TW201225908A - Apparatus and method for cardiovascular pulse measurement - Google Patents

Apparatus and method for cardiovascular pulse measurement Download PDF

Info

Publication number
TW201225908A
TW201225908A TW99146439A TW99146439A TW201225908A TW 201225908 A TW201225908 A TW 201225908A TW 99146439 A TW99146439 A TW 99146439A TW 99146439 A TW99146439 A TW 99146439A TW 201225908 A TW201225908 A TW 201225908A
Authority
TW
Taiwan
Prior art keywords
pulse
pulse wave
signal
wave
peak
Prior art date
Application number
TW99146439A
Other languages
Chinese (zh)
Other versions
TWI495452B (en
Inventor
Hong-Dun Lin
Yen-Hsien Lee
Yu-Jen Su
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW099146439A priority Critical patent/TWI495452B/en
Publication of TW201225908A publication Critical patent/TW201225908A/en
Application granted granted Critical
Publication of TWI495452B publication Critical patent/TWI495452B/en

Links

Abstract

A cardiovascular pulse measurement apparatus is provided, including a signal unit, a filter/amplifier unit, and a pulse signal detection/computation unit. The signal unit at least includes an RF generator and a transceiver. The RF generator issues a nano-second electrical pulse to a cardiovascular, and the transceiver receives a reflected signal from the cardiovascular. The reflected signal passes the filter/amplifier unit and generates an active pulse signal. The pulse signal detection/computation unit detects a peak of a first pulse and a peak of a second pulse of the active pulse signal, and computes at least a pulse parameter.

Description

201225908 六、發明說明: 【發明所屬之技術領域】 本揭路係關於種心金管脈搏量測裝置及方法。 【先前技術】 由國内歷年來的疾病及死亡統計可知,心血管疾病是 現代人健康最大的威脅。尤其動脈硬化疾病,廣為人知 的疋心肌梗塞和腦中風。臨床上,人體生理年齡與動脈 硬化程度有著密不可分的關係,年齡於2〇至3〇歲之間 便會開始有動脈硬化的現象出現,而40歲以後許多伴隨 著動脈硬化的程度,逐漸明顯。事實上,動脈壁會隨著 年齡的增長而老化增厚而失去彈性,所以動脈硬化在症 狀未出現前,容易被一般人所忽視。因此,能有效的及 早自主評估自身的血管健康,便能提早預防血管硬化所 降低心血管疾病發生機率。 第一圖是習知的一種超音波連續性非侵入式血壓監 測方法與裝置之示意圖。如第一圖所示,此裝置包含一 電谷式微加工超聲傳感器(capacitive Micromachined201225908 VI. Description of the invention: [Technical field to which the invention pertains] The present disclosure relates to a heart-shaped gold tube pulse measuring device and method. [Prior Art] According to the statistics of diseases and deaths in the past years, cardiovascular disease is the greatest threat to the health of modern people. Especially arteriosclerotic diseases, well-known sputum myocardial infarction and stroke. Clinically, the physiological age of the human body is closely related to the degree of arteriosclerosis. Arteriosclerosis begins to occur between the ages of 2 and 3 years old, and the degree of arteriosclerosis is gradually apparent after the age of 40. . In fact, the arterial wall ages and becomes elastic with age, so arteriosclerosis is easily overlooked by the average person before the symptoms appear. Therefore, effective and early self-assessment of your own vascular health can prevent the hardening of cardiovascular disease and reduce the risk of cardiovascular disease. The first figure is a schematic diagram of a conventional ultrasonic continuous non-invasive blood pressure monitoring method and apparatus. As shown in the first figure, the device includes an electric valley micromachined ultrasonic sensor (capacitive Micromachined).

Ultrasonic Transducers,CMUT)貼片(patch)l 10、一數位 sfL號處理器(Digital Signal Processor,DPS)120、一可充 氣手環(inflatable cuff)130、一空氣壓縮機(air compressor) 140、壓力感應器(pressure sensor) 150.、以及 一類比_數位轉換器(analog-digital converter) 160。將一有 201225908Ultrasonic Transducers, CMUT) patch l 10, a digital sfL processor (DPS) 120, an inflatable cuff 130, an air compressor 140, pressure A pressure sensor 150., and an analog-digital converter 160. Will have one 201225908

黏性的電容式微加工超聲傳感器貼片110貼在病人的皮 膚上’以及一可充氣的手環(cuff)13〇環繞於病人的其中 一手臂。電容式微加工超聲傳感器貼片110是放置在手 臂的下方或其他接近皮膚的動脈(artery)的點上。電容式 微加工超聲傳感器貼片110以一纜線連接至一行動個人 電腦(圖中未顯示),此行動個人電腦小到足以束附在病 人身上。根據電容式微加工超聲傳感器貼片n〇的聲音 資料與可充氣手環130的壓力資料,一數位訊號處理器 (Digital Signal Processor,DPS,合併在行動個人電腦 中)120算出多種參數。此參數包含病人的估計血壓。數 位訊號處理H 12G定期的對可充氣手環13()充氣,以提 供持續狀祕力。再者,數位訊號處理器12G啟動一空 氣壓縮機來對可充氣手環13()充氣。—壓力感應器 15(M貞測可充氣手;衣13〇的壓力。類比-數位轉換器 將壓力感絲15G所輸出_轉換為數位值,數位值 為類比-數位轉換器160中應用。A viscous capacitive micromachined ultrasonic sensor patch 110 is attached to the patient's skin' and an inflatable cuff 13 is wrapped around one of the patient's arms. The capacitive micromachined ultrasonic sensor patch 110 is placed at a point below the arm or other arteries that are close to the skin. The capacitive micromachined ultrasonic sensor patch 110 is connected by a cable to a mobile personal computer (not shown) which is small enough to be attached to the patient. According to the sound data of the capacitive micromachined ultrasonic sensor patch and the pressure data of the inflatable wristband 130, a digital signal processor (DPS, incorporated in the mobile personal computer) 120 calculates various parameters. This parameter contains the estimated blood pressure of the patient. The digital signal processing H 12G periodically inflates the inflatable bracelet 13 () to provide a continuous secret. Further, the digital signal processor 12G activates an air compressor to inflate the inflatable bracelet 13 (). - Pressure sensor 15 (M 可 test inflatable hand; clothing 13 〇 pressure. Analog-to-digital converter converts the output of the pressure sensitive wire 15G into a digital value, which is used in the analog-digital converter 160.

財列又默所揭露的一種測量物理訊號的裝置 與感應器和測量脈概速純置與方法,鱗置包含一 第一^面’具有第—感應器,其裝設在-使用者身體的 預疋Ρ位並測量此預定部位所產生的一第一物理訊 介面’具有一第二感應器,其裝設在此 使用者的手指,並測量此手指所產生的—第二物理訊號。 目 月』見有針對祕錢量敬醫療產品, 主要是以 201225908 電圖之R波(R-Wave)作為基準並以心音當作辅助,於四 、 肢裝上壓脈帶或手持式壓力感測器,先後依序量測出心 臟至頸部及心臟至四肢壓力波傳遞時差後,才可計算脈 波波速。以影像方式進行分析則需以企管攝影、超音波 或核磁共振造影進而評估動脈硬度。此外,這些儀器脈 波訊號需由專業人員操作,無法自行量測且產品價格偏 高,並無法廣泛地推展至個人居家自我照護之用。 • 【發明内容】 本揭露的實施範例可提供一種心血管脈搏量測裝置 與方法。 所揭露之實施例係關於一種心血管脈搏量測裝置,此 裝置包含一訊號單元、一濾波/放大單元、以及一脈波訊 號4貞測/計算單元。此訊號單元至少包括一射頻產生器與 一收發器。此射頻產生器發射一奈秒脈衝電波至一心血 • .管’此收發器接收此心血管反射的一反射訊號,此反射 訊號經由濾波/放大單元產生一主動脈脈波訊號,此脈波 訊號偵測/計算單元偵測出此主動脈脈波訊號的一第一 脈波波峰及一第二脈波波峰,並算出至少一脈波參數。 在另一所揭露之實施例係關於一種心血管脈搏量測 方法,此方法包含:由一射頻產生器發射一奈秒脈衝電 波至一心血管;以一收發器接收此心血管產生的一反射 机號;此反射訊號經由一滤波/放大單元產生一主動释脈 6 201225908 波訊號二錢喊伽彳/計算單元_出脸動脈脈波 磁的帛脈波波峰;接著價測出此主動脈脈波訊號 的-第二脈波波峰;算出至少一脈波參數。 兹配合下列圖示、實施範例之詳細說明及申請專利範 圍,將上述及本揭露之其他特徵與優點詳述於後。 【實施方式】 第二圖是心血管脈搏量測裝置的一個範例示意圖,並 與本揭露之某些實施例一致。如第二圖所示心血管脈 搏量測裝置200包含一訊號單元21〇、一濾波/放大單元 • 230、以及一脈波訊號偵測/計算單元250。訊號單元210 至少包括一射頻產生器211與一收發器213。射頻產生器 211發射一奈秒脈衝電波212至一心血管270,收發器213 接收心企管270產生的一反射訊號271,反射訊號271 經由一濾波/放大單元230產生一主動脈脈波訊號260, 脈波訊號偵測/計算單元250偵測出此主動脈脈波訊號 的一第一脈波波峰及一第二脈波波峰,並算出至少一脈 波參數280。 第二圖是本揭露裝置之詳細元件的一個範例示意 圖’並與本揭露之某些實施範例一致。如第三圖範例所 示,訊號單元210還包括一第一、第二射頻開關(RF switch)214、216,一第一、第二、第三放大器 (amplifier)215、217、218,以及一混波器(mixer)219 9 第 201225908 一、第二射頻開關214與216以第一放大器215連接。 第一射頻開關214並連接射頻產生器211與第三放大器 218’第二射頻開關215並連接收發器213與第二放大器 217。混波器219連接於第二放大器217、第三放大器 218,並連接至濾波/放大單元23〇。濾波/放大單元23〇 還包括一第---第二濾波器231、233、及一第--- 第二放大器232、234,依序排列為第一濾波器231、第 一放大器232、第二濾波器233、以及第二放大器234, 其中第一濾波器231與混波器219連接,第二放大器234 連接至脈波訊號偵測/計算單元250。脈波訊號偵測/計算 單元250可備有一第一脈波波峰偵測模組251、一第二 脈波波峰偵測模組252、以及一計算模組253。 由射頻產生器211發射一奈秒脈衝電波212至一心血 管270 ’收發器213接收心血管270產生的一反射訊號 271,第二射頻開關216被切換至與第二放大器217導 通’收發器213將反射訊號271經由第二射頻開關216、 第二放大器217、以及混波器219傳輸至濾波/放大單元 230。反射訊號214由第一濾波器23卜第一放大器232、 第二濾波器233、以及第二放大器234,進行前置濾波、 前極放大、帶通濾波、以及後極放大後,產生一主動脈 脈波訊號260,並傳輸至脈波訊號偵測/計算單元250。 脈波訊號偵測/計算單元250接受主動脈脈波訊號260, 以第一脈波波峰偵測模組251先進行偵測一第一脈波波 峰,然後第二脈波波峰偵測模組252以此主動脈脈波波 201225908 峰再進行偵測第二脈波波峰,最後由計算模組253算出 至少一脈波參數280。至少一脈波參數280可以是一脈 波波速(Pulse Wave Velocity, PWV)參數或是一反射係數 (Reflection Index,RI)等參數。其中,奈秒脈衝電波212 是小於1千死赫(GHZ),約5奈秒(nanosecond)之電波。 收發器2D為一天線。第一放大器215為一功率放大器 (power amplifier)。第二、第三放大器217'218為一低雜 訊放大器(low-noise amplifier)。第一、第二渡波器 231、 _ 233分別為一前置遽波器(Passive prefilter)、一帶通渡波 器(Bandpass filter)。第一、第二放大器 232、234 為一前 極放大器(Pre-amplifier)、一後極放大器 (Post-Preamplifier)。 本揭露之心血管脈搏量測裝置可進一步包括一無線 傳輸裝置,如藍芽等,以及一遠端監控器,如顯示器。 此傳輸裝置將脈波參數280傳輸至此遠端監控器,並直 鲁 接將脈波參數280顯示於此遠端監控器。 第四圖是說明一發射脈衝訊號與一返回脈衝訊號產 生的變化,來判讀一待測物的狀況,並與本揭露之某此 實施範m ^ _解,當獅脈触號(__ pulse)412與發射脈衝信號(radiated puise)411的時間間距 〜保持不麟,則絲制較働靜止的狀態,所以 返回脈衝訊號412經過訊號處理後得到是不變的直流訊 號’如標號410所示。反之,當返回脈衝信號412與發 201225908 ^脈衝信號411的時間間距〜會隨著振幅大小而變動 則表不制物產㈣作與轉,所叫目脈衝訊號 412經過訊號處理後,即可得到變動之物理活動訊號, '、I3待測物移動與無移動的訊號’如標號所示。 第五A圖是一範例流程圖,說明心血管脈搏量測方 法,並與本揭露之某些實補-致。第五8圖是-主動 脈脈波訊號之示意圖,並與本揭露之某些實施範例一 Φ 致。如第五A圖流程圖所示’此心企管脈搏量測方法500 疋由一射頻產生器發射一奈秒脈衝電波至一心血管(步 驟510);以一收發器接收此心血管產生的一反射訊號(步 驟520),此反射訊號經由一遽波/放大單元產生一主動脈 脈波訊號(步驟530); —脈波訊號偵測/計算單元偵測出 此主動脈脈波訊號的一第一脈波波峰(步驟540);接著偵 測出此主動脈脈波訊號的一第二脈波波峰(步驟55〇);算 出至少一脈波參數(步驟560)。其中在步驟530中,此反 # 射訊號經由一濾波/放大單元產生一主動脈脈波訊號 260,如第五B圖所示。 第六A圖是一個範例流程示意圖,進一步說明第五 A圖中一脈波訊號债測/計算單元如何偵測出一主動脈 脈波訊號的一第一脈波波峰’並與本揭露之某些實施例 一致。第六B圖是一範例示意圖’說明主動脈脈波訊號 與第一脈波波峰相對位置,並與本揭露之某些實施範例 一致。如第六A圖流程示意圖所示,定義出搜尋波岭區 201225908 間大小(步驟610);取得Pl位置與值:算出此區間的一 中心點,當此中心點為此區間的最大值時,則為P1的位 置與值(步驟620);取得P1’位置與值:依時間位移區間 至下一點,計算出此區間之最大值,並為P1,的位置與值 (步驟630);比較P1與pi,:當!^’值>=ρι值時,則紀 錄P1’為波峰位置,反之,Pi為波峰位置(步驟64〇);當 區間之中心點不是區間内最小值時,則重複步驟 620〜640;而當區間之中心點為區間内最小值時,則取得 # 此主動脈脈波訊號之第一脈波波峰P1。如第六B圖所 示,主動脈脈波訊號260包含一第一脈波6〇〇,第一脈 。波600之第一脈波波鋒為P1所標示處。其中,藉由分析 主動脈脈波訊號260之壓力波訊號,可以計算出心率與 心率變異參數。 第七A圓是一個範例流程示意圖,進一步說明第五 A圖中一脈波訊號偵測/計算單元如何偵測出主動脈脈 籲波訊號的-第二脈波波峰,並與本娜之某些實施例一 致°第七B ®是-範麻意圖,說祕脈波訊號與 第二脈波鱗姆位置,並與本娜之某些實施範例-致。请同時參考如第七A圖流程示意圖及第七B圖所 不,計算出主動脈脈波波峰之兩側最小值處,Vl與Vr 分別表示兩側波谷(步驟71G);計算出左、右兩側波谷距 主動脈脈波波峰的時距,Tlp、Trp分別表示左、右側時 距(步驟720);當此右側時距TRp>此左鱗距Tlp時,則 以此主缝波波峰射心並以左靖距為基準取得― 201225908 對稱波(脈波1)701,取主動脈脈波訊號與此對稱波之相 差訊號(脈波2)700(步驟730);由主動脈脈波訊號之對稱 波之相差訊號(脈波2)700取得第二脈波波峰p2(步驟 740)。 第八圖是一個範例示意圖’說明主動脈脈波訊號、第 一脈波訊號、及第二脈波訊號之間的相對位置,以及計 算模組如何算出脈波參數,並與本揭露之某些實施範例 • 一致。如第八圖所示,本揭露之心血管脈搏量測裝置200 置放於主動脈820部位上方處’當心臟810收縮將血液 送入主動脈820之時間為一量測基準點,在心臟收縮與 舒張的瞬間於所量測到之訊號上呈現出第二個波蜂,引 此當心臟810完成一個收縮與舒張,所偵測到之主動脈 脈波訊號260。主動脈脈波訊號260經由心企管脈搏量 測裝置200而產生一第一脈脈波訊號6〇〇與一第二脈脈 波訊號700 ’其波峰分別為pi、P2,並利用波峰pi、p2 ® 算出至少一脈波參數280。至少一脈波參數280可以是 一脈波波速參數、一反射係數參數、或是其他參數等。 例如,什箅出第一脈波600之波峰pi與第二脈波7〇〇之 波峰P2之間的一時距(標號830) ’此時距為脈波波速計 算中的一時間參數,故利用血液流經距離與時距之除值 可叶算出此脈波波速參數,並且還可利用此脈波波速參 數來反映出一主動脈彈性指標(Stiffness index, SI)參數。 反射係數參數為第一脈波600的波峰pi之波峰值與第二 脈波700的波峰P2之波峰值的一比例(標號84〇),也就 12 201225908 是說’將第二脈波的鱗P2之波峰值除上第—脈波 600的波峰P1之波峰值的比例百分比。 ' •综上所述,本揭露之實施例提供一種心血管脈搏量測 裝置與方法為-種非侵人式的裝置,縣不需任何辅助 黏貼元件來做固定此裝置,亦可使用無線傳輸裝置傳送 至遠端監控裝置,進而對使用者是提供安全、彈性大的 使用方式。 惟,以上所述者,僅為本揭露之實施範例而已,當不 能依此限定本揭露實施之範圍。即大凡一本揭露申請專 利範圍所作之均等變化與修飾,皆應仍屬本揭露專利涵 蓋之範圍内。The financial device also discloses a device for measuring physical signals and a sensor and a measuring pulse. The scale includes a first surface having a first sensor mounted on the body of the user. Pre-clamping and measuring a predetermined physical interface generated by the predetermined portion has a second sensor mounted on the user's finger and measuring the second physical signal generated by the finger. "Moon month" sees the medical products for the secret money, mainly based on the R-Wave of the 201225908 electrogram as the reference and the heart sound as the auxiliary, on the fourth, the limbs on the venous belt or the hand-held pressure sense The detector can measure the pulse wave velocity after measuring the time difference between the heart to the neck and the heart to the limbs. Image analysis requires assessment of arterial stiffness using angiography, ultrasound or magnetic resonance imaging. In addition, the pulse signals of these instruments need to be operated by professionals, cannot be measured by themselves, and the price of the products is too high, and cannot be widely extended to personal home self-care. • SUMMARY OF THE INVENTION Embodiments of the present disclosure may provide a cardiovascular pulse measurement apparatus and method. The disclosed embodiment relates to a cardiovascular pulse measuring device comprising a signal unit, a filtering/amplifying unit, and a pulse signal 4 measuring/calculating unit. The signal unit includes at least a radio frequency generator and a transceiver. The RF generator emits a nanosecond pulse wave to a blood pump. The transistor receives a reflection signal of the cardiovascular reflection, and the reflection signal generates an aortic pulse wave signal through the filtering/amplifying unit, and the pulse wave signal The detecting/computing unit detects a first pulse wave peak and a second pulse wave peak of the aortic pulse wave signal, and calculates at least one pulse wave parameter. In another disclosed embodiment, a cardiovascular pulse measurement method includes: transmitting, by a radio frequency generator, a nanosecond pulse wave to a cardiovascular; receiving a cardiovascular generated reflector by a transceiver No.; this reflection signal generates an active release pulse via a filtering/amplifying unit. 201225908 Wave signal two money shouting gamma/computing unit _ facial artery pulse wave magnetic 波 pulse wave peak; then the price is measured by the aortic pulse wave The second pulse peak of the signal; calculate at least one pulse wave parameter. Further features and advantages of the above and other aspects of the disclosure will be described in the following detailed description and claims. [Embodiment] The second figure is a schematic diagram of an example of a cardiovascular pulse measuring device and is consistent with certain embodiments of the present disclosure. The cardiovascular pulse measuring device 200 shown in the second figure comprises a signal unit 21, a filtering/amplifying unit 230, and a pulse signal detecting/calculating unit 250. The signal unit 210 includes at least a radio frequency generator 211 and a transceiver 213. The RF generator 211 transmits a nanosecond pulse wave 212 to a cardiovascular 270. The transceiver 213 receives a reflected signal 271 generated by the heart tube 270. The reflected signal 271 generates an aortic pulse signal 260 via a filtering/amplifying unit 230. The wave signal detecting/calculating unit 250 detects a first pulse wave peak and a second pulse wave peak of the aortic pulse wave signal, and calculates at least one pulse wave parameter 280. The second figure is an exemplary illustration of the detailed components of the present disclosure and is consistent with certain embodiments of the present disclosure. As shown in the example of the third figure, the signal unit 210 further includes a first and second RF switches 214, 216, a first, second, and third amplifiers 215, 217, and 218, and a Mixer 219 9 No. 201225908 First, the second RF switches 214 and 216 are connected by a first amplifier 215. The first RF switch 214 is coupled to the RF generator 211 and the third amplifier 218' to the second RF switch 215 and to the transceiver 213 and the second amplifier 217. The mixer 219 is connected to the second amplifier 217, the third amplifier 218, and is connected to the filtering/amplifying unit 23A. The filtering/amplifying unit 23A further includes a first-second filter 231, 233, and a second-to-second amplifier 232, 234, which are sequentially arranged as a first filter 231, a first amplifier 232, and a second The second filter 233 and the second amplifier 234, wherein the first filter 231 is connected to the mixer 219, and the second amplifier 234 is connected to the pulse signal detecting/calculating unit 250. The pulse signal detecting/calculating unit 250 can be provided with a first pulse wave detecting module 251, a second pulse wave detecting module 252, and a calculating module 253. A nanosecond pulse wave 212 is transmitted from the RF generator 211 to a cardiovascular 270' transceiver 213 to receive a reflected signal 271 generated by the cardiovascular 270, and the second RF switch 216 is switched to be turned on with the second amplifier 217. The transceiver 213 will The reflected signal 271 is transmitted to the filtering/amplifying unit 230 via the second RF switch 216, the second amplifier 217, and the mixer 219. The reflected signal 214 is generated by the first filter 23, the first amplifier 232, the second filter 233, and the second amplifier 234, performing pre-filtering, pre-amplification, band-pass filtering, and post-amplification to generate an aorta. The pulse signal 260 is transmitted to the pulse signal detecting/calculating unit 250. The pulse signal detecting/calculating unit 250 receives the aortic pulse wave signal 260, and first detects the first pulse wave peak by the first pulse wave detecting module 251, and then the second pulse wave detecting module 252 The second pulse wave peak is detected by the aortic pulse wave 201225908 peak, and finally at least one pulse wave parameter 280 is calculated by the calculation module 253. The at least one pulse wave parameter 280 can be a Pulse Wave Velocity (PWV) parameter or a Reflection Index (RI). Among them, the nanosecond pulse wave 212 is a wave of less than 1 kilohertz (GHZ) and about 5 nanoseconds. The transceiver 2D is an antenna. The first amplifier 215 is a power amplifier. The second and third amplifiers 217'218 are low-noise amplifiers. The first and second ferrites 231 and _233 are respectively a passive prefilter and a bandpass filter. The first and second amplifiers 232, 234 are a pre-amplifier and a post-preamplifier. The cardiovascular pulse measuring device of the present disclosure may further comprise a wireless transmission device such as Bluetooth or the like, and a remote monitor such as a display. The transmitting device transmits the pulse wave parameter 280 to the remote monitor and directly displays the pulse wave parameter 280 to the remote monitor. The fourth figure is a description of the change of a transmitted pulse signal and a return pulse signal to determine the condition of a test object, and with the implementation of this disclosure, the implementation of the m ^ _ solution, when the lion pulse (__ pulse) The time interval 412 between the 412 and the radiated puise 411 is maintained, and the wire is made to be in a static state. Therefore, the return pulse signal 412 is processed by the signal to obtain a constant DC signal' as indicated by reference numeral 410. On the contrary, when the time interval between the return pulse signal 412 and the transmission 201225908 ^pulse signal 411 will vary with the amplitude, the display will not be processed (4), and the called pulse signal 412 will be changed after the signal processing. The physical activity signal, ', I3 object to move and no moving signal' is indicated by the label. Figure 5A is an example flow diagram illustrating the cardiovascular pulse measurement method and with some of the present disclosures. Figure 5 is a schematic diagram of the active pulse wave signal and is related to some embodiments of the present disclosure. As shown in the flow chart of FIG. 5A, the heartbeat pulse measurement method 500 transmits a nanosecond pulse wave to a cardiovascular wave by an RF generator (step 510); receiving a reflection of the cardiovascular signal by a transceiver Signal (step 520), the reflected signal generates an aortic pulse wave signal via a chopper/amplification unit (step 530); - the pulse signal detecting/calculating unit detects a first pulse of the aortic pulse wave signal The pulse wave peak (step 540); then detecting a second pulse wave peak of the aortic pulse wave signal (step 55A); calculating at least one pulse wave parameter (step 560). In step 530, the inverse signal generates an aortic pulse signal 260 via a filtering/amplifying unit, as shown in FIG. Figure 6A is a schematic flow chart of an example, further illustrating how a pulse signal measurement/calculation unit in a fifth A picture detects a first pulse wave peak of an aortic pulse wave signal and is associated with the present disclosure. These embodiments are consistent. Figure 6B is an exemplary schematic diagram illustrating the relative position of the aortic pulse signal to the first pulse peak and is consistent with certain embodiments of the present disclosure. As shown in the flow diagram of Figure 6A, the search for the size of the search zone 201225908 (step 610); obtain the P1 position and value: calculate a center point of the interval, when the center point is the maximum value of the interval, Then, the position and value of P1 (step 620); obtain the position and value of P1': according to the time shift interval to the next point, calculate the maximum value of the interval, and the position and value of P1, (step 630); compare P1 With pi, when! When the value of ''value>=ρι is, the record P1' is the peak position, whereas Pi is the peak position (step 64〇); when the center point of the interval is not the minimum value in the interval, steps 620-640 are repeated; When the center point of the interval is the minimum value in the interval, the first pulse wave peak P1 of the aortic pulse wave signal is obtained. As shown in Figure B, the aortic pulse signal 260 includes a first pulse, 第一, first pulse. The first pulse wave front of wave 600 is indicated by P1. Among them, by analyzing the pressure wave signal of the aortic pulse wave signal 260, the heart rate and heart rate variability parameters can be calculated. The seventh A circle is a schematic flow chart of the example, further illustrating how a pulse wave signal detecting/calculating unit in the fifth A picture detects the second pulse peak of the aortic pulse wave signal, and is associated with Benna. Some embodiments are consistent. The seventh B® is - Fan Ma intended to say that the secret pulse signal is associated with the second pulse wave position, and with some examples of Benna's implementation. Please refer to the flow chart of Figure 7A and Figure 7B, calculate the minimum value on both sides of the aortic pulse wave peak, Vl and Vr respectively indicate the two-side troughs (step 71G); calculate left and right The time interval between the troughs on both sides of the aortic pulse wave, Tlp and Trp respectively indicate the left and right time intervals (step 720); when the right time interval TRp> the left scale distance Tlp, then the main slit wave peak The heart is obtained from the left margin as the reference - 201225908 symmetric wave (pulse wave 1) 701, taking the aortic pulse wave signal and the symmetric wave difference signal (pulse wave 2) 700 (step 730); the aortic pulse wave signal The phase difference signal (pulse wave 2) 700 of the symmetric wave acquires the second pulse peak p2 (step 740). The eighth figure is a schematic diagram illustrating the relative position between the aortic pulse signal, the first pulse signal, and the second pulse signal, and how the calculation module calculates the pulse wave parameters, and with some of the disclosures. Implementation examples • Consistent. As shown in the eighth figure, the cardiovascular pulse measuring device 200 of the present disclosure is placed above the aorta 820. 'When the heart 810 contracts to deliver blood into the aorta 820, the time is measured and the heart contracts. The second wave of bees appears on the measured signal with the diastolic moment, which causes the heart 810 to complete a contraction and relaxation, and the detected aortic pulse signal 260. The aortic pulse wave signal 260 generates a first pulse wave signal 6 〇〇 and a second pulse wave signal 700 ′ via the heartbeat pulse measuring device 200. The peaks thereof are pi and P2, respectively, and the peaks pi and p2 are utilized. ® Calculate at least one pulse parameter 280. The at least one pulse wave parameter 280 can be a pulse wave velocity parameter, a reflection coefficient parameter, or other parameters. For example, a time interval between the peak pi of the first pulse wave 600 and the peak P2 of the second pulse wave 7〇〇 (reference numeral 830) is used as a time parameter in the calculation of the pulse wave velocity, so that the use The pulse flow rate parameter can be calculated by dividing the blood flow distance and the time interval, and the pulse wave velocity parameter can also be used to reflect an aortic elasticity index (SI) parameter. The reflection coefficient parameter is a ratio of the peak value of the peak pi of the first pulse wave 600 to the peak value of the peak P2 of the second pulse wave 700 (reference numeral 84〇), that is, 12 201225908 is said to be the scale of the second pulse wave The peak value of the peak of P2 is divided by the percentage of the peak value of the peak of the peak P1 of the first pulse wave 600. In summary, the embodiments of the present disclosure provide a cardiovascular pulse measuring device and method, which is a non-invasive device. The county does not need any auxiliary adhesive components to fix the device, and can also use wireless transmission. The device is transmitted to the remote monitoring device, thereby providing a safe and flexible use mode for the user. However, the above description is only for the implementation examples of the disclosure, and the scope of the disclosure is not limited thereto. That is, the equivalent changes and modifications made by the scope of the patent application are still within the scope of the disclosure.

13 201225908 【圖式簡單說明】 第-圖是習知的一種超音波連續性非侵入式血壓監測 方法與裝置之示意圖。 第二圖是一種心血管脈搏量測裝置的—個範例示意 圖’並與本揭露之某些實施範例一致。 第三圖是本揭露裝置之詳細元件的一範例示意圖,說 明’並與本揭露之某些實施範例一致。 第四圖是說明一發射脈衝訊號與一返回脈衝訊號產生 的變化,來判讀一待測物的狀況,並與本揭露之某些實 施範例一致。 第五A圖是一範例流程圖,說明心血管脈搏量測方法, 並與本揭露之某些實施例一致。 第五B圖是一主動脈脈波訊號之示意圖,並與本揭露之 某些實施例一致。 第六A圖是一個範例流程示意圖,進一步說明第五a 圖中一脈波訊號偵測/計算單元如何偵測出一主動脈脈 波汛號的一第一脈波波峰’並與本揭露之某些實施例一 致。 第六B圖是一範例示意圖’說明主動脈脈波訊號與第一 脈波波峰相對位置,並與本揭露之某些實施範例一致。13 201225908 [Simple description of the diagram] The first diagram is a schematic diagram of a conventional method and apparatus for monitoring ultrasound non-invasive blood pressure. The second figure is an exemplary illustration of a cardiovascular pulse measurement device and is consistent with certain embodiments of the present disclosure. The third figure is a schematic illustration of a detailed description of the components of the present disclosure, and is consistent with certain embodiments of the present disclosure. The fourth figure is a diagram illustrating the change of a transmitted pulse signal and a return pulse signal to determine the condition of a test object, and is consistent with some embodiments of the present disclosure. Figure 5A is an exemplary flow diagram illustrating a cardiovascular pulse measurement method and is consistent with certain embodiments of the present disclosure. Figure 5B is a schematic illustration of an aortic pulse wave signal and is consistent with certain embodiments of the present disclosure. Figure 6A is a schematic flow diagram of an example, further illustrating how a pulse signal detection/computing unit in the fifth a diagram detects a first pulse wave peak of an aortic pulse wave 并 and is related to the present disclosure. Some embodiments are consistent. Figure 6B is an exemplary schematic diagram illustrating the relative position of the aortic pulse signal to the first pulse peak and is consistent with certain embodiments of the present disclosure.

第七A圖是一個範例流程示意圖,進一步說明第五A 圖中—脈波訊號偵測/計算單元如何偵測出主動脈脈波 訊號的一第二脈波波峰,並與本揭露之某些實施例一 致。 第七B圖是一範例示意圖,說明主動脈脈波訊號與第二 201225908 脈波波峰相對位置,並與本揭露之某些實施範例一致。 第八圖是一個範例示意圖,說明主動脈脈波訊號、第一 脈波訊號'及第二脈波訊號之間的相對位置,以及計算 模組如何算出脈波參數,並與本揭露之某些實施範例一 致。 【主要元件符號說明】 12〇數位訊號處理器 140空氣壓縮機 160類比-數位轉換器 21〇訊號單元 212奈秒脈衝電波 214第一射頻開關、 216萆二射頻開關 218第三放大器 232第二渡波器 234第二放大器 253計算模組 110電谷式微加工超聲傳感器貼片 130可充氣手環 150壓力感應器 200心血管脈搏量測農置 211射頻產生器 213收發器 215第一放大器 217第二放大器 219混波器 230濾波/放大單元 231第一濾波器 233第一放大器 250脈波訊號偵測/計算單元 251第一脈波波峰偵測模組 . 252第二脈波波峰偵測模組 15 201225908 260主動脈脈波訊號 270心血管 271反射訊號 280脈波參數 5 00心血管脈搏量測方法 510 —射頻產生器發射一奈秒脈衝電波至一心血管 520 —收發器接收此心血管產生的一反射訊號 530此反射訊號經由一濾波/放大單元產生一主動脈脈波訊號 540 —脈波訊號偵測/計算單元偵測出此主動脈脈波訊號的一第 一脈波波峰 550接著偵測出此主動脈脈波訊號的一第二脈波波峰 560算出至少一脈波參數 600第一脈波 610定義出搜尋波峰區間大小 620取得P1位置與值··算出此區間的一中心點,當此中心點為 此區間的最大值時,則為P1的位置與值 630取得P1’位置與值··依時間位移區間至下一點,計算出此區 間之最大值,並為ΡΓ的位置與值 640比較P1與ΡΓ :當P1’值>=ρι值時’則紀錄ρι’為波峰位置, 反之,P1為波峰位置 700第二脈波 710計算出主動脈脈波波峰之兩側最小值處 720計算出左、右兩側波谷距主動脈脈波波峰的時距 730當右侧時距〉左側時距時,則以此主動脈脈波波峰為中心,並 以左側時距為基準取得一對稱波(脈波1),取主動脈脈波訊號與 對稱波之相差訊號(脈波2) 740由此主動脈脈波訊號之此對稱波之相差訊號(脈波2)取得第 201225908Figure 7A is a schematic flow diagram of an example, further illustrating how the pulse signal detection/computing unit detects a second pulse peak of the aortic pulse signal in Figure 5A, and with certain aspects of the disclosure The examples are consistent. Figure 7B is a schematic illustration of the relative position of the aortic pulse signal to the second 201225908 pulse wave crest and is consistent with certain embodiments of the present disclosure. The eighth figure is an example diagram illustrating the relative position between the aortic pulse signal, the first pulse signal' and the second pulse signal, and how the calculation module calculates the pulse wave parameters, and with some of the disclosures The implementation examples are consistent. [Main component symbol description] 12〇 digital signal processor 140 air compressor 160 analog-to-digital converter 21 〇 signal unit 212 nanosecond pulse wave 214 first RF switch, 216 萆 two RF switch 218 third amplifier 232 second wave 234 second amplifier 253 calculation module 110 electric valley micro-machining ultrasonic sensor patch 130 inflatable bracelet 150 pressure sensor 200 cardiovascular pulse measurement agricultural 211 RF generator 213 transceiver 215 first amplifier 217 second amplifier 219 Mixer 230 Filtering/Amplifying Unit 231 First Filter 233 First Amplifier 250 Pulse Signal Detection/Computation Unit 251 First Pulse Wave Detection Module. 252 Second Pulse Wave Detection Module 15 201225908 260 aorta pulse wave signal 270 cardiovascular 271 reflex signal 280 pulse wave parameter 5 00 cardiovascular pulse measurement method 510 - RF generator emits a nanosecond pulse wave to a cardiovascular 520 - transceiver receives this cardiovascular generated reflection Signal 530, the reflected signal generates an aortic pulse signal 540 via a filtering/amplifying unit - the pulse signal detecting/calculating unit detects the aorta A first pulse wave 550 of the wave signal then detects a second pulse wave peak 560 of the aortic pulse wave signal to calculate at least one pulse wave parameter 600. The first pulse wave 610 defines a search peak interval size 620 to obtain a P1 position. And the value··calculates a center point of the interval. When the center point is the maximum value of the interval, the position of the P1 and the value 630 obtain the position and value of the P1' from the time shift interval to the next point, and calculate The maximum value of this interval, and the position of ΡΓ is compared with the value 640 P1 and ΡΓ: when the value of P1 '>= ρι is 'the record ρι' is the peak position, and conversely, P1 is the peak position 700 second pulse 710 Calculate the minimum value of the two sides of the aortic pulse wave peak 720 to calculate the time interval 730 from the left and right sides of the trough to the aortic pulse wave peak. When the right side time distance> left side time interval, then the aortic pulse wave The peak is centered, and a symmetric wave (pulse wave 1) is obtained based on the left time interval, and the asymmetry wave of the aortic pulse wave signal and the symmetric wave (pulse wave 2) 740 is taken as the symmetric wave of the aortic pulse wave signal. The phase difference signal (pulse wave 2) was obtained on 201225908

二脈波波峰P2 810心臟 820主動脈 830時距 840比例 17Two-pulse wave peak P2 810 heart 820 aorta 830 hours distance 840 ratio 17

Claims (1)

201225908 七、申請專利範圍: 1 ·—種心血管脈搏量測裝置,該心血管脈搏量測裝置包 含‘: —讯號單元,至少包括一射頻產生器與一收發器,該 射頻產生器發射一奈秒脈衝電波至一心血管,該收發 器接收該心血管反射的一反射訊號,該反射訊號經由 一遽波/放大單元產生一主動脈脈波訊號;以及 一脈波机號偵測/計算單元偵測出該主動脈脈波訊號 的一第一脈波波峰及一第二脈波波峰,並算出至少一 脈波參數。 2. 如申請專利範圍第1項所述之心血管脈搏量測裝 置’其中該奈秒脈衝電波小於1千兆赫。 3. 如申請專利範圍第1項所述之心血管脈搏量測裝 置’其中該奈秒脈衝電波約5奈秒。 4. 如申請專利範圍第1項所述之心血管脈搏量測裝 置,其中該訊號單元還包括一第一、第二射頻開關, 一第一、第二、第三放大器、以及一混波器,其中該 第一、第二射頻開關以該第一放大器連接;該第一射 頻開關並連接該射頻產生器與該第三放大器;該第二 射頻開關並連接該收發器與該第二放大器;該混波器 連接於該第二放大器、該第三放大器,並連接至該濾 波/放大單元。 5. 如申晴專利範圍第1項所述之心企管脈搏量測裝 置’其中該攄波/放大單元還包括依序排列之一第— 濾波器、第一放大器、第二濾波器、以及第二放大器, 18 201225908 其中該第一濾波器與該混波器連接,該第二放大器連 接至該脈波訊號偵測/計算單元。 6·如申請專利範圍第1項所述之心血管脈搏量測裝 置’其中該脈波訊號偵測/計算單元可備有一第一脈 波波峰偵測模組、一第二脈波波峰偵測模組、以及一 °十异模組,§亥脈波訊號彳貞測/計算單元接受主動脈脈 波δ孔號’以s亥第一脈波波峰伯測模组先進行偵測一第 一脈波波峰,然後該第二脈波波峰偵測模組以該主動 藝 脈脈波波峰再進行侧―第二脈波鱗,最後由該計 算模組算出該至少一脈波參數。 7. 如申請專利範圍第丨項所述之心血管脈搏量測裝 置’其中該至少一脈波參數是一脈波波速參數、一反 射係數參數、或是其他參數等。 8. 一種心、血f脈搏量測方法,細血管脈懸測方法包 含: 一射頻產生器發射一奈秒脈衝電波至一心血管; _ —收發11接收該d管產生的-反射訊號; 該反射訊號經由—渡波/放大單元產生-主動脈脈波 訊號; -脈波訊號_/計算單元_丨該絲脈脈波訊號 的一第一脈波波峰; 該脈波峨_/計算單元再_出該主動脈脈波訊 號的一第二脈波波峰;以及 鼻出至少一脈波參數。 9. 如申°月專利範圍第8項所述之心血管脈搏量測方 19 201225908 法,其中該脈波訊號偵測/計算單元偵測出該主動脈 脈波sfl號的一第一脈波波峰的步驟,還包括. 疋義出搜尋一波峰區間大小; 取得P1位置與值:算出此該區間的一中心點,當該 中心點為該區間的最大值時,則為P1的位置與值; 取得ΡΓ位置與值··依時間位移該區間至下—點計 算出該區間之最大值,並為ΡΓ的位置與值; 比較P1與卩丨,:當P1,值〉=P1值時,則紀錄ρι,為 • 波峰俾置’反之,P1為波峰位置; §該區間之中心點不是該區間内最小值時,則重複上 述取得P1位置與值、取得P1,位置與值、與比較?1 與ΡΓ之步驟;以及 而當該區間之中心點為該區間内最小值時,則取得該 該主動脈脈波訊號之第一脈波波峰位置P1。 10.如申請專利範圍第8項所述之心血管脈搏量測方 法,其中該脈波訊號偵測/計算單元在伯測出該主動 脈脈波机號的一第二脈波波峰的步驟,還包括: 計算出該主動脈脈波之兩側最小值處; 計算出左、右兩側波谷距該主動脈波波♦的時距; 當該右側時距 &gt; 該左側時距時,則以該主動脈脈波波 峰為令心,並以左側時距為基準取得一對稱波(脈波 1) ,取主動脈脈波訊號與該對稱波之相差訊號(脈波 2) ; 由該主動脈脈波訊號之該對稱波之相差訊號(脈波2) 取得該第二脈波波峰P2。 20 201225908 11. 如申請專利範圍第8項所述之心血管脈搏量測方 法,其中該至少一脈波參數是一脈波波速參數。 12. 如申請專利範圍第11項所述之心血管脈搏量測方 法,其中計算出該第一脈波之波峰與該第二脈波之波 峰之間的一時距,該時距為一脈波波速計算中的一時 間參數,故利用血液流經距離與該時距之除值則計算 出該脈波波速參數。 13. 如申請專利範圍第8項所述之心血管脈搏量測方 法,其中該脈波參數是一反射係數參數。 14. 如申請專利範圍第13項所述之心血管脈搏量測方 法,其中該反射係數參數為該第一脈波的波峰之波峰 值與該第二脈波的波峰之波峰值的一比例。 21201225908 VII. Patent application scope: 1 · A cardiovascular pulse measuring device, the cardiovascular pulse measuring device comprises a ':-signal unit, comprising at least one RF generator and one transceiver, the RF generator emits one The nanosecond pulse wave reaches a cardiovascular wave, the transceiver receives a reflection signal of the cardiovascular reflection, the reflection signal generates an aortic pulse wave signal via a chopper/amplification unit; and a pulse wave number detection/calculation unit A first pulse wave peak and a second pulse wave peak of the aortic pulse wave signal are detected, and at least one pulse wave parameter is calculated. 2. The cardiovascular pulse measuring device of claim 1, wherein the nanosecond pulse wave is less than 1 GHz. 3. The cardiovascular pulse measuring device of claim 1, wherein the nanosecond pulse wave is about 5 nanoseconds. 4. The cardiovascular pulse measuring device according to claim 1, wherein the signal unit further comprises a first and second RF switch, a first, a second, a third amplifier, and a mixer. The first and second RF switches are connected by the first amplifier; the first RF switch is connected to the RF generator and the third amplifier; the second RF switch is connected to the transceiver and the second amplifier; The mixer is coupled to the second amplifier, the third amplifier, and to the filtering/amplifying unit. 5. The heartbeat pulse measuring device according to item 1 of the Shenqing patent scope, wherein the chopper/amplification unit further comprises a first filter, a first amplifier, a second filter, and a first A second amplifier, 18 201225908, wherein the first filter is connected to the mixer, and the second amplifier is connected to the pulse signal detecting/computing unit. 6. The cardiovascular pulse measuring device according to claim 1, wherein the pulse signal detecting/calculating unit is provided with a first pulse wave detecting module and a second pulse wave detecting device. Module, and one-ten-different module, § Haimai wave signal measurement/computing unit accepts aortic pulse wave δ hole number' s first pulse first wave detection module first detection first The pulse wave peak, and then the second pulse wave detection module performs the side-second pulse scale with the active art pulse wave peak, and finally the at least one pulse wave parameter is calculated by the calculation module. 7. The cardiovascular pulse measuring device of claim </RTI> wherein the at least one pulse wave parameter is a pulse wave velocity parameter, a reflection coefficient parameter, or other parameter. 8. A method for measuring heart and blood f pulse, wherein the method for measuring a blood vessel pulse comprises: a radio frequency generator transmitting a nanosecond pulse wave to a cardiovascular; _ receiving and receiving 11 receiving a reflected signal generated by the d tube; The signal is generated by the -wave/amplification unit-aortic pulse wave signal; - the pulse wave signal _/calculation unit _ 一 a first pulse wave peak of the silk pulse wave signal; the pulse wave 峨 _ / calculation unit _ a second pulse wave peak of the aortic pulse wave signal; and at least one pulse wave parameter of the nose. 9. The method according to claim 8, wherein the pulse wave signal detecting/calculating unit detects a first pulse of the aortic pulse wave sfl number. The step of the peak also includes: searching for the size of a peak interval; obtaining the position and value of P1: calculating a center point of the interval, and when the center point is the maximum value of the interval, the position and value of P1 Obtain the position and value of the ····························································································· Then record ρι, for • crest setting 'inversely, P1 is the peak position; § When the center point of the interval is not the minimum value in the interval, repeat the above to obtain the P1 position and value, obtain P1, position and value, and compare? The step of 1 and ;; and when the center point of the interval is the minimum value in the interval, the first pulse peak position P1 of the aortic pulse signal is obtained. 10. The method of measuring a cardiovascular pulse according to claim 8, wherein the pulse signal detecting/calculating unit detects a second pulse peak of the aortic pulse wave machine. The method further includes: calculating a minimum value on both sides of the aortic pulse wave; calculating a time interval between the left and right sides of the valley wave from the aortic wave wave; when the right side time interval &gt; the left side time interval, Taking the aortic pulse wave as the center of the heart, and taking a symmetric wave (pulse wave 1) based on the left time interval, taking the aortic pulse wave signal and the symmetric wave difference signal (pulse wave 2); The phase difference signal (pulse wave 2) of the symmetrical wave of the arterial pulse wave signal acquires the second pulse wave peak P2. The method of measuring a cardiovascular pulse according to claim 8, wherein the at least one pulse wave parameter is a pulse wave velocity parameter. 12. The method of measuring a cardiovascular pulse according to claim 11, wherein a time interval between a peak of the first pulse wave and a peak of the second pulse wave is calculated, the time interval being a pulse wave A time parameter in the calculation of the wave velocity, so the pulse wave velocity parameter is calculated by dividing the blood flow distance and the time interval. 13. The cardiovascular pulse measurement method of claim 8, wherein the pulse wave parameter is a reflection coefficient parameter. 14. The cardiovascular pulse measurement method of claim 13, wherein the reflection coefficient parameter is a ratio of a peak value of a peak of the first pulse wave to a peak value of a peak of the second pulse wave. twenty one
TW099146439A 2010-12-28 2010-12-28 Apparatus and method for cardiovascular pulse measurement by using electrical pulses TWI495452B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099146439A TWI495452B (en) 2010-12-28 2010-12-28 Apparatus and method for cardiovascular pulse measurement by using electrical pulses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099146439A TWI495452B (en) 2010-12-28 2010-12-28 Apparatus and method for cardiovascular pulse measurement by using electrical pulses

Publications (2)

Publication Number Publication Date
TW201225908A true TW201225908A (en) 2012-07-01
TWI495452B TWI495452B (en) 2015-08-11

Family

ID=46932538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099146439A TWI495452B (en) 2010-12-28 2010-12-28 Apparatus and method for cardiovascular pulse measurement by using electrical pulses

Country Status (1)

Country Link
TW (1) TWI495452B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI270364B (en) * 2004-12-09 2007-01-11 Dailycare Biomedical Inc Integrated biosignal measuring apparatus

Also Published As

Publication number Publication date
TWI495452B (en) 2015-08-11

Similar Documents

Publication Publication Date Title
Ding et al. Continuous blood pressure measurement from invasive to unobtrusive: Celebration of 200th birth anniversary of Carl Ludwig
Rastegar et al. Non-invasive continuous blood pressure monitoring systems: current and proposed technology issues and challenges
AU2011323102B2 (en) Wireless fetal monitoring system
US10524672B2 (en) Diastolic blood pressure measurement calibration
Mukherjee et al. A literature review on current and proposed technologies of noninvasive blood pressure measurement
US20150182132A1 (en) Mobile device system for measurement of cardiovascular health
US10448830B2 (en) Wearable blood pressure monitoring system
US20150366469A1 (en) System for measurement of cardiovascular health
JP3898047B2 (en) Blood rheology measuring device
Le et al. Continuous non-invasive blood pressure monitoring: a methodological review on measurement techniques
KR101607116B1 (en) System for measuring and recording a user&#39;s vital signs
EP3157416A2 (en) Method and system for cuff-less blood pressure (bp) measurement of a subject
JP2001520535A (en) Apparatus and method for measuring induced perturbations to determine physiological parameters
US20140081159A1 (en) Non-invasive continuous blood pressure monitoring system and method
US20140128754A1 (en) Multimodal physiological sensing for wearable devices or mobile devices
US20190209031A1 (en) Blood pressure measuring device, blood pressure measuring method and recording medium having blood pressure measuring program recorded therein
AU2018210232A1 (en) Non-invasive blood pressure measurement using pulse wave velocity
US20160106326A1 (en) Pressure Wave Measurement of Blood Flow
WO2008007361A2 (en) Wearable, ambulatory, continuous, non-invasive blood pressure measuring method and system
US20150243190A1 (en) Blood pressure measurement apparatus
Okano et al. Multimodal cardiovascular information monitor using piezoelectric transducers for wearable healthcare
TWI572328B (en) Wearable Compound Vessel Flow Detector
CN103610454A (en) Blood pressure measurement method and system
Hsu et al. Skin-surface-coupled personal health monitoring system
US20230293026A1 (en) Photoplethysmography-based Blood Pressure Monitoring Device