201225310 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種薄膜太陽能電池之前驅物預鍍層 的製造方法,特別是關於一種薄膜太陽能電池Cu-III-VI 類半導體化合物之前驅物預鍍層堆疊結構的製造方法。 【先前技術】 6達到或接近量產階段的半導體薄膜太陽電池材料 主要有非晶矽、碲化鎘(CdTe)及銅銦鎵硒Cu(In,Ga)Se2 (簡稱CIGS)等三種,其中非晶矽是最先製成太陽電 池模組量產者;而CdTe及CIGS太陽能電池小面積元 件之能源轉換效率已分別達到16 5%與2〇 3%以上,兩 者均已有大面積模組之產品問世。 就銅銦鎵硒(CIGS)薄膜太陽能電池而言,cigs薄膜 可以選擇藉由各種不同原理的製程來進行製備,其中 CIGS薄膜製程目前主要有共蒸鏡(c〇_evap〇rati〇n)與硒 化兩種,其中共蒸錢可得到鎵(Ga)元素分佈具濃度梯度 變化的CIGS薄膜,也就是說在薄膜内之材料有- V型 分佈的能隙,可在p_n接面内在電場外的中性區内產生 電場,以減少载子復合(carrier rec〇mbinad〇n)的機會, 進而提升薄膜太陽能電池的光電效率。再者,由於共蒸 鍍之薄膜成錢率慢而且有較好㈣料性質,因此也有 利於製作較㈣率社陽電池,但成紐率慢也導致其 製程產出量低而使其成本相對較高。 201225310 另一方面,硒化製程可以概分為兩個階段,亦即先 進行鐘製前驅物(precursor)預鑛層,接著再進行加熱反 應碜理’如此即可得到CIGS薄膜,其中上述前驅物可 以是組成之各金屬元素,將各金屬元素分層鍍製,並使 各層厚度依所需組成適當調配。在石西化期間,可將多層 前驅物預鍍層結構置入硒蒸氣或硒化氫(H2Se)氣體 中’並以慢速升溫進行長時間(例如500〇C,30分鐘)加 熱’此法可得到材料品質優良的CIGS薄膜。另一硒化 做法則是可以在多層前驅物預鍍層結構上進一步加鍍 一石西元素層使其成為多層前驅物預鍍層結構的一部 分’此結構則可實現快速升溫(>10〇C/sec),因而有利於 在短時間(例如500°C ’ 1分鐘)内完成反應。上述形成 前驅物預鍍層的方法可選自各種適合大面積生產及低 成本之現有製程(如:減;鑛SpUttering、墨印ink printing、 電鑛electroplating等)來進行鍍製,因此其製程極具量 產成本優勢。 舉例來說’中華民國公開第2〇1〇27781號發明專利 申請案揭示一種ΙΒ —πια—VIA2化合物半導體薄膜之 製造方法與製造裝置,其中包括:提供一基板,其上以 濺鍍方式形成有一前驅物薄膜,其中該前驅物薄膜包括 族元素與ΠΙΑ族元素;對該基板及其上之該前驅物 薄膜施行一回火程序,以於該基板上形成一 ιβ_ιπα合 金薄膜;以及施行一表面處理程序,通入離子化VIA 族元素與該ιβ-ιιια合金薄膜反應,以形成一 201225310 IB-IIIA-VIA2化合物半導體薄膜。 再者,中華民國公開第201032346號發明專利申請 案揭示一種薄膜冬陽能電池及其製作方法,其中包括: 提供一基板,以濺鍍方式將背電極層形成在基板上;形 成前驅物鋁、銅、銦與硒等層於背電極層上;以快速熱 製程使前驅物鋁、銅、銦與硒各自相互擴散,因此形成 一具有銅銦鋁砸(CIAS)化合物結構之光吸收層,其中在 光吸收層之上半部之銦/鋁比例大於其下半部之銦/鋁 比例。以硫化製程方式進一步在光吸收層上形成一具有 銅銦鋁砸硫(CIASS)化合物結構之表面層。以濺鍍方式 將一前電極層形成在表面層上。 然而’上述各種現有硒化製程以各元素前驅物預鍍 層進行快速硒化(rapid thermal selenization)的缺點在於 最、3不谷易得到材料性質良好的CIGS薄膜,其影響量 產良率的關鍵條件則是CIGS薄膜組成的均勻性以及晶 粒結構。事實上,從CIGS材料基本特性來看,若薄膜 内存在晶粒間的孔洞以及組成元素飄移到產生易導雷 的 Cu q _ 2-xi>e二次相等缺陷時,則這些缺陷對材質將造成 不良的負面影響。造成這些缺陷的關鍵因素往往與前驅 預鐵層的製程有關’若無法得到良好的前驅物預鍰層 的°〇質(如薄膜組成的均勻性等),則將產生上述缺陷; 方面’為了有效減少上述缺陷,也會限制前驅物預 錢層之面積無法進一步增大,因而造成生產大面穑 QQc λλ ^ 溥膜太陽能電池基板之技術瓶頸。 201225310 故,有必要提供一種薄膜太陽能電池之前驅物預鍍 層的製造方法,以解決習用技術所存在的問題。 【發明内容】 本發明之主要目的在於提供一種薄膜太陽能電池之 前驅物預鍍層的製造方法,其係利用二元硒化物做為前 驅物預鑛層,其氣化點的材料性質不但適用於連續共蒸 鍍製程,而且其熔點的材料性質也能確保在快速硒化 (rapid thermal selenization)製程中以液態反應方式獲得 良好的IB-IIIA-VIA類半導體化合物(如CIGS)的薄膜材 料性質,因而有利於加速製程並提高薄膜品質(均勻 性)、良率與產量。 本發明之次要目的在於提供一種薄膜太陽能電池之 前驅物預鍍層的製造方法,其係適合搭配使用線性蒸鍍 源設備來連續共蒸鍍形成IB-IIIA-VIA類半導體化合物 之前驅物預鍍層’因此有利於應用在大面積(large area) 及高產出(high throughput)的硬式基板之連續生產線 (in-line)或可撓式基板之連續捲材式生產線 (rolMo-roll),進而能提高產品的取材多樣性及其工業量 產的可能性。 為達上述之目的,本發明提供一種薄膜太陽能電池 之前驅物預鍍層的製造方法,其包含步驟:(A)、提供 第一種二元硒化物之粉末;(B)、利用一承載氣體將該 粉末導入到一第一線性蒸鍍源設備之一加熱腔室中; 201225310 (C)、利用該加熱腔室加熱該粉末,以得到一蒸氣;(D)、 經由該第一線性蒸鍍源設備之一線性蒸鍍槽口將該蒸 氣連續性的塗佈至一基板之表面,以形成一第一前驅物 預鍍層;(E)、提供一第二種二元硒化物之粉末並另通 過一第二線性蒸鍍源設備進行步驟(B)至(D),以形成一 第二前驅物預鍍層堆疊於該第一前驅物預鍍層上; (F)、提供一第三種二元硒化物之粉末並另通過一第三 線性蒸鍍源設備進行步驟(B)至(D),以形成一第三前驅 物預鍍層堆疊於該第二前驅物預鍍層上;以及,(G)、 提供第VIA族元素之粉末並另通過一第四線性蒸鍍源 設備進行步驟(B)至(D),以形成一第四前驅物預鍍層堆 疊於該第三前驅物預鍍層上。 在本發明之一實施例中,該第一種二元硒化物選自 第IB族元素之二元ί西化物,例如為砸化銅(CuSe)。 在本發明之一實施例中,該第二種二元硒化物選自 第IIIA族元素之二元砸化物,例如為砸化銦(InSe)。 在本發明之一實施例中,該第三種二元硒化物選自 第IIIA族元素之二元硒化物,例如為硒化鎵(GaSe)或硒 化鋁(AlSe)。 在本發明之一實施例中,該第VIA族元素較佳為硒 (Se)或硫(S)之至少一種。 在本發明之一實施例中,在該第一種、第二種、第 三種二元硒化物之粉末或該第VIA族元素之粉末中另 摻入銻(Sb)元素之粉末可促進晶粒之粗化及緻密。 201225310 在本發明之一實施例中,在步驟(c)中,該加熱腔室 加熱該粉末之溫度介於800 °C至1000 °C之間。 在本發明之一實施例中,該终載氣體選自氮氣(n2)。 在本發明之一實施例中,該基板選自硬式基板(例如 玻璃基板)或可撓式基板(例如不鏽鋼板、鋁板、鉬板或 高分子聚合物塑性板)。 在本發明之一實施例中,在步驟(G)之後另包含: (H)、對該第一至第四前驅物預鑛層進行快速石西化處 理,以利用液態反應方式形成一種IB-IIIA-VIA半導體 化合物之最終成膜結構。 在本發明之一實施例中,該快速硒化處理之升溫速 度係設定為10 QC/秒,及其升溫至500 °C以上處理至少 1分鐘。 再者,本發明提供另一種薄膜太陽能電池之前驅物 預鍍層的製造方法,其包含步驟:(a)、提供第一種二元 硒化物之粉末;(b)、利用一承載氣體將該粉末導入到 一第一線性蒸鍍源設備之一加熱腔室中;(c)、利用該加 熱腔室加熱該粉末,以得到一蒸氣;(d)、經由該第一 線性蒸鍍源設備之一線性蒸鍍槽口將該蒸氣連續性的 塗佈至一基板之表面,以形成一第一前驅物預鑛層; (e)、提供一第二種二元硒化物之粉末並另通過一第二線 性蒸鍍源設備進行步驟(b)至(d),以形成一第二前驅物 預鍍層堆疊於該第一前驅物預鍍層上;以及,(f)、提供 第VIA族元素之粉末並另通過一第三線性蒸鍍源設備 201225310 進行步驟(b)至(d),以形成一第三前驅物預鍍層堆疊於 該第二前驅物預鍍層上。 在本發明之一實施例中,該第一種二元砸化物選自 第IB族元素之二元砸化物,例如為砸化銅(CuSe)。 在本發明之一實施例中,該第二種二元硒化物選自 第IIIA族元素之二元砸化物,例如為砸化銦(InSe)。 在本發明之一實施例中,該第VIA族元素較佳為硒 (Se)或硫(S)之至少一種。 在本發明之一實施例中,在該第一種、第二種或第 三種二元硒化物之粉末中另摻入銻(Sb)元素之粉末。 【實施方式】 為了讓本發明之上述及其他目的、特徵、優點能更 明顯易懂,下文將特舉本發明較佳實施例,並配合所附 圖式,作詳細說明如下。 請參照第1圖所示,本發明第一實施例之薄膜太陽 能電池之前驅物預鍍層的製造方法主要包含下列步 驟:(A)、提供第一種二元硒化物之粉末51 ; (B)、利用 一承載氣體50將該粉末52導入到一第一線性蒸鍍源設 備10之一加熱腔室12中;(C)、利用該加熱腔室12加 熱該粉末51,以得到一蒸氣;(D)、經由該第一線性蒸 鍍源設備10之一線性蒸鍍槽口 13將該蒸氣連續性的塗 佈至一基板60之表面,以形成一第一前驅物預鍍層 61 ; (E)、提供一第二種二元硒化物之粉末52並另通過 201225310 一第二線性蒸鍍源設備20進行步驟(B)至(D),以形成 一第二前驅物預鑛層62堆疊於該第一前驅物預鑛層61 上;(F)、提供一第三種二元硒化物之粉末53並另通過 一第三線性蒸鍍源設備30進行步驟(B)至(D),以形成 一第三前驅物預鐘層63堆疊於該第二前驅物預鍵層62 上;以及,(G)、提供第VIA族元素之粉末54並另通過 一第四線性蒸鍍源設備40進行步驟(B)至(D),以形成 一第四前驅物預鍵層64堆疊於該第三前驅物預鑛層63 上。本發明將於下文搭配附圖逐一詳細說明各步驟。 首先,請參照第1及2圖所示,本發明第一實施例 之薄膜太陽能電池之前驅物預鍍層的製造方法的步驟 (A) 係:提供第一種二元硒化物之粉末51。在本步驟中, 若本發明欲製作之薄膜太陽能電池屬於IB-IIIA-VIA類 半導體化合物,則該第一種二元硒化物較佳選自第IB 族元素之二元砸化物,例如為砸化銅(CuSe),但並不限 於此。該二元硒化物之粉末51係經由該第一線性蒸鍍 源設備10外部之一粉末供應管16輸入至該第一線性蒸 鍍源設備10内部。必要時,在該第一種二元硒化物之 粉末51中可另掺入銻(Sb)元素之粉末,以利增加後續 形成薄膜時之平坦度及晶粒粗化。 接著,請參照第1及2圖所示,本發明第一實施例 之薄膜太陽能電池之前驅物預鍍層的製造方法的步驟 (B) 係:利用一承載氣體50將該粉末52導入到該第一 線性蒸鍍源設備10之一加熱腔室12中。在本步驟中, 11 201225310 該承載氣體50較佳選自氮氣(N2)或其他具反應惰性之 氣體。該第一線性蒸鍍源設備10包含一外殼11、該加 · 熱腔室12、一線性蒸鍍槽口 13、一播板14、一加熱槽 . 口 15、該粉末供應管16及一氣體供應管17,其中該外 殼11係呈長圓柱狀之中空殼體,該加熱腔室12容置於 該外殼11内,該線性蒸鍍槽口 13開設於該外殼11之 底部,該擋板14位於該線性蒸鍍槽口 13之下游端,該 加熱槽口 15開設於該加熱腔室12之頂部,該粉末供應 管16及氣體供應管17相互連通並位於該外殼11之外 ® 部。該粉末供應管16用以輸入該第一種二元硒化物之 粉末51,而該氣體供應管17用以輸入該承載氣體50, 其中該粉末51與承載氣體50相混合之後,被導入該加 熱腔室12内。 接著,請參照第1及2圖所示,本發明第一實施例 之薄膜太陽能電池之前驅物預鍍層的製造方法的步驟 (C) 係:利用該加熱腔室12加熱該粉末51,以得到一蒸 0 氣。在本步驟中,該加熱腔室12加熱該粉末51之溫度 較佳介於800 °C至1000 DC之間,其係根據使用之第一 種二元硒化物之氣化點來加熱至800 °C至1000 °C之 間,以產生該第一種二元硒化物之蒸氣。 接著,請參照第1及2圖所示,本發明第一實施例 之薄膜太陽能電池之前驅物預鍍層的製造方法的步驟 (D) 係:經由該第一線性蒸鍍源設備10之線性蒸鍍槽口 13將該蒸氣連續性的塗佈至一基板60之表面,以形成 12 201225310 一第一前驅物預鍍層61。在本步驟中,該粉末51受該 . 加熱腔室12加熱產生該蒸氣之後,該蒸氣隨即依序通 過該加熱槽口 15、該外殼11及加熱腔室12之間的通 道(未標示)與該線性蒸鍍槽口 13,而到達該基板60之 表面。此時,由於該基板60之表面具有相對較低的溫 度’因此該蒸氣將蒸鍍在該基板60之表面,而形成該 第一種二元硒化物之第一前驅物預鍍層61。在蒸鍍期 間’該擋板14可限制及集中該蒸氣之蒸鍍區域,使其 • 可達到大面積線性連續蒸鍍之目的。 再者,在本步驟中,該基板60依產品需求係可選自 硬式基板或可撓式基板,其中該硬式基板例如可選自玻 璃基板、矽基板或藍寶石基板等,而該可撓式基板例如 可選自不鑛鋼板、銘板、钥板或其他金屬板或合金板, 甚至為高分子聚合物塑性板。若該基板60選自硬式基 板,則該基板60可由一連續生產線(in_Une)來供應,例 φ 如使用滾輪輸送帶;若該基板60選自可撓式基板,則 該基板60可由一連續捲材式生產線(roll-to-roll)來供 應’以便提高產品的取材多樣性及其工業量產的可能 性。 接著’請參照第1圖所示,本發明第一實施例之薄 膜太陽能電池之前驅物預鍍層的製造方法的步驟(E) 係:提供一第二種二元硒化物之粉末52並另通過該第 二線性蒸鍍源設備20進行步驟(B)至(D),以形成一第 二前驅物預鍍層62堆疊於該第一前驅物預鍍層61上。 13 201225310 在本步驟中,該第二線性蒸鍍源設備20之構造及功能 相似於該第一線性蒸鍍源設備10,該第二線性蒸鍍源 設備20同樣包含一外殼21、該加熱腔室22、一線性蒸 鍍槽口 23、一擋板24及一加熱槽口 25,且該外殼21 外部同樣具有一粉末供應管及一氣體供應管(未繪 示),以供輸入該第二種二元硒化物之粉末52及一承載 氣體50之混合物。 在本步驟中,若本發明欲製作之薄膜太陽能電池屬 於IB_IIIA-VIA類半導體化合物,則該第二種二元硒化 物較佳係選自第IIIA族元素之二元硒化物,例如為硒 化銦(InSe),但並不限於此。該第二種二元硒化物之粉 末52同樣受該第二線性蒸鍍源設備20之加熱腔室22 加熱而產生蒸氣,並由該線性蒸鍍槽口 23蒸鍍於該第 一前驅物預鍍層61上,而形成該第二種二元硒化物之 第二前驅物預鍍層62。在蒸鍍期間,該擋板24可限制 及集中該蒸氣之蒸鍍區域,使其可達到大面積線性連續 蒸鑛之目的。必要時,在該第二種二元硒化物之粉末 52中可另摻入銻(Sb)元素之粉末,以利增加後續形成該 第二前驅物預鍍層62時之平坦度並有利於晶粒粗化。 接著,請參照第1圖所示,本發明第一實施例之薄 膜太陽能電池之前驅物預鍍層的製造方法的步驟(F) 係:提供一第三種二元硒化物之粉末53並另通過一第 三線性蒸鍍源設備30進行步驟(B)至(D),以形成一第 三前驅物預鍍層63堆疊於該第二前驅物預鍍層62上。 201225310 在本步驟中,該第三線性蒸鍍源設備30之構造反功: • 相似於該第一及第二線性蒸鍍源設備10、20,该第〆 - 線性夢鍍源設備30同樣包含一外殼31、該加熱胜多 . 32、一線性蒸鍍槽口 33、一擋板34及一加熱槽口 % 且該外殼31外部同樣具有一粉末供應管及一氣體供應 管(未繪示)’以供輸入該第三種二元叾西化物之粉末^ 及一承載氣體50之混合物。 在本步驟中,若本發明欲製作之薄膜太陽能電池廣 鲁於IB-IIIA-VIA類半導體化合物,則該第三種二元额化 物較佳係選自第III A族元素之二元砸化物,該第HI A 族元素優選為鎵(Ga)或鋁(A1),例如為硒化鎵(GaSe)或 硒化鋁(AlSe),但並不限於此。該第三種二元硒化物之 粉末53同樣受該第三線性蒸鍍源設備30之加熱腔室 32加熱而產生蒸氣,並由該線性蒸鍍槽口 33蒸鍍於該 第二前驅物預鍍層62上,而形成該第三種二元硒化物 • 之第三前驅物預鍍層63。在蒸鍍期間,該擋板34可限 制及集中該蒸氣之蒸鍍區域,使其可達到大面積線性連 續蒸鍍之目的。必要時,在該第三種二元硒化物之粉末 53中可另摻入銻(Sb)元素之粉末,以利增加後續形成該 第三前驅物預鍍層63時之平坦度並有利於晶粒粗化。 接著,請參照第1圖所示’本發明第一實施例之薄 膜太陽能電池之前驅物預鍍層的製造方法的步驟(G) 係:提供第VIA族元素之粉末54並另通過一第四線性 蒸錢源設備40進行步驟(B)至(D)’以形成一第四前驅 15 201225310 物預鍍層64堆疊於該第三前驅物預鍍層63上。在本步 驟中,該第四線性蒸鍍源設備40之構造及功能相似於 該第一至第三線性蒸鍍源設備10、20、30,該第四線 性蒸鍍源設備40同樣包含一外殼41、該加熱腔室42、 一線性蒸鍍槽口 43、一擋板44及一加熱槽口 45,且該 外殼41外部同樣具有一粉末供應管及一氣體供應管(未 繪示),以供輸入該第VIA族元素之粉末54及一承載氣 體50之混合物。 在本步驟中,若本發明欲製作之薄膜太陽能電池屬 於IB-IIIA-VIA類半導體化合物,則該第VIA族元素較 佳為硒(Se)或硫(S)之至少一種,但並不限於此。該第 VIA族元素之粉末54同樣受該第四線性蒸鍍源設備40 之加熱腔室42加熱而產生蒸氣,並由該線性蒸鍍槽口 43蒸鍍於該第三前驅物預鍍層63上,而形成該第VIA 族元素之第四前驅物預鍍層64。在蒸鍍期間,該擋板 44可限制及集中該蒸氣之蒸鍍區域,使其可達到大面 積線性連續蒸鍍之目的。必要時,在該第VIA族元素 之粉末54中可另摻入銻(Sb)元素之粉末,以利增加後 續形成該第四前驅物預鍍層64時之平坦度。 請參照第3圖所示,本發明在完成上述步驟(A)至(G) 之後,即可在該基板60上依序堆疊形成該第一至第四 前驅物預鍍層61-64。 接著,請參照第4圖所示,本發明在步驟(G)之後另 可包含一步驟(H),其用以對該第一至第四前驅物預鍍 16 201225310 層61-64進行快速硒化處理(rapid thermal . selenization),以利用液態反應方式形成一種 .ΙΒ_ΠΙΑ·νΐΑ +導體化合物之最終成膜結構6G0。在本 步驟中,具有該第-至第四前驅物職層61_64之該基 板60係被滾輪輸送帶連續性的依序導入一抽真空腔室 7卜-加熱腔室72及一解除真空腔室73。該抽真空腔 室71用以抽真空,且必要時,在該抽真空腔室71之上 關另可賴-預抽真空腔室(未㈣),以預先進行抽 真空。該加熱腔室72則用以加熱該第一至第四前驅物 預鍍層61-64,使其相互反應而形成ΐΒ ιπΑ_νΐΑ半導 體化合物之最終成膜結構0〇〇,例如Cu(ln,,即 銅錮料(aGS)半導體化合物。該㈣魏處理之升溫 速度係設定為10°c/秒,及其升溫至5〇〇〇c以上處理至 少1分鐘。 值得注意的是,此快速魏處理之溫度高於第一至 •第四種二元硒化物之熔點,因此該第一至第四前驅物預 鑛層61·64中的第-至第四種二元晒化物將呈液態而 有利於以液態反應方式相互反應而形成ΙΒ_ΠΙΑ_VIA半 導體化合物。該解除真空腔室73用以解除真空並回復 至常壓及常溫。藉此,該最終成膜結構6〇〇即可用於製 作薄膜太陽能電池產品。 另一方面,本發明亦揭示一第二實施例之薄膜太陽 能電池之前驅物預鍍層的製造方法,其係相似於本發明 第一實施例,並大致沿用相似設備及材料,但該第二實 17 201225310 施例之薄膜太陽能電池之前驅物預鍍層的製造方法係 包含下列步驟:(a)、提供第一種二元硒化物之粉末; · (b)、利用一承載氣體將該粉末導入到—第一線性蒸鍍 -源設備之一加熱腔室中;(c)、利用該加熱腔室加熱該粉 末’以得到一蒸氣;(d)、經由該第一線性蒸鍍源設備 之一線性蒸鍍槽口將該蒸氣連續性的塗佈至一基板之 表面,以形成一第一前驅物預鍵層;(e)、提供一第二種 一元晒化物之粉末並另通過一第二線性蒸鍛源設備進 行步驟(b)至(d) ’以形成一第二前驅物預鍍層堆疊於該 # 第一前驅物預鍍層上;以及,(f)、提供第VIA族元素 之粉末並另通過一第三線性蒸鍍源設備進行步驟(b)至 (d)’以形成一第三前驅物預鍍層堆疊於該第二前驅物 預鍍層上。藉此,本發明第二實施例可製備完成具有第 一至第三前驅物預鍍層之堆疊結構 在第二實施例中,該第一種二元硒化物選自第IB族 元素之二元硒化物’且該第IB族元素較佳為銅(Cu); 馨 該第二種二元硒化物選自第ΙΠΑ族元素之二元硒化 物,且該第IIIA族元素較佳為銦(In);該第VIA族元素 較佳為硒(Se)或硫(S)之至少一種。在該第一種、第二種 或第三種二元硒化物之粉末中另摻入銻(Sb)元素之粉 末。在完成步驟(a)至(f)之後,同樣可以對該第一至第 三前驅物預鍍層之堆疊結構進一步進行快速硒化處理 (rapid thermal selenization) ’ 以形成一種 IB-iiia-VIA 半 導體化合物之最終成膜結構。舉例來說,該最終成膜結 201225310 構可以是一種ib-iiia_via半導體化合物之最終成膜結 構,例如CuInSe2,即銅銦硒(CIS)半導體化合物。藉此, 該最終成膜結構即可用於製作薄鮮太陽能電池產品。 如上所述,相較於習用前驅物預鍍層的製程難以兼 顧良好的前驅物預鍍層的品質及增大薄膜太陽能電池 基板之面積等技術問題,第1至4圖之本發明薄膜太陽 能電池之前驅物預鍍層的製造方法係利用二元硒化物 (例如CuSe、InSe、GaSe或AlSe等)做為前驅物預鑛層, 其氣化點的材料性質不但適用於連續共蒸鍍製程,而且 其溶點的材料性質也能確保在快速砸化(rapid thermal selenization)製程中以液態反應方式獲得良好的 IB-IIIA-VIA類半導體化合物(如CIGS)的薄膜材料性 質,因而非常有利於用以製造此類半導體化合物之前驅 物預鍍層’並可達到加速製程並提高薄膜品質(均勻 性)、良率與產量之效果。 再者’本發明薄膜太陽能電池之前驅物預鍍層的製 造方法係適合搭配使用各線性蒸鍍源設備來連續共蒸 鑛形成IB-IIIA-VIA類半導體化合物之前驅物預鍵層, 因此有利於應用在大面積(large area)及高產出(high throughput)的硬式基板之連續生產線(in-line)或可撓式 基板之連續捲材式生產線(r〇ll_to_r〇U),進而能提高產品 的取材多樣性及其工業量產的可能性。 雖然本發明已以較佳實施例揭露,然其並非用以限 制本發明,任何熟習此項技藝之人士,在不脫離本發明 19 201225310 之精神和範圍内,當可作各種更動與修飾,因此本發明 之保護範圍當視後附之申請專利範圍所界定者為準。 - 【圖式簡單說明】 第1圖:本發明第一實施例之薄膜太陽能電池之前 驅物預鍍層的製造方法進行共蒸鍍時之示意圖。 第2圖:本發明第一實施例之線性蒸鍍源設備之局 部放大圖。 第3圖:本發明第一實施例之薄膜太陽能電池之前 籲 驅物預鍍層之局部剖視圖。 第4圖:本發明第一實施例之薄膜太陽能電池之前 驅物預鍵層進行快速石西化時之示意圖。 【主要元件符號說明】 10 第一線性蒸鍍源設備11 外殼 12 加熱腔室 13 線性蒸鍍槽口 14 擔板 15 加熱槽口 16 粉末供應管 17 氣體供應管 20 第二線性蒸鍍源設備21 外殼 22 加熱腔室 23 線性蒸鑛槽口 24 擋板 25 加熱槽口 30 第三線性蒸鍍源設備31 外殼 32 加熱腔室 33 線性蒸鍍槽口 34 擔板 35 加熱槽口 20 201225310 40 第四線性蒸鍍源設備 41 外殼 42 加熱腔室 43 線性蒸鍵槽口 44 擋板 45 加熱槽口 50 承載氣體 51 粉末 52 粉末 53 粉末 54 粉末 60 基板 61 第一前驅物預鑛層 62 第二前驅物預鍍層 63 第三前驅物預鍍層 64 第四前驅物預鍍層 600 最終成膜結構 71 抽真空腔室 72 加熱腔室 73 解除真空腔室201225310 VI. Description of the Invention: [Technical Field] The present invention relates to a method for fabricating a pre-plated layer of a thin film solar cell precursor, and more particularly to a pre-plated layer of a Cu-III-VI semiconductor compound of a thin film solar cell A method of manufacturing a stacked structure. [Prior Art] 6 The semiconductor thin film solar cell materials that reach or approach the mass production stage mainly include amorphous germanium, cadmium telluride (CdTe) and copper indium gallium selenide Cu(In,Ga)Se2 (referred to as CIGS). Jingsheng is the first mass-producer of solar cell modules; while the energy conversion efficiency of small-area components of CdTe and CIGS solar cells has reached 165% and more than 3% respectively, both of which have large-area modules. The product is available. For copper indium gallium selenide (CIGS) thin film solar cells, cigs films can be prepared by various processes. The CIGS film process currently has co-vaporated mirrors (c〇_evap〇rati〇n) and There are two types of selenization, in which a total of CIGS film with a concentration gradient change of gallium (Ga) element is obtained, that is to say, the material in the film has a V-shaped distribution energy gap, which can be outside the electric field in the p_n junction. An electric field is generated in the neutral zone to reduce the chance of carrier recuperation (carrier rec〇mbinad〇n), thereby improving the photovoltaic efficiency of the thin film solar cell. In addition, since the co-evaporated film has a slower money rate and better (four) material properties, it is also beneficial to produce a (four) rate social cell, but the slow rate of formation also results in low process yield and cost. Relatively high. 201225310 On the other hand, the selenization process can be divided into two stages, that is, the precursor pre-mineral layer is first processed, and then the heating reaction is performed. Thus, the CIGS film can be obtained, wherein the precursor is obtained. It may be a metal element of the composition, and the metal elements are layered and plated, and the thickness of each layer is appropriately adjusted according to the desired composition. During the petrification process, the pre-plated structure of the multilayer precursor can be placed in selenium vapor or hydrogen selenide (H 2 Se) gas and heated at a slow temperature for a long time (for example, 500 〇 C, 30 minutes). A CIGS film with excellent material quality. Another selenization method is to further plate a layer of a lithographic layer on the pre-plated structure of the multilayer precursor to make it a part of the pre-plated structure of the multilayer precursor. This structure can achieve rapid temperature rise (>10〇C/sec ), thus facilitating completion of the reaction in a short time (for example, 500 ° C '1 minute). The above method for forming the precursor pre-plating layer may be selected from various existing processes suitable for large-area production and low cost (for example, reduction, mining, ink printing, electroplating, electroplating, etc.), so that the process is extremely high. Mass production cost advantage. For example, the invention patent application of the PCT Patent Publication No. 2,277,81 discloses a method and apparatus for manufacturing a bismuth-πι-VIA2 compound semiconductor film, which comprises: providing a substrate on which a sputtering method is formed a precursor film, wherein the precursor film comprises a group element and a lanthanum element; a tempering process is performed on the substrate and the precursor film thereon to form an ιβ_ιπα alloy film on the substrate; and performing a surface treatment In the procedure, an ionized VIA group element is reacted with the ιβ-ιιια alloy film to form a 201225310 IB-IIIA-VIA2 compound semiconductor film. Furthermore, the invention patent application of the Japanese Patent Publication No. 201032346 discloses a thin film yangyang energy battery and a manufacturing method thereof, which comprise: providing a substrate, forming a back electrode layer on the substrate by sputtering; forming a precursor aluminum, Copper, indium and selenium are layered on the back electrode layer; the precursors aluminum, copper, indium and selenium are mutually diffused by a rapid thermal process, thereby forming a light absorbing layer having a copper indium aluminum lanthanum (CIAS) compound structure, wherein The ratio of indium/aluminum in the upper half of the light absorbing layer is greater than the ratio of indium/aluminum in the lower half thereof. A surface layer having a structure of a copper indium aluminum bismuth sulphide (CIASS) compound is further formed on the light absorbing layer by a vulcanization process. A front electrode layer is formed on the surface layer by sputtering. However, the above-mentioned various existing selenization processes have the disadvantages of rapid thermal selenization by pre-plating of each element precursor, which is the most suitable CIGS film with good material properties, which affects the key conditions of mass production yield. It is the uniformity of the composition of the CIGS film and the grain structure. In fact, from the basic characteristics of CIGS materials, if there are holes between the grains in the film and the constituent elements drift to the secondary equivalent defects of Cu q _ 2-xi>e which are easy to lead, then these defects will be Causes adverse side effects. The key factors causing these defects are often related to the process of the precursor pre-iron layer. 'If the precursor of the precursor layer is not obtained (such as the uniformity of the film composition, etc.), the above defects will occur; Reducing the above defects will also limit the area of the precursor pre-money layer which cannot be further increased, thus causing a technical bottleneck in the production of the large-faced QQQc λλ ^ 溥 film solar cell substrate. 201225310 Therefore, it is necessary to provide a method for manufacturing a pre-plated layer of a thin film solar cell prior to solving the problems of the conventional technology. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for fabricating a pre-plated layer of a thin film solar cell, which uses a binary selenide as a precursor pre-mineral layer, and the material properties of the gasification point are not only suitable for continuous The co-evaporation process, and the material properties of the melting point also ensure that the film material properties of a good IB-IIIA-VIA-based semiconductor compound (such as CIGS) are obtained in a liquid reaction manner in a rapid thermal selenization process. Conducive to speeding up the process and improving film quality (uniformity), yield and yield. A secondary object of the present invention is to provide a method for fabricating a pre-plated layer of a thin film solar cell, which is suitable for continuous co-evaporation using a linear evaporation source device to form a pre-plated layer of a IB-IIIA-VIA semiconductor compound. 'Therefore, it is advantageous for continuous in-line or rolMo-roll of rigid substrates for large areas and high throughput. Improve the diversity of products and the possibility of industrial production. To achieve the above object, the present invention provides a method for producing a pre-plated layer of a thin film solar cell precursor comprising the steps of: (A) providing a first binary selenide powder; (B) using a carrier gas The powder is introduced into a heating chamber of a first linear evaporation source device; 201225310 (C), the powder is heated by the heating chamber to obtain a vapor; (D), through the first linear steaming One of the plating source devices directly coats the vapor onto the surface of a substrate to form a first precursor pre-plated layer; (E) provides a second binary selenide powder and Step (B) to (D) are further performed by a second linear evaporation source device to form a second precursor pre-plated layer stacked on the first precursor pre-plated layer; (F), providing a third type The powder of the selenide is further subjected to steps (B) to (D) through a third linear evaporation source device to form a third precursor pre-plated layer stacked on the second precursor pre-plated layer; and, (G ), providing a powder of the Group VIA element and further passing through a fourth linear evaporation source Steps (B) through (D) are performed to form a fourth precursor pre-plated layer stacked on the third precursor pre-plated layer. In one embodiment of the invention, the first binary selenide is selected from the group consisting of a binary gamma of a Group IB element, such as copper telluride (CuSe). In one embodiment of the invention, the second binary selenide is selected from the group consisting of a binary telluride of a Group IIIA element, such as indium telluride (InSe). In one embodiment of the invention, the third binary selenide is selected from the group consisting of a binary selenide of a Group IIIA element, such as gallium selenide (GaSe) or aluminum selenide (AlSe). In an embodiment of the invention, the Group VIA element is preferably at least one of selenium (Se) or sulfur (S). In an embodiment of the present invention, the powder of the bismuth (Sb) element may be further added to the powder of the first, second, third binary selenide or the powder of the Group VIA element to promote the crystal. Grain coarsening and densification. 201225310 In one embodiment of the invention, in step (c), the heating chamber heats the powder at a temperature between 800 ° C and 1000 ° C. In one embodiment of the invention, the final carrier gas is selected from the group consisting of nitrogen (n2). In one embodiment of the invention, the substrate is selected from a rigid substrate (e.g., a glass substrate) or a flexible substrate (e.g., a stainless steel plate, an aluminum plate, a molybdenum plate, or a high molecular polymer plastic plate). In an embodiment of the present invention, after the step (G), the method further comprises: (H) performing a rapid lithologic treatment on the first to fourth precursor pre-mineral layers to form an IB-IIIA by using a liquid reaction mode; - The final film-forming structure of the VIA semiconductor compound. In one embodiment of the invention, the rate of temperature increase for the rapid selenization process is set to 10 QC/sec, and the temperature is raised to above 500 °C for at least 1 minute. Furthermore, the present invention provides a method for producing a pre-plated layer of a thin film solar cell precursor comprising the steps of: (a) providing a powder of a first binary selenide; (b) using the carrier gas to carry the powder Introducing into a heating chamber of a first linear evaporation source device; (c) heating the powder with the heating chamber to obtain a vapor; (d), passing the first linear evaporation source device a linear vapor deposition notch continuously applies the vapor to the surface of a substrate to form a first precursor pre-mineral layer; (e) providing a second binary selenide powder and passing another a second linear evaporation source device performing steps (b) to (d) to form a second precursor pre-plated layer stacked on the first precursor pre-plated layer; and, (f) providing a Group VIA element The powder is further subjected to steps (b) to (d) by a third linear evaporation source device 201225310 to form a third precursor pre-plated layer stacked on the second precursor pre-plated layer. In one embodiment of the invention, the first binary telluride is selected from the group consisting of a binary telluride of a Group IB element, such as copper telluride (CuSe). In one embodiment of the invention, the second binary selenide is selected from the group consisting of a binary telluride of a Group IIIA element, such as indium telluride (InSe). In an embodiment of the invention, the Group VIA element is preferably at least one of selenium (Se) or sulfur (S). In one embodiment of the invention, a powder of bismuth (Sb) element is additionally incorporated in the powder of the first, second or third binary selenide. The above and other objects, features and advantages of the present invention will become more <RTIgt; Referring to FIG. 1 , a method for manufacturing a pre-plated layer of a thin film solar cell according to a first embodiment of the present invention mainly comprises the following steps: (A) providing a powder of the first binary selenide 51; (B) The powder 52 is introduced into a heating chamber 12 of a first linear evaporation source device 10 by a carrier gas 50; (C), the powder 51 is heated by the heating chamber 12 to obtain a vapor; (D) applying the vapor continuously to the surface of a substrate 60 through one of the linear vapor deposition slots 13 of the first linear evaporation source device 10 to form a first precursor pre-plated layer 61; E), providing a second binary selenide powder 52 and further performing steps (B) through (D) through a 201225310 second linear evaporation source device 20 to form a second precursor pre-mineral layer 62 stack On the first precursor pre-mineral layer 61; (F), providing a third binary selenide powder 53 and further performing a step (B) to (D) through a third linear evaporation source device 30, Forming a third precursor pre-clock layer 63 stacked on the second precursor pre-bond layer 62; and, (G), providing the VIA family Powder 54 and other factors of step (B) to (D), to form a fourth preliminary key precursor layer 64 stacked on the third precursor pre-seam 63 by a fourth linear evaporation source device 40. The present invention will be described in detail below with reference to the accompanying drawings. First, referring to Figs. 1 and 2, a step (A) of the method for producing a pre-plated layer of a thin film solar cell according to a first embodiment of the present invention is to provide a powder 51 of a first binary selenide. In this step, if the thin film solar cell to be produced by the present invention belongs to the IB-IIIA-VIA type semiconductor compound, the first binary selenide is preferably selected from the binary telluride of the element IB, for example, ruthenium. Copper (CuSe), but is not limited to this. The binary selenide powder 51 is input to the inside of the first linear evaporation source device 10 via a powder supply pipe 16 outside the first linear evaporation source device 10. If necessary, a powder of bismuth (Sb) element may be additionally added to the first binary selenide powder 51 to increase the flatness and grain coarsening of the subsequent film formation. Next, referring to FIGS. 1 and 2, the step (B) of the method for producing a pre-plated layer of a thin film solar cell according to the first embodiment of the present invention is: introducing the powder 52 into the first portion by using a carrier gas 50. One of the linear evaporation source devices 10 is heated in the chamber 12. In this step, 11 201225310, the carrier gas 50 is preferably selected from the group consisting of nitrogen (N2) or other reactive inert gases. The first linear evaporation source device 10 includes a casing 11, the heating chamber 12, a linear vapor deposition slot 13, a broadcast plate 14, a heating tank, a port 15, the powder supply tube 16 and a a gas supply pipe 17, wherein the outer casing 11 is a long cylindrical hollow casing, the heating chamber 12 is received in the outer casing 11, and the linear vapor deposition notch 13 is opened at the bottom of the outer casing 11, The plate 14 is located at the downstream end of the linear vapor deposition slot 13 . The heating slot 15 is formed at the top of the heating chamber 12 . The powder supply pipe 16 and the gas supply pipe 17 communicate with each other and are located outside the casing 11 . . The powder supply pipe 16 is used to input the first binary selenide powder 51, and the gas supply pipe 17 is used to input the carrier gas 50, wherein the powder 51 is mixed with the carrier gas 50 and then introduced into the heating. Inside the chamber 12. Next, referring to FIGS. 1 and 2, the step (C) of the method for manufacturing a pre-plated layer of a thin film solar cell according to the first embodiment of the present invention is: heating the powder 51 by the heating chamber 12 to obtain One steamed 0 gas. In this step, the heating chamber 12 heats the powder 51 preferably at a temperature between 800 ° C and 1000 DC, which is heated to 800 ° C according to the gasification point of the first binary selenide used. Between 1000 ° C to produce the vapor of the first binary selenide. Next, referring to FIGS. 1 and 2, the step (D) of the method for manufacturing a pre-plated coating of a thin film solar cell according to the first embodiment of the present invention is linear through the first linear evaporation source device 10. The vapor deposition notch 13 continuously applies the vapor to the surface of a substrate 60 to form a 12 201225310 first precursor pre-plated layer 61. In this step, the powder 51 is heated by the heating chamber 12 to generate the vapor, and then the vapor sequentially passes through the heating slot 15, the passage between the outer casing 11 and the heating chamber 12 (not labeled) and The linear vapor deposition notch 13 reaches the surface of the substrate 60. At this time, since the surface of the substrate 60 has a relatively low temperature ', the vapor is vapor-deposited on the surface of the substrate 60 to form the first precursor pre-plated layer 61 of the first binary selenide. During the evaporation process, the baffle 14 can limit and concentrate the vapor deposition zone of the vapor to enable large-area linear continuous vapor deposition. Furthermore, in this step, the substrate 60 may be selected from a hard substrate or a flexible substrate according to product requirements, wherein the rigid substrate may be selected, for example, from a glass substrate, a germanium substrate or a sapphire substrate, and the like, and the flexible substrate For example, it may be selected from a non-mineral steel plate, a nameplate, a key plate or other metal plate or alloy plate, or even a polymer plastic plate. If the substrate 60 is selected from a hard substrate, the substrate 60 may be supplied by a continuous production line (in_Une), such as a roller conveyor belt; if the substrate 60 is selected from a flexible substrate, the substrate 60 may be a continuous roll. A roll-to-roll supply is provided to increase the variety of products and the possibility of industrial production. Next, please refer to FIG. 1 , the step (E) of the method for manufacturing the pre-plated layer of the thin film solar cell of the first embodiment of the present invention: providing a second binary selenide powder 52 and passing another The second linear evaporation source device 20 performs steps (B) through (D) to form a second precursor pre-plated layer 62 stacked on the first precursor pre-plated layer 61. 13 201225310 In this step, the second linear evaporation source device 20 is similar in structure and function to the first linear evaporation source device 10, and the second linear evaporation source device 20 also includes a housing 21, the heating a chamber 22, a linear vapor deposition slot 23, a baffle 24 and a heating slot 25, and the outer portion of the outer casing 21 also has a powder supply tube and a gas supply tube (not shown) for inputting the first A mixture of two binary selenide powders 52 and a carrier gas 50. In this step, if the thin film solar cell to be fabricated by the present invention belongs to the IB_IIIA-VIA type semiconductor compound, the second binary selenide is preferably selected from the binary selenide of the group IIIA element, for example, selenization. Indium (InSe), but is not limited thereto. The second binary selenide powder 52 is also heated by the heating chamber 22 of the second linear evaporation source device 20 to generate vapor, and is vapor-deposited from the linear vapor deposition notch 23 to the first precursor. On the plating layer 61, a second precursor pre-plating layer 62 of the second binary selenide is formed. During vapor deposition, the baffle 24 can confine and concentrate the vapor deposition zone of the vapor to achieve a large area of linear continuous steaming. If necessary, a powder of bismuth (Sb) element may be additionally added to the second binary selenide powder 52 to increase the flatness of the second precursor pre-plated layer 62 and facilitate the grain formation. Coarse. Next, referring to FIG. 1 , the step (F) of the method for manufacturing a pre-plated layer of a thin film solar cell according to the first embodiment of the present invention is: providing a third binary selenide powder 53 and passing another A third linear evaporation source device 30 performs steps (B) through (D) to form a third precursor pre-plated layer 63 stacked on the second precursor pre-plated layer 62. 201225310 In this step, the construction of the third linear evaporation source device 30 is reversed: • Similar to the first and second linear evaporation source devices 10, 20, the third-linear dream plating device 30 also includes a casing 31, the heating device 32, a linear vapor deposition notch 33, a baffle 34 and a heating slot %, and the outer portion of the casing 31 also has a powder supply pipe and a gas supply pipe (not shown) 'For the input of the third binary bismuth compound powder ^ and a carrier gas 50 mixture. In this step, if the thin film solar cell to be fabricated by the present invention is widely used in the IB-IIIA-VIA type semiconductor compound, the third binary compound is preferably selected from the binary telluride of the Group III A element. The Group HI A element is preferably gallium (Ga) or aluminum (A1), such as gallium selenide (GaSe) or aluminum selenide (AlSe), but is not limited thereto. The third binary selenide powder 53 is also heated by the heating chamber 32 of the third linear evaporation source device 30 to generate vapor, and is vapor-deposited by the linear evaporation notch 33 to the second precursor. On the plating layer 62, a third precursor pre-plated layer 63 of the third binary selenide is formed. During vapor deposition, the baffle 34 limits and concentrates the vapor deposition zone of the vapor to achieve a large area of linear continuous evaporation. If necessary, a powder of bismuth (Sb) element may be additionally added to the third binary selenide powder 53 to increase the flatness of the subsequent formation of the third precursor pre-plated layer 63 and to favor the crystal grains. Coarse. Next, referring to the step (G) of the method for manufacturing a pre-plated layer of a thin film solar cell according to the first embodiment of the present invention, the powder of the group VIA element is provided and a fourth linear The vapor source device 40 performs steps (B) through (D)' to form a fourth precursor 15 201225310. The pre-plated layer 64 is stacked on the third precursor pre-plated layer 63. In this step, the fourth linear evaporation source device 40 is similar in structure and function to the first to third linear evaporation source devices 10, 20, 30, and the fourth linear evaporation source device 40 also includes a housing. 41. The heating chamber 42, a linear vapor deposition slot 43, a baffle 44, and a heating slot 45, and the outer portion of the outer casing 41 also has a powder supply tube and a gas supply tube (not shown). A mixture of powder 54 and a carrier gas 50 for the input of the Group VIA element. In this step, if the thin film solar cell to be produced by the present invention belongs to the IB-IIIA-VIA type semiconductor compound, the Group VIA element is preferably at least one of selenium (Se) or sulfur (S), but is not limited thereto. this. The powder 54 of the Group VIA element is also heated by the heating chamber 42 of the fourth linear evaporation source device 40 to generate vapor, and is vapor deposited on the third precursor pre-plated layer 63 by the linear evaporation notch 43. And forming a fourth precursor pre-plated layer 64 of the Group VIA element. During vapor deposition, the baffle 44 limits and concentrates the vapor deposition zone of the vapor to achieve a large area of linear continuous vapor deposition. If necessary, a powder of bismuth (Sb) element may be additionally incorporated in the powder 54 of the Group VIA element to increase the flatness of the fourth precursor pre-plated layer 64 which is subsequently formed. Referring to FIG. 3, after completing the above steps (A) to (G), the first to fourth precursor pre-plating layers 61-64 may be sequentially stacked on the substrate 60. Next, referring to FIG. 4, the present invention may further comprise a step (H) after the step (G), which is used for pre-plating the first to fourth precursors 16 201225310 layers 61-64 for rapid selenium Rapid thermal treatment (selenization) to form a final film-forming structure 6G0 of a conductor compound by a liquid reaction method. In this step, the substrate 60 having the first to fourth precursor layers 61_64 is sequentially introduced into the vacuum chamber 7 by the roller conveyor belt continuity-heating chamber 72 and a vacuum chamber. 73. The evacuation chamber 71 is for evacuating, and if necessary, a vacuum-pre-vacuum chamber (not (four)) is provided above the evacuation chamber 71 to evacuate in advance. The heating chamber 72 is configured to heat the first to fourth precursor pre-plating layers 61-64 to react with each other to form a final film-forming structure of the ΐΒππΑ_νΐΑ semiconductor compound, such as Cu(ln, ie, copper The raw material (aGS) semiconductor compound. The heating rate of the (iv) Wei treatment is set to 10 ° c / sec, and the temperature is raised to 5 〇〇〇 c or more for at least 1 minute. It is worth noting that the temperature of this rapid Wei treatment Higher than the melting point of the first to fourth binary selenides, so that the first to fourth binary drying compounds in the first to fourth precursor pre-mineral layers 61·64 will be in a liquid state, which is advantageous The liquid reaction mode reacts with each other to form a ΙΒ_ΠΙΑ_VIA semiconductor compound. The vacuum chamber 73 is used to release the vacuum and return to normal pressure and normal temperature, whereby the final film-forming structure 6 can be used to fabricate a thin film solar cell product. In one aspect, the present invention also discloses a method for fabricating a pre-plated layer of a thin film solar cell prior to a second embodiment, which is similar to the first embodiment of the present invention, and generally uses similar equipment and materials, but the second实17 201225310 The method for manufacturing a pre-plated layer of a thin film solar cell prior to the invention comprises the steps of: (a) providing a powder of the first binary selenide; (b) introducing the powder with a carrier gas Go to - a first linear evaporation-source device in a heating chamber; (c) use the heating chamber to heat the powder 'to obtain a vapor; (d), via the first linear evaporation source device One of the linear evaporation notches continuously applies the vapor to the surface of a substrate to form a first precursor pre-bonding layer; (e) provides a second one-component drying powder and passes another The second linear steaming source device performs steps (b) to (d)' to form a second precursor pre-plated layer stacked on the #first precursor pre-plating layer; and, (f), providing a Group VIA element Powder and optionally performing steps (b) to (d)' through a third linear evaporation source device to form a third precursor pre-plated layer stacked on the second precursor pre-plating layer. Thereby, the second embodiment of the present invention For example, a stacked structure having first to third precursor pre-plated layers can be prepared In the second embodiment, the first binary selenide is selected from the binary selenide of the Group IB element and the Group IB element is preferably copper (Cu); a binary selenide from a steroid element, and the Group IIIA element is preferably indium (In); the Group VIA element is preferably at least one of selenium (Se) or sulfur (S). The powder of the second, third or third binary selenide is further doped with a powder of bismuth (Sb) element. After the completion of steps (a) to (f), the first to third precursors may also be used. The pre-plated stack structure is further subjected to rapid thermal selenization to form a final film-forming structure of an IB-iiia-VIA semiconductor compound. For example, the final film-forming junction 201225310 can be a final film-forming structure of an ib-iiia-via semiconductor compound, such as CuInSe2, a copper indium selenide (CIS) semiconductor compound. Thereby, the final film-forming structure can be used to produce a thin fresh solar cell product. As described above, the process of the pre-plated layer of the conventional precursor is difficult to balance the quality of the precursor pre-plating layer and the area of the thin-film solar cell substrate, and the thin film solar cell of the present invention of the first to fourth embodiments is driven. The method for manufacturing the pre-plated layer utilizes a binary selenide (for example, CuSe, InSe, GaSe, or AlSe, etc.) as a pre-mineral layer of the precursor, and the material properties of the vaporization point are applicable not only to the continuous co-evaporation process but also to the dissolution thereof. The material properties of the dots also ensure that the film material properties of good IB-IIIA-VIA-based semiconductor compounds (such as CIGS) are obtained in a liquid reaction manner in a rapid thermal selenization process, which is very advantageous for manufacturing Pre-coating of semiconductor-like compound precursors can achieve accelerated process and improved film quality (uniformity), yield and yield. Furthermore, the manufacturing method of the pre-plated layer of the thin film solar cell of the present invention is suitable for use in conjunction with each linear evaporation source device to continuously co-steam the IB-IIIA-VIA semiconductor compound precursor pre-bond layer, thereby facilitating The product can be used in a continuous production line (in-line) of a large area and a high throughput hard substrate or a continuous coil production line of a flexible substrate (r〇ll_to_r〇U). The diversity of materials and the possibility of industrial production. The present invention has been disclosed in its preferred embodiments, and it is not intended to limit the invention, and various modifications and changes may be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. - BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a method of manufacturing a pre-plated layer of a thin film solar cell according to a first embodiment of the present invention when co-evaporation is carried out. Fig. 2 is a partially enlarged view of the linear vapor deposition source device of the first embodiment of the present invention. Fig. 3 is a partial cross-sectional view showing a pre-plated layer of a precursor of a thin film solar cell according to a first embodiment of the present invention. Fig. 4 is a view showing the state in which the pre-bond layer of the thin film solar cell of the first embodiment of the present invention is subjected to rapid lithification. [Main component symbol description] 10 First linear evaporation source device 11 Housing 12 Heating chamber 13 Linear evaporation notch 14 Plate 15 Heating notch 16 Powder supply pipe 17 Gas supply pipe 20 Second linear evaporation source device 21 Enclosure 22 Heating chamber 23 Linear distillation notch 24 Baffle 25 Heating notch 30 Third linear evaporation source device 31 Enclosure 32 Heating chamber 33 Linear evaporation notch 34 Plate 35 Heating notch 20 201225310 40 Quadrupole evaporation source equipment 41 Enclosure 42 Heating chamber 43 Linear steaming key slot 44 Baffle 45 Heating notch 50 Carrier gas 51 Powder 52 Powder 53 Powder 54 Powder 60 Substrate 61 First precursor pre-mineral layer 62 Second precursor Pre-plated layer 63 third precursor pre-plated layer 64 fourth precursor pre-plated layer 600 final film-forming structure 71 vacuum chamber 72 heating chamber 73 vacuum chamber
21twenty one