201226360 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種紀鋁石榴石(YAG,yttHum aluminum garnet)粉末之製備方法,尤指—種適用於粒徑可 調整之釔鋁石榴石粉末之製備方法。 【先前技術】 照明是今日人們日常生活不可或缺的道具。是以在節 約能源要求下,開發省電的照明設備是現今照明工程工作 者的必要使命。而白色led則是符合此要求下的產物,其 ^有體積小、發熱量低、耗電量小、壽命長、反應速度快、 環保、可平面封裝、易開發成輕薄短小產品等優點。 其中,最熱門產品之一白光LED則是以藍光激發黃色 螢光粉而使藍黃兩色混成產生的白色。此黃色螢光粉的主 要材料就是含鈽釔鋁石榴石粉體(YAG:cep此一釔鋁石榴 石粉末的發光強度與其粉末外型之完整及粒徑之一致有 關。因此產出預定均—粒徑之釔鋁石榴石粉末則對其功能 之提升有實質影響. 在既有習知技術中,純相釔鋁石榴石(YAG,丫3八丨50|2) 私體可藉由固態反應法,或更精緻的化學方法取得。後者 包括採用沉澱法、溶膠凝膠法、水熱法、以及燃燒法等, 目的在將使用之氧化釔與氧化鋁二原料成份作成更細單 位,達到更均勻的混合(固態反應法不易達成),以降低合成 溫度及加快合成速度。而固態反應法通常需於更高的溫度 201226360 (如,160CTC以上溫度)合成。反應時間也較長,或需經重複 熱處理m磨分散的步驟來獲得單相㈣石權石。惟不論哪 種方法’均無法在合成過程即—次同時生產具特定粒經 且粒徑分布範圍均勻之釔鋁石榴石粉末。因此,基本上所 合成出之㈣石權石粉末皆必須作二次粒徑再處理(如顆 粒研磨、高温熟化、過料)方可取得具有所需粒徑且粒徑 分布範圍均勻之釔鋁石榴石粉末。201226360 VI. Description of the Invention: [Technical Field] The present invention relates to a method for preparing a YAG, YttHum aluminum garnet powder, and more particularly to a yttrium aluminum garnet powder having an adjustable particle size. Preparation method. [Prior Art] Lighting is an indispensable item in people's daily life today. It is the necessary mission to develop energy-saving lighting equipment under the energy-saving requirements of today's lighting engineering workers. The white led is a product that meets this requirement. It has the advantages of small volume, low heat generation, low power consumption, long life, fast response, environmental protection, flat packaging, and easy development into light, short and short products. Among them, one of the most popular products, white LED, is a white color produced by mixing blue and yellow colors with blue light to excite yellow phosphor. The main material of this yellow fluorescent powder is yttrium aluminum garnet powder (YAG: cep, the luminescence intensity of this yttrium aluminum garnet powder is related to the integrity and particle size of the powder shape. Therefore, the output is scheduled to be - The yttrium aluminum garnet powder with a particle size has a substantial effect on the improvement of its function. In the conventional technology, pure phase yttrium aluminum garnet (YAG, 丫3 丨50|2) can be solid-state reaction Method, or more refined chemical methods. The latter includes the use of precipitation, sol-gel method, hydrothermal method, and combustion method, etc., in order to make the use of bismuth oxide and alumina two raw materials into finer units, to achieve Uniform mixing (solid-state reaction is not easy to achieve) to reduce the synthesis temperature and speed up the synthesis. The solid state reaction method usually needs to be synthesized at a higher temperature of 201226360 (for example, above 160CTC). The reaction time is also longer, or it needs to be Repeat the heat treatment of the m-grinding step to obtain the single-phase (four) stone weight. However, no matter which method can't produce the yttrium aluminum pomegranate with specific particle size and uniform particle size distribution in the synthesis process. Stone powder. Therefore, basically all of the (4) stone powders must be reprocessed (such as particle grinding, high temperature curing, and overfeeding) to obtain the desired particle size and uniform particle size distribution. Yttrium aluminum garnet powder.
因此,本領域亟需一種釔鋁石榴石粉末之製備方法, 使可免去如上述之顆粒研磨、過篩等再處理步驟,使可— 次合成出具特定粒徑且粒徑分布範圍均勻之釔鋁石榴石粉 末。 【發明内容】 本發明之主要目的係在提供一種粒徑可調整之釔鋁石 榴石(YAG,yttrium aluminum garnet)粉末之製備方法,俾 能以固態熱反應;*,快⑪合成特定粒徑單一相之紀铭石權 石粉末,並具有容易量產、高安全性 '成本降低之優點。 為達成上述目的,本發明提供一種粒徑可調整之紀在呂 石榴石粉末之製備方法,包括:(A)提供一氧化鋁粉末以 及一氧化紀粉末;(B)將該氧化釔及氧化鋁粉末混合;以及 (C)熱處理該經混合之氧化釔及氧化鋁粉末,而得到釔鋁石 榴石粉末:其中,當該釔鋁石榴石粉末之粒徑為a,以及該 氧化紀粉末之粒徑為b時,係符合式1 : [式1] 201226360 a/b=l.2至丨.5。 本發明之粒徑可調整之紀紹石權石粉末之製備方法可 快速合成特定粒徑單一相紀紹石權石粉末。其係使用氧化 紀(丫2〇3)與氧化!S U _Al2〇3)粉末作為原料。惟氧化紀粉末 之粒杈需與預定生產之釔鋁石榴石粉末粒徑相近。而將氧 化紹與氧化|乙混合後,直接置於大約【咖〜溫度持溫 大約1至3G分鐘’即可以__次熱處理獲得特定粒徑單一相之 釔鋁石榴石(ΥΜ丨5〇|2)粉末。此時生成的釔鋁石榴石粉末粒 徑約比原料之氧化釔(ΙΟ;)粉末直徑增加約24%。本發明即 利用此現象,合成具有特定粒徑、純相之之紀石權石 (YAG,YAUO,2)粉末。本發明的特色在於:使用簡單方法 容易合成特定粒徑之釔鋁石榴石粉末、可大量生產、免除 在合成過程中進行多次研磨及再次熱處理而粒徑難以控制 之步驟、及免除粒徑再處理作業’並兼具高安全性、容易 量產、能有效降低成本等優點。 以紀及銘之氧化物粉末合成釔鋁石榴石時,已確知銘 成份將進入氧化釔結構中達成釔鋁石榴石的生成。本發明 係利用此現象,以氧化釔原料粉末之粒徑大小為基礎,再 配合採用適當粒徑範圍之氧化鋁粉末,使均勻混合後之氧 化紀與氧化铭粉末可快速合成紀链石梅石。則可由此獲得 粒徑比原料氧化釔略大之紀鋁石榴石粉末。 此外’混合之氧化紀(Y2〇3)與氧化銘粉末粒 徑需做成適當比例’一方面使二成份粒體可完全接觸並增 加二成份原料粒體間的接觸點’另一方面可降低紹擴散所 201226360 昀達成之距離,使混合粉末系統可經由表面反應機制快速 達成釔鋁石榴石的生成。 本發明之粒徑可調替夕&扣π k !力王之紀紹石榴石粉末之製備方法 中’該式1較佳可為:a/b=i .2至1.4。 本發明之粒徑可調卷夕^ k j β玉之釔鋁石榴石粉末之製備方法 中,該步驟(c)中之熱處理之溫度較佳可為丨〇〇〇〇c至 W〇〇C,更佳可為12町至⑽。c:此外,熱處理之時間 較僅可為1分鐘至5小時。熱處理之時間應視氧化紀與氧化 鋁粉末粒徑作調整。 本發明之粒徑可調整之釔鋁石榴石粉末之製備方法 中,該氧化釔粉末之粒徑較佳可介於lnm至丨〇^m之間:更 佳可介於inm至5μηι之間;再更佳可介於lnm至ΐμπι之間。 此外,本發明之粒徑可調整之釔鋁石榴石粉末之製備 方法中,該氧化釔及氧化鋁粉末之粒徑比較佳可為[氧化^呂: 氧化釔]=0.5至5。 本發明之粒徑可調整之釔鋁石榴石粉末之製備方法 中,該步驟(C)之前較佳更包括—步驟((:〇广將該經混合之 氧化釔及氧化鋁粉末進行預熱,且預熱之溫度係較佳可為 600°C至800。(:,預熱之時間係較佳可為!秒至1分鐘。 本發明之粒徑可調整之釔鋁石榴石粉末之製備方法 中,該步驟(B)之後較佳可更包括一步驟(B丨):乾壓成型节 經混合之氧化紀及氧化纟g粉末。 本發明為一種改良式的固態反應法,可直接—次達成 預定粒徑之純相釔鋁石榴石粉末的合成、且可應用於大量 201226360 生產。本發明之㈣石權石粉末之製備方法可排除傳統八 成過程中須度長時間持溫’進行多次再研磨^ 處理的困擾,並可免除傳統技術中為了取得特定粒徑釔鋁 石榴石粉末又需經過高溫熟化之耗能、耗時步驟。因此, 本發明之釔鋁石榴石粉末之製備方法具有容易量產,減少 製程步驟,低耗能、有效降低成本、高安全性等優點❶ 【貫施方式】 以下係藉由特定的具體實施例說明本發明之實施方 式,熟習此技藝之人士可由本說明書所揭示之内容輕易地 了解本發明之其他優點與功效。下列特定具體實施例僅解 釋為說明性,無論以任何方式皆不限制本揭示之其餘者。 對本發明中配方的形式與細節之省略修飾、減損、與改 變,在不悖離本發明之精神與範疇下,均可由熟習本項技 藝者加以進行。 [實施例1] 本實施例係將目標粉末(釔鋁石榴石粉末)之預定粒徑 设為略大於丨〇〇 nm(在此,假設計算粒徑為丨25 nm”製備條 件如下。 a. 採用粉末粒徑:氧化釔為1〇〇 nm (分析粒徑 1 1 3.82nm )(可能擴散距離),氧化鋁為2〇〇 _ (分析粒徑 230.00nm) ", b. 氧化鋁/氧化釔粒徑比為2.〇; 201226360 C.經由計算’由於一顆200 nm的氧化鋁表面面積大到 足可披覆約26顆1 00 nm的氧化釔粒體。而生成釔鋁石榴石 時氧化紹與氧化紀二成分的化學計量為丨對8,此即說明以 200 nm氧化鋁粉末與1〇〇 nm氧化釔粉末混合時,二者可完 全得到相互接觸。 首先’(A)取上述氧化釔 '以及氧化鋁粉末,(B)將此 氧化釔、以及氧化鋁粉末均勻混合,(B 〇經乾壓成型後(密 度約0.91 g/cm3),(C〇)樣品經7〇〇〇c預熱1〇秒,接著(c)直接 置入1 050-丨200。(:持溫5-丨20秒,如此則可獲得粒徑約1 〇〇 nm 的釔鋁石榴石粉末。 本貫施例中’有關原料與合成粉末之性質的檢測詳述 如下·粉末之粒徑分佈以雷射粒徑分佈儀(MaWern Zetasizer 1000)量測。合成過程熱反應行為以熱差分析儀 (Setaram TGA 92)分析。其升溫速率為1〇〇c/min、空氣氣氛 中置測。使用X-光繞射儀(Rigaku Mininex, CuKa)鑑定合成 粉末中的結晶相:yam(y4ai2o9)、yap(yaio3)、及 YAG^MhO,2)及其含量。後者之測定採用内標準法 (Internal standard)定量。所採用之繞射面為YAG(42〇)、 ΥΑΜ(22ι)、與YAP(m)。參考内標準為caF2 (丨n)。 圖〗(a)為本貫施例原料粉末混合後之原粒體外貌 圖圖1 (b)為熱處理後釔鋁石榴石生成量為3〇%時之SEM 圖圖1 (C)為熱處理後釔鋁石榴石生成量為6〇〇/0時之SEM 圖,以及圖1 (d)為熱處理後釔鋁石榴石 201226360 少外’其他粒體,包含生成的釔鋁石榴石粒體粒徑(分析粒 徑丨54.1 2nm )、外型並未發生明顯改變。 [實施例2] 本實施例係將目標粉末(釔鋁石榴石粉末)之預定粒徑 設為400 nm »製備條件如下。 a. 採用粉末粒徑:氧化釔為3〇〇 nrn (分析粒徑 319.27nm)),氧化鋁為 4〇〇 nm (分析粒徑391 54nm): b. 氧化鋁/氧化紀粒徑比為丨3 3 ; c. 經由計算,由於一顆4〇〇 〇111的氧化鋁表面面積足可 彼覆約16顆300 nm的氧化釔粒體(或一顆3〇〇11〇1的氧化釔 表面面積可彼覆約1 8顆2〇〇 nm的氧化鋁粒體)。而氧化鋁及 氧化釔二成分生成釔鋁石榴石時氧化鋁與氧化釔的化學計 里為1對2.4 ’此即說明以4〇〇 nm氧化鋁粉末與3〇〇nm氧化釔 粉末混合時,二者可完全得到相互接觸。 首先,(A)取上述氧化釔、以及氧化鋁粉末,(B)將此 氧化釔、以及氧化鋁粉末均勻混合,(β丨)經乾壓成型後(密 度.J 0.91 g/cm ) ’(c〇)樣品經7〇〇。〔預熱1〇秒,接著(c)直接 置入1 35G· 1 45G°C持溫5· 1 2G秒’如此則可獲得粒徑約4〇〇 _ 的釔鋁石榴石粉末。 本貫細•例中有關原料與合成粉末之性質的檢測係與 實施例1中所使用之方法相同,因此不在此贅述。 圖2⑷為本實施例原料粉末混合後之原粒體外貌SEM 圖;圖2(b)為熱處理後紀紹石權石生成量為3〇%時之關 圖:圖2⑷為&處理後釔銘石權石生成量為6〇%時之㈣ 201226360 圖;以及圖2(d)為熱處理後釔鋁石榴石生成量為9〇%時之 SEM圖。由圖2(a)〜(d)顯然看到,除400 nm的氧化紹粒體減 少外,其他粒體,包含生成的釔鋁石榴石粒體粒徑外型並 未發生明顯改變,而最終所得釔鋁石榴石的粒徑則接近4⑽ nm (分析粒徑422.82nm)。 [實施例3] 本實施例係將目標粉末(釔鋁石榴石粉末)之預定粒徑 設為500 nm。製備條件如下。 a. 採用粉末粒徑··氧化釔為4〇〇 _(分析粒徑 391.54nm )) ’ 氧化 |呂為 2〇〇 nm (分析粒徑 23〇.〇〇nm ); b. 氧化鋁/氧化釔粒徑比為〇5; c. 經由計异,由於一顆4〇〇nm的氧化釔表面面積足可 彼覆約26顆200 nm的氧化釔粒體。而氧化鋁及氡化釔二成 分生成釔鋁石榴石時氧化鋁與氧化紀的化學計量為8對^ ’ 此即說明以200 nm氧化鋁粉末與4〇〇 nm氧化釔粉末混合 時,二者可完全得到相互接觸。 首先’(A)取上述粒徑4〇〇 nm之氧化紀 '以及粒徑2〇〇 nm之氧化鋁粉末’(B)將氧化釔、以及氧化鋁二成份粉末均 勻混合,(B1)經乾壓成型後(密度約〇 μ g/cm3),(c〇)樣品 經700°C預熱10秒,接著(c)直接置入145〇15〇〇〇c持溫5丨8〇 秒,如此則可獲得粒徑K 500 nm的釔鋁石榴石粉末。 本貫鈀例中,有關原料與合成粉末之性質的檢測係與 實施例1中所使用之方法相同,因此不在此贅述。 201226360 圖3(a)為本實施例原料粉末混合後之原粒體外貌sem 圖’圖3 (b)為熱處理後紀銘石權石生成量為3 〇%時之$ £ μ 圖;圖3(c)為熱處理後釔鋁石榴石生成量為6〇%時之SEM 圖:以及圖3(d)為熱處理後釔鋁石榴石生成量為9〇%時之 SEM圖。由圖3(a)〜(d)顯然看到,除200 nm的氧化鋁粒體減 少外,其他粒體,包含生成的釔鋁石榴石粒體粒徑外型並 未發生明顯改變,而最終所得釔鋁石榴石的粒徑則接近 nm (分析粒徑49L58nm)。 圖4為本發明實施例卜2、幻中戶斤合成出之釔鋁石榴 石粉末粒徑與原料氧化釔粉末粒徑之關係圖其令點係表 示實際測得數值,虛線部分為理論計算值。由圖4可看出實 施例!、2、及3實際使用之氧化紀粉末粒徑,及以其合成出 之釔鋁石榴石粉末粒徑之間之關係可接近完美地以方程式 a/b=1.24 [公式 2] 二 表示’其中a為合成出之紀銘石權石粉末粒徑,鸱 化紀粉末粒fe。此公式2也代表了理論計算合成之以-石粉末粒徑a與原料氧化釔粉末粒徑b之關係。 田 本發明為一種改良式的固態反應法,可直接—a 預定粒徑之純相㈣石權石粉末的合成、且可應用 生產。本發明之㈣石權石粉末之製備方法可專: 成過程中須於1600〇C溫度長時間持溫,進行,、 、4δ 處理的困擾,益可免除傳統技術中為 ::再研磨/熱 石榴石粉末又需經過高溫熟化之耗牛:粒徑釔鋁 ^•牙步驟。因此, 201226360 本發明之㈣石梅石粉末之製備方法具有容易量產’減少 製程步驟’低耗能、有效降低成本、高安全性等優點。Therefore, there is a need in the art for a method for preparing a yttrium aluminum garnet powder, which eliminates the reprocessing steps such as particle grinding and sieving as described above, so that a specific particle size can be synthesized and the particle size distribution range is uniform. Aluminum garnet powder. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for preparing a YAG (yttrium aluminum garnet) powder with adjustable particle size, which can be reacted in a solid state; *, a fast synthesis of a specific particle size The phase of the stone is the stone powder, and has the advantages of easy mass production and high safety 'cost reduction. In order to achieve the above object, the present invention provides a method for preparing a particle size adjustable in a garnet powder, comprising: (A) providing an alumina powder and a nitric oxide powder; (B) the cerium oxide and aluminum oxide. Powder mixing; and (C) heat treating the mixed cerium oxide and aluminum oxide powder to obtain yttrium aluminum garnet powder: wherein, when the yttrium aluminum garnet powder has a particle size a, and the particle size of the oxidized powder When b, it conforms to Equation 1: [Formula 1] 201226360 a/b=l.2 to 丨.5. The preparation method of the particle size adjustable Jishaoshiquan powder of the invention can rapidly synthesize a single phase Jishaoshiquan powder with a specific particle size. It uses Oxidation (丫2〇3) and oxidation! S U _Al2 〇 3) powder as a raw material. However, the particle size of the oxidized powder should be similar to the particle size of the yttrium aluminum garnet powder that is intended to be produced. After mixing the oxidized sulphate with the oxidized sulphur|B, the yttrium aluminum garnet having a specific particle size of a single phase can be obtained by directly arranging about ~_ times heat treatment to obtain a single phase of yttrium aluminum garnet (ΥΜ丨5〇| 2) Powder. The yttrium aluminum garnet powder thus produced has a particle diameter which is about 24% larger than that of the cerium oxide (ΙΟ;) powder of the raw material. The present invention utilizes this phenomenon to synthesize a powder of YAG, YAUO, 2 having a specific particle size and a pure phase. The invention is characterized in that it is easy to synthesize a yttrium aluminum garnet powder of a specific particle size by a simple method, can be mass-produced, is free from the steps of performing multiple grinding and reheating in the synthesis process, and is difficult to control the particle size, and is free of particle size. The processing operation has the advantages of high safety, easy mass production, and effective cost reduction. When the yttrium aluminum garnet was synthesized from the oxide powder of Ji and Ming, it was confirmed that the composition of the composition would enter the yttrium oxide structure to achieve the formation of yttrium aluminum garnet. The invention utilizes this phenomenon, based on the particle size of the cerium oxide raw material powder, and further adopts the alumina powder of the appropriate particle size range, so that the uniformly mixed oxidized and oxidized powder can rapidly synthesize the gems. . Thus, an aluminum garnet powder having a particle size slightly larger than that of the raw material cerium oxide can be obtained. In addition, the 'mixed oxidized (Y2〇3) and oxidized powders should be made in an appropriate ratio. 'On the one hand, the two granules can be completely contacted and the contact point between the granules of the two components can be increased'. The distance reached by the diffusion station 201226360 makes the mixed powder system quickly achieve the formation of yttrium aluminum garnet via the surface reaction mechanism. The method for preparing the particle size of the present invention is as follows: 'The formula 1 is preferably a/b=i.2 to 1.4. In the preparation method of the particle size-adjustable roll-shaped k kββ jade yttrium aluminum garnet powder of the present invention, the temperature of the heat treatment in the step (c) is preferably 丨〇〇〇〇c to W〇〇C, Jiake is 12 to (10). c: In addition, the heat treatment time can be only 1 minute to 5 hours. The heat treatment time should be adjusted according to the oxidation period and the particle size of the aluminum oxide powder. In the preparation method of the particle size adjustable yttrium aluminum garnet powder of the present invention, the particle size of the cerium oxide powder may preferably be between 1 nm and 丨〇^m: more preferably between inm and 5 μm; More preferably, it may be between 1 nm and ΐμπι. Further, in the preparation method of the particle size-adjustable yttrium aluminum garnet powder of the present invention, the particle diameter of the cerium oxide and the aluminum oxide powder is preferably [Oxidation: yttrium oxide] = 0.5 to 5. In the preparation method of the particle size adjustable yttrium aluminum garnet powder of the present invention, before the step (C), it is preferred to further include the step ((:: 〇 将该 the pre-heating of the mixed cerium oxide and aluminum oxide powder, The preheating temperature is preferably from 600 ° C to 800. (: The preheating time is preferably from seconds to 1 minute. The preparation method of the particle size adjustable yttrium aluminum garnet powder of the present invention Preferably, after the step (B), the method further comprises a step (B丨): dry pressing molding of the mixed oxidized epoxide and cerium oxide powder. The invention is an improved solid state reaction method, which can be directly The synthesis of the pure phase yttrium aluminum garnet powder with a predetermined particle size is achieved, and can be applied to a large number of productions of 201226360. The preparation method of the (4) stone weight powder of the present invention can eliminate the need to maintain the temperature for a long time in the traditional 80% process. Grinding treatment, and can eliminate the energy-consuming and time-consuming steps in the conventional technology for obtaining a specific particle size of yttrium aluminum garnet powder, which is subjected to high-temperature curing. Therefore, the preparation method of the yttrium aluminum garnet powder of the present invention is easy. Mass production, Advantages of less process steps, low energy consumption, cost reduction, high safety, etc. [Embodiment] The embodiments of the present invention are described below by way of specific embodiments, and those skilled in the art can disclose the present disclosure. The other specific advantages and utilities of the present invention will be readily understood by the following description. The specific embodiments are merely illustrative, and are not intended to limit the scope of the present disclosure in any way. And variations can be made by those skilled in the art without departing from the spirit and scope of the invention. [Example 1] This example sets the predetermined particle size of the target powder (yttrium aluminum garnet powder) to The preparation conditions are slightly larger than 丨〇〇nm (here, the calculated particle size is 丨25 nm). The preparation conditions are as follows: a. Powder particle size: yttrium oxide is 1 〇〇 nm (analytical particle size 1 1 3.82 nm) (possible diffusion distance) ), alumina is 2〇〇_ (analytical particle size 230.00nm) ", b. alumina/yttria particle size ratio is 2.〇; 201226360 C. By calculation 'because of a 200 nm alumina surface The product is large enough to cover about 26 100 nm oxidized cerium particles. The sulphide and oxidized component of the yttrium aluminum garnet are stoichiometrically 8, which means 200 nm alumina powder. When mixed with 1 〇〇nm cerium oxide powder, the two can be completely brought into contact with each other. First, '(A) takes the above cerium oxide and alumina powder, (B) uniformly mixes the cerium oxide and the aluminum oxide powder, B After dry pressing (density about 0.91 g/cm3), (C〇) sample is preheated for 7 〇〇〇c at 7 °c, then (c) directly placed at 1 050-丨200. 5-丨20 seconds, thus obtaining a yttrium aluminum garnet powder having a particle diameter of about 1 〇〇 nm. In the present example, the detection of the properties of the raw material and the synthetic powder is as follows. The particle size distribution of the powder is measured by a laser particle size distribution meter (MaWern Zetasizer 1000). The thermal reaction behavior of the synthesis process was analyzed by a thermal differential analyzer (Setaram TGA 92). The heating rate was 1 〇〇c/min and was measured in an air atmosphere. The crystal phase in the synthetic powder was identified using an X-ray diffractometer (Rigaku Mininex, CuKa): yam (y4ai2o9), yap (yaio3), and YAG^MhO, 2) and their contents. The latter was quantified using an internal standard. The diffraction surfaces used are YAG (42 〇), ΥΑΜ (22 ι), and YAP (m). The reference internal standard is caF2 (丨n). Fig. (a) The in vitro appearance of the original particles after mixing the raw material powders in Fig. 1 (b) is the SEM image of the amount of yttrium aluminum garnet after heat treatment of 3〇%. Fig. 1 (C) is after heat treatment The SEM image of the yttrium aluminum garnet production amount of 6 〇〇 / 0, and Figure 1 (d) is the yttrium aluminum garnet 201226360 after heat treatment, the other granules, including the yttrium aluminum garnet particle size ( Analysis of particle size 丨 54.1 2nm), the appearance did not change significantly. [Example 2] In the present example, the predetermined particle diameter of the target powder (yttrium aluminum garnet powder) was set to 400 nm. The preparation conditions were as follows. a. Powder particle size: 3〇〇nrn (analytical particle size 319.27nm)), alumina 4〇〇nm (analytical particle size 391 54nm): b. Alumina/Oxide particle size ratio is 丨3 3 ; c. By calculation, a 4〇〇〇111 alumina surface area is sufficient to cover about 16 300 nm oxidized cerium particles (or a 3〇〇11〇1 yttrium oxide surface area). It can cover about 18 2 〇〇nm alumina granules). When the alumina and yttrium oxide components form yttrium aluminum garnet, the chemistry of alumina and yttrium oxide is 1 pair of 2.4 ', which means that when 4 〇〇 nm alumina powder is mixed with 3 〇〇 nm yttrium oxide powder, Both can be completely in contact with each other. First, (A) the above cerium oxide and aluminum oxide powder are taken, (B) the cerium oxide and the aluminum oxide powder are uniformly mixed, and (β丨) is dry-formed (density: J 0.91 g/cm) '( C〇) The sample passed 7〇〇. [Preheating for 1 second, followed by (c) directly placing 1 35G·1 45G °C holding temperature of 5·1 2G seconds. Thus, a yttrium aluminum garnet powder having a particle diameter of about 4 〇〇 _ can be obtained. The detection of the properties of the raw material and the synthetic powder in the present example is the same as that used in the first embodiment, and therefore will not be described here. Fig. 2(4) is a SEM image of the original morphology of the raw material powder after mixing the raw material powder of the present embodiment; Fig. 2(b) is a closed view of the amount of the Jishaoshiquan stone after heat treatment: 3 (4) is & (4) 201226360 Fig. 2 and Fig. 2(d) are SEM images of the amount of yttrium aluminum garnet after heat treatment of 9〇%. It is apparent from Fig. 2(a) to (d) that except for the decrease of 400 nm of oxidized granules, the other granules, including the formed yttrium aluminum garnet granules, did not change significantly, but eventually The particle size of the obtained yttrium aluminum garnet is close to 4 (10) nm (analytical particle size of 422.82 nm). [Example 3] In the present example, the predetermined particle diameter of the target powder (yttrium aluminum garnet powder) was set to 500 nm. The preparation conditions are as follows. a. Using powder particle size · · yttrium oxide is 4 〇〇 _ (analytical particle size 391.54nm)) 'oxidation|Lu is 2〇〇nm (analytical particle size 23〇.〇〇nm); b. alumina / oxidation The particle size ratio of ruthenium is 〇5; c. By calculation, a surface area of ruthenium oxide of 4 〇〇nm is sufficient to cover about 26 oxidized granules of 200 nm. When the alumina and bismuth telluride are two components to form yttrium aluminum garnet, the stoichiometry of alumina and oxidized period is 8 pairs. This indicates that when 200 nm alumina powder is mixed with 4 〇〇nm yttrium oxide powder, both Can be completely in contact with each other. First, '(A) takes the above-mentioned oxidation number of 4 〇〇 nm and alumina powder of particle size 2 〇〇 nm' (B), and uniformly mixes yttrium oxide and aluminum oxide two-component powder, (B1) is dried. After compression molding (density about 〇μ g/cm3), the (c〇) sample is preheated at 700 ° C for 10 seconds, then (c) directly placed in 145 〇 15 〇〇〇 c for 5 丨 8 〇 seconds, so A yttrium aluminum garnet powder having a particle size of K 500 nm can be obtained. In the case of the present palladium, the detection of the properties of the raw material and the synthetic powder is the same as that used in the first embodiment, and therefore will not be described herein. 201226360 Fig. 3(a) is the original sem of the original particle after mixing the raw material powder of the present embodiment. Fig. 3 (b) is the $ £ μ map when the amount of geminite is 3 〇% after heat treatment; Fig. 3 (c) The SEM image when the amount of yttrium aluminum garnet is 6 % by mass after heat treatment: and Fig. 3 (d) is the SEM image when the amount of yttrium aluminum garnet produced after heat treatment is 9 %. It is apparent from Fig. 3(a) to (d) that except for the decrease of 200 nm alumina granules, the other granules, including the formed yttrium aluminum garnet granule size, did not change significantly, and finally The particle diameter of the obtained yttrium aluminum garnet was close to nm (analytical particle diameter: 49 L58 nm). Figure 4 is a diagram showing the relationship between the particle size of the yttrium aluminum garnet powder and the particle size of the raw material cerium oxide powder synthesized by the embodiment of the present invention. The point is the actual measured value, and the dotted line is the theoretical calculation value. . The embodiment can be seen in Figure 4! The relationship between the particle size of the oxidized powder used in actual use, 2, and 3, and the particle size of the yttrium aluminum garnet powder synthesized therefrom can be nearly perfectly expressed by the equation a/b=1.24 [Formula 2] a is the particle size of the synthesized Shiming Shiquan stone powder, the 鸱化纪粉粒fe. This formula 2 also represents a theoretical calculation of the relationship between the particle size a of the stone powder and the particle size b of the raw material cerium oxide powder. Field The present invention is an improved solid state reaction method which can directly synthesize a pure phase (four) stone powder of a predetermined particle size and can be applied for production. The preparation method of the (4) Shiquan powder of the invention can be specifically: in the process of holding the temperature at 1600 〇C for a long time, the trouble of the treatment of 4, δ, 4δ, can be exempted from the traditional technology:: re-grinding / hot pomegranate The stone powder needs to be subjected to high temperature curing of the cattle: particle size 钇 aluminum ^ • tooth step. Therefore, 201226360 The preparation method of the (4) sphagnum powder of the present invention has the advantages of easy mass production, reduction of process steps, low energy consumption, effective cost reduction, and high safety.
综上所a,本發明之粒徑可調整之紀銘石權石粉末之 製備方法可快速合成特定粒徑單一相釔鋁石榴石粉末其 係使用氧化紀(y2o3)與氧化銘(α_Αΐ2〇3)粉末作為原料。惟 氧化紀粉末之粒徑需與預定生產之⑽石權石粉末粒徑相 近,而將氧化鋁與氧化釔混合後,於大約丨〇〇〇〜丨55〇。匸溫度 持溫大約!至30分鐘,即可以一次熱處理獲得特定粒徑單二 相之釔銘石權石(Υ;Α1?0|2)粉末3此時生成的釔铭石權石粉 末植徑約比原料之氧化釔(丫2〇3)粉末直徑增加約24%。本發 月即利用此現象,合成具有特定粒徑、純相之之釔鋁石榴 石(YAG,丫3八丨5〇12)粉末。本發明的特色在於:使用簡單方 法容易合成特定粒徑之釔鋁石榴石粉末、可大量生產 '免 除在合成過程t進行多次研磨及再次熱處理之步驟、及免 除粒徑再處理作業,並兼具高安全性、容易量產能有效 降低成本等優點。 上述實施例僅係為了方便說明而舉例而已,本發明所 主張之權利範圍自應以申請專利範圍所述為準,而非僅限 於上述實施例。 【圖式簡單說明】 圖丨(3)為本發明實施例丨中原料粉末混合後之原粒體外貌 SEM 圖。 201226360 圖丨(b)為本發明實施例1中熱處理後釔鋁石榴石生成量為 30%時之sem圖。 圖1 (c)為本發明實施例1中熱處理後釔鋁石榴石生成量為 60〇/。時之SEM圖。 圖1(d)為本發明實施例丨中熱處理後釔鋁石榴石生成量為 90°/。時之SEM圖。 圖2(a)為本發明實施例2中原料粉末混合後之原粒體外貌 SEJV^ 〇 圖2(b)為本發明實施例2中熱處理後釔鋁石榴石生成量為 30%時之SEM圖。 圖2(c)為本發明實施例2中熱處理後釔鋁石榴石生成量為 60%時之SEM圖。 圖2(d)為本發明實施例2中熱處理後釔鋁石榴石生成量為 90%時之SEM圖。 圖3(a)為本發明實施例3中原料粉末混合後之原粒體外貌 SEM 圖。 圖3(b)為本發明實施例3中熱處理後紀鋁石榴石生成量為 30%時之SEM圖。 圖3 (c)為本發明實施例3中熱處理後釔鋁石榴石生成量為 60%時之SEM圖。 圖3(d)為本發明實施例3中熱處理後釔鋁石榴石生成量為 90%時之SEm圖。 圖4為本發明實施例丨、2、及3中生成釔鋁石榴石粉末粒 徑與原料氧化釔粉末粒徑之關係圖。 201226360 【主要元件符號說明】 °In summary, the preparation method of the particle size adjustable Jiuming Shiquan powder of the present invention can rapidly synthesize a single phase yttrium aluminum garnet powder of a specific particle size, which uses oxidized (y2o3) and oxidized (α_Αΐ2〇3) powder. As a raw material. However, the particle size of the oxidized powder should be similar to the particle size of the (10) stone powder that is intended to be produced, and the alumina and cerium oxide are mixed at about 丨55丨.匸 Temperature Hold the temperature about! Up to 30 minutes, it is possible to obtain a single-phase single-phase 钇明石元石(Υ;Α1?0|2) powder of a specific particle size in one heat treatment. 3 The 钇 石 石 石 石 powder produced at this time is about 钇 原料 原料(丫2〇3) The powder diameter increased by about 24%. This phenomenon was used in this month to synthesize a powder of yttrium aluminum garnet (YAG, 丫3 丨5〇5〇12) having a specific particle size and a pure phase. The invention is characterized in that it is easy to synthesize a yttrium aluminum garnet powder of a specific particle size by a simple method, and can mass-produce the steps of eliminating the need for multiple grinding and reheating in the synthesis process, and eliminating the particle size reprocessing operation, and It has the advantages of high safety, easy capacity and effective cost reduction. The above-described embodiments are merely examples for the convenience of the description, and the scope of the claims is intended to be limited by the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 3(3) is a SEM image of the original appearance of raw particles after mixing raw material powders in the examples of the present invention. 201226360 Fig. (b) is a sem diagram when the amount of yttrium aluminum garnet produced in the first embodiment of the present invention is 30%. Fig. 1 (c) shows that the amount of yttrium aluminum garnet produced in the first embodiment of the present invention is 60 〇 /. The SEM image of the time. Fig. 1(d) shows the formation amount of yttrium aluminum garnet after heat treatment in the crucible of the embodiment of the present invention is 90 ° /. The SEM image of the time. 2(a) is a view of the original appearance of the raw material after mixing the raw material powder in Example 2 of the present invention. FIG. 2(b) is a SEM of the yttrium aluminum garnet after heat treatment in Example 2 of the present invention. Figure. Fig. 2 (c) is a SEM image showing the amount of yttrium aluminum garnet formed after heat treatment in Example 2 of the present invention. Fig. 2 (d) is an SEM image showing the amount of yttrium aluminum garnet formed after heat treatment in Example 2 of the present invention of 90%. Fig. 3 (a) is a SEM image of the original appearance of the original particles after mixing the raw material powders in Example 3 of the present invention. Fig. 3 (b) is a SEM image showing the formation amount of aluminum garnet after heat treatment in Example 3 of the present invention. Fig. 3 (c) is an SEM image showing the amount of yttrium aluminum garnet formed after heat treatment in Example 3 of the present invention. Fig. 3 (d) is a SEm diagram of the yttrium aluminum garnet after the heat treatment in Example 3 of the present invention is 90%. Fig. 4 is a graph showing the relationship between the particle diameter of the yttrium aluminum garnet powder and the particle size of the raw material cerium oxide powder in the examples 丨, 2, and 3 of the present invention. 201226360 [Key component symbol description] °