TW201227003A - Polarizer - Google Patents

Polarizer Download PDF

Info

Publication number
TW201227003A
TW201227003A TW99144813A TW99144813A TW201227003A TW 201227003 A TW201227003 A TW 201227003A TW 99144813 A TW99144813 A TW 99144813A TW 99144813 A TW99144813 A TW 99144813A TW 201227003 A TW201227003 A TW 201227003A
Authority
TW
Taiwan
Prior art keywords
polarizing plate
polymer substrate
nanowires
substrate
alignment direction
Prior art date
Application number
TW99144813A
Other languages
Chinese (zh)
Other versions
TWI429966B (en
Inventor
Chih-Cheng Cheng
Hsiao-Wen Hung
Hui-Hsiung Lin
Jen-Hui Tsai
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW99144813A priority Critical patent/TWI429966B/en
Priority to CN2010106227646A priority patent/CN102565909A/en
Publication of TW201227003A publication Critical patent/TW201227003A/en
Application granted granted Critical
Publication of TWI429966B publication Critical patent/TWI429966B/en

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

A polarizer including a polymer substrate and a plurality of metal nano-wires is provided. Molecules of the polymer substrate have a main arranging direction. Alternatively, surface of the polymer substrate has a plurality of micro stretches substantially parallel to the main arranging direction. The metal nano-wires are arranged on the surface of the polymer substrate and substantially parallel to the main arranging direction. The polarizer is cheap and can have big size.

Description

201227003201227003

± jj^^uu48TW 35908twf.doc/I 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種偏振片,且特別是有關於一種利 用奈米金屬線產生偏振效果的偏振片。 【先前技術】 偏振片因為可讓通過的光線具有特定的偏振狀態而 廣泛地被應用於許多光電產品中。偏振片依其作用原理可 分為下列數種。第一種為利用多層膜干涉法使特定線偏振 的光線穿透並反射線偏振方向與之正交的光線。第二種為 線栅式偏振片,主要以週期性長條狀平行排列的金屬線篩 選光線,線偏振方向與金屬線排列方向一致的光線可以通 過’反之則被反射。第三種則為利用膽固醇液晶(ch〇lesteric liquid crystal)材料製作之薄膜,當光線的圓偏振狀態與膽 固醇液晶的排列為順向時則被反射,反之則為穿透。以± jj^^uu48TW 35908twf.doc/I VI. Description of the Invention: [Technical Field] The present invention relates to a polarizing plate, and more particularly to a polarizing plate which utilizes a nanowire to produce a polarization effect. [Prior Art] The polarizing plate is widely used in many optoelectronic products because it allows a passing light to have a specific polarization state. Polarizers can be classified into the following types according to their principle of action. The first is to use a multilayer film interferometry to penetrate light of a particular linear polarization and reflect light that is orthogonal to the direction of linear polarization. The second type is a wire-grid polarizer, which mainly illuminates light by periodically arranging parallel lines of metal wires, and the light having the direction of linear polarization and the direction of alignment of the metal wires can be reflected by 'or vice versa. The third type is a film made of a cholesteric liquid crystal material, which is reflected when the circular polarization state of the light is aligned with the cholesteric liquid crystal, and vice versa. Take

Nitto、Philips和MRL之專利為代表。第一種和第二種偏 • 振片的製作都需要奈米等級的製程能力,製作程序複雜且 不易製作出大面積的偏振片。第三種偏振片的光學表現極 佳’然其液晶材料成本高且液晶分子的排列方向不易穩定 控制。 1969年,美國康寧(c〇rning)公司首次揭露專利號為 GB 1276548 A的專利’其使用摻雜驗金屬氧化物之石夕化玻 璃基板,並在基板内加入銀滷化物之銀粒子。藉由加熱拉 伸玻璃基板使銀粒子成橢球狀(長短軸比為2:1至5:1)而產 3 201227003The patents of Nitto, Philips and MRL are represented. The fabrication of the first and second partial polarizers requires a nanometer-scale process capability, and the fabrication process is complicated and it is not easy to produce a large-area polarizer. The optical performance of the third polarizer is excellent. However, the cost of the liquid crystal material is high and the alignment direction of the liquid crystal molecules is not easily controlled. In 1969, c〇rning of the United States first disclosed the patent No. GB 1276548 A, which used a doped metal oxide substrate and added silver halide silver particles to the substrate. By heating the stretched glass substrate to form an ellipsoidal silver particle (length to short axis ratio of 2:1 to 5:1) 3 201227003

rj^yyuu^8TW 35908twf.doc/I 生非等向性之光線吸收率,以達成偏振之 滷化物的粒子會吸收偏振方向與其長輛方^。由於金屬 屬於吸收式偏振片,消光比約為1〇〇。向平行之光線, 厕年,專利號為US 7570424的美 具有雙層結構之奈米線柵偏振片,該 路-種 侧。然而,該專利的奈米線柵是利用微影片气比約為 製程成本極高,且難以製作大尺寸的偏/ χΙ製私形成,Rj^yyuu^8TW 35908twf.doc/I The non-isotropic light absorption rate, in order to achieve the polarization of the halide particles will absorb the polarization direction and its long square. Since the metal is an absorbing polarizer, the extinction ratio is about 1 〇〇. The parallel light, the toilet year, the patent number US 7570424, has a two-layer structure of nanowire grid polarizer, the road side. However, the patented nanowire grid is formed by using a micro-film gas ratio, which is extremely expensive, and difficult to make a large-sized partial/twisted private formation.

膽年,專利號為US 3610729的美國專利揭露 利用雙折射材料和等向材料或另—雙折射材料 多層膜結構,_職性之折射率變化來反 特定偏振狀態的光線。其中,每―層膜之厚度和折射^乘 積為被反射的光線的四分之-波長。但是 不僅成本高,良率也低。 構 【發明内容】 可解決習知偏振片昂貴且尺 本發明提供一種偏振片 寸不易加大的問題。 本發明的偏振片包括一高分子基材以及多條奈米金 屬線。高分子基材的分子具有一主排列方向。或者,高分 子基材的表面具有大致平行主排列方向的多個微溝槽。奈 米金屬線大致平行主排列方向地配置於高分子基^的2 面。 在本發明之一實施例中,上述之高分子基材的材質為 聚乙烯醇(P〇lyVinyl alc〇h〇1,PVA)、聚g旨化吻以如,ρΕτ)或 201227003 l,^iyyu〇48TW 3590Stwf.docA 聚隨亞胺(polyimide, PI)。 在本發明之一實施例中’上述之高分子基材在製作過 程中經拉伸而使高分子基材的分子具有主排列方向。 在本發明之一實施例中’上述之高分子基材的表面經 摩擦而具有微溝槽。 在本發明之一實施例中,上述之奈米金屬線的材質為 銀。U.S. Patent No. 3,610,729 discloses the use of birefringent materials and isotropic materials or double-refractive material multilayer film structures to reflect the refractive index of a particular polarization state. Wherein, the thickness of each layer of film and the refractive product are the quarter-wavelength of the reflected light. But not only is the cost high, but the yield is also low. SUMMARY OF THE INVENTION It is possible to solve the problem that the conventional polarizing plate is expensive and the present invention provides a problem that the polarizing plate is not easily enlarged. The polarizing plate of the present invention comprises a polymer substrate and a plurality of nano metal wires. The molecules of the polymer substrate have a main alignment direction. Alternatively, the surface of the high molecular substrate has a plurality of microchannels substantially parallel to the main alignment direction. The nanowires are arranged on the two faces of the polymer base substantially in parallel with the main alignment direction. In an embodiment of the present invention, the material of the polymer substrate is polyvinyl alcohol (P〇lyVinyl alc〇h〇1, PVA), polyg (such as ρΕτ) or 201227003 l, ^iyyu 〇48TW 3590Stwf.docA Polyimide (PI). In an embodiment of the present invention, the polymer substrate described above is stretched during the production process so that the molecules of the polymer substrate have a main alignment direction. In an embodiment of the invention, the surface of the above-mentioned polymer substrate has a micro-groove by rubbing. In an embodiment of the invention, the material of the nanowire is silver.

在本發明之一實施例中,上述之奈米金屬線佔高分子 基材的表面積的50%至1〇〇%。 在本發明之一實施例中,上述之奈米金屬線佔高分子 基材的表面積的85%至95%。 在本發明之一實施例中’上述之第i個奈米金屬線與 主排列方向的夾角為θί,η為奈米金屬線的數量, ^ 3 cos2 θ ~ 1 s=卜1 2n ,且 S20.5。 在本發明之一實施例中,上述之偏振片,具有一適用 波長,各奈米金屬線的線寬小於等於適用波長。 、在本發明之一實施例中,上述之偏振片,具有一適用 波長,各奈米金屬線的長度大於等於適用波長的 在本發明之一實施例中,上述之偏振片,更包^一 明層’配置於高分子紐上並覆蓋奈米金屬線。 製成=大:明的偏振片可利用簡單而便宜的製程 為讓本發明之上述特徵和優點能更 舉實施例,並配合所關式作詳細說明如^。 文特In one embodiment of the invention, the nanowires comprise from 50% to 1% by weight of the surface area of the polymeric substrate. In one embodiment of the invention, the nanowires comprise from 85% to 95% of the surface area of the polymeric substrate. In an embodiment of the invention, the angle between the ith nanowire and the main alignment direction is θί, η is the number of nanowires, ^ 3 cos2 θ ~ 1 s = Bu 1 2n , and S20 .5. In an embodiment of the invention, the polarizing plate has a suitable wavelength, and the line width of each of the nanowires is less than or equal to a suitable wavelength. In one embodiment of the present invention, the polarizing plate has a suitable wavelength, and the length of each of the nanowires is greater than or equal to the applicable wavelength. In an embodiment of the present invention, the polarizing plate is further included. The bright layer is disposed on the polymer core and covers the nanowire. The above-described features and advantages of the present invention can be further exemplified by a simple and inexpensive process for producing a polarizing plate of a large size: Vent

201227003 P53990048TW 35908twf.doc/I 【實施方式】 圖1疋本發明一實施例的偏振片的示意圖,而圖2為 圖1之偏振片的剖視圖。請參照圖1與圖2,本實施例的 偏振片100包括一南分子基材110以及多條奈米金屬線 120。南分子基材11〇的分子具有一主排列方向Di〇。奈米 金屬線120大致平行主排列方向D10地配置於高分子基材 110的表面。由於大部分的奈米金屬線12〇都平行主排列 方向D10而排列’因此線偏振方向與主排列方向d1〇垂直 的光線可通過偏振片1〇〇,而線偏振方向與主排列方向D10 平行的光線則會被偏振片1〇〇反射。 在本實施例的偏振片1〇〇中,因為高分子基材11()的 分子原本就有的主排列方向D10,故奈米金屬線120自然 會沿著主排列方向D10排列。藉此,本實施例的偏振片1〇〇 的製造成本可以降低,且本實施例的偏振片100易於達成 大型化的目的而可應用於大型化商品中。 本實施例之高分子基材110的材質可以是聚乙烯醇、 聚醋、聚醯亞胺或其他高分子材料。為了讓高分子基材no 的分子盡量沿主排列方向D10,可在高分子基材110的製 作過程拉伸高分子基材11()。此外,本實施例之奈米金屬 線120的材質為銀或其他金屬。奈米金屬線120是利用化 學反應或物理方式沈積而形成在高分子基材110上。 偏振片的品質可用消光比來表示。消光比eWTu,其 中Τι是表示線偏振方向與奈米金屬線的排列方向垂直的 光線的穿透率,而η是表示線偏振方向與奈米金屬線的排201227003 P53990048TW 35908twf.doc/I [Embodiment] FIG. 1 is a schematic view of a polarizing plate according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the polarizing plate of FIG. 1. Referring to FIG. 1 and FIG. 2, the polarizing plate 100 of the present embodiment includes a south molecular substrate 110 and a plurality of nanowires 120. The molecules of the south molecular substrate 11〇 have a main alignment direction Di〇. The nanowires 120 are arranged on the surface of the polymer substrate 110 substantially in parallel with the main array direction D10. Since most of the nanowires 12〇 are arranged in parallel with the main alignment direction D10, the light having a linear polarization direction perpendicular to the main alignment direction d1〇 can pass through the polarizing plate 1〇〇, and the linear polarization direction is parallel to the main alignment direction D10. The light will be reflected by the polarizer 1〇〇. In the polarizing plate 1 of the present embodiment, since the molecules of the polymer substrate 11 () originally have the main alignment direction D10, the nanowires 120 are naturally arranged in the main array direction D10. As a result, the manufacturing cost of the polarizing plate 1 of the present embodiment can be reduced, and the polarizing plate 100 of the present embodiment can be easily applied to a large-sized product because it can be easily enlarged. The material of the polymer substrate 110 of the present embodiment may be polyvinyl alcohol, polyester, polyimine or other polymer materials. In order to allow the molecules of the polymer substrate no to be in the main alignment direction D10 as much as possible, the polymer substrate 11 () can be stretched during the production process of the polymer substrate 110. Further, the material of the nanowire 120 of the present embodiment is silver or other metal. The nanowire 120 is formed on the polymer substrate 110 by chemical reaction or physical deposition. The quality of the polarizer can be expressed by the extinction ratio. The extinction ratio is eWTu, where Τι is the transmittance of light indicating that the direction of linear polarization is perpendicular to the direction in which the nanowires are arranged, and η is the row indicating the direction of linear polarization and the line of nanowires.

201227003 P53990048TW 35908twf.doc/I 列方向垂直的光線的穿透率。為了獲得較佳的消光比,奈 米金屬線120佔jfj分子基材110的表面積的50%至1〇〇〇/〇 為佳,奈米金屬線120佔高分子基材11〇的表面積的85% 至95%更佳。換言之,奈米金屬線12〇在高分子基材11〇 的表面上分佈的越多’偏振片1〇〇將具有越佳的消光比。 另外,奈米金屬線120是否平行主排列方向D10也會 影響偏振片100的消光比。在此,提供一指標s來表示偏 振片100的奈米金屬線120平行主排列方向D10的程度。 假設奈米金屬線120的數量為η ’而第i個奈米金屬線120 與主排列方向D10的夾角為0;,則 yi 3 COS2 θ -1 S=^ —~—。 當S=1,表示所有奈米金屬線丨2〇是否平行主排列方 向D10,而在S20.5的情況下偏振片100的消光比就可達 到可用的程度。 本實施例的奈米金屬線12〇在名稱上冠以「奈米」的 用意是說各條奈米金屬線120的線寬為奈米等級。本實施 例的偏振片100具有-適用波長,而各條奈米金屬線12〇 的線寬小於等於適用波長,各條奈米金屬線12〇的長度則 大於4於適用波長的十倍。 圖3 ^本發明另一實施例的偏振片的剖視圖。請參照 圖3,本貫鈀例的偏振片2〇〇與圖2的偏振片相似, 差異在於本實施例的偏振片200更包括—透明層21〇。透 明層21G配置於高分子基材nG上並覆蓋奈米金屬線 120。透明層210的折射率會影響偏振片2〇〇的消光比。圖 201227003201227003 P53990048TW 35908twf.doc/I The transmittance of light perpendicular to the column direction. In order to obtain a better extinction ratio, the nanowire 120 is preferably 50% to 1 Å/Å of the surface area of the jfj molecular substrate 110, and the nanowire 120 is 85% of the surface area of the polymer substrate 11〇. % to 95% is better. In other words, the more the nanowires 12 are distributed on the surface of the polymer substrate 11A, the better the extinction ratio will be. In addition, whether or not the nanowire 120 is parallel to the main array direction D10 also affects the extinction ratio of the polarizing plate 100. Here, an index s is provided to indicate the extent to which the nanowire 120 of the polarizing plate 100 is parallel to the main array direction D10. Assuming that the number of nanowires 120 is η ' and the angle between the i-th nanowire 120 and the main alignment direction D10 is 0, then yi 3 COS2 θ -1 S=^ —~—. When S = 1, it means that all the nanowires 丨2〇 are parallel to the main alignment direction D10, and in the case of S20.5, the extinction ratio of the polarizing plate 100 is as high as available. The purpose of the "nano" in the name of the nanowire 12 of the present embodiment is that the line width of each of the nanowires 120 is nanometer. The polarizing plate 100 of the present embodiment has a suitable wavelength, and the line width of each of the nanowires 12 is less than or equal to the applicable wavelength, and the length of each of the nanowires 12 is more than four times ten times the applicable wavelength. Figure 3 is a cross-sectional view showing a polarizing plate of another embodiment of the present invention. Referring to FIG. 3, the polarizing plate 2 of the present palladium example is similar to the polarizing plate of FIG. 2, except that the polarizing plate 200 of the present embodiment further includes a transparent layer 21〇. The transparent layer 21G is disposed on the polymer substrate nG and covers the nanowire 120. The refractive index of the transparent layer 210 affects the extinction ratio of the polarizing plate 2〇〇. Figure 201227003

rjj 乃,8TW 35908twf.d〇c/IRjj is, 8TW 35908twf.d〇c/I

4為透明層的折射率、奈米金屬線的分佈密度與偏振片的 消光t上三者間的關係圖。圖4的橫軸為奈米金屬線⑽的 分佈密度,亦即奈米金屬線12〇佔高分子基材11〇的表面 積的比值。圖4的縱軸為透明層的折射率。圖4中並以不 同深淺的線條表示偏振片的消光比,錢條的深淺與偏振 片的消光比的關係表示於圖4的右邊。由圖4可知,在 明層210的折射率與奈米金屬線m的分佈密度之間取得 最佳化的設計後’可提升偏振片勘的消光比。舉例而言, 在以波長為0.55微米的綠光進行模擬時,若奈米金屬1線 120佔高分子基材11()的表面積的比值為93%,且透明層 210的折射率為M3,可得到偏振片綱的;肖光比為⑽曰。 圖5是本發明另一實施例的偏振片的剖視圖。請參照 圖5,本實施例的偏振片3〇〇與圖2的偏振片剛相似、 差異在於本實施例的偏振片的高分子基材則的表面 具有大致平行-主排列方向(類_ i社排财向_) 的多個微溝槽312。本實施例的偏振片3⑻的奈米金屬線 320-會形成在微溝槽312内,因此奈米金屬線,會大致 平行於微溝槽312的方向,亦即主排列方向。要在高分子 基材310的表面形成微溝槽312的方法有很多種盆中一 種簡單的方法是雜高分子崎31㈣表面。、 在製造前述各實關的驗片時,是先讓高分子基材 :二::有主Γ方向’而其實施方式例如是在高分子基 =製作絲㈣高分子難。或者,先在高分子基材的 表面形成纽平行主排财㈣多個縣槽。接著,再以 201227003 A n4 is a graph showing the relationship between the refractive index of the transparent layer, the distribution density of the nanowires, and the extinction t of the polarizing plate. The horizontal axis of Fig. 4 is the distribution density of the nanowire (10), that is, the ratio of the surface area of the nanowire 12 〇 to the surface of the polymer substrate 11 。. The vertical axis of Fig. 4 is the refractive index of the transparent layer. In Fig. 4, the extinction ratio of the polarizing plate is indicated by different lines, and the relationship between the depth of the money bar and the extinction ratio of the polarizing plate is shown on the right side of Fig. 4. As can be seen from Fig. 4, the optimized extinction ratio between the refractive index of the bright layer 210 and the distribution density of the nanowire m can improve the extinction ratio of the polarizer. For example, when the simulation is performed with green light having a wavelength of 0.55 μm, if the ratio of the surface area of the nano metal 120 to the surface area of the polymer substrate 11 () is 93%, and the refractive index of the transparent layer 210 is M3, The polarizer is obtained; the ratio of the light to the light is (10) 曰. Figure 5 is a cross-sectional view showing a polarizing plate according to another embodiment of the present invention. Referring to FIG. 5, the polarizing plate 3A of the present embodiment is similar to the polarizing plate of FIG. 2, and the difference is that the surface of the polymer substrate of the polarizing plate of the present embodiment has a substantially parallel-main arrangement direction (class _i The company drains a plurality of micro-grooves 312 to the _). The nanowire 320- of the polarizing plate 3 (8) of the present embodiment is formed in the microgroove 312, so that the nanowire is substantially parallel to the direction of the microgroove 312, that is, the main alignment direction. A simple method for forming the microgrooves 312 on the surface of the polymer substrate 310 is a heterogeneous polymer chip 31 (tetra) surface. In the production of the above-mentioned test pieces, the polymer substrate is first made: two: there is a main direction, and the embodiment is, for example, a polymer base = a wire (four) polymer is difficult. Alternatively, a plurality of county slots are formed on the surface of the polymer substrate to form a parallel parallel main (4). Then, with 201227003 A n

rj〇yy\j\}^^TV/ 35908twf.doc/I 化學反應或物理沈積的方式在高分子基材的表面形成大致 平行主排列方向的奈米金屬線。形成奈米金屬線的方式例 如是先將前述處理過的高分子基材在20毫升的水與2.2公 克的過硫酸敍((NH4)2S2〇8,ammoniurn persuifate)的混合溶 液中浸泡30秒,再將高分子基材從混合溶液取出後以6〇〇c 的溫度烘乾10分鐘,再將烘乾後的高分子基材在2〇毫升 的水與0.8毫升的吼咯(pyrr〇ie)的混合溶液中浸泡3〇秒’ 再將咼分子基材從混合溶液取出後以6〇°c的溫度烘乾24 ® 小時’再將烘乾後的尚分子基材在當量濃度為〇 1N的墙酸 銀(AgN03)中浸泡30秒,即可完成。 綜上所述,在本發明的偏振片中,利用高分子基材本 身的为子排列方向或是高分子基材的表面的微溝槽,可讓 形成在高分子基材的表面的奈米金屬線大致平行一主排列 方向。藉此,偏振片具有非等向性之介電常數,可允許特 定線偏振方向的光線穿透,並反射線偏振方向垂直於特定 線偏振方向的光線。由於本發明的偏振片可採用簡單的製 • 成形成,故可降低成本。而且,本發明的偏振片易於大型 化而可增加應用領域。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 201227003Rj〇yy\j\}^^TV/ 35908twf.doc/I A chemical reaction or physical deposition method forms a nanowire in a substantially parallel main alignment direction on the surface of a polymer substrate. The method of forming the nanowire is, for example, first immersing the treated polymer substrate in a mixed solution of 20 ml of water and 2.2 g of persulfate ((NH4)2S2〇8, ammoniurn persuifate) for 30 seconds. Then, the polymer substrate was taken out from the mixed solution and dried at a temperature of 6 ° C for 10 minutes, and then the dried polymer substrate was placed in 2 ml of water and 0.8 ml of pyrrole (pyrr〇ie). Soak for 3 sec seconds in the mixed solution. Then remove the ruthenium molecular substrate from the mixed solution and dry it at a temperature of 6 ° C for 24 ® hours. Then dry the molecular substrate at an equivalent concentration of 〇1N. Soak in silver acid wall (AgN03) for 30 seconds to complete. As described above, in the polarizing plate of the present invention, the micro-grooves of the polymer substrate itself in the sub-arrangement direction or the surface of the polymer substrate can be used to form the surface of the polymer substrate. The metal lines are substantially parallel to a main alignment direction. Thereby, the polarizing plate has an anisotropy dielectric constant which allows light of a specific linear polarization direction to penetrate, and reflects light whose linear polarization direction is perpendicular to a specific linear polarization direction. Since the polarizing plate of the present invention can be formed by a simple process, the cost can be reduced. Moreover, the polarizing plate of the present invention is easy to increase in size and can be used in an application field. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. [Simple diagram] 201227003

35908twf.doc/I 圖1是本發明一實施例的偏振片的示意圖。 圖2為圖1之偏振片的剖視圖。 圖3是本發明另一實施例的偏振片的剖視圖。 圖4為透明層的折射率、奈米金屬線的分佈密度與偏 振片的消光比三者間的關係圖。 圖5是本發明另一實施例的偏振片的剖視圖。 【主要元件符號說明】 • 100、200、300 :偏振片 110、310 :高分子基材 120、320 :奈米金屬線 D10 :主排列方向 210 :透明層 312 :微溝槽35908twf.doc/I Fig. 1 is a schematic view of a polarizing plate according to an embodiment of the present invention. Figure 2 is a cross-sectional view of the polarizing plate of Figure 1. Figure 3 is a cross-sectional view showing a polarizing plate according to another embodiment of the present invention. Fig. 4 is a graph showing the relationship between the refractive index of the transparent layer, the distribution density of the nanowires, and the extinction ratio of the polarizing plate. Figure 5 is a cross-sectional view showing a polarizing plate according to another embodiment of the present invention. [Main component symbol description] • 100, 200, 300: polarizer 110, 310: polymer substrate 120, 320: nanowire D10: main alignment direction 210: transparent layer 312: micro trench

Claims (1)

201227003 FiiyyuU48TW 35908twf.doc/I 七、申請專利範圍: 1. 一種偏振片,包括: 一高分子基材’其中該高分子基材的分子具有一主排 列方向’或者該高分子基材的表面具有大致平行該主排列 方向的多個微溝槽;以及 多條奈米金屬線,大致平行該主排列方向地配置於該 高分子基材的表面。 2. 如申請專利範圍第1項所述之偏振片,其中該高分 子基材的材質為聚乙稀醇(polyvinyl alcohol, PVA)、聚醋 (polyester, PET)或聚酿亞胺(p〇iyimide,pi)。 3. 如申請專利範圍第1項所述之偏振片,其中該高分 子基材在製作過程中經拉伸而使該高分子基材的分子具有 該主排列方向。 4. 如申請專利範圍第1項所述之偏振片,其中該高分 子基材的表面經摩擦而具有該些微溝槽。 5. 如申請專利範圍第1項所述之偏振片,其中該些奈 米金屬線的材質為銀。 ,6.如中請專利範圍第1項所述之偏振片,其中該些奈 米金屬線佔該高分子基材的表面積的 50%至 100%。 7‘如巾請專利範圍第i項所述之偏振片,其中該些奈 米金屬線佔該高分子基材的表面積的 85%至 95%。 ^如中請專利範圍第1項所述之偏振片,其中第!個 不米金屬線與該主排列方向的夾角為h,η為該些奈 米金屬線的數量, 11 201227003 i"Djyyuu48TW 35908twf.doc/I n s=Z /=1 3cos2 0-1 2n 且 S20.5。 9. 如申請專利範圍第1項所述之偏振片,具有一適用 波長,各該奈米金屬線的線寬小於等於該適用波長。 10. 如申請專利範圍第1項所述之偏振片,具有一適用 波長,各該奈米金屬線的長度大於等於該適用波長的十倍。 11. 如申請專利範圍第1項所述之偏振片,更包括一透 明層,配置於該高分子基材上並覆蓋該些奈米金屬線。201227003 FiiyyuU48TW 35908twf.doc/I VII. Patent Application Range: 1. A polarizing plate comprising: a polymer substrate in which the molecules of the polymer substrate have a main alignment direction or the surface of the polymer substrate has a plurality of microchannels substantially parallel to the main array direction; and a plurality of nanowires arranged on the surface of the polymer substrate substantially parallel to the main array direction. 2. The polarizing plate according to claim 1, wherein the polymer substrate is made of polyvinyl alcohol (PVA), polyester (PET) or polyalthene (p〇). Iyimide, pi). 3. The polarizing plate of claim 1, wherein the polymer substrate is stretched during the manufacturing process so that the molecules of the polymer substrate have the main alignment direction. 4. The polarizing plate of claim 1, wherein the surface of the high molecular weight substrate has the micro grooves by friction. 5. The polarizing plate of claim 1, wherein the nanowires are made of silver. 6. The polarizing plate of claim 1, wherein the nanowires comprise from 50% to 100% of the surface area of the polymeric substrate. 7' The polarizing plate of claim i, wherein the nanowires comprise 85% to 95% of the surface area of the polymeric substrate. ^ For example, please refer to the polarizing plate described in item 1 of the patent scope, which is the first! The angle between the non-meter metal wires and the main alignment direction is h, η is the number of the nano metal wires, 11 201227003 i"Djyyuu48TW 35908twf.doc/I ns=Z /=1 3cos2 0-1 2n and S20. 5. 9. The polarizing plate of claim 1, wherein the polarizing plate has a suitable wavelength, and the line width of each of the nanowires is less than or equal to the applicable wavelength. 10. The polarizing plate of claim 1, wherein the polarizing plate has a suitable wavelength, and the length of each of the nanowires is greater than or equal to ten times the applicable wavelength. 11. The polarizing plate of claim 1, further comprising a transparent layer disposed on the polymeric substrate and covering the nanowires. 1212
TW99144813A 2010-12-20 2010-12-20 Polarizer TWI429966B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99144813A TWI429966B (en) 2010-12-20 2010-12-20 Polarizer
CN2010106227646A CN102565909A (en) 2010-12-20 2010-12-30 Polarizing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99144813A TWI429966B (en) 2010-12-20 2010-12-20 Polarizer

Publications (2)

Publication Number Publication Date
TW201227003A true TW201227003A (en) 2012-07-01
TWI429966B TWI429966B (en) 2014-03-11

Family

ID=46411759

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99144813A TWI429966B (en) 2010-12-20 2010-12-20 Polarizer

Country Status (2)

Country Link
CN (1) CN102565909A (en)
TW (1) TWI429966B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI657302B (en) * 2014-03-26 2019-04-21 德商馬克專利公司 A polarized light emissive device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104765092A (en) 2015-04-13 2015-07-08 京东方科技集团股份有限公司 Polarizer and manufacturing method thereof and display device
CN104849906B (en) * 2015-06-11 2018-01-26 京东方科技集团股份有限公司 Polaroid and its manufacture method, display device
CN108027312B (en) 2015-07-30 2020-08-04 通快光电器件有限公司 Laser sensor for particle size detection

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10132699A1 (en) * 2001-07-05 2003-01-16 Philips Corp Intellectual Pty Organic electroluminescent display device with optical filter
JP4425059B2 (en) * 2003-06-25 2010-03-03 シャープ株式会社 Polarizing optical element and display device using the same
JP2006058615A (en) * 2004-08-20 2006-03-02 Sumitomo Chemical Co Ltd Polarized light separating element with metallic thin wire embedded
CN1952700B (en) * 2005-10-17 2010-06-09 旭化成电子材料株式会社 Wire grid polarizer and manufacturing method of the same
JP2007183524A (en) * 2006-01-06 2007-07-19 Cheil Industries Inc Polarizing optical element and liquid crystal display device using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI657302B (en) * 2014-03-26 2019-04-21 德商馬克專利公司 A polarized light emissive device

Also Published As

Publication number Publication date
TWI429966B (en) 2014-03-11
CN102565909A (en) 2012-07-11

Similar Documents

Publication Publication Date Title
Hou et al. Ultrabroadband Optical Superchirality in a 3D Stacked‐Patch Plasmonic Metamaterial Designed by Two‐Step Glancing Angle Deposition
Wu et al. Moiré chiral metamaterials
Lee et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator
He et al. Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers
Qi et al. New encryption strategy of photonic crystals with bilayer inverse heterostructure guided from transparency response
Wang et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly
US8767282B2 (en) Plasmonic in-cell polarizer
Passaseo et al. Materials and 3D designs of helix nanostructures for chirality at optical frequencies
Cattoni et al. λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography
Hentschel et al. Babinet to the half: coupling of solid and inverse plasmonic structures
KR101322859B1 (en) Polarizing film, optical film laminate comprising polarizing film, and stretched laminate for manufacturing the same
Wang et al. Cellulose photonic crystal film sensor for alcohols
Bochenkov et al. From rings to crescents: a novel fabrication technique uncovers the transition details
Larsen et al. Hidden chirality in superficially racemic patchy silver films
Hou et al. Optically active inverse opal photonic crystals
US20090052029A1 (en) Functional films formed by highly oriented deposition of nanowires
Ji et al. Hybrid helix metamaterials for giant and ultrawide circular dichroism
Park et al. Polymer‐Stabilized Chromonic Liquid‐Crystalline Polarizer
Badugu et al. Metal–dielectric waveguides for high-efficiency coupled emission
TW201227003A (en) Polarizer
Fu et al. Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition
Kanai et al. New route to produce dry colloidal crystals without cracks
Hu et al. Wafer‐Scale Double‐Layer Stacked Au/Al2O3@ Au Nanosphere Structure with Tunable Nanospacing for Surface‐Enhanced Raman Scattering
Zheng et al. Micro–nanosized nontraditional evaporated structures based on closely packed monolayer binary colloidal crystals and their fine structure enhanced properties
Ferraro et al. Directional emission of fluorescent dye-doped dielectric nanogratings for lighting applications