TW201226848A - Destructive web thickness measuring system of microdrills and method thereof - Google Patents

Destructive web thickness measuring system of microdrills and method thereof Download PDF

Info

Publication number
TW201226848A
TW201226848A TW99144622A TW99144622A TW201226848A TW 201226848 A TW201226848 A TW 201226848A TW 99144622 A TW99144622 A TW 99144622A TW 99144622 A TW99144622 A TW 99144622A TW 201226848 A TW201226848 A TW 201226848A
Authority
TW
Taiwan
Prior art keywords
image
micro
drill
module
core thickness
Prior art date
Application number
TW99144622A
Other languages
Chinese (zh)
Other versions
TWI413756B (en
Inventor
Wen-Tung Chang
Shui-Fa Chuang
Yi-Shan Tsai
Geo-Ry Tang
Fang-Jung Shiou
Original Assignee
Univ Nat Taiwan Science Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Science Tech filed Critical Univ Nat Taiwan Science Tech
Priority to TW99144622A priority Critical patent/TWI413756B/en
Publication of TW201226848A publication Critical patent/TW201226848A/en
Application granted granted Critical
Publication of TWI413756B publication Critical patent/TWI413756B/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

A destructive web thickness measuring system of microdrills includes a computer device, a dual-axis motion platform module, a drill grinding module, a positioning vision module and a web thickness measuring vision module. When the computer device controls the dual-axis motion platform module to move a microdrill to a first locating position, the computer device uses a first image acquired by the positioning vision module to proceed a positioning process and then proceeds a grinding process to make the drill grinding module grind the microdrill to an inspected cross-sectional location of the microdrill. When the microdrill ground moves to an image measuring position, the computer device uses a second image acquired by the web thickness measuring vision module to proceed an image computing process to obtain a web thickness value of the inspected cross-sectional location. Therefore, the destructive web thickness measuring system of microdrills can proceed the automated web thickness measurement.

Description

201226848 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種微型鑽針之破壞式芯厚值量測系統及其方 法,特別關於一種可自動化的微型鑽針之破壞式芯厚值量測系統 及其方法。 【先前技術】 微型鑽針已被大量地應用在各種印刷電路板的微孔加工。請 參照「第1A圖」、「第1B圖」與「第1C圖」,係分別為微型鑽針 的一實施例側視結構示意圖、依據「第1A圖」之1B-1B的剖面 結構示意圖與依據「第1A圖」之1C_ic的剖面結構示意圖。鑽 針50包括中心軸5卜鑽柄(Shank) 52與鑽部(DriUb〇dy) 54, 鑽部54包括尖部(Drill p〇im) 6〇、鑽槽58 (制⑹丨如纪)與鑽 尖60a (Drill tip)。其中,鑽部54相對於鑽柄52之比例被加以放 大以利說明。鑽部54在功能上由尖部60及鑽槽58所構成,尖部 60用以產生鑽削行為,鑽槽58則用以排除切屑。在鑽部54中未 被開槽的圓錐狀核心部分即為鑽芯56 (Web),且鑽芯56的厚度 〔以下簡稱心厚(Web thickness) 62〕與鑽槽58之深度在設計上 互為衝突。芯厚62較大的微型鑽針50具有較佳的剛性,但其鑽 槽58之深度較小,使得排屑效果較差;反之,鑽槽%之深度較 大者具有軏佳的排屑效果,但其剛性較差。因此,芯厚是影響微 型鑽針品質的關鍵參數。針對微獅針成品的芯厚值進行量測以 改善程參數是鑽針製造朗關切的重要品管卫作之一。 微型鑽針之芯厚值量測方法可以概分為非破壞式及破壞式兩 201226848 大類。中華民國專利公報第I2M124號提出一種基於雷射測微儀 a· miCr〇-g琴’ LMG)與雷射共焦位移計(Laser c〇nf〇cai d_ce職tmeter ’ LCDM)的非破壞式芯厚值量測技術,然而, 上述非破壞式芯厚值量測技術在實務上仍具有成本極高與穩定度 不足的問題’而不利於非破壞式芯厚值量測技術的發展。基於上 述瓶頸s知業者多仍採用破壞式芯厚值量測技術。傳統上所採 用的破壞式心厚值㈣程序為利闕鋼綱研雜職型鑽針之 鑽部進行破壞式研磨至某—轴域面的待檢測截面位置,然後再 透過有經驗的量測人肢心具臟鏡(Μ__ 針對轴向截面之芯厚進行量測。其中,量測人員乃是根據兩開槽 輪廊mute Contours)間所測得之最短距離得到芯厚值。由於上述 過表係利狀I的方式進行操作,因此,存在有#時且難以確保 檢測位置的準確性與芯厚㈣精度之問題。 【發明内容】 …馨於W上問題’本㈣提出—麵韻針之破壞式芯厚值量 則系統及其方法,藉以解決先前技術所存在費時且難以確保檢測 位置的準確性與芯厚值的精度之問題。 f據本發明所揭露之微型鑽針之破壞式芯厚值量測系統係適 ^ ;里測微型鑽針的芯厚值。在一實施例中,微型鑽針之破壞式 ^值里測系統包括計算機震置、雙轴運動平台模組、鑽針研磨 ^且》定位視覺模組與芯厚值量測視覺模組。雙轴運動平台模組 算機裝置#接’雙軸運動平域顧以挾持微型鑽針,且由 計算機農置控制雙軸運動平台模組,以使微型鑽針移動。當計算 201226848 機裝置控織倾動平台模婦麵鑽針雜於研磨位 針研磨模組職歸針之鑽部研磨至其待檢_面位置。 當汁异機裝置㈣雙軸獅平台模組賴蘭針移動至第一 定錄置時’定倾覺触絲㈣—影像至料 4异機裝魏-輯進狀錄相獲得微 磨模組之間的第一間距。計算機裝置依據第-間距與待檢== ^位置控制熟運動平台模_鑽針研顧組,以使鑽針研磨模植 參_微_針至其待檢戦面位置。射,第—定錄置^於且 2視覺模組的第-影像擷取範_,且微型鑽針未接觸鑽針研 。當計__雙軸運動平台模組_鑽針移動至 ,芯厚值量測視覺模組擷取並輸出第二影像至計 置,汁鼻機農置依據第二影像進行影像計算程序而獲得微 =其軸細£_值。射,爾測位 於心厚值量測視覺模組的第二影像擷取範圍内。 、 實施明所揭露之微型鑽針之破壞式芯厚值量測方法的― 台模組移動抗謂值量财法包括:將雙軸運動平 位置#由雔輪運鮮’以位置參數設定微型鐵針的待檢測截面 裳―運動平台模組將微型騎移動至第—定位位置, 疋位位置係位於定位視覺模組的第一影像擷/ 型鑽針未接觸鑽針研磨模組;#由定位視^ ’且微 依據第—旦— *由疋位視覺模組擷取第-影像; 的第-間^依=辦呈序而獲得微型鑽針與鑽針研磨模組之間 鑽針研磨、—間距與待檢測截面位置進行研磨程序,使 研磨她研磨微麵針至其待檢測截面位置;藉由雙轴運動 201226848 平台模組將微型鑽針移動至影像量測位置,影像量測位置係位於 芯厚值量麻覺輸的第二影像魏範_ ;齡芯厚值量測視 覺模組擷取第二影像;以及_第二景彡像進行影料算程序而獲 付微型鑽針於其待檢測截面位置的芯厚值。 依據本發酬減之微型鑽針之破壞式芯厚值m統及微 型鑽針之破壞式芯厚值量測方法,可用以自動化量測微型鑽針於 其待檢測截面位置的芯厚值。藉由定位視覺模組的設計,可於定 位程序與研磨程序中有效財握鑽針研磨模蚊否有將微型鑽針 研磨至其待;喊面位置。藉由芯厚值量測視覺模組與影像計算 序的又# 了使本發明所揭露之微型鑽針之破壞式芯厚值量測 系統的量測穩定度提高。藉由計算機裝置的設置,可有.效的掌握 微型鑽針之破壞式芯厚值量測的流程。 以上關於本伽_容_及以τ之實施方式的說明係用以 示範與解釋本發明的精神與原理,並且提供本發明的專利申請範 圍更進一步的解釋。 【實施方式】 請參照「第2八圖」'「第2Β圖」與「第2C圖」,係分別為依 據本發明所揭露之微型鑽針之破壞式芯厚值量測系統一實施例結 構方塊示思圖、依據本發明所揭露之雙軸運動平台模組、鑽針研 磨模組、疋位視覺模組與芯厚值量測視覺模組的一實施例立體結 構示思圖與俯視結構示意圖。在本實施例巾,微型騎之破壞式 芯厚值量測系統2〇〇適用於量測微型鑽針5〇於其待檢測截面位置 D的芯厚62 (請參照「第1A圖」與「第1CS」)。微型騎之破 201226848 2ΙΓΙ 緣包括計算機裝置加、雙軸運動平台模組 ,、鑽針研磨模組撕、定位視覺·施、芯厚值量測視覺模201226848 VI. Description of the Invention: [Technical Field] The present invention relates to a broken core thickness measurement system for a micro-drill and a method thereof, and more particularly to an amount of broken core thickness of an automated micro-drill Measurement system and its method. [Prior Art] Micro-drills have been widely used in micro-hole processing of various printed circuit boards. Please refer to "1A", "1B" and "1C", which are schematic views of a side view of an embodiment of a micro-drill, and a cross-sectional structure of 1B-1B according to "1A". A schematic cross-sectional structure of 1C_ic according to "1A". The drill needle 50 includes a central shaft 5, a Shank 52 and a DriUb〇dy. The drill portion 54 includes a tip (Drill p〇im) 6〇, a drill groove 58 (manufactured by (6) 丨) Drill tip 60a (Drill tip). Here, the ratio of the drill portion 54 to the shank 52 is enlarged to illustrate. The drill portion 54 is functionally formed by a tip 60 and a drill groove 58 for producing a drilling action and a drill groove 58 for removing chips. The conical core portion that is not grooved in the drill portion 54 is the core 56 (Web), and the thickness of the core 56 (hereinafter referred to as the "Web thickness" 62) and the depth of the drill groove 58 are designed to each other. For conflict. The micro-drill 50 having a larger core thickness 62 has better rigidity, but the depth of the drill groove 58 is smaller, so that the chip removal effect is poor; on the contrary, the depth of the drill groove is larger, and the chip removal effect is better. However, its rigidity is poor. Therefore, the core thickness is a key parameter affecting the quality of the micro drill. Measuring the core thickness of the micro-shi needle finished product to improve the process parameters is one of the important product management concerns of the needle manufacturing. The micro-drill core core thickness measurement method can be divided into non-destructive and destructive two 201226848 categories. The Republic of China Patent Gazette No. I2M124 proposes a non-destructive core based on a laser micrometer a· miCr〇-g piano 'LMG' and a laser confocal displacement meter (Laser c〇nf〇cai d_ce tmeter 'LCDM) Thickness measurement technology, however, the above non-destructive core thickness measurement technology still has the problem of high cost and insufficient stability in practice', which is not conducive to the development of non-destructive core thickness measurement technology. Based on the above bottlenecks, many knowledgemakers still use the broken core thickness measurement technology. The traditionally used destructive heart thickness value (4) procedure is to perform destructive grinding of the drill section of the Liegang Steel Research Miscellaneous Drilling Needle to the position of the section to be inspected on a certain axis area, and then through the empirical measurement of the human limb The core is of a dirty mirror (Μ__ is measured for the core thickness of the axial section, wherein the measuring person is based on the shortest distance measured between the two mute Contours) to obtain the core thickness value. Since the above-described operation is performed in a manner that is advantageous, the accuracy of the detection position and the accuracy of the core thickness (four) are difficult to ensure. [Summary of the Invention] ... The problem of Xin on W' (4) proposes a system and method for destroying the core thickness value of the surface rhyme needle, thereby solving the problem of the prior art being difficult to ensure the accuracy of the detection position and the core thickness value. The problem of precision. According to the invention, the broken core thickness measurement system of the micro drill is suitable for measuring the core thickness of the micro drill. In one embodiment, the micro-drilling damage detection system includes a computer shake, a dual-axis motion platform module, a drill grinding machine, and a positioning vision module and a core thickness measurement vision module. The two-axis motion platform module computer device #接's two-axis motion flat area to hold the micro-drill, and the computer-controlled dual-axis motion platform module to move the micro-drill. When calculating the 201226848 machine control weaving platform, the female face is mixed with the grinding position. The needle grinding module grinds the drill to the position to be inspected. When the juice machine (4) double-axis lion platform module Lvlan needle moves to the first fixed position, 'fixed tactile touch wire (four) - image to material 4 different machine installed Wei - series progressive video to obtain micro-grinding module The first spacing between. The computer device controls the cooked motion platform mold-drilling research group according to the first spacing and the position to be inspected == ^, so that the drilling needle is implanted with the micro-needle to the position of the surface to be inspected. The first image is set to the first image capture mode of the visual module, and the micro drill needle is not in contact with the drill. When the __ biaxial motion platform module _ the bur is moved to, the core thickness measurement visual module captures and outputs the second image to the meter, and the juice nose machine is obtained according to the second image for the image calculation program. Micro = its axis is finely priced. The shot is measured within the second image capture range of the heart thickness measurement vision module. The implementation of the destructive core thickness measurement method of the micro-drilled needle disclosed in the above-mentioned method is based on the method of moving the two-axis motion flat position by the two-axis motion flat position. The cross-section of the iron needle to be detected is a moving platform module that moves the micro-riding to the first positioning position, and the clamping position is located in the first image of the positioning vision module/the type of the drill needle is not in contact with the drilling needle grinding module; Positioning view ^ ' and micro-based on the first - Dan - * by the positional vision module to capture the first - image; the first - according to the = order to obtain the micro-drill and the drill grinding module between the drill grinding , the spacing and the position of the section to be inspected are grounded so that the grinding micro-needle is ground to the position of the section to be detected; the micro-drill is moved to the image measuring position by the two-axis motion 201226848 platform module, and the image measuring position is The second image Wei Fan _ is located in the core thickness value of the sensation loss; the age core thickness measurement module captures the second image; and the _ second scene image is subjected to the shadow calculation program to obtain the micro bur The thickness of the core at the position of the section to be inspected. According to the present invention, the broken core thickness value of the micro burs and the broken core thickness measurement method of the micro burs can be used to automatically measure the core thickness value of the micro burs at the position of the section to be detected. By positioning the visual module design, it is possible to grind the mold to the mosquito in the positioning program and the grinding program to prevent the micro-drill from grinding to the waiting position; By measuring the visual module and the image calculation sequence by the core thickness value, the measurement stability of the broken core thickness measurement system of the micro drill disclosed in the present invention is improved. With the setting of the computer device, it is possible to effectively grasp the flow of the broken core thickness measurement of the micro drill. The above description of the embodiment of the present invention is intended to exemplify and explain the spirit and principles of the present invention, and to provide a further explanation of the scope of the patent application of the present invention. [Embodiment] Please refer to "2nd 8th", "2nd drawing" and "2Cth drawing", which are respectively an embodiment of a broken core thickness measurement system for a micro-drill according to the present invention. Block diagram, a two-axis motion platform module, a drill grinding module, a clamp vision module and a core thickness measurement vision module according to the present invention, a three-dimensional structure diagram and a top view structure schematic diagram. In the towel of this embodiment, the micro-riding broken core thickness measurement system 2 is suitable for measuring the core thickness 62 of the micro-drill 5 at the cross-sectional position D to be detected (please refer to "1A" and "" 1CS"). The break of the miniature rider 201226848 2ΙΓΙ The edge includes the computer device plus, the dual-axis motion platform module, the drill bit grinding module tearing, the positioning vision, the application, the core thickness measurement visual mode

磨輪開關次模組248與運動控制次模組258。豆中,雙轴 =平台模組202、鑽針研磨模組2〇4、定位視覺模組2〇6及芯厚 里測視覺模組208均配置於基座9〇上;雙轴運動平台模組搬 ,、運動控制次模組258減,運動控制次模組258係附屬於雙轴 ^動平台模级202 ;鑽針研磨模組綱與磨輪開關次模組旭麵 ’磨輪開關次模組⑽_屬於鑽針研磨綱;定位視覺模 、且2〇6、心厚值量測視覺模組細、磨輪開關次模組⑽及運動控 制次模組258分別與計算健置2〇1麵接。計算機裝置2〇1可為 '不限於桌上型電腦絲記型電腦,磨輪糊次模組248可包括 輸入/輸出單元262與繼電器單元264,運動控制次模組258可包 括運動控制單元2的、第-步進馬達驅動單元⑽、第二步進馬達 驅動單元270、第-線性編碼器272與第二線性編碼器別。 在本實加例中,雙軸運動平台模組2〇2可將微型騎5〇沿縱 向Y或橫向X移動,其中,縱向γ與橫向χ垂直。雙軸運動平 ^莫組202可包括鑽針夾治具21〇、縱向物單元212與橫向運動 單元2Μ鑽針夾治具21〇用以夾持微型鑽針% (請參照「第犯 圖」係為依據「第2C圖」之麟夾治额微顏針的放大結構 示意圖)。縱向運動單元犯包括第—步進馬達加,縱向運動單 元212用以使鑽針夾治具21〇沿縱向γ移動。橫向運動單元214 包括第二步進馬達22Q,橫向運動單元214用以使鐵針夾治具21〇 沿橫向X _。鑽針研磨模組綱用以研磨微型鑽針5〇至其待檢The grinding wheel switch sub-module 248 and the motion control sub-module 258. In the bean, the dual axis = platform module 202, the drill grinding module 2〇4, the positioning visual module 2〇6 and the core thickness measuring visual module 208 are all arranged on the base 9〇; the biaxial moving platform module The group moves, the motion control sub-module 258 is reduced, the motion control sub-module 258 is attached to the dual-axis moving platform module level 202; the drill grinding module and the grinding wheel switch sub-module Asahi's grinding wheel switch sub-module (10) _ belongs to the drill grinding program; positioning visual mode, and 2〇6, heart thickness measurement visual module fine, grinding wheel switch sub-module (10) and motion control sub-module 258 are respectively connected with the computing health 2〇1 . The computer device 201 can be 'not limited to a desktop computer type computer, the grinding wheel paste module 248 can include an input/output unit 262 and a relay unit 264, and the motion control sub-module 258 can include the motion control unit 2. The first stepping motor driving unit (10), the second stepping motor driving unit 270, the first linear encoder 272 and the second linear encoder are different. In the present embodiment, the biaxial motion platform module 2〇2 can move the micro ride 5 〇 along the longitudinal Y or the lateral X, wherein the longitudinal γ is perpendicular to the lateral χ. The biaxial movement flat group 202 can include a drill holder 21 〇, a longitudinal object unit 212, and a lateral movement unit 2 Μ a needle holder 21 〇 for holding the micro bur pin % (please refer to the "figure map") It is based on the enlarged structure of the micro-needle needle of the lining of the "2C figure". The longitudinal motion unit includes a first stepper motor plus, and the longitudinal motion unit 212 is used to move the burr holder 21 〇 in the longitudinal direction γ. The lateral motion unit 214 includes a second stepper motor 22Q for aligning the iron needle clamp 21' in the lateral direction X_. The drill grinding module is used to grind the micro drill 5 to its inspection

201226848 測截面位置D,鑽針研磨模組綱可包括感應馬達故、傳動單元 226與磨細,感應馬達故可藉由傳動料 旋轉’以喃微麵㈣靖後顺_ d,但本實施例並 非用以限定本發明,也就是說,鐵針研磨模組朋更可包括集塵 單元(未標示),以收集鑽針研磨模組2〇4研磨微型鑽針5〇時所 產生的粉塵,避免粉塵影響定位視覺模組鄕的影像擷取。 定位視覺模組206用以擷取微型鑽針5〇於第一定位位置(即 定位視覺模組206的第-影像擷取範圍内,且微型鑽針%未接觸 鑽針研磨模組204)的第-影像。定位視覺模組2〇6可包括第一光 源230、第-鏡頭232、第一光源調控器⑽與第一影像感測單元 236,第-光源230發出第-光線80,第一光源調控器234用以調 控第-光線80的亮度,第一光線8〇的行進方向及第一鏡頭议 的第-軸向70分別與橫向X#f上平行。其中,第—影像感測單 元236可接收經過第一鏡頭232的第一光線80並輸出第一影像, 第一影像感測單元236可為但不限於互補式金氧半場效電晶體攝201226848 The cross-sectional position D, the drill grinding module can include the induction motor, the transmission unit 226 and the grinding, and the induction motor can be rotated by the transmission material to "make the micro-surface (4) Jing Houshun_d, but this embodiment It is not intended to limit the present invention, that is, the iron needle grinding module may further include a dust collecting unit (not shown) to collect the dust generated when the drill grinding module 2〇4 grinds the micro drill 5〇. Avoid image damage caused by dust affecting the positioning vision module. The positioning vision module 206 is configured to capture the micro drill needle 5 in the first positioning position (ie, the first image capturing range of the positioning vision module 206, and the micro drill needle % does not contact the drilling needle grinding module 204). First-image. The positioning vision module 2〇6 may include a first light source 230, a first lens 232, a first light source controller (10) and a first image sensing unit 236. The first light source 230 emits a first light ray 80, and the first light source controller 234 To adjust the brightness of the first ray 80, the traveling direction of the first ray 8 及 and the first-axis 70 of the first lens are parallel to the horizontal direction X #f, respectively. The first image sensing unit 236 can receive the first light 80 passing through the first lens 232 and output the first image. The first image sensing unit 236 can be, but not limited to, a complementary metal oxide half field effect transistor.

影機(Complementary Metal-Oxide-Semiconductor camera,CMOS camera),也就是說,第一影像感測單元236亦可為電荷耦合元件 攝影機(Charge Coupled Device camera,CCD camera)。 芯厚值量測視覺模組208用以擷取微型鑽針50於影像量測位 置(即芯厚值量測視覺模組208的第二影像擷取範圍内)的第二 影像。芯厚值直測視覺模組208可包括第二光源238 、第二鏡頭 240、第二光源調控器242與第二影像感測單元244;第二光源238 發出第二光線82,第二光源調控器242用以調控第二光線82的亮 201226848 ^第二光線s2會照射到微型鑽針5Q之待檢測的軸向截面57(請 多照第7A圖」),同時,第二光線82照射到微型鑽針50之待檢 測的軸向截面57所職的反射光會經料二綱· 第二影 像感測單元244所接收並輸出第-畢 咕 乐—办像。其中,第二鏡頭240的 弟二軸向72可平行微型鑽針5〇的中 日7甲、輛51,以避免產生誤差。 在本實施射,第二轴向72可為但不限於重合微魏針%的中The first image sensing unit 236 can also be a Charge Coupled Device Camera (CCD camera). The core thickness measurement vision module 208 is configured to capture the second image of the micro drill 50 in the image measurement position (ie, within the second image capture range of the core thickness measurement vision module 208). The core thickness direct-measuring visual module 208 can include a second light source 238, a second lens 240, a second light source controller 242 and a second image sensing unit 244; the second light source 238 emits a second light 82, and the second light source is regulated The 242 is used to regulate the brightness of the second light 82. The second light s2 is irradiated to the axial section 57 of the micro drill 5Q to be detected (please refer to FIG. 7A), and the second light 82 is irradiated. The reflected light of the axial section 57 to be detected of the micro-drill 50 is received by the second image sensing unit 244 and outputted by the second image sensing unit 244. Wherein, the second axial direction 72 of the second lens 240 can be parallel to the micro-drill 5 〇 of the Chinese and Japanese 7A, 51, to avoid errors. In the present embodiment, the second axial direction 72 may be, but is not limited to, in the case of coincident micro-wei needles.

心轴51 (請參照「第2E圖」’係為依據「第%圖」之微型鑽針 於影像量測位置的俯視結構示意圖)。 一此外,芯厚值量測視覺模组進更可包括集光單元挪,集光 單το 246可使第—光線82實質上更佳地匯聚於影像量測位置,以 增加第二影像感測單元244擷取第二影像的亮度。第二影像感測 單元244可為但不限於電餘合元件攝影機,也就是說,第二影 像感測單元施亦可為互補式金氧半場效電晶體攝影機。 什异機裝置201包括第-通用序列匯流排介面25〇 (伽爾^ serial bus ’ USB )、第二通用序列匯流排介面252、記憶單元254、 中央處理模組256與人機介面260。計算機裝置观可藉由輸入/ 輸出單το 262與繼電器單元264控制感應馬達224,進而啟動鑽針 研磨模組204。第一通用序列匯流排介面25 〇及第二通用序列匯流 排介面252分別與第一影像感測單元236及第二影像感測單元244 耦接,使計算機裝置201可接收第一影像與第二影像。記憶單元 254可用以儲存第一影像與第二影像,中央處理模組256可用以控 制與處理微型鑽針之破壞式芯厚值量測的流程。計算機裝置2〇1 可藉由運動控制單元266啟動第一步進馬達驅動單元268與第二 201226848 步進馬達驅動單元27〇 達糊運作(即縱向運動一達216與第二步進馬 212的位置而回傳器272測得縱向運動單元 動控制(即控制縱向運勤r凡6,以進行縱向γ的閉迴路運 274洌得作.㈣早疋212的位移距離),第二線性編碼器 == 向運動単元214的位置_傳至運動控制單元挪以進 離)^.人閉迴路運動控制(即控制橫向運動單元214的位移距 量、、則相關二^細方面可用以接收使用者所輸入的位置參數與 从值’以供微型鑽針之破壞式芯厚值量測系統剔依 二亍調整,另一方面可用以提供顯示微型鑽針之 破壞式心厚值量測系統所進行的流程、第—影像與第二影像。 參,Γ第2Α圖」與「第3圖」,「第3圖」係為依據「第 。」的从型鑽針之破壞式芯厚值量導、統所應用的微型鑽針之 破壞式芯厚值制方法—實施織齡意圖。微型鑽針之破壞式 芯厚值量測方法包括: 步驟302:將雙軸運動平台模組移動至原點位置; 纊 步驟304 :以-位置參數設定微型鑽針的待檢測截面位置; 步驟306:藉由雙軸運動平台模組將該微型鑽針移動至第〆定 位位置,第-定錄置餘於定位視髓_第—影細取範g - 内,且微型鑽針未接觸鑽針研磨模組之磨輪; - 步驟308 :藉由定位視覺模組擷取第一影像; 步驟310:域第-影像進行定姉序顿得微歸針與鑽針 研磨模組之磨輪端面的第一間距; 12 201226848 步驟312:依據第—間距與待檢測截面位置進行研磨程序,使 鑽針研磨模組之磨輪研磨微型鑽針至其待檢測截面位置. 步驟314:勤雙軸獅平雜組將微_針簡至影像量測 位置’影像f _麟位妓厚值量麻賴_第 範圍内; 步驟316 :藉由芯厚值量測視覺模組操取第二影像;以及 步驟318.域帛二影像進行影料算辦轉紐型鑽針於 其待檢測截面位置的芯厚值。 需注意的是’使用者可在執行步驟搬之前或之後,藉由鑽 針夾治具夾持微型鑽針5G以進行芯厚值的量測。上述步驟逝所 述之原點位置係為使用者败雙軸運動平台模組观的初始位 置可為但不限於易於安裳微型鑽針5〇於鑽針失治具⑽的位 置’實際原點位置可依據實際需求進行調整。在步驟304所述之 位置參數係為使用者利用人機介面所輸入計算機裝置观的 二數’在本實施例巾位置參數的數量可為但不限於_個,也就是 况’位置參數可為複數個,關於位置參數為複數_情形請容後 描述。 ,步驟3〇6係為計算機裝置2〇1利用運動控制次模组258控制 縱向運動單元212與橫向運動單元214移動,以調整微型鑽針5〇 至第定位位置。上述步驟3〇8中,計算機裝置2〇1係利用定位 視見&組206的第-影像感測單元23δ娜第一影像。請參照「第 圖」’係為依據步驟310所述之定位程序的一實施例流程示意 圖。定位裎序可包括: 201226848 步驟402:藉由第-影像獲得微頻針_針邮與鑽針研磨 模組的磨輪端面; 步驟404 :計算鑽針端面與磨輪端面間的多個縱向距離;以及 步驟406 :比較每一縱向距離而獲得第一間距。 請參照「第4圖」與「第5A圖」,「第5A圖」係為本發明所 揭露之步驟308的第一影像的一實施例示意圖。其中,第一影像 包括鑽針端面10與磨輪端面U。鑽針端面1G可為未研磨過:微 型鑽針5〇之尖部6〇的端面或是已研磨過之微型鑽針Μ之被磨斷 截面位置的端面。更進-步地· ’ #微型鑽針5G尚未被移動至 第-定位位置時,僅磨輪228之磨輪端面u會處於第一光源挪 與第一鏡頭232之間;當微型鑽針5〇被移動至第—定位位置時 微型鑽針50與磨輪228之磨輪端面U會同時處於第一光源咖 與第-鏡頭232之間,使得第—光源23〇所發出之第一光線 過微型鑽針50與磨輪228之端面後會經過第—鏡頭攻而在= 影像感測單元236形成第-影像,以使第—影 與磨輪228之端面的邊緣輪廊特徵;上述成像方式為5 請參照「第4圖」與「第5Β^」,「$5δ^ 揭露之步驟404的-實施例結構示意圖 離(即v】、v2、V3)係為鑽針端面1〇至;輪:,縱向距 像距離’即縱向距―向與二= _的單位為像素(pixel)。舉例而言,鑽針端面⑺包括=向 城^,’磨輪端…括三第二端點^;,; 201226848 :端點12與第二端點16間具有縱向麟Vi,第-端點13與第二 端點17間具有縱向距離%,第一端點14與第二端點間具有縱 向距離% ’其中,縱向距離Vi、%、%的方向皆與縱向γ平行。 接著進行步驟4〇6,比較縱向距離%、%、%的大小,在本實於 例中縱向距離V2>縱向距離V3>縱向距離Vi,所以縱向距離^ 為第i像間距。最後,將第一影像間距v]進行第一比例轉換程 _序而獲得第— (其單位為實際的長度物理量),其中關於 一比例轉換程序請容後詳述。 312^照「第2A圖」與「第6圖」’「第6圖」係為依據步驟 ’*·之研磨程序的-實施概程示意圖。研餘序包括: 步驟602 :藉由磨輪開關次模組啟動鑽針研磨模組; =驟6〇4 ·· _雙軸運鮮台難賴_針往騎研磨模組 =進财轉’賴針研雜紅磨輪 待 檢_面位置,其中特定距離與位置參數及第_間距以^ 針違2Γ:Ιίώ·平台触縣卿騎,錢微型鑽 針遇離鑽針研磨模組。 6G4之__树檢職齡置D至錯尖· ^ 圖」)的距離及第—間距V]'的總和(請參照「第 的一實施修播一立“疗揭路之试型鑽針移動至第-定位位置 的磨輪228;磨ΓΓ)°當微型鑽針5〇已被鑽針研磨模組204 的磨輪228¾至待檢測截面位 為依據本發明所揭霞夕f (明麵帛5D圖」,係 實施㈣亍= 路之磨輪研磨 構不病),可藉由雙軸運動平台模嫌的移動使微型 201226848 鑽針^遠離鑽針研磨模組204 (即步驟606),但本實施例並非用 以限疋本發明,也就是說,當微型鑽針%已被鑽針研磨模組綱 的磨輪228研磨至待檢測截面位置D時,亦可藉由磨輪開關次模 、、且關鑽針研磨模組2〇4,而使磨輪a8 *再研磨微型鑽針 著可藉由運動控制次模組2%控制雙軸運動平台模組2〇2 將微型鑽針5〇軸蝴綠職置(即频314),贿芯厚值量 測視覺模組施的第二影像感測單元撕娜第二影像(即步驟 316)其中,第一影像包括微型鑽針5〇的轴向截面π與背景% (明知’、、第7A圖」’係為依據本發明所揭露之步驟ye的第二 影像一實施例示意圖)。 更進-步地說明,當微型鑽針%被移動至影像量測位置時, 會處於集光單元246之前方,使得第二光源238所發出之第二光 線照射到微麵針5G之待檢_向截面所軸的反縣會經過第 二鏡頭240而被第二影像感測單元244所接收並輸出第二影像, 以使第二影像上具有微型鑽針5〇的軸域面影像;上述成像方式 請細「第7B圖」至「第71圖」,係為依據步驟318所述之 影像計算辦的-實施織程示_。在「第7B目」卜 # 裝置加利用中央處理模組256調整第二影像的^ (Brightness)、對比度(Contrast)與伽瑪值(G_a);接著= 行二值化(Thresholding)處理’使得料%可為但秘於里色且 軸向截面57可為但不限於白色,叫煙關域面57心旦 201226848 59(請參照「第7C _」);由於執行二值化處理時會產生部份誤差, 所以藉由H干處理(Morphologieal Gperation),以去除背景59 的雜點(即白點)與麵軸向截面57的空洞(即黑點)(請表昭 「第7D圖」)。 / —計异機裝置201利用中央處理模組256依據轴向截面57進行 運算程序而獲得軸向截面57的形心93 (請參照「第圖」)。 以下「第7F圖」至「第71圖」係為影像計算程序中每-流 ==:實際相關「第7F圖」至「第7i圖」的運作係為 數據運异,而非以影像方式進行運算。因此,「第7f圖」至 71圖」僅提供相對應流程的參考。 參照「第7F圖」,進行邊緣偵測㈤㈣咖on) 壬又付夕個邊緣輪靡點,這些邊緣輪靡點可 線邊緣,其中’邊緣偵測—^ 測邊遮罩而獲得多個邊緣輪廓點。 :算難譲計算每-邊緣輪廓點(即 b5)與形心93間的第一距離(請參照 * 4 -距離而從中選出第—距離小於特定值°」I’比較母一第 以獲得第-開沖奸触望: ’〜的邊緣輪靡點’ 乐㈤槽輪顧域與第二開槽輪扉區域, 郭區域與第二開槽輪廓區域係分別為距離形心%之第一距:二 特定值的第-邊緣輪雜a]、a2、%與第二邊緣麵點〜 所縣的曲線段(請參照「第7H圖」)。特ί ]、2、b3 第一距離中之最小值的u倍。接著:可為但不限於所有 括的每-第—邊緣輪廓t第—開槽輪廓區域所包 廓1 ^至第二開槽輪廟區域所包括的 17 201226848 母—第二邊緣輪靡點bl、b2、b3間的第二距離(請參照「第71圖)。 接著,比較每-第二距離,其中最短的第二距離為芯厚影像距離, 4厚影像距_單位為像素;最後,將芯厚影像距離進行第二比 例轉換程序而獲得芯厚值(其單位為實際的長度物理量)’射關 於第二比例轉換程序請容後詳述。 ▲»月參照第8圖」’係為在「第3圖」之步驟3Q4前進行一影 像校正程序的-實施例步驟流簡。影像校正程序包括·· ^ 一步賴2 :接收校正棒的真實外徑值,其中,校正 貫外徑值的圓形棒; 具 置,運動平台模組將校正棒移動至第二定位位 第-疋位位置餘於第—影像練範則,且校 鑽針研磨模組之磨輪; 步驟_:藉由定位視覺模組操取第三影像; 步驟_:依鮮三影像進狀錄和麟校轉 7耽藉錢_辭域_校轉飾 置’紅定位位置係位於第一影像擷取範圍内 鑽針研磨模組之磨輪,第4位位置與第三輕位置間 距離,定位距離乃可由第-線性編碼器測得,且定位距離的ΐ 為實際的長度物理量; 从位距離的早位 步驟812:藉由定位視覺模組摘取第四影像; 步驟⑽依·四影像進行粒料顿得校正棒之端面與 201226848 =十研磨模組之磨輪端面的第三影像間距,第二影像間距 衫像間距間具有軸距離,移動距離之單位為像素;。— ^ ,驟 汁算疋位距離與移動距離間的比值即獲得第—像素 置;步驟818.猎由雙贿師台模祕校正棒雜至影像量測位 藉由心厚值量測視覺模、姉貞取第五景多像; 到外3 f依據第五影像進行影像處職序崎得校正棒的量 測外雜’量測外徑值之單位為像素,·以及 像素3Γ:將真料徑值缝·鎌_雜即獲得第二 標示响21G⑽織正棒(未 未形成且已知真實外徑值====尖部之幾何特徵 間距係為於第三影像仲2鑽針。上述步驟808的第二影像 端面n間的马像後去 端面與鑽針研磨模組204之磨輪 私由1靴4像素輯。步驟_ 平台模組202於第二粒 桃之疋位距離為雙軸運動 可由第一線性編石馬器272實f二疋位位置的實際移動距離, 為於第四影像中校端二上迷步驟814的第三影像間距係 間的影像像素距離,研磨模組2〇4之磨輪端面11 三影像與第四影像中校正棒移動的206所擷取的第 得的第-像素校2 W錄素轉。步驟816所獲 實施例所述之帛 影像感測單元236的比例尺。上述 之t比例轉換程序即為利用第—像素校正值與第- 201226848 =素門距的乘積而獲得第一間距。藉由步驟觀所接收的真 貫L仏值與步驟822所獲得的量測外徑值間的比值,可以得到第 感測單元244的比例尺(即第二像素校正值)。在步_ ’影像處理程序可為但不限於先利用類似「第7Α圖」至「第 :F圖」,步術U校正狀端时第五,彡紅的親缝點,然 (Least-squares circle-fitting approach) 的方式H/耕彳!值。上述實關所述之第二比例轉換程序 即為利用第二像素校正值與芯厚影像距__而獲得芯厚值。 耕’睛參照「第9圖」,係為依據「第2A圖」的微型鑽針 之破壞式芯厚值量_統所顧的微型鑽針之破壞式芯厚值量測 =法另-實施例流程示意圖。在本實施例中,位置參數的數量為 複數個’微賴針之破壞式‘謂值量财法除了包括「第3圖」 所述之實施例的流程外,在步驟3〇4中包括: 步驟901 :設定一被研磨截面位置為零; 步驟902 :判斷有無複數個位置參數; 步驟903 :當無複數個位置參數時,料數個位置參數減去被 研磨截面位置後的數值設定待檢測截面位置; 步驟904 :當有複數個位置參數時,比較每一位置參數而獲得 最小位置參數; 步驟906:以最小位置參數減去被研磨截面位置後的數值設定 待檢測截面位置; 此外,在本實施例中,在執行步驟318後更包括: 步驟907:設定被研磨戴面位置等於最小位置參數或單數個位 20 201226848 置參數; 步驟908 ··移除最小位置參數或單數個位置參數; 步驟910 :判斷有無其他位置參數;以及 ;/驟912. §有其他位置參數,執行步驟搬。 在本實施财,藉由上述步驟之執行可自動化制微型鑽針 50於不嶋亀⑽繼62。糾,辦他位置參數 外的位置參數時,結束微型鑽針之破壞式芯厚值量測方法。 二 _針之破壞狀厚值统㈣狀料對所揭路之微 A、B、C於同-待檢測截面位置但不同擺放:度=微: 表1The mandrel 51 (please refer to "Fig. 2E" is a schematic plan view of the micro-drilled needle according to the "%th figure" at the image measuring position). In addition, the core thickness measurement vision module can further include a light collection unit, and the light collection unit το 246 can substantially converge the first light ray 82 at the image measurement position to increase the second image sensing. Unit 244 captures the brightness of the second image. The second image sensing unit 244 can be, but not limited to, an electric component camera, that is, the second image sensing unit can also be a complementary metal oxide half field effect crystal camera. The singular device 201 includes a first-to-general sequence bus interface 25 〇 (Gal] serial bus ’ USB, a second universal sequence bus interface 252, a memory unit 254, a central processing module 256, and a human interface 260. The computer device can control the induction motor 224 by the input/output unit το 262 and the relay unit 264 to activate the burr module 204. The first universal sequence bus interface interface 25 and the second universal sequence bus interface 252 are coupled to the first image sensing unit 236 and the second image sensing unit 244, respectively, so that the computer device 201 can receive the first image and the second image. image. The memory unit 254 can be used to store the first image and the second image, and the central processing module 256 can be used to control and process the process of the broken core thickness measurement of the micro drill. The computer device 201 can be activated by the motion control unit 266 to activate the first stepping motor driving unit 268 and the second 201226848 stepping motor driving unit 27 (ie, longitudinally moving up to 216 and the second stepping horse 212). Position and return device 272 measures longitudinal motion unit motion control (ie, control longitudinal transport rfan 6 to perform longitudinal γ closed loop operation 274 洌 作 ( ( ( ( ( ( ( ( ( , , , , , , , , , , , , , , , , , , , , , , , , == to the position of the motion unit 214 _ to the motion control unit to move in) ^. Human closed loop motion control (ie, control the displacement distance of the lateral motion unit 214, then the relevant aspects can be used to receive the user The input position parameter is adjusted according to the value of the destructive core thickness measurement system for the micro burs, and the destructive heart thickness measurement system for displaying the micro burs on the other hand. The process, the first image and the second image. 参, Γ2Α and "3", "3" is the destructive core thickness of the burr based on "No." Destructive core thickness of micro-drills applied by the system Method—implementing the intent of the woven age. The method for measuring the broken core thickness of the micro burs includes: Step 302: Moving the biaxial motion platform module to the origin position; 纩 Step 304: setting the micro burs with the - position parameter The cross-sectional position is to be detected; Step 306: The micro-drilling needle is moved to the second positioning position by the biaxial motion platform module, and the first-predetermined recording is left in the positioning visual _ _ _ _ _ _ _ _ The micro burs are not in contact with the grinding wheel of the burr grinding module; - Step 308: the first image is captured by the positioning vision module; Step 310: The domain first image is calibrated to obtain the micro homing needle and the burr grinding dies The first spacing of the end faces of the grinding wheel of the group; 12 201226848 Step 312: Perform the grinding process according to the first spacing and the position of the section to be inspected, so that the grinding wheel of the drilling wheel grinding module grinds the micro drilling needle to the position of the section to be detected. Step 314: The two-axis lion flat group will simplify the micro_pin to the image measurement position 'image f _ 妓 妓 妓 值 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Image; and step 318. Domain 2 image for shadow calculation The core thickness value of the new type of burr at the position of the section to be inspected. It should be noted that 'the user can hold the micro burr 5G by the burr holder before or after the step of moving to perform the core thickness value. The position of the origin of the above-mentioned step is that the initial position of the user's defeated biaxial motion platform module can be, but is not limited to, the position of the micro-needle 5 〇 in the dynamometer (10). The actual origin position may be adjusted according to actual needs. The position parameter described in step 304 is the number of the computer device view input by the user using the human machine interface. The number of position parameters in the present embodiment may be but not limited to _, that is to say, the position parameter can be plural, and the positional parameter is plural. Step 3〇6 is to control the movement of the longitudinal motion unit 212 and the lateral motion unit 214 by the motion control submodule 258 for the computer device 2〇1 to adjust the micro drill needle 5〇 to the first positioning position. In the above step 3〇8, the computer device 2〇1 uses the first image of the first image sensing unit 23δ positioning of the & Please refer to "FIG." for a schematic flow diagram of an embodiment of the positioning procedure according to step 310. The positioning sequence may include: 201226848 Step 402: obtaining the grinding wheel end face of the micro frequency pin_needle and the drill grinding module by the first image; Step 404: calculating a plurality of longitudinal distances between the end face of the drilling pin and the end face of the grinding wheel; Step 406: Compare each longitudinal distance to obtain a first spacing. Please refer to FIG. 4 and FIG. 5A. FIG. 5A is a schematic diagram of an embodiment of a first image of step 308 disclosed in the present invention. The first image includes a drill end face 10 and a grinding wheel end face U. The end face 1G of the drill may be unpolished: the end face of the tip end 6 of the micro drill 5 或是 or the end face of the ground micro-drill pin which is ground at the cross-sectional position. Further, when the micro-needle 5G has not been moved to the first positioning position, only the grinding wheel end u of the grinding wheel 228 will be between the first light source and the first lens 232; when the micro-drill 5 is When moving to the first positioning position, the micro-drill 50 and the grinding wheel end U of the grinding wheel 228 are simultaneously between the first light source and the first lens 232, so that the first light emitted by the first light source 23 passes through the micro drill 50. After the end face of the grinding wheel 228, the first image is formed by the image sensing unit 236 through the first lens to make the edge of the first image and the end face of the grinding wheel 228; the above imaging mode is 5 4Fig. and "5th Β^", "$5δ^ Exposure Step 404 - The structural diagram of the embodiment is (ie, v], v2, V3) is the end face of the drill pin 1 〇 to; wheel:, longitudinal distance image distance 'The longitudinal distance' and the unit of the two = _ are pixels. For example, the end face of the drill (7) includes = to the city ^, 'the end of the grinding wheel... includes three second endpoints ^;,; 201226848: the end point 12 has a longitudinal collar Vi between the second end point 16, and a longitudinal distance % between the first end point 13 and the second end point 17, the first end 14 has a longitudinal distance % with the second end point, wherein the longitudinal distances Vi, %, % are all parallel to the longitudinal direction γ. Then proceed to step 4〇6 to compare the longitudinal distances %, %, %, in this In the example, the longitudinal distance V2 > the longitudinal distance V3 > the longitudinal distance Vi, so the longitudinal distance ^ is the ith image spacing. Finally, the first image spacing v] is subjected to the first proportional conversion process to obtain the first - (the unit is Actual length physical quantity), please refer to the detailed description of a proportional conversion program. 312^ According to "2A" and "6th" and "6th", it is based on the grinding procedure of step '*· A schematic diagram of the implementation plan. The research sequence includes: Step 602: Start the drill grinding module by grinding the switch module; = 6 6 · 4 Needle grinding red grinding wheel to be inspected _ face position, where the specific distance and position parameters and the _ spacing to ^ pin violation 2 Γ: Ι ώ ώ 平台 platform touch county Qing riding, money micro-drilled needle from the burr grinding module. 6G4 __ tree check the age of the D to the wrong tip · ^ map") and the distance - the first interval V] ' (see the "first implementation of the first broadcast" Grinding wheel 228 moved to the first positioning position; honing) ° When the micro burs 5 〇 have been honed by the grinding wheel 2283⁄4 of the boring grinding module 204 to the cross-sectional position to be detected according to the present invention Fig., the implementation of (four) 亍 = road grinding wheel grinding structure is not disease), the micro-201226848 boring needle ^ can be moved away from the burr grinding module 204 by the movement of the biaxial motion platform (ie step 606), but this implementation The example is not limited to the present invention, that is, when the micro-drilled needle % has been ground by the grinding wheel 228 of the drill grinding module to the cross-sectional position D to be detected, the secondary mode can also be closed by the grinding wheel. The burr grinding module 2〇4, and the grinding wheel a8* re-grinding the micro burs can control the two-axis motion platform module 2〇2 by the motion control sub-module 2 Set (ie, frequency 314), the second image sensing unit applied by the bribe core value measurement visual module to tear the second image (ie, step 316), wherein Like the background π axial section comprising a micro drill 5〇% (knowing ',, of FIG. 7A "' schematic view showing a second embodiment of the image according to the step disclosed an embodiment of the present invention, ye). Further, step by step, when the micro drill needle % is moved to the image measuring position, it will be in front of the light collecting unit 246, so that the second light emitted by the second light source 238 is irradiated to the micro needle 5G for inspection. The anti-county of the axis of the cross-section passes through the second lens 240 and is received by the second image sensing unit 244 and outputs the second image so that the second image has an axial image of the micro-drill 5 ;; For the imaging method, please refer to the "7B" to "71" diagrams, which are based on the image calculation described in step 318. In the "7th B" device, the central processing module 256 is used to adjust the brightness (Brightness), contrast (Contrast) and gamma value (G_a) of the second image; then = line binarization (Thresholding process) The material % can be but secretive to the inner color and the axial section 57 can be, but is not limited to, white, which is called the smoke off field surface 57 heart 201222848 59 (please refer to "7C _"); it will be generated when performing binarization processing Partial error, so by using the Morphologieal Gperation, the voids (ie, white dots) of the background 59 and the holes (ie, black dots) of the axial section 57 are removed (see Table 7D). . The metering device 201 obtains the centroid 93 of the axial section 57 by the central processing module 256 in accordance with the axial section 57 (refer to the "figure"). The following "7F" to "71" are the per-stream ==: actual related "7F" to "7i" operations of the image calculation process are data transfer, not by image Perform the operation. Therefore, "7f to 71" only provides a reference for the corresponding process. Refer to "Phase 7F" for edge detection (5) (4) coffee on) 壬 and pay for the edge rim point, these edge rim points can be line edges, where 'edge detection — ^ edge mask to obtain multiple edges Contour point. : It is difficult to calculate the first distance between each edge contour point (ie b5) and the centroid 93 (please refer to * 4 - distance and select the first distance - the distance is less than a specific value °" I' compare the mother one to get the first - Open the smuggling touch: '~The edge rim point' The music (five) groove wheel and the second slotted rim area, the Guo area and the second slotted contour area are the first distance from the centroid : the first-edge wheel miscellaneous a], a2, %, and the second edge point-to-county curve segment of the second specific value (please refer to "7H figure"). The minimum of the first distance is 2, 2, b3 U times the value. Next: may be, but not limited to, all of the per-first-edge contours t-slotted contour area envelope 1 ^ to the second slotted wheel temple area included 17 201226848 female - second The second distance between the edge rim points bl, b2, b3 (please refer to "71"). Next, compare each - second distance, where the shortest second distance is the core thickness image distance, 4 thick image distance _ unit As a pixel; finally, the core thickness image distance is subjected to a second ratio conversion process to obtain a core thickness value (the unit is the actual length physical quantity) Please refer to the second ratio conversion procedure for details. ▲»月refer to Figure 8" is an example of the flow of the image correction procedure before the step 3Q4 of "Fig. 3". Image correction procedure Including ·· ^ step by step 2: receiving the true outer diameter value of the correction rod, wherein the circular rod for correcting the outer diameter value; and the motion platform module moving the correction rod to the second positioning position - the clamp position In the first - imaging practice, and the grinding wheel of the grinding needle grinding module; Step _: to operate the third image by positioning the visual module; Step _: Depending on the three images into the record and the rotation of the school Borrowing money _ _ _ _ _ _ _ _ _ _ _ red locating position is located in the first image capture range of the grinding wheel grinding module grinding wheel, the distance between the 4th position and the third light position, the positioning distance can be the first linear The encoder measures, and the 距离 of the positioning distance is the actual length physical quantity; the early position of the slave distance step 812: the fourth image is extracted by the positioning vision module; and the step (10) performs the particle correction bar according to the four images. The end face is the third of the grinding wheel end face of 201226848 = ten grinding module Image spacing, the second image spacing has an axial distance between the image spacings, and the moving distance is in pixels; - ^, the ratio between the clamping distance and the moving distance is obtained as the first pixel; step 818. Double bribery desk model correction bar to image measurement position by the heart thickness measurement visual mode, capture the fifth scene multi-image; to the outside 3 f according to the fifth image for the position of the order The measurement of the external impurity 'measurement of the outer diameter value of the unit is pixel, · and the pixel 3 Γ: the true material diameter value 镰 镰 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The value of the diameter ==== the geometrical feature of the tip is the second image of the second image. The rear end face of the horse image between the second image end face n of the above step 808 and the grinding wheel of the drill grinding module 204 are private. 1 boot 4 pixel series. Step _ The distance between the platform module 202 and the second peach is the actual movement distance of the first linear stone machine 272, and the second image is the second image The image pixel distance between the third image spacing lines of the step 814, the grinding wheel end face 11 of the polishing module 2〇4, and the third pixel of the correction rod movement of the fourth image. Recorded. Step 816 obtains the scale of the image sensing unit 236 described in the embodiment. The above-described t-ratio conversion program obtains the first pitch by using the product of the first pixel correction value and the -201226848 = prime gate distance. The scale of the first sensing unit 244 (i.e., the second pixel correction value) can be obtained by comparing the ratio of the true L value received by the step to the measured outer diameter value obtained in step 822. In step _ 'image processing program can be, but is not limited to, first use the similar "7th map" to "F: F map", the fifth step of the step U correction, the blushing seam point, (Least-squares Circle-fitting approach) H/cultivation! value. The second ratio conversion procedure described above is to obtain the core thickness value by using the second pixel correction value and the core thickness image distance __. The ploughing eye refers to the "figure 9", which is the destructive core thickness value of the micro burs according to "2A". Example flow diagram. In the present embodiment, the number of positional parameters is a plurality of "destructive" depreciation of the "micro-recognition". The method of calculating the value of the depreciation method includes the following: In addition to the flow of the embodiment described in the "figure 3", the step 3: 4 includes: Step 901: setting a position of the polished section to be zero; Step 902: determining whether there are a plurality of position parameters; Step 903: When there is no plurality of position parameters, the number of position parameters is subtracted from the position of the grounded section to be detected. Step position: Step 904: When there are a plurality of position parameters, compare each position parameter to obtain a minimum position parameter; Step 906: Set the position of the section to be detected after subtracting the position of the position of the ground by the minimum position parameter; In this embodiment, after performing step 318, the method further includes: Step 907: setting the position of the ground worn surface equal to the minimum position parameter or the singular number of bits 20 201226848; step 908 · removing the minimum position parameter or the singular number of position parameters; Step 910: Determine whether there are other location parameters; and; / 912. § There are other location parameters, and the steps are performed. In this implementation, the micro-drill 50 can be automated by the execution of the above steps. When correcting the position parameter outside the position parameter, the method of measuring the broken core thickness value of the micro drill is ended. The ruthenium of the _needle is the value of the ruthenium (4). The micro-A, B, and C are in the same-to-be-detected cross-section position but differently placed: degree = micro: Table 1

0.1485 ±0.0009 201226848 旦、,上述「表i」可知本發明所揭露之微型鑽針之破壞式芯厚值 里、、'J系、、先及其方法的重現性(Rep論馳為扇的毫米(即士2 /、中’重現性為10組量測數據的±3倍標準差。 統2外利用本發明所揭露之微型鑽針之破壞式芯厚值量測系 进及其方法對三種不同的微型鑽針A、B、C進行四個不同待檢0.1485 ±0.0009 201226848 dan, the above "Table i" can be seen in the destructive core thickness value of the micro burs disclosed in the present invention, the reproducibility of the 'J series, the first method and the method (Rep is a fan Millimeter (ie, ± 2, medium 'reproducibility is ± 3 times standard deviation of 10 sets of measurement data. Destructive core thickness measurement system and method of micro-drilled needle disclosed by the present invention Four different pending tests for three different micro drills A, B, and C

面位置邮厚值,其中LA、LB、Le分別為微型鑽針a、B 的鑽部長/ΪΡ , ^ I 值旦、、^ 本貫驗中,除了利用上述微型鑽針之破壞式芯厚 里測方法進行芯厚制外,也侧f知人卫量_方式+ 予賴’雖量戦果如下列「表2」: " [^、________ 表2 量測方法 〇.20La a 微型鑽針之破壞式 芯厚值量測方法 芯厚值 (毫米) 工具顯微ϋ 量測方法 芯厚值 (毫米) 兩者差異 1絕對值 (毫米) 0.1173 0.1168 0.0005 0.1370 0.1374 0.0004^ ^O^OLa 0.1472 0.1461 〇.〇〇ϊΓ~~ 0.1590 0.1593~ 0.0003 B 』35Lb 0.1292 0.1266 0.0026^ 0.1590 0.1589 o.oooT'' 0.0020^ 〇.50Lb ---° 0.1740 0Λ720~ 0.1949 〇Τ^~ 〇.〇026~^ 〇,20Lc ~~~r-_ 0.1485 0.1466 o.ool^ 〇.ooTi~~~ C _^35Lc --- 0.1672 0Λ659~~~ 〇.50Lc —^1 0.1879 0.1875 0.0004 ο.οοΐΓ' ^-L^65L^ 0.2040 0.2029 22 201226848 從上述「表2」可知當待檢測截面位置越接近鑽柄時,芯厚値 也越大’ 其趨勢呈近似紐變化。再者本發明簡露之微型讀 針之破壞式芯厚值量測方法與習知工具麵鏡量測方法的差異量 絕對值在0.003毫米(即3微米)内。 依據本發明所揭露之微㈣針之破壞式芯厚值m統及微 型鑽針之破壞式芯厚值量測方法,可藉由計算機裝置的設置,進 行自動化量測微型鑽針於其待檢測截面位置的芯厚值。藉由定位 1¾覺模組的輯’可於定位辦與研磨程序巾有效的掌握鑽針研 磨模組是对將微型鑽針補至待檢_面位置。藉由芯厚值量 測視覺模_f彡料算財的設計’可縣發騎揭露之微型鑽 針之破壞式站厚值量測系統的量測穩定度提高,從實驗結果可驗 證本發明所揭露之微型鑽針之破壞式芯厚值量測系統的量測重現 性在±2微米内,且本發明所揭露之微型鑽針之破壞式芯厚值量測 方法與習知工具顯微鏡量測方法的差異量絕對值在3微米内。藉 由計算機裝置的設置,可有效的掌握微型鑽針之破壞式芯厚值量 • 測的流程。 雖然本發明以則述的較佳實施例揭露如上,然其並非用以限 定本發明,任何熟習相像技藝者,在不脫離本發明的精神和範圍 内,當可作些許的更動與潤飾,因此本發明的專利保護範圍須視 - 本說明書所附的申請專利範圍所界定者為準。 【圖式簡單說明】 第1A圖係為微型鑽針的一實施例側視結構示意圖。 第1B圖係為依據第1A圖之1B-1B的剖面結構示意圖。 23 201226848 第1C圖係為依據第1A圖之1C-1C的剖面結構示意圖。 第2A ®係為依據本發明所揭露之微型鑽針之破壞式芯厚值 量測系統-實_結構方塊示意圖。 :第Β圖係為依據本發明所揭露之熱運動平減組、鑽針研 ,、、、,疋位視見模組與芯厚值量測視覺模組的一實施例立體結 構不意圖。 /第2C ®係為依據本發明所揭露之雙轴運動平台模、组、鑽針研 磨二疋位視覺模組與芯厚值量測視覺模組的一實施例俯視結 構示意圖。 第2D圖係為依據第2C圖之鑽針夾治具與微麵針的放大結 構不意圖。· 第2E圖係為依據第2C圖之微型鑽針於影像量測位置的俯視 結構不意圖。 第3圖係為依據第2Ag|的微型鑽針之破壞式芯厚值量測系統 所應用的微型鑽針之破壞式芯厚值量測方法一實施例流程示意 圖。 第4圖係為依據步驟31〇所述之定位程序的一實施例流程示 意圖。 第5A圖係為本發明所揭露之步驟308的第一影像的一實施例 示意圖。 第5B圖係為本發明所揭露之步驟404的一實施例結構示意 圖。 第5C圖係為依據本發明所揭露之微型鑽針移動至第一定位 24 201226848 位置的一實施例結構示意圖。 第5D圖係為依據本發明所揭露之磨輪研磨微型鑽針至其待 檢測截面位置一實施例結構示意圖 第6圖係為依據步驟312所述之研磨程序的一實施例流程示 意圖。 第7A圖係為依據本發明所揭露之步驟316的第二影像一實施 例示意圖。 第7B圖至第71圖,係為依據步驟318所述之影像計算程序 _ 的一實施例流程示意圖。 第8圖係為在第3圖之步驟304前進行一影像校正程序的一 實施例步驟流程圖。 第9圖係為依據第2A圖的微型鑽針之破壞式芯厚值量測系統 所應用的微型鑽針之破壞式芯厚值量測方法另一實施例流程示意 圖。 【主要元件符號說明】 10 鑽針端面 11 磨輪端面 12 、 13 、 14 第一端點 15 、 16 、 17 第二端點 50 微型鑽針 51 中心軸 52 鑽柄 54 鑽部 25 201226848 56 57 58 59 60 60a 62 70 72 80 82 90 93 200 201 202 204 206 208 210 212 214 216 鑽芯 軸向截面 鑽槽 背景 尖部 鑽尖 芯厚值 第一轴向 第二軸向 第一光線 第二光線 基座 形心 微型鑽針之破壞式芯厚值量測系統 計算機裝置 雙轴運動平台模組 鑽針研磨模組 定位視覺模組 芯厚值量測視覺模組 鑽針夾治具 縱向運動單元 橫向運動單元 第一步進馬達 26 201226848The position of the face is thick, where LA, LB, and Le are the drill heads/ΪΡ of the micro drills a and B, respectively, ^ I value, and ^ in the test, except for the broken core thickness of the micro drill. The measurement method is carried out in addition to the core thickness system, and the side is also known as the Guardian _ Way + Dependence. Although the results are as follows: Table 2: " [^, ________ Table 2 Measurement Method 〇.20La a Micro-Diamond Destruction Core Thickness Measurement Method Core Thickness Value (mm) Tool Microscope ϋ Measurement Method Core Thickness Value (mm) Difference between the two 1 absolute value (mm) 0.1173 0.1168 0.0005 0.1370 0.1374 0.0004^ ^O^OLa 0.1472 0.1461 〇. 〇〇ϊΓ~~ 0.1590 0.1593~ 0.0003 B 』35Lb 0.1292 0.1266 0.0026^ 0.1590 0.1589 o.oooT'' 0.0020^ 〇.50Lb ---° 0.1740 0Λ720~ 0.1949 〇Τ^~ 〇.〇026~^ 〇,20Lc ~ ~~r-_ 0.1485 0.1466 o.ool^ 〇.ooTi~~~ C _^35Lc --- 0.1672 0Λ659~~~ 〇.50Lc —^1 0.1879 0.1875 0.0004 ο.οοΐΓ' ^-L^65L^ 0.2040 0.2029 22 201226848 From the above “Table 2”, it can be seen that when the position of the section to be detected is closer to the shank, the thickness of the core is larger.Further, the difference between the broken core thickness measurement method of the micro-needle of the present invention and the conventional tool face measurement method is within 0.003 mm (i.e., 3 μm). According to the method for measuring the broken core thickness value of the micro (four) needle and the broken core thickness value of the micro drill, the micro-needle can be automatically measured by the setting of the computer device. The thickness of the core at the position of the section. By positioning the locating module, it is possible to effectively grasp the burr grinding module in the positioning and grinding knives to fill the micro burs to the _ surface position to be inspected. The design of the visual model _f 算 算 算 藉 藉 藉 ' ' 可 可 可 可 可 可 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发 发The reproducible core thickness measurement system of the disclosed micro burs has a measurement reproducibility within ±2 micrometers, and the method for measuring the broken core thickness of the micro burs disclosed in the present invention and a conventional tool microscope The absolute value of the difference in the measurement method is within 3 microns. With the setting of the computer device, the amount of the broken core thickness of the micro drill can be effectively grasped. Although the present invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and it is obvious that those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The patent protection scope of the present invention is defined by the scope of the patent application attached to the specification. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a side view showing an embodiment of a micro bur. Fig. 1B is a schematic cross-sectional view of 1B-1B according to Fig. 1A. 23 201226848 The 1C figure is a schematic cross-sectional structure according to 1C-1C of Fig. 1A. The 2A® is a schematic diagram of the broken core thickness measurement system of the micro drill according to the present invention. The second figure is a schematic structure of an embodiment of the thermal motion reduction group, the trocar research, and the 视 position viewing module and the core thickness measurement visual module according to the present invention. / 2C ® is a schematic top view of an embodiment of a two-axis motion platform mold, a set, a burr grinding two-position vision module and a core thickness measurement vision module according to the present invention. The 2D drawing is not intended to be an enlarged structure of the burr holder and the micro-needle according to the 2Cth drawing. • Fig. 2E is a plan view of the micro-drilled needle according to Fig. 2C at the image measuring position. Fig. 3 is a flow chart showing an embodiment of a method for measuring a broken core thickness of a micro-drill which is applied to a broken core thickness measurement system of a micro-drill according to the second Ag|. Figure 4 is a schematic flow diagram of an embodiment of the positioning procedure described in accordance with step 31. Figure 5A is a schematic diagram of an embodiment of a first image of step 308 of the present invention. Figure 5B is a block diagram showing an embodiment of a step 404 of the present invention. Figure 5C is a schematic view showing the structure of an embodiment in which the microneedle is moved to the first position 24 201226848 according to the present invention. Fig. 5D is a schematic view showing the structure of an embodiment of the grinding process according to step 312, which is a schematic view of an embodiment of the grinding process according to the step 312. Figure 7A is a schematic diagram of an embodiment of a second image in accordance with step 316 of the present invention. 7B to 71 are schematic flowcharts of an embodiment of the image calculation program _ according to step 318. Figure 8 is a flow diagram of an embodiment of an image correction procedure performed prior to step 304 of Figure 3. Fig. 9 is a flow chart showing another embodiment of the method for measuring the broken core thickness of the micro-drill used in the broken core thickness measurement system of the micro-drill according to Fig. 2A. [Main component symbol description] 10 Drill end face 11 Grinding wheel end face 12, 13, 14 First end point 15, 16, 17 Second end point 50 Micro drill pin 51 Central axis 52 Drill shank 54 Drill part 25 201226848 56 57 58 59 60 60a 62 70 72 80 82 90 93 200 201 202 204 206 208 210 212 214 216 Drill core axial section drill groove background tip tip core thickness value first axial second axial first ray second ray base Deformed core thickness measurement system for centroid micro-drilling needle computer equipment biaxial motion platform module drilling needle grinding module positioning vision module core thickness measurement vision module drilling needle clamp fixture longitudinal motion unit lateral motion unit First stepper motor 26 201226848

220 第二步進馬達 224 感應馬達 226 傳動單元 228 磨輪 230 第一光源 232 第一鏡頭 234 第一光源調控器 236 第一影像感測單元 238 第二光源 240 第二鏡頭 242 · 第二光源調控器 244 第二影像感測單元 246 集光單元 248 磨輪開關次模組 250 第一通用序列匯流排介面 252 第二通用序列匯流排介面 254 記憶單元 256 中央處理模組 258 運動控制次模組 260 人機介面 262 輸入/輸出單元 264 繼電器單元 266 運動控制單元 27 201226848 268 第一步進馬達驅動單元 270 第二步進馬達驅動單元 272 第一線性編碼器 274 第二線性編碼器 28220 second stepping motor 224 induction motor 226 transmission unit 228 grinding wheel 230 first light source 232 first lens 234 first light source regulator 236 first image sensing unit 238 second light source 240 second lens 242 · second light source controller 244 second image sensing unit 246 light collecting unit 248 grinding wheel switch sub-module 250 first universal sequence bus interface 252 second universal sequence bus interface 254 memory unit 256 central processing module 258 motion control sub-module 260 human machine Interface 262 Input/Output Unit 264 Relay Unit 266 Motion Control Unit 27 201226848 268 First Stepper Motor Drive Unit 270 Second Stepper Motor Drive Unit 272 First Linear Encoder 274 Second Linear Encoder 28

Claims (1)

201226848 七、申請專利範圍: 1.:種微型鑽針之破壞式芯厚值量_統,㈣量測—微型鑽針 的一芯厚值,該微型騎之破壞式芯厚值量測系統包括: 計算機裝置; :雙轴運動平台模組,與該計算機裝置耦接,該雙轴運動 、=1核期以挾持織麵針,且峰計算機裝置控制該雙轴 運動平台模組,以使該微型鑽針移動; —鑽針研賴組,當輯算機裝置控繼雙減動平台模 =將该微型鑽針移動於—研磨位置時,該鑽針研磨模組研磨該 试型鑽針至一待檢測截面位置; 定位視覺核組,當該計算機裝置控制該雙轴運動平台模 型鑽針鶴至—第-定位位置時,定位視覺模組掏取 = 帛讀至料#機裝置,騎算齡置依據該第一 定位程序而獲得該微型鑽針與該鑽針研磨模組之 2、-第-f植’該計算機裝置依_第—舰與該待檢測截 鑽針至該待檢測截面位置,其中該第一定位:=顧型 顏興 茨弟疋位位置係位於該定位 見u賴第—影像娜細内,且該微 針研磨模n及 調補 △—芯厚值量戦賴組,t糾算機敍控繼雙抽運動 觀型鑽針移動至—影像量測位置時,該芯厚值量 胜見1、且擷取並輸出一第二影像至該計算機裝置,該 裝置依據該第二影像騎1像計算程序喊得該微型騎 29 201226848 於5亥待檢測截面位置的該芯厚值,其中該影像量測位置係位於 忒忍厚值量測視覺模組的該第二影像擷取範圍内。 2. 如睛求項1所述之微型鑽針之破壞式芯厚值量測系、統,其中, 該雙細動平台模組包括-鑽針夾治具、-縱向運動單元與一 &向運動單元’該鑽針夾治具用以夾持織蘭針,該縱向運 動皁元使該鑽針夾治具沿一縱向移動,該橫向運動單元使該鑽 針夾治具沿一橫向移動,其中該橫向與該縱向垂直。 3. 如求項1所述之微型鑽針之破壞式芯厚值m統,其中, ,鑽針研磨模組包括—感應馬達一傳動單it與-磨輪,該計 算機裝置控制域應騎,並使該錢補藉由該傳動單元帶 動該磨輪旋轉’以研磨該微型鑽針至該待檢測截面位置。 4. 如請求項1 之微型鑽針之破壞式芯厚值量測纽,其中, 4 ^位視覺她包括—第—光源、—第—鏡頭與—第一影像感 測單元,5亥第-光源發出一第一光線,該第一光線的行進方向 及該第-鏡頭的-第―軸向分別與—橫向實f上平行,當該雙 轴運動平台模組將該微型鑽針義至該第—定位位置時,該第 一影像感測單元接收經戦第—鏡頭_第—光線並輪出該 第一影像至該計算機裝置。 5. 如凊求項1所述之微型鑽針之破壞奴厚值量測系統,其中, 該芯厚值量測視覺模組包括―第二光源、—第二鏡頭與一第二 影像感測單元,該第二光源發出一第二光線,當該雙軸運動平 台模組將該微型鑽針移動至該影像量測位置時,該第二光線合 照射到該微型鑽針之該待檢測截面位置的-軸向截面,且4 201226848 光線照射到該軸向截面所形成的一反射光會經過該第二鏡 頭而被該第二影像感測單元所接收,該第二影像感測單元依據 該反射光輸出該第二影像至該計算機裝置,其中該第二鏡頭的 一第二軸向平行該微型鑽針的一令心軸。 6.如請求項5所述之微型鑽針之破壞式芯厚值量測系統,其中, 該芯厚值量測視覺模組更包括一集光單元,該集光單元使 二光線貫質上匯聚於該影像量測位置。 7. -種微型鑽針之破壞式芯厚值制方法,包括: 將-雙軸運動平台模組移動至一原點位置; 以—位置參數設定-微型鑽針的—待檢測戴面位置; 藉由該雙軸_平台触將該微型 — =’該第-定位位置係位於-定位視覺模組的-上; °域内’且該微型鑽針未接觸-鑽針研磨模組; 错由該定位視覺模組擷取一第一影像; 鑽針影像進行—定錄序叫得賴㈣針轉 鑽針研磨椒組之間的一第一間距; '、及 依據該第-間距與該待檢_面位 該鑽針研磨模Μ研磨該微型鑽針至該待檢主’使 糟由該雙軸運動平台模組將該蚀 , 測位置,、δΛ Λ ^鑽針移動至一影像量 且4衫像里測位置係位於里 二影像掏取範圍内; 、4值_視覺模組的-第 藉由該芯厚值量測視覺槿 依據今第-旦心錢痛取—第二影像;以及 一進行—影像計算程序而獲得賴型鑽針 201226848 於該待檢測截面位置的一芯厚值。 8. 如請求項7所述之微型鑽針之破壞式芯厚值量測方法,其中, 該定位程序包括: 藉由該第一影像獲得該微型鑽針的一鑽針端面與該鑽針 研磨模組的一磨輪端面; 計算該鑽針端面與該磨輪端面間的多個縱向距離;以及 比較該些縱向距離而獲得該第一間距。 9. 如請求項7所述之微型鑽針之破壞式芯厚值量測方法,其中, 該研磨程序包括: 藉由一磨輪開關次模組啟動該鑽針研磨模組; 藉由該雙軸運動平台模組將該微型鑽針往該鑽針研磨模 組方向前進一特定距離,使該鑽針研磨模組研磨該微型鑽針至 该待檢測截面位置,其中該特定距離與該位置參數及該第一間 距有關;以及 藉由該雙軸運動平台模組移動該微型鑽針,以使該微型鑽 針运離該鑽針研磨模組。 10·如請求項7所述之微型鑽針之破壞式芯厚值量測方法,其中, 該影像計算程序包括: 调整該第二影像的亮度(Brightness)、對比度(Contrast) 與伽瑪值(Gamma),該第二影像包括該微型鑽針一軸向截面 與一背景; 進行一二值化(Thresholding)處理,以完全區隔該軸向 戴面與該背景; 32 201226848 進行一型態學處理(Morphological operation),以去除該 背景的至少一雜點與補償該軸向戴面的至少一空洞; 依據該軸向戴面進行一運算程序而獲得該軸向戴面的一 形心; 廊點 進行-邊緣_ (EdgedeteetiGn)程序顿得多個邊緣輪 計异每一該邊緣輪廓點與該形心間的一第—距離; 第 比較該些第—距離而獲得—第—開槽輪魏域與一 開槽輪廓區域; 、 距離 )計算該第—開槽輪_域所包括的每-該邊緣輪廓點至 =二開槽輪廓區域所包括的每—該邊緣輪廓關的一第二 以及 比幸乂 δ亥些第二距離而獲得一芯厚影像距離、 賴α厚摊轉妨—比娜 !1.:請求項7所述之微型鑽針之破壞式芯厚值 驟 =立置,峨微型鑽針的該待檢測:置之步中 別、仃衫像校正程序’該影像校正程序包括:, 接收一校正棒的—真實外徑值; 位置藉4該級组將該校正棒移動至-第二定位 正棒二於該第-影像一,且該校 藉由該粒錢触錄-第三影像. 依據該第三轉妨辦錄序傾縣校正棒與該鐵 33 201226848 針研磨模組之間的一第二影像間距; 藉由該雙軸運動平台模組將該校正棒移動至… 位置,該第三定位位置係位於該第一$ 〃第一疋位 正棒未接麟麟研磨模組,該第二^位°取補内,且該校 置間具有-定健離; 又仇位置與該第三定位位 藉由該定位視覺模組擷取一第四影像. 依據該第四影像進行該定位程序 針研磨模組之間的-第三影像間距,該^二^棒與該鑽 影像間距間具有-移動轉;Λ〜0距與該第三201226848 VII. Patent application scope: 1.: Destructive core thickness value of micro-drilling needles, (4) Measurement--one core thickness value of micro-drilling needle, the micro-riding broken core thickness measurement system includes : a computer device; a biaxial motion platform module coupled to the computer device, the biaxial motion, =1 core period to hold the weaving needle, and the peak computer device controls the biaxial motion platform module to enable the Micro-drill movement; - Drilling research group, when the computer device controls the double-reduction platform mode = when the micro-drill is moved to the - grinding position, the burr grinding module grinds the test rig to Position of the detection cross section; positioning the visual core group, when the computer device controls the biaxial motion platform model to drill the needle crane to the first-position position, the positioning vision module captures = reading to the material # machine device, riding calculation According to the first positioning procedure, the micro-drill and the burr-grinding module are obtained, and the computer device is connected to the to-be-detected cross-section. Location, where the first positioning: = Gu type Yan Xingzi The position is located in the positioning, and the micro-needle grinding mode n and the adjustment △-core thickness value are in the group, and the t-corrector is controlled by the double-drawing movement type drilling needle. When moving to the image measurement position, the core thickness value is better than 1, and a second image is captured and outputted to the computer device, and the device calls the micro ride 29 according to the second image ride image calculation program. 201226848 The core thickness value of the cross-sectional position to be detected at 5 hai, wherein the image measurement position is located in the second image capturing range of the 忒 厚 thickness measurement vision module. 2. The broken core thickness measurement system of the micro drill according to Item 1, wherein the double fine motion platform module comprises a drill clamp, a longitudinal motion unit and a & To the moving unit 'the burr holder for holding the woven needle, the longitudinal moving soap element moves the burr holder in a longitudinal direction, the lateral movement unit moving the burr holder along a lateral direction Where the transverse direction is perpendicular to the longitudinal direction. 3. The broken core thickness value of the micro drill according to claim 1, wherein the drill grinding module comprises an induction motor, a transmission unit, and a grinding wheel, and the control unit of the computer device should ride, and The money is replenished by the transmission unit to rotate the grinding wheel to grind the micro bur to the position to be detected. 4. The damaged core thickness measurement of the micro-drill of claim 1 wherein the 4^ position vision includes - the first light source, the first lens and the first image sensing unit, 5 Haidi - The light source emits a first light, the direction of travel of the first light and the first-axis of the first lens are parallel to the transverse direction f, respectively, when the dual-axis motion platform module senses the micro-drill In the first-position position, the first image sensing unit receives the first-lens_first light and rotates the first image to the computer device. 5. The micro-drilling thickness measurement system of the micro-drill according to claim 1, wherein the core thickness measurement visual module comprises a second light source, a second lens and a second image sensing a second light source emits a second light, and when the biaxial motion platform module moves the micro drill to the image measuring position, the second light is combined to the cross section of the micro drill Positional-axial cross-section, and 4 201226848 A reflected light formed by the illumination of the axial section is received by the second image sensing unit through the second lens, and the second image sensing unit is configured according to the The reflected light outputs the second image to the computer device, wherein a second axis of the second lens is parallel to a mandrel of the micro bur. 6. The broken core thickness measurement system of the micro-drill according to claim 5, wherein the core thickness measurement visual module further comprises a light collecting unit, wherein the light collecting unit passes the two light rays Converged at the image measurement position. 7. The method for breaking the core thickness value of the micro-drilling needle comprises: moving the double-axis motion platform module to an origin position; setting the position of the micro-drill needle-to-be-detected wearing position; By means of the biaxial_platform touch, the micro-='the first positioning position is located on the - positioning visual module; in the ° domain' and the micro drill needle is not in contact with the drill grinding module; The positioning vision module captures a first image; the drilling needle image is performed - the recording sequence is called a fourth (four) needle rotation needle to grind a first spacing between the pepper groups; ', and according to the first spacing and the to-be-checked _ face position, the burr grinding mold grinds the micro burs to the main body to be inspected, so that the eclipse, the measuring position, the δΛ Λ ^ drilling needle is moved to an image quantity by the biaxial moving platform module and 4 The position of the shirt in the image is located in the range of the image capturing of the second image; the value of the 4-value_the visual module is measured by the thickness of the core, and the second image is obtained according to the first time; A core-drilling needle 201226848 is obtained for the core of the section to be inspected by performing an image calculation program Value. 8. The method of measuring a broken core thickness value of a micro bur according to claim 7, wherein the positioning program comprises: obtaining a boring end face of the micro bur and grinding the bur by the first image a grinding wheel end face of the module; calculating a plurality of longitudinal distances between the end face of the drill pin and the end face of the grinding wheel; and comparing the longitudinal distances to obtain the first spacing. 9. The method of measuring a broken core thickness of a micro bur according to claim 7, wherein the grinding process comprises: starting the burr grinding module by a grinding wheel switch submodule; The motion platform module advances the micro drill to a specific distance in the direction of the drill grinding module, so that the drill grinding module grinds the micro drill to the position to be detected, wherein the specific distance and the position parameter The first pitch is related to; and the micro bur is moved by the biaxial motion platform module to transport the micro burs away from the burr grinding module. The method for measuring a broken core thickness value of the micro drill according to claim 7, wherein the image calculation program comprises: adjusting brightness (Brightness), contrast (Contrast) and gamma value of the second image ( Gamma), the second image includes an axial section of the microneedle and a background; performing a Thresholding process to completely separate the axial wear surface from the background; 32 201226848 a (Morphological operation) to remove at least one impurity of the background and at least one cavity for compensating the axial wear surface; performing a calculation procedure according to the axial wear surface to obtain a centroid of the axial wear surface; The edge-detailed-edge algorithm determines a plurality of edge-roundings to determine a distance between the edge contour point and the centroid; comparing the first-distance to obtain the first-grooving wheel a region and a slotted contour region; , a distance) calculating a second and each of the edge contour points included in the first slotted wheel domain to the second slotted contour region Better than δHai some second distance to obtain a core-thick image distance, αα thick spreads-Bina! 1. The broken core thickness value of the micro-drill as described in claim 7 = vertical, 峨 micro drill The to-be-detected of the needle: the step-by-step, the shirt-like correction program 'The image correction program includes:, receiving the true outer diameter value of a calibration rod; the position borrowing 4 the group to move the calibration rod to - the first The second positioning is in the first image, and the school is recorded by the money - the third image. According to the third conversion, the recording of the county correction rod and the iron 33 201226848 needle grinding module a second image spacing; the calibration rod is moved to the position by the biaxial motion platform module, and the third positioning position is located at the first first position, the first position is not connected to the Linlin polishing mold a group, the second position is taken in the complement, and the school has a fixed-going separation; the reciprocal position and the third positioning position capture a fourth image by the positioning visual module. According to the fourth The image is subjected to a third image spacing between the positioning program and the grinding module, and between the two rods and the drilling image Between the distances - move to turn; Λ ~ 0 distance and the third 獲得一第一像 素校正值 計算該定位距離與該移動距離間的比值 位置藉由缝滅動平雜崎該校正棒移就該影像量測 藉由該芯厚值量測視覺模組擷取一第五影像; 依據該第五影像進行—影像處理程相獲得—量測抑 值;以及Obtaining a first pixel correction value, calculating a ratio position between the positioning distance and the moving distance, and capturing the image by using the core thickness measurement visual module by stitching the correction level a fifth image; performing, according to the fifth image, an image processing phase acquisition-measurement suppression value; _計算該量測外徑值與該真實外徑值間的比值而獲得一第 二像素校正值。 12. 如請求項7所述之微_針之破壞式芯厚值量财法,其中, 、該位置參數5又疋該微型鑽針的該待檢測戴面位置的步驟包 括: 設定一被研磨截面位置為零; 判斷有無複數個該位置參數; 34 201226848 當無複數個該位置參數時,以單數個該位置參數減去該被 研磨截面位置之後的數值設定該待檢測截面位置; 當有泫些位置參數時’比較每一該位置參數而獲得一最小 位置參數;以及 以该最小位置參數減去該被研磨截面位置之後的數值設 定該待檢測截面位置。 13.如凊求項12所述之微型鑽針之破壞式芯厚值量測方法,其中, • 在域$第二影像進行該影料算程相麟雜型鑽針於 該待檢測截面位置的該芯厚值的步驟後,該微型鑽針之破壞式 芯厚值量測方法更包括: 奴該被研賴驗置等_最小位置參數或該單數個 位置參數; 移除該最小位置參數或該單數個位置參數; 判斷有無其他該位置參數;以及 • 虽有其他該位置參數時,執行該判斷有無複數個該位置參 數的步驟。 35Calculating a ratio between the measured outer diameter value and the true outer diameter value to obtain a second pixel correction value. 12. The method according to claim 7, wherein the position parameter 5 and the step of detecting the wearing position of the micro bur are: setting a to be ground The cross-sectional position is zero; determine whether there are a plurality of such position parameters; 34 201226848 When there is no plural position parameter, the position of the cross-section to be detected is set by subtracting the position after the position of the grinded section from the singular position parameter; For some positional parameters, a minimum position parameter is obtained by comparing each of the positional parameters; and the position of the to-be-detected section is set by subtracting the position of the grounded section from the minimum positional parameter. 13. The method for measuring a broken core thickness value of a micro-drill according to claim 12, wherein: • performing the shadow calculation of the shadowing process in the second image of the field $ at the position of the section to be detected After the step of the core thickness value, the method for measuring the broken core thickness of the micro drill further comprises: the slave is determined to set the minimum position parameter or the single position parameter; removing the minimum position parameter or the A single number of positional parameters; determine whether there are other such positional parameters; and • if there are other such positional parameters, perform the determination of whether there are multiple steps of the positional parameter. 35
TW99144622A 2010-12-17 2010-12-17 Destructive web thickness measuring system of microdrills and method thereof TWI413756B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99144622A TWI413756B (en) 2010-12-17 2010-12-17 Destructive web thickness measuring system of microdrills and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99144622A TWI413756B (en) 2010-12-17 2010-12-17 Destructive web thickness measuring system of microdrills and method thereof

Publications (2)

Publication Number Publication Date
TW201226848A true TW201226848A (en) 2012-07-01
TWI413756B TWI413756B (en) 2013-11-01

Family

ID=46933001

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99144622A TWI413756B (en) 2010-12-17 2010-12-17 Destructive web thickness measuring system of microdrills and method thereof

Country Status (1)

Country Link
TW (1) TWI413756B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464363B (en) * 2013-07-12 2014-12-11 Univ Nat Taiwan Ocean Improved destructive and visual measurement automation system for web thickness of microdrills and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509214B (en) * 2014-12-30 2015-11-21 Univ Nat Taiwan Ocean A non-destructive and optical measurement automation system for web thickness of microdrills and method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869813A (en) * 1987-07-02 1989-09-26 Northrop Corporation Drill inspection and sorting method and apparatus
TWI254124B (en) * 2004-06-29 2006-05-01 Yeong-Shin Tarng Apparatus for measuring the thickness of a drill core and the method thereof
TW200900652A (en) * 2007-06-29 2009-01-01 Hounta Auto Machine Co Ltd Measuring device for drill needle groove geometry and method therefore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464363B (en) * 2013-07-12 2014-12-11 Univ Nat Taiwan Ocean Improved destructive and visual measurement automation system for web thickness of microdrills and method thereof

Also Published As

Publication number Publication date
TWI413756B (en) 2013-11-01

Similar Documents

Publication Publication Date Title
TWI464363B (en) Improved destructive and visual measurement automation system for web thickness of microdrills and method thereof
US20120206693A1 (en) Eyeglass lens processing shape obtaining method
TW201026428A (en) System for positioning micro tool of micro machine and method thereof
CN103954458B (en) Non-contacting type four-wheel aligner and detecting method thereof
JP6450450B2 (en) Glasses wearing parameter measuring apparatus, glasses wearing parameter measuring program, and position specifying method
CN105405115B (en) A kind of image mould group is to heart system and method
CN103163663A (en) Method and device for estimating the optical power of corrective lenses in a pair of eyeglasses worn by a spectator
CN109475395A (en) For measuring planting body-planting body state measuring system and method
CN111008602B (en) Scribing feature extraction method combining two-dimensional vision and three-dimensional vision for small-curvature thin-wall part
US7628487B2 (en) Method of centering an ophthalmic lens on a rimless frame
TW201226848A (en) Destructive web thickness measuring system of microdrills and method thereof
Gupta et al. Vision-based modal analysis of cutting tools
CN107850425A (en) Method for measuring artifact
KR20080104963A (en) Drill inspection apparatus, drill inspection method, and redording media recording the program
CN104463918A (en) Method for measuring workpiece surface roughness based on image grey information
CN207395672U (en) A kind of hand-held gap, face difference vision measurement device
JP2017226035A (en) Machining method and machining device
TWI762893B (en) Apparatus and method for dental image registration
JP7121172B2 (en) lens meter
CN113287057B (en) Method for obtaining data representative of a contour of a shoulder defining a receding portion in an ophthalmic lens
JP4630194B2 (en) Biological measuring device and biological measuring method
EP1528354A2 (en) Method and apparatus for measuring of an object by using a coordinate measuring machine
US7936451B2 (en) Method for machining and estimating an optical lens designed as a semi-finished product
JP6597702B2 (en) Setup assist system
US20230221585A1 (en) Method and device for automatically determining production parameters for a pair of spectacles

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees