TW201226980A - 2d/3d switchable solid display and control method - Google Patents

2d/3d switchable solid display and control method Download PDF

Info

Publication number
TW201226980A
TW201226980A TW100110615A TW100110615A TW201226980A TW 201226980 A TW201226980 A TW 201226980A TW 100110615 A TW100110615 A TW 100110615A TW 100110615 A TW100110615 A TW 100110615A TW 201226980 A TW201226980 A TW 201226980A
Authority
TW
Taiwan
Prior art keywords
lens
refractive index
polarization
image
display
Prior art date
Application number
TW100110615A
Other languages
Chinese (zh)
Other versions
TWI444660B (en
Inventor
yan-peng Wu
Yang Yang
Original Assignee
Shenzhen Super Perfect Optics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Super Perfect Optics Ltd filed Critical Shenzhen Super Perfect Optics Ltd
Publication of TW201226980A publication Critical patent/TW201226980A/en
Application granted granted Critical
Publication of TWI444660B publication Critical patent/TWI444660B/en

Links

Abstract

This invention provides a 2D/3D switchable solid display and control method. The 2D/3D switchable solid display includes a display panel for producing a polarizing image, a polarization rotator for revolving the polarizing direction of an image to switch between 2D displayed state and 3D displayed state of the 2D/3D switchable solid display, and the lens component with a first direction and a second direction which mutually perpendicular to each other. The lens component can create theoretically a not- lens effect on the images located in the first direction, and create theoretically a lens effect on the images located in the second direction. This polarization rotator is configured so that an intersection angle between of the polarizing direction of the image and the first direction or the second direction is smaller than 45 DEG. According to the above method, a mismatching of refractive index of the lens component under a 2D displayed state or a mismatching of a distance between the display panel and the lens components under a 3D displayed state can be effectively compensated, so that the display effect will be improved.

Description

201226980 六、發明說明: 【發明所屬之技術領域】 本發明涉及立體顯示領域,尤其涉及一種2D/3D切換型 立體顯示器及其控制方法。 【先前技術】 人類是通過右眼和左眼所看到的物體的細微差異來感知 物體的深度’從而識別出立體圖像,這種差異被稱為視差。立 體顯示技術就是通過人為的手段來製造人的左右眼的視差,給 左右眼分別發送具有一定視差的兩幅圖,使大腦在獲取了左右 眼看到的不同圖像之後,產生觀察真實三維物體的感覺。 立體顯示器一般有兩種方式:狹縫光柵式立體顯示器和微 透鏡陣列式立體顯示器。其中,微透鏡陣列式立體顯示器包括 顯示面板和安裝在顯示面板前方的微透鏡陣列,從而將來自於 顯示面板的3D圖像分成右眼和左眼圖像。 傳統的微透鏡陣列式立體顯示器,無法實現2D_3D之間 的轉換,給使用帶來了不便。因此需要一種立體顯示器,其可 以根據所提供的圖像信號在2D和3D模式之間進行轉換。 現有的立體顯示器由於製造工藝存在一定的誤差,使得該 立體顯示器在實際顯示的時候會出現一些與設計值存在偏 差,就會影響顯不的品質,例如2D的效果不清晰,3D的最佳 觀看距離不准等問題。 201226980 【發明内容】 本發明解決的技術問題是提供12D/3D切換型立體顯 示器及其控制方法,以有效地補償扣顯示狀態下的透鏡元: 的折射率失配或者3D||祿和板與钱元件 的距離失配,提高顯示效果。 本發明為解決技術問題而採用的技術方案是提供一種 2D/3D切換型立體顯示器,包括:顯示面板,所述顯示面板用 於提供具有-偏振方向關像;偏振旋轉器,所述偏振旋柄 用於旋轉所述圖像的所述偏振方向,以使所述2d/3d切換型 立體顯示器在2D顯示狀態與3D顯示狀態之間進行切換;透 鏡元件’所述透鏡元件具有相互垂直的第—方向和第二方向, 其中所述透鏡元件理論上對所述偏振方向位於所述第一方向 上的所述圖像產生麵鏡效應,且對所述偏振方向位於所述第 二方向上的所像產生透鏡效應,其中,所述偏振旋轉器配 置成使得所述偏振方向與所述第—方向或所述第二方向成一 小於45。的夾角。 根據本發明-優選實施例,在所述2〇顯示狀態下,所述 偏振方向與所述第-方向成第—爽角,以補償所述透鏡組件在 所述第一方向上的折射率失配。 根據本發明-優選實施例,在所述3〇顯示狀態下,所述201226980 VI. Description of the Invention: [Technical Field] The present invention relates to the field of stereoscopic display, and more particularly to a 2D/3D switching stereoscopic display and a control method thereof. [Prior Art] Humans perceive the depth of an object by the slight difference of objects seen by the right eye and the left eye to recognize a stereoscopic image, and this difference is called parallax. Stereoscopic display technology is to create the parallax of the left and right eyes of human beings by artificial means, and send two images with certain parallax to the left and right eyes, so that the brain can observe the real three-dimensional objects after acquiring different images seen by the left and right eyes. feel. Stereoscopic displays are generally available in two ways: a slit grating stereoscopic display and a microlens array stereoscopic display. Wherein, the microlens array type stereoscopic display comprises a display panel and a microlens array mounted in front of the display panel, thereby dividing the 3D image from the display panel into right eye and left eye images. The conventional microlens array type stereoscopic display cannot realize the conversion between 2D_3D, which brings inconvenience to use. There is therefore a need for a stereoscopic display that can convert between 2D and 3D modes in accordance with the provided image signal. Due to the certain error of the manufacturing process of the existing stereoscopic display, the stereoscopic display may have some deviation from the design value when actually displayed, which may affect the quality of the display, for example, the effect of 2D is not clear, and the best viewing of 3D The distance is not allowed to wait for questions. 201226980 SUMMARY OF THE INVENTION The technical problem to be solved by the present invention is to provide a 12D/3D switching type stereoscopic display and a control method thereof for effectively compensating for a lens element in a buckle display state: a refractive index mismatch or a 3D|| The distance of the money component is mismatched to improve the display effect. The technical solution adopted by the present invention to solve the technical problem is to provide a 2D/3D switching type stereoscopic display, comprising: a display panel for providing a polarization-directed image; a polarization rotator, the polarization knob Rotating the polarization direction of the image to switch the 2d/3d switching stereoscopic display between a 2D display state and a 3D display state; the lens element 'the lens element has a mutually perpendicular first— a direction and a second direction, wherein the lens element theoretically produces a mirror effect on the image in which the polarization direction is located in the first direction, and the direction in which the polarization direction is located in the second direction The lens effect is generated, wherein the polarization rotator is configured such that the polarization direction is less than 45 with the first direction or the second direction. The angle of the. According to a preferred embodiment of the present invention, in the 2〇 display state, the polarization direction is at a first refresh angle with the first direction to compensate for the refractive index loss of the lens assembly in the first direction. Match. According to the preferred embodiment of the present invention, in the 3〇 display state, the

偏振方向與所述第二方向絲二夾角,以補償所述顯示面板與 所述透鏡元件之間的距離失配。 S 5 201226980 根據本發明一優選實施例,所述偏振旋轉器包括:第一面 板,第二面板,所述第二面板與所述第一面板間隔設置;第一 電極結構,設置於所述第一面板上;第二電極結構,設置於所 述第二面板上;液晶層,夾置於所述第—面板和所述第二面板 之間,且包括多個液晶分子;控制模組,為所述第一電極結構 和所述第二電極結構提供控制電壓,以改變所述液晶分子的排 列方向。 根據本發明一優選實施例,在所述2〇顯示狀態下,所述 控制模組根據所述透鏡元件在所述第一方向上的折射率差調 整所述控制電壓,以使所述偏振方向與所述第—方向成第一央 角’進而補償所述透鏡組件在所述第—方向上崎射率失配。 根據本發明一優選實施例,在所述3D顯示狀態下,所述 控制模組根據所述透鏡元件在所述第二方向上的折射率差以 及所述顯示面板與所述透鏡元件之間的距離調整所述控制電 壓’以使所述偏振方向與所述第二方域第二炎角,進而補償 所述顯示面板與所述透鏡元件之間的距離失配。The polarization direction is at an angle to the second direction of the wire to compensate for the mismatch in distance between the display panel and the lens element. S 5 201226980 According to a preferred embodiment of the present invention, the polarization rotator includes: a first panel, a second panel, the second panel is spaced apart from the first panel; and a first electrode structure is disposed on the first a second electrode structure disposed on the second panel; a liquid crystal layer sandwiched between the first panel and the second panel, and comprising a plurality of liquid crystal molecules; the control module is The first electrode structure and the second electrode structure provide a control voltage to change an arrangement direction of the liquid crystal molecules. According to a preferred embodiment of the present invention, in the 2〇 display state, the control module adjusts the control voltage according to a refractive index difference of the lens element in the first direction to make the polarization direction Forming a first central angle with the first direction' to compensate for the mismatch of the rate of the lens assembly in the first direction. According to a preferred embodiment of the present invention, in the 3D display state, the control module is based on a refractive index difference of the lens element in the second direction and between the display panel and the lens element. The distance adjusts the control voltage 'to make the polarization direction and the second square second yaw angle, thereby compensating for the distance mismatch between the display panel and the lens element.

根據本發明一優選實施{列,所述透鏡組件包括單折射率透 鏡陣列和雙折射率透鏡_,且所述單折射率透獅列和所述 雙折射率透鏡_均包括平面部分以及與所述平面部分相對 的曲面部分’所述單折射率透鏡陣列和所述雙折射率透鏡陣列 的曲面部分相互契合,所述雙折射率透鏡㈣沿所述第一方向 具有第一折射率,並沿所述第二方向具有第二折射率,所述單S 6 201226980 2率透物_三_,射卿—辦在理論 上與所述第二折射率相匹配。 ,、根據本發明-優選實施例,所述雙折射率透鏡陣列包括一 ,、曰曰所述液曰曰層包括多個液晶分子,所述液晶分子沿預定 方向固化於所述液晶層中。 本發明為解決技術問題而採用的技術方案是提供一種 2D/曰3D切換型立體顯示器的控制方法,包括·· &利用顯示面 板提供具有-偏振方向的圖像;1?利用偏振旋轉器旋轉所述 圖像的所魏财向,崎得·偏財向與魏元件的第一 方向或第二方向成一小於45。的夾角,其中所述第一方向和所 述第-方向相互垂直’所述透鏡元件在理論上對所述偏振方向 位於所述第一方向的所述圖像產生非透鏡效應,且對所述偏振 方向位於所述第二方向上的所像產生透鏡效應。 根據本發明一優選實施例,在所述步驟b中,在2D顯示 狀態下’所述偏振方向與所述第一方向成第一夾角,以補償所 述透鏡組件在職第—方向上輯射率失配。 根據本發明一優選實施例,在所述步驟b中,在扣顯示 狀態下,所述偏振方向與所述第二方向成第二夾角,以補償所 述顯示面板與所述透鏡元件之間的距離失配。 根據本發明一優選實施例,在所述步驟b中,在2D顯示 狀態下’根據所述透鏡元件在所述第—方向上的折射率差調$ 所述偏振旋轉器的控制電壓,以使所述偏振方向與所述第—方g 7 201226980 向成第-夾角’進而補償所述透鏡組件在所述第—方向上 射率失配。 ' 根據本發明-優選實施例,在所述步驟W,在沁顯示 狀t下’根據所述透鏡元件在所述第二方向上的折射率差以及 所述顯示面板與所述透鏡元件之_距_整所述偏振旋轉 器的控制電壓,以使所述偏振方向與所述第二方向成第二夾 角,進而補償所述顯示面板與所述透鏡元件之間的距離失配。 通過上述實施例’可有效地補償2D顯示狀態下的透鏡元 件的折射率失配或者3D顯示狀態下的顯示面板與透鏡元件之 間的距離失配,提高顯示效果。 【實施方式】 下麵結合附圖和實施例對本發明進行詳細說明。 晴參閱圖1’圖1為本發明實施例的2D/3D切換型立體顯 示器的結構示意圖。 在本實施例中’該2D/3D切換型立體顯示器包括:顯示 面板10、偏振旋轉器20以及透鏡組件30。 在本實施例中’顯示面板10用於提供具有一偏振方向的 圖像。顯示面板1〇包括液晶顯示面板、等離子顯示面板或CRT 顯示面板。其中’由於液晶顯示面板的表面設置有偏振片,因 此液晶顯示面板可以直接提供具有一偏振方向的圖像,而等離 子顯示面板或CRT顯示面板可以通過與適當的偏振片或起偏§ 8 201226980 器結合來提供具有-偏振方向的圖像。在本實施例中,顯示面 板10提供的圖像的偏振方向位於圖i的紙面内。 在本實鉍例中,偏振旋轉器20包括第一面板21、第一電 極結構22、液晶層23、第二電極結構24、第二面板25以及 控制模組26。其中’第二面板25與第—面板21間隔設置。 第電極、、,。構22和第二電極結構24分別位於第一面板和 第-面板25上’並在本實施例巾為相互垂直的條狀電極。液 曰曰層23夾置於第-面板21和第二面板25之間,且包括多個 液晶分子。在―優選實關巾,液晶分子通過適當的配向機制 (例如’配向膜)進行配向,以使得在不施加電壓的情況下, 液晶分子的指向矢(即,光軸方向)平行於第—面板以和第 -面板25 ’並且液晶分子的指向矢從第—面板2丨的表面到第 二面板25的表面逐步扭轉,。此時,當人射到偏振旋轉器 2二上的圖像的偏振方向與處於第—面板21表面的液晶分子的 心向矢平行時’圖像的偏振方向會隨著液晶層B中的液晶分 子的逐步扭轉*發朗步旋轉,並在到達第二基板%的表面 時,圖像的偏振方向旋轉達到90。。在本實施例中,在不施加 電壓的情況下,圖像在經過偏振旋轉器2()後其偏振方向由原 來的位於圖1的紙面内變為垂直於圖i的紙面。 曰控制模組26用於為第一電極結構22和第二電極結構24 提供控制電壓’以改變液晶分子的制方向。具體來說,當控 制模’、且26所提供的控制電壓大於閾值驚時,液晶層中的§ 9 201226980 液晶分子的扭轉結構就會被破壞,變成沿液晶層23中的電場 方向傾斜排列。當控制電壓達到2νώ時,除了第一面板21和 第-面板25的表面處的液晶分子外其他所有液晶分子變為沿 電場方向制。此時,偏振旋轉器2G的%。光性能消失,圖 像在經過偏振旋轉H 2〇後其偏振方向不發生變化。當然,本 領域技術人貞完全可以想到通過其他方式來選擇性旋轉顯示 面板10所提供的圖像的偏振方向。 在本實施例中’透鏡組件30包括單折射率透鏡陣列31和 雙折射率透鏡陣列32。單折射率透鏡陣列㈣兩側分別包括 平面部分以及與平面部分相對的曲面部分。在本實施例中,焉 折射率透鏡陣列31的曲面部分為凸面。單折射率透鏡陣列3 可由本領域公知_當的單折射材料製成,並具有—致的折务 率叩。雙折射率透鏡陣列32的兩側也分別包括平面部分以及 與平面部分姆_面部分。在本實施射,贿射率透鏡陣 2 32的曲面部分為凹面,並與單折射率透鏡陣列㈣曲面部 互契口 β然’本領域技術人員完全可以想到將單折射率 透鏡陣列31 _面部分料成凹面,並將鑛射率透鏡陣列 的曲面七刀^成凸面4本實闕中,雙折射率透鏡陣 =2為-液晶層’該液晶相包括多個液晶分子。液晶分子 、θ向矢(即,光軸方向)平行於雙折射率透鏡_ 32的平 面部分’且沿預定方向排列,並優選固化於該液晶層卜 上 液晶分子本身具有雙折射特性,並包括垂直於光轴方向 201226980 的第一折射率nl以及沿光轴方向的第二折射率n2。在理論 ==7^_刪,可以嶋折射率透鏡 、’ 1與雙折射率透鏡陣列32的-個折射率nl 广匹配,同時使得單折射率透鏡陣 ^率透鏡陣❹的另-個折射率咖不相= 元件3〇具有相互垂直的第-方向和第二方向。理論 鏡元件3㈣偏振方向位於第—方向上的圖像產生非透 鏡效應,且對偏财向位於第二方向上_像產生透鏡效應。 例如,在本實施财,透鏡元件3G對偏振方向垂直於圖U 面的圖像產生非透鏡效應,而對於偏振方向位於圖!紙面内的 圖像產生透鏡效應。此時,結合偏振旋脑2G的9〇。光性能, 可以將顯示面板1()提供_像的偏振方向選擇性旋轉到第一 方向或第一方向上。當圖像的偏振方向位於第一方向時,雙折 射率透鏡陣列32對該圖像的光線不進行偏折,呈現為2D顯 不狀態。當圖像的偏振方向位於第二方向時,雙折射率透鏡陣 列32對該圖像的光線進行偏折,進而將左眼圖像和右眼圖像 分別投射到觀察者的左眼及右眼,呈現為3D顯示狀態。通過 改變偏振旋轉器20的控制電壓即可實現犯顯示狀態與糊 不狀態之間的切換。 然而,在實際製造過程中,透鏡元件30在第-方向上的 折射率達到完全匹配實際相當困難。由於加以藝等因素㈣ 響,透鏡元件3G在第_方向上的折射率會存在—定的失配情§ 11 201226980 況,即單折射率透鏡陣列31 #折射率與雙折射率透鏡陣列32 在第一方向上的折射率不完全匹配,進而導致在犯顯示狀態 下圖像會因為折射率失配所產生的偏折而變得模糊。此外,在 』裝過程中’-般要求顯示面板1G與透鏡元件π保持預定的 距離,例如要求顯示面板1G與透鏡元件3G之_距離等於透 鏡元件3G的焦距,然、而由於組裝工藝等因素的影響,顯示面 板1〇與透鏡元件3〇之_距離無法嚴格滿足設計要求,因而 導致立體效果不佳。 ♦為此,在本發明一實施例中,在2D顯示狀態下,利用偏 振旋轉器20控制圖像的偏振方向與透鏡組件%的第一方向成 小於45的第-夾角,以補償透鏡組件3()在第—方向上的折 射率失配。當圖像的偏振方向與液晶分子的光轴方向成一定夹 角Θ時’液晶分子對該圖像的有效折射率献以下公式: 1 = sin2 Θ cos2 Θ neff n2 «丨2 其中,neff為液晶分子對該圖像的有效折射率,η!為液晶 刀子在垂直光軸方向上的折射率,而n2域晶分子在光轴方 向上的折射率°通過調整夾角β ’可以使得雙折射率透鏡陣列 32對圖像的有效折射率祕等於單折射率透鏡陣列y的折射 率叩此時’圖像的光線在不發生任何偏折的情況下通過透 鏡元件30,進而呈現良好的犯顯示效果。 在具體實施過程中,由控制模組26根據透鏡元件30在第g 12 201226980 方7上的折射率差調整控制電屋,以控制偏滅轉器内 的液曰077子的偏轉角度。此時,經偏振旋轉H 2G旋轉後的圖 2的偏振方向與透鏡元件3G的第—方向成—定夾角,進而補 乜透鏡7L件在第一方向上的折射率失配。具體控制電麼調整可 參照圖2所示的偏振旋轉器20的控制電麼與液晶分子偏 度之間關係的示意圖。 p在本發明另一實施例中’在犯顯示狀態下,利用偏振旋 轉器20控制圖像的偏振方向與第二方向成小於45。的第二失 角,以補償顯示面板1G與透鏡元件3G之間的距離失配。且體 來說,根據上述公式,通過調整夾角θ,可以使得雙折射錢 鏡陣列32對圖像的有效折射率_與單折射率透鏡陣歹⑶ 的折射率nP呈賴定的差值,使得透鏡組㈣的實際焦距與 顯不面板1〇與透鏡元件30之間的實際距離相等,進而呈 好的3D顯示效果。 又 在具體實施過程中,由控制模組%根據透鏡元件%在第 二方向上的折射率差以及顯示面板1G與透鏡心㈣之間的距 離調整控制電壓,以控制偏振旋轉器2〇内的液晶分子的偏轉 角度。此時,經偏振旋轉器20旋轉後的圖像的偏振方向與透 鏡元件3G的第二方向成-定夾角,進而補償顯示面板㈣透 鏡元件30之間的距離失配。具體控制電_整可參照圖^所 示的偏振旋轉器20的控制電壓與液晶分子偏轉角二:門關( 的示意圖。 13 201226980 如圖3所示,圖3是本發明實施例提供的一種2〇/3〇切 換型立體顯示器的控制方法的流程示意圖。 在本實施例中,該控制方法包括如下步驟: 在步驟S300中,利用顯示面板提供具有一偏振方向的圖 像。在本步驟中,顯示面板採用液晶顯示面板、等離子顯示面 板或CRT顯示面板,並搭配適#的偏振片或起偏器來提供具 有一偏振方向的圖像。 在步驟S301中,利用偏振旋轉器旋轉圖像的偏振方向, 以使得圖像的偏振方向與透鏡元件的第—方向或第二方向成 一小於45。的夾角。第—方向和第二方向相互垂直。該透鏡元 件在理論上對偏振方向位於第一方向的圖像產生非透鏡效 應,且對偏振方向位於第二方向上的圖像產生透鏡效應。在本 步驟中,偏振旋轉器可採用上文所述的利用液晶的光性能實現 偏振旋轉n 2G。纽:,本領域技術人貞完全可以想到採用 本領域公知的其域騎人射摘偏振方向進行旋轉的其他 件啊’在本步財,透鏡元件可制上文所述的透 八+ 0爾然,本領域技術人員完全可以想到採用本領域 =知的能夠對不⑽振方向的人射光線產生透鏡效應及非透 鏡效應的其他光學元件。 逐 =發明一實施例中’在步驟测中,在2D顯示狀態 二利用偏振旋轉器控制圖像的偏振方向與透鏡組件的第一方 B、的第-夾角’以補償透鏡组件在第—方向上的折射率失s 201226980 具體來說,對於電壓控制型偏振旋轉器,根據透鏡元 第一方向上的折射率差調整偏振旋轉器的控制電壓,以使智偏 =旋轉器後的圖像的偏振方向與第—方向成第—夾角,進 償透鏡組件在第一方向上的折射率失配。 在本發明另—實闕中,在步驟_中,在犯顯示狀 態下,偏顧胸㈣时的偏振額與透鏡元件的第二 方向成第二夾角,以補償顯示面板與透鏡元件之間的距離失 配。具體來說,對於龍㈣型偏振旋轉n,根據透鏡元件在 第二方向上的折射率差以及顯示面板與透鏡讀之間的距離 調整偏振旋轉H的控制電壓,以使經偏振旋轉器後的圖像的偏 捃方向”透鏡元件的第二方向成第二夾角,由此調整透鏡元件 的,、,、距進而補你顯示面板與透鏡元件之間的距離失配。 I過上述方式’可有效地補償2D顯示狀態下的透鏡元件 的折射率失或者3D顯示狀態下的顯示面板與透鏡元件之間 的距離失配,提高顯示效果。 在上述實施例巾’僅對本發明進行了示躲描述,但是本 肩域技術人g在閱讀本專射請後可以在不脫離本發明的精 神和範_情況下對本發明進行各種修改。 【圖式簡單說明】 圖1表示本發明實施例的2D/3D切換型立體顯示器的 結構示意圖; 15 i 201226980 圖2表示本發明實施例的偏振旋轉器的控制電壓與液 晶分子的偏轉角度之間關係的示意圖;以及 圖3表示本發明實施例的2D/3D切換型立體顯示器的 控制方法的流程示意圖。 【主要元件符號說明】 1、10:顯示面板 2、20:偏振旋轉器 3、21:第一面板 5、23:液晶層 7、25:第二面板 4、22:第一電極結構 6、24:第二電極結構 8、26:控制模組 9、30:透鏡組件 、31:單折射率透鏡陣列 11、32:雙折射率透鏡陣列According to a preferred embodiment of the present invention {column, the lens assembly includes a single refractive index lens array and a birefringence lens _, and the single refractive index lion column and the birefringence lens _ each include a planar portion and a The curved portion of the plane portion opposite to the curved surface portion of the birefringence lens array and the curved surface portion of the birefringence lens array, the birefringence lens (four) having a first refractive index along the first direction and along The second direction has a second refractive index, and the single S 6 201226980 2 rate transmissive_three_, which is theoretically matched with the second refractive index. According to a preferred embodiment of the present invention, the birefringence lens array includes a liquid crystal layer comprising a plurality of liquid crystal molecules, and the liquid crystal molecules are solidified in the liquid crystal layer in a predetermined direction. The technical solution adopted by the present invention to solve the technical problem is to provide a control method for a 2D/曰3D switching type stereoscopic display, which comprises: providing an image with a polarization direction by using a display panel; 1 rotating with a polarization rotator The image of the Wei Cai, the stagnation direction and the first direction or the second direction of the Wei element are less than 45. An angle in which the first direction and the first direction are perpendicular to each other' the lens element theoretically produces a non-lens effect on the image in which the polarization direction is in the first direction, and The image in which the polarization direction is located in the second direction produces a lens effect. According to a preferred embodiment of the present invention, in the step b, in the 2D display state, the polarization direction is at a first angle with the first direction to compensate for the in-progressive rate of the lens assembly. lost pair. According to a preferred embodiment of the present invention, in the step b, in the buckle display state, the polarization direction is at a second angle with the second direction to compensate between the display panel and the lens element. Distance mismatch. According to a preferred embodiment of the present invention, in the step b, in the 2D display state, the control voltage of the polarization rotator is adjusted according to the refractive index difference of the lens element in the first direction, so that The polarization direction is at an angle θ with the first-order g 7 201226980 to compensate for the mismatch of the lens assembly in the first direction. According to the present invention - a preferred embodiment, in the step W, in the 沁 display t, 'in accordance with the refractive index difference of the lens element in the second direction and the display panel and the lens element And controlling a voltage of the polarization rotator such that the polarization direction is at a second angle with the second direction, thereby compensating for a distance mismatch between the display panel and the lens element. The above embodiment can effectively compensate for the refractive index mismatch of the lens element in the 2D display state or the distance mismatch between the display panel and the lens element in the 3D display state, thereby improving the display effect. [Embodiment] The present invention will be described in detail below with reference to the accompanying drawings and embodiments. 1 is a schematic structural view of a 2D/3D switching type stereoscopic display according to an embodiment of the present invention. In the present embodiment, the 2D/3D switching type stereoscopic display includes a display panel 10, a polarization rotator 20, and a lens assembly 30. In the present embodiment, the display panel 10 is for providing an image having a polarization direction. The display panel 1A includes a liquid crystal display panel, a plasma display panel, or a CRT display panel. Wherein 'Since the surface of the liquid crystal display panel is provided with a polarizing plate, the liquid crystal display panel can directly provide an image having a polarization direction, and the plasma display panel or the CRT display panel can pass the appropriate polarizing plate or polarizing § 8 201226980 Combine to provide an image with a polarization direction. In the present embodiment, the polarization direction of the image provided by the display panel 10 is located in the plane of the drawing i. In the present embodiment, the polarization rotator 20 includes a first panel 21, a first electrode structure 22, a liquid crystal layer 23, a second electrode structure 24, a second panel 25, and a control module 26. Wherein the second panel 25 is spaced apart from the first panel 21. The first electrode, ,,. The structure 22 and the second electrode structure 24 are located on the first panel and the first panel 25, respectively, and in the present embodiment, the strips are mutually perpendicular strip electrodes. The liquid helium layer 23 is interposed between the first panel 21 and the second panel 25, and includes a plurality of liquid crystal molecules. In the "preferably" wipe, the liquid crystal molecules are aligned by a suitable alignment mechanism (for example, an 'alignment film') such that the director of the liquid crystal molecules (ie, the optical axis direction) is parallel to the first panel without applying a voltage. And the first panel 25' and the director of the liquid crystal molecules are gradually twisted from the surface of the first panel 2A to the surface of the second panel 25. At this time, when the polarization direction of the image of the person incident on the polarization rotator 2 is parallel to the centroid of the liquid crystal molecules on the surface of the first panel 21, the polarization direction of the image will follow the liquid crystal in the liquid crystal layer B. The stepwise twisting of the molecules is rotated, and when the surface of the second substrate is reached, the polarization direction of the image is rotated to 90. . In the present embodiment, the image is polarized from the original paper plane of Fig. 1 after passing through the polarization rotator 2 () without applying a voltage, and becomes perpendicular to the sheet of Fig. i. The 曰 control module 26 is operative to provide a control voltage ' to the first electrode structure 22 and the second electrode structure 24 to change the direction in which the liquid crystal molecules are formed. Specifically, when the control voltages provided by the control modes 'and 26 are greater than the threshold value, the twist structure of the liquid crystal molecules of § 9 201226980 in the liquid crystal layer is broken and becomes obliquely arranged along the electric field direction in the liquid crystal layer 23. When the control voltage reaches 2 ν , all liquid crystal molecules except the liquid crystal molecules at the surfaces of the first panel 21 and the first panel 25 become in the direction of the electric field. At this time, the % of the polarization rotator 2G. The light performance disappears, and the polarization direction of the image does not change after the polarization rotation H 2 。. Of course, it is entirely within the skill of the art to selectively rotate the polarization direction of the image provided by display panel 10 by other means. In the present embodiment, the lens assembly 30 includes a single refractive index lens array 31 and a birefringence lens array 32. The two sides of the single-refractive-index lens array (4) respectively include a planar portion and a curved portion opposite to the planar portion. In the present embodiment, the curved surface portion of the 折射率 refractive index lens array 31 is a convex surface. The single-refractive-index lens array 3 can be made of a single-refractive material known in the art and has a derogatory rate 叩. Both sides of the birefringent lens array 32 also include a planar portion and a planar portion, respectively. In the present embodiment, the curved portion of the lenticular lens array 2 32 is concave and intersects with the curved surface portion of the single refractive index lens array. The person skilled in the art can fully conceive the single refractive index lens array 31 _ face Part of the material is concave, and the curved surface of the lens array is seven convex into a convex surface. The birefringence lens array = 2 is - liquid crystal layer 'The liquid crystal phase includes a plurality of liquid crystal molecules. The liquid crystal molecules, the θ vector (ie, the optical axis direction) are parallel to the planar portion ' of the birefringent lens _ 32 and are arranged in a predetermined direction, and are preferably cured on the liquid crystal layer. The liquid crystal molecules themselves have birefringence characteristics and include The first refractive index n1 perpendicular to the optical axis direction 201226980 and the second refractive index n2 along the optical axis direction. In theory ==7^_ deleting, the refractive index lens, '1 and the refractive index nl of the birefringent lens array 32 can be broadly matched, and at the same time, another refraction of the single-refractive-index lens array lens array The rate is not the same = the element 3 has a first direction and a second direction which are perpendicular to each other. The theoretical mirror element 3 (4) the image in which the polarization direction is located in the first direction produces a non-transparent effect, and produces a lens effect on the image in the second direction. For example, in the present embodiment, the lens element 3G produces a non-lens effect on an image whose polarization direction is perpendicular to the U-plane of the figure, and is located in the figure for the polarization direction! The image inside the paper produces a lens effect. At this time, 9 〇 of the polarized whirlpool 2G was combined. The light performance can selectively rotate the polarization direction of the image panel 1 () to the first direction or the first direction. When the polarization direction of the image is in the first direction, the birefringence lens array 32 does not deflect the light of the image, and assumes a 2D display state. When the polarization direction of the image is in the second direction, the birefringence lens array 32 deflects the light of the image, and then projects the left eye image and the right eye image to the left and right eyes of the observer, respectively. , presented as a 3D display state. Switching between the display state and the paste state can be achieved by changing the control voltage of the polarization rotator 20. However, in the actual manufacturing process, it is quite difficult to achieve a perfect match of the refractive index of the lens element 30 in the first direction. Due to factors such as art (4), the refractive index of the lens element 3G in the _ direction may be a certain mismatch. § 11 201226980, that is, the single refractive index lens array 31 # refractive index and the birefringence lens array 32 The refractive index in the first direction does not completely match, which in turn causes the image to become blurred due to the deflection caused by the refractive index mismatch in the display state. In addition, the display panel 1G is required to maintain a predetermined distance from the lens element π during the mounting process. For example, the distance between the display panel 1G and the lens element 3G is required to be equal to the focal length of the lens element 3G, and due to factors such as assembly process. The influence of the display panel 1〇 and the lens element 3〇 cannot strictly meet the design requirements, resulting in poor stereoscopic effect. ♦ For this reason, in an embodiment of the present invention, in the 2D display state, the polarization rotator 20 is used to control the polarization direction of the image to be a first angle of less than 45 with the first direction of the lens assembly % to compensate the lens assembly 3 () refractive index mismatch in the first direction. When the polarization direction of the image is at an angle to the optical axis direction of the liquid crystal molecule, the liquid crystal molecule has the following formula for the effective refractive index of the image: 1 = sin2 Θ cos2 Θ neff n2 «丨2 where neff is liquid crystal The effective refractive index of the molecule for the image, η! is the refractive index of the liquid crystal knife in the direction of the vertical optical axis, and the refractive index of the n2 domain crystal molecule in the optical axis direction can be made by adjusting the angle β′ to make the birefringence lens The effective refractive index of the array 32 for the image is equal to the refractive index of the single refractive index lens array y. At this time, the light of the image passes through the lens element 30 without any deflection, thereby exhibiting a good display effect. In a specific implementation process, the control module 26 adjusts the control room according to the refractive index difference of the lens element 30 on the g12 201226980 side 7 to control the deflection angle of the liquid helium 077 in the deflector. At this time, the polarization direction of Fig. 2 after the polarization rotation H 2G is rotated at an angle with the first direction of the lens element 3G, thereby complementing the refractive index mismatch of the lens 7L in the first direction. For the specific control, the adjustment can be made with reference to the relationship between the control voltage of the polarization rotator 20 and the deviation of the liquid crystal molecules shown in FIG. In another embodiment of the present invention, in the display state, the polarization direction of the image is controlled by the polarization rotator 20 to be less than 45 with respect to the second direction. The second corner is offset to compensate for the mismatch in distance between the display panel 1G and the lens element 3G. And, according to the above formula, by adjusting the angle θ, the difference between the effective refractive index _ of the image and the refractive index nP of the single-refractive-index lens 歹(3) can be made by the birefringent crystal mirror array 32, so that The actual focal length of the lens group (4) is equal to the actual distance between the panel 1〇 and the lens element 30, thereby providing a good 3D display effect. In a specific implementation process, the control module adjusts the control voltage according to the refractive index difference of the lens element % in the second direction and the distance between the display panel 1G and the lens core (4) to control the polarization rotator 2 The angle of deflection of the liquid crystal molecules. At this time, the polarization direction of the image rotated by the polarization rotator 20 is at an angle with the second direction of the lens element 3G, thereby compensating for the mismatch in the distance between the display panel (4) lens elements 30. For the specific control, the control voltage of the polarization rotator 20 and the deflection angle of the liquid crystal molecules shown in FIG. 2 are shown: a schematic diagram of the gate. 13 201226980 As shown in FIG. 3, FIG. 3 is a schematic diagram of an embodiment of the present invention. In the present embodiment, the control method includes the following steps: In step S300, an image having a polarization direction is provided by using a display panel. In this step, The display panel adopts a liquid crystal display panel, a plasma display panel or a CRT display panel, and is provided with a polarization plate or a polarizer to provide an image having a polarization direction. In step S301, the image is rotated by the polarization rotator. The polarization direction is such that the polarization direction of the image is at an angle of less than 45 with respect to the first or second direction of the lens element. The first direction and the second direction are perpendicular to each other. The lens element is theoretically oriented first to the polarization direction. The image in the direction produces a non-lens effect and produces a lens effect on the image in which the polarization direction is in the second direction. In this step, the polarization rotator The polarization rotation n 2G can be realized by utilizing the optical properties of the liquid crystal as described above. New Zealand, it is entirely conceivable for those skilled in the art to use other components known in the art to rotate the direction of the person in the field to shoot the polarization direction. In this step, the lens element can be made as described above, and those skilled in the art can fully realize that the lens effect and the non-lens effect can be generated for the human light of the (10) vibration direction by using the art. Other optical components. In the embodiment of the invention, in the step measurement, in the 2D display state 2, the polarization rotator is used to control the polarization direction of the image and the first angle B of the lens assembly to compensate the lens. The refractive index of the component in the first direction is lost s 201226980 Specifically, for the voltage-controlled polarization rotator, the control voltage of the polarization rotator is adjusted according to the refractive index difference in the first direction of the lens element, so that the wisdom bias = rotator The polarization direction of the subsequent image is at an angle with the first direction, and the refractive index mismatch of the compensation lens assembly in the first direction. In the other embodiment of the present invention, in the step _, in the _ In the state shown, the polarization amount when the chest (four) is biased is at a second angle with the second direction of the lens element to compensate for the mismatch between the distance between the display panel and the lens element. Specifically, for the dragon (four) type polarization rotation n, Adjusting the control voltage of the polarization rotation H according to the refractive index difference of the lens element in the second direction and the distance between the display panel and the lens reading such that the polarization direction of the image after the polarization rotator is "the second of the lens elements" The direction is a second angle, thereby adjusting the distance between the display panel and the lens element to adjust the distance between the display panel and the lens element. I can effectively compensate the refraction of the lens element in the 2D display state. The loss of the distance between the display panel and the lens element in the state of loss or 3D display improves the display effect. In the above embodiment, the invention has only been described as hiding, but the technical person of the shoulder domain is reading the book. Various modifications of the invention can be made without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing the structure of a 2D/3D switching type stereoscopic display according to an embodiment of the present invention; 15 i 201226980 FIG. 2 is a view showing a relationship between a control voltage of a polarization rotator and a deflection angle of liquid crystal molecules according to an embodiment of the present invention. A schematic diagram of a relationship; and FIG. 3 is a flow chart showing a control method of a 2D/3D switching type stereoscopic display according to an embodiment of the present invention. [Main component symbol description] 1, 10: display panel 2, 20: polarization rotator 3, 21: first panel 5, 23: liquid crystal layer 7, 25: second panel 4, 22: first electrode structure 6, 24 : second electrode structure 8, 26: control module 9, 30: lens assembly, 31: single refractive index lens array 11, 32: birefringence lens array

Claims (1)

201226980 七、申請專利範圍: 卜一種2D/3D切換型立體顯示器,所述2D/3D切換型立 體顯示器包括: 顯示面板,所述顯示面板用於提供具有一偏振方向的圖 像; 偏振旋轉器,所述偏振旋轉器用於旋轉所述圖像的所述偏 振方向,以使所述2D/3D切換型立體顯示器在2D顯示狀態與 3D顯示狀態之間進行切換; 透鏡元件,所述透鏡元件具有相互垂直的第一方向和第二 方向’其中所述透鏡元件對所述偏振方向位於所述第一方向上 的所述圖像產生非透鏡效應,且對所述偏振方向位於所述第二 方向上的所述圖像產生透鏡效應, 其中,所述偏振旋轉器配置成使得所述偏振方向與所述第 一方向或所述第二方向成一小於45。的央角。 2. 依據申請專利範圍第丨項所述之21)/3〇切換型立體顯 示器,在所述2D顯示狀態下,所述偏振方向與所述第一方向 成第-夾角’以補償所述透鏡組件在所述第—方向上的折射率 失配。 3. 依據申請專利範圍第!項所述之取犯切換型立體顯 示器,在所述3D顯示狀態下,所述偏振方向與所述第二方向 成第二爽角’簡償所述顯示面板與所述透鏡元件之間的距離 失配。 g 17 201226980 依據申π專利範圍第丨項所述之2d/3d切換型立體顯 示器,所述偏振旋轉器包括: 第一面板; 第面板,所述第二面板與所述第一面板間隔設置; 第一電極結構’設置於賴第-面板上; 第二電極結構,設置於所述第二面板上; 液曰曰層’夾置於所述第一面板和所述第二面板之間,且包 括多個液晶分子; 控制模組,為所述第一電極結構和所述第二電極結構提供 控制電壓,以改變所述液晶分子的排列方向。 。5.依據申5月專利範圍第4項所述之⑽犯切換型立體顯 不器’在所述2D顯示狀態下,所述控制模組根據所述透鏡元 件在所述第-方向上的折射率差織所述控制電壓,以使所述 偏振方向與所述第—方向成第—夾肖,進而補償所述透鏡組件 在所述第一方向上的折射率失配。 口 6.依據申请專利範圍第4項所述之2D/3D切換型立體顯 不器’在所述3D顯示狀態下,所述控制模組根據所述透鏡元 件在所述第二方向上的折射率差以及所述顯示面板與所述透 鏡元件之間的距_整所述控制賴,贼所述偏振方向與所 述第二方向成第二Μ,進而補償所述顯示面板與所述透鏡元 件之間的距離失配。 7.依據申請專利範圍第Μ所述之2D/3D切換型立體顯§ 201226980 示器,所述透鏡組件包括單折射率透鏡陣列和雙折射率透鏡陣 列,且所述單折射率透鏡陣列和所述雙折射率透鏡陣列均包括 平面部分以及與所述平面部分相對的曲面部分,所述單折射率 透鏡陣列和所述雙折射率透鏡_㈣面部分相轉合,所述 雙折射率透鏡陣列沿所述第—方向具有第—折射率,並沿所述 第二方向具有第二折射率,所述單折射率透鏡_具有第三折 射率’其中所述第-折射率在理論上與所述第三折射率相匹 配。 8·依據申請專利範圍第7項所述之⑽㈣換型立體顯 不器,所述雙折射率透鏡陣列包括—液晶層,所述液晶層包括 多個液晶分子,所述液晶分子沿預定方向固化於所述液晶層 中。 9. 一種 2D/3D 方法包括: 切換型立體顯示器的控制方法,所述控制 &amp;利用顯示面板提供具有—偏振方向的圖像; Κ利用偏振旋轉器旋轉所述圖像的所述偏振方向,以使 得所述偏振方向與魏元件㈣—方㈣第二 π的夫角,其中所述第-方向和所述第二方向相互垂直,所 所錢振方向錄所料—方_所述圖像產 非透兄效應,且對所述偏振方向位 圖像產生透鏡效應。 Μ第-方向上的所述 10.依據申請專利範圍第9項所述之控制方法,在所述步g 201226980 驟b中,在2D顯示狀態下,所述偏振方向與所述第一方向成 第一夾角,以補償所述透鏡組件在所述第一方向上的折射率失 配。 11·依據申請專利範圍第9項所述之控制方法,在所述步 驟b中,在3D顯示狀態下,所述偏振方向與所述第二方向成 第二夾角,以補償所述顯示面板與所述透鏡元件之間的距離失 配。 12.依據申請專利範圍第9項所述之控制方法,在所述步 驟b中,在2D顯示狀態下’根據所述透鏡元件在所述第一方 向上的折射率差調整所述偏減轉器的控健壓,錢所述偏 振方向與所述第-方向成第—爽角,進而補償所述透鏡組件在 所述第一方向上的折射率失配。 13·依據申請專職㈣9項所述之控制方法,在所述步 驟b中,在3D顯示狀態下,根據所述透鏡元件在所述第二方 向上的折射率差以及所述顯示面板與所述透鏡元件之間的距 =調整所錢振旋制的㈣輕,叫〇㈣驗方向與所述 7方向成第二夹角,進而補償所述顯示面板與所述透鏡元件 之間的距離失配。 丨兀什 20201226980 VII. Patent application scope: A 2D/3D switching stereoscopic display, the 2D/3D switching stereoscopic display comprises: a display panel for providing an image with a polarization direction; a polarization rotator, The polarization rotator is configured to rotate the polarization direction of the image to switch the 2D/3D switching stereoscopic display between a 2D display state and a 3D display state; and a lens element having mutually a first direction of the vertical direction and a second direction 'where the lens element produces a non-lens effect on the image in which the polarization direction is located in the first direction, and the polarization direction is in the second direction The image produces a lens effect, wherein the polarization rotator is configured such that the polarization direction is less than 45 with the first direction or the second direction. The central corner. 2. According to the 21)/3〇 switching stereoscopic display according to the scope of the patent application, in the 2D display state, the polarization direction is at an angle θ with the first direction to compensate the lens. The refractive index mismatch of the component in the first direction. 3. According to the scope of the patent application! In the 3D display state, the polarization direction is a second refresh angle with the second direction to compensate for the distance between the display panel and the lens element. lost pair. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The first electrode structure is disposed on the Lai-panel; the second electrode structure is disposed on the second panel; the liquid helium layer is sandwiched between the first panel and the second panel, and A plurality of liquid crystal molecules are included; and a control module provides a control voltage for the first electrode structure and the second electrode structure to change an alignment direction of the liquid crystal molecules. . 5. According to the fourth aspect of the patent scope of claim 5, (10) switching type stereoscopic display device, in the 2D display state, the control module is refracted according to the lens element in the first direction The control voltage is woven by the rate difference such that the polarization direction is in a first-order relationship with the first direction, thereby compensating for a refractive index mismatch of the lens assembly in the first direction. According to the 2D/3D switching type stereoscopic display device of claim 4, in the 3D display state, the control module is refracted according to the lens element in the second direction a difference in rate and a distance between the display panel and the lens element, the polarization direction of the thief being second to the second direction, thereby compensating the display panel and the lens element The distance between the mismatch. 7. The 2D/3D switching type stereoscopic display 201226980 according to the scope of the patent application, wherein the lens assembly comprises a single refractive index lens array and a birefringence lens array, and the single refractive index lens array and the Each of the birefringent lens arrays includes a planar portion and a curved portion opposite to the planar portion, the single refractive index lens array and the birefringence lens _(four) face portion being coupled, the birefringent lens array Having a first refractive index along the first direction and a second refractive index along the second direction, the single refractive index lens _ having a third refractive index 'where the first refractive index is theoretically The third refractive index is matched. 8. The (10) (4) changeable stereoscopic display according to claim 7, wherein the birefringent lens array comprises a liquid crystal layer comprising a plurality of liquid crystal molecules, the liquid crystal molecules being solidified in a predetermined direction In the liquid crystal layer. 9. A 2D/3D method comprising: a control method of a switched stereoscopic display, the control &amp; providing an image having a polarization direction using a display panel; and rotating the polarization direction of the image using a polarization rotator, Taking the polarization direction and the Wei element (four) - square (four) second π angle, wherein the first direction and the second direction are perpendicular to each other, and the direction of the vibration direction is recorded - the image Producing a non-transparent effect and producing a lens effect on the polarization direction image. According to the control method of the ninth aspect of the invention, in the step g 201226980 b, in the 2D display state, the polarization direction is different from the first direction a first angle to compensate for a refractive index mismatch of the lens assembly in the first direction. According to the control method of claim 9, in the step b, in the 3D display state, the polarization direction is at a second angle with the second direction to compensate the display panel and The distance between the lens elements is mismatched. 12. The control method according to claim 9, wherein in the step b, the biasing is adjusted according to a refractive index difference of the lens element in the first direction in a 2D display state The control pressure of the device is such that the polarization direction forms a first refresh angle with the first direction, thereby compensating for the refractive index mismatch of the lens assembly in the first direction. 13. According to the control method described in the application full-time (4), in the step b, in the 3D display state, according to the refractive index difference of the lens element in the second direction, and the display panel and the The distance between the lens elements=the light vibration of the adjustment (4) is light, and the direction of the 〇(4) inspection is at a second angle with the 7 direction, thereby compensating for the distance mismatch between the display panel and the lens element. .丨兀 20
TW100110615A 2010-12-31 2011-03-28 2d/3d switchable solid display and control method TWI444660B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010106197265A CN102096229B (en) 2010-12-31 2010-12-31 2D/3D (two-dimensional/three-dimensional) switching type stereoscopic display and control method thereof

Publications (2)

Publication Number Publication Date
TW201226980A true TW201226980A (en) 2012-07-01
TWI444660B TWI444660B (en) 2014-07-11

Family

ID=44129386

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100110615A TWI444660B (en) 2010-12-31 2011-03-28 2d/3d switchable solid display and control method

Country Status (2)

Country Link
CN (1) CN102096229B (en)
TW (1) TWI444660B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471608B (en) * 2012-09-03 2015-02-01 Wintek Corp Naked eye type and glasses type switchable stereoscopic display device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452342B (en) * 2011-12-15 2014-09-11 Delta Electronics Inc Autostereoscopic display apparatus
CN103091854B (en) * 2013-02-17 2015-06-03 深圳超多维光电子有限公司 Stereo display device
CN103149737B (en) * 2013-03-22 2015-08-05 深圳超多维光电子有限公司 A kind of display
CN103487963B (en) * 2013-09-30 2016-03-30 深圳超多维光电子有限公司 2D/3D display switching device and driving method
US9591298B2 (en) 2013-09-30 2017-03-07 Superd Co. Ltd. System and method for two-dimensional (2D) and three-dimensional (3D) display
CN104049372B (en) * 2014-06-24 2016-02-17 深圳超多维光电子有限公司 2d/3d switchable display device
KR102530558B1 (en) * 2016-03-16 2023-05-09 삼성전자주식회사 See-through type display apparatus
CN105607171B (en) 2016-03-29 2017-12-05 宁波万维显示科技有限公司 The method that volume to volume prepares 2D/3D gratings switching film
CN107608088B (en) * 2017-10-20 2021-02-02 张家港康得新光电材料有限公司 Switchable electro-optic material lens and display device
CN109343242A (en) * 2018-11-12 2019-02-15 张家港康得新光电材料有限公司 A kind of test device and test method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2306231A (en) * 1995-10-13 1997-04-30 Sharp Kk Patterned optical polarising element
JP4602369B2 (en) * 2003-02-06 2010-12-22 株式会社東芝 Stereoscopic image display device
JP4225132B2 (en) * 2003-06-24 2009-02-18 カシオ計算機株式会社 Liquid crystal display
KR20070082606A (en) * 2006-02-17 2007-08-22 삼성전자주식회사 Liquid crystal display apparatus
CN101387758A (en) * 2007-09-14 2009-03-18 北京超多维科技有限公司 2D-3D convertible stereo display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471608B (en) * 2012-09-03 2015-02-01 Wintek Corp Naked eye type and glasses type switchable stereoscopic display device

Also Published As

Publication number Publication date
TWI444660B (en) 2014-07-11
CN102096229B (en) 2011-11-16
CN102096229A (en) 2011-06-15

Similar Documents

Publication Publication Date Title
TW201226980A (en) 2d/3d switchable solid display and control method
US9007685B2 (en) Polarization separation device and display apparatus
US10690990B2 (en) Display device and display method
US20100238546A1 (en) Three-dimensional display apparatus
EP2530942B1 (en) 3D display panel and method of manufacturing a phase difference plate
US8922724B2 (en) Active shutter glasses and three-dimensional image recognition unit
JP5420665B2 (en) Stereoscopic image display device
WO2012048485A1 (en) Two dimension/three dimension switchable liquid crystal lens assembly and display device
EP0477882A2 (en) Full color three-dimensional flat panel display
TW200925653A (en) Three-dimensional display device and fabricating method thereof
US20130050452A1 (en) Autostereoscopic display with a passive cycloidal diffractive waveplate
TW201418777A (en) Display device
US20150185488A1 (en) Double-layered liquid crystal lens and 3d display apparatus
US9210412B2 (en) Active shutter glasses and a stereoscopic image projection system wherein viewing angles of a shutter section for the left and right eyes are wider on right and left sides than on upper and lower sides
TW201013224A (en) Stereoscopic display apparatus, system and method
JP4570175B1 (en) Stereoscopic image display device
CN102331636B (en) Liquid crystal display panel and three-dimensional display device
KR101857819B1 (en) Prism using a liquid crystal
WO2013135065A1 (en) Polarizing device, 3d display, and 3d display system
WO2014015606A1 (en) 3d display device and manufacturing method therefor
TW201226982A (en) Image display device
KR100662046B1 (en) Liquid Crystal Display Device Having Thin Film Polarizers and Retarders
US8964136B2 (en) Active shutter glasses comprising a half-wave plate disposed at an outer side of a linear polarizing element and a stereoscopic image projection system
JPS62191824A (en) Pseudo stereoscopic display system
US20130010359A1 (en) Polarization system and three dimensional image display apparatus having the same