TW201223954A - Photosensitizer dyes and application of the same - Google Patents

Photosensitizer dyes and application of the same Download PDF

Info

Publication number
TW201223954A
TW201223954A TW99143652A TW99143652A TW201223954A TW 201223954 A TW201223954 A TW 201223954A TW 99143652 A TW99143652 A TW 99143652A TW 99143652 A TW99143652 A TW 99143652A TW 201223954 A TW201223954 A TW 201223954A
Authority
TW
Taiwan
Prior art keywords
group
hydrogen
aryl
heterocyclic
patent application
Prior art date
Application number
TW99143652A
Other languages
Chinese (zh)
Other versions
TWI503320B (en
Inventor
Kuang-Lieh Lu
Hong-Cheu Lin
Jen-Fu Yin
Original Assignee
Academia Sinica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academia Sinica filed Critical Academia Sinica
Priority to TW099143652A priority Critical patent/TWI503320B/en
Publication of TW201223954A publication Critical patent/TW201223954A/en
Application granted granted Critical
Publication of TWI503320B publication Critical patent/TWI503320B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

The present invention provides a ruthenium (Ru) complex represented by the following general formula (I), Wherein the definitions of X1, X2, Y1 to Y3, Z1, Z2 and m are shown above. The ruthenium (Ru) complexes can be used as photosensitizers for dye-sensitized solar cells which display excellent power-conversion efficiencies (9.5% for one of our compounds; compared to commercial N3, 8.8%).

Description

201223954 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種用於染料敏化(dye-sensitized)太陽 能電池的光敏化物。更進一步地,本發明係關於用於染料 敏化太陽能電池的新穎釕敏化物。 【先前技術】 有鑑於油價逐年攀升,替代能源的開發已成為重要研 究課題。太陽能係地表以外的能源,其全球年平均可轉換 能量估計達120000TW,為一種消耗不盡的潔淨能源,可滿 足全世界的需求。因此,可實際並有效利用的太陽能源便 成為近年來全球一致的重要課題。染料敏化太陽能電池 (dye-sensitized solar cells、DSCs)由於其高光電轉換效 率、輕量化及低製造成本,因此具有極大的潛力來取代傳 統石夕太陽能電池。最佳的能源轉換效率可藉由在染料敏化 太陽能電池中使用釕型染料來達成,例如N3-及N719敏化 太陽能電池。設計與合成具更高裝置效能的新穎半對稱產了 敏化物的嘗試正進行中。影響染料敏化太陽能電池的效能 有兩個關鍵因素,即金屬-配位基電荷轉移頻帶 (metal-ligand charge transfer band,MLCT band)的強度, 以及染料可以被電池元件裝載的量。金屬光敏染料可透過 4 201223954 延長或分枝級成發色®的方絲修飾魏位基,藉此增 強與擴大金屬_配位基電荷轉移頻帶 '然而,此方式由於增 大了染料分子的體積’導致染料可被裝载於二氧化鈦表面 的量減少。因此,純成發㈣所需的最佳長度為何便成 為有趣而重要的4題,藉此可微調來最佳化該兩個相反的 因素,進而達到提升元件效能。 【發明内容】 為解決習知技術的缺失’本發明提供-種光敏染料, 使用該染料的染料敏化太陽能電池的光電轉換效率可被提 升 本發明提供—種下式⑴㈣之釕錯合物201223954 VI. Description of the Invention: [Technical Field] The present invention relates to a photosensitizer for a dye-sensitized solar cell. Still further, the present invention relates to novel sensitizers for use in dye-sensitized solar cells. [Prior Art] In view of the rising oil prices year after year, the development of alternative energy sources has become an important research topic. Solar energy is an energy source other than the surface of the earth. Its global average annual convertible energy is estimated to be 120,000 TW. It is an inexhaustible clean energy source that can meet the needs of the whole world. Therefore, the solar energy source that can be used effectively and effectively has become an important issue in the world in recent years. Dye-sensitized solar cells (DSCs) have great potential to replace traditional Shixia solar cells due to their high photoelectric conversion efficiency, light weight and low manufacturing cost. The best energy conversion efficiency can be achieved by using an anthraquinone dye in dye-sensitized solar cells, such as N3- and N719 sensitized solar cells. Attempts to design and synthesize novel semi-symmetric sensitizers with higher device performance are in progress. There are two key factors affecting the performance of dye-sensitized solar cells, namely the strength of the metal-ligand charge transfer band (MLCT band) and the amount by which the dye can be loaded by the battery element. The metal sensitizing dye can be modified by 4 201223954 to extend or branch to the chromophore® square wire to modify the Wei group, thereby enhancing and expanding the metal _ ligand charge transfer band 'however, this method increases the volume of the dye molecule' The amount of dye that can be loaded onto the surface of the titanium dioxide is reduced. Therefore, the optimal length required for pure hair (4) becomes an interesting and important 4 questions, which can be fine-tuned to optimize the two opposite factors, thereby improving the performance of the component. SUMMARY OF THE INVENTION In order to solve the problem of the prior art, the present invention provides a photosensitizing dye, and the photoelectric conversion efficiency of the dye-sensitized solar cell using the dye can be improved. The present invention provides a compound of the formula (1) (IV).

其中,Xl係為氧、硫或碼;X2係為氫、烧基、嫦基、 炔基、環縣、環烯基、雜魏基、雜環縣芳香基或 雜芳香基;m=M; Υΐ,Υ2及Y3係各自獨立選自由氫、烧 基、稀基、炔基、祕基、料基、雜賴基、雜環烯基、 芳香基、雜芳香基、鹵素、硝基、氰基、风,_c〇〇Ra, 5 201223954 -0C(0)Ra,-C(0)NRbRc,及-NRbRc所構成之群組;其中匕 係選自由A、院基、雜、絲、魏基、轉基、雜環 烧基、雜輯基、料基及雜料基所構成之群組;^及 Rc及係各自獨立選自域、縣、烯基、炔基、環院基、 環稀基、雜祕基、雜環、料基及㈣香基構成之 群組;或係共同與-雜環絲、雜環絲或雜芳香基上的 氮鍵結;及2!及Z2係各自獨立選自由氫、院基、稀基、块 基、環烷基、環烯基、雜環烷基、雜環烯基、芳香基、雜 芳香基、i素、硝基、氰基、-0Rd、-C00Rd、士0卿、〇c(〇)Rd、 -C(〇)NReRf,、-NReRf構成之群組;其中&係選自由氫、烧 基、烯基、炔基、環烷基、環烯基、雜環烷基、雜環烯基、 芳香基、雜芳香基及鹼金屬離子構成之群組;及艮與&係 、炔基、環烷基、環烯基、 各自獨立選自由氫、烷基、稀基 雜環烷基、環烯基、芳香基及雜芳香基構成之群組。 本發明也提供-種二氧化鈦電極,其係包含上述釘錯 合物。 本發明也提供一種染料敏化太陽能電池,其係包含上 述釕化合物。 根據以上所揭示’本發明之光敏化物染料係將兩個相 反對應的因素(MLCT頻帶強度與純在三氧化鈦表面的 吸附裝載量)藉由一個線形2,2,_二噻吩基團加以最佳化, 同時呈現優異光電轉換效率(本發明其中之一的化合物可 6 201223954 達9.5% ;相對於市售N3之8.8% )。本發現不只是含有光 收成發色團的釕敏化物之能源轉換效率的最佳化,同時也 代表了改善染料敏化太陽能電池的一個替代策略。 本發明所檢附的圖示係可作為描述本發明光敏化物染 料之特定實施態樣與實施例的參考資料。 【實施方式】 本發明提供一種下式(I)所示之釕錯合物Wherein, Xl is oxygen, sulfur or a code; X2 is hydrogen, alkyl, decyl, alkynyl, cyclohexyl, cycloalkenyl, hetero-weiyl, heterocyclic aryl or heteroaryl; m=M; Υΐ, Υ2 and Y3 are each independently selected from the group consisting of hydrogen, alkyl, dilute, alkynyl, secret, base, heterolyl, heterocycloalkenyl, aryl, heteroaryl, halogen, nitro, cyano , wind, _c〇〇Ra, 5 201223954 -0C(0)Ra, -C(0)NRbRc, and -NRbRc; the lanthanum is selected from A, yard, miscellaneous, silk, Weiji, a group consisting of a transyl group, a heterocyclic alkyl group, a heterocyclic group, a starting group, and a heterogeneous group; and Rc and each independently selected from the group consisting of a domain, a county, an alkenyl group, an alkynyl group, a ring-based group, and a ring-based group. , a heteroleptic group, a heterocyclic ring, a feed group, and (iv) a group of fragrant groups; or a nitrogen bond on a heterocyclic, heterocyclic or heteroaromatic group; and 2! and Z2 are independently selected Free hydrogen, deutero, dilute, block, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, heteroaryl, i, nitro, cyano, -0Rd, - C00Rd, 士0卿, 〇c(〇)Rd, -C(〇)NReRf,, -NReRf Group of; wherein & is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, heteroaryl and alkali metal ions a group consisting of <&>, alkynyl, cycloalkyl, cycloalkenyl, each independently selected from the group consisting of hydrogen, alkyl, dicycloheterocycloalkyl, cycloalkenyl, aryl and heteroaryl Group. The present invention also provides a titania electrode comprising the above staple compound. The present invention also provides a dye-sensitized solar cell comprising the above ruthenium compound. According to the above disclosure, the sensitizer dye of the present invention has two opposite factors (the intensity of the MLCT band and the adsorption loading on the surface of the titania) by a linear 2,2,-dithiophene group. Excellent, while exhibiting excellent photoelectric conversion efficiency (the compound of one of the inventions can be up to 9.5% in 201223954; 8.8% relative to the commercially available N3). This discovery is not only an optimization of the energy conversion efficiency of sensitizers containing light chromophores, but also represents an alternative strategy for improving dye sensitized solar cells. The drawings attached to the present invention can be used as a reference for describing specific embodiments and examples of the photosensitive dyes of the present invention. [Embodiment] The present invention provides a ruthenium complex represented by the following formula (I)

其:’ χ丨係為氧、硫或硒;χ2係為氫、烷基、烯基、 炔基、環烷基、環烯基、雜環 雜芳香基; 燒基、稀基 基、芳香基 -〇C(0)Ra, 係選自由氳 燒基、雜環 5及係各自"适日田氧、烷 %烯基、雜環烷基、雜環烯基 、雜環烷基、雜環烯基、芳香基或It: 'the lanthanide is oxygen, sulfur or selenium; χ2 is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocyclic heteroaryl; alkyl, dilute, aromatic -〇C(0)Ra, selected from the group consisting of anthracenyl, heterocyclic 5 and each " suitable for Honda, alkynyl, heterocycloalkyl, heterocycloalkenyl, heterocycloalkyl, heterocycloalkenyl Base, aromatic group or

,基二蝉基、块基、環燒基、 芳香基&雜芳香基構成之 基、雜環烯基或雜芳香基上的 群組; 濰核烷基、雜環烯基、 或係共同與一雜環烷基、 7 201223954 氮鍵結;及zj z2係各自獨立選自由氫、烧基、烯基、炔 基、環烧基、_基、雜魏基、雜料基 雜 -C(0)NReRf,、-NReRf構成之群組;其中 , 基、烯基、炔基、環烷基、環烯基、雜環产美、π '元 芳香基、料香基及驗金屬離子構叙群H 各自獨立選自由氫、絲、烯基、炔基、環狀、^=係 雜環院基、環烯基、芳香基絲㈣基構成之稀基、 ,較佳的實施態樣中,Zl及Ζ2係各自獨 ^ 或-P〇3HRd;其中&係選自氫或驗金屬離子。則-COORd 在另-較佳實施態樣中,係各自獨立選自a group consisting of a fluorenyl group, a aryl group, a aryl group, a heteroaryl group, a heterocycloalkenyl group or a heteroaryl group; a fluorenyl nucleus group, a heterocycloalkenyl group, or a group And a heterocycloalkyl group, 7 201223954 nitrogen bond; and zj z2 are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, _yl, hetero-wei, hetero-based hetero-C ( 0) a group consisting of NReRf, and -NReRf; wherein, a group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group, a heterocyclic ring, a π 'membered aromatic group, a fragrant base, and a metal ion structuring Group H is each independently selected from the group consisting of hydrogen, silk, alkenyl, alkynyl, cyclic, ^=heterocyclic, cycloalkenyl, and aromatic (tetra) groups. In a preferred embodiment, Zl and Ζ2 are each mono- or -P〇3HRd; wherein & is selected from hydrogen or metal ions. Then, in another preferred embodiment, the COORd is independently selected from the group consisting of

C00A, 〇 0 -C00A,C00A, 〇 0 -C00A,

厂 或 S C00A!;其中Αι係選自 在另一較佳實施態樣中,鹼金屬離子传離子。 離子或鉀離子。 于係為鋰離子、鈉 在另一較佳實施態樣中,其中前述γ 1 Y2及Y3係各Plant or S C00A!; wherein Αι is selected from another preferred embodiment, the alkali metal ion transports ions. Ion or potassium ion. In the other preferred embodiments, the γ 1 Y2 and Y3 systems are each

自獨立選自氫、CnH2n+1或 A2 = CpH2p+1,p = 1一15。 在最佳實施態樣中,其係為釕化合物係為 8 201223954Independently selected from hydrogen, CnH2n+1 or A2 = CpH2p+1, p = 1-15. In the best practice, the system is 钌 compound system 8 201223954

COOHCOOH

(JF-6),或 COOH H〇〇c.(JF-6), or COOH H〇〇c.

c8h” Η H 本發明同時也楹视仏於__ (JF_7)。 之釘錯合物。 ’、種一氧化鈦電極,其係包含前述 前述之二::提供-種染料敏化太陽能電池,其係包含 斤有的反應物與溶㈣市售取得独鮮方式使用。 201223954 4 NMR光譜係由Bruker AMX 400或AV400光譜儀以四甲 基石夕烧為内標準品取得。元素分析係到用perkin_Eimer 2400 CHN分析儀測定。質譜係利用jmS-700雙聚焦質譜儀 (JEOL,TOKYO,JAPAN)。吸收光譜係由uV-vis光譜儀 (Jewlett-Packard 8453)紀錄。循環及方波伏安法係在二曱 基甲醢胺溶液(10_3M)中,以一鉑片作為工作電極、一鉑 線輔助電極、及一銀/硝酸銀參考電極,利用一 Instruments電化學分析儀獲得。輔助電解質係為四氟硼酸 四丁基銨(〇·1 M) ’而二茂鐵係選來作為内標準品。該溶液 在量測前係先以氮氣除氧10分鐘。循環伏安法的掃瞄速度 係為100 mV s 。方波伏安法係以電位1〇 mv遞增及25 Hz 的頻率進行量測。染料於二氧化鈦薄膜上的吸附裝載量之 量測,必須將二氧化鈦置於〇·〗M氫氧化鈉的甲醇溶液 中,待其釋出被吸附之染料,量測其UV-vis吸收光譜,藉 以定量。每一種染料被吸附的量係藉由每種溶液的不同濃 度來計算。染料敏化太陽能電池的電化學阻抗光譜係利用 配備有FRA2模組的定電位/定電流儀於1〇〇 mW/cm2的恆定 光放射強度下及10 mHz至65 kHz使用的頻率範圍來獲 得。偏壓與交流電振幅係分別設置為染料敏化太陽能電池 的開路電壓及10 mV。 5-辛基_(2·2-二噻吩)-5’-甲醛的合成 5-辛基-(2,2-二噻吩)-5’-甲醛的合成係透過以下方法: 取5-辛基-(2,2-一噻吩)(277.5 mg, 1.〇 mm〇l)在氮氣的保護 下溶解於含有30 mL四氫呋喃的乾燥燒瓶中。該溶液在液 態氮/丙酮中冰浴冷卻,然後將正丁基鋰(〇8 ,128 mmol,1.6 Μ正己烷中)逐滴加入。之後移去冰浴並將該溶 液回溫至室溫,加入Ν-曱醯基哌啶(1398 mg,12 mm〇1)。 201223954 經6小時後將該溶液倒入200 mL冷水中。之後將有機層分 離’而水溶液層則以乙醚萃取並收集有機層,以硫酸鎂除 水後移除溶劑獲得粗產物。將該粗產物以管柱純化,以二 氯曱燒/正己燒(1:1 )沖提獲得239.1 mg ( 〇·78 mmol,產 率78_0°/〇)的亮黃色液體5_辛基_(2,2-二噻吩)-5’-曱醛。 NMR (CDC13, 400 MHz) δ ppm: 9.86 (s, 1H), 7.69 (d, /= 4.0C8h" Η H The present invention also despise __ (JF_7). The nail-shaped complex. ', a titanium oxide electrode, which comprises the aforementioned two:: providing a dye-sensitized solar cell, It is obtained by using a reaction product and a solution (4) commercially available in a unique manner. 201223954 4 NMR spectroscopy is obtained by using a Bruker AMX 400 or AV400 spectrometer with tetramethyl zebra as an internal standard. Elemental analysis is performed by perkin_Eimer The 2400 CHN analyzer was used to measure the mass spectrum using a jmS-700 dual focus mass spectrometer (JEOL, TOKYO, JAPAN). The absorption spectrum was recorded by a uV-vis spectrometer (Jewlett-Packard 8453). The cyclic and square wave voltammetry systems were In a mercaptomethylamine solution (10_3M), a platinum plate was used as a working electrode, a platinum wire auxiliary electrode, and a silver/nitric acid reference electrode, which were obtained by an Instruments electrochemical analyzer. The auxiliary electrolyte was tetrafluoroborate tetra Butylammonium (〇·1 M)' and ferrocene was selected as the internal standard. The solution was deoxygenated with nitrogen for 10 minutes before measurement. The scanning speed of cyclic voltammetry was 100 mV s. Square wave voltammetry with potential 1 〇 m v increasing and measuring at a frequency of 25 Hz. The amount of adsorption loading of the dye on the titanium dioxide film must be determined by dissolving the titanium dioxide in a methanol solution of 氢氧化钠·M sodium hydroxide, and releasing the adsorbed dye. The UV-vis absorption spectrum is measured to quantify. The amount of each dye adsorbed is calculated by the different concentrations of each solution. The electrochemical impedance spectroscopy of the dye-sensitized solar cell is determined by the FRA2 module. The potential/constant current meter is obtained at a constant light emission intensity of 1 〇〇 mW/cm 2 and a frequency range of 10 mHz to 65 kHz. The bias voltage and the alternating current amplitude are respectively set to the open circuit voltage of the dye-sensitized solar cell and 10 mV. Synthesis of 5-octyl-(2·2-dithiophene)-5'-formaldehyde The synthesis of 5-octyl-(2,2-dithiophene)-5'-formaldehyde is carried out by the following method: Octyl-(2,2-monothiophene) (277.5 mg, 1. 〇mm〇l) was dissolved in a dry flask containing 30 mL of tetrahydrofuran under a nitrogen atmosphere. The solution was cooled in an ice bath with liquid nitrogen/acetone. Then add n-butyllithium (〇8, 128 mmol, 1.6 Μ n-hexane) dropwise After the ice bath was removed and the solution was warmed to room temperature, hydrazine-hydrazinopiperidine (1398 mg, 12 mm 〇1) was added. 201223954 After 6 hours, the solution was poured into 200 mL of cold water. The organic layer was separated, and the aqueous layer was extracted with diethyl ether and the organic layer was collected. After removing water from magnesium sulfate, the solvent was removed to obtain a crude product. The crude product was purified by column chromatography with chlorobenzene / hexane (1:1) The bright yellow liquid 5_octyl-(2,2-dithiophene-5'-furfural) of 239.1 mg (〇·78 mmol, yield 78_0 °/〇) was obtained. NMR (CDC13, 400 MHz) δ ppm: 9.86 (s, 1H), 7.69 (d, /= 4.0

Hz, 1H), 7.24 (d, /= 3.6 Hz, 1H), 7.22 (d, /= 4.0 Hz, 1H), 6.82 (d, J =3.6 Hz, 1H), 2.82 (t, 2H), 1.68 (m, 2H), 1.34 (m, 10H), 0.95 (t, 3H). EI-MS (m/z): 306.2 [M]+. 2-『5-辛基-(2,2’-二噻哈、-5,-基M氣-咪唑二氤 雜菲(obtip)之合成 1,10-二氮雜菲-5,6·二酮(254.3 mg,1.2 mmol)與 5·辛 基-(2,2’_二嗟吩)-5’-曱醒 ( 306.7 mg,1.0 mmol)、醋酸敍 (1548.9 mg,20.2 mmol)及冰醋酸(30 mL)之混合物係 迴流2小時’反應後將該混合物倒入2〇〇 mL冷水中,所得 沈澱物以過濾方式分離’該粗產物接著以水沖洗後以管柱 純化,沖提液為二氯曱烷/正己烷/甲醇(5:5:2),獲得棕色 固體 2-[5-辛基-(2,2’_二噻吩)-5’-基]·!氫_咪唑[4,5-/|[1,1〇] 二氮雜菲(362.1 mg,0.729 mmo卜 73%),熔點為 198 °C。 XH NMR ([D6]DMSO, 300 MHz) 5 ppm: 9.03 (d,/= 1.2 Hz, 2H), 8.83 (d, /= 7.8 Hz, 2H), 7.82 (m, 3H), 7.33 (d, / = 3.9 Hz, 1H), 7.26 (d, /= 3.6 Hz, 1H), 6.85 (d, / = 3.6 Hz, 1H), 2.79 (t, /= 7.4 Hz, 2H), 1.61 (m, 2H), 1.24 (m, 10H), 0.83 (t, / = ¢.5 jjz, 3H). EI-MS (m/z): 496.2 [M]+· 11 201223954 iRufdcbDV)obtiD〗(NCSV>〗(JF-5)之各今 取(對曱基異丙基)苯基二氣化釕(306.3 mg,0.5 mmol) 及obtip ( 500.3 mg,1.0 mmol)加入無水二甲基甲醯胺(20 mL )。將反應混合物加熱至80 °C並通入氮氣4小時,之後 加入 dcbpy(4,4’·二羥酸-2,2’·聯吡啶;244.0 mg,1.0 mmol)。 將反應混合物在160 °C及黑暗中迴流4小時,之後於反應 中加入過量異硫氰酸銨並加熱至13〇。(:反應5小時。反應 後以迴旋濃縮機移除溶劑,收集所得產物並以水及二乙基 醚清洗。所得粗產物溶於曱醇中並以甲醇為沖提液通過一 管柱。蒐集主要產物並加以濃縮後獲得335.3 mg (0.349 mmo卜35% )的黑色固體,熔點> 400 °C。 JH NMR ([D6]DMSO, 400 MHz) δ ppm: 9.53 (m, 2H), 9.11 (m, 2H), 8.93 (s, 1H), 8.71 (d, /= 8.1 Hz, 1H), 8.35 (m, 2H), 7.88 (d, /= 3.3 Hz, 1H), 7.83 (d, /= 4.8 Hz, 1H), 7.68 (d, /= 5.7 Hz, 1H), 7.59 (t, /= 6.5 Hz, 1H), 7.47 (d, / = 4.5 Hz, 1H), 7.34 (d, / = 3.6 Hz, 1H), 7.26 (d, /= 3.3 Hz, 1H), 6.85 (d,/= 3.3 Hz, 1H), 2.78 (t, 7= 7.2 Hz, 2H), 1.53 (t, /= 7.2 Hz, 2H), 1.28 (m, 10H), 0.85 (t, /= 5.4 Hz, 3H). FAB-MS (w/z): 900.4 [M-NCS]' Ana丨· Calcd for C43H36N804RuS4: C 53.90, H 3.79, N 11.70, S 13.39. Found: C 53.72, H 3.86, N 11.49, S 12.98. 5-辜篡-f2.2’,5,2”-二噻吩)的合成Hz, 1H), 7.24 (d, /= 3.6 Hz, 1H), 7.22 (d, /= 4.0 Hz, 1H), 6.82 (d, J = 3.6 Hz, 1H), 2.82 (t, 2H), 1.68 ( m, 2H), 1.34 (m, 10H), 0.95 (t, 3H). EI-MS (m/z): 306.2 [M]+. 2-"5-octyl-(2,2'-dithiazide Synthesis of ha,-5,-yl-M gas-imidazole diterpenoid (obtip) 1,10-diazaphenanthrene-5,6-dione (254.3 mg, 1.2 mmol) and 5·octyl-(2 , 2'_diphenanthrene)-5'-wake (306.7 mg, 1.0 mmol), a mixture of acetic acid (1548.9 mg, 20.2 mmol) and glacial acetic acid (30 mL) was refluxed for 2 hours. Pour into 2 mL of cold water, and the resulting precipitate was separated by filtration. The crude product was washed with water and purified by column. The extract was dichloromethane/hexane/methanol (5:5:2). , obtaining a brown solid 2-[5-octyl-(2,2'-dithiophene)-5'-yl]·!hydrogen-imidazole [4,5-/|[1,1〇] phenanthroline ( 362.1 mg, 0.729 mmo, 73%), melting point 198 ° C. XH NMR ([D6] DMSO, 300 MHz) 5 ppm: 9.03 (d, / = 1.2 Hz, 2H), 8.83 (d, / = 7.8 Hz , 2H), 7.82 (m, 3H), 7.33 (d, / = 3.9 Hz, 1H), 7.26 (d, /= 3.6 Hz, 1H), 6.85 (d, / = 3.6 Hz, 1H), 2.79 (t , /= 7.4 Hz, 2H), 1.61 (m, 2H), 1.24 (m, 10H), 0.83 (t, / = ¢.5 jjz, 3H). EI-MS (m/z): 496.2 [M]+ · 11 201223954 iRufdcbDV) obtiD (NCSV> (JF-5), each of which is taken (p- isopropyl isopropyl) phenyl dicarbonate (306.3 mg, 0.5 mmol) and obtip (500.3 mg, 1.0 mmol) Anhydrous dimethylformamide (20 mL) was added. The reaction mixture was heated to 80 ° C and nitrogen was passed for 4 hours, then dcbpy (4,4'·dihydroxy acid-2,2'·bipyridine; 244.0 Mg, 1.0 mmol) The reaction mixture was refluxed at 160 ° C for 4 hours in the dark, then excess ammonium isothiocyanate was added to the reaction and heated to 13 Torr. (: Reaction for 5 hours. After the reaction, the solvent was removed by a cyclone concentrator, and the obtained product was collected and washed with water and diethyl ether. The obtained crude product was dissolved in decyl alcohol and passed through a column with methanol as a solvent. The main product was concentrated to give 335.3 mg (0.349 mmol, 35%) of EtOAc (m.p.). m, 2H), 8.93 (s, 1H), 8.71 (d, /= 8.1 Hz, 1H), 8.35 (m, 2H), 7.88 (d, /= 3.3 Hz, 1H), 7.83 (d, /= 4.8 Hz, 1H), 7.68 (d, /= 5.7 Hz, 1H), 7.59 (t, /= 6.5 Hz, 1H), 7.47 (d, / = 4.5 Hz, 1H), 7.34 (d, / = 3.6 Hz, 1H), 7.26 (d, /= 3.3 Hz, 1H), 6.85 (d, /= 3.3 Hz, 1H), 2.78 (t, 7= 7.2 Hz, 2H), 1.53 (t, /= 7.2 Hz, 2H) , 1.28 (m, 10H), 0.85 (t, /= 5.4 Hz, 3H). FAB-MS (w/z): 900.4 [M-NCS]' Ana丨· Calcd for C43H36N804RuS4: C 53.90, H 3.79, N 11.70, S 13.39. Found: C 53.72, H 3.86, N 11.49, S 12.98. Synthesis of 5-辜篡-f2.2',5,2"-dithiophene)

5-辛基-(2,2’,5,2”-二噻吩)係以以下方式合成:在一乾燥 燒瓶中取 2,2’,5,2”·二噻吩(247.6 mg’ 1.0 mmol)溶於 30 mL 12 201223954 四氫呋喃,過程中以氮氣保護。將該溶液在液態氮/丙酮中 冰浴冷卻,然後將正丁基鋰(0.8 mL,1.28 mmol,1.6 Μ正 己烷中)逐滴加入。之後移去冰浴並將該溶液回溫至室溫, 加入1-漠辛炫>(219.8 mg,1.1 mmol)。經6小時後將該溶 液倒入200 mL冷水中。之後將有機層分離,而水溶液層則 以乙醚萃取並收集有機層,以硫酸鎂除水後移除溶劑獲得 粒產物。將該粗產物以管柱純化,以正己烷沖提獲得183 8 mg (0.51 mmo卜產率51%)的亮黃色固體,熔點69 〇c。 H NMR (CDCI3, 400 MHz) δ ppm: 7.18 (d, J = 5.2 Hz, 1H), 7-13 (d, /= 3.2 Hz, 1H), 7.03 (d, /= 4.0 Hz, 1H), 6.97 (m, 3H), 6.66 (d,/= 3·2 Hz,1H),2.77 (t,/= 7.6 Hz,2H),1.66 (m,2H),1.27 (m, 10H), 0.86 (t, /= 6.8 Hz, 3H). FAB-MS (mfz): 360.1 [M]+. ^^--(2,2’,5丄?’’_二噻吩卜^甲醛的合成 卜取 5-辛基_(2,2,5,2 ·二噻吩)(36ΐ·3 mg, ! 〇 mmol)在 ,氣的保護下溶解於含有30 mL四氫呋喃的乾燥燒瓶中。 該溶液在液態氮/丙酮中冰浴冷卻,然後將正丁基鋰(〇8 mL,1·28 mmol,1.6 Μ正己烷中)逐滴加入。之後移去冰 浴並將該溶液回溫至室溫,加入Ν•甲醯基哌啶(132 3 mg i 2 mmol)。經6小時後將該溶液倒入2〇〇 mL冷水中。之後將 有機層分離,而水溶液層則以乙醚萃取並收集有機層,以 硫酸鎂除水後移除溶劑獲得粗產物。將該 ^ 化’以二w(1:1)沖提獲得285 5 1^(= 卜產率73%)的亮黃色固體5_辛基_(2,2,,5,,2,,_二嗔 吩)-5’-曱醛,熔點90。(:。 NMR (CDCI, 400 MHz) 5 ppm: 9.82 (s, 1H), 7.65 (d,/= 3.6 2012239545-octyl-(2,2',5,2"-dithiophene) was synthesized in the following manner: 2,2',5,2"·dithiophene (247.6 mg' 1.0 mmol) in a dry flask Dissolved in 30 mL 12 201223954 tetrahydrofuran, protected with nitrogen during the process. The solution was cooled in a liquid nitrogen/acetone ice bath, then n-butyllithium (0.8 mL, 1.28 mmol, 1.6 hexanes) was added dropwise. The ice bath was then removed and the solution was warmed to room temperature and then 1 - ss. <RTIgt; After 6 hours, the solution was poured into 200 mL of cold water. Thereafter, the organic layer was separated, and the aqueous layer was extracted with diethyl ether and the organic layer was collected. After removing water from magnesium sulfate, the solvent was removed to obtain a granulated product. The crude product was purified by column chromatography eluting with hexane to afford 183 g (yield: 51%) (yield: 51%). H NMR (CDCI3, 400 MHz) δ ppm: 7.18 (d, J = 5.2 Hz, 1H), 7-13 (d, /= 3.2 Hz, 1H), 7.03 (d, /= 4.0 Hz, 1H), 6.97 (m, 3H), 6.66 (d, /= 3·2 Hz, 1H), 2.77 (t, /= 7.6 Hz, 2H), 1.66 (m, 2H), 1.27 (m, 10H), 0.86 (t, /= 6.8 Hz, 3H). FAB-MS (mfz): 360.1 [M]+. ^^--(2,2',5丄?''_Dithiophene^Formaldehyde Synthesis 5-octyl _(2,2,5,2 ·dithiophene) (36ΐ·3 mg, ! 〇mmol) was dissolved in a dry flask containing 30 mL of tetrahydrofuran under the protection of gas. The solution was ice bath in liquid nitrogen/acetone. After cooling, n-butyllithium (〇 8 mL, 1·28 mmol, 1.6 Μ n-hexane) was added dropwise, then the ice bath was removed and the solution was warmed to room temperature, and hydrazine was added. Pyridine (132 3 mg i 2 mmol). After 6 hours, the solution was poured into 2 mL of cold water. The organic layer was separated, and the aqueous layer was extracted with diethyl ether and the organic layer was collected. The solvent was removed to obtain the crude product. The succinated product was eluted with two w (1:1) to obtain a bright yellow solid of 285 5 1^ (= yield of 73%) 5- octyl _ (2, 2,, 5,,2,,_二嗔Phenyl)-5'-furfural, melting point 90. (: NMR (CDCI, 400 MHz) 5 ppm: 9.82 (s, 1H), 7.65 (d, /= 3.6 201223954

Hz, 1H), 7.26 (d, 7 = 4.0 Hz, 1H), 7.22 (d, J= 4.0 Hz, 1H), 7.05 (d, J =1.2 Hz, 1H), 7.04 (d, J = 1.2 Hz, 1H), 6.71 (d, J = 3.6 Hz, 1H), 2.79 (t, /= 8.0 Hz, 2H), 1.67 (m, 2H), 1.24 (m, 10H), 0.88 (t, /= 6.8 Hz, 3H). FAB-MS (m/z): 389.1 [M+H]+. 1^5-辛基-(2,2,,5,,2”-二噻吩)_5,-某1-1彘-硪唑『4.5-川1,101 氣雜菲(ottip)之合成 l,l〇_二氮雜菲-5,6-二嗣(221.0 mg,1.1 mmol)與 5-辛 基 _(2,2’,5’,2”-二嗟吩)_5’-曱路(388.3!11§,1.〇111111〇1)、醋 酸銨(1553.2 mg ’ 20·2 mmol)及冰醋酸(30 mL)之混合 物係迴流2小時,反應後將該混合物倒入200 mL冷水中, 所得沈澱物以過濾方式分離,該粗產物接著以水沖洗後以 管柱純化,沖提液為二氣甲烷/正己烷/曱醇(5:5:2),獲得 棕色固體2-[5-辛基-(2,2’,5’,2’’-二噻吩)-5,-基]-1氫-味唑 [4,5-/|[1,10]二氮雜菲(437.9 mg,0.76 mmo卜 76%),炼 點為223 °C。 !H NMR ([D6]DMSO, 400 MHz) δ ppm: 9.04 (d, J = 3.6 Hz, 2H), 8.86 (s, 2H), 7.84 (m, 3H), 7.45 (d, /= 3.6 Hz, 1H), 7.40 (d, J = 3.6 Hz, 1H), 7.22 (d, /= 3.6 Hz, 1H), 7.17 (d, /= 3.2 Hz, 1H), 6.82 (d, J =3.2 Hz, 1H), 2.78 (t, /= 7.6 Hz, 2H), 1.61 (m, 2H), 1.24 (m, 10H), 0.85 (t, 7= 6.4 Hz, 3H). FAB-MS (m/z): 579.2 [M]+. lEu(dcbpv)ottiDUNCShl (JF-6)之合成 取(對甲基異丙基)苯基二氯化釕(306.5 mg,0.5 mmol) 及ottip ( 580.4 mg,1.0 mmol)加入無水二曱基甲醯胺(20 201223954 mL)。將反應混合物加熱至80 °C並通入氮氣4小時,之後 加入加3卩?(4,4,_二羥酸-2,2’-聯吡啶;244.4 11^,1.〇111111〇1)。 將反應混合物在160 °C及黑暗中迴流4小時,之後於反應 中加入過量異硫氰酸銨並加熱至130 °C反應5小時。反應 後以迴旋濃縮機移除溶劑,收集所得產物並以水及二乙基 醚清洗。所得粗產物溶於曱醇中並以甲醇為沖提液通過一 管柱。蒐集主要產物並加以濃縮後獲得298.3 mg (0.29 mmo卜29% )的黑色固體,熔點> 400 °C。 *H NMR ([D6]DMSO, 400 MHz) δ ppm: 9.53 (m, 2H), 9.09 (m, 2H), 8.90 (s, 1H), 8.72 (d, /= 5.2 Hz, 1H), 8.35 (m, 2H), 7.86 (d, / = 8.4 Hz, 1H), 7.83 (d, /= 5.4 Hz, 1H), 7.68 (d, /= 5.2 Hz, 1H), 7.60Hz, 1H), 7.26 (d, 7 = 4.0 Hz, 1H), 7.22 (d, J= 4.0 Hz, 1H), 7.05 (d, J = 1.2 Hz, 1H), 7.04 (d, J = 1.2 Hz, 1H), 6.71 (d, J = 3.6 Hz, 1H), 2.79 (t, /= 8.0 Hz, 2H), 1.67 (m, 2H), 1.24 (m, 10H), 0.88 (t, /= 6.8 Hz, 3H). FAB-MS (m/z): 389.1 [M+H]+. 1^5-octyl-(2,2,5,2"-dithiophene)_5,- some 1-1彘- oxazole "4.5-chuan 1,101 synthesis of phenidene (ottip) l,l〇_diazepine-5,6-dioxin (221.0 mg, 1.1 mmol) and 5-octyl_(2,2' ,5',2"-diphenanthene)_5'-曱路(388.3!11§,1〇111111〇1), a mixture of ammonium acetate (1553.2 mg '20·2 mmol) and glacial acetic acid (30 mL) After refluxing for 2 hours, the mixture was poured into 200 mL of cold water after the reaction, and the resulting precipitate was separated by filtration. The crude product was washed with water and purified by a column. The extract was di-methane/hexane/hexane. Alcohol (5:5:2), obtained as a brown solid 2-[5-octyl-(2,2',5',2''-dithiophene)-5,-yl]-1 hydrogen-isoxazole [4 , 5--|[1,10] phenanthroline (437.9 mg, 0.76 mmo, 76%), with a refining point of 223 °C. !H NMR ([D6]DMSO, 400 MHz) δ ppm: 9.04 (d, J = 3.6 Hz, 2H), 8.86 (s, 2H), 7.84 (m, 3H), 7.45 (d, /= 3.6 Hz, 1H), 7.40 (d, J = 3.6 Hz, 1H), 7.22 (d, /= 3.6 Hz, 1H), 7.17 (d, /= 3.2 Hz, 1H), 6.82 (d, J =3.2 Hz, 1H) , 2.78 (t, /= 7.6 Hz, 2H), 1.61 (m, 2H), 1.24 (m, 10H), 0.85 (t, 7 = 6.4 Hz, 3H). FAB-MS (m/z): 579.2 [ M]+. lEu(dcbpv)ottiDUNCShl (JF-6) was synthesized by adding (p-methylisopropyl)phenylphosphonium dichloride (306.5 mg, 0.5 mmol) and ottip (580.4 mg, 1.0 mmol) to anhydrous Mercaptocarboxamide (20 201223954 mL). The reaction mixture was heated to 80 ° C and nitrogen was bubbled through for 4 hours, after which 3 Torr was added. (4,4,_Dihydroxy acid-2,2'-bipyridine; 244.4 11^, 1.〇111111〇1). The reaction mixture was refluxed at 160 ° C for 4 hours in the dark, after which excess ammonium isothiocyanate was added to the reaction and heated to 130 ° C for 5 hours. After the reaction, the solvent was removed by a rotary concentrator, and the obtained product was collected and washed with water and diethyl ether. The crude product obtained was dissolved in methanol and passed through a column with methanol as a solvent. The main product was collected and concentrated to give 298.3 mg (0.29 mmo, 29%) of a white solid, melting point > 400 °C. *H NMR ([D6]DMSO, 400 MHz) δ ppm: 9.53 (m, 2H), 9.09 (m, 2H), 8.90 (s, 1H), 8.72 (d, /= 5.2 Hz, 1H), 8.35 ( m, 2H), 7.86 (d, / = 8.4 Hz, 1H), 7.83 (d, /= 5.4 Hz, 1H), 7.68 (d, /= 5.2 Hz, 1H), 7.60

(d, J = 4.8 Hz, 1H), 7.46 (m, 2H), 7.40 (d, J = 3.8 Hz, 1H), 7.20 (d, J =3.8 Hz, 1H), 7.16 (d, J = 3.4 Hz, 1H), 6.81 (d, J = 3.4 Hz, 1H), 2.76 (t, /= 6.8 Hz, 2H), 1.58 (m, 2H), 1.25 (m, 10H), 0.84 (t, /= 6.8(d, J = 4.8 Hz, 1H), 7.46 (m, 2H), 7.40 (d, J = 3.8 Hz, 1H), 7.20 (d, J = 3.8 Hz, 1H), 7.16 (d, J = 3.4 Hz , 1H), 6.81 (d, J = 3.4 Hz, 1H), 2.76 (t, /= 6.8 Hz, 2H), 1.58 (m, 2H), 1.25 (m, 10H), 0.84 (t, /= 6.8

Hz,3H). FAB-MS (zw/z): 1040.2 [M]+. Anal· Calcd forHz,3H). FAB-MS (zw/z): 1040.2 [M]+. Anal· Calcd for

C47H38N804RuS5: C 54.27, H 3.68, N 10.70, S 15.41. Found: C 54.67, H 4.06, N 10.83, S 15.11. 2,3-二-f5-辛基咳吩-2-基)喧皆的合成 2,3-二-(5-辛基嗔吩-2-基)噻吩係以以下方式合成:2,3_ 二溴噻吩( 240.3 mg,1.0 mmol)及三甲基(5-辛基噻吩_2_基) 錫烷(810.8 mg ’ 2_3 mmol)係溶於3〇 mL無水二曱基甲醯 胺中,接著加入二(三苯基磷)二氯化鈀(35 5 mg,〇〇61 mmol)做為催化劑。混合物係於氮氣環境迴流22小時,之 後將溶液冷卻至室溫,加入5%重量百分濃度的氣化錢來終 201223954 止反應’並以二氣甲烧萃取產物。有機層分別以飽和碳酸 氫鈉水溶液、蒸餾水及飽和氯化鈉水溶液沖洗。所得粗產 物以正己烷作為沖提液通過一管柱並獲得獲得353 4 mg (0.747 mmo卜75%)的亮黃色液體2,3_二_(5辛基噻吩 基)°塞吩。 NMR (CDC13, 400 MHz) <5 ppm: 7.25 (<j, J = 5.2 Hz, 1H), 7.19 (d,/= 5.2 Hz, 1H), 7.02 (d, 3.6 Hz, 1H), 6.95 (d, /= 3.6 Hz, 1H),6.75 (d,/= 4.0 Hz, 1H>,6.73 (d,/= 4 〇 Hz 邱 2 85 ⑻ 4H) 1.75 (m,4H),1.43 (m,2GH),G.97 (m,6H) EI MS ㈣):472 3 [M]+. 二_(5·辛基嗟吩_2_基)嗔吩的合成 取2,3-二-(5-辛基嗟吩-2·基)噻吩(47〇8叫,1〇 在氮氣的保護下溶解於含有%恤四氮咬喃的乾燥 燒瓶中。該溶液在液態氮/丙酮中冰浴冷卻,然後將正丁基 =〇·8 ’ L28 m_ ’ h6 M正己坑中)逐滴加入。之後 移去冰浴並將該溶液回溫至室溫,如λν_甲醯基錢(14〇3 mg, L2麵〇1)。經6小時後將該溶夜倒入2〇〇扯冷水卜 ^灸將有機層分離,而水溶液層心乙醚萃取並收集有機 層’以水Μ洗後利用無水硫酸鎂除水後移除溶劑獲得粗產 物。將該粗產物以管柱純化,以二氣甲院/正己院(ι:ι)沖 提獲得mm〇1,產率68%)的亮黃色㈣ 2,3-一-(5-辛基噻吩-2-基)噻吩)_5,_甲醛。 4 疆(OK:丨3,撕 MHz) 5 ppm: 9 86 (s m) 7 % (s m) 7.10 (d, /= 3.6 Hz, 1H), 6.92 (d, /= 3.6 Hz, 1H), 6.74 (d, /= 3.6 Hz, 201223954 1H), 6.71 (d, J = 3.6 Hz, 1H), 2.82 (m, 4H), 1.68 (m, 4H), 1.29 (m> 20H), 0.89 (m, 6H) EI-MS (m/z): 500.3 [M]+. 2_f2,3-二辛基療吩-2-基)-嗟吩_5-基】-1氮-啼免 丨1.101二氮雜菲fdottip)之合成 1,10-二氮雜菲_5,6-二酮(229.0 mg,1.1 mmol)與 2,3-二-(5-辛基。塞吩-2-基)。塞吩)-5’-甲酿(510.3 mg,1.0 mmol)、 醋酸銨(1632.5 mg,21·2 mmol)及冰醋酸(30 mL)之混 合物係迴流2小時,反應後將該混合物倒入200 mL冷水 中,所得沈澱物以過濾方式分離,該粗產物接著以水沖洗 後以管柱純化,沖提液為二氯甲烷/正己烷/甲醇(5:5:2), 獲得棕色固體2-[2,3-二-(5-辛基噻吩-2-基)-噻吩-5-基]-1氫-口米 口坐[4,5-/|[1,1〇]二氮雜菲(456.3 mg,0.66 mmol,65%), 熔點為208 °C。 ^ NMR ([D6]DMSO, 400 MHz) δ ppm: 9.01 (d,/= 3.2 Hz, 2Η), 8.85 (s, /= 8.4 Hz, 2H), 7.92 (s, 1H), 7.77 (dd, /= 3.2, 8.4 Hz, 2H), 7.09 (d, / = 3.6 Hz, 1H), 7.00 (d, /= 3.6 Hz, 1H), 6.79 (d, J= 3.2 Hz, 1H), 6.77 (d, J = 3.2 Hz, 1H), 2.77 (m, 4H), 1.62 (m, 4H), 1.27 (m, 20H), 0.86 (m, 6H). EI-MS (m/z): 690.4 [M]+. 【Ruidcbpv)dottiDUNCSV>】 i.TF-7)之合成 取(對曱基異丙基)苯基二氯化釕(306.0 mg,0.5 mmol) 及dottip(692.8mg,l.Ommol)加入無水二甲基曱醯胺(20 mL)。將反應混合物加熱至80 °C並通入氮氣4小時,之後 加入 dcbpy( 4,4’-二羥酸-2,2,-聯吡啶;244.9 mg,1.0 mmol)。 201223954 將反應混合物在160 °C及黑暗中迴流4小時,之後於反應 中加入過量異硫氰酸銨並加熱至130。(:反應5小時。反應 後以迴旋濃縮機移除溶劑,收集所得產物並以水及二乙基 醚清洗。所得粗產物溶於曱醇中並以曱醇為沖提液通過一 管柱。蒐集主要產物並加以濃縮後獲得380.2 mg (0.329 mmo卜33% )的黑色固體,溶點> 400 °C。 XH NMR ([D6]DMSO, 400 ΜΗζ) δ ppm: 9.57 (d,/= 6.0 Hz, 1Η), 9.53 (d, J = 4.8 Hz, 1H), 9.20 (s, 1H), 9.07 (s, J= 7.6 Hz, 1H), 8.98 (s, 1H), 8.72 (dd, J= 8.4, 5.2 Hz, 1H), 8.39 (m, 2H), 7.99 (d, /= 5.2C47H38N804RuS5: C 54.27, H 3.68, N 10.70, S 15.41. Found: C 54.67, H 4.06, N 10.83, S 15.11. 2,3-di-f5-octylc-phen-2-yl) , 3-di-(5-octyl嗔phen-2-yl)thiophene was synthesized in the following manner: 2,3-dibromothiophene (240.3 mg, 1.0 mmol) and trimethyl (5-octylthiophene-2_) The stannane (810.8 mg '2_3 mmol) is dissolved in 3 mL of anhydrous dimethylformamide, followed by bis(triphenylphosphine)palladium dichloride (35 5 mg, 〇〇61 mmol). As a catalyst. The mixture was refluxed for 22 hours under a nitrogen atmosphere, after which the solution was cooled to room temperature, and a 5% by weight concentration of vaporized money was added to terminate the reaction at 201223954 and the product was extracted with a gas-fired product. The organic layer was washed with a saturated aqueous solution of sodium hydrogencarbonate, distilled water and a saturated aqueous solution of sodium chloride. The obtained crude product was passed through a column with n-hexane as a solvent, and a bright yellow liquid 2,3_di-(5-octylthiophenyl) ° thiophene was obtained to obtain 353 4 mg (0.747 mmo, 75%). NMR (CDC13, 400 MHz) <5 ppm: 7.25 (<j, J = 5.2 Hz, 1H), 7.19 (d, /= 5.2 Hz, 1H), 7.02 (d, 3.6 Hz, 1H), 6.95 ( d, /= 3.6 Hz, 1H), 6.75 (d, /= 4.0 Hz, 1H>, 6.73 (d, /= 4 〇Hz Qiu 2 85 (8) 4H) 1.75 (m, 4H), 1.43 (m, 2GH) , G.97 (m, 6H) EI MS (4)): 472 3 [M]+. Synthesis of bis(5·octyl porphin-2-yl) porphin 2,3-di-(5-octyl)嗟 -2 -2 · · 噻 噻 ( 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 n-Butyl = 〇 · 8 ' L28 m_ ' h6 M is in the pit) added dropwise. The ice bath was then removed and the solution was warmed to room temperature, such as λν_methionine (14 〇 3 mg, L2 〇 1). After 6 hours, the night was poured into 2 〇〇 cold water, and the organic layer was separated, and the aqueous layer was extracted with diethyl ether and the organic layer was collected. After washing with water, the solvent was removed by removing water with anhydrous magnesium sulfate. Crude product. The crude product was purified by column column, and bright yellow (tetra) 2,3-mono-(5-octylthiophene) was obtained by pulverization of dimethyl sulphide/zhengyuan (ι: ι) to obtain mm 〇1 (yield 68%). -2-yl)thiophene)-5,-formaldehyde. 4 Xinjiang (OK: 丨3, tearing MHz) 5 ppm: 9 86 (sm) 7 % (sm) 7.10 (d, /= 3.6 Hz, 1H), 6.92 (d, /= 3.6 Hz, 1H), 6.74 ( d, /= 3.6 Hz, 201223954 1H), 6.71 (d, J = 3.6 Hz, 1H), 2.82 (m, 4H), 1.68 (m, 4H), 1.29 (m> 20H), 0.89 (m, 6H) EI-MS (m/z): 500.3 [M]+. 2_f2,3-dioctyl therapy phen-2-yl)- porphin _5-yl]-1 nitrogen-purine free 丨1.101 diazepine fdottip Synthesis of 1,10-diazaphenanthrene-5,6-dione (229.0 mg, 1.1 mmol) and 2,3-di-(5-octyl.cephen-2-yl). A mixture of thiophene-5'-amyl (510.3 mg, 1.0 mmol), ammonium acetate (1632.5 mg, 21.2 mmol) and glacial acetic acid (30 mL) was refluxed for 2 hours. After the reaction, the mixture was poured into 200. In the cold water of mL, the obtained precipitate was separated by filtration, and the crude product was washed with water and purified by a column. The extract was dichloromethane/hexane/methanol (5:5:2) to obtain a brown solid 2- [2,3-di-(5-octylthiophen-2-yl)-thiophen-5-yl]-1 hydrogen-mouth m-sit [4,5-/|[1,1〇] phenanthroline (456.3 mg, 0.66 mmol, 65%), mp 208 °C. ^ NMR ([D6]DMSO, 400 MHz) δ ppm: 9.01 (d, /= 3.2 Hz, 2Η), 8.85 (s, /= 8.4 Hz, 2H), 7.92 (s, 1H), 7.77 (dd, / = 3.2, 8.4 Hz, 2H), 7.09 (d, / = 3.6 Hz, 1H), 7.00 (d, /= 3.6 Hz, 1H), 6.79 (d, J= 3.2 Hz, 1H), 6.77 (d, J = 3.2 Hz, 1H), 2.77 (m, 4H), 1.62 (m, 4H), 1.27 (m, 20H), 0.86 (m, 6H). EI-MS (m/z): 690.4 [M]+. [Ruidcbpv)dottiDUNCSV>] i.TF-7) Synthesis of (p-decylisopropyl)phenylphosphonium dichloride (306.0 mg, 0.5 mmol) and dottip (692.8 mg, 1.0 mmol) Base amine (20 mL). The reaction mixture was heated to 80 ° C and nitrogen was bubbled over for 4 hrs, then dcbpy (4,4'-dihydroxy acid-2,2,-bipyridine; 244.9 mg, 1.0 mmol) was added. 201223954 The reaction mixture was refluxed at 160 ° C for 4 hours in the dark, after which excess ammonium isothiocyanate was added to the reaction and heated to 130. (Reaction: 5 hours. After the reaction, the solvent was removed by a cyclone concentrator, and the obtained product was collected and washed with water and diethyl ether. The obtained crude product was dissolved in decyl alcohol and passed through a column with decyl alcohol as a solvent. The main product was collected and concentrated to give 380.2 mg (0.329 mmo, 33%) of a black solid, melting point > 400 ° C. XH NMR ([D6] DMSO, 400 ΜΗζ) δ ppm: 9.57 (d, /= 6.0 Hz, 1Η), 9.53 (d, J = 4.8 Hz, 1H), 9.20 (s, 1H), 9.07 (s, J= 7.6 Hz, 1H), 8.98 (s, 1H), 8.72 (dd, J= 8.4 , 5.2 Hz, 1H), 8.39 (m, 2H), 7.99 (d, /= 5.2

Hz, 1H), 7.86 (d, /= 4.4 Hz, 1H), 7.75 (d, J= 4.8 Hz, 1H), 7.17 (d, J =6.0 Hz, 1H), 7.09 (d, /= 5.2 Hz, 1H), 6.86 (m, 2H), 2.78 (m, 2H), 1.60 (m, 2H), 1.24 (m, 10H), 0.85 (t, /= 3.2 Hz, 3H). FAB-MS (m/z):Hz, 1H), 7.86 (d, /= 4.4 Hz, 1H), 7.75 (d, J= 4.8 Hz, 1H), 7.17 (d, J = 6.0 Hz, 1H), 7.09 (d, /= 5.2 Hz, 1H), 6.86 (m, 2H), 2.78 (m, 2H), 1.60 (m, 2H), 1.24 (m, 10H), 0.85 (t, /= 3.2 Hz, 3H). FAB-MS (m/z ):

1094.4 [M_NCS】+. Anal. €alcd for CS4H55N804RuSs: C 57.32, H 5.16, N 9.30, S 13.14. Found: C 56.88, H 5.16, N 9.30, S 13.14. 以下流程圖係為JF-5、JF-6及JF-7的合成途徑1094.4 [M_NCS]+. Anal. €alcd for CS4H55N804RuSs: C 57.32, H 5.16, N 9.30, S 13.14. Found: C 56.88, H 5.16, N 9.30, S 13.14. The following flow chart is JF-5, JF- Synthesis pathway of 6 and JF-7

其中’ a係代表副配位基,即〇btip、ottip及dottip,二 甲基甲醯胺,80 °C,4小時;b係代表dcbpy,二甲基曱醯 胺,160 °C ’ 4小時;及c係代表過量異硫氰酸銨,二甲基 甲醯胺,160 °C,5小時。 18 201223954 分子模型 染料JF-5、JF-6與JF-7幾何型態與電化學性質係利用 密度泛函理論(density functional theory,DFT)及含時密 度泛函理論(time-dependent density functional theory, TDDFT)來計算研究,其係透過Gaussian 03 (G03)程式來 進行,提供貝克氏三參數混成函數(Becke’s three-parameter hybrid function )及李-楊-巴氏梯度校正關連函數 (Lee-Yang-Parr’s gradient corrected correlation function , B3LYP )予DFT方法。LanL2DZ有效核位能係用於釕原子, 而分裂價層6-31G**基底函數組係用於氫、硫、碳、氧及氮 原子。染料分子的基態幾何型態係於氣態最佳化。分子轨 域係利用“〇&1^¥丨6从3.09”來模擬,汗-5、讦-6與邛-7的含 時密度泛函理論計算係以二甲基甲醯胺為溶劑利用類導體 極化連續模型法(C-PCM)來獲得。經驗的溶劑數據,即 分子半徑及介電常數(ε)’於C-PCM係分別使用2.647 A及 36.71。90個單重激發態係由JF_5、jF_6與JF_7的幾何最佳 結構決定的。GaussSuml.05係用於分析單重激發態躍遷的 數據。 二氧化鈦電極的製備 j化鈦前驅物的製備以及電極的形成如下所述。首 先,作為光電陽極的二氧化鈦薄膜係根據以 的四(丙院氧基)鈦緩慢滴入_ Μ = 混合物。料解後财浴加熱至 、:又羞祕8小時來達到沈殿。冑 時’所得的膠體經過賴後再高溫滅祕^Uc中r2 201223954 小時以長成二氧化鈦粒子。在膠體冷卻到室溫後以超音 波振盪ίο分鐘。接著將二氧化鈦膠體濃縮至13至3〇重 百分比(相對於二氧化鈦重量)的聚乙二醇中(pEG,娜 :2=00 i ’⑽)’聚乙二醇係用於防止薄膜在乾燥過程 中碎裂。為形成二氧化鈦電極,四異丙燒氧鈦(titanium isopmpoxide,TTIP)係與2·曱氧基乙醇振 1 : 3)以形成金屬有機溶液。該金屬有機溶液^著以旋轉 塗佈於乾淨導電的’ 電阻值為13Q/Square的氟摻雜氧化 錫玻璃上’接著在500 °C鍛燒30分鐘以形成緊密的二氧化 鈦薄層。以玻璃棒將二氧化鈦糊(paste)施用於此緊密薄 層上三次來獲得適當的厚度。第一次塗佈時係使用與分子 量200,000的PEG混合的二氧化鈦膠體。第二次塗佈時係 使用含有二氧化鈦膠體與分子量2〇,〇〇〇的PEG之二氧化鈦 糊(paste 2)。Paste 2係與二氧化鈦的光散射粒子(3〇〇nm, 佔全體一氧化欽30%重量百分比)混合,然後用來做第三 次(最終)的塗佈,藉此降低因反散射造成的光損失。 I料敏化太陽能電池的元件f _ 具有0·4 X 0_4平方公分二氧化欽薄膜電極係浸於含 有2 X 1(Γ4 Μ染料敏化劑的乙腈/第三丁醇混合物(體積比 1 : 1)中。取一具有0.16平方公分活化區域的鉑修傅FT〇 導電玻璃做為輔助電極,其係以60 μτη厚度貼附於聚g旨膠帶 上來製得。染敏化光電陽極係以乙腈清洗並風乾。將電解 液填滿隔間後將光電陽極置於輔助電極上方’然後將其緊 密夾住形成電池。電解液係由0.6 Μ 丁基甲基咪唑琳 (ΒΜΙΙ)、0.1 Μ 蛾化鐘、〇·〇5 Μ ΤΒΡ、〇.03 Μ 峨、〇 5 Μ 硫氫酸胍(GuSCN)溶解於乙腈中。具遮罩(0_5 χ 〇5 cm2) 之太陽能電池的光電特性係利用150 W的Peccell太陽模擬 20 201223954 器(PEC-LU)來進行。光強度調校係透過設置於量測位置 (電池)的中性密度濾光片,其係根據輻射功率儀(0riel, 70260)的讀值校準至i00niW/cm2。染料敏化太陽能電池之 光電化學特有的光電流-電壓曲線係利用定電位/定電流儀 紀錄(PGSTAT 30, Autolab, Eco-Chemie, The Netherlands)。 JF-5, JF-6 and ·了F-7 的性皙 三個新穎的釕敏化物[Ru(dcbpy)(〇btip)(NCS)2] ( JF-5, dcbpy =4,4’-二羥酸-2,2,-聯吡啶,obtip = 2-[5-辛基-(2,2,-二噻 吩)_5’·基]-1 氫-咪唑[4,5·/|[1,1〇]二氮雜菲), [Ru(dcbpy)(ottip)-(NCS)2] (JF-6, ottip = 2-[5-辛基-(2,2,,5,,2,,- 二噻吩)-5’-基]-1氫-咪唑[4,5-/|[1,1〇]二氮雜菲),及 [Ru(dcbpy)(dottip)(NCS)2] (JF-7, dottip = 2-[2,3-二-(5-辛基噻吩 -2-基)·。塞吩-5-基]-1氫-咪唾[4,5-/|[1,1〇]二氮雜菲)的合 成係以典型的一鍋化反應,這一系列的釕敏化物,jF_5、JF_6 及JF-7在二曱基曱醯胺溶液中的uv-vis吸收光譜具有三個 主要特徵’其係依照能量增加順序被標註為頻帶I、頻帶π 及頻帶in (第一圖及表一)。頻帶Ιπ係位於310nm,其係 與内配位基的τι-π躍遷重疊。頻帶π在358-430 nm間,同 和·包含π-π躍遷及MLCT躍遷。jp_6中在520 nm的較低能 量MLCT頻帶I的分子消光係數係為149 x 1〇4M-icm—1,高 於JF-5及JF-7。该提升係因為具有一個較長且平面的 寡噻吩主鏈’其不僅增加光收成容量,且可維持非定域兀一 構造遍及整個分子。更進一步地,頻帶U可被紅移並增加 其值,推測係因养嗟吩主鏈長度的延長。雖然巧也具有 三個噻吩基團,其分支及扭轉的噻吩基團毁壞了 d〇ttip中的 非定域π-構造的連結(如第三圖所示)。基於此理由,相較 21 201223954 於JF-5及JF-6的對應數值,JF-7呈現了較低的MLCT強度。 表一 JF-5,JF-6,andJF7的光學電化學數據及電池效能 染料 π-π·Wherein 'a represents a sub-ligand, ie 〇btip, ottip and dottip, dimethylformamide, 80 ° C, 4 hours; b represents dcbpy, dimethyl decylamine, 160 ° C ' 4 hours And c is representative of excess ammonium isothiocyanate, dimethylformamide, at 160 ° C for 5 hours. 18 201223954 Molecular model dyes JF-5, JF-6 and JF-7 geometry and electrochemical properties using density functional theory (DFT) and time-dependent density functional theory (time-dependent density functional theory) , TDDFT) to calculate the study, which is carried out by Gaussian 03 (G03) program, providing Becke's three-parameter hybrid function and Lee-Yang-Pap's gradient correction correlation function (Lee-Yang- Parr's gradient corrected correlation function, B3LYP) to the DFT method. The LanL2DZ effective nuclear energy is used for helium atoms, while the split-valence 6-31G** basis function is used for hydrogen, sulfur, carbon, oxygen and nitrogen atoms. The ground state geometry of the dye molecule is optimized for the gaseous state. The molecular orbital system is modeled using "〇&1^¥丨6 from 3.09", and the time-dependent density functional theory calculations of Khan-5, 讦-6 and 邛-7 are based on dimethylformamide as solvent. The class conductor polarization continuous model method (C-PCM) is obtained. The empirical solvent data, ie, the molecular radius and dielectric constant (ε)', were used in the C-PCM system at 2.647 A and 36.71, respectively. The 90 singlet excited states were determined by the geometrically optimal structures of JF_5, jF_6, and JF_7. GaussSuml.05 is used to analyze data for singlet excited state transitions. Preparation of Titanium Dioxide Electrode The preparation of the titanium carbide precursor and the formation of the electrodes were as follows. First, the titanium dioxide film as a photoanode is slowly dropped into the _ Μ = mixture according to the tetra(propyloxy) titanium. After the solution, the financial bath was heated to: and it was ashamed for 8 hours to reach the temple.胄 The resulting colloid is then subjected to high temperature to kill the secret ^Uc r2 201223954 hours to grow into titanium dioxide particles. After the gel is cooled to room temperature, it is oscillated by ultrasonic for ί. The titania colloid is then concentrated to a weight ratio of 13 to 3 ( (relative to the weight of titanium dioxide) in polyethylene glycol (pEG, Na: 2 = 00 i '(10)) 'polyethylene glycol system is used to prevent the film from drying during the drying process. Fragmentation. To form a titanium dioxide electrode, titanium isopropoxide (TTIP) and 2:methoxyethanol are used to form a metal organic solution. The metal organic solution was spin coated on a clean conductive <13Q/Square fluorine doped tin oxide glass' and then calcined at 500 °C for 30 minutes to form a tight titanium dioxide thin layer. A titanium dioxide paste was applied to the compact layer three times with a glass rod to obtain a suitable thickness. For the first coating, a titania colloid mixed with PEG having a molecular weight of 200,000 was used. For the second coating, a titanium dioxide paste containing a titania colloid and a molecular weight of 2 Å, ruthenium was used. The Paste 2 series is mixed with light-scattering particles of titanium dioxide (3 〇〇 nm, which is 30% by weight of the total oxidizer), and then used for the third (final) coating to reduce the light caused by backscattering. loss. The element f _ of the material-sensitized solar cell has a 0·4 X 0_4 cm 2 dioxygen oxide film electrode immersed in an acetonitrile/third butanol mixture containing 2 X 1 (Γ4 Μ dye sensitizer (volume ratio 1: 1). Take a platinum-finished FT〇 conductive glass with an activation area of 0.16 cm 2 as an auxiliary electrode, which is prepared by attaching a thickness of 60 μτη to the tape of polyg. The sensitized photoanode is acetonitrile. Wash and air dry. Fill the compartment with the electrolyte and place the photoanode above the auxiliary electrode' and then clamp it tightly to form the battery. The electrolyte consists of 0.6 丁基 butylmethylimidazolium (ΒΜΙΙ), 0.1 蛾 moth clock, 〇·〇5 Μ ΤΒΡ, 〇.03 Μ 峨, 〇5 Gu Bismuth sulphate (GuSCN) is dissolved in acetonitrile. The photoelectric characteristics of a solar cell with a mask (0_5 χ 〇5 cm2) utilizes 150 W of Peccell Solar simulation 20 201223954 (PEC-LU) is performed. The light intensity adjustment is transmitted through a neutral density filter set at the measurement position (battery), which is calibrated according to the reading of the radiant power meter (0riel, 70260). To i00niW/cm2. Photoionization of dye-sensitized solar cells The unique photocurrent-voltage curve is recorded using a constant potential/constant current meter (PGSTAT 30, Autolab, Eco-Chemie, The Netherlands). JF-5, JF-6 and · F-7 Ruthenium sensitizer [Ru(dcbpy)(〇btip)(NCS)2] ( JF-5, dcbpy =4,4'-dihydroxy acid-2,2,-bipyridine, obtip = 2-[5-xin -(2,2,-dithiophene)-5'-yl]-1 hydrogen-imidazole [4,5·/|[1,1〇]diazepine), [Ru(dcbpy)(ottip)-( NCS)2] (JF-6, ottip = 2-[5-octyl-(2,2,,5,,2,,-dithiophene)-5'-yl]-1 hydrogen-imidazole [4,5 -/|[1,1〇] phenanthroline), and [Ru(dcbpy)(dottip)(NCS)2] (JF-7, dottip = 2-[2,3-di-(5-octyl) The synthesis of thiophen-2-yl)-.cephen-5-yl]-1 hydrogen-mipropene [4,5-/|[1,1〇] phenanthroline) is a typical one-pot reaction. The uv-vis absorption spectra of this series of sensitizing compounds, jF_5, JF_6 and JF-7 in dimercaptoamine solution have three main characteristics, which are labeled as band I and band π in order of increasing energy. And the frequency band in (first picture and Table 1). The band Ι π is located at 310 nm, which overlaps with the τι-π transition of the inner ligand. The frequency band π is between 358 and 430 nm, and the sum contains π-π transitions and MLCT transitions. The molecular extinction coefficient of the lower energy MLCT band I at 520 nm in jp_6 is 149 x 1〇4M-icm-1, which is higher than JF-5 and JF-7. This enhancement is due to having a longer and planar oligothiophene backbone which not only increases the light harvesting capacity, but also maintains the non-localized structure throughout the molecule. Further, the frequency band U can be red-shifted and increased in value, presumably due to the extension of the length of the main chain of the porphyrin. Although it also has three thiophene groups, its branched and twisted thiophene groups destroy the linkage of the delocalized π-structure in d〇ttip (as shown in Figure 3). For this reason, JF-7 exhibits a lower MLCT intensity than the corresponding values of 21 201223954 at JF-5 and JF-6. Table 1 Optical Electrochemical Data and Battery Performance of JF-5, JF-6, and JF7 Dyes π-π·

KxlO^'crrT1] π-π* or 4d-7C*KxlO^'crrT1] π-π* or 4d-7C*

Ej of Ru 1II/II 4ά-π* (V vs Fc/Fd 電池效能' 丑 HOMO。 (eV) 五 LUM〇C (eV) (mA cm~2) y〇c (V)Ej of Ru 1II/II 4ά-π* (V vs Fc/Fd Battery Performance' Ugly HOMO. (eV) Five LUM〇C (eV) (mA cm~2) y〇c (V)

JL "(% )e Γ’ xlO_7i ol cm· JF-5 3.59(302)° 3.95(383) 1.26(520) 0.30 5I 3.66 18 3ί17 0Υ 0 73 0 71 os——Tr JF-6 3.83(299) 4.79(417) 1.49(520) 0.32 5.42 3.70 170,59( 071 07 «7 , JF-7 4.87(300) 2.75(.75) 1.05(520) 0.31 5.41 3.65 i3:l m:5 〇:7〇 〇:7〇 54 05 最大吸收峰,Amax(nm). A^Agl^〇3參考電極係以二茂雄/二茂鐵離子(Fc/Fc+)氧化還原對校正,其電化學實驗 严Π M,氟棚酸乂fJ、,:酿胺溶3進行''Εηομο μ丑嶋之數值係由以下方程式計算:HOMO (e'SO-i^-iVj^ + S.ULUMCXeNO-fHOMo-i^A係由染料的電子吸收先錯來估計基態吸收能量。.djF_5,, 及JF-7的電池效能數據係四次量測的平均·* I乂相同元件製造程序所量測到的N3•敏化太陽能電池(其令N3為 [Ru(dcbpy)2(NCS)2])的光電轉換效率係為8.8%。Γ係為二氧化鈥薄膜表面的染料濃度。《括弧_的數值係整合jpeg 與AM1.5G光譜來計算· 釕染料JF-5、JF-6及JF-7的電化學性質係利用循環及 方波伏安法來研究(第二Α圖及第二Β圖),其氧化電位列 於表一。循環伏安圖顯示所有染料的氧化及還原電位彼此 非常接近。更進一步,方波伏安圖中JF-5、JF-6及JF-7的 氧化電位係明確地分別顯示為〇.3〇、0.32及0.31 (V vs Fc/Fc+)。所有釕染料的最高佔有分子軌域(hOMOs)及最 低未佔有分子執域(LUMOs)的能量等級係由其氧化電位 與由UV-vis吸收光譜(表一及第三圖)所得的吸收邊緣來 計算。與二氧化鈦及氧化還原電解液的導電頻帶能量等級 比較,這些HOMO及LUMO能量等級適合於電子的注入與 染料的再生。 JF-5、JF-6及JF-7的最佳分子結構如同它們被計算出 來的HOMOs及LUMOs能量等級的前沿分子軌域,係揭示 於第三圖。在更微觀的檢視中,jF_5、jf-6及JF-7的前沿 分子執域指出HOMOs係位於Ru-t2g及NCS-π混合的執域 中。這系列的釕染化物的LUMOs係均勻地分佈接繫於Ti02 的2,2'-聯吡啶_4,4,_二羧酸上。這系列釕染化物的MLCT頻 帶I之含時密度泛函理論單重激發態躍遷的選擇與計算結 22 201223954 果係列於表二。分析這些躍遷與軌域分布指出,相較於JF-5 (/=〇.11711; 66%)及 JF-7 (/=0.1152; 57%),JF-6 的頻帶 I 包含一較高振動強度(/=0.1625)及一較高的MLCT躍遷的 可能性(72%)。此一結果再次指出具有較長及平面的寡嗟 吩基團的釕敏化物具有提升MLCT強度的能力。實驗與預 測之電光譜整體來說係正向支持。 表二、JF-5、JF-6及JF-7分別於二曱基曱醯胺中的]ViLCT 頻帶I之含時密度泛函理論單重激發態躍遷的選擇 結果 0.0239 0.0006 0.1171 0.0034 0.0237 0.0006 0.0003 0.1625 0.0233 0.0006 0.1152 0.0005 染料 波長(nm) ^5 672.8 595.9 548.6 523.8 JF-6 672.3 597.2 564.2 548.1 吓_7 671.1 594.4 547.4 514.2 主要分布 HOMO-^LUMO (79%) HOMO-3—LUMO (67%) HOMO-2—LUMO (66%) HOMO-1—LUMO (73%) HOMO-1-^LUMO (86%) HOMO-2—LUMO (71%) HOMO—LUMO (79%) HOMO-3-^LUMO (72%) HOMO—LUMO (85¾) HOMO-3—LUMO (58%) HOMO-2 一 LUMO (57%) HOMO-1—LUMO (80%) 第四圖顯示JF_5、JF-6及JF-7敏化太陽能電池的電流 密度-電壓性質及光電轉換效率(incident photon-to-cuirent conversion efficiency ’ IPCE )曲線。JF-5敏化太陽能電池呈現 18.3mAcnT2的短路光電流密度(jsc)、0 73的開路電壓(u 及〇·71填充因子(fill fact〇r,f ) ’對應之下,在標準am 1 5 太陽照度條件下呈現9.5%之高光電轉換效率(元件數據列 於表一),而叮-6與邛-7之效率各為8.7%與6.4%。由1?(:£ 與標準AM 1.5太陽放射光譜的重疊總體計算所得的短路光 電流密度(《4;)係為17.0 mA cm-2,且計算與量測光電流密 度的失配因子(mismatch factor)係小於1.08。由IPcEj% 23 201223954 標準AM 1.5太陽放射光譜的重疊總體計算所得所有染料之 短路光電流密度(Jsc)係列於表一。此外,相較於JF-6 (84 % )及JF-7 ( 76% ),JF-5的IPCE曲線(如第四圖所示) 在400-600 nm範圍係超過80%,在523 nm具有最高值 92%。染料吸附量的量測(列於表一)指出,相較於JF-6 (1.1 X 10—7molcm—2)及 JF-7 (0.5 X l(T7molcnT2),JF-5 在 二氧化鈦表面具有較高的染料吸附量(1.8 X 1(T7 mol cm—2)。 第五圖顯示JF-5、JF-6及JF-7 MLCT頻帶I的ε、Γ 及β之間的關係。雖然JF-5僅表現出第二高的MLCT強度, 但光電轉換效率曲線顯示含寡噻吩基團(2,2,-二噻吩)之 JF-5能獲得整體最佳效果,導致最高轉換效能。 電化學交流阻抗光譜(Electrochemical impedance spectra ’ EIS)指出這些染料敏化太陽能電池包含三個主要 的電阻’分別對應三個半圈,其由第一個至第三個分別係 為輔助電極電荷轉移的電阻,吸附染料的二氧化鈦/電解液 介面與二氧化鈦奈米結構電子轉移所共同的電阻,及三碘 離子擴散至電解液之電阻。第六圖清楚顯示第二個半圈依 序以JF-5<JF-6<JF-7增加。此現象顯示JF-5敏化太陽能電 池的二氧化鈦/電解液介面與二氧化鈦奈米結構電子轉移之 整體電阻小於JF-6及JF-7敏化太陽能電池。藉由變化光收 成寡噻吩基團長度的光電轉換效率之最佳化可被UV-vis吸 收光譜、電化學數據、染料吸附量的量測、電化學交流阻 抗光譜、密度泛函理論(density functional theory,DFT) 及含時密度泛函理論加以解釋。 綜上所述’我們提供了具有優異光電轉換效率之新穎 釕敏化物的設計與合成,並將含有2,2,-二噻吩的光收成寡 嗟吩基團最佳化’使其呈現優異的元件效能。此發現不止 允許含有寡噻吩基團之釕敏化物的光電轉換效率被最佳 24 201223954 化,也指出了染料敏化太陽能電池在分子設計上的可能方 向。 其他實施態樣 在本說明書中所揭露的所有特徵都可能與其他方法結 合,本說明書中所揭露的每一個特徵都可能選擇性的以相 同、相等或相似目的特徵所取代,因此,除了特別顯著的 特徵之外,所有的本說明書所揭露的特徵僅是相等或相似 特徵中的一個例子。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟悉此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾。 25JL "(% )e Γ' xlO_7i ol cm· JF-5 3.59(302)° 3.95(383) 1.26(520) 0.30 5I 3.66 18 3ί17 0Υ 0 73 0 71 os——Tr JF-6 3.83(299) 4.79(417) 1.49(520) 0.32 5.42 3.70 170,59( 071 07 «7 , JF-7 4.87(300) 2.75(.75) 1.05(520) 0.31 5.41 3.65 i3:lm:5 〇:7〇〇: 7〇54 05 Maximum absorption peak, Amax(nm). The A^Agl^〇3 reference electrode system is calibrated with erblocamine/ferrocene ion (Fc/Fc+) redox pair, and its electrochemical experiment is strict. The value of the acid 乂fJ,:: brewing amine 3 is ''Εηομο μ ugly' is calculated by the following equation: HOMO (e'SO-i^-iVj^ + S.ULUMCXeNO-fHOMo-i^A is based on dye The electron absorption error is used to estimate the ground state absorption energy. The battery performance data of djF_5, and JF-7 is the average of four measurements. * I乂N3•sensitized solar cells measured by the same component manufacturing program Let the photoelectric conversion efficiency of N3 be [Ru(dcbpy)2(NCS)2]) be 8.8%. The lanthanide is the dye concentration on the surface of the ruthenium dioxide film. The value of "bracket _ is integrated with jpeg and AM1.5G spectra. Calculation · Electrochemical properties of anthraquinone dyes JF-5, JF-6 and JF-7 Ring and square wave voltammetry were used to study (second and second maps), and their oxidation potentials are listed in Table 1. Cyclic voltammograms show that the oxidation and reduction potentials of all dyes are very close to each other. Further, square waves The oxidation potentials of JF-5, JF-6 and JF-7 in voltammograms are clearly shown as 〇.3〇, 0.32 and 0.31 (V vs Fc/Fc+), respectively. The highest occupied molecular orbital domain of all anthraquinone dyes ( The energy levels of hOMOs and the lowest unoccupied molecular domains (LUMOs) are calculated from the oxidation potential and the absorption edge obtained from the UV-vis absorption spectra (Tables 1 and 3). With titanium dioxide and redox electrolyte Comparing the energy levels of the conductive bands, these HOMO and LUMO energy levels are suitable for electron injection and dye regeneration. The optimal molecular structure of JF-5, JF-6 and JF-7 is like their calculated HOMOs and LUMOs energy levels. The frontier molecular orbital domain is revealed in the third graph. In the more microscopic examination, the frontier molecular domains of jF_5, jf-6 and JF-7 indicate that the HOMOs are located in the domain of Ru-t2g and NCS-π hybrids. This series of smear-stained LUMOs are evenly distributed to Ti 02 of 2,2'-bipyridyl-4,4,-dicarboxylic acid. The selection and calculation of the single-excited state transition of the MLCT band I of this series of enthalpy dyes with time-density functional theory 22 201223954 The results are shown in Table 2. Analysis of these transitions and orbital distributions indicates that band I of JF-6 contains a higher vibrational intensity than JF-5 (/=〇11711; 66%) and JF-7 (/=0.1152; 57%). (/=0.1625) and the possibility of a higher MLCT transition (72%). This result again indicates that the sensitizer having a longer and planar oligophene group has the ability to enhance the strength of the MLCT. The experimental and predicted electrical spectra are generally positively supported. Table 2, JF-5, JF-6 and JF-7 in dimercaptoamine, respectively, in the ViLCT band I, the density functional theory of singlet excited state transition selection results 0.0239 0.0006 0.1171 0.0034 0.0237 0.0006 0.0003 0.1625 0.0233 0.0006 0.1152 0.0005 Dye wavelength (nm) ^5 672.8 595.9 548.6 523.8 JF-6 672.3 597.2 564.2 548.1 Scare _7 671.1 594.4 547.4 514.2 Main distribution HOMO-^LUMO (79%) HOMO-3-LUMO (67%) HOMO -2—LUMO (66%) HOMO-1—LUMO (73%) HOMO-1-^LUMO (86%) HOMO-2—LUMO (71%) HOMO—LUMO (79%) HOMO-3-^LUMO ( 72%) HOMO-LUMO (853⁄4) HOMO-3-LUMO (58%) HOMO-2-LUMO (57%) HOMO-1-LUMO (80%) The fourth figure shows JF_5, JF-6 and JF-7 The current photon-to-cuirent conversion efficiency (IPCE) curve of the solar cell. The JF-5 sensitized solar cell exhibits a short-circuit photocurrent density (jsc) of 18.3 mAcn T2 and an open circuit voltage of 0 73 (u and 〇·71 fill factor (fill fact〇r, f ) ' corresponding to the standard am 1 5 The solar illuminance conditions showed a high photoelectric conversion efficiency of 9.5% (component data are listed in Table 1), while the efficiency of 叮-6 and 邛-7 was 8.7% and 6.4%, respectively. By 1?(:£ with standard AM 1.5 sun The total short-circuit photocurrent density calculated by the overlap of the emission spectra ("4;) is 17.0 mA cm-2, and the mismatch factor of the calculated photocurrent density is less than 1.08. By IPcEj% 23 201223954 The short-circuit photocurrent density (Jsc) series of all dyes obtained from the overlap of standard AM 1.5 solar emission spectra is shown in Table 1. In addition, compared to JF-6 (84%) and JF-7 (76%), JF-5 The IPCE curve (as shown in Figure 4) is over 80% in the 400-600 nm range and 92% highest at 523 nm. The measurement of dye adsorption (listed in Table 1) indicates that compared to JF- 6 (1.1 X 10-7 molcm-2) and JF-7 (0.5 X l (T7molcnT2), JF-5 has a higher dye adsorption capacity on the surface of titanium dioxide 1.8 X 1 (T7 mol cm—2). The fifth graph shows the relationship between ε, Γ and β of the JF-5, JF-6 and JF-7 MLCT bands I. Although JF-5 only shows the second highest The MLCT intensity, but the photoelectric conversion efficiency curve shows that JF-5 containing oligothiophene group (2,2,-dithiophene) can obtain the best overall effect, resulting in the highest conversion efficiency. Electrochemical impedance spectra (Electrochemical impedance spectra ' EIS) pointed out that these dye-sensitized solar cells contain three main resistors corresponding to three half-turns, respectively, from the first to the third, respectively, the resistance of the auxiliary electrode charge transfer, the dye-absorbing titanium dioxide / electrolyte interface The resistance common to the electron transfer of the titanium dioxide nanostructure and the diffusion of the triiodide ions to the electrolyte. The sixth figure clearly shows that the second half circle is sequentially increased by JF-5 < JF-6 < JF-7. Phenomenon shows that the overall resistance of the titanium dioxide/electrolyte interface of JF-5 sensitized solar cell to the electron transfer of titanium dioxide nanostructure is smaller than that of JF-6 and JF-7 sensitized solar cells. The photoelectricity of the length of oligothiophene group is changed by changing light. Conversion efficiency May be of good absorption UV-vis spectroscopy, electrochemical data, measure the amount of adsorbed dye, electrochemical impedance spectroscopy, explained DFT (density functional theory, DFT) and time-dependent density functional theory. In summary, we have provided the design and synthesis of novel sensitizers with excellent photoelectric conversion efficiency, and optimized the light-recovering oligophene group containing 2,2,-dithiophene to make it excellent. Component performance. This finding not only allows the photoelectric conversion efficiency of the sensitizing compound containing the oligothiophene group to be optimized, but also indicates the possible molecular design of the dye-sensitized solar cell. Other Embodiments All of the features disclosed in this specification may be combined with other methods, and each of the features disclosed in this specification may be selectively replaced with the same, equal or similar purpose features, and thus, in particular, In addition to the features, all of the features disclosed in this specification are only one of the equivalent or similar features. While the invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and various modifications and changes can be made without departing from the spirit and scope of the invention. 25

Claims (1)

201223954 七、申請專利範圍: 1. 一種下式(I)所示之釕錯合物 Ζι201223954 VII. Patent application scope: 1. A bismuth complex represented by the following formula (I) 其中’ X!係為氧、硫或石西; 環院基、環稀基、雜環 X2係為氫、烷基、烯基、炔基,艰筑^ 院基、雜環婦基、芳香基或雜芳香基; m = 1 -4 ; 各自獨立選自由氫、絲、埽基、块基、 ζ 雜環燒基、雜環稀基、芳香基、雜芳 香基、鹵素、硝基、奢其、方 乳沉卷席基、炔基、環惊其、T#冰# Α 雜環烯基、芳香基及雜芳香基二之土、雜環烷基、 烯基、雜魏基、雜_基、芳 =j院基、環 ;或係共同與-雜環炫基、雜ί烯基2 的氮鍵結;及 雜方香基上 ^及Ζ2係各自獨立選自由氫、烧基、稀基 f、裱烯基、雜環烷基、雜環烯】:基二烷 函素、硝基、氰基、雜方香基、 -qcONReRf,、_NReRf構成 3 :〇C(0)Rd、 砰、·且,具中Rd係選自由氫、 26 201223954 烷基、,基、炔基、環烷基、環烯基、雜環烷基、雜環 稀基芳香基、雜务香基及驗金屬離子構成之群組丨及 Re與係各自獨立選自由氫、烷基、烯基、炔基、環烷 基、環烯基、雜環烷基、環烯基、芳香基及雜芳香基構 成之群組。 2. 如申請專利範圍第i項所述之釕錯合物,其中前述Z及 選自^一Rd;其中叫 3. 如申請專利範圍第!項所述之釘錯合物,其中 係各自獨立選自 2Wherein 'X! is oxygen, sulfur or sillica; ring-based, cycloaliphatic, heterocyclic X2 is hydrogen, alkyl, alkenyl, alkynyl, arduous ^ yard base, heterocyclic base, aromatic Or heteroaryl; m = 1 -4 ; each independently selected from hydrogen, silk, fluorenyl, aryl, fluorenyl, heterocyclic, aryl, heteroaryl, halogen, nitro, luxuriant , squash, sulphate, alkynyl, cyclosporin, T#冰# Α heterocyclenyl, aryl and heteroaromatic di-, heterocycloalkyl, alkenyl, hetero-wei, hetero-yl , aryl = j, the ring, or the nitrogen bond of the heterocyclic group, the heterocyclic group, and the heterocyclic group, and the oxime 2 are independently selected from the group consisting of hydrogen, an alkyl group, a rare group f, Terpene, heterocycloalkyl, heterocycloalkyl]: arylalkane, nitro, cyano, heteroaryl, -qcONReRf, _NReRf constitute 3: 〇C(0)Rd, 砰, ·, The middle Rd is selected from the group consisting of hydrogen, 26 201223954 alkyl, alkynyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocyclic aryl, aryl, and metal ions.丨 and Re and the department are independent The group is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, cycloalkenyl, aryl and heteroaryl. 2. For example, the above-mentioned Z and selected from ^Rd; wherein the patent is the scope of the patent application! The staple complex described in the item, wherein each of the lines is independently selected from 2 4·如申請專利範圍帛 或 +,'134^ 帛1項所述之釕縣物,其巾前述 2及Υ3係各自獨立選自氫、CnH2n+i或 及-A24. If the scope of the patent application 帛 or +, '134^ 帛1, the above-mentioned 2 and Υ3 series are independently selected from hydrogen, CnH2n+i or -A2 27 201223954 COOH27 201223954 COOH 7.如申請專利範圍第1項所述之釕錯合物,其係為7. The bismuth complex as described in claim 1 of the patent application is 8.如申請專利範圍第1項所述之釕錯合物,其係為 (JF-6) 〇 COOH8. The ruthenium complex according to item 1 of the patent application, which is (JF-6) 〇 COOH 9. 一種二氧化鈦電極,其係包含申請專利範圍第1項所述 之釕錯合物。 10. —種染料敏化太陽能電池,其係包含申請專利範圍第1 項所述之釕錯合物。 28A titania electrode comprising the ruthenium complex described in claim 1 of the patent application. 10. A dye-sensitized solar cell comprising the ruthenium complex as described in claim 1 of the scope of the patent application. 28
TW099143652A 2010-12-14 2010-12-14 Photosensitizer dyes and application of the same TWI503320B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099143652A TWI503320B (en) 2010-12-14 2010-12-14 Photosensitizer dyes and application of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099143652A TWI503320B (en) 2010-12-14 2010-12-14 Photosensitizer dyes and application of the same

Publications (2)

Publication Number Publication Date
TW201223954A true TW201223954A (en) 2012-06-16
TWI503320B TWI503320B (en) 2015-10-11

Family

ID=46725721

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099143652A TWI503320B (en) 2010-12-14 2010-12-14 Photosensitizer dyes and application of the same

Country Status (1)

Country Link
TW (1) TWI503320B (en)

Also Published As

Publication number Publication date
TWI503320B (en) 2015-10-11

Similar Documents

Publication Publication Date Title
Lee et al. Organic dyes incorporating low-band-gap chromophores based on π-extended benzothiadiazole for dye-sensitized solar cells
Dai et al. Influence of the terminal electron donor in D–d− π–A organic dye-sensitized solar cells: dithieno [3, 2-b: 2′, 3′-d] pyrrole versus bis (amine)
Hua et al. New phenothiazine-based dyes for efficient dye-sensitized solar cells: Positioning effect of a donor group on the cell performance
Mai et al. Porphyrin sensitizers bearing a pyridine-type anchoring group for dye-sensitized solar cells
Bodedla et al. Benzimidazole-branched isomeric dyes: effect of molecular constitution on photophysical, electrochemical, and photovoltaic properties
Yang et al. Efficient and stable organic DSSC sensitizers bearing quinacridone and furan moieties as a planar π-spacer
Baheti et al. Organic dyes containing fluoren-9-ylidene chromophores for efficient dye-sensitized solar cells
Hua et al. Bulky dendritic triarylamine-based organic dyes for efficient co-adsorbent-free dye-sensitized solar cells
Wang et al. Influence of the terminal electron donor in D–D–π–A phenothiazine dyes for dye-sensitized solar cells
Kim et al. The effect of N-substitution and ethylthio substitution on the performance of phenothiazine donors in dye-sensitized solar cells
Dai et al. Synthesis of phenothiazine-based di-anchoring dyes containing fluorene linker and their photovoltaic performance
Singh et al. Alkyl-group-wrapped unsymmetrical squaraine dyes for dye-sensitized solar cells: branched alkyl chains modulate the aggregation of dyes and charge recombination processes
Zang et al. Molecular design of the diketopyrrolopyrrole-based dyes with varied donor units for efficient dye-sensitized solar cells
Kandavelu et al. Novel iminocoumarin dyes as photosensitizers for dye-sensitized solar cell
Babu et al. From Molecular Design to Co-sensitization; High performance indole based photosensitizers for dye-sensitized solar cells
Shi et al. New efficient dyes containing tert-butyl in donor for dye-sensitized solar cells
Lee et al. New Organic Dye Based on a 3, 6‐Disubstituted Carbazole Donor for Efficient Dye‐Sensitized Solar Cells
Naik et al. Exploring the application of new carbazole based dyes as effective p-type photosensitizers in dye-sensitized solar cells
Hemavathi et al. Aggregation induced light harvesting of molecularly engineered DA-π-A carbazole dyes for dye-sensitized solar cells
Abdellah et al. Influence of carbonyl group on photocurrent density of novel fluorene based D-π-A photosensitizers: Synthesis, photophysical and photovoltaic studies
Park et al. An investigation of the role the donor moiety plays in modulating the efficiency of ‘donor-π-acceptor-π-acceptor’organic DSSCs
Abdellah et al. Molecular engineering and investigation of new efficient photosensitizers/co-sensitizers based on bulky donor enriched with EDOT for DSSCs
He et al. Organic dyes incorporating a thiophene or furan moiety for efficient dye-sensitized solar cells
Chiu et al. A new series of azobenzene-bridged metal-free organic dyes and application on DSSC
Lee et al. Functionalized organic dyes containing a phenanthroimidazole donor for dye-sensitized solar cell applications

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees