TW201226315A - Chelating agent modified graphene oxides, methods of preparation and use - Google Patents

Chelating agent modified graphene oxides, methods of preparation and use Download PDF

Info

Publication number
TW201226315A
TW201226315A TW100106443A TW100106443A TW201226315A TW 201226315 A TW201226315 A TW 201226315A TW 100106443 A TW100106443 A TW 100106443A TW 100106443 A TW100106443 A TW 100106443A TW 201226315 A TW201226315 A TW 201226315A
Authority
TW
Taiwan
Prior art keywords
graphene oxide
chelating agent
edta
group
modified graphene
Prior art date
Application number
TW100106443A
Other languages
Chinese (zh)
Inventor
shi-feng Hou
Original Assignee
Montclair State University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2010/061796 external-priority patent/WO2011082064A1/en
Application filed by Montclair State University filed Critical Montclair State University
Publication of TW201226315A publication Critical patent/TW201226315A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

The invention is directed to chelating agent modified graphene oxides having the following formula G(AB)x; wherein G is graphene oxide, A is selected from the group consisting of -(CH2)m-, -NH-, -S-, -O-Si(-OR1)2(-CH2)m-, -C(=O)-, -C(=O)-O-, -C(=O)-O(CH2)m-, -C(=O)-NH-, -C(=O)-NH-(CH2)m-, -P(=O)2-O-, wherein m is 1-12 and R1 is H, or C1-C12 alkyl; and B is a chelating moiety; wherein the ratio of basic graphene oxide units: x is from about 1: 0.00001 to about 1: 0.5. Such chelating modified graphene oxides have broad applications in diverse technical fields.

Description

201226315 六、發明說明: 【韻^明戶斤屬戈_控^軒々貝】 本專利申請是以2009年12月29日申請的美國臨時專利 申請(申請號61/282,191)為優先權。 發明領域 本發明涉及到通過化學修飾方法利用整合劑修飾氧化 石墨烯的雜’以及螯合祕㈣氧化石墨㈣料在飲用 水淨化、廢核理、電輯料、_電池、太陽能電^、 聚合物復合材料、催化劑負載材料等方面的應用,以及用 作催化劑製備和水處理設備的製備材料。 L先前技術J 發明背景 石墨缔是由礙原子按六邊形晶格整齊排布而成的碳單 質,結_常穩定。這種穩定的晶格結構使石㈣具有優 秀的導電性’如石墨稀被證實是世界上已經發現的最薄' 強度最大的材料。由於石墨烯獨特的力學和電學特性,石 墨烯在許多方面都顯示出其獨特的應用前景。一般而言, 由於具有較多的親水性基團,如羥基、羧基、環氧基團, 氣化石墨缔具有良好的水溶性,但氧化石墨稀也因此喪失 了大B導電性。相對應地’氧化石墨烯被還原成還原氧 化石墨烯後,其表面的親水性基團,如羥基、環氧基等被 去除,而其表面π·π共軛鍵結構得到重新恢復,在其導電性 得到恢復㈣時失去氧化石墨_水溶性。從另_方面, 還原氧化石墨歸和大多數聚合物的相容性交差,這限制了201226315 VI. Description of the invention: [Rhyme ^ Ming Hu Jin Ge_Control ^ Xuan Mubei] This patent application is based on the US Provisional Patent Application (Application No. 61/282,191) filed on December 29, 2009. FIELD OF THE INVENTION The present invention relates to the use of an integrator to modify the oxidation of graphene oxide by a chemical modification method, as well as the chelation of the (four) graphite oxide (four) material in drinking water purification, waste nuclear, electrical materials, battery, solar power, polymerization Applications in composites, catalyst loading materials, etc., as well as materials for the preparation of catalysts and water treatment equipment. L Prior Art J Background of the Invention Graphite is a carbon element which is formed by arranging atoms in a hexagonal lattice neatly arranged, and the junction is often stable. This stable lattice structure gives the stone (4) excellent electrical conductivity. For example, graphite thinning has proven to be the thinnest and strongest material found in the world. Due to the unique mechanical and electrical properties of graphene, it has been shown to have unique applications in many respects. In general, since there are many hydrophilic groups such as a hydroxyl group, a carboxyl group, and an epoxy group, the vaporized graphite has good water solubility, but the graphite oxide is thin and thus loses large B conductivity. Correspondingly, after the graphene oxide is reduced to reduced graphene oxide, the hydrophilic groups on the surface, such as hydroxyl groups, epoxy groups, etc., are removed, and the surface π·π conjugated structure is restored. When the conductivity is restored (4), the graphite oxide is lost _ water-soluble. From another aspect, the reduction of the compatibility of graphite oxide with most polymers limits this.

S 3 201226315 其進一步的用途。 已經有若幹化學方法主要包括化學修飾技術來修飾還 原氧化石墨烯以期改變氧化石墨晞表面的性f,其和其他 物質的相容性,拓展其水溶性及油溶性。這些方法包括⑴ 物理吸附法吸附共能性基團到石墨烯表面。(2)_共價鍵 和方法連接功能性基團到石墨烯表面^這些技術取得了初 步的進展。如表面吸附聚合物的石墨烯可增加其溶解性。 但這種物理吸附的方法限制了其進一步的使用。由於單分 子層間τι-π相互作用,單層石墨烯在水中和有機溶劑中的分 散非常困難。因而還原氧化石墨烯在水溶液中的行為未得 到進一步的研究。 科學家嘗試各種方法(park Sungjin; Ruoff R〇dney s.S 3 201226315 Its further use. A number of chemical methods have mainly included chemical modification techniques to modify the reduced graphene oxide in order to change the surface of the graphite crucible, the compatibility with other substances, and to expand its water solubility and oil solubility. These methods include (1) physical adsorption to adsorb a covalent group to the graphene surface. (2) Covalent bonds and methods for attaching functional groups to the surface of graphene ^ These techniques have made initial progress. Graphene adsorbing a polymer such as a surface can increase its solubility. However, this method of physical adsorption limits its further use. The dispersion of single-layer graphene in water and organic solvents is very difficult due to the τι-π interaction between the individual molecular layers. Thus, the behavior of reduced graphene oxide in aqueous solution has not been further studied. Scientists try various methods (park Sungjin; Ruoff R〇dney s.

Nature Nanotechnology, (2009),4(4),217-24),主要包括化 學修飾技術來修飾還原氧化石墨烯,以期改變氧化石墨烯 表面的性質,每種技術各有其優缺點,但還需要發展新的 具有良好水溶性的石墨烯衍生物,同時拓展其工業應用範圍。 【智^明内溶^】 發明概要 本發明涉及到新型的石墨稀衍生物的分子設計與人 成,及利用矽烷化試劑,羧基和酰胺等對石墨烯進行化學 修飾的系列有機合成方法,以及這種衍生物的相關應用。 所用材料和分子包括一種基礎材料.石墨歸,包括戋稱為 氧化石墨,氧化石墨稀(G〇),還原氧化石墨歸(rg〇)。石 墨稀係指從石墨中得到的單層或多層的石墨稀材料,厚产 201226315 從0.1納米到0.1毫米 螯合劑包括乙二胺四 和其它可能的螯合劑 大小從10納米到1亳米。本發明中的 乙馱、乙二胺三乙酸根(均稱為EDTA) Μ刊蚤烯包括以下的分 子結構:G(A-B)x,其中G代丧童化 乂表乳化石墨烯,A代表連接基 團,A具有以下可能的結構:_(CH2)m_、_NH_、各、 -〇-Si(_CH2)m(_〇Rl)2·、<(哪、_c(哪 〇_、 -C(=0)-0(CH2)m- ^ -C(=〇)_NH_ . .C(,0).NH.(CH2)m„ . -Ρ(=0)2·0.、其中m^12, Rl為或CL基。B代表整 合劑基團。氧化石㈣對螯合劑基團的基本比率㈣c graphene oxide units:x)4 丨:〇 〇〇〇1到丨:〇 5。 本發明包括用螯合劑修飾石墨稀的過程⑷:首先配備 石夕炫的曱醇、乙醇、水或复仙古 有機〉谷钟丨的溶液。(b):將氧 化石墨烯錄财航射,和魏料混合,實施魏 化過程,然後得到魏化的氣化石墨烯。⑷:經過還原石夕 院化的氧化石墨烯,得_魏化石料。—個具體的事 ::整合劑為乙二胺三乙酸和其鈉鹽。另-個具體的事例 夕烷二有如下結構:B-(CH2)m-Si-X3、 B-(CH2)m-寧)-x2 或 B_(CH2)msi((DRim + 以 C卜 B_,Ri 為H、Ch3…或 ch3ch2。 '、 ’ =麵用實例之―是合絲合劑修飾的氧化石墨 稀。合成過程包括:用氧化石墨烯和S〇Cl2及廳2反應, 減變成,)(:ΐ#ϋ基團,然後上述基團和相應 配合物試劑反應形成螯合轉飾氧化石墨烯:其中Μ基團Nature Nanotechnology, (2009), 4(4), 217-24), mainly including chemical modification techniques to modify reduced graphene oxides in order to change the properties of graphene oxide surfaces, each with its own advantages and disadvantages, but also Develop new graphene derivatives with good water solubility while expanding their industrial applications. SUMMARY OF THE INVENTION The present invention relates to molecular design and artificial formation of novel graphite rare derivatives, and a series of organic synthesis methods for chemically modifying graphene by using a decylating agent, a carboxyl group and an amide, and the like. Related applications of such derivatives. The materials and molecules used include a base material, graphite, including yttrium oxide graphite, graphite oxide (G〇), and reduced graphite oxide (rg〇). Inorganic graphite refers to a single or multi-layered graphite thin material obtained from graphite. The thick product 201226315 is from 0.1 nm to 0.1 mm. The chelating agent includes ethylenediaminetetrazide and other possible chelating agents ranging in size from 10 nm to 1 mil. In the present invention, acetophenone and ethylenediamine triacetate (both known as EDTA) 蚤 蚤 蚤 include the following molecular structure: G(AB)x, wherein G generation is annihilated and emulsified graphene, and A represents a connection. The group, A has the following possible structures: _(CH2)m_, _NH_, each, -〇-Si(_CH2)m(_〇Rl)2·, <(Which, _c(〇〇_, -C( =0)-0(CH2)m- ^ -C(=〇)_NH_ . .C(,0).NH.(CH2)m„ . -Ρ(=0)2·0., where m^12, Rl is or a CL group. B represents an integrator group. The basic ratio of oxidized stone (iv) to a chelating agent group (4) c graphene oxide units: x) 4 丨: 〇〇〇〇1 to 丨: 〇 5. The present invention includes chelating Mixing process to modify graphite thinning (4): Firstly, it is equipped with Shi Xixuan's solution of decyl alcohol, ethanol, water or Fuxiangu organic> Gu Zhongyu. (b): The graphene oxide is recorded and mixed with Wei materials. The Weihua process is carried out, and then Weihua's gasified graphene is obtained. (4): After the reduction of the stone oxide of graphene, the weiwei stone material is obtained. - A specific matter: the integrator is ethylenediaminetriacetic acid and Its sodium salt. Another specific case of octanane II has the following structure: B-(CH2)m-Si-X3 B-(CH2)m-Ning)-x2 or B_(CH2)msi ((DRim + is C Bu B_, Ri is H, Ch3... or ch3ch2. ', ' = Surface Example) - is a mixture of the silk The graphite oxide is dilute. The synthesis process includes: reacting with graphene oxide and S〇Cl2 and chamber 2, reducing, (), ΐ#ϋ groups, and then reacting the above groups with the corresponding complex reagents to form a chelate-transfer graphite oxide. Alkene

S 201226315 中的-B是螯合劑基團,A-代表以下基團:HO-(CH2)m-、 H-NH-、H-S-、Rl-0-Si(-CH2)m(-ORi)2-、HO-C(=0)-、 H0-C(=0)-0-、H0-C(=0)-N-、和 H0-P(=0)2-0-;其中 m為 1-12,R1 為Η、C丨-C12烷基。 本發明的應用實例之一是利用螯合劑鍵合(錨定)金屬 離子,然後利用原位合成技術合成納米或微米金屬粒子催 化劑。具體過程包括⑴分散螯合劑修飾的氧化石墨烯在有 機或水溶液中;(ii)在(i)的溶液中加入金屬鹽,其鹽類是如 下金屬的鹽類化合物:Ni、Co、Fe、Pt、Ru、Au、Cr、Cu、 Mg、Mn、Mo、Rh、Si、Ta、Ti、W、U、V、或Zr ; (iii) 還原(ii)中金屬化合物得到納米或微米金屬粒子,用作催化劑。 本發明的應用實例之一是利用螯合劑修飾的氧化石墨 烯去除水中的金屬離子。具體過程包括(i)將螯合劑修飾氧 化石墨烯裝入過濾器中;(ii)將含金屬離子的水樣通過⑴製 得的過濾器可去除金屬離子。同時,也可將螯合劑修飾氧 化石墨烯直接放入含金屬離子的水樣中直接去除金屬離 子。可去除的可以是以下金屬離子,但不局限於以下金屬 離子:Ni、Co、Fe、Pt、Ru、Au、Cr、Cu、Mg、Mn、Mo、 Rh、Si、Ta、Ti、W、U、V、或Zr。這種去除金屬離子的 性質和材料可用於飲用水製備,廢水處理或用作金屬離子 萃取。 本發明的應用實例之一是利用螯合劑修飾的氧化石墨 烯吸附醌、蒽醌及其他任何醌類衍生物,螯合劑修飾的氧 化石墨烯吸附醌類後可用做氧氣還原的催化劑。 201226315 實例之-是利用螯合劑修飾的氧化石墨 氧化石墨埽才料:具體過程包括利用f合劑修飾的 材料。 &的Μ料製備_子陽極和陰極電池-B in S 201226315 is a chelating agent group, and A- represents the following groups: HO-(CH2)m-, H-NH-, HS-, Rl-0-Si(-CH2)m(-ORi)2 -, HO-C(=0)-, H0-C(=0)-0-, H0-C(=0)-N-, and H0-P(=0)2-0-; where m is 1 -12, R1 is Η, C丨-C12 alkyl. One of the application examples of the present invention is the use of a chelating agent to bond (anchor) a metal ion and then synthesize a nano or micro metal particle catalyst using in situ synthesis techniques. The specific process includes (1) dispersing the chelating agent-modified graphene oxide in an organic or aqueous solution; (ii) adding a metal salt to the solution of (i), the salt of which is a salt compound of the following metals: Ni, Co, Fe, Pt , Ru, Au, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, or Zr; (iii) Reduction of the metal compound in (ii) to obtain nano or micro metal particles, As a catalyst. One of the application examples of the present invention is the use of a chelating agent modified graphene oxide to remove metal ions in water. The specific process includes (i) loading a chelating agent-modified oxy graphene into a filter; (ii) passing a metal ion-containing water sample through the filter prepared in (1) to remove metal ions. At the same time, the chelating agent-modified oxidized graphene can be directly placed in a metal ion-containing water sample to directly remove the metal ions. The following metal ions may be removed, but are not limited to the following metal ions: Ni, Co, Fe, Pt, Ru, Au, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U. , V, or Zr. This metal ion removal property and material can be used in drinking water preparation, wastewater treatment or as metal ion extraction. One of the application examples of the present invention is that a chelating agent-modified graphene oxide adsorbs cerium, lanthanum and any other quinone derivative, and a chelating agent-modified oxy graphene can be used as a catalyst for oxygen reduction after adsorbing hydrazine. 201226315 Example - is a chelating agent modified graphite oxide graphite oxide 埽 material: the specific process includes materials modified with f mixture. & preparation of raw materials_sub-anode and cathode batteries

本發明的應用實例之_是利用螯合劑(乙 和其鈉鹽)矽烷修飾石墨烯 -胺二乙I 甲醇、^ η 私包括(a):製備石夕院的 乙知、水或有機溶劑溶液。卬): 機溶劑中,和石夕院溶液混合,實 $ Μ散到有 石夕燒化m , 貫知魏化過程,然後得到 j墨烯。⑷:經過還原,得到還原氧化石墨烯。 埽作ΪΓ:用實例之一是利用螯合劑修飾的氧化石墨 乍轉化難體用於浦電池的陽極或負極負 、別疋製備直接乙醇或曱醇燃料電池。 、’ 本發明的應用實例之一是利用螯合 本發明的應用實例之一是利用螯 稀作為藥物傳送體用於醫療設備製備。比飾的乳化石墨 本發明的應用實例之-是利用螯合劑修飾的氧化 稀製備太陽能電池材料。 墨 本發明的應用實例之-是利用餐合劑修錦的氧化 烯作為基礎材料用作場發射顯示器、 墨 i-ι _ °、及電容器、電極好 枓、鋰離子電池材料、傳統鉛釀電池改進。 幵 本發明的應用實例之-是利用整合劑修錦的氧化 烯和Naficm®膜材料組成復合物作為電極修飾材料 墨 S. 201226315 本發明的應用實例之-是利用石夕貌化試劑對石墨稀進 行修飾的過程,這财糾馳石‘轉㈣料和魏混 合,然后回流後得到,其中一個結構如第3圖。 此處引用的專利和文章的内容以及這些專利和文章中 引用的文件中的内容已經列入本專利。 圖式簡單說明 第1圖疋氧化石墨稀和還原氧化石墨稀的纟士構。 第2圖是-個常見魏的結構,其—為含配位(絡幻基 團矽烷。 1 第3圖是個蘭⑽烧:叫三甲氧基碎基丙基)乙二胺 三乙酸和其鈉鹽的結構。這兩種化合物在本發财均被縮 寫為 EDTA-silane。 第4圖是4種最普通的功能化或螯合劑纽群,他們均可 以連接到氧化石墨烯表面。 第5圖是基本的螯合劑連接到氧化石墨烯表面後纟士構。 第6圖是基本的EDTA修飾氧化石墨烯表面結構。 第7圖是基本的f合劑在氧化石墨烯表面的修飾過程。 第8圖是基本的還原氧化石墨烯、氧化石墨烯、 修飾的還原氧化石墨烯以及EDta修飾的氧化石墨烯的紅 外圖譜。 第9圖是基本的氧化石墨烯(&)、EDTA修飾的氧化石墨 烯(b)、還原氧化石墨烯(C)、EDTA修飾的還原氧化石墨烯(幻 的水溶液的照片。 第10圖是EDTA-RGO(a)和EDTA-GO(b)在不同濃度水 201226315 溶液的照片。第10圖(C)和(d)是EDTA-RGO(c)和EDTA-GO(d) 紫外光譜。EDTA-RGO和EDTA-GO濃度:1 : 〇.〇19mg/ml,2 : 0.038mg/ml ’ 3 : 〇.〇75mg/m卜 4 : 0.15mg/m卜 5 : 0.30 mg/ml。 第11圖是基本的EDTA修飾的氧化石墨烯的電鏡照片。 第12圖是基本的EDTA修飾氧化石墨烯電極催化曱醇 氧化的循環伏安圖。 C實方式;J 較佳實施例之詳細說明 作為请化,氧化石墨埽,英文“抑Ph或縮 寫“G〇”特指氧化石墨烯’還原氧化石墨烯,英文,“reduced gl*aPhene⑽咖,,縮寫“RG〇”特指還原氧化石墨烯,其結構如 I和II所述:The application example of the present invention is to modify the graphene-amine diethyl alcohol by using a chelating agent (ethylidene and its sodium salt) decane, and to include (a): preparing a solution of water, or an organic solvent of Shixiyuan. .卬): In the solvent of the machine, mix with the solution of Shi Xiyuan, the actual amount of Μ 到 到 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 魏 魏 魏 魏 魏 魏 魏 魏 魏(4): After reduction, reduced graphene oxide is obtained.埽 ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ ΪΓ One of the application examples of the present invention is the use of chelation. One of the application examples of the present invention is the use of chelation as a drug delivery body for medical device preparation. The emulsified graphite of the present invention is an application example of the present invention - a oxidized dilute preparation solar cell material modified with a chelating agent. An application example of the ink-based invention is an alkylene oxide using a meal mixture as a base material for use as a field emission display, an ink i- _ °, and a capacitor, an electrode, a lithium ion battery material, and a conventional lead battery improvement. .应用 An application example of the present invention is to use an alkylene oxide and a Naficm® film material composed of an integrator to form a composite as an electrode modification material ink. 201226315 An application example of the present invention is to use graphite to form a graphite thinning agent. In the process of modification, this financial correction stone 'turns (four) material and Wei mixed, and then returns after refining, one of the structures as shown in Figure 3. The contents of the patents and articles cited herein, as well as the contents of the documents cited in these patents and articles, are incorporated herein by reference. Brief Description of the Drawings Figure 1 shows the gentleman structure of rare graphite oxide and reduced graphite oxide. Figure 2 is a structure of a common Wei, which contains a coordination (the phono group decane. 1 Figure 3 is a blue (10) burn: called trimethoxy propyl propyl) ethylenediamine triacetate and its sodium The structure of the salt. Both of these compounds have been reduced to EDTA-silane in this case. Figure 4 is the four most common functional or chelating agent groups that can be attached to the graphene oxide surface. Figure 5 is a basic chelating agent attached to the surface of the graphene oxide after the gentleman structure. Figure 6 is a basic EDTA modified graphene oxide surface structure. Figure 7 is a modification of the basic f mixture on the surface of graphene oxide. Figure 8 is an infrared spectrum of the basic reduced graphene oxide, graphene oxide, modified reduced graphene oxide, and EDta modified graphene oxide. Figure 9 is a photograph of basic graphene oxide (&), EDTA-modified graphene oxide (b), reduced graphene oxide (C), and EDTA-modified reduced graphene oxide (phantom aqueous solution. Fig. 10 is Photographs of EDTA-RGO(a) and EDTA-GO(b) solutions at different concentrations of water 201226315. Figures 10 (C) and (d) are EDTA-RGO(c) and EDTA-GO(d) UV spectra. EDTA -RGO and EDTA-GO concentration: 1: 〇.〇19 mg/ml, 2: 0.038 mg/ml ' 3 : 〇.〇75 mg/m b 4 : 0.15 mg/m b 5 : 0.30 mg/ml. It is an electron micrograph of basic EDTA modified graphene oxide. Fig. 12 is a cyclic voltammogram of basic EDTA modified graphene oxide electrode catalyzed sterol oxidation. C real mode; J preferred embodiment as a detailed description , graphite oxide 埽, English "Ph or abbreviation "G〇" specifically refers to graphene oxide 'reduced graphene oxide, English, "reduced gl * aPhene (10) coffee, abbreviated "RG 〇" specifically refers to reduced graphene oxide, its structure As described in I and II:

SS

分子式I 9 201226315Molecular formula I 9 201226315

分子式II 每一個基本氧化石墨烯單元’英文“basic graphene oxide unit”,包括一個單獨的碳原子,和它相聯的任何功能 化基團。氧化石墨烯包括單層石墨稀,多層石墨烯,氧化 石墨層,氧化石墨烯片,它還包括經由強氧化劑如h2S〇4, HNO3,KMn〇4,KCIO3氧化的氧化石墨烯,化學氣相沈積 法(CVD)製備的石墨烯。乳化石墨烯還包括氧化石墨層,氧 化石墨烯片,同時,單層石墨烯的寬度在1〇納米到一毫米 之間’厚度在0.1納米到0.1毫米之間。 單層石墨烯的寬度和厚度在0.385納米到5納米之間, 大小在10納米到一毫米之間。多層石墨烯的厚度從〇1納米 到100微米。石墨烯片有各種電子、機械和化學特性。其還 原態可由NHyNH2 ’ LiAlRt,NaBH4或其它還原劑還原值 得,也可由熱膨脹技術製得。 其中,螯合劑是指任何具有配位功能的有機化合物, 匕們可以通過其所含的兩個或多個原子(主要是〇,N,p及 S)和金屬離子通过配位鍵形成配合物。含兩個配位原子的 10 201226315 被稱為雙齒配合物,含三個配位原子的被稱為三齒配舍 物,依次類推。EDTA為六齒配合物,其化學名稱是乙二胺 四乙酸。 其中’ “A”或“鏈接基團,’代表任何可以連接螯合劑和氧 化石墨烯的任何原子或基團。常見的結構包括·(CH2)m-, -NH-、-S-、-〇_Si(_OR丨)2(CH2)m_、_c(=〇) 〇(CH2)m、 -C(=0)-NH- ^ -C(=〇)-NH-(CH2)m- . .〇(=〇). , -〇(=〇).〇- ' -C(=0)-N-、-P(=〇)2_〇_ ;其中,爪為“之,Rl係指^或心⑤ 烷基。其中,“A” 表示 HO-(CH2)m-、H-NH-、H-S-、 H-0-Si(-0R')2(CH2)m- > -C(=0)-〇(CH2)m- > -C(=〇)_nH- ' C(=0)-NH_(CH2)m-、h〇-C(=〇)_、h〇-C(=〇)-〇-, H0-C(=0)-N-、HO-P(=〇)2-〇_ ; mgM2,R>H、烧基, 芳基、烯烴基、炔烴基、胺基或羥基。其中,胺基和羧恭 可以是烷基和芳基的取代物。優化的尺1為11,或Ci_c口蝝 基’更優化的R1為Η,或CrC4烷基。 其中’整合劑基團或“B”係指任何具有配位功能的矸通 過連接基IS “A”鍵接到氧化石墨烯表面㈣合劑,這種餐合 劑可首先和A形成共價鍵化合物然後作為起始物質通過合 成反應連接到氧化石墨稀表面。 其中“石夕炫,,是指具有Y_(CH2)m_Si_X3结構的含石夕的石夕 院化合物,n=1〜2; x為可水解的基團;Y為有機官能團, 如螯合劑基團。X通常為氯基、?氧基、乙氧基、甲氧基乙 氧基、乙醜氧基等’故些基團水解時即生成石夕醇⑽㈣3), 而與氧化石錢結合’形切氧燒。γ是乙稀基、氨基、環 11 201226315 氧基、曱基丙烯酰氧基、巯基或脲基。這些反應基可與有 機物質反應而結合。因此’通過使用石夕院偶聯劑,可在無 機物質和有機物質的界面之間架起“分子橋”,把兩種性質 懸殊的材料連接在一起提高復合材料的性能和增加黏接強 度的作用。 本發明的優化方案,氧化石墨烯含有_COOH,-OH和-〇-基團’主要是_C00H,或_〇H基團。一個基本石墨烯單元 對功flb化基團的最佳比率是1 : 0.00001到1 : 0.5,更優化的 比率是1 : 0.0001到1 : 0.35,更優化的比率是1 : o.ooo^H : 0.32 ’更優化的比率是1 : 〇 〇〇1到1 : 〇 3,更優化的比率是 1 . 0.0005到1 : 〇·25,更優化的比率是1 : 0 01到1 : 〇 2,更 優化的比率是1 : 〇.〇2到1 : 0.15。 本發明的優化方案中改進的鏈接基團是 -O-SK-OR1)2·,其中’ r1為Η、烷基、芳基、烯烴基、炔烴 基、胺基、羥基。其令,胺基或羥基可優化為芳基或烷基 取代物。本發明優化方案中的烷基包括含直鏈或支鏈的烷 烴,其長度為CVC!8的直鏈烷基,或(c4-c8)的環烷基。本發 明優化方案中的芳基包括苯基、甲苯基、萘基、菲苯基或 。比啶基團。是1-3取代的基團包括直鏈或支鏈的(Ci_c6)_烷基 化合物’(CVC7)-環烷基化合物,直鏈或支鏈的(Ci_c6)_烷氧 基、羥基、胺基,和而(CrC6)烷基胺、硝基烷烴、或氰基 炫奴對稀奴基,可用乙稀基或丙稀基。對炔煙基,可用 乙炔集。優化的基團是R1 ’這裏r為烧基,更好 的基團為R是11或(:1-(:4炫基,同時,也可用_〇r代替螯合劑。 12 201226315 本發明優化方案中的螯合劑為包括以下基團的化合物 或他們的鹽類,其申,“mm”為1-12,更優化的mm為1-4。 另一個優化的產物是CrC12烷基連接的乙二胺三乙酸,二乙 基三胺四乙酸和它們的鹽類。Each of the basic graphene oxide units of the formula II includes a single carbon atom and any functional groups associated therewith. Graphene oxide includes a single layer of graphite, a multilayer graphene, a graphite oxide layer, a graphene oxide sheet, and also includes graphene oxide oxidized by a strong oxidizing agent such as h2S〇4, HNO3, KMn〇4, KCIO3, chemical vapor deposition. Graphene prepared by a method (CVD). The emulsified graphene further includes a graphite oxide layer, a graphene oxide sheet, and a single layer graphene having a width of between 1 nm and 1 mm and a thickness of between 0.1 nm and 0.1 mm. The single layer graphene has a width and thickness between 0.385 nm and 5 nm and a size between 10 nm and 1 mm. The thickness of the multilayer graphene ranges from 〇1 nm to 100 μm. Graphene sheets have a variety of electronic, mechanical and chemical properties. The reduced state can be obtained by reduction of NHyNH2' LiAlRt, NaBH4 or other reducing agents, or by thermal expansion techniques. Wherein, the chelating agent refers to any organic compound having a coordination function, and we can form a complex by a coordinate bond through two or more atoms (mainly 〇, N, p and S) and a metal ion contained therein. . 10 201226315 containing two coordinating atoms is called a bidentate complex, and a tridentate ligand containing three coordinating atoms is called a tridentate compound, and so on. EDTA is a hexadentate complex whose chemical name is ethylenediaminetetraacetic acid. Wherein 'A' or 'linking group,' represents any atom or group that can attach a chelating agent and graphene oxide. Common structures include ·(CH2)m-, -NH-, -S-, -〇 _Si(_OR丨)2(CH2)m_, _c(=〇) 〇(CH2)m, -C(=0)-NH-^-C(=〇)-NH-(CH2)m- . .〇 (=〇). , -〇(=〇).〇- ' -C(=0)-N-, -P(=〇)2_〇_ ; where the claw is ", Rl means ^ or heart 5 alkyl. Wherein, "A" represents HO-(CH2)m-, H-NH-, HS-, H-0-Si(-0R')2(CH2)m- > -C(=0)-〇(CH2 )m- > -C(=〇)_nH- ' C(=0)-NH_(CH2)m-, h〇-C(=〇)_, h〇-C(=〇)-〇-, H0 -C(=0)-N-, HO-P(=〇)2-〇_; mgM2, R>H, alkyl, aryl, alkene, alkyne, amine or hydroxyl. Among them, the amine group and the carboxy group may be a substituent of an alkyl group and an aryl group. The optimized ruler 1 is 11, or the Ci_c port ’ base is more optimized R1 is Η, or CrC4 alkyl. Wherein 'integrator group or "B" means that any hydrazine having a coordination function is bonded to the surface of the graphene oxide (4) via a linker IS "A", which may first form a covalent bond compound with A and then As a starting material, it is connected to the thin surface of the graphite oxide by a synthesis reaction. Wherein "Shi Xixuan," refers to a Shi Xiyuan compound containing the structure of Y_(CH2)m_Si_X3, n=1~2; x is a hydrolyzable group; Y is an organic functional group, such as a chelating agent group X is usually a chloro group, an oxy group, an ethoxy group, a methoxyethoxy group, an acetoxy group, etc. 'These groups are hydrolyzed to form a linalool (10) (4) 3), and combined with the oxidized stone money Oxygen-burning. γ is an ethylene group, an amino group, a ring 11 201226315 oxy group, a decyl acryloyloxy group, a fluorenyl group or a ureido group. These reactive groups can be reacted with an organic substance to bind. Therefore, 'by coupling with Shi Xiyuan The agent can bridge the "molecular bridge" between the interface of the inorganic substance and the organic substance, and connect two materials with different properties to improve the performance of the composite material and increase the bonding strength. The optimization scheme of the invention, oxidation Graphene contains _COOH, -OH and -〇-groups are mainly _C00H, or _〇H groups. The optimal ratio of a basic graphene unit to a work flb group is 1: 0.00001 to 1: 0.5 The more optimized ratio is 1: 0.0001 to 1: 0.35, the more optimized ratio is 1: o.ooo^H : 0.32 The ratio of 'optimized is 1: 〇〇〇1 to 1: 〇3, the ratio of optimization is 1. 0.0005 to 1: 〇·25, the ratio of optimization is 1: 0 01 to 1: 〇2, more optimized The ratio is 1: 〇.〇2 to 1: 0.15. The improved linking group in the optimization scheme of the present invention is -O-SK-OR1)2·, where 'r1 is fluorene, alkyl, aryl, alkene An alkyne group, an amine group, a hydroxyl group, which allows the amine group or hydroxyl group to be optimized as an aryl group or an alkyl group. The alkyl group in the optimization scheme of the present invention comprises a linear or branched alkane having a length of CVC! a linear alkyl group of 8, or a cycloalkyl group of (c4-c8). The aryl group in the optimization scheme of the present invention includes a phenyl group, a tolyl group, a naphthyl group, a phenanthrenyl group or a pyridyl group. Substituted groups include straight-chain or branched (Ci_c6)-alkyl compound '(CVC7)-cycloalkyl compounds, straight or branched (Ci_c6)-alkoxy, hydroxy, amine, and CrC6) alkylamine, nitroalkane, or cyanoquinone to the rare sulfonic acid group, available ethylene or propyl group. For the alkynyl group, acetylene group can be used. The optimized group is R1 'where r is a burning group Better group R is 11 or (: 1-(: 4 leucoyl), and chelating agent may be replaced by _〇r. 12 201226315 The chelating agent in the optimization scheme of the present invention is a compound including the following groups or their salts, "mm" is 1-12, and more optimized mm is 1-4. Another optimized product is CrC12 alkyl-linked ethylenediaminetriacetic acid, diethyltriaminetetraacetic acid and their salts.

乙二胺三乙酸 二乙烯三胺四乙酸 硝基二乙酸Ethylenediaminetriacetic acid diethylenetriaminetetraacetic acid nitrodiacetic acid

二伸乙三胺 乙二醇三乙酸 下面的例子是對本發明的特殊說明,需要指出的是, 本發明不侷限於例子中的具體描述。本發明具體實例中的 部分和百分比,如果沒有特殊說明,以重量計。 本發明說明書和以下段落所引述的數據範圍,當用於 描述本發明的各項申請專利範圍,比如用於代表一组特定 的性質、測量單位、條件、物理狀態或百分比时,發明者 意在包括此數據範圍内的任何數字和此數據範圍内的任何 子集數或子集數範圍。術語“大約”用於修飾一個變量或和 此變量一起使用時,它表示此變量的數值和數據範圍是在 一定範圍内可變,並且對此科技熟練的人可以在溫度,濃 13 201226315 度,數量,内容,碳數和物理性能的數據範圍以外使用本 發明也可達到本發明預期效果,如好的溶解度,較高的金 屬離子吸附容量等等。 為了更充分地描述本發明涉及領域的技術水平,此專 利申請引用各種參考文獻和出版物。這些參考文獻和出版 物中講述的内容也已納入本專利申請。本發明中的過渡術 S吾‘包括’是“包含”,“包括”或者“表徵”的同義詞。此術語是 包容和開放式的,它允許加入額外的未申明的條件及方法 步驟。 例1預處理石墨的製備 氧化石墨烯利用改進的Hummer方法由石墨製得。石墨 粉末首先由硫酸氧化,將O.lg、〇.5g、lg、5g和l〇g石墨粉 末首先分散到1、5、1 〇、5〇和1 〇〇mi濃硫酸中,然後分別加 入0.1、0.5、1、5和 20g過硫酸鉀(k2S208)和 2、5、10、15 和20g五氧化二磷(P2〇5”混合物在2〇〜90°C保持1〜24小 時,然後’混合物降到室溫後用l〇〇m卜250m卜500m卜1.0 和2·0升二次蒸餾去離子水稀釋後放過夜。混合物過濾後以 蒸餾水洗滌後,乾燥即得到預氧化石墨。 例2氧化石墨烯粉末製備 取O.lg、0_5g、lg、5g和50g例1中的預氧化石墨樣品, 分別放入lml、5ml、l〇ml、20ml和50ml冷濃硫酸(0。〇中。 然後加入〇.lg、〇.5g、lg、5g和50gKMnO4,註意溶液反應 溫度控制在20°C以下。混合物在攪拌下加熱到25°C〜95 °C,在此溫度下攪拌反應4小時後,用10、50、100、200和 14 201226315 5〇〇ml蒸館水稀釋。稀釋液在〜抓過夜 。然後加入過量 的条鶴水。授拌過夜,然後加人5G、25G、5GG' 100G和2500ml 蒸鶴水。h後加入i、5、1〇、2〇和5_ 3〇〇/。H2〇2。混合物 顏色炎為冗頁。反應物過濾後,以0.1M鹽酸洗滌後以蒸餾 水洗滌,乾燥後得氧化石墨烯粉末。 例3 EDTA-氧化石墨烯的製備 將1、2、5、10和100毫克氧化石墨烯加入三頸燒瓶, 然後加入10、20、50、1〇〇和5〇〇毫升曱醇或乙醇,超聲處 理1〜60分鐘。然後加入1〜50毫升0.1〜15。/。己烷,乙腈, 或乙醇的N-(三甲氧基矽基丙基)乙二胺三乙酸和其鈉鹽溶 液,30〜85t攪拌1〜48小時即可完成矽烷化過程。反應完 成後,加入100毫升水,乙醇和甲醇,中和未反應的矽烷。 (三甲氧基矽基丙基)乙二胺三乙酸修飾的氧化石墨烯可由 過濾、曱醇、水和鹽酸洗滌等一系列步驟後得到EDTA修飾 氧化石墨烯(EDTA-GO)。 例4 EDTA-還原氧化石墨稀的製備 將EDTA修飾氧化石墨烯還原為還原EDTA修飾氧化石 墨烯,100毫克EDTA修飾氧化石墨烯真空乾燥1_36小時, 然後溶於10-500毫升水,然後加入聯肼,EDTA修飾氧化石 墨烯即被還原為EDTA修飾還原氧化石墨烯(EDTA-RGO)。 還原後溶液顏色由棕色變為黑色。EDTA修飾還原氧化石墨 稀可由過濾、甲醇、水和鹽酸洗務後得到EDTA修飾還原氧 化石墨烯(EDTA-RGO)。Diethylenetriamine Ethylene glycol triacetic acid The following examples are specific to the invention, and it should be noted that the invention is not limited to the specific description in the examples. Portions and percentages in the specific examples of the invention are by weight unless otherwise indicated. The scope of the data recited in the present specification and the following paragraphs, when used to describe the scope of the various claims of the present invention, such as to represent a particular set of properties, units of measure, conditions, physical state or percentage, the inventor intends Includes any number within this data range and any subset or subset number range within this data range. The term "about" is used to modify a variable or when used with this variable, it means that the value and data range of this variable is variable within a certain range, and that the skilled person can at temperature, rich 13 201226315 degrees, The intended effects of the present invention can also be achieved by using the present invention in addition to the data ranges of quantity, content, carbon number and physical properties, such as good solubility, higher metal ion adsorption capacity and the like. In order to more fully describe the state of the art in the field to which this invention pertains, this patent application references various references and publications. The contents described in these references and publications are also incorporated herein by reference. The transitions in the present invention are included as synonyms for "including", "including" or "characterizing". This term is inclusive and open, allowing for the addition of additional undeclared conditions and method steps. Example 1 Preparation of Pretreated Graphite Graphene oxide was produced from graphite using a modified Hummer method. The graphite powder is first oxidized by sulfuric acid, and the graphite powders of O.lg, 〇.5g, lg, 5g and l〇g are first dispersed into 1,5, 1 〇, 5 〇 and 1 〇〇mi concentrated sulfuric acid, and then 0.1 respectively. , 0.5, 1, 5 and 20 g of potassium persulfate (k2S208) and 2, 5, 10, 15 and 20 g of phosphorus pentoxide (P2〇5" mixture are maintained at 2 〇 to 90 ° C for 1 to 24 hours, then 'mixture After descending to room temperature, it was diluted with deionized water with l〇〇m b 250m b 500m b 1.0 and 2.0 liters, and left overnight. The mixture was filtered, washed with distilled water, and dried to obtain pre-oxidized graphite. The graphene powder was prepared by taking O.lg, 0_5g, lg, 5g and 50g of the sample of pre-oxidized graphite in Example 1 and placing them in 1ml, 5ml, 10ml, 20ml and 50ml of cold concentrated sulfuric acid (0. Lg.lg, 〇.5g, lg, 5g and 50gKMnO4, note that the solution reaction temperature is controlled below 20 ° C. The mixture is heated to 25 ° C ~ 95 ° C under stirring, and the reaction is stirred at this temperature for 4 hours, 10, 50, 100, 200, and 14 201226315 5〇〇ml steaming water diluted. Dilutate in ~ catch overnight. Then add an excess of crane water. Then add 5G, 25G, 5GG' 100G and 2500ml steamed crane water. After h, add i, 5, 1〇, 2〇 and 5_ 3〇〇 /. H2〇2. The color of the mixture is redundant. After the reaction is filtered, After washing with 0.1 M hydrochloric acid, washing with distilled water and drying to obtain graphene oxide powder. Example 3 Preparation of EDTA-graphene oxide 1, 2, 5, 10 and 100 mg of graphene oxide were added to a three-necked flask, and then 10, 20, 50, 1 〇〇 and 5 〇〇 ml of sterol or ethanol, sonicated for 1 to 60 minutes. Then add 1 to 50 ml of 0.1 to 15 hexane, acetonitrile, or ethanol N-(trimethoxy)矽 propyl) ethylenediamine triacetic acid and its sodium salt solution, 30~85t stirring for 1~48 hours to complete the decaneization process. After the reaction is completed, add 100 ml of water, ethanol and methanol to neutralize unreacted decane. (Trimethoxydecyl propyl) ethylenediamine triacetic acid modified graphene oxide can be obtained by a series of steps such as filtration, decyl alcohol, water and hydrochloric acid to obtain EDTA modified graphene oxide (EDTA-GO). Example 4 EDTA - Reduction of reduced graphite oxide to reduce EDTA modified graphene oxide to reduced EDTA modified oxygen Graphene, 100 mg EDTA modified graphene oxide was vacuum dried for 1 to 36 hours, then dissolved in 10-500 ml of water, and then added to hydrazine, and EDTA modified graphene oxide was reduced to EDTA modified reduced graphene oxide (EDTA-RGO). After the reduction, the color of the solution changed from brown to black. EDTA modified reduced graphite oxide was diluted by filtration, methanol, water and hydrochloric acid to obtain EDTA modified reduced graphene oxide (EDTA-RGO).

S 15 201226315 例5石墨烯材料的紅外光譜 取氧化石墨烯(GO)、還原氧化石墨烯(RGO)、EDTA-氧化石墨烯(EDTA-GO)和EDTA修飾氧化石墨烯 (EDTA-RGO)粉末分別和KBr混合壓片,用付利葉變換紅外 光譜儀在500〜^OOcnT1範圍内進行紅外分析,其紅外光譜 如第8圖。 例6 氧化石墨烯(GO)、還原氧化石墨烯(RGO)、EDTA-氧化 石墨烯(EDTA-GO)和EDTA修飾氧化石墨烯(EDTA-RGO)材 料的電鏡照片由 JEOL 2010F microscope(JEOL Ltd., Japan) 得到。第10圖是一張單層的EDTA-GO在超平整的金膜表面 的照片。樣品的製作是把一滴稀釋的EDTA-GO和 EDTA-RGO懸浮液滴到基底表面(1小時超聲處理)。 EDTA-RG大小從幾十納米到幾百微米不等。EDTA-RGO表 現出透光性,並在邊角處折疊。並可發現在其表面一些小 的碎片。表明可溶性的EDTA-RG◦和其從石墨烯表面剝落 的一樣的結構。透射電鏡被用來表徵每一步的結構變化和 表面形態。 例7 EDTA-RGO和EDTA-GO可以用紅外光譜來表徵, EDTA-RGO、EDTA-GO ' GO和RGO的紅夕卜光譜如第8圖。 通過比較EDTA-GO和EDTA-RGO的光譜圖與GO和RGO的 光譜圖,幾個新的紅外吸收峰可以證明是石墨烯表面矽烷 16 201226315 的存在。其中,丑0丁八-00和£0丁八-1^0光譜中,在2917和 2800CHT1處的兩個新的吸收峰歸於亞甲基的震動吸收,這 個亞甲基來自EDTA-silane矽烷,另外,在 1401〇111-1(已0丁八-00)和 1409〇111-1(£0丁八-1^}〇)出的吸收峰 歸於丑0丁入的r CH2基團。通過矽烷化後,EDTA鏈上的離子 化缓基可通過EDTA-GO紅外光譜在1628〇111-1·處的新峰來 確定。這個特徵峰可以在EDTA-GO和EDTA-RGO樣品中得 到。同時’ EDTA-GO紅外光譜在694cm·1的吸收峰歸於 Si-O-C的伸縮振動。當EDTA_G0被聯肼還原後, 納米處的吸收峰移動到712(^-1處(EDTA-RGO)。另外 EDTA-GO紅外光譜在923cm·1的吸收峰和EDTA-RG◦紅外 光譜中的856cm·1的吸收峰對應KSi_〇H振動吸收。另外 EDTA-RGO光譜中的1066cm·1處的吸收峰歸於Si_〇_c。在所 有的四種物質中,羧基的存在由吸收峰證實同 時’ 1732cm·1處的吸收峰是缓基或幾基的(c=〇)伸縮峰。該 峰存在於四種化合物中。(3〇紅外光譜中的卿咖-丨處的吸 收峰和咖在测⑹出的吸收峰歸於減的對稱振動吸 收。這個穩定的吸收峰表明石墨稀的絲和縣不能夠被 還原為C-OH。EDTA.GQ紅外光譜中的i⑶啦.,處的吸收峰 和⑽紅外光射賴7Gem.%的讀峰表•祕的表面 的壞氧基。當經過聯肼還原後,EDTa_g〇紅外光譜中的 U2(W處的吸收峰和G〇紅外光譜中的晒^處的吸收 ^肖失,表明還原過程將石墨晞表面的環氧基轉變成η共 輕鍵。這種結論同樣被X_ray證明。我們將隨後討論。S 15 201226315 Example 5 Infrared spectra of graphene materials taken from graphene oxide (GO), reduced graphene oxide (RGO), EDTA-graphene oxide (EDTA-GO) and EDTA modified graphene oxide (EDTA-RGO) powders, respectively The mixture was compressed with KBr, and analyzed by infrared analysis using a Fourier transform infrared spectrometer in the range of 500 to OOcnT1, and the infrared spectrum was as shown in Fig. 8. Example 6 Electron micrographs of graphene oxide (GO), reduced graphene oxide (RGO), EDTA-graphene oxide (EDTA-GO) and EDTA modified graphene oxide (EDTA-RGO) materials by JEOL 2010 F microscope (JEOL Ltd. , Japan) Get. Figure 10 is a photograph of a single layer of EDTA-GO on an ultra-flat gold film surface. The sample was prepared by dropping a drop of diluted EDTA-GO and EDTA-RGO onto the surface of the substrate (1 hour sonication). EDTA-RG sizes range from tens of nanometers to hundreds of microns. EDTA-RGO exhibits light transmission and folds at the corners. Some small fragments can be found on the surface. It shows that the soluble EDTA-RG◦ has the same structure as its surface peeling off from the graphene. Transmission electron microscopy was used to characterize the structural changes and surface morphology of each step. Example 7 EDTA-RGO and EDTA-GO can be characterized by infrared spectroscopy, and the red radiance spectra of EDTA-RGO, EDTA-GO 'GO and RGO are as shown in Fig. 8. By comparing the spectra of EDTA-GO and EDTA-RGO with the spectra of GO and RGO, several new infrared absorption peaks can be demonstrated by the presence of graphene surface decane 16 201226315. Among them, in the ugly 0 D8-00 and £0 D8-^^0 spectra, the two new absorption peaks at 2917 and 2800 CHT1 are attributed to the shock absorption of the methylene group, which is derived from EDTA-silane decane. In addition, the absorption peaks at 1401〇111-1 (have 0 D8-00) and 1409〇111-1 (£0丁八-1^}〇) are attributed to the r CH2 group which is ugly. After decaneization, the ionizing buffer on the EDTA chain can be determined by the new peak at 1628〇111-1· of the EDTA-GO infrared spectrum. This characteristic peak can be obtained in EDTA-GO and EDTA-RGO samples. At the same time, the absorption peak of the EDTA-GO infrared spectrum at 694 cm·1 is attributed to the stretching vibration of Si-O-C. When EDTA_G0 is reduced by hydrazine, the absorption peak at the nanometer moves to 712 (^-1 (EDTA-RGO). In addition, the infrared spectrum of EDTA-GO is 923 cm·1 and 856 cm in EDTA-RG◦ infrared spectrum. The absorption peak of 1 corresponds to KSi_〇H vibration absorption. In addition, the absorption peak at 1066 cm·1 in the EDTA-RGO spectrum is attributed to Si_〇_c. Among all four substances, the presence of carboxyl group is confirmed by the absorption peak simultaneously. The absorption peak at '1732 cm·1 is a slow or a few (c=〇) stretching peak. This peak is present in four compounds. (3〇 In the infrared spectrum, the absorption peak and the coffee in the 咖--丨The absorption peak measured by (6) is attributed to the reduced symmetrical vibration absorption. This stable absorption peak indicates that the graphite-rich filament and the county cannot be reduced to C-OH. The absorption peak at i(3) in the infrared spectrum of EDTA.GQ (10) Infrared light strikes 7Gem.% of the read peak table • The bad oxy group on the surface of the secret. When reduced by hydrazine, U2 in the infrared spectrum of EDTa_g〇 (the absorption peak at W and the infrared spectrum in G〇 infrared spectrum ^ The absorption at the point is Xiao, indicating that the reduction process converts the epoxy group on the surface of the graphite crucible into a η total light bond. This conclusion is also X_ray. Proof. We will discuss it later.

S 17 201226315 例8 lmg/ml 的 GO、RGO、EDTA-GO和 EDTA-RGO 的石墨 烯懸浮液用傳統方法得到。第9a和b圖是l.Omg/ml GO和 RGO在水中超聲製備1.5小時後的懸浮液。GO懸浮液如同其 他文獻報導一樣,是非常穩定的。RGO在水中的穩定性非 常差,12小時後其全部沈到底部。這種沈澱是由於RGO的 相互聚集及親水性基團的消失。第9c和d圖是1.0mg/ml EDTA-GO和EDTA-RGO在水中超聲製備1.5小時後的懸浮 液。EDTA-GO和EDTA-RGO在水中的是非常穩定的。特别 是EDTA-RGO溶液,1.5小時没有相分離情况,EDTA-RGO 溶液存放3個月無沈澱產生。 例9 第10a和b圖是不同濃度的EDTA-RGO和EDTA-GO懸 浮液的照片,這是製備三周後的照片。溶液濃度從0.019到 〇.3mg/ml。溶液顏色隨濃度加大而逐步加深。EDTA-GO溶 液是淺棕色,而褐色的EDTA-RGO溶液證明還原過程可以 恢復石墨烯的共輊結構。EDTA的存在增加了石墨烯在水中 的穩定性,使我們可以利用紫外光譜分析EDTA-RGO溶液 的紫外吸附特性。其紫外光譜從不同濃度的EDTA-RGO和 EDTA-GO溶液中測得(從〇,〇i9mg/ml到0.30mg/ml),光波為 200到600納米。EDTA-RGO溶液有一個清晰的吸收曲線, 其峰值為280nm ’並一直拖尾到800nrn。和EDTA-RGO相 比’ EDTA-GO溶液的峰值吸收在23〇nm,EDTA-RGO的峰 值吸收280nm紅移。峰值吸收強度和濃度成正比。作為對 18 201226315 照’ EDTA-GO溶液的吸收曲線不對稱,且隨浪度增加而跳 躍性增加,其峰值為230nm,拖尾到800nm。峰值吸收強度 和EDTA-G◦濃度成正比。 例10 EDTA-GO的一個用處是在環境保護中用于重金屬離 子的去除,其對重金屬離子的吸附容量通過把EDTA-GO和 金屬離子溶液混和來測定。因為船是最常見的環境污染 物,其對鉛離子的吸附容量通過把EDTA-GO和鉛離子溶液 混和來測定。實驗發現,EDTA-GO對錯有較大的吸附容 量。在典型的實驗中,EDTA-GO和不同的鉛混合物混合。 本發明優化方案中的吸附試驗通過混合1〜2〇〇毫克 EDTA-GO與100 mL含不同金屬離子的溶液進行。金屬離子 的初始濃度從0.01卩口111到5000卩卩111,卩1^值在2.5〜10.5(以 NH4C1-NH3 ’ NaAc- HAc,和礙酸鹽緩沖液調節)。混合液 保持1到64小時後用0.2μιη孔徑的膜過濾。過濾後的GO用 SEM EDAX檢測。過濾後的溶液可利用紫外(ICP)和aaS檢 測粒子濃度。吸附容量qe(mg/g EDTA-GO)用以下方法得到 qe=[(Ci-cf)v/w];其中’ q和cf是金屬離子的起始和最終 的濃度(mg/ml),V(ml)是溶液體積w(g)是EDTA-GO重量。 pH值對吸附的影響利用同樣的步驟,但pH值為3.〇、4.5、 5.5、7.2和8.2。所有的試驗用〇.2μιη膜過濾。 本發明中以及其他被使用為商業產品的材料的吸附能 力已在表1列出。另外’表1列出一些EDTA-GO和其他重金 屬如銅(II) ’鋅(II),汞(II)等的能力。這些測試是通過混合 3^ 19 201226315 EDTA-GQ和不同的重金屬溶液所得到的並且測試結 下表1列出。 σ 表1 與樹脂相比較,由EDTA修飾的氧化石墨烯對不同重金 屬的吸附能力S 17 201226315 Example 8 A graphene suspension of 1 mg/ml of GO, RGO, EDTA-GO and EDTA-RGO was obtained by a conventional method. Figures 9a and b are suspensions of 1.0 mg/ml GO and RGO after ultrasonic preparation in water for 1.5 hours. GO suspensions are very stable, as reported in other literature. The stability of RGO in water is very poor and it sinks to the bottom after 12 hours. This precipitation is due to the mutual aggregation of RGO and the disappearance of hydrophilic groups. Figures 9c and d are suspensions of 1.0 mg/ml EDTA-GO and EDTA-RGO after ultrasonic preparation for 1.5 hours in water. EDTA-GO and EDTA-RGO are very stable in water. In particular, the EDTA-RGO solution had no phase separation for 1.5 hours, and the EDTA-RGO solution was stored for 3 months without precipitation. Example 9 Figures 10a and b are photographs of different concentrations of EDTA-RGO and EDTA-GO suspensions, which are photographs after three weeks of preparation. The solution concentration was from 0.019 to 3.3 mg/ml. The color of the solution gradually deepens as the concentration increases. The EDTA-GO solution was light brown, while the brown EDTA-RGO solution demonstrated that the reduction process restored the conjugated structure of graphene. The presence of EDTA increases the stability of graphene in water, allowing us to analyze the UV adsorption characteristics of EDTA-RGO solutions using UV spectroscopy. The UV spectrum was measured from different concentrations of EDTA-RGO and EDTA-GO solutions (from 〇, 〇i9 mg/ml to 0.30 mg/ml), and the light wave was 200 to 600 nm. The EDTA-RGO solution has a clear absorption curve with a peak at 280 nm' and is always tailed to 800 nrn. Compared with EDTA-RGO, the peak absorption of the EDTA-GO solution was at 23 〇 nm, and the peak value of EDTA-RGO was red shifted by 280 nm. The peak absorption intensity is proportional to the concentration. As the absorption curve of the 18 201226315 photo EDTA-GO solution is asymmetrical, and the jump increases with the increase of the wave length, the peak value is 230 nm, and the tailing is 800 nm. The peak absorption intensity is proportional to the EDTA-G◦ concentration. Example 10 One use of EDTA-GO is for the removal of heavy metal ions in environmental protection, and the adsorption capacity for heavy metal ions is determined by mixing EDTA-GO with a metal ion solution. Since the ship is the most common environmental pollutant, its adsorption capacity for lead ions is determined by mixing EDTA-GO with a lead ion solution. The experiment found that EDTA-GO has a large adsorption capacity for the right and wrong. In a typical experiment, EDTA-GO is mixed with a different lead mixture. The adsorption test in the optimization scheme of the present invention was carried out by mixing 1 to 2 mg of EDTA-GO with 100 mL of a solution containing different metal ions. The initial concentration of metal ions is from 0.01 to 111 卩卩 111, and the value of 卩1 is 2.5 to 10.5 (adjusted with NH4C1-NH3 'NaAc-HAc, and the buffer solution). The mixed solution was kept for 1 to 64 hours and then filtered through a membrane having a pore size of 0.2 μm. The filtered GO was detected by SEM EDAX. The filtered solution can be used to detect particle concentrations using ultraviolet (ICP) and aaS. The adsorption capacity qe (mg/g EDTA-GO) was obtained by the following method qe = [(Ci-cf) v / w]; where 'q and cf are the starting and final concentrations (mg/ml) of the metal ion, V (ml) is the solution volume w (g) is the EDTA-GO weight. The effect of pH on adsorption is the same, but the pH values are 3.〇, 4.5, 5.5, 7.2 and 8.2. All experiments were filtered using a μ2μιη membrane. The adsorption capacities of the materials of the present invention and other materials used as commercial products are listed in Table 1. In addition, Table 1 lists some of the EDTA-GO and other heavy metals such as copper (II) 'zinc (II), mercury (II) and the like. These tests were obtained by mixing 3^19 201226315 EDTA-GQ with different heavy metal solutions and the test results are listed in Table 1 below. σ Table 1 Adsorption capacity of EDTA-modified graphene oxide for different heavy metals compared with resin

例11 EDTA-GO的另-個用途是燃料電池,因為其具有極高 的化學穩疋性和杈大比表面積,氧化石墨烯及其衍生物可 用作表面合成催化材料及載體,許多科學家已經發現石墨 烯可用作燃料電池的催化劑載體。氧化石墨稀負載的pt、 Ru、Pt和Ru合金’對甲醇氧化表現出極高的催化特性。 本發明優化方案中的合成方法包括:將Q1毫克到丄克 EDTA-GO粉末分散到1〜1〇〇mi乙二醇中超聲5〜3〇分鐘 後,加入7.4mgH2PtCl6,然後攪拌2小時後,以K〇H調節溶 液pH到13 ’然後在13〇。(:回流3小時,過渡固體,以水沖洗 後在80°C乾燥12小時。 20 201226315 合成螯合劑修飾的石墨烯負載的Pt_Ru納米粒子的方 法同上’只是加入7.4mgH2PtCl6和7_4mgRuCl3的混合物。 為評估EDTA-GO/Pt催化劑對曱醇氧化電化學催化的 特性’循環伏安法用於研究EDTA-GO/Pt催化劑修飾電極對 曱醇氧化的催化過程。試驗在含0.5M曱醇1.0M的硫酸溶液 中進行。 第12圖是EDTA-GO/Pt催化劑對曱醇氧化的催化循環 伏安圖。在循環伏安圖中可觀察到典型的曱醇催化氧化 峰:在0.67V和0.42V的兩個氧化峰,分別對應於曱醇氧化 峰和中間體氧化峰。循環伏安圖中的前氧化峰(If)和回氧化 峰(lb)的峰電流比率疋评估催化效果的關鍵常數。一般而 言’咼的If/Ib值表明甲醇氧化較為完全,即甲醇可被完全變 成二氧化碳’而低的^/^值表明甲醇氧化不完全,即甲醇被 變成中間體。從另一方面,這個比率是評估催化劑對氧化 中間物毒性的耐毒化能力。從循環伏安圖中可以看到, EDTA-GO/Pt催化劑的If/Ib值為2.45(20圈掃描),這個數值和 傳統的GO/Pt催化劑的(If/Ib值:0.73〜1.26)及CNTs/Pt催化 劑(If/Ib值:0.5〜1.2)相比高了許多。這個高^“值表明曱醇 在催化劑表面一步即可被完全氧化為二氧化碳。表明 EDTA-GO/Pt催化劑對甲醇的氧化催化有較高的催化活 性。這種結果表明,石墨稀表面的EDTA基團可明顯地增加 鉑催化劑的催化活性和穩定性,EDTA-GO/Pt表面結構可以 明顯降低CO對麵催化劑的毒化。在本發明中,EDTA-GO/Pt 的 If/Ib是2〜2.5,這比GO/Pt和 CNT/Pt的 If/Ib(〇.73〜1·3)值高 21 201226315 許多,表明較好的催化特性。 例12 分子式為R-(CH2)m-Si-X3-矽烷化合物可用作修飾氧化 石墨烯,其中,X和R為上述的甲基、氣曱基、苯甲基、乙 烯基和胺基。其中,X為要和氧化石墨烯反應的基團,反應 過程中,X和矽原子之間的鍵被氧化石墨烯和矽原子之間的 鍵取代。一般,X為容易水解基圑,如烷氧基、酰氧基、胺 基、氣。最常見的是甲氧基、乙氧基,它們在鍵合過程中 可以釋放出曱醇和乙醇。Example 11 Another use of EDTA-GO is fuel cells. Because of its high chemical stability and large specific surface area, graphene oxide and its derivatives can be used as surface synthesis catalytic materials and carriers. Many scientists have Graphene was found to be useful as a catalyst carrier for fuel cells. The pt, Ru, Pt and Ru alloys, which are supported by graphite oxide, exhibit extremely high catalytic properties for methanol oxidation. The synthesis method in the optimization scheme of the present invention comprises: dispersing Q1 mg to gram EDTA-GO powder in 1~1 〇〇mi ethylene glycol for 5~3 〇 minutes, adding 7.4 mg of H2PtCl6, and then stirring for 2 hours, The pH of the solution was adjusted to 13 ' with K〇H and then at 13 〇. (: reflux for 3 hours, transition solid, rinsed with water and dried at 80 ° C for 12 hours. 20 201226315 Synthesis of chelating agent-modified graphene-supported Pt_Ru nanoparticles as above. Just add a mixture of 7.4 mg of H2PtCl6 and 7-4 mg of RuCl3. EDTA-GO/Pt Catalysts for Electrochemical Catalytic Oxidation of Furfuryl Alcohols' Cyclic Voltammetry for Studying the Catalytic Process of EDTA-GO/Pt Catalyst Modified Electrode for Oxidation of Sterols. Experiment with Sulfuric Acid Containing 0.5 M of Sterol The solution is carried out in solution. Figure 12 is a catalytic cyclic voltammogram of EDTA-GO/Pt catalyst for sterol oxidation. Typical sterol catalytic oxidation peaks can be observed in cyclic voltammograms: two at 0.67V and 0.42V The oxidation peaks correspond to the sterol oxidation peak and the intermediate oxidation peak, respectively. The peak current ratio of the pre-oxidation peak (If) and the oxidization peak (lb) in the cyclic voltammogram 疋 evaluate the key constant of the catalytic effect. The If/Ib value of 咼 indicates that methanol oxidation is more complete, that is, methanol can be completely converted to carbon dioxide' and the low value of ^/^ indicates that methanol oxidation is incomplete, that is, methanol is turned into an intermediate. On the other hand, this ratio is To evaluate the resistance of the catalyst to the toxicity of the oxidizing intermediate. As can be seen from the cyclic voltammogram, the If/Ib value of the EDTA-GO/Pt catalyst is 2.45 (20 scans), this value and the conventional GO/Pt catalyst. The (If/Ib value: 0.73 to 1.26) and the CNTs/Pt catalyst (If/Ib value: 0.5 to 1.2) are much higher than this. The high value indicates that the sterol can be completely oxidized to one step on the catalyst surface. Carbon dioxide indicates that the EDTA-GO/Pt catalyst has high catalytic activity for the oxidation of methanol. This result indicates that the EDTA group on the graphite thin surface can significantly increase the catalytic activity and stability of the platinum catalyst, EDTA-GO/ The surface structure of Pt can significantly reduce the poisoning of the CO-side catalyst. In the present invention, the If/Ib of EDTA-GO/Pt is 2 to 2.5, which is better than the If/Ib of GO/Pt and CNT/Pt (〇.73~1). · 3) High value 21 201226315 Many, indicating better catalytic properties. Example 12 The formula R-(CH2)m-Si-X3-decane compound can be used as a modified graphene oxide, wherein X and R are the above-mentioned a base, a gas sulfhydryl group, a benzyl group, a vinyl group, and an amine group, wherein X is a group to be reacted with graphene oxide During the reaction, the bond between the X and the ruthenium atom is replaced by a bond between the graphene oxide and the ruthenium atom. In general, X is an easily hydrolyzable hydrazine such as an alkoxy group, an acyloxy group, an amine group, or a gas. Common are methoxy and ethoxy groups which release sterols and ethanol during the bonding process.

通過矽烷化製取EDTA-石墨烯Preparation of EDTA-graphene by oximation

通過矽烷化製取EDTA-石墨烯 22 201226315 乙二銨三乙酸修飾的石墨烯的性質,作爲一種水溶性 群組,可以增加石墨烯在水中的溶解度。這一結果有利於 製備石墨烯衍生物及以石墨烯為基礎的合成物。 例13 例10令的矽烷化試劑被乙二胺三乙酸、硝基二乙酸、 二乙烯三胺四乙酸、乙二醇三乙酸所取代從而製造出相應 的螯合劑修飾的氧化石墨烯。 例14 氧化石墨烯可以由下面的反應活化。Preparation of EDTA-graphene by decaneization 2012 201215 The properties of EDTA-modified graphene, as a water-soluble group, can increase the solubility of graphene in water. This result is advantageous in the preparation of graphene derivatives and graphene-based compositions. Example 13 The decylating agent of Example 10 was substituted with ethylenediaminetriacetic acid, nitrodiacetic acid, diethylenetriaminetetraacetic acid, and ethylene glycol triacetic acid to produce a corresponding chelating agent-modified graphene oxide. Example 14 Graphene oxide can be activated by the following reaction.

EDTA-Silane 例15EDTA-Silane Example 15

j ] Jj ] J

〇> T S %〇> T S %

OHOH

螯合劑修飾的石墨烯可由下面的反應合成,其中,G 是氧化石墨烯,B是螯合劑,其中,X是-OR1; R1是Η或CrC12 烧基;m為1-12。 23 201226315 h2n,The chelating agent-modified graphene can be synthesized by the following reaction, wherein G is graphene oxide, B is a chelating agent, wherein X is -OR1; R1 is hydrazine or CrC12 alkyl; m is 1-12. 23 201226315 h2n,

IB + 〇 One q II step ij G—C—OH = q—0 u I : H inIB + 〇 One q II step ij G—C—OH = q—0 u I : H in

m HOm HO

+ q Two II steps G—C—OH = q+ q Two II steps G—C—OH = q

i·; H? ; "i >C fGHi r-B 〇< i ; H3CO H3C〇—Si h3go/i·; H? ; "i >C fGHi r-B 〇<i; H3CO H3C〇—Si h3go/

G-OHG-OH

Two stepsTwo steps

A 例16 本發明發展了一種利用化學修飾過程來功能化氧化石 墨烯的技術與方法,特徵基圑為N-(三曱氧基矽基丙基)乙二 胺三乙酸和其鈉鹽(EDTA),EDTA通過共價鍵連接到石墨 烯上,這種修飾的化合物可以溶於水、四氫呋喃、乙二醇, 形成單層石墨烯溶液。而且這種物質有多種用處。 例17 本發明發展了 一種製備氧化石墨烯衍生物的方法,可 通過矽烷化試劑和酰胺基實現,其相應的應用也同時被發 展。起始物質為石墨烯、氧化石墨烯、和還原氧化石墨烯, 其層數為一層到多層,厚度為0.1納米到0.1毫米,大小為10 納米到1厘米,功能化基團為EDTA和其他螯合劑。 功能化基團,EDTA或螯合劑,一般是有機化合物,也 可稱為配體,配位試劑可以和金屬離子形成可溶於水的配 合物。這些配合物可和單個金屬離子通過多齒螯合劑形成 超過兩個以上的配位鍵。 24 201226315 利用矽烷化連接EDTA基團到氧化石墨烯表面的化學 技術如第1,2圖和第7圖所述。本發明所述的新的材料或分 子化合物,取決於與起始的石墨烯、氧化石墨烯和還原氧 化石墨烯的結構與性質’如導電性,和EDTA的化學和物理 性質。本發明所述的新的材料或分子化合物能作為新型的 納米材料用於電極材料、超級電容器材料、燃料電池材料、 太陽能電池材料、催化劑材料以及系列的化工材料的黎〗 備、萃取和分離,用於電池、膜過濾。另外,這種材料的 高分散性可以使其和聚合形成聚合物復合材料用於其他茅斤 興材料。 以上描述了本發明的原理’首選實施例以及操作模式 但是’本發明不僅限於以上披露的特定形式。基於本發明 的原理,技術人員可以在本發明的範圍内進行修改。本發 明的基本概念,最佳方案和模式已經被前述。A Example 16 The present invention develops a technique and method for functionalizing graphene oxide using a chemical modification process, characterized by N-(trimethoxymethoxymercaptopropyl)ethylenediaminetriacetic acid and its sodium salt (EDTA) EDTA is attached to graphene by a covalent bond, and the modified compound can be dissolved in water, tetrahydrofuran, ethylene glycol to form a single layer graphene solution. And this substance has many uses. Example 17 The present invention developed a process for preparing a graphene oxide derivative which can be carried out by a decylating agent and an amide group, and the corresponding applications thereof are also developed at the same time. The starting materials are graphene, graphene oxide, and reduced graphene oxide. The layers are one to many layers, the thickness is 0.1 nm to 0.1 mm, the size is 10 nm to 1 cm, and the functional groups are EDTA and other chelate. mixture. Functionalized groups, EDTA or chelating agents, typically organic compounds, may also be referred to as ligands, which form a water-soluble complex with metal ions. These complexes can form more than two coordinate bonds with a single metal ion through a multidentate chelating agent. 24 201226315 Chemical techniques for the attachment of EDTA groups to the surface of graphene oxide by decaneization are described in Figures 1, 2 and 7. The novel materials or molecular compounds of the present invention depend on the structure and properties of the starting graphene, graphene oxide and reductive oxidized graphene, such as electrical conductivity, and the chemical and physical properties of EDTA. The novel materials or molecular compounds of the present invention can be used as novel nanomaterials for the preparation, extraction and separation of electrode materials, supercapacitor materials, fuel cell materials, solar cell materials, catalyst materials, and series of chemical materials. Used for battery and membrane filtration. In addition, the high dispersibility of this material allows it to be polymerized to form polymer composites for use in other Maochen materials. The foregoing has described the principles of the invention as a preferred embodiment and mode of operation but the invention is not limited to the specific forms disclosed. Modifications may be made by those skilled in the art based on the principles of the invention. The basic concepts, best practices and modes of the present invention have been previously described.

C圖式簡單:¾¾明;J 第1圖是氧化石墨烯和還原氧化石墨烯的結構。 第2圖是一個常見石夕朗結構,其一為含配位(絡合)基 團夕烧。 第3圖是個EDTA-矽烷:队(三甲氧基矽基丙基)乙二胺 三乙酸和其鈉鹽的結構。這兩種化合物在本發明中均被縮 寫為 EDTA-silane 〇 第4圖是4種最普通的功能化或螯合劑組群,他們均可 以連接到氧化石墨烯表面。 第5圖是基本的螯合劑連接到氧化石墨烯表面後結構。C is simple: 3⁄43⁄4 明; J Figure 1 is the structure of graphene oxide and reduced graphene oxide. Figure 2 is a common Shi Xilang structure, one of which is a coordination (complexation) group. Figure 3 is a structure of EDTA-decane: team (trimethoxydecylpropyl) ethylenediamine triacetic acid and its sodium salt. Both of these compounds are abbreviated as EDTA-silane in the present invention. Figure 4 is the four most common functional or chelating agent groups that can be attached to the graphene oxide surface. Figure 5 is the structure after the basic chelating agent is attached to the surface of the graphene oxide.

S 25 201226315 第6圖是基本的EDTA修飾氧化石墨烯表面結構。 第7圖是基本的螯合劑在氧化石墨烯表面的修飾過程。 第8圖是基本的還原氧化石墨烯、氧化;^S 25 201226315 Figure 6 is a basic EDTA modified graphene oxide surface structure. Figure 7 is a modification of the basic chelating agent on the surface of graphene oxide. Figure 8 is the basic reduction of graphene oxide, oxidation; ^

^ 孔化石墨烯、EDTA 修飾的還原氧化石墨烯以及EDTA修飾的氧化石墨稀的紅 外圖譜。 第9圖是基本的氧化石墨烯(a)、EDTA修傅的氧化石墨 烯(b)、還原氧化石墨烯(c)、EDTA修飾的還原氧化石墨烯(d) 的水溶液的照片。 第10圖是EDTA-RGO(a)和EDTA-GO(b)在不同濃度水 /谷液的照片。第10(c)和⑷圖是EDTA-RGO(c)和EDTA-GO(d) 紫外光譜。EDTA-RGO和EDTA-GO濃度:1 : 0.0i9mg/ml, 2 : 〇-〇38mg/mi, 3 : 〇.〇75mg/ml > 4 : 0.15mg/ml * 5 : 0.30 mg/ml ° 第U圖是基本的EDTA修飾的氧化石墨烯的電鏡照片。 第12圖是基本的EDTA修飾氧化石墨烯電極催化曱醇 氧化的循環伏安圖。 【主要元件符號說明】 (無) 26^ Porous graphene, EDTA modified reduced graphene oxide and EDTA modified graphite oxide rare infrared spectrum. Fig. 9 is a photograph of an aqueous solution of basic graphene oxide (a), EDTA-modified graphene oxide (b), reduced graphene oxide (c), and EDTA-modified reduced graphene oxide (d). Figure 10 is a photograph of EDTA-RGO(a) and EDTA-GO(b) at different concentrations of water/valley. Figures 10(c) and (4) are EDTA-RGO(c) and EDTA-GO(d) UV spectra. EDTA-RGO and EDTA-GO concentrations: 1: 0.0i9 mg/ml, 2: 〇-〇38 mg/mi, 3: 〇.〇75 mg/ml > 4 : 0.15 mg/ml * 5 : 0.30 mg/ml ° U-graph is an electron micrograph of basic EDTA modified graphene oxide. Figure 12 is a cyclic voltammogram of the oxidative oxidation of sterol by a basic EDTA modified graphene oxide electrode. [Main component symbol description] (none) 26

Claims (1)

201226315 七、申請專利範圍: 1. 一種具有以下結構的螯合劑修飾的氧化石墨烯:其分子 式為 G(AB)X ; 其中G是氧化石墨烯;A是選自具有以下結構的連 接基團:-(CH2)m-、-NH-、-S-、-O-SK-CHJJ-ORi-、 -C(=0)-、-C(=0)-0-、-C(=0)-0(CH2)m-、-C(=0)-NH-、 -C(=0)-NH-(CH2)m-、-P(=0)2-0-;其中,m 為 1-12,R1 為H、或CrC12烷基;B是具有配位功能的螯合劑,其中 基本氧化石墨烯單位對X的比率為1 : 0.00001到1 : 0.5。 2. 如申請專利範圍第1項的螯合劑修飾的氧化石墨烯,其 中氧化石墨烯包含以下基團:-COOH,-OH和-0-。 3. 如申請專利範圍第1項的螯合劑修飾的氧化石墨烯,其 中氧化石墨烯包含以下基團:-COOH,或-OH。 4. 如申請專利範圍第1項的螯合劑修飾的氧化石墨烯,其 中基本氧化石墨烯單位對螯合劑的比率為:1 : 0.00001 到 1 : 0.04。 5. 如申請專利範圍第1項的螯合劑修飾的氧化石墨烯。其 中連接基團為:-O-SiC-OR^M-CH^-;其中R1係指Η或 C1 - C12 烧基 ’ Hi = 1 -12。 6. 如申請專利範圍第5項的螯合劑修飾的氧化石墨烯,其 中R1係指HSCrCt烷基。 7. 如申請專利範圍第1項的螯合劑修飾的氧化石墨烯,其 中螯合劑選自以下基團或其鹽類化合物: S 27 201226315201226315 VII. Patent application scope: 1. A chelating agent modified graphene oxide having the following structure: its molecular formula is G(AB)X; wherein G is graphene oxide; A is selected from a linking group having the following structure: -(CH2)m-, -NH-, -S-, -O-SK-CHJJ-ORi-, -C(=0)-, -C(=0)-0-, -C(=0)- 0(CH2)m-, -C(=0)-NH-, -C(=0)-NH-(CH2)m-, -P(=0)2-0-; wherein m is 1-12 R1 is H or a CrC12 alkyl group; B is a chelating agent having a coordination function in which the ratio of basic graphene oxide units to X is 1: 0.00001 to 1:0.5. 2. The chelating agent modified graphene oxide of claim 1, wherein the graphene oxide comprises the following groups: -COOH, -OH and -0-. 3. The chelating agent modified graphene oxide of claim 1, wherein the graphene oxide comprises the group: -COOH, or -OH. 4. The chelating agent modified graphene oxide of claim 1, wherein the ratio of the basic graphene oxide unit to the chelating agent is: 1: 0.00001 to 1: 0.04. 5. The chelating agent modified graphene oxide of claim 1 of the patent application. The linking group is: -O-SiC-OR^M-CH^-; wherein R1 is Η or C1 - C12 alkyl ' Hi = 1 -12. 6. A chelating agent modified graphene oxide according to claim 5, wherein R1 is an HSCrCt alkyl group. 7. The chelating agent modified graphene oxide according to claim 1, wherein the chelating agent is selected from the group consisting of the following groups or a salt thereof: S 27 201226315 — 儀 硝基二乙酸 乙二胺三乙酸— instrument nitro diacetic acid ethylenediamine triacetic acid 二乙烯三胺四乙酸 乙二醇三乙酸。 細 8. 如申請專利範圍第7項的螯合劑修飾的氧化石墨烯,其 中m是1-4。 9. 如申請專利範圍第7項的螯合劑修飾的氧化石墨烯,其 中螯合劑為乙二胺三乙酸或其鹽。 10. —種合成螯合劑修飾的氧化石墨烯的反應過程,其過程 包含利用矽烷試劑對氧化石墨烯進行反應的步驟,其中 矽烷試劑選自以下結構: 28 201226315Diethylene triamine tetraacetic acid ethylene glycol triacetic acid. 8. The chelating agent modified graphene oxide of claim 7, wherein m is 1-4. 9. The chelating agent-modified graphene oxide according to claim 7, wherein the chelating agent is ethylenediaminetriacetic acid or a salt thereof. 10. A process for synthesizing a chelating agent modified graphene oxide, the process comprising the step of reacting graphene oxide with a decane reagent, wherein the decane reagent is selected from the group consisting of: 28 201226315 乙二胺三乙酸-矽烷 (EDTA-Silane) 乙二胺三乙酸三鈉-矽烷 (EDTA-Silane) 其中的反應按以下方式進行:Ethylenediaminetriacetic acid-decane (EDTA-Silane) Ethylenediaminetriacetic acid trisodium-decane (EDTA-Silane) The reaction is carried out as follows: 糾. )m1 八 r ,r" }、J rJ Ί巧—T、?T0、 COOH axil Na* OCX; 厂Ν'*t、 \xx» ^OOONa* 11. 一種合成螯合劑修飾的氧化石墨烯的反應過程,其中過 程包含以下步驟: (1) 選擇將氧化石墨烯用S0C12或SOBr2處理,羧基 轉變為酰氣或酰溴, (2) 過程(1)中的氧化石墨烯化合物和AB反應,產生 螯合劑修飾的氧化石墨烯; 其中B為螯合劑,而A是選自以下化合物: HO-(CH2)m- ' H-NH- ' H-S- ' R1-0-Si(-0R1)2 (-CH2)m- ' H0-C(=0)-、H0-C(=0)-0-、H0-C(=0)-0(CH2)m-、 29 201226315 H0-C(=0)-NH-、H0-C(=0)-NH-(CH2)m-和 H0-P(=0)2-0-;其中m為1-12和R1為H、和(:丨-0:12烷基。 12.如申請專利範圍第11項的反應過程,其中-(CH2)_-B選 自以下配合物或其鹽類化合物,mm為1-12 :Correction. )m1 八r,r" },J rJ Ί巧—T,?T0, COOH axil Na* OCX; FactoryΝ'*t, \xx» ^OOONa* 11. A synthetic chelating agent modified graphene oxide The reaction process, wherein the process comprises the following steps: (1) selecting to treat the graphene oxide with S0C12 or SOBr2, converting the carboxyl group into an acid or acid bromide, and (2) reacting the graphene oxide compound in the process (1) with AB, Producing a chelating agent modified graphene oxide; wherein B is a chelating agent, and A is selected from the group consisting of: HO-(CH2)m- 'H-NH- ' HS- ' R1-0-Si(-0R1) 2 ( -CH2)m- ' H0-C(=0)-, H0-C(=0)-0-, H0-C(=0)-0(CH2)m-, 29 201226315 H0-C(=0) -NH-, H0-C(=0)-NH-(CH2)m- and H0-P(=0)2-0-; wherein m is 1-12 and R1 is H, and (:丨-0: 12. Alkyl group 12. The reaction process of claim 11, wherein -(CH2)_-B is selected from the following complexes or their salt compounds, mm is 1-12: 乙二胺三乙酸 二乙烯三胺四乙酸 硝基二乙酸Ethylenediaminetriacetic acid diethylenetriaminetetraacetic acid nitrodiacetic acid 乙二醇三乙酸 二伸乙三胺。 13. 如申請專利範圍第12項的反應過程,其中mm為1-4。 14. 如申請專利範圍第11項的反應過程,其中A-B係指N-(三 曱氧基矽基丙基)乙二胺三乙酸和其鈉鹽 (N-(trimethoxysilylpropyl)ethylenediamine triacetic acid)。 15. —種利用申請專利範圍第1項的螯合劑修飾的氧化石墨 烯製備金屬催化劑的方法,此方法包含以下步驟: (1) 將螯合劑修飾的氧化石墨烯溶於水溶液或有機 溶劑; (2) 加金屬鹽入步驟(1)的溶液或懸浮液,其中金屬 30 201226315 鹽選自以下金屬的鹽 Cu、Mg、Μη、Mo、Rh、Si、Ta、Ti、w、υ、ν ' 二 或Li ; (3 )把步驟(2)㈣合劑修飾的氡化石的金屬配 合物沈澱成微粒子或納米粒子,以用作催化劑。 16.如申請專職@第15項的方法,其巾微粒子或納米粒子 可用作燃料電池的催化劑。 Π,種中請專利範圍第!項的螯合劑修飾的氧化石墨 稀從水中去除金屬離子的方法,此方法包含以下步驟: ⑴將螯合劑修飾的氧化石墨烯置入過濾裝置; ⑺將含金屬離子的溶液通過上述過渡裝置, 金屬離子。 •如甲料利範圍第17項的方法’其中金屬離子選自抓、 Hg、Cd、C°、Fe、Pt、RU、Au、Cr、Cu、Mg、Mn、 M°、Rh、Si、Ta'Ti、w、u、v、Zr、As、c"〇Li。 19.如㈣專利範圍第17項的方法,其中去除金屬離子的目 的是製備飲用水。 二:=範圍第17項的方法,其中去除金 的疋卒取金屬。 Q 21.如申請專利範圍第17項的方法, 的是環境治理。 ”中去除金屬離子的目 22·2利用申請專利範圍第1項的螯合劑修飾的氧化石墨 螯合劑修飾的氧化;, 利用上述 ㈣乳化石㈣來取代轉子電池中所有其 31 201226315 他碳材料的步驟;從而生產出上述的高效能鋰離子電池。 32Ethylene glycol triacetate Diethylenetriamine. 13. The process of claim 12, wherein mm is 1-4. 14. The process of claim 11, wherein A-B refers to N-(trimethoxysilylpropyl)ethylenediamine triacetic acid. 15. A method for preparing a metal catalyst by using a chelating agent modified graphene oxide according to claim 1 of the patent application, the method comprising the steps of: (1) dissolving the chelating agent-modified graphene oxide in an aqueous solution or an organic solvent; 2) adding a metal salt to the solution or suspension of step (1), wherein the metal 30 201226315 salt is selected from the group consisting of the following metal salts Cu, Mg, Μη, Mo, Rh, Si, Ta, Ti, w, υ, ν ' 2 or Li; (3) The metal complex of the cerium fossil modified by the step (2) (4) mixture is precipitated into fine particles or nanoparticles to be used as a catalyst. 16. If the method of applying the full-time @ item 15, the towel particles or nanoparticles can be used as a catalyst for a fuel cell. Hey, please ask for the scope of the patent! A method for removing metal ions from water by a chelating agent-modified graphite oxide, the method comprising the steps of: (1) placing a chelating agent-modified graphene oxide in a filtering device; (7) passing the metal ion-containing solution through the transition device, the metal ion. • Method as in item 17 of the material range] wherein the metal ion is selected from the group consisting of scratch, Hg, Cd, C°, Fe, Pt, RU, Au, Cr, Cu, Mg, Mn, M°, Rh, Si, Ta 'Ti, w, u, v, Zr, As, c" 〇 Li. 19. The method of item (4), wherein the purpose of removing metal ions is to prepare drinking water. II: = The method of the 17th item, in which the gold is removed and the metal is taken. Q 21. As for the method of applying for patent scope 17, the environmental governance. The removal of metal ions in the target 22·2 is oxidized by the chelating agent-modified graphite oxide chelating agent modified in the first application of the patent scope; the use of the above (iv) emulsified stone (four) to replace all of its carbon materials in the rotor battery 31 201226315 a step; thereby producing the above-described high-performance lithium ion battery.
TW100106443A 2010-12-22 2011-02-25 Chelating agent modified graphene oxides, methods of preparation and use TW201226315A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2010/061796 WO2011082064A1 (en) 2009-12-29 2010-12-22 Chelating agent modified graphene oxides, methods of preparation and use

Publications (1)

Publication Number Publication Date
TW201226315A true TW201226315A (en) 2012-07-01

Family

ID=46934736

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100106443A TW201226315A (en) 2010-12-22 2011-02-25 Chelating agent modified graphene oxides, methods of preparation and use

Country Status (1)

Country Link
TW (1) TW201226315A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI622069B (en) * 2014-05-09 2018-04-21 淡江大學 Composite electrode manufacturing method
CN109485038A (en) * 2019-01-03 2019-03-19 深圳天元羲王材料科技有限公司 A kind of dispersing method of grapheme platelet in water
US10529980B2 (en) 2016-07-13 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Graphene compound, method for forming graphene compound, and power storage device
CN112242528A (en) * 2020-09-24 2021-01-19 江苏理工学院 Preparation method and application of functionalized graphene ORR catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI622069B (en) * 2014-05-09 2018-04-21 淡江大學 Composite electrode manufacturing method
US10529980B2 (en) 2016-07-13 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Graphene compound, method for forming graphene compound, and power storage device
CN109485038A (en) * 2019-01-03 2019-03-19 深圳天元羲王材料科技有限公司 A kind of dispersing method of grapheme platelet in water
CN109485038B (en) * 2019-01-03 2022-05-17 深圳天元羲王材料科技有限公司 Method for dispersing graphene flakes in water
CN112242528A (en) * 2020-09-24 2021-01-19 江苏理工学院 Preparation method and application of functionalized graphene ORR catalyst

Similar Documents

Publication Publication Date Title
CN103025654B (en) The preparation method and application of the Graphene that coordinating group is modified
Kumar et al. Modern progress in metal-organic frameworks and their composites for diverse applications
Guo et al. Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal
Bai et al. In situ growth of Ni x Co100–x nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties
Dai et al. Recent progress in functional materials for selective detection and removal of mercury (II) ions
Cheng et al. Biomimetic assembly of polydopamine-layer on graphene: Mechanisms, versatile 2D and 3D architectures and pollutant disposal
Li et al. Core–shell magnetic metal–organic framework molecularly imprinted nanospheres for specific adsorption of tetrabromobisphenol A from water
Liu et al. Facile and straightforward synthesis of superparamagnetic reduced graphene oxide–Fe3O4 hybrid composite by a solvothermal reaction
Song et al. Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal
Du et al. Water-soluble graphene grafted by poly (sodium 4-styrenesulfonate) for enhancement of electric capacitance
Chen et al. A supramolecular strategy toward an efficient and selective capture of platinum (II) complexes
US20090053512A1 (en) Multifunctional polymer coated magnetic nanocomposite materials
Yin et al. Magnetic self-assembled zeolite clusters for sensitive detection and rapid removal of mercury (II)
Abbas et al. Morphology control of novel cross-linked ferrocenedimethanol derivative cyclophosphazenes: From microspheres to nanotubes and their enhanced physicochemical performances
Alhokbany et al. Feasibility of toxic metal removal from aqueous medium using Schiff-base based highly porous nanocomposite: Adsorption characteristics and post characterization
TW201226315A (en) Chelating agent modified graphene oxides, methods of preparation and use
Arshadi et al. Dye removal from aqueous solution by cobalt-nano particles decorated aluminum silicate: kinetic, thermodynamic and mechanism studies
Oh et al. Zeolitic Imidazolate framework-based composite incorporated with well-dispersed CoNi nanoparticles for efficient catalytic reduction reaction
Liang et al. Metal affinity-carboxymethyl cellulose functionalized magnetic graphene composite for highly selective isolation of histidine-rich proteins
Bulin Combination mechanism of the ternary composite based on Fe3O4-chitosan-graphene oxide prepared by solvothermal method
Yang et al. Phosphatidyl-assisted fabrication of graphene oxide nanosheets with multiple active sites for uranium (VI) capture
Shadabfar et al. Synthesis, characterization, and evaluation of a magnetic molecular imprinted polymer for 5-fluorouracil as an intelligent drug delivery system for breast cancer treatment
Kim et al. Study on the carbamoyl phosphine oxide moiety functionalized mesoporous graphene for the removal of rare earth elements
Li et al. Novel pyridine-based covalent organic framework containing N, N, N-chelating sites for selective detection and effective removal of nickel
Liu et al. Polypyrrole modified magnetic reduced graphene oxide composites: synthesis, characterization and application for selective lead adsorption