TW201227158A - Knife sharpening image inspection system of multi-axis tool grinder - Google Patents

Knife sharpening image inspection system of multi-axis tool grinder Download PDF

Info

Publication number
TW201227158A
TW201227158A TW99144980A TW99144980A TW201227158A TW 201227158 A TW201227158 A TW 201227158A TW 99144980 A TW99144980 A TW 99144980A TW 99144980 A TW99144980 A TW 99144980A TW 201227158 A TW201227158 A TW 201227158A
Authority
TW
Taiwan
Prior art keywords
tool
image
grinder
light source
axis
Prior art date
Application number
TW99144980A
Other languages
Chinese (zh)
Other versions
TWI407242B (en
Inventor
Bean-Yin Lee
Chi-Fu Hsieh
Chi-Shiun Lin
Original Assignee
Top Work Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Top Work Industry Co Ltd filed Critical Top Work Industry Co Ltd
Priority to TW99144980A priority Critical patent/TWI407242B/en
Publication of TW201227158A publication Critical patent/TW201227158A/en
Application granted granted Critical
Publication of TWI407242B publication Critical patent/TWI407242B/en

Links

Abstract

A knife sharpening image inspection system of a multi-axis tool grinder is disclosed, which is installed with a tool grinder, a machine vision device and a human-machine interface processing device. The tool grinder is installed with a controller. The machine vision device is assembled on the tool grinder and is installed with a fixture tool and an image capturing module. The image capturing module is combined with the fixture tool and is installed with a video camera, a lens and a light source module. The human-machine interface processing device is respectively connected to the tool grinder and the machine vision device and is installed with a computer. The computer is electrically connected to the video camera, and is installed with an image processing module and a machine coordinate processing module, so as to process images captured by the image capturing module, thereby providing an image inspection system which is convenient to operate, provides real-time monitoring, increases grinding precision and lowers cost.

Description

201227158 六、發明說明: - 【發明所屬之技術領域】 本發明係關於一種影像檢測系統,尤指一種用以檢 測夕軸工具磨床刀具研磨的影像檢測系統。 【先前技術】 按,近年來隨著工業的迅速發展與繁榮,切削技 術也日益提升,在對於加工各種機械零件高精度化及 • 肖咼生產效率的要求及目的下,刀具的幾何形狀精度 已成為衫響切削品質的關鍵之一,而刀具品質的好 壞貝J取决於刀具的刀刀研磨,也是決定刀具幾何形 狀精度及切削性能的關鍵,其係能直接影響刀具的性 月匕刀口磨相、刀具壽命、切削加工的精度、切削效 率、切削表面品質…等等的特性; 然而’刀具除了研磨前後有精度的問題,在刀具 研磨的過程中砂輪也會相對 了德相亦會造成研磨刀具 • 的精度誤差,因此,待刀— 、 具凡成研磨後’必須將刀具 拆卸並裝設至一刀具檢測 J风D進仃檢測,方能得知刀 具的研磨精度是 接," ㈣要求,所以,既有刀具在研磨201227158 VI. Description of the Invention: - Technical Field of the Invention The present invention relates to an image detecting system, and more particularly to an image detecting system for detecting the grinding of a tool of a tool grinding machine. [Prior Art] In recent years, with the rapid development and prosperity of the industry, the cutting technology has also been increasingly improved. The geometry accuracy of the tool has been improved for the high precision of processing various mechanical parts and the requirements and requirements of Xiaoyi's production efficiency. It is one of the keys to the cutting quality of the shirt, and the quality of the tool depends on the knife grinding of the tool. It is also the key to determine the geometric accuracy and cutting performance of the tool. It can directly affect the tool's sexuality. Phase, tool life, cutting accuracy, cutting efficiency, cutting surface quality, etc.; however, 'the tool has precision problems before and after grinding. In the process of tool grinding, the grinding wheel will also cause grinding. The accuracy error of the tool • Therefore, after the tool is milled, the tool must be disassembled and installed to a tool to detect the J wind D in the detection, so that the grinding precision of the tool is connected, " Required, so the existing tool is grinding

後 須將刀具拆下並放置於—於、目,丨M A A ,.,,^ 檢測機台進行尺寸檢 1使既有刀具的研磨與檢測必須分開、隹一而紅,土 有效地於研磨過程中即時 仃,·、、、‘ 僅會相… P時地什知刀具的研磨尺寸,不 刀且的研=刀具研磨所需的成本與時間,亦會對於 刀,磨精度造成影響,誠有加以改進之處。 201227158 【發明内容】 因此,本發明有鑑於既有檢測刀具研磨精度的缺 失與不足’特經過不斷的試驗與研究,終於發展出一 種能改進現有缺失之本發明。 本發明主要在於提供一種多軸工具磨床刀具研磨 影像檢測系統,其係可透過影像處理與量測的方式, 即時地檢測出刀具的研磨精度’提供一可方便操作、 即時監控、提高研磨精度及降低成本的影像檢測系統 者之目的者。 基於上述目的’本發明之主要技術手段在於提供 一種多軸工具磨床刀具研磨影像檢測系統,其係設有 一工具磨床、一機器視覺裝置及一人機介面處理裝 置,其中: 該工具磨床於主軸及工作台間設有一用以夾持刀 具的夾具,該工具磨床設有一用以控制各軸作動且具 有一傳輸介面的控制器; 該機器視覺裝置可拆卸地組裝於該工具磨床上且 設有一夾治具及一影像擷取組,該夾治具可拆卸地與 該工具磨床的主軸相結合,該夾治具朝該工作台方向 設有一延伸座’而該影像擷取組係與該夾治具相結合 且設有一攝影機、一鏡頭及一光源組’該攝影機係固 設於該延伸座上且設有一傳輸介面’該鏡頭係與該攝 影機相結合且朝向該工作台,該光源組係提供該鏡頭 一光源;以及 201227158 該人機介面處理裝置分別與該工具磨床及該機器 視覺裝置相連接且設有一電腦’該電腦與該控制器及 該攝影機相電性連接且以—圖示教導方式提醒使用者 操作流程’該電腦内係設有—影像處理模組及一機械 座4丁处里模、,且,該影像處理模組設有一用以將該機器 視覺裝置所取得的數位影像經由該攝影機的傳輸介面 而傳送至該電腦的中進行影像處理的影像運算程式, 而該機械座標處理模組係與該控制器相電性連接,並 經由該控制器的傳輸介面而擷取到工具磨床各軸移動 所產生的機械座標訊號,將所擷取到的機械座訊號顯 示於該電腦的螢幕上並進行影像檢測。 進一步’該影像擷取組係對於所擷取的數位影像 進行影像疊加後進行切割,藉以取得待測刀具一受檢 測的區域,並對於該受檢測的區域進行二值化處理及 形態學運算。 再進一步,該影像擷取組透過索柏運算子和續霍 式轉換’找出待測刀具輪廓邊界以便進行刀具直徑咬 邊緣直線的量測,並且利用最小平方法求出待測刀具 圓狐處的中心及半徑。 較佳地,該機械座標處理模組係於該連續影像畫 上一中心十字線’透過移動該中心十字線的方式,計 算出待測刀具的幾何尺寸。 較佳地’該工具磨床於主軸的兩側係分別設有一 朝前水平伸設於該工具磨床工作台上方的嘴油導管, 201227158 而夾/σ具的兩端係可拆卸地與兩噴油導管相結合。 較佳也該控制器的傳輸介面係為一乙太網路的 傳輸介面,且該控制器係透過Tcp/|p通訊協定與該機 械座標處理模組進行訊號的傳輸與溝通,而該攝影機 的傳輸介面係為一丨EEE 1394b的傳輪介面。 車乂佳地,齋失治具於靠近該延伸座的的中段處設 有I·夬拆裝置,使該夾治具可方便地裝設於該工具磨 床上。 較佳地,邊攝影機係為一漸進式掃描攝影機,而 該鏡頭係為一體積較小且影像失真率低的物側遠心鏡 頭。 較佳地’該光源組係為一與該延伸座相結合且位 於該鏡頭前端的前照式光源組’該前照式光源組係設 有一可正面照明檢測刀具表面特徵的環形光源。 較佳地,泫光源組係為一位於工作台上的背照式 光源組,該背照式光源組係設有一可產生對比強烈物 體輪廓線之擴散背光板。 藉由上述之技術手段’本發明多軸工具磨床刀具 研磨影像檢測系統,係至少具有以下的優點及功效: 1_本發明多軸工具磨床刀具研磨影像檢測系統於 檢測刀具時’僅需將待測刀具治放於該工具磨床的夾 具上,即可方便地透過該人機介面處理裝置的檢測模 式對於刀具進行檢測’其中該人機介面處理裝置的檢 測模式係可分為機械座標檢測模式與影像分析模式, 201227158 其中該機械座標模式主要係利用工具磨床移動該影像 榻取組的方式,透過控制器紀錄刀具不同位置的機械 座標數據,透過該機械座標處理模組的運算後,獲得 待測刀具的外徑、螺旋角、倒角等基本的外型尺= 而該影像分析模式則是透過該影像運算程式計算出待 測刀具的幾何外型尺寸。 2.本發明多軸工具磨床刀具研磨影像檢測系統, 係可於線上即時地對於刀具的幾何尺寸進行檢測不 需再將刀具卸除並組裝於一檢測機台進行尺寸檢測, 可方便且快速地於線上進行刀具的補正及再研磨,不 僅可大幅提高刀具的研磨精度,且可減少材料的浪費 及降低加工成本。 J农買 :·本發明多軸工具磨床刀具研磨影 人機介面處理裝置,係可以教導式說明指引使用= 作流程,讓操作者易學習檢測流程。 、 【實施方式】 為能詳細瞭解本發明的技術特徵及實用功效並 可依照說明書的内容來實施’兹進-步以如圖式所干 的較佳實施例’詳細說明如后,請參閱如圖 :二:Γ:】:二具磨床刀具研磨影像檢測系統係 有 具磨床10、一機器視覺裝i 2〇 Λ _ 介面處理裝置30,其中: —人機 該工具磨床1。料―五軸^磨床,該五袖工具 7 201227158 磨床係包含有三個線性軸(X、Y及z軸)及兩旋轉軸(c 及A轴)’該工具磨床10於主軸11(位於z軸方向)的 兩側係分別設有一朝前水平伸設於該工具磨床1 〇工 作台12(位於X-Y軸平面)上方的噴油導管1 3,該工具 磨床1 0設有一用以夾持刀具的夾具14,使該待測的 刀具5 0可设於s玄工具磨床10的主軸11及工作台12 之間,其中該待測刀具50係可為—端銑刀、一鉸刀或 一鑽頭’該工具磨床10另設有一用以控制該工具磨床 1 0各線性軸及旋轉軸作動的控制器1 5,該控制器1 5 係设有一乙太網路(Ethernet)的傳輸介面,較佳地,該 控制器15係透過TCP/IP通訊協定進行訊號的傳輸與 溝通且設有四個埠(port),該工具磨床】〇的工作行程 約為200〜380公厘(mm),且定位精度為4微米(以 m) ’重現性精度為3微米("m); §玄機器視覺裝置2 0係可拆卸地組裝於該工具磨 床1 0上且設有一夾治具21及一影像擷取組22,該夾 治具21的兩端係可拆卸地與該工具磨床1 〇的兩喷油 導管1 3相結合,該夾治具2彳另朝該工作台方向設有 —延伸座23,較佳地,該夾治具21於靠近該延伸座 23的的中段處係設有一快拆裝置24,使該夾治具21 可方便地裝設於該工具磨床1〇上,該影像擷取組22 係與該夾治具21相結合且設有一攝影機25、一鏡頭 26及-光源組27 ’其中該攝影機21係固設於該夾治 具21的延伸座23上且設有一丨EEE 139化的傳輸介 201227158 面,較佳地’該攝影機25係為一電耦合元件攝影機 (Charge-Coupled Device Camera ; CCD Camera)' 較佳地’該攝影機25係為一漸進式掃描攝影機 (Progressive Scan CCD Camera),其優點是可在同〆 時間擷取到一張完整的畫面’不會因為物體移動而造 成模糊不清的影像,適合在動態的環境下拍攝; 該鏡頭2 6係與該攝影機2 5相結合且朝向該工具After the tool has to be removed and placed in -, 目, 丨MAA,.,, ^ Detecting machine for size inspection 1 so that the grinding and testing of existing tools must be separated, red and green, the soil is effective in the grinding process In the instant 仃,·,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Improve it. 201227158 SUMMARY OF THE INVENTION Accordingly, the present invention has finally developed a present invention which can improve the existing defects in view of the lack of continuous testing and research to detect the lack of grinding precision of the tool. The invention mainly provides a multi-axis tool grinder tool grinding image detecting system, which can instantly detect the grinding precision of the tool through image processing and measuring method, providing a convenient operation, real-time monitoring and improving grinding precision and The target of the cost-reducing image detection system. Based on the above object, the main technical means of the present invention is to provide a multi-axis tool grinder tool grinding image detecting system, which is provided with a tool grinding machine, a machine vision device and a human machine interface processing device, wherein: the tool grinding machine is on the main shaft and works. a fixture for holding a tool is provided between the table, the tool grinding machine is provided with a controller for controlling the operation of each shaft and having a transmission interface; the machine vision device is detachably assembled on the tool grinding machine and provided with a clamping And an image capturing set, the clamping fixture is detachably coupled to a spindle of the tool grinding machine, the clamping fixture is provided with an extension seat toward the table; and the image capturing assembly is combined with the clamping fixture And a camera, a lens and a light source group. The camera is fixed on the extension and is provided with a transmission interface. The lens is combined with the camera and faces the worktable. The light source group provides the lens. a light source; and 201227158, the human-machine interface processing device is respectively connected to the tool grinder and the machine vision device and is provided with an electric 'The computer is electrically connected to the controller and the camera, and reminds the user of the operation process in the manner of the graphic teaching. The computer has an image processing module and a mechanical seat 4, and The image processing module is provided with a video computing program for transmitting the digital image obtained by the machine vision device to the computer through the transmission interface of the camera, and the mechanical coordinate processing module is The controller is electrically connected, and the mechanical coordinate signal generated by the movement of each axis of the tool grinder is captured through the transmission interface of the controller, and the captured mechanical seat signal is displayed on the screen of the computer and performed. Image detection. Further, the image capturing system performs image superimposition on the captured digital image to perform cutting, thereby obtaining a detected area of the tool to be tested, and performing binarization processing and morphological operation on the detected area. Further, the image capturing group finds the boundary of the tool contour to be measured by the Sober operator and the continuous Huo conversion to measure the straight line edge of the tool diameter, and uses the least square method to obtain the round fox of the tool to be tested. Center and radius. Preferably, the mechanical coordinate processing module calculates a geometric dimension of the tool to be tested by moving the center cross line on the continuous image. Preferably, the tool grinding machine is provided on each side of the main shaft with a nozzle oil pipe extending horizontally above the tool grinding table, 201227158, and both ends of the clamp/sigma are detachably coupled with the two injections. The catheter is combined. Preferably, the transmission interface of the controller is an Ethernet transmission interface, and the controller transmits and communicates signals with the mechanical coordinate processing module through the Tcp/|p communication protocol, and the camera The transmission interface is a pass-through interface for EEE 1394b. In the middle of the car, the Izumi fixture is provided at the middle section near the extension seat, so that the fixture can be conveniently installed on the tool grinding machine. Preferably, the side camera is a progressive scanning camera, and the lens is a object side telecentric lens having a small volume and a low image distortion rate. Preferably, the light source assembly is a front-illuminated light source group coupled to the extension base and located at the front end of the lens. The front-illuminated light source assembly is provided with an annular light source for front surface illumination detecting tool surface features. Preferably, the xenon source group is a back-illuminated light source set on a workbench, and the back-illuminated light source set is provided with a diffused backlight that produces a contrasting object contour. The above-mentioned technical means 'the multi-axis tool grinder tool grinding image detecting system of the present invention has at least the following advantages and effects: 1_The multi-axis tool grinding machine tool grinding image detecting system of the invention only needs to be treated when detecting the tool The tool is placed on the fixture of the tool grinder, and the tool can be easily detected through the detection mode of the man-machine interface processing device. The detection mode of the man-machine interface processing device can be divided into a mechanical coordinate detection mode and Image analysis mode, 201227158 The mechanical coordinate mode mainly uses the tool grinder to move the image pickup group, records the mechanical coordinate data of different positions of the tool through the controller, and obtains the tool to be tested through the operation of the mechanical coordinate processing module. The basic shape of the outer diameter, the helix angle, the chamfer, etc. = and the image analysis mode is to calculate the geometric shape of the tool to be tested through the image calculation program. 2. The multi-axis tool grinder tool grinding image detecting system of the invention can detect the geometrical dimensions of the tool on the line in real time without removing the tool and assembling it on a detecting machine for size detection, which can be conveniently and quickly Correcting and re-grinding the tool on the line not only greatly improves the grinding accuracy of the tool, but also reduces material waste and reduces processing costs. J Agriculture buys: · The multi-axis tool grinder tool grinding machine interface processing device of the present invention can teach the instruction to use the use of the process, so that the operator can easily learn the detection process. [Embodiment] In order to understand the technical features and practical effects of the present invention in detail, and in accordance with the contents of the specification, the detailed description of the preferred embodiment of the present invention will be described in detail. Figure: Two: Γ:]: Two grinding machine tool grinding image detection system is equipped with a grinding machine 10, a machine vision installation i 2 〇Λ _ interface processing device 30, wherein: - human machine tool grinding machine 1. Material - five-axis ^ grinder, the five-sleeve tool 7 201227158 grinder contains three linear axes (X, Y and z axes) and two rotating axes (c and A axes) 'The tool grinder 10 is on the main shaft 11 (on the z-axis The two sides of the direction are respectively provided with a fuel injection pipe 13 extending horizontally above the tool grinding machine 1 〇 table 12 (located on the XY axis plane), and the tool grinding machine 10 is provided with a tool for clamping the tool. The jig 14 is configured to be disposed between the main shaft 11 of the stencil tool grinder 10 and the table 12, wherein the tool 50 to be tested can be an end mill, a reamer or a drill bit. The tool grinder 10 is further provided with a controller 15 for controlling the linear shaft and the rotating shaft of the tool grinder 10, and the controller 15 is provided with an Ethernet transmission interface, preferably The controller 15 transmits and communicates signals through a TCP/IP protocol and has four ports. The working distance of the tool grinding machine is about 200 to 380 mm (mm), and the positioning accuracy is 4 micron (in m) 'reproducibility accuracy of 3 microns ("m); § myo machine vision device 20 0 Disassembled and assembled on the tool grinding machine 10 and provided with a clamping fixture 21 and an image capturing group 22, the two ends of the clamping fixture 21 are detachably coupled with the two injection conduits 13 of the tool grinding machine 1 In combination, the fixture 2 is further provided with an extension seat 23 in the direction of the table. Preferably, the fixture 21 is provided with a quick release device 24 near the middle portion of the extension seat 23, so that the fixture The jig 21 can be conveniently mounted on the tool grinder 1 , and the image capturing set 22 is combined with the jig 21 and is provided with a camera 25 , a lens 26 and a light source set 27 ' wherein the camera 21 It is fixed on the extension seat 23 of the fixture 21 and is provided with an EEE 139 transmission medium 201227158 surface. Preferably, the camera 25 is an electric coupling element camera (Charge-Coupled Device Camera; CCD Camera). 'Preferably' the camera 25 is a progressive scan CCD camera, which has the advantage that a complete picture can be captured at the same time 'no blurring due to object movement Image suitable for shooting in a dynamic environment; the lens 2 6 Combined with the camera 25 and facing the tool

磨床1 0的工作台1 2 ’較佳地,該鏡頭25係為一體積 較小且影像失真率低的物側遠心鏡頭(Te|ecentrjcThe table 1 2 ' of the grinding machine 10 is preferably a lens-side telecentric lens having a small volume and a low image distortion rate (Te|ecentrjc)

Lens),該光源組27係用以提供該鏡頭26 —光源,使 該鏡頭26可擷取該待測刀具50的數位影像,較佳地, 該光源組27可為一與該延伸座23相結合且位於該鏡 頭2 6鈿知的刖照式光源組或者一位於工作台1 2上的 背照式光源組,較佳地,該前照式光源組係設有一環 形光源271,該環形光源271係可正面照明檢測刀具 5〇的表面特徵,經過紅色、綠色以及藍色三種顏色光 源照射測試,纟中以紅色光照射金屬表面成像特徵較 明顯’故可使用-環型紅色發光二極體(LED)光源,較 佳地,δ玄背照式光源組係設有一可產生對比強烈的物 體輪廊線之擴散背光板272,作為物體尺寸檢測之用, 因此選用背光照明方式檢測刀具5Q外徑、圓弧半徑以 及角度等使用,可為一紅色發光二極體(led)的擴 光板272 ;以及 ' 該人機介面處理裝置30係分別與該工具磨床忉 201227158 及該機器視覺裝署 20相連接且設有一電腦31,該電 - 腦31係與該工具磨庆1η 锂床10的控制器15及該機器視覺裝 . 置20的攝影機25相雷枓、查拉n 面 I〖生連接且以一圖示教導方式摇 醒使用者操作流程,該 °電腾31内係設有—影像處理模 組32及一機械座標處 _ ^ . 、 处王供組33,該景> 像處理模組32 係設有一影像運算鞋彳9 私式321,其中該機器視覺裝置2〇 所取侍的數位影像係經由該攝影機25的傳輸介面 ❿ (iEEE 1394b)而傳送至該電腦31的影像處理模組π 中’由於原始影像中句人 傳干包3有4多不必要的雜訊與缺 陷,或者原始影像中的特 了风°tL思不凡整’所以必須進 :步對於影像進行分析與處理,因此,藉由該影像運 异程式321對於原始影像進行處理可得到該更明確的 待測刀具5 0特徵影像資訊; 其中係可如圖3戶斤干i)定 坏丁將δ亥衫像擷取組22所擷取的 數位影像疊加後進行切割,囍 dJ错以取得待測刀具50 —受 • 檢測的區域(Region of |nterest · "wrest , RCM),使該影像運算 矛王式3 2 1僅需對於該局部切勾之為於,日丨认广u 刀°』之欠檢測的區域進行影 像處理,不僅可提高影像運直分,玄,α 门豕連鼻效率且可降低該影像運 算程式321的運算量,並斜於 卫對於该受檢測的區域(R〇|) 進行二值化處理及形態學運算; 其中該二值化處理係為吾ί後八士,丄π 于馬衫像分割中最重要的方法 之一,在影像進行分析前的第—+ βρ Υ J示 步疋進行影像分割, 主要係如圖4所示將一張影德由从± 〜像中的像素點(MxN個像 素,如:1296x966)分成兩個祐继 1U族群,以一灰階臨界值來 I0 201227158 區分目標物與背景’以達到影像分割的目的,利用一 直方圖可求得臨界值(τ0) ’並以臨界値(Γ。)為基準將影 像二値化,其中當影像中像素的灰階値大於臨界值(了〇) 者’則該點的灰階値變為255,反之,當影像的灰^ 値小於臨界值(Γ0)者,則灰階值變為〇,其中該影像灰 階值函數係如方程式(1)所示: /(〇,〇) /(】,〇) /(〇,1) /(U)The light source group 27 is configured to provide the lens 26 as a light source, so that the lens 26 can capture a digital image of the tool 50 to be tested. Preferably, the light source group 27 can be associated with the extension seat 23. Preferably, the front-illuminated light source group is provided with an annular light source 271, and the annular light source is 271, which is combined with the lens-based light source group or the back-illuminated light source group located on the table 12. The 271 series can detect the surface characteristics of the tool 5 正面 front light, and it is tested by red, green and blue light source. The image of the metal surface illuminated by red light is more obvious. Therefore, the ring-shaped red light-emitting diode can be used. (LED) light source, preferably, the δ Xuan back-illuminated light source group is provided with a diffused backlight board 272 which can generate a contrasting object wheel line, which is used for object size detection, so the backlight illumination mode is used to detect the tool 5Q. The diameter, the radius of the arc, and the angle may be used as a red light-emitting diode (LED) light-emitting plate 272; and 'the human-machine interface processing device 30 is respectively associated with the tool grinder 忉201227158 and the machine vision assembly 20 Connected and provided with a computer 31, which is connected to the controller 15 of the tool and the camera 25 of the machine vision device, and the camera 25 of the machine vision device. The user operation flow is shaken in a graphical teaching manner, and the image processing module 32 and a mechanical coordinate unit _ ^ . , the Wang Wang group 33, the scene & image processing mode The group 32 is provided with an image computing shoe 9 private 321 in which the digital image taken by the machine vision device 2 is transmitted to the image processing mode of the computer 31 via the transmission interface ❿ (iEEE 1394b) of the camera 25. In the group π, 'there are more than 4 unnecessary noises and defects in the original image in the sentence, or the special wind in the original image is not awkward. So you must enter: Step analysis and processing of the image Therefore, the image processing module 321 can process the original image to obtain the more detailed image information of the tool to be tested 50; wherein the figure can be as shown in Figure 3; The digital images captured by the capture group 22 are superimposed and then cut. dJ is wrong to obtain the area to be tested 50 - the area to be detected (Region of | nterest · " wrest, RCM), so that the image operation spear type 3 2 1 only need to be for this part of the hook, the sundial The image processing is performed in the area of the under-detection of the U-knife, which not only improves the image transfer, but also reduces the efficiency of the image operation program 321 and reduces the amount of calculation of the image calculation program 321 The detected area (R〇|) is binarized and morphologically operated; wherein the binarization processing is one of the most important methods in the division of the jersey, and 丄π is performed in the image segmentation. The image is segmented before the analysis - + βρ Υ J shows the image segmentation, mainly as shown in Figure 4. A picture is divided into two UJ 1U pixels from the pixels in the image (MxN pixels, such as 1296x966). The ethnic group, with a gray-scale threshold value I0 201227158 distinguishes the target object from the background 'to achieve the purpose of image segmentation, using the histogram to obtain the critical value (τ0) ' and the critical threshold (Γ. The image is binarized as a reference, wherein when the gray level 像素 of the pixel in the image is greater than the critical value (〇 〇), the gray level 该 of the point becomes 255, and vice versa, when the gray level of the image is less than the critical value ( Γ0), the grayscale value becomes 〇, where the image grayscale value function is as shown in equation (1): /(〇,〇) /(],〇) /(〇,1) /(U)

/(Μ-1,0) /(HI) 其中X和y表示空間座標,而任意點(x,乂)的f值 表示該點影像的灰階值; 該形態學運算係包含有膨脹(Dilation)、侵蝕 (Erosion)、斷開(0penjng)及閉合(c|〇sing)等運算方/(Μ-1,0) /(HI) where X and y represent spatial coordinates, and the f-value of any point (x, 乂) represents the grayscale value of the image at that point; the morphological operation contains expansion (Dilation ), Erosion, Disconnect (0penjng), and Close (c|〇sing)

法,透過二兀影像運算的方式,取得與刀具5〇實際外 觀輪廓及尺寸相對應的數位影像,並可藉由一如方程 式(2)所示之索柏運算子(s〇be丨〇perat〇r)求出該影像 灰階值函數梯度之強度: 2 2 Sfk y) 5f(x,y) V .dx • -办_ dx dy (2) 其中匕為計算水平梯度的運算子,Gy為計算垂直梯 度的運算子’因此,適當的選取遮罩匕及Gy内的值,可 以將水平垂直及方向變化劇烈的灰階值表現出來即 201227158 實現待測刀具50的邊緣描述,可解析出影像中對比度 高的部分及物體的外觀輪廓或特徵,使原始影像經過The method obtains a digital image corresponding to the actual appearance contour and size of the tool 5 by means of two-dimensional image calculation, and can be operated by a Sober operator (s〇be丨〇perat) as shown in equation (2) 〇r) Find the intensity of the grayscale value function gradient of the image: 2 2 Sfk y) 5f(x,y) V .dx • -do _ dx dy (2) where 匕 is the operator that calculates the horizontal gradient, Gy is Calculate the operator of the vertical gradient. Therefore, by appropriately selecting the values in the mask 匕 and Gy, the grayscale values of the vertical and vertical changes can be expressed, that is, 201227158 realizes the edge description of the tool 50 to be tested, and the image can be parsed. The part with high contrast and the outline or feature of the object, so that the original image passes

Gx、Gy水平垂直方向梯度運算子的運算後,能得到明顯 的邊緣結果; 再則,亦可透過一霍氏轉換(Hough Transform)對 於線段進行檢測,其包含有兩種主要的形式,其中一 種係用斜率表示,而另一種係使用角度與距離的方式 表不,其表示方式係分別如方程式(3)及(4)所示: y = mx + b (3) R = xcos0 + >>sin0 (4) 其中m為斜率,其運算上的優點就是即便線段有 斷裂或雜訊的干擾依然不影響求取線段,而直線亦可 由兩個參數R和Θ來表示,其巾直線到原點的垂 直距離,0為直線的垂直線與χ軸的相交角度,可用 以解決當m值為無限大的問題; 因此利用。亥索柏運真子(S〇be| 〇perat〇r)和該霍 式轉換(Hough Transform),係可如圖5所示找到待測 =具50輪廟邊界以便進行刀具5〇直徑或邊緣直線的 量測’並且可利用最小平方法(Least Square Method)(此方法為習知技術故不闡述),如圖6所示 來求出待測刀具50圓弧處的中心及半徑; 藉由該影像運算程式321的運算後,係可將經該 201227158 機器視覺裝置20所榻取到的影像進行處理並透過運 鼻該影像點到點的距離、點到直線的距離、兩點的平 行距離及兩直線相交的央角等公式而如圖7所示推算 出待利刀具50的幾何尺寸(包含待測刀具的外徑圓 弧半仏螺方疋角、倒角、軸向離隙角、轴向餘隙角等 的幾何特徵);以及 該機械座標處理模組33係與該工具磨床1〇的控 制器15相電性連接’該機械座標處理模組33係經由 該控制器15的傳輸介面(Ethe_)而擷取到工具磨床 二〇。各軸(X、Y'X、q A轴)移動所產生的機械座標 。礼號並對於所擷取到的機械座訊號顯示於該電腦” 的螢幕311上’將該攝影機25連續擷取影像顯示該電 腦31的螢幕31上,於該連續影像晝上一中心十字線, 透過移動該中心+丰蝻的古斗 十子線的方式’即可如冑8所示計算 出待測刀具5Q的幾何尺寸(包括待測刀具的外徑、倒 角、倒角寬(高)、鑽尖角、螺旋角及軸向離(隙)隙角等 ==二機械座標處理模組33與該影像處理模 33的* 面不同之處,在於該機械座標處理模組 的:二即時影像監控,而該影像處理模組32 的旦面為早-影像擷取及動態影像疊加的形式。 13 [S] 201227158 藉由上述的技術手段,本發明工具磨床刀具研磨 影像檢測系統於檢測刀具50時,需先對於人機介面處 理裝置30的影像處理模組32及機械座標處理模組33 進行校正,如圖 9所示藉以取得系統的校正因子 (Scaling Factor),進而讓校正後的影像處理模組32 及機械座標處理模組33,可精確地檢測出的待測刀具 50幾何尺寸值,其中如表1〜8所示,係為本發明工具 工具顯微鏡量測結果 機械座標處理模組 點對點距離之外徑檢測結果 誤差百分比 No. 量測值 平均值 量測值 誤差 1 1.009 1.008 1.001 -0.007 -0.50% 2 1.009 0.998 -0.010 3 1.008 1.008 0.000 4 1.007 1.003 -0.005 5 1.007 1.005 -0.003 表1、本發明機械座標處理模組與一工具顯微鏡檢測結果之比較表(點對點距離 之外徑)。註:單位:公厘(mm)After the operation of the Gx and Gy horizontal vertical gradient operators, significant edge results can be obtained. Furthermore, the line segments can be detected by a Hough Transform, which includes two main forms, one of which The system is expressed by the slope, and the other is expressed by the angle and the distance. The representation is as shown in equations (3) and (4): y = mx + b (3) R = xcos0 + >&gt ;sin0 (4) where m is the slope, and its computational advantage is that even if there is a break in the line segment or the interference of the noise still does not affect the line segment, the line can also be represented by two parameters R and Θ, and the line is straight to the original The vertical distance of the point, where 0 is the intersection angle of the vertical line of the line and the χ axis, can be used to solve the problem that the value of m is infinite; therefore, it is utilized. Hessau Yunzhenzi (S〇be| 〇perat〇r) and the Hough Transform (Hough Transform) can be found as shown in Figure 5 = 50 rounds of temple boundaries for tool 5 〇 diameter or edge straight line Measure 'and can use the Least Square Method (this method is not explained in the prior art), as shown in Figure 6, to find the center and radius of the arc of the tool 50 to be tested; After the operation of the image calculation program 321 , the image taken by the 201227158 machine vision device 20 can be processed and transmitted through the distance of the image point to the point, the distance from the point to the line, the parallel distance between the two points, and The formula of the central angle intersecting the two lines and the formula of the tool 50 as shown in Fig. 7 (including the outer diameter of the tool to be tested, the radius of the semicircle, the chamfer, the axial relief angle, the axis The mechanical coordinate processing module 33 is electrically connected to the controller 15 of the tool grinder 1 ' the mechanical coordinate processing module 33 is transmitted through the transmission interface of the controller 15 (Ethe_) and take the second to the tool grinder. The mechanical coordinates generated by the movement of each axis (X, Y'X, q A axis). The ceremony number is displayed on the screen 311 of the computer on the screen 311 of the computer. The camera 25 continuously captures the image on the screen 31 of the computer 31, and a continuous cross line is placed on the continuous image. By moving the center + Fengqi's ancient ten-line method, you can calculate the geometry of the tool to be tested 5Q as shown in Figure 8 (including the outer diameter, chamfer, and chamfer width of the tool to be tested (height). , the drill tip angle, the helix angle and the axial distance (gap) gap angle, etc. == The difference between the two mechanical coordinate processing module 33 and the image processing module 33 is that the mechanical coordinate processing module: Image monitoring, and the image processing module 32 has the form of early-image capture and motion image overlay. 13 [S] 201227158 By the above technical means, the tool grinder tool grinding image detecting system of the present invention detects the tool At 50 o'clock, the image processing module 32 and the mechanical coordinate processing module 33 of the human interface processing device 30 are first corrected, and the Scaling Factor of the system is obtained as shown in FIG. 9 to make the corrected image. Processing module 32 and The tool coordinate processing module 33 can accurately detect the geometric value of the tool 50 to be tested, which is shown in Tables 1 to 8, which is the outer diameter of the point-to-point distance of the mechanical coordinate processing module of the tool tool of the present invention. Test result error percentage No. Measurement value average value error 1 1.009 1.008 1.001 -0.007 -0.50% 2 1.009 0.998 -0.010 3 1.008 1.008 0.000 4 1.007 1.003 -0.005 5 1.007 1.005 -0.003 Table 1, mechanical coordinates of the invention Comparison table between the processing module and a tool microscope (outer diameter of the point-to-point distance). Note: Unit: mm (mm)

磨床刀具研磨影像檢測系統的機械座標處理模組33 檢測結果與一工具顯微鏡(OLYMPUS STM6)檢測結果 之比較表。 14 201227158 工具顯微鏡量測結果 No. 量測值 平均佶 1 1.009 1.008 2 1.009 3 1.008 4 1.007 5 1.007 表2 機械座標處理模組 量測值 ------- __誤差 0.998 -0.010 1.005 -0.003 1.010 0.002 1.003 -0.005 1.014 0.006 -0.20% 誤差百分比 外徑)。註··單位:公厘(⑺叫 工具顯微鏡量測結果A comparison table between the test results of the mechanical coordinate processing module 33 of the grinder tool image inspection system and the test results of a tool microscope (OLYMPUS STM6). 14 201227158 Tool microscope measurement result No. Measurement value average 佶1 1.009 1.008 2 1.009 3 1.008 4 1.007 5 1.007 Table 2 Mechanical coordinate processing module measurement value ------- __ Error 0.998 -0.010 1.005 - 0.003 1.010 0.002 1.003 -0.005 1.014 0.006 -0.20% error percentage outer diameter). Note · · Unit: metric ((7) called tool microscope measurement results

量測值 1.009 2 1.008 1.008 4 5 1.007 1.007 表3、本發明機械座標處理模組與一 之外徑)。註·卓位:公厘(⑺叫 機械座標處理模組 點對點平行距離之外徑檢測 0.998 1.002 1.009 0.995 1.011 誤差百分比 誤差 -0.010 -0.006 0.001 -0.013 0.003 -0.50% 工具顯微鏡檢測結果之比較表(點對點平行距 離Measurement value 1.009 2 1.008 1.008 4 5 1.007 1.007 Table 3. The mechanical coordinate processing module of the present invention and the outer diameter of one. Note · Zhuo position: mm ((7) is called mechanical coordinate processing module point-to-point parallel distance outer diameter detection 0.998 1.002 1.009 0.995 1.011 error percentage error -0.010 -0.006 0.001 -0.013 0.003 -0.50% tool microscope test results comparison table (point to point Parallel distance

具顯微鏡檢測結果之比較表(兩直線相交失角 39.57 表4、本發明機械座標處理模組與 之倒角)註:單位degree 201227158 工具顯微鏡量測結果 機械座標處理模組 兩直線相交央角檢測之错尘备蛤、:目,丨 誤差百分比 No. 量測值 平均值 量測值 誤差 1 119.89 120.63 032~~~ 2 121.09 120.94 0.63 3 120.29 120.31 120.56 0.25 0.34% 4 119.73 121.11 0.80 ~ 5 志F、士 120.53 120.31 0.00 之鑽尖·角)。註:單位ctegrree ------- 工具顯微鏡量測結果 機械座標處理模組 螺旋亩檢測 No. 量測值 平均值 量測值 誤差 1 34.89 35.38 0.49 一 2 34.89 34.93 0.04 3 34.90 34.89 35.18 0.29 ~ 4 34.89 34.80 -0.09 5 主C · 上 34.88 35.16 0.27 誤差百分比 0-57% L本發明機械座標歧·與_王賤纖侧絲之比齡( ··罝你 H^r^rack ™ f 註··單仇degree 工具顯微鏡量測結果 機械座標處理模組 兩直線相交夾角之離隙条檢測 No. 量測值 平均值 量測值 誤差 1 4.52 4.94 5.20 0.26 _2 4.99 5.24 0.30 3 5.20 5.42 0.48 4 5.34 5.62 0.68 5 4.65 5.57 0.63 謨差百分比 9 •51% 註·單位degree 16 201227158Comparison table with microscopic test results (two straight intersecting angles 39.57 Table 4, mechanical coordinate processing module of the present invention and chamfering) Note: unit degree 201227158 tool microscope measurement result mechanical coordinate processing module two straight line intersection central angle detection The wrong dust, :, 丨 丨 error percentage No. Measured value average measured value error 1 119.89 120.63 032~~~ 2 121.09 120.94 0.63 3 120.29 120.31 120.56 0.25 0.34% 4 119.73 121.11 0.80 ~ 5 120.53 120.31 0.00 drill tip · corner). Note: Unit ceggrree ------- Tool Microscope Measurement Results Mechanical Coordinate Processing Module Helical Mu Detection No. Measured Value Average Measured Value Error 1 34.89 35.38 0.49 A 2 34.89 34.93 0.04 3 34.90 34.89 35.18 0.29 ~ 4 34.89 34.80 -0.09 5 Main C · Upper 34.88 35.16 0.27 Error percentage 0-57% L The mechanical coordinate of the invention is different from the age of the _ Wang 贱 fiber side wire ( ··罝你H^r^rack TM f Note · ·Single degree tool microscope measurement result Mechanical coordinate processing module Two straight line intersecting angle of the gap detection No. Measured value average measurement error 1 4.52 4.94 5.20 0.26 _2 4.99 5.24 0.30 3 5.20 5.42 0.48 4 5.34 5.62 0.68 5 4.65 5.57 0.63 谟% difference 9 •51% Note·Unit degree 16 201227158

工 具顯微鏡量測結果Tool microscope measurement results

No. 4 量測值 14.51 14.26 14.52 14.53 14.85 機械座標模式 兩直線相交夾角之餘隙角檢 -_ 測 誤差百分比 平均值 14.53 量測值 15.40 15.19 15.04 ___J5134_ 15.13 誤差 0.87 0.66 0.51 0.81 0.60 4.72% 表8、本發明機械座標處理模组一 — 夾角之餘Μ卜註:單位輕ee〜錢鏡檢猶果之比絲(兩直線相交 而透過該影像處理模組32所得到的檢測結果與 之比較係如表9〜16所示: 量測裝置量測結果 八㈧、xu衣 ^ ^ I u rr]小 影像處理模組 .點對點箝雜之外牴檢測 誤差百分比 No. 量測值 平均值 量硎值 誤差 1 1.007 1.007 1.005 -0.002 -0.22% 2 1.008 1.005 -0.002 3 1.006 1.006 -0.001 4 1.007 1.004 -0.003 5 1.008 1005 -0.002 表9、本發卿像處理模组與__量;職置檢測絲之錄表(點雜距離之外 徑)。註:單位:公厘(mm) 17 201227158 量測裝置量測結果 影像處理模組 點對直線距离 隹之外徑檢測 誤差百分比 No. 量測值 平均值 量測值 誤差 1 1.007 1.012 0.005 2 1.008 1.012 0.005 3 Γ 1.006 1.007 1.010 Γ 0.003 0.38% 4 1.007 1.010 0.003 5 1.008 1.011 0.004 表10、本發明影像處理模組與一量測裝置檢測結果之比較表(點對直線距離之 外徑)。註:單位:公厘(mmjNo. 4 Measured value 14.51 14.26 14.52 14.53 14.85 Mechanical coordinate mode Check the clearance angle of the two straight intersecting angles - _ Measured error percentage average 14.53 Measured value 15.40 15.19 15.04 ___J5134_ 15.13 Error 0.87 0.66 0.51 0.81 0.60 4.72% Table 8, The mechanical coordinate processing module of the present invention - the remaining angle of the angle note: the unit light ee ~ money mirror inspection of the fruit of the fruit (the two lines intersect and the detection result obtained by the image processing module 32 is compared with Tables 9 to 16: Measuring device measurement results eight (eight), xu clothing ^ ^ I u rr] small image processing module. Point-to-point clamp outside detection error percentage No. measurement value average value 硎 value error 1 1.007 1.007 1.005 -0.002 -0.22% 2 1.008 1.005 -0.002 3 1.006 1.006 -0.001 4 1.007 1.004 -0.003 5 1.008 1005 -0.002 Table 9, Benfaqing processing module and __ quantity; record of occupational testing wire Table (outer diameter of the point distance) Note: Unit: mm (mm) 17 201227158 Measurement device measurement results Image processing module point to line distance 隹 outer diameter detection error percentage No. measurement value average value Measured value Error 1 1.007 1.012 0.005 2 1.008 1.012 0.005 3 Γ 1.006 1.007 1.010 Γ 0.003 0.38% 4 1.007 1.010 0.003 5 1.008 1.011 0.004 Table 10, comparison table of the detection results of the image processing module and a measuring device of the present invention (point-to-straight distance) Outer diameter). Note: Unit: mm (mmj

量測裝置量測結果 影像處理模組 點對點轴平行距離之外徑檢測 誤差百分比 No. 量測值 平均值 量測值 誤差 1 1.007 1.007 1.009 0.002 0.42% 2 1.008 1.013 0.006 3 1.006 1.009 0.002 4 1.007 1.013 0.006 5 1.008 1.013 0.006 表11、本發明影像處理模組與一量測裝置檢測結果之比較表(點對點軸平行距 離之外徑〉。註:單位:公厘(mm) I8 2〇l227l58Measuring device measurement result Image processing module Point-to-point axis parallel distance outer diameter detection error percentage No. Measurement value average measurement value error 1 1.007 1.007 1.009 0.002 0.42% 2 1.008 1.013 0.006 3 1.006 1.009 0.002 4 1.007 1.013 0.006 5 1.008 1.013 0.006 Table 11. Comparison table between the detection results of the image processing module and a measuring device of the present invention (outer diameter of the parallel distance of the point-to-point axis). Note: unit: mm (mm) I8 2〇l227l58

平均值 40.30 量測裝置量測結果 影像處理模組 兩直線相交夾角檢測之倒角檢測 量測值 40.64 40.75 40.38 40.26 40.92 誤差百分比 誤差 0.34 0.45 0.08 -0.04 0.62 0.72% 12 '本發明影像處理模組與一量測裝置檢測結果之比較表(兩直線相交夾角 之倒角)。註:單位争Average value 40.30 Measuring device measurement result Image processing module Two-line intersection angle detection chamfer detection measurement value 40.64 40.75 40.38 40.26 40.92 Error percentage error 0.34 0.45 0.08 -0.04 0.62 0.72% 12 'The image processing module of the present invention A comparison table of the detection results of a measuring device (the chamfer of the intersection angle of the two straight lines). Note: Unit competition

^---| —-- ---- 量測裝置量測結果 影像處理模組 兩直線相夺办S檢潘I之镨尘S檢測 誤差百分比 No. ---—_ 1 ---— 2 則值 平均值 量測值 誤差 120.91 121.02 120.56 -0.46 -0.06% 120.62 -0.40 3 120.91 121.19 0.17 4 121.13 121.34 0.32 __5 121.12 121.04 0.02 表13、本發明影像處理模組與一量測裝置檢測結果之比較表(兩直線相交夾角 之鑽尖·角)。註:單位你分厂时^---|——-- ---- Measurement device measurement results Image processing module two straight phase wins S check Pan I's dust S detection error percentage No. ----_ 1 --- 2 Value average value error 120.91 121.02 120.56 -0.46 -0.06% 120.62 -0.40 3 120.91 121.19 0.17 4 121.13 121.34 0.32 __5 121.12 121.04 0.02 Table 13. Comparison of the detection results of the image processing module and a measuring device of the present invention Table (drill tip and angle of the intersection of two straight lines). Note: When you are in the factory

量測裝置量測結果 影像處理模組 兩直線相$类角之離隙角檢測 誤差百分比 No. 量測值 平均值 量測值 誤差 1 5.10 5.33 0.25 2 5.02 5.35 0.27 3 5.12 5.08 5.23 0.15 4.68% 4 5.15 5.28 0.20 5 5.02 5.41 0.33 表14、本發明影像處理模組與一量測裝置檢測結果之比較表(兩直線相交夾角 之離隙角)。註:單位 19 201227158 量測裝置量測結果 影像處理模組 兩直線相交夾角之餘隙角 誤差百分比 No. 量測值 平均值 量測值 誤差 1 15.57 15.58 15.75 0.17 1.00% 2 15.63 15.59 '0.01 3 15.52 15.80 0.22 4 15.50 15.82 0.24 5 15.68 15.72 0.14 表15、本發明影像處理模組與一量測裝置檢測結果之比較表(兩直線相交夾角 之餘隙角)。註:單位ctegree 量測裝置量測結果 影像處理模組 最小平方法圓弧半徑檢測 誤差百分比 No. 量測值 平均值 量測值 誤差 1 2.010 1.996 -0.013 2 2.009 1.991 -0.018 3 2.009 2.009 1.985 -0.024 -0.96% 4 2.007 1.995 -0.014 5 2.009 1.981 -0.028 表16、本發明影像處理模組與一量測裝置檢測結果之比較表(圓弧半徑)。 註:單位:公厘(mm) 藉由上述的技術手段,本發明工具磨床刀具研磨Measuring device measurement results Image processing module Two linear phase $ class angle of the gap detection error percentage No. Measurement value average value error 1 5.10 5.33 0.25 2 5.02 5.35 0.27 3 5.12 5.08 5.23 0.15 4.68% 4 5.15 5.28 0.20 5 5.02 5.41 0.33 Table 14. Comparison table between the detection results of the image processing module and the measuring device of the present invention (the angle of the intersection of the two lines intersecting each other). Note: Unit 19 201227158 Measuring device measurement results Image processing module The angle of the gap between the two straight intersecting angles Error percentage No. The measured value average measured value error 1 15.57 15.58 15.75 0.17 1.00% 2 15.63 15.59 '0.01 3 15.52 15.80 0.22 4 15.50 15.82 0.24 5 15.68 15.72 0.14 Table 15. Comparison table of the detection results of the image processing module and a measuring device of the present invention (the clearance angle of the intersecting angle between the two lines). Note: unit ctegree measuring device measurement result image processing module minimum flat method arc radius detection error percentage No. measurement value average measurement value error 1 2.010 1.996 -0.013 2 2.009 1.991 -0.018 3 2.009 2.009 1.985 -0.024 -0.96% 4 2.007 1.995 -0.014 5 2.009 1.981 -0.028 Table 16. Comparison table (arc radius) of the detection results of the image processing module and a measuring device of the present invention. Note: Unit: mm (mm) By the above technical means, the tool grinder tool grinding of the present invention

影像檢測系統於檢測使用時,其係可在不破壞工具磨 床1 0結構的情況下,快速且方便地將該機器視覺裝置 20組裝於該工具磨床10上,且可透過該整合軟體及 硬體之人機介面處理裝置30的影像處理模組32及機 械座標處理模組33的交互使用及驗證的方式,即時地 在線上對於待測刀具50進行尺寸的檢測,且可隨時地 監控刀具50的研磨精度,不僅可減少研磨過程中失敗 的成本支出,且可藉由淺顯易懂的圖示教導方式,讓 20 201227158 操作者可以依循步驟完成刀具5G檢測,有效改善既有 刀具檢測設備繁雜的操作流程,再則,應用數位影像 的處理技術,可大幅減少人為操作上的誤差,進而有 效提供-可方便操作、即時監控、提高研磨精度及降 低成本的多軸工具磨床刀具研磨影像檢測系統者。 以上所述,僅是本發明的較佳實施例,並非對本 發月作任何形式上的限制,任何所屬技術領域令具有 通常知識者,若在不脫離本發明所提技術方案的範圍 内,利用本發明所揭示技術内容所作出局部更動或修 飾的等效實施例,並且未脫離本發明的技術方案内 合’均仍屬於本發明技術方案的範圍内。 【圖式簡單說明】 圖1係本發明多軸工具磨床刀具研磨影像檢測系 統之結構配置示意圖。 圖2係本發明多軸工具磨床刀具研磨影像檢測系 統之操作流程方塊圖。 圖3係本發明對於刀具數位影像切割出受檢測區 域之操作示意圖。 圖4係本發明ΜχΝ陣列之數位影像示意圖。 圖5係本發明透過索柏運算子和霍式轉換對於待 測刀具輪廓邊界進行邊緣直線的檢測流程圖。 圖6係本發明透過索柏運算子和最小平方法對於 待測刀具圓弧處的中心及半徑進行檢測之流程圖。 ί S] 201227158 圖7係本發明透過該影像處理模組運算後,推算 出待測刀具的幾何尺寸示意圖。 圖8係本發明透過該機械座標處理模組運算後, 推算出待測刀具的幾何尺寸示意圖。 圖9係本發明進行刀具檢測前進行校正之方塊流 程圖。The image detecting system can quickly and conveniently assemble the machine vision device 20 onto the tool grinder 10 without damaging the structure of the tool grinder 10, and can pass through the integrated software and hardware. The interactive processing and verification mode of the image processing module 32 and the mechanical coordinate processing module 33 of the human interface processing device 30 can instantly detect the size of the tool 50 to be tested on the line, and can monitor the tool 50 at any time. Grinding accuracy not only reduces the cost of failure during the grinding process, but also allows the operator to follow the steps to complete the 5G inspection of the tool by means of easy-to-understand graphical teaching, thus effectively improving the complicated operation of the existing tool testing equipment. The process, in turn, the application of digital image processing technology can greatly reduce the error in human operation, and thus effectively provide a multi-axis tool grinding tool grinding image detection system that can be easily operated, monitored, improved in grinding precision and reduced in cost. The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Any one of ordinary skill in the art may be utilized without departing from the scope of the present invention. Equivalent embodiments of the present invention may be made without departing from the technical scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure configuration of a multi-axis tool grinder tool grinding image detecting system of the present invention. Fig. 2 is a block diagram showing the operation of the multi-axis tool grinder tool grinding image detecting system of the present invention. Figure 3 is a schematic illustration of the operation of the present invention for cutting a detected area of a tool digital image. Figure 4 is a schematic illustration of a digital image of a tantalum array of the present invention. Fig. 5 is a flow chart showing the detection of the edge line of the contour boundary of the tool to be tested by the Sober operator and the Huo-style conversion. Fig. 6 is a flow chart showing the detection of the center and radius of the arc of the tool to be tested by the Sober operator and the least squares method. S ] 201227158 Figure 7 is a schematic diagram of the geometrical dimensions of the tool to be tested after the operation of the image processing module. FIG. 8 is a schematic diagram of the geometric size of the tool to be tested after the operation of the mechanical coordinate processing module of the present invention. Figure 9 is a block diagram showing the correction of the present invention prior to tool inspection.

【主要元件符號說明】 10 工具磨床 11 主軸 12 工作台 13 喷油導管 14 夾具 15 控制器 20 機器視覺裝置 21 夾治具 22 影像擷取組 23 延伸座 24 快拆裝置 25 攝影機 26 鏡頭 27 光源組 271 環形光源 272 擴散背光板 30 人機介面處理裝置 31 電腦 311 螢幕 32 影像處理模組 321 影像運算程式 33 機械座標處理模組 50 刀具 22[Explanation of main component symbols] 10 Tool grinding machine 11 Spindle 12 Workbench 13 Fuel injection pipe 14 Clamp 15 Controller 20 Machine vision device 21 Fixture 22 Image capture group 23 Extension seat 24 Quick release device 25 Camera 26 Lens 27 Light source group 271 Ring light source 272 diffusion backlight 30 human interface processing device 31 computer 311 screen 32 image processing module 321 image calculation program 33 mechanical coordinate processing module 50 tool 22

Claims (1)

201227158 七、申請專利範圍: 1_ 一種多軸工具磨床刀具研磨影像檢測系統,其 係包含有一工具磨床、一機器視覺裝置及一人機介面 處理裝置,其中: 該工具磨床於主軸及工作台間設有一用以夾持刀 具的夾具,該工具磨床設有一用以控制各軸作動且具 有一傳輸介面的控制器; 該機器視覺裝置可拆卸地組裝於該工具磨床上且 設有一夾治具及一影像擷取組,該夾治具可拆卸地與 該工具磨床的主軸相結合’該夾治具朝該工作台方向 設有一延伸座,而該影像擷取組係與該夾治具相結合 且設有一攝影機、一鏡頭及—光源組,該攝影機係固 设於戎延伸座上且設有一傳輸介面,該鏡頭係與該攝 影機相結合且朝向該工作台,該光源組係提供該鏡頭 一光源;以及 該人機介面處理裝置分別與該工具磨床及該機器 視見裝置相連接且設有一電腦,該電腦與該控制器及 該攝影機相電性連接且以一圖示教導方式提醒使用者 操作"裎,該電腦内係設有一影像處理模組及一機械 座心處i里;^組,該影像處理模组設有一用以將該機器 視見裝置所取得的數位影像經由該攝影機的傳輸介面 而傳送至该電腦的中進行影像處理的影像運算程式, 而違機械座標處理模組係與該控制器相電性連接,並 23 201227158 經由該控制器的傳輸介面而擷取到工具磨床各軸移動 所產生的機械座標訊號,將所擷取到的機械座訊號顯 不於该電腦的螢幕上並進行影像檢測。 2.如請求項1所述之多軸工具磨床刀具研磨影像 檢測系統,其中該影像擷取組係對於所擷取的數位影 像進行影像疊加後進行切割,藉以取得待測刀具一受 檢測的區域’並對於該受檢測的區域進行二值化處理 及形態學運算。 3-如晴求項2所述之多軸工具磨床刀具研磨影像 檢测系統’其中該影像擷取組透過索柏運算子和該霍 式轉換’找出待測刀具輪廓邊界以便進行刀具直徑或 邊緣直線的量測,並且利用最小平方法求出待測刀具 圓孤處的中心及半徑。 4 ·如吻求項3所述之多軸工具磨床刀具研磨影像 檢刺系統,其中該機械座標處理模組係於該連續影像 畫上一中心十字線’透過移動該中心十字線的方式, 計算出待測刀具的幾何尺寸。 5 士 μ求項4所述之多軸工具磨床刀具研磨影像 松測系先其中遠工具磨床於主軸的兩側係分別設有 :朝前,平伸設於該工具磨床工作台上方的喷油導 管,而遠失治具的兩端係可拆卸地與兩喷油導管相結 合。 长員5所述之多軸工具磨床刀具研磨影像 檢測其中該控制器的傳輸介面係為一乙太網路 24 201227158 的傳輸介面,B — 且遠控制器係透過TCP/IP通訊協定與該 機械座標處4 h 棋組進行訊號的傳輸與溝通,而該攝影 機的ΓΓ介面係為""丨EEE i394b的傳輸介面。 °月求第6所述之多軸工具磨床刀具研磨影像 檢測系統,复± , ” T该夹治具於靠近該延伸座的的中段處 °又有决拆裝置,使該央治具可方便地裝設於該工具 磨床上。 入、8_如凊求$ 7所述之多軸工具磨床刀具研磨影像 m統’其中該攝影機係、為-漸進式掃描攝影機, Λ見頭係為—體積較小且影像失真率低的物側遠心 鏡頭》 如明求項8所述之多軸工具磨床刀具研磨影像 .....先其中該光源組係為一與該延伸座相結合且 :於=鏡頭前端的前照式光源組,該前照式光源組係 設有一可正面照明檢測刀具表面特徵的環形光源。 〇.如喷求項8所述之多軸工具磨床刀具研磨影像 才】系先其中s玄光源組係為一位於工作台上的背照 式光源組,該背照式光源組係設有一可 物體輪靡線之擴散背光板。 強”'、 如叫求項1所述之多輪工具磨床刀具研磨影像 檢測系統’其中該影像擷取組透過索柏運算子和該霍 式轉換,找出待測刀冑輪廓邊界以便進行刀具直徑或 邊緣直線的量_,並且利用最小平方法求出待測刀具 圓弧處的中心及半徑。 25 201227158 12,如請求項,所述之多軸工具磨床刀具研磨影像 欢\統’其中該機械座標處理模組係於該連續影像 直上中〜十字線,透過移動該中心十字線的方式, 計鼻出待測刀具的幾何尺寸。 13·如請求項,所述之多軸工具磨床刀具研磨影像 才 '系’’先其中该工具磨床於主軸的兩侧係分別設有 :朝前水平伸設於該工具磨床工作台上方的喷油導 管,而該夾治具的兩端係可拆卸地與兩喷油導管相結 合。 士 π求項1所述之多軸工具磨床刀具研磨影像 檢系統其中該控制器的傳輸介面係為一乙太網路 的傳輸介面且該控制器係透過T C p /丨p通訊協定與該 機械座標處理模組進行訊號的傳輸與溝通,而該攝影 機的傳輸介面係為一 |EEE 1394b的傳輸介面。 1 5·如請求項彳所述之多軸工具磨床刀具研磨影像 檢測系統’其中該夾治具於靠近該延伸座的的中段處 設有一快拆裝置’使該夾治具可方便地裝設於該工臭 磨床上。 1 6 ·如请求項1所述之多軸工具磨床刀具研磨影像 檢測系統’其中該攝影機係為一漸進式掃描攝影機, 而該鏡頭係為一體積較小且影像失真率低的物側遠心 鏡頭。 1 7·如請求項1所述之多軸工具磨床刀具研磨影像 檢測系統’其中該光源組係為一與該延伸座相結合真 j s ] 26 201227158 位於該鏡頭前端的前照式光源組,該前照式光源組係 設有一可正面照明檢測刀具表面特徵的環形光源。 1 8.如請求項1所述之多軸工具磨床刀具研磨影像 檢測系統,其中該光源組係為一位於工作台上的背照 式光源組,該背照式光源組係設有一可產生對比強烈 物體輪廓線之擴散背光板。201227158 VII. Patent application scope: 1_ A multi-axis tool grinding machine tool grinding image detection system, which comprises a tool grinding machine, a machine vision device and a human machine interface processing device, wherein: the tool grinding machine is provided between the main shaft and the work table. a fixture for holding a tool, the tool grinding machine is provided with a controller for controlling each shaft and having a transmission interface; the machine vision device is detachably assembled on the tool grinding machine and is provided with a clamp and an image a drawing set, the clamping fixture is detachably coupled with a spindle of the tool grinding machine, wherein the clamping fixture is provided with an extension seat toward the table, and the image capturing assembly is combined with the clamping fixture and a camera is provided a lens and a light source group, the camera is fixed on the 戎 extension and is provided with a transmission interface, the lens is combined with the camera and faces the worktable, the light source group provides the lens and a light source; The human interface processing device is respectively connected to the tool grinder and the machine view device and is provided with a computer, and the computer The controller and the camera are electrically connected and remind the user to operate in a graphical manner. The computer is provided with an image processing module and a mechanical center; the image processing module The image computing program for transmitting the digital image obtained by the device viewing device to the computer for image processing is transmitted through the transmission interface of the camera, and the mechanical coordinate processing module is associated with the controller. Electrical connection, and 23 201227158 Through the transmission interface of the controller, the mechanical coordinate signal generated by the movement of each axis of the tool grinding machine is captured, and the captured mechanical seat signal is not displayed on the screen of the computer and the image is performed. Detection. 2. The multi-axis tool grinder tool grinding image detecting system according to claim 1, wherein the image capturing system performs image superimposition on the captured digital image to perform cutting, thereby obtaining a detected area of the tool to be tested. Binary processing and morphological operations are performed on the detected region. 3- Multi-axis tool grinder tool grinding image detection system as described in claim 2, wherein the image capturing group finds the boundary of the tool profile to be tested for tool diameter or edge through the Sober operator and the Hawker transformation The measurement of the straight line is performed, and the center and radius of the rounded corner of the tool to be tested are obtained by the least square method. 4: The multi-axis tool grinder tool grinding image spur system according to the claim 3, wherein the mechanical coordinate processing module is drawn on the continuous image by a central cross line 'transparent by moving the center cross line The geometry of the tool to be tested. 5 multi-axis tool grinder tool grinding image loosening system described in item 4, wherein the far-reaching tool grinding machine is respectively provided on both sides of the main shaft: the front side, the flat-spreading oil sprayed on the tool grinding table The catheter, and the two ends of the distal fixture are detachably combined with the two injection conduits. The multi-axis tool grinder tool described in Chang 5 is used to detect the image of the interface. The transmission interface of the controller is a transmission interface of Ethernet 24 201227158, B - and the remote controller communicates with the machine through the TCP/IP protocol. The 4 h chess group coordinates the transmission and communication of the signal, and the camera's interface is the transmission interface of the ""丨EEE i394b. ° month to find the multi-axis tool grinder tool grinding image detection system described in the sixth, complex ±, "T the clamp is located near the middle of the extension seat, and there is a demolition device, making the central fixture convenient The ground is installed on the tool grinder. Into, 8_, for example, the multi-axis tool grinder tool grinding image m described in $7, wherein the camera system is a progressive scanning camera, and the head is - volume Small object-side telecentric lens with low image distortion rate. The multi-axis tool grinder tool grinding image as described in Item 8 is first combined with the extension seat and: = front-illuminated light source group at the front end of the lens, the front-illuminated light source group is provided with an annular light source capable of frontal illumination to detect the surface features of the tool. 〇. The multi-axis tool grinding machine tool grinding image described in Item 8 is First, the s Xuan source group is a back-illuminated light source group located on the workbench, and the back-illuminated light source group is provided with a diffused backlight panel of the object rim line. Strong "', as described in claim 1 Multi-wheel tool grinder tool grinding image detection system The image capturing group uses the Sober operator and the Huo-style conversion to find the boundary of the contour of the blade to be tested for the tool diameter or the edge line _, and uses the least square method to determine the center of the arc of the tool to be tested and radius. 25 201227158 12, as claimed in the claim, the multi-axis tool grinder tool grinds the image of the system, wherein the mechanical coordinate processing module is connected to the continuous image in the straight line to the cross line, by moving the center cross line, The geometry of the tool to be tested out of the nose. 13. If the request item is described, the multi-axis tool grinder tool grinding image is 'system'. The tool grinding machine is respectively provided on both sides of the main shaft: a spray that is horizontally extended above the work surface of the tool grinder An oil conduit, and both ends of the fixture are detachably coupled to the two fuel injection conduits. The multi-axis tool grinder tool grinding image inspection system described in Item 1 wherein the transmission interface of the controller is an Ethernet transmission interface and the controller communicates with the machine through the TC p /丨p communication protocol. The coordinate processing module transmits and communicates signals, and the transmission interface of the camera is an EEE 1394b transmission interface. 1 5. The multi-axis tool grinder tool grinding image detecting system described in claim ' wherein the clamping device is provided with a quick-release device at a middle portion adjacent to the extension seat, so that the clamping device can be conveniently installed On the work odor grinder. 1 6 The multi-axis tool grinder tool grinding image detecting system according to claim 1, wherein the camera is a progressive scanning camera, and the lens is a object-side telecentric lens with a small volume and low image distortion rate. . The multi-axis tool grinder tool grinding image detecting system according to claim 1, wherein the light source group is combined with the extension seat, true js] 26 201227158 a front-illuminated light source group located at the front end of the lens, The front-illuminated light source set is provided with an annular light source that can frontally illuminate the surface features of the tool. The multi-axis tool grinder tool grinding image detecting system according to claim 1, wherein the light source group is a back-illuminated light source group located on the worktable, and the back-illuminated light source group is provided with a contrast A diffused backlight of a strong object outline. 八、圖式:(如次頁)Eight, schema: (such as the next page) 2727
TW99144980A 2010-12-21 2010-12-21 Multi - axis tool grinding machine tool grinding image detection system TWI407242B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99144980A TWI407242B (en) 2010-12-21 2010-12-21 Multi - axis tool grinding machine tool grinding image detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99144980A TWI407242B (en) 2010-12-21 2010-12-21 Multi - axis tool grinding machine tool grinding image detection system

Publications (2)

Publication Number Publication Date
TW201227158A true TW201227158A (en) 2012-07-01
TWI407242B TWI407242B (en) 2013-09-01

Family

ID=46933110

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99144980A TWI407242B (en) 2010-12-21 2010-12-21 Multi - axis tool grinding machine tool grinding image detection system

Country Status (1)

Country Link
TW (1) TWI407242B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735061B (en) * 2018-10-30 2021-08-01 日商東芝機械股份有限公司 Tool shape measuring device and tool shape measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI648123B (en) * 2017-02-16 2019-01-21 台本機械有限公司 Detection system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122056A (en) * 1998-04-07 2000-09-19 International Business Machines Corporation Direct phase shift measurement between interference patterns using aerial image measurement tool
JP3596753B2 (en) * 2000-05-10 2004-12-02 株式会社ミツトヨ Apparatus and method for generating part program for image measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735061B (en) * 2018-10-30 2021-08-01 日商東芝機械股份有限公司 Tool shape measuring device and tool shape measuring method

Also Published As

Publication number Publication date
TWI407242B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
CN106824806B (en) The detection method of low module plastic gear based on machine vision
CN109612390A (en) Large-size workpiece automatic measuring system based on machine vision
WO2015055060A1 (en) Online detecting method for continuous casting slab surface quality
CN100501312C (en) Gem tri-dimensional cut detection device based on machine vision
CN105784710A (en) Concrete bridge crack detection device based on digital image processing
JP2012032344A (en) Picture measuring device, picture measuring method and program for picture measuring device
CN105301007A (en) Linear array CCD-based ABS gear ring defect online detection device and method
CN108027233B (en) Method and apparatus for measuring features on or near an object
He et al. A critical review for machining positioning based on computer vision
JP2014055864A (en) Image measurement device, manufacturing method of the same and program for image measurement device
CN110617772A (en) Non-contact type line diameter measuring device and method
CN109986172A (en) A kind of weld and HAZ method, equipment and system
CN111275665A (en) Blade grinding and polishing processing vibration detection system and method based on vision
CN103837097A (en) Workpiece angle automatic measurement device based on image processing and measurement method thereof
JP5467962B2 (en) Measurement setting data creation device, measurement setting data creation method, program for measurement setting data creation device, and dimension measurement device
CN114280075A (en) Online visual inspection system and method for surface defects of pipe parts
CN113504239B (en) Quality control data analysis method
TW201227158A (en) Knife sharpening image inspection system of multi-axis tool grinder
CN110657750B (en) Detection system and method for passivation of cutting edge of cutter
CN109622404B (en) Automatic sorting system and method for micro-workpieces based on machine vision
CN113607058B (en) Straight blade size detection method and system based on machine vision
CN114648518A (en) Method for detecting and measuring defects of inner surface of hole based on endoscopic image
JP5262070B2 (en) Method for measuring roundness of inspection object
WO2021179400A1 (en) Computer vision-based adaptive measurement system and method for geometric parameters in assembly process
TWM406489U (en) Knife sharpening image detection device of multi-axis tool grinding machine

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees