Protection with corrected deinterlacing device
US8115864B2 (en) Method and apparatus for reconstructing image
JP2006324979A (en) Image still area judgment device
JP3893227B2 (en) Scanning line interpolation apparatus and scanning line interpolation method
KR20080008952A (en) Methods and systems of deinterlacing using super resolution technology
TW201228396A (en) A motion compensation deinterlacing image processing apparatus and method thereof
JP4510874B2 (en) Composite image detector
KR20060135742A (en) Motion compensated de-interlacing with film mode adaptation
JP2005512356A (en) Image processor and image display device comprising such an image processor
TWI392333B (en) De-interlace system
JP4956180B2 (en) Progressive scan conversion apparatus and progressive scan conversion method
TW201143432A (en) Methods and systems for short range motion compensation de-interlacing
JP4179089B2 (en) Motion estimation method for motion image interpolation and motion estimation device for motion image interpolation
KR100594780B1 (en) Apparatus for converting image and method the same
JP4910579B2 (en) Image signal processing apparatus, image signal processing method, and program
JPH08186802A (en) Interpolation picture element generating method for interlace scanning image
CN116016831B (en) Low-time-delay image de-interlacing method and device
KR100588902B1 (en) Video deinterlace apparatus and method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees