TW201223577A - Neuromodulation cryotherapeutic devices and associated systems and methods - Google Patents

Neuromodulation cryotherapeutic devices and associated systems and methods Download PDF

Info

Publication number
TW201223577A
TW201223577A TW100139039A TW100139039A TW201223577A TW 201223577 A TW201223577 A TW 201223577A TW 100139039 A TW100139039 A TW 100139039A TW 100139039 A TW100139039 A TW 100139039A TW 201223577 A TW201223577 A TW 201223577A
Authority
TW
Taiwan
Prior art keywords
balloon
renal
cooling assembly
heat transfer
cooling
Prior art date
Application number
TW100139039A
Other languages
Chinese (zh)
Inventor
Roman Turovskiy
Original Assignee
Medtronic Ardian Luxembourg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/279,330 external-priority patent/US9060755B2/en
Priority claimed from US13/279,328 external-priority patent/US9060754B2/en
Application filed by Medtronic Ardian Luxembourg filed Critical Medtronic Ardian Luxembourg
Publication of TW201223577A publication Critical patent/TW201223577A/en

Links

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.

Description

201223577 六、發明說明: 【相關申請案之交叉引用】 本申請案主張以下申請中申請案之權益: (a) 美國臨時申請案第61/406,968號,2010年10月 26曰申請; (b) 美國臨時申請案第61/528,091號,2011年8月26 曰申請; (c) 美國臨時申請案第61/528,684號,2011年8月29 曰申請; (d) 美國臨時申請案第61/546,5 10號,2011年10月 12日申請; (e) 美國申請案第13/279,330號,2011年10月23曰 申請; (f) 美國申請案第13/279,328號,2011年10月23曰 申請; (g) 美國申請案第13/279,327號,2011年10月23曰 申請; (h) 美國申請案第13/279,326號,2011年10月23曰 申請; (i) 美國申請案第13/279,325號,2011年10月23曰 申請, (j) 美國申請案第13/279,3 12號,2011年10月23曰 申請; (k) 美國申請案第13/279,3 16號,2011年10月23曰 4 201223577 ^ 申請; (l) 美國申請案第13/279,321號,2〇u年10月23曰 申請;及 (m) 美國申請案第13/279,324號,2〇11年月曰 申請; (n) 國際申請案第 PCT/US201 1/057490 號,2011 年 10 月24日申請。 所有上述申請案係以全文引用的方式併入本文中。此 外以引用方式併入之申請案中所揭示之具體實例的組件 及特徵可與本申請案中所揭示及主張之各種組件及特徵組 合0 以引用方式併入之相關申請案 2014 10月7日申請之美國臨時申請案第61⑽,— 號、2〇11年8月5日中請之美國專利中請案第⑽ 號、20H彳8月5日中請< pcT國際巾請案第 卩〇171;8201 1/46845號及2010年8月5日申过夕至1^ a也地 甲5月之美國臨時申 靖案第6W37U0號與本中請案相關,且上述中請案係以 全文引用的方式併入本文中。因而,以引用方式併二申 睛案中所揭示之具體實例的組件及特 又』與本申請案中所 揭示及主張之各種組件及特徵組合。 ’、 【發明所屬之技術領域】 本發明技術大體上係關於低溫治疼 席我置。詳言之,甚 干具體實例係針對用於血管内神經胡 ^ 。之低溫治療梦番Θ 相關的系統與方法。 ’、、置及 201223577 【先前技術】 交感神經系統(SNS)為典型地與壓迫反應相關之主要 非自主身體控制系統。SNS纖維神經支配幾乎所有人體器 官系統中之組織,且可影響其特性,諸如曈孔直徑腸活 動:及尿排出*。該調節可在維持體内平衡或使身體準備 對%境因素作出快速反應方面具有適應性效用U,簡 之慢,活化為可驅動許多疾病病況進展的常見不適應反 應。詳言 < ’在人類中之實驗已識別腎SNS過度活化可能 有助於高血壓之複雜病理生理學、容量超負荷狀態(諸如 心臟衰竭)及進行性腎病。例如,放射性示蹤劑稀釋液已 n有原發性高企壓之患者的腎去节腎上腺素(ne) 溢出速率增加。 心-腎交感神經興奮過度在患有心臟衰竭之患者中可能 2明顯。在此等患者中,往往發現自心臟及腎臟 :向血製之贴溢流量增加。_活化升高通常表徵慢性及 2腎病。在患有末期腎病之患者中,贴血激含量高 2明預示著心血管疾病及若干死亡誘因。此結論對“ 源於病腎之感覺傳入據表明,來 使其持續的主要貢獻者。 胃出升问並 腎交感神經終止於成管、近腎小球結構及腎小管卜 腎父感神經刺激可導致腎素釋放增加、納 加及腎血流量減少。在 >> 重及收i曰 在乂又感神經緊張提高為特 病況中顯著刺激此等腎功#袖M ^ ~ 之疾病 月力月b神經调節組分,且該等組分可 201223577 能有助於高血壓患者之血壓增加。由腎交感神經傳出刺激 所致之腎血流量及小球濾過率減少可能為心腎症候群(亦 即作為慢性心臟衰竭之進行性併發症的腎功能障礙)中之 腎功能損失的基礎。阻礙腎傳出交感神經刺激之後果的藥 理學策略包括中樞作用交感神經阻滯藥物、P阻斷劑(意欲 減少腎素釋放)、血管收縮素轉化酶抑制劑及受體阻斷劑 (意欲阻斷血管緊張素u之作用及腎素釋放所致之醛固酮 活化)及利尿劑(意欲對抗腎交感神經介導之鈉及水滯 留)。然而,此等藥理學策略具有顯著限制,包括有限的效 力、順應性問題、副作用等。因此,公共健康強烈需要替 代性治療策略。 【發明内容】 本文揭示神經調節低溫治療裝置及相關的系統與方 法。一根據本發明技術之一特定具體實例組態之低溫治療 裝置可包括一具有遠端部分之細長軸及一沿該軸之至少一 部分之供應内腔。該軸可經組態以在血管内將該遠端部分 定位於鄰近腎動脈或腎小口之治療部位處。該供應内腔可 經組態以接收液體致冷劑。該低溫治療裝置可在該轴之該 遠端部分處進一步包括一冷卻總成。該冷卻總成可包括一 與該供應内腔流體連通且經組態以在該冷卻總成呈部署狀 悲時向鄰近目標部位之神經遞送低溫治療冷卻的施藥号。 【實施方式】 參考以下圖式可更充分地理解本發明之許多態樣。圖 式中之組件不一定按比例。反而是強調清楚地說明本發明 201223577 之原理。此外,在某些視圖中組件可能顯示為透明的(僅 用於清楚說明,而不是指示所說明之組件必定為透明的)。 下文參考圖1至圖5 9B描述本技術之若干具體實例的 特定細節。雖然下文將描述許多關於使用低溫治療法進行 腎神經血管内調節之裝置、系統及方法的具體實例,但除 本文所述者以外的其他應用及其他具體實例亦在本技術範 疇内。此外,本技術之若干其他具體實例可具有與本文所 述者不同的組態、組件或程序。因此,一般熟習此項技術 者據此應瞭解,本技術可具有具有額外元件之其他具體實 例,或本技術可具有不具有下文參考圖j至圖59b所示及 所述特徵中之若干者的其他具體實例。201223577 VI. INSTRUCTIONS: [CROSS REFERENCE TO RELATED APPLICATIONS] This application claims the benefit of the following application: (a) US Provisional Application No. 61/406,968, October 26, 2010; (b) U.S. Provisional Application No. 61/528,091, August 26, 2011; (c) US Provisional Application No. 61/528,684, August 29, 2011; (d) US Provisional Application No. 61/546 , 5, 10, application on October 12, 2011; (e) US application No. 13/279,330, October 23, 2011 application; (f) US application No. 13/279,328, October 23, 2011曰Application; (g) US Application No. 13/279,327, October 23, 2011; (h) US Application No. 13/279,326, October 23, 2011; (i) US Application Application No. 13/279,325, October 23, 2011, (j) US Application No. 13/279, 3 12, October 23, 2011; (k) US Application No. 13/279, 3 16 , October 23, 2011, 201223577 ^ Application; (l) US application No. 13/279,321, application for October 23, 2002; and (m) US application No. 13/279,324, 2 11 years said application; (n) US201 international application No. PCT / 1/057490, Application October 24, 2011. All of the above applications are incorporated herein by reference in their entirety. In addition, the components and features of the specific examples disclosed in the application incorporated by reference can be combined with the various components and features disclosed and claimed in the present application. Applicant's US Provisional Application No. 61(10), No., August 5, 2011, US Patent Application No. (10), 20H, August 5, please, < pcT International Towel Case No. 171; 8201 1/46845 and August 5, 2010, the date of the application of the United States, May 6th, the US Temporary Shenjing Case No. 6W37U0 is related to the case, and the above-mentioned request is the full text The manner of reference is incorporated herein. Accordingly, the components of the specific examples disclosed in the claims and the combinations of the various components and features disclosed and claimed herein. TECHNICAL FIELD OF THE INVENTION The technology of the present invention generally relates to the treatment of low temperature pain. In particular, very specific examples are directed to intravascular nerves. The low temperature treatment of Meng Panyu related systems and methods. ',,, and 201223577 [Prior Art] The sympathetic nervous system (SNS) is the primary non-autonomous body control system typically associated with compression responses. The SNS fiber innervates almost all tissues in the human body system and can affect its properties, such as pupil diameter intestinal activity: and urinary discharge*. This regulation has an adaptive utility in maintaining homeostasis or allowing the body to respond quickly to % of the factors, simple, slow, and activated as a common unsuitable response that can drive the progression of many disease conditions. In particular, experiments in humans have identified that excessive activation of renal SNS may contribute to the complex pathophysiology of hypertension, volume overload conditions (such as heart failure), and progressive kidney disease. For example, radioactive tracer diluents have an increased rate of renal norepinephrine (ne) spillover in patients with a high initial pressure. Cardiac-renal sympathetic over-excitation may be evident in patients with heart failure. In these patients, it is often found from the heart and kidneys: the flow rate to the blood system increases. Increased _ activation usually characterizes chronic and 2 kidney diseases. In patients with end stage renal disease, high bloodletter levels indicate a cardiovascular disease and several causes of death. This conclusion is “the main contributor to the sensation of the sensation derived from the diseased kidney. It is the main contributor to its persistence. The stomach swells and the renal sympathetic nerves terminate in the duct, the proximal glomerular structure and the renal tubule Stimulation can lead to increased renin release, reduction of Naga and renal blood flow. In the disease, the disease is significantly stimulated in the special condition and the disease is significantly stimulated. Lunar month b neuromodulation component, and these components can contribute to the increase of blood pressure in hypertensive patients with 201223577. The decrease of renal blood flow and glomerular filtration rate caused by renal sympathetic nerve stimulation may be the heart The basis of renal function loss in renal syndrome (ie, renal dysfunction as a progressive complication of chronic heart failure). Pharmacological strategies that hinder renal sympathetic stimulation include central sympathetic block drugs, P Blockers (intended to reduce renin release), angiotensin-converting enzyme inhibitors and receptor blockers (intended to block the action of angiotensin u and aldosterone activation due to renin release) and diuretics (intended to fight Renal sympathetically mediated sodium and water retention. However, these pharmacological strategies have significant limitations, including limited efficacy, compliance issues, side effects, etc. Therefore, public health strongly requires alternative treatment strategies. Disclosed herein are neuromodulation cryotherapy devices and related systems and methods. A cryotherapy device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having a distal portion and a supply along at least a portion of the shaft The lumen can be configured to position the distal portion within the blood vessel adjacent to the treatment site of the renal artery or renal ostium. The supply lumen can be configured to receive a liquid cryogen. A cooling assembly can be further included at the distal end portion of the shaft. The cooling assembly can include a fluid communication with the supply lumen and configured to approach the target site when the cooling assembly is deployed The nerve delivers the application number of the cryotherapy cooling. [Embodiment] Many aspects of the present invention can be more fully understood with reference to the following drawings. The components are not necessarily to scale. Instead, emphasis is placed on clearly illustrating the principles of the present invention 201223577. In addition, components may be shown as transparent in some views (for clarity only, and not to indicate that the components illustrated are necessarily transparent Specific details of several specific examples of the present technology are described below with reference to Figures 1 through 5B. Although a number of specific examples of devices, systems, and methods for renal neurovascular endovascular regulation using cryotherapy are described below, Other applications and other specific examples other than those described herein are also within the scope of the present technology. In addition, several other specific examples of the technology may have different configurations, components, or procedures than those described herein. The skilled artisan will appreciate from this that the present technology may have other specific examples with additional elements, or that the present technology may have other specific examples that do not have several of the features shown and described below with reference to Figures j through 59b.

腎神經調笳Renal neuropathy

小時、數天或數週之時期)。 或短期(例如持續數分鐘、數 預期腎神經調節可有效治療以 201223577 總體交感神經活性增加為特徵的若干臨床病狀,且尤其曰 與中樞交感神經過度刺激相關的病狀,諸如高血麗、= 衰竭、急性心肌梗塞、代謝症候群、胰島素抗性、糖尿病 左心室肥大、慢性及末期腎病、心臟衰蝎時之不當體液滞 留、心腎症候群及猝死。傳入神經信號減少有助於交感神 經緊張/衝動之全身性減少,且預期腎神經調節適用於治療 與全身性交感神經過度活化或興奮過度相關的若干病狀’、 腎神經調節可潛在地使由交感神經支配的多種器官及身體 結構受益。例如,中柩交感神經衝動減少可降低罹患代謝 症候群及II型糖尿病之患者的胰島素抗性。此外,骨質疏 鬆症可由交感神經活化,且可能受益於伴隨腎神經調節^ 交感神經衝動下調。下文提供有關的患者解剖學及生理學 之更样細描述。 各種技術可用於使神經路徑部分或完全無能,諸如神 經支配腎之神經路徑。例如,低溫療法包括以調節神經功 能之方式冷卻目標部位處之組織。低溫治療組織損傷之機 制包括例如直接細胞損傷(例如壞死)、血管損傷(例如藉 由損傷供應血管而使細胞缺乏營養)及次致死性體溫過低 和隨後之細胞凋亡。曝露於低溫治療冷卻可導致急性細胞 死亡(例如曝露後立即)及/或延遲之細胞死亡(例如在組 織解束及隨後的過度灌注期間)。本發明技術之若干具體實 例包括冷卻腎動脈壁之内表面處或附近之結構以使得鄰近 (例如相鄰)組織被有效冷卻至交感腎神經所在之深度。例 如’該冷卻結構被冷卻至引起治療上有效之低溫腎神經調 201223577 即之釭度。預期充分冷 a 可处®斷袖刀父感月神經可減緩或 可此阻斷神經信號傳導 入 久降低。 ^ 乂產生腎乂感砷經活性之長期或永 低溫療法具有可· Afc姐 百了此對血内腎神經調節有 性。例如,與在苒、、w 的某二特 鎮痛效應,使得低溫療法之痛苦較少。供 序相比,低溫療法可需要卜η 與熱切除程 L 了*要較)鎮痛樂物來維持患者在程序 曰 此外,減輕疼痛可減少串者孩#λ b m 風'思者移動且因而增加操 作者之成功率並減Φ 4皮 文 并如症。低溫療法典型地亦不導 致顯者膠原蛋白緊端, ’、’、 且因此低&療法典型地與血管狭窄 無關。 -療法大體上在使低溫治療施藥器黏附於濕潤組織 的:度下操作。此舉可能有利,因為其有助於在治療期間 穩疋、連貫且持續的接觸。典型治療條件可使此成為有吸 :。丨力的特徵’因為例如患者在治療期間可能移冑,與施藥 益連接之導管可能移動,及/或呼吸可使腎m因而移動 腎動脈。此外,血流為脈動性的,且使腎動脈脈動。當治 療可此更難以達成穩定血管内定位之短腎動脈時,與低溫 治療冷卻相關之黏附亦可為有利的。Hours, days or weeks). Or short-term (eg, for several minutes, several expected renal neuromodulation can effectively treat several clinical conditions characterized by an increase in overall sympathetic activity in 201223577, and in particular, conditions associated with central sympathetic over-stimulation, such as hyper-blood, = failure, acute myocardial infarction, metabolic syndrome, insulin resistance, diabetic left ventricular hypertrophy, chronic and terminal renal disease, inappropriate fluid retention during heart failure, heart and kidney syndrome, and sudden death. Attenuated nerve signaling contributes to sympathetic tone / impulsive systemic reduction, and renal neuromodulation is expected to be useful in the treatment of several conditions associated with systemic sympathetic overactivation or hyperexcitability', renal neuromodulation potentially potentially benefiting multiple organs and body structures governed by sympathetic nerves For example, a reduction in sympathetic impulses in the sputum can reduce insulin resistance in patients with metabolic syndrome and type 2 diabetes. In addition, osteoporosis can be activated by sympathetic nerves and may benefit from concomitant renal neuromodulation sympathetic impulse downregulation. Provide relevant patient anatomy and physiology A more detailed description. Various techniques can be used to partially or completely disable the neural pathway, such as innervating the neural pathway of the kidney. For example, hypothermia involves cooling the tissue at the target site in a manner that modulates nerve function. The mechanism of cryotherapy for tissue damage includes For example, direct cell damage (eg, necrosis), vascular damage (eg, lack of nutrients in the cells by injury to the blood vessels), and sublethal hypothermia and subsequent apoptosis. Exposure to cryotherapy cooling can lead to acute cell death (eg, Immediately after exposure and/or delayed cell death (eg, during tissue unwinding and subsequent over-perfusion). Several specific examples of the present technology include cooling the structure at or near the inner surface of the renal artery wall to enable proximity (eg, Adjacent) the tissue is effectively cooled to the depth where the sympathetic renal nerves are located. For example, the cooling structure is cooled to cause a therapeutically effective hypothermia renal tone 201223577, which is expected to be sufficiently cold. The lunar nerve can slow down or can block the long-term decrease of nerve signaling. ^ 乂The long-term or permanent hypothermia of arsenic-induced arsenic is ok. Afc sister has a sexually controlled renal nerve. For example, with an analgesic effect in sputum, w, the pain of hypothermia Less. Compared with the order, cryotherapy can require η and thermal resection process L * to be more analgesic to maintain the patient in the procedure 曰 In addition, reduce pain can reduce the number of children #λ bm 风's move And thus increase the operator's success rate and reduce the ph ph ph. Cryogenic therapy typically does not result in a tight collagen, ',' and thus low & therapy is typically independent of vascular stenosis. The therapy is generally operated at a degree to which the cryotherapy applicator adheres to the moist tissue. This may be beneficial as it helps for a steady, consistent and continuous contact during treatment. Typical treatment conditions can make this a suction:. The feature of stress is because, for example, the patient may move during treatment, the catheter connected to the medication may move, and/or the breath may cause the kidney to move the renal artery. In addition, the blood flow is pulsating and causes the renal artery to pulsate. Adhesion associated with cryotherapy cooling may also be advantageous when treatment may be more difficult to achieve a short renal artery that stabilizes intravascular positioning.

Siigijg·系統之所撰具體竇例 圖1說明根據本發明技術之若干具體實例組態之低溫 治療系統1〇〇。低溫治療系統1〇〇可包括控制台1〇2及低溫 /α療裂置120。在圖1所示之具體實例中,控制台丨〇2包括 供應容器104 '處於供應容器1〇4中之致冷劑1〇6、及與供 201223577 ^容器104¾體連通之供應控制目1〇8。供應容胃i()4可為 3有足以進行多次程序之量的致冷劑i 〇6的單用途筒或較 大容器。例如,較大供應容器可為可再填充缸。供應容器 104經組態以將致冷劑106保持在所要壓力下。例如,在一 個具體貫例中,供應容器104中含有處於75〇 psi或大於75〇 psi之壓力下的液體N2〇,因此其在環境溫度下呈至少實質 上液態。在其他具體實例中,致冷劑1〇6可包括二氧化碳、 氫氟碳(「HFC」;例如Freon®、R_41〇A等)及/或可在足以 在環境溫度下維持致冷劑106處於至少實質上液態之高壓 力(例如對於R-410A,為約210 psi)下保持在供應容器1〇4 中的其他適合的壓縮或冷凝致冷劑。 供應控制閥1 08耦接至經組態以將致冷劑丨〇6輸送至 低m療裝置120之供應線1丨〇。供應控制閥J 〇8可手動操 作或自動操作。控制台102可視情況包括泵i丨丨(諸如真空 泵或DC電動泵)及/或耦接至排出線115之背壓控制閥 113 ’排出線115經組態以接收來自低溫治療裝置12 〇之排 出致冷劑11 7。泵111可降低蒸發之致冷劑的背壓,且與供 應流速協同增加冷凍力。在其他具體實例中’膨脹之致冷 劑117可排出至環境壓力。 控制台102可進一步包括可選控制器118,其操作供應 控制閥1 08及背壓控制閥丨丨3。控制器i丨8可為例如實施電 腦化演算法以自動執行程序的處理器或專用電路。控制台 102亦可包括接收使用者輸入及/或向使用者提供資訊之可 選使用者介面及/或用於監視可選感測器(例如壓力或溫度) 11 201223577 之電路(若在低溫治療裝置丨2 〇中存在)。在一個具體實例 中,控制器118操作背壓控制閥113來控制施加於自低溫治 療裝置1 20返回之排出致冷劑丨丨7的真空量。此調節蒸發之 致冷劑的背壓以控制低溫治療裝置12〇中之溫度。在另一 具體實例中,供應控制閥i 〇8及/或背壓控制閥i丨3可用於 增加排出之致冷劑11 7的背壓。增加排出之致冷劑丨丨7之背 壓可增加致冷劑之沸點。例如,在ΝΑ之情況下,背壓自i atm稍微增加至約2 atm將使沸點自約_88。匸升高至約 -75 C ;背壓增加至3 atm將使沸點升高至約_65cc。 在某些具體實例中,低溫治療系統1〇〇亦可預冷卻致 冷劑106以在致冷劑106達到冷卻系統時在致冷劑ι〇6中 提供更大冷凍力。例如,系統1〇〇可在控制台1〇2中包括 預冷卻器119(以虛線展示)。在其他具體實例中,系統_ 可沿供應、線110、在系、,统100近端區域之手柄處或與低溫治 療裝置120輕接之其他處包括預冷卻器。 低溫治療裝置120包括軸122,其具有近端部分124、 處於近端料124线端區域的手# 125、及相對於近端部 分124向遠端延伸之遠端部分12^低溫治療裝置12〇可在 軸122之遠端部分126處進-步包括冷卻總成130。轴122 經組態以將遠端部> 126在血管岐位於鄰近腎動脈或腎 小口(例如在其中或附近)之治療部位處,且冷卻總成130 經組悲以提供治療上有效之低溫腎神經調節。 圖2A為說明軸122之遠端部分126及呈遞送狀態(例 如低剖面或收縮組態)之冷卻總& 13〇之具體實例的放大 12 201223577 '橫截面圖,且圖2B為呈部署狀態(例如,膨脹組態)之冷 -卻總成130的放大横截面圖。在圖2A所示之具體實例中, 軸122之遠端部分126可包括第一區域12以及相對於該第 :區域127a向内凹入之第二區域12几(由虛線分離)。可 藉由諸如嵌槽(例如經組態以裝配另一部件之環形或其他 圓周槽)之台階128來區別第一區域127a與第二區域 127b。據此,第一區域127a可具有第一外部尺寸或第一橫 截面尺寸(例如面積或直徑),且第二區域127b可具有小 於該第一尺寸之第^卜部尺寸《第二橫截面尺寸。軸122 •可經定大小以裝配在8Fr或小於8Fr之外鞘15Q(例如化 引導外鞘)内以適應小腎動脈。 低溫治療裝置120亦可沿軸122之至少一部分包括供 應管或供應内腔132及排出管或排出内腔134。供應内腔 132可為經組態以在高壓下將致冷劑保持於液態之小管。選 擇供應㈣132之内徑以使得達到冷卻總成m之致冷劑 之至少一部分在供應内腔m之遠端135處呈液態。排 内腔134可為外管’且供應内腔13 4 a 在排出内腔134内 至少沿軸之遠謝126延伸。如下文進—步詳細描述, 低溫治療裝置12〇之若干具體實例可進,括由引線139 耗接至控制器m (圖U之-或多個感測器138,諸如严 度感測器或壓力感測器。在若干具體實例+,低溫治療系 統100可經組態以在低溫治療處理前驗證感測器138之適 當校正。例如,在低溫治療系統⑽_始開機循環時,低 溫治療系 '统⑽可自動比較來自溫度感測器之量測溫度與 13 201223577 室溫以檢查溫度感測器適當工作。 圖2A及圖2B中所示之冷卻總成13〇之具體實例可具 有施羔器140,其包含氣球i42或可定義經組態以完全閉塞 腎動脈或腎小口之膨脹腔的其他類型可膨脹部件。氣球142 可相對較短(例如10 1。mm以下)以適應腎動脈之 長度及4曲(例如4至6 cm ),且在膨脹組態下可具有足以 接觸腎動脈内部圓周之顯著部分的直徑(例如直徑為3 mm 至10 mm )。在下文所述之其他具體實例中,氣球可經組態 以僅部分閉塞腎動脈或腎小口。氣球142彳包含順應性材 料、非順應性材料及/或順應性材料與非順應性材料之組 。。在各種具體實例中,例如,氣球142彳由聚胺基甲酸 醋及/或其他順應性或半順應性材料製成,料材料可膨脹 並符合血管壁以便完全閉塞不同大小之血管(例如内徑為 約3_至約10_或在特定應用中約4咖至約8_之 血管)。在其他具體實例中,氣球142可由耐論及/或其他非 順應性材料組成且經定大小以適應某一大小範圍内之血 管。例如’非順應性耐論氣球可經定大小以適應内徑為約3 mm與6 mm之間的,且較大非順應性耐綸氣球可經定 大小以適應内徑為約7 mm與丨〇 mm之間的血管。 在圖2A及圖2B中所說明之具體實例中,氣球142之 遠編4刀不連接於支撐部件(例如供應内腔132及/或其他 支撐物),且因此可浸潰模製及/或以其他方式形成以具有連 續遠端部分。氣球142之連續遠端部分提供平緩表面來與 血管壁接觸以避免撕裂、穿刺及/或以其他方式損傷血管 201223577 匕外與遠端連接氣球相比,圖2B中所示之冷卻總成 ° 〃有較知_總長度’由此可有助於在相對較短之血管 (例如長度為6 cm或6 cm以下之腎動脈)中定位冷卻總成 130 ° 冷部總成130可進—步包括與膨脹腔流體連通之孔口 144土。在一個具體實例中,孔口 144可由插入供應内腔132 之返端135中的答. 土 T的乇、、,田s 146之遠端定義。或者,供應内腔 之遠立而135處的開口可定義孔口。毛細管146及/或孔 可”有小於供應内腔i 3 2之直徑以阻礙致冷劑在鄰 近膨脹腔處的流動’從而增加進入膨脹腔之致冷劑106的 •降並集中冷部總成i 3 〇處之冷凍力。在其他具體實例中, 供應内腔132可具有實質上恆定之内徑(例如0._吋 ^ 〇3 職)、〇.009 吋(0.023 mm)、0.010 吋(〇.254 mm) 等)以使得孔〇 144具有至少與供應内腔i32相等之直徑。 低〜。療裝置12〇可接著在手柄125 (圖〇及,或控制台 1〇:(广1)中進一步包括其他硬體(例如閥、流量計及壓 十等)及/或軟體以控制經由供應内腔m之致冷劑丄〇6 並將冷凍力向車由122之遠端部> 126集中。 *孔口 144可相對㈣122之遠端部分126處之排出内 l m之面積及/或長度而定大小以提供足夠的致冷劑流 、'仗而在膨脹腔中產生足夠壓降,且允許經由排出内腔 134充分排放所排出致冷劑ιΐ7。在—個具體實例中,孔口 :44可具有約〇.003吋( 0.076 mm)或0.003吋以上之直徑, 諸如約 〇.〇〇4 口十(〇.101 _)至約 0.009 口f ( 0.229 mm)。 15 201223577 在各種具體實例中,排出内腔132之内徑及/或橫截面面積 及孔口 144之直徑及/或橫截面面積可具有約與ι〇ι之 間的比率。例如,排出内腔132可具有約〇 〇3〇吋"Μ 毫米)與約0.050吋(1.27 mm)之間的内徑,且孔口 144 可具有約0.003吋(〇.〇762 mm)至約0·0〇8吋(〇2〇3爪爪; 例如0.004忖(0_101 mm))之直徑。在其他具體實例中,’ 排出内腔134及孔口 144可具有其他適合尺寸、在其他實 施例中,軸122可包括延伸通過之其他内腔或裝置(例如 壓力感測内腔、其他流體通道等),且排出内腔132之橫截 面尺寸與供應内腔及/或軸122内之其他部件所佔據之2橫 截面尺寸的比率可為約4:1至 亦可藉由改變供應内腔132及毛細管146相對於彼此 之長度而操縱致冷齊"06之流速。例如,在某些具體實例 中,毛細管146可為供應内腔132之長度的至多在各 種具體實例中,毛細管146可具有〇 (j8em)與 (76.2 cm)之間的長度,且供應内腔132可據此定大小。在 其他具體實例中,毛細f 146相對於供應内月空132可較短 或較長’及/或可省略毛細管14 6。 在血管内將冷卻總成13〇傳遞至血管v中之目標部位 丁,同時冷卻總成13 〇呈圖2A中所示之遞送組態。參考圖 =’接著將冷卻總< 130及外勒15〇相對於彼此移動以使 知冷卻總成130向遠端延伸超過外鞘丨5〇。例如,可向近端 拉動外鞘150及/或可向遠端推動冷卻總成13(^在操作中, 致冷劑106穿過供應内腔132,經由孔口 144,且進入由氣 16 201223577 '球M2定義之膨脹腔中。在致冷劑106穿過孔口 144時, '膨脹成氣相,從而將氣球充氣並在膨脹腔中引起顯著降 •溫。接觸目標T處之組織的施藥器140之部分可為與膨脹 -腔中之致冷劑1G6 -起產生治療上有效之低溫腎神經調節 的熱傳遞區域149或熱傳遞區域。排出之致冷劑117在近端 方向中穿過排出内腔134。在各種具體實例中,軸122之長 度可減至最小以減少流過供應内腔132及排出内腔之 致冷劑之損失(例如摩擦損失)’從而增強冷卻總成130之 冷凍潛能及效率。例如,可由較長排出内腔所致之額外摩 擦損失可抑制所排出致冷劑117之排放,且從而增加氣球 142内之麗力及溫度。據此1 122可經組態以具有小於 90 cm(例如 80 cm 至 rm、7λ ^ n 至85 Cm 70咖至8〇 cm等)之總長度。 ::、他’、體實例中’軸122可更長及’或包括其他特徵以增 強冷卻總成130處之冷凍力。 及圖23中所說明之冷卻總成13〇之 在相對於目標7處=二處產生全圓周治療(亦即 ……處之血g ¥的縱向方向為垂直或以其他方 式k切之平面中完全圍繞血 卻區域)。+人_ π P圓周延伸之連續冷 ))π王閉塞血管¥限制灰流加熱熱傳遞區域⑷, = 冷卻力可更有效地應用於目標τ。雖然閉塞 在目期可能導致腎局部缺血,但已發現可在足以 全閉成低溫療法之時期(例如2至5分鐘)中完 控制器118(圖”可經程式化以藉由使用 或機械定時器控制間來限制致冷劑流之持續時間(例 17 201223577 如2至5分鐘)。或者,計時器可併入手柄i25 (圖。或 低溫治療裝置120之其他部分中。存在感測器138時,感 測器m可向控制$ 118提供反饋以調節或控制系統1〇〇。 在一些具體實例中’可能需要控制演算法完全自動化,但 在其他具體實例中,所遞送的療法可利用使用者輸入。在 其他具體實例中,致冷劑流之持續時間可由供應容器1〇4 中之致冷劑;S:限制。如下文更詳細描述,在其他具體實例 中’冷卻總成130可經組態以部分閉塞血流。 在各種具體實例中,感測器138可為位於氣球142之 外表面上的熱電偶,且可經組態以提供氣球142之外部溫 度的即時溫度讀數。因而,低溫治療系統1〇〇可經由控制 益U 8加以調節(例如使用軟體控制迴路)以使得其基於即 時外部氣球溫度與預定治療溫度(例如_4〇。〇、_6〇。〇等)之 差而增加或降低冷卻力輸出。例如,可藉由在低溫治療之 不同階段響應於所量測溫度而開啟及關閉閥(例如供應控 制閥108及/或背壓控制閥113)來調節冷卻力輸出。在其 他具體實例中,可使用比例控制來調節冷卻力輸出,其中 致冷劑106之遞送壓力及/或真空泵u i之流速可響應於量 測的外部氣球溫度而變化。據此,外部熱電偶允許低溫治 療系統1 00補償影響目標部位T處之冷卻的變數,諸如動 脈直徑 '經由動脈之血流及/或經由腎動脈附近之其他血管 之血流的變化。 圖2C至圖2E為說明根據本發明技術之其他具體實例 所組態之低溫治療裝置丨2 〇之遠端部分12 6的放大橫截面 18 201223577 - 圖。參考圖2C’氣球142之遠端部分152可經由熱結合、 、 黏附劑及/或其他適合連接機制連接於遠端連接器162。遠 . 端連接器162可具有如圖2C中所示之彎曲子彈樣尖端,或 - 可以其他方式經組態以提供非創傷性尖端以通過血管結 構。 低溫治療裝置120進一步包括可接收引導線133b之引 導線内腔133a以引導軸122之遠端部分126通過血管結 構。在圖2C中所說明之具體實例中,引導線内腔133&以 經由線(over-the-wire ; OTW)組態完全延伸穿過軸122, 自配接器201 (例如圖1中所示之手柄125)處之軸122之 近端開口延伸至超過軸122之遠端開口,而在圖2E中所說 腔133a僅以快速交換(Κχ)組 雖然圖2E中展示引導線内腔 明之具體實例中,引導線内腔 126處延伸通過軸122之側壁,但 -車由122之折4电彻i告地+日日a > “ 之近端與遠端之間的任何Specific Sinus Cases by Siigijg. System Figure 1 illustrates a cryotherapy system configured in accordance with several specific examples of the present technology. The cryotherapy system 1 can include a console 1〇2 and a cryo/alpha therapy 120. In the specific example shown in FIG. 1, the console 丨〇 2 includes a refrigerant 1 〇 6 in which the supply container 104 ′ is in the supply container 1 〇 4, and a supply control unit connected to the 201223 577 ^ container 1043 ⁄4 body. 8. The supply of the stomach i() 4 may be a single-purpose cartridge or a larger container having a refrigerant i 〇 6 in an amount sufficient for a plurality of procedures. For example, the larger supply container can be a refillable cylinder. The supply container 104 is configured to maintain the refrigerant 106 at a desired pressure. For example, in a particular embodiment, the supply vessel 104 contains a liquid N2 crucible at a pressure of 75 psi or greater than 75 psi so that it is at least substantially liquid at ambient temperature. In other embodiments, the refrigerant 1〇6 may include carbon dioxide, hydrofluorocarbon (“HFC”; eg, Freon®, R_41〇A, etc.) and/or may be sufficient to maintain the refrigerant 106 at ambient temperature. Other suitable compressed or condensed refrigerants that remain in the supply vessel 1〇4 at substantially high liquid pressure (e.g., about 210 psi for R-410A). The supply control valve 108 is coupled to a supply line 1 that is configured to deliver refrigerant 丨〇6 to the low m treatment device 120. The supply control valve J 〇8 can be operated manually or automatically. The console 102 may optionally include a pump (such as a vacuum pump or a DC electric pump) and/or a back pressure control valve 113 coupled to the discharge line 115. The discharge line 115 is configured to receive the discharge from the cryotherapy device 12 Refrigerant 11 7 . The pump 111 reduces the back pressure of the evaporated refrigerant and synergizes with the supply flow rate to increase the freezing force. In other embodiments, the expanded refrigerant 117 can be discharged to ambient pressure. The console 102 can further include an optional controller 118 that operates the supply control valve 108 and the back pressure control valve 丨丨3. The controller i 8 may be, for example, a processor or a dedicated circuit that implements a computerized algorithm to automatically execute a program. The console 102 can also include an optional user interface for receiving user input and/or providing information to the user and/or circuitry for monitoring an optional sensor (eg, pressure or temperature) 11 201223577 (if at hypothermia) Device 丨2 〇 exists). In one embodiment, the controller 118 operates the back pressure control valve 113 to control the amount of vacuum applied to the discharged refrigerant crucible 7 returned from the cryotherapy device 120. This adjusts the back pressure of the evaporated refrigerant to control the temperature in the cryotherapy device 12. In another embodiment, the supply control valve i 〇 8 and/or the back pressure control valve i 丨 3 can be used to increase the back pressure of the discharged refrigerant 11 7 . Increasing the back pressure of the discharged refrigerant 丨丨7 increases the boiling point of the refrigerant. For example, in the case of ruthenium, a slight increase in back pressure from i atm to about 2 atm will result in a boiling point of about _88. The enthalpy is raised to about -75 C; increasing the back pressure to 3 atm will raise the boiling point to about _65 cc. In some embodiments, the cryotherapy system can also pre-cool the refrigerant 106 to provide greater refrigeration in the refrigerant ι 6 as the refrigerant 106 reaches the cooling system. For example, system 1 may include a pre-cooler 119 (shown in phantom) in console 1〇2. In other embodiments, the system _ can include a pre-cooler along the supply, line 110, at the handle of the system, at the handle of the proximal region of the system 100, or elsewhere with the cryotherapy device 120. The cryotherapy device 120 includes a shaft 122 having a proximal portion 124, a hand #125 in the line end region of the proximal end 124, and a distal portion 12 distally extending relative to the proximal portion 124. The cooling assembly 130 can be included at the distal end portion 126 of the shaft 122. The shaft 122 is configured to position the distal portion > 126 at a treatment site adjacent to the renal artery or renal orifice (e.g., in or near) the vasospasm, and the cooling assembly 130 is sorrowed to provide a therapeutically effective hypothermia Renal neuromodulation. 2A is a cross-sectional view showing a distal end portion 126 of the shaft 122 and a specific example of a cooling total & 13 呈 in a delivery state (eg, a low profile or a contracted configuration), and FIG. 2B is in a deployed state. An enlarged cross-sectional view of the cold-but assembly 130 (eg, an expansion configuration). In the particular example illustrated in Figure 2A, the distal end portion 126 of the shaft 122 can include a first region 12 and a second region 12 that is recessed inwardly relative to the first region 127a (separated by dashed lines). The first region 127a and the second region 127b may be distinguished by a step 128 such as a slot (e.g., an annular or other circumferential groove configured to fit another component). Accordingly, the first region 127a can have a first outer dimension or a first cross-sectional dimension (e.g., area or diameter), and the second region 127b can have a second cross-sectional dimension that is less than the first dimension. Shaft 122 • can be sized to fit within 8Fr or less than 8Fr sheath 15Q (e.g., a guide sheath) to accommodate small renal arteries. The cryotherapy device 120 can also include a supply tube or supply lumen 132 and a discharge tube or discharge lumen 134 along at least a portion of the shaft 122. The supply lumen 132 can be a small tube configured to hold the refrigerant in a liquid state under high pressure. The inner diameter of the supply (four) 132 is selected such that at least a portion of the refrigerant reaching the cooling assembly m is in a liquid state at the distal end 135 of the supply lumen m. The lining lumen 134 can be an outer tube ' and the supply lumen 13 4 a extends within the venting lumen 134 at least along the axis 126. As described in more detail below, several specific examples of the cryotherapy device 12 can be accessed by the lead 139 to the controller m (or U- or multiple sensors 138, such as a sever sensor or Pressure sensor. In several specific examples, the cryotherapy system 100 can be configured to verify proper calibration of the sensor 138 prior to cryotherapy treatment. For example, in a cryotherapy system (10) 'System (10) can automatically compare the measured temperature from the temperature sensor with 13 201223577 room temperature to check the temperature sensor for proper operation. The specific example of the cooling assembly 13〇 shown in Figures 2A and 2B can have a lamb The device 140, which may include a balloon i42 or other type of expandable member that may define an inflation lumen configured to completely occlude the renal artery or the renal orifice. The balloon 142 may be relatively short (eg, 10 1 mm or less) to accommodate the renal artery. Length and 4 turns (eg 4 to 6 cm), and in the expanded configuration may have a diameter sufficient to contact a significant portion of the inner circumference of the renal artery (eg, 3 mm to 10 mm in diameter). Other specific examples described below Balloon It is configured to only partially occlude the renal artery or renal stenosis. Balloon 142A comprises a compliant material, a non-compliant material, and/or a group of compliant materials and non-compliant materials. In various embodiments, for example, balloon 142 Made of polyurethane urethane and/or other compliant or semi-compliant materials, the material can expand and conform to the vessel wall to completely occlude vessels of different sizes (eg, an inner diameter of about 3 to about 10 mm or in In a particular application, about 4 to about 8 vascular.) In other embodiments, the balloon 142 can be composed of resistant and/or other non-compliant materials and sized to accommodate blood vessels within a certain size range. The non-compliant balloon can be sized to accommodate an inner diameter of between about 3 mm and 6 mm, and the larger non-compliant nylon balloon can be sized to accommodate an inner diameter of about 7 mm and 丨〇mm Between the blood vessels. In the specific example illustrated in Figures 2A and 2B, the distal end of the balloon 142 is not attached to the support member (e.g., the inner lumen 132 and/or other support), and thus can be impregnated Molded and/or otherwise formed to have The distal portion is continued. The continuous distal portion of the balloon 142 provides a gentle surface to contact the vessel wall to avoid tearing, puncturing, and/or otherwise damaging the vessel 201223577. The outer balloon is shown in Figure 2B. The cooling assembly ° 〃 has a better _ total length 'this can help locate the cooling assembly 130 ° cold assembly in a relatively short blood vessel (for example, a renal artery of 6 cm or less in length) 130 may include an orifice 144 that is in fluid communication with the expansion chamber. In one embodiment, the orifice 144 may be inserted into the return end 135 of the supply lumen 132. 土,, 田 146 Remote definition. Alternatively, the opening of the supply chamber and the opening at 135 define an orifice. The capillary 146 and/or the aperture may have a diameter smaller than the diameter of the supply lumen i 3 2 to impede the flow of the refrigerant adjacent to the expansion chamber to increase the amount of refrigerant 106 entering the expansion chamber and to concentrate the cold assembly. The freezing force at i 3 〇. In other embodiments, the supply lumen 132 can have a substantially constant inner diameter (eg, 0._吋^ 〇3), 〇.009 吋 (0.023 mm), 0.010 吋 ( 254.254 mm) etc.) such that the aperture 144 has a diameter at least equal to the supply lumen i32. Low ~ The treatment device 12〇 can then be placed on the handle 125 (Figure ,, or console 1〇: (广1) Further including other hardware (such as valves, flow meters, pressure gauges, etc.) and/or software to control the refrigerant 丄〇6 via the supply lumen m and directing the refrigeration force to the distal end of the vehicle 122> Concentration. * The aperture 144 may be sized relative to the area and/or length of the lm within the distal portion 126 of the (four) 122 to provide sufficient flow of refrigerant, '仗 to create a sufficient pressure drop in the expansion chamber, and The discharged refrigerant ι 7 is allowed to be sufficiently discharged through the discharge lumen 134. In a specific example, the orifice: 44 There is a diameter of about 吋.003吋 (0.076 mm) or more than 0.003吋, such as about 〇.〇〇4 mouth ten (〇.101 _) to about 0.009 mouth f (0.229 mm). 15 201223577 In various embodiments, The inner diameter and/or cross-sectional area of the discharge lumen 132 and the diameter and/or cross-sectional area of the orifice 144 may have a ratio of between about ιιι. For example, the discharge lumen 132 may have a diameter of about 〇3〇.吋 "Μ mm) and an inner diameter of between about 0.050 吋 (1.27 mm), and the orifice 144 may have about 0.003 吋 (〇.〇762 mm) to about 0·0〇8吋 (〇2〇3 claws) Claw; for example, 0.004 inch (0-101 mm)). In other embodiments, 'discharge lumen 134 and orifice 144 may have other suitable dimensions, and in other embodiments, shaft 122 may include other lumens extending therethrough. Or a device (eg, a pressure sensing lumen, other fluid passages, etc.), and the ratio of the cross-sectional dimension of the exhaust lumen 132 to the 2 cross-sectional dimensions occupied by the supply lumen and/or other components within the shaft 122 may be about 4:1 can also be manipulated by changing the length of the supply lumen 132 and the capillary 146 relative to each other The flow rate of ot; 06. For example, in some embodiments, the capillary 146 can be at most the length of the supply lumen 132. In various embodiments, the capillary 146 can have a length between 〇 (j8em) and (76.2 cm). And the supply lumen 132 can be sized accordingly. In other embodiments, the capillary f 146 can be shorter or longer relative to the supply inner moon 132 and/or the capillary 14 can be omitted. The cooling assembly 13〇 is delivered to the target site in the vessel v in the blood vessel while the cooling assembly 13 is in the delivery configuration shown in Figure 2A. Reference Figure = 'The cooling total < 130 and the outer 15 接着 are then moved relative to each other to cause the cooling assembly 130 to extend distally beyond the outer sheath 丨 5 。. For example, the outer sheath 150 can be pulled proximally and/or the cooling assembly 13 can be pushed distally (in operation, the refrigerant 106 passes through the supply lumen 132, through the orifice 144, and enters the gas 16 201223577 'In the expansion chamber defined by the ball M2. When the refrigerant 106 passes through the orifice 144, 'expands into the gas phase, thereby inflating the balloon and causing significant temperature drop in the expansion chamber. Contacting the tissue at the target T Portions of the medicinal device 140 may be a heat transfer region 149 or a heat transfer region that produces therapeutically effective hypothermia renal neuromodulation with the cryogen 1G6 in the dilatation-cavity. The circulated cryogen 117 is worn in the proximal direction. The inner lumen 134 is vented. In various embodiments, the length of the shaft 122 can be minimized to reduce the loss of refrigerant (e.g., frictional losses) flowing through the supply lumen 132 and the exhaust lumen to enhance the cooling assembly 130. The freezing potential and efficiency. For example, the additional friction loss caused by the longer discharge lumen can suppress the discharge of the discharged refrigerant 117, and thereby increase the force and temperature in the balloon 142. State to have less than 90 cm (eg 80 cm to rm, 7 The total length of λ ^ n to 85 Cm 70 coffee to 8 〇 cm, etc. ::, he's the 'shaft 122 may be longer and' or include other features to enhance the freezing force at the cooling assembly 130. And the cooling assembly 13 illustrated in Figure 23 produces a full circumference treatment at a position = two with respect to the target 7 (i.e., the longitudinal direction of the blood g ¥ is perpendicular or otherwise cut in the plane) Completely around the blood area). + person _ π P continuous extension of the circumferential cold)) π king occlusion blood vessels ¥ limit ash flow heating heat transfer area (4), = cooling force can be more effectively applied to the target τ. Although occlusion may result in renal ischemia during the eye, it has been found that the controller 118 (figure) can be programmed to be used or mechanically in a period sufficient to fully close the cryotherapy (eg, 2 to 5 minutes). The timer controls the interval to limit the duration of the refrigerant flow (Example 17 201223577 eg 2 to 5 minutes). Alternatively, the timer can be incorporated into the handle i25 (Fig. or other parts of the cryotherapy device 120. Presence sensor At 138, sensor m can provide feedback to control $118 to adjust or control system 1. In some embodiments, the control algorithm may be fully automated, but in other embodiments, the delivered therapy may be utilized. User input. In other embodiments, the duration of the refrigerant flow may be limited by the refrigerant in the supply vessel 1〇4; S: as described in more detail below, in other embodiments, the cooling assembly 130 may The blood flow is configured to partially occlude. In various embodiments, the sensor 138 can be a thermocouple located on an outer surface of the balloon 142 and can be configured to provide an immediate temperature reading of the external temperature of the balloon 142. Thus, the cryotherapy system 1 can be adjusted via control U 8 (eg, using a software control loop) such that it is based on the instantaneous external balloon temperature and the predetermined treatment temperature (eg, _4 〇 〇, _6 〇 〇 〇, etc. Increasing or decreasing the cooling force output. For example, the valve can be adjusted by opening and closing valves (eg, supply control valve 108 and/or back pressure control valve 113) in response to the measured temperature at different stages of cryogenic therapy. Cooling force output. In other embodiments, proportional control may be used to adjust the cooling force output, wherein the delivery pressure of the refrigerant 106 and/or the flow rate of the vacuum pump ui may vary in response to the measured external balloon temperature. The external thermocouple allows the cryotherapy system 100 to compensate for variables that affect cooling at the target site T, such as changes in the arterial diameter 'flow through the arteries and/or through other blood vessels near the renal artery. Figure 2C to Figure 2E To illustrate an enlarged cross-section 18 of the distal portion 12 6 of the cryotherapy device 丨 2 组态 configured in accordance with other embodiments of the present technology. 2C 'The distal end portion 152 of the balloon 142 can be coupled to the distal connector 162 via a thermal bond, an adhesive, and/or other suitable attachment mechanism. The distal connector 162 can have a curved bullet as shown in Figure 2C. The tip, or - may be otherwise configured to provide a non-traumatic tip for passage through the vascular structure. The cryotherapy device 120 further includes a guidewire lumen 133a that can receive the guidewire 133b to guide the distal portion 126 of the shaft 122 through the vessel In the specific example illustrated in Figure 2C, the guidewire lumen 133& is fully extended through the shaft 122 in an over-the-wire (OTW) configuration, from the adapter 201 (eg, Figure 1 The proximal opening of the shaft 122 at the illustrated handle 125) extends beyond the distal opening of the shaft 122, while the lumen 133a is only in the quick exchange (Κχ) set in Figure 2E although the guidewire lumen is shown in Figure 2E. In the specific example, the guide wire lumen 126 extends through the side wall of the shaft 122, but the car is folded from the 122 to the ground and the day a > "any between the proximal and distal ends

態延伸通過一部分軸122。 133a之近端於遠端部分126 在其他具體實例中,可在軸 地方接達引導線内腔133a之 19 201223577 圖3 A說明用系統100之具體實例低溫調節腎神經。低 溫治療裝置120提供經由通向各別腎動脈RA之血管内路秤 P對腎神經叢之接達。如所說明,軸i 22之近端部分124之 一個區段曝露在患者體外。藉由自血管内路徑p外部操縱 軸122之近端部分124,護理員可使軸122通過彎曲血管内 路徑P(例如經由股動脈或橈動脈)前進並在遠端操縱遠端 部分126 (例如用手柄125中之致動器)。例如,軸122可 進一步包括一或多個拉線或其他導引裝置來引導遠端部分 126通過血管結構。可使用影像導引(例如ct、放射照相二 US OCT )或另-適合導引醫療器械或其組合來辅助護 理員操縱。冷卻施藥器140適當位於腎動脈RA中或腎小口 處之後,可使用控制台102 (圖υ、手柄125 (圖n及/ 或另一構件使其膨脹或以其他方式部署直至施藥器140接 觸腎動脈RA之内壁。接著向組織施加施藥器14〇之冷卻力 之有目的應用,以便對腎動脈局部區域及腎神經叢相鄰區 域誘導一或多種所要神經調節效應,該等區域密切位於腎 動脈外膜内、鄰近腎動脈外膜或緊鄰腎動脈外膜。神經調 節效應之有目的應用可沿所有或一部分腎神經叢達成神經 調節。 神經δ周節效應一般至少部分地隨施藥器i 4〇之溫度、 施藥器140與血官壁之接觸、施藥器14〇在冷卻時之停留 時間、冷卻循環數目(例如由升溫期分隔之一或多個冷卻 循環i及通過血管之血流而變化。所要冷卻效應可包括冷 部施藥器以使得目標神經纖維之溫度低於所要臨限值以達 20 201223577 =低:改身或切除。例如’施藥器14。中之致冷劑氣體 冷部至約,至約, :體了 藥器140中之氣俨7目士 飞H、體貫例中,施 、體可具有約_8(TC至约_4〇〇c之溫度。 循J =種具體實例中,神經調節效應可在-或多個冷卻 衣將冷部之施藥器14Q應用 ⑽秒内(例如90秒、^ A次月小口 -個具體實例中,,:I秒、30秒等)發生。在 冷卻循環,二=可包括由一個升溫期分隔之兩個 …、他-體實例中,該方法可具有由多個升 個以上冷卻循環。冷卻猶環可具有相同持續 田夺間或不同持績時間,諸如各自為約1〇秒至約%秒。升 ;Γ:之持:續時間可足以部分或完全解凍冷卻介面處之冷凍 。在若干具體實例中,升溫期之持續時間可為約5秒 ^約9〇秒。冷卻循環之間的個別升溫期可持續相同時間量 :同夺間里。可預定冷卻循環及升溫循環之持續時間並 =匕於演算法中,或系統可包括使用基於氣球内及/或氣 :外表面上之壓力及/或溫度之反饋迴路的自動控制演算 ^例如’㈣演算法可藉由基於麗力及/或溫度量測值評 :冷康物質何時已充分解來來終止升溫循環並起始冷卻循 ,。視冷卻循環之數目及長度而定,自部署冷卻總成Η。 例如如圖2Β中所不)至冷卻總成收縮至遞送狀態(例 如’如圖2Α中所示)之總程序時間可少於$分鐘(例如少 :3分鐘)。當治療兩個腎動脈R Α時,自在第一腎動脈r a 中部署冷卻總& 13〇之時間至在第二腎動脈ra中重新定 位、部署及收縮冷卻總成130之總程序時間可少於Η分鐘 21 201223577 (例如10刀4里、6分鐘等)。在某些具體實例中,可藉由將 施藥器140定位於腎動脈RA之完全圓周周圍(例如沿相同 平面或沿橫向間隔開之平行平面)並在單次應用中進行神 經調節來減少程序時間。在其他具體實例中,施藥器14〇 可應用於小於腎動脈RA <完全圓周及/或在一次以上應用 中應用。 圖3B為說明使用上文參考圖i至圖3A所述之系統1〇〇 或下文所述之根據本發明技術之一具體實例之另一適合系 統來低溫調節腎神經之方法300的方塊圖。一起參考圖丄 至圖3B,方法300可包括在血管内將呈遞送狀態(例如, 如圖2A中所示)之冷卻總成13 0定位於腎動脈或腎小口中 (方塊305 )。低溫治療裝置12〇及/或其部分(例如冷卻總 成130 )可插入引導導管(例如圖2A至圖2C中所示之外 鞘150)中以有助於冷卻總成130之血管内遞送。在某些具 體實例中,例如’低溫治療裝置120可經組態以裝配在8 Fr 引導導管或更小(例如7 Fr、6 Fr等)引導導管内以接達小 周邊血管。如上文所述,OTW或RX引導線亦可用於操縱 軸122及冷卻總成1 3 〇並增強對軸122及冷卻總成丨3 〇之 控制。 方法300可進一步包括將低溫治療裝置12〇連接於控 制台102 (方塊310),及將冷卻總成130之可膨脹部件(例 如氣球142 )部分或完全充氣以確定冷卻總成130是否處於 目標部位處之正確位置(方塊3 1 5及320 )。可膨脹部件可 經由供應内腔132用來自控制台102處之供應容器丨〇4的 22 201223577 來自與可膨脹部件流體連通之第二流體供應儲 二 體(例如空氣)充氣。若冷卻總 不在所要位置,則可釋放可膨脹部件中之至少—些壓 塊325 )。在某些具體實例中,例如,可 斷開低溫治療裝置12。且使用注射器經㈣二: 为將可膨脹部件手動放氣而使可膨脹部件完全放氣。在: ,具體貫例中,低溫治療裝^ m可保持連接於控制台 ,且可沿轴122之長度連接注射器(例如旋塞注射器) 以將可膨服部件放氣。在其他具體實例中,控制台102處 =制器118可包括用於將可膨脹部件部分或完全放氣的 决异法。在其他具體實例中,可使用不透射線標記物及/或 不透射線標記使冷卻總成130位於目標部位。 ,冷卻總成I30適當地定位於第一腎動脈或其小口内 _可操縱控制台102以在冷卻總成13 0處起始調節腎神 ^之冷卻以引起腎之部分或完全去神經支配(方塊3 3 。 可在沿第一腎動脈或第一腎小口之圓周及/或長度之一或多 個位置中應用低溫冷卻一或多個循環(例如秒增量、 心増虿、90秒增量等)。在一個特定具體實例中,例如,可 使用兩個9G秒循環。在各種具體實例中,在冷卻循環之間 可路脹部件可保持完全或部分充氣以維持冷卻總成13 0在 目標部位處之位置。 在第一腎動脈處之腎神經調節之後,方法300可進一 ^包括將可膨脹部件放氣並使冷卻總成13〇收縮遞送狀 〜(方塊335 )。可藉由將低溫治療裝置12〇與控制台1〇2 23 201223577 分離並將注射器或其他適合抽空裝置連接於軸i22之近端 而將可膨脹部件手動放氣。在其他具體實例中可沿轴⑵ 之長度連接注射器而不分離低溫治療裝置i2〇與控制台 或可使可膨脹部件自動放氣(例如經由控制器11 8 )。 在某二具體實例中,可在可膨脹部件放氣後將冷卻總成 縮回引導導管中。視情況’在重新定位期間可自引導導管 移除冷卻總成130並暫時儲存在無菌位置中(例如鹽水溶 液中)。 接著可將冷卻總成13〇定位於第二腎動脈或第二腎小 口(方塊340 )中,且可使可膨脹部件膨脹以確認冷卻總成 130之位置(方塊345 )(>在所選具體實例中,可超過冷卻 總成130向遠端遞送造影材料,且可使用螢光鏡檢查及/或 其他適合成像技術來定位第二腎動脈。必要時,可重新填 充控制台102中的經使用之供應容器1〇4或將其移除並替 換為新供應容器(例如拋棄式致冷劑筒)以提供足夠致冷 劑以用於第二腎動脈或第二腎小口處之腎神經調節。在於 重新定位冷卻總成130期間將控制台1〇2與低溫治療裝置 120分離的具體實例中,控制台1〇2可重新連接於低溫治療 裝置120以使得藉由應用低溫冷卻從而在第二腎動脈或第 一腎小口處貫現腎神經s周郎(方塊3 5 0 )來繼續方法3 〇 〇。 在其他具體實例中,可修改、省略方法3〇〇中之各種 步驟及/或可添加其他步驟。舉例而言,可在進行低溫療法 之無菌區域外開啟控制台1 〇2且裝載供應容器丨〇4,並定位 於無菌囊袋或無菌外殼中以使得可將其帶入無菌區域中。 24 201223577 若在低溫療法期間必須重新裝載或重新填充供應容号 ⑽’則可自無菌區域移除控制台1〇2,重新裝載,並放回 無菌區域十(例如,於無菌囊袋或無菌外殼中)。在其他具 體實例中’可自控制台1〇2移除空供應容器1〇4,並寄存^ 圍繞控制纟102之無菌囊袋或無菌外殼内,且可在無菌囊 袋或無菌外殼内將新供應容器連接於控制台1〇2以使得控 制台102在治療期間不離開無菌區域。在其他具體實例中, 控制台102可保持在無菌區域外並在遠端操作。 圖4Α為根據本發明技術之另一具體實例組態之低溫治 療裝置420之遠端部分426的放大橫截面圖m療裝 置420包括大體上與上文參考圖i至圖把所述之低溫治療 裝置120之特徵相似的特徵。舉例而言,低溫治療裝置 包括細長軸!22、沿軸122之至少一部分延伸的供應内腔 132及排出内腔134,及處於軸1〇2之遠端部分處的冷 卻總成130。冷卻總成} 3〇包括可膨脹部件,諸如氣球 或其他適合可膨脹部件,其定義膨脹腔之至少一部分且經 由孔口 144接收呈至少實質上氣相的致冷劑1〇6。 在所說明之具體實例中,供應内腔132之遠端耦 接至氣球142之遠端部分452以為冷卻總成13〇提供額外 支撐及/或控制,且孔口丨44為沿供應内腔132之長度(例 如,而不是處於供應内腔132之遠端135或毛細管末端) 定位之開口。供應内腔132及氣球142之遠端部分452可 使用黏附劑(例如熱黏合劑)、扣件及/或此項.技術中已知的 其他適合連接機構連接在一起。在其他具體實例中,供應 25 201223577 内腔132可終止於膨脹腔處或終止於膨脹腔中,及/或低溫 治療裝置420可進一步包括自軸m延伸至至少氣球ι42 之遠端部分452的支撐部件(未圖示)。 如圖4A中所示,低溫治療裝置42〇可進一步包括處於 軋球142之近端部分處的連接器454,該連接器可連接 於轴122之遠端部分426之上且從而將氣球142輕接至軸 122。連接器454可由與可膨脹部分成一體的氣球之近 端部分(例如氣球142之頸部)來定義,如圖4A中所示, 或連接器454可為相對於氣球142獨立且不同之組件,諸 如套環或其他適合固定器。可使用熱黏合劑' 黏附劑、連 鎖表面(例如螺紋)、摩擦配合、搭扣配合、抽吸及/或其他 適。連接機構將連接器454連接於軸122之遠端部分, 或可使連接器454與遠端部分似形成為一體。 、土在所說明之具體實例中,連接器454位於鄰近轴122 卜刀426之第二區域12八之上之台階128處。如圖 截面尺寸不戈^端部分426之第一區域12〜可具有第一外橫 且=寸或直徑0Dl,且遠離台階128之第二區域咖可 直徑:二第:外橫截面尺寸0之第二外橫截面尺寸或 成 2通端分426之外部尺寸在台階128處的減少形 凹區,其"安置連接= 台階丨刀^之口']面。在某些具體實例中, 經設定尺寸以使得第—區域咖之 …上與連接器454之外表面457齊平。據此,第二 26 201223577 區域127b之外徑OR可等於第一區域127a之外徑OR減 去連接益454之厚度的兩倍。在其他具體實例中,第二區 域127b之外徑ODi可大於或小於連接器454之厚度的兩倍。 在所選具體實例中,當冷卻總成13〇移動至部署狀態 (例如,如圖4A中所示)時,連接器454不可膨脹以使得 其保持在凹區内及/或實質上與第一區域12〜之外表面 齊平。在其他具體實例中,連接器454可在冷卻總成13〇 移動至部署狀態時膨脹且增加橫截面面積。 在圖4A巾所示之具體實财,排出内腔之橫截面面積 (例如由軸122之内表面定義)在第一區域127&與第二區域 127b之間的過渡處亦降低,以使得軸122之遠端部分 在第一區域127a處具有第一内橫截面尺寸或直徑ι〇丨且在 第二區域127b處具有較小第二内橫截面尺寸或直徑1〇2。 為了避免可由經由頸縮之排出⑽134之不^排放所致之 膨脹腔中的壓力累積,第二區域mb可僅位於軸122之鄰 近膨脹腔之最遠端處,其中所排出之致冷劑117之密度最 高。舉例而言,第二區域127b可具有小於4cm(例如2cm、 1 cm等)t長度。所排出之致冷劑m亦在無過度限制的 情況下經由第二區域127b之較小内徑叫充分排放因為 第二區域127b沿軸122之縱向軸線之長度可能相對較短。 舉例而言’第二區域127b之長度可減至最小以充分適應連 接器454。據此’第二區域mb處之較小排出内腔134可 主要輸送高密度排出致冷劑m’且可在所排出之致冷劑 U7的密度降低時於第一區域U7a處將所排出之致冷劑ιΐ7 27 201223577 排入較大排出内腔134令,從而有助於經由第二區域i27b 之較小第二内徑適當地排放。 在操作時’向内凹入之第二區域12几可減少軸122之 遠端部分426之剖面及/或提供自軸122至連接器454之實 質上平滑過渡而不危害排出内腔134之排放特性。軸122 之低剖面遠端部分426亦可有助於軸122及外鞘^ 5〇之間 的自軸122之近端部分124 (圖丨)至遠端部分4%且在呈 遞送狀態(例如,如圖2Α中所示)之冷卻總成周圍的 流體性造影材料遞送以成像並定位(例如使用螢光鏡檢查) 血管結構中之目標。如圖4A中所示,例如,凹入之第二區 域127b在軸122之遠端部分似周圍提供一或多個通路或 通道C,該等通路或通道足夠大以向遠端遞送造影材料超過 冷卻總成130而不會被突起連接器或氣球阻斷。在某些具 體實例中,當相應第一區域127a及第二區域127b之第一外 徑OD,與第二外徑0〇2之差小於〇 〇1吋(〇 254 時, 可形成足夠詩造料料之通道c。在其他具體實例令,第 一區域l27a及第二區域n7b之外部尺寸OR與〇〇2之間 的差可較大或較小。當在腎神經調節期間使用時,可藉I 經由通道C向遠端遞送造影材料超過呈遞送狀態之冷^總 成130來定位第一腎動脈。第一腎動脈處之腎神經調節之 後,冷卻總成Π"自部署狀態縮回至遞送狀態,其中可 經由通道c向遠端遞送額外造影材料超過冷卻總成13〇以 定位第二腎動脈。 在其他具體實例中,車由122之遠端部分心不包㈣ 28 201223577 4 A中所不之逐步減小之排出内腔134,而是可具有實質上 均勻之k截面尺寸。該排出内腔可相對容易地適應引導線 内腔(例如,如圖2C至圖2E中所示),引導線可通過該引 導線内腔延伸以將冷卻總成13G ^位於血管V中之目標部 位τ處。在此具體實例中,在引導線已收縮後,可經由引 導線内腔向遠端遞送用於使目標部位(例如兩個腎動脈) 成像之造影材料。 圖4B為根據本發明技術之另一具體實例組態之低溫治 療裝置460之遠端部分456的放大橫截面圖。低溫治療裝 置460包括大體上與上文參考圖4a所述之低溫治療裝置 420之特徵相似的特徵。舉例而言,軸I】】之遠端部分A% 具有區別第一區域127a與較小第二區域i27b的台階128。 然而,在圖4B中所示之具體實例中,第二區域127b係由 自軸122突起之獨立管459定義。類似於圖4A中所示之軸 122之向内台階狀部分,管459減少第二區域12%處之排 出内腔134之橫截面面積。 如圖4B中所示,低溫治療裝置46〇可進一步包括將氣 球142連接於轴122之遠端部分456的近端連接器458。與 實夤上安置於由台階128所形成之凹區内的圖4八之連接器 456不同,圖4B中所示之近端連接器458在第二區域127b 之上L伸至第區域127a之外表面455上。藉由使近端連 接器456在第一區域12乃之上延伸,可獲得較大表面積以 用於將氣球142連接於軸122之遠端部分456。據此,可減 少第二區域127b之長度以有助於經由頸縮之排出内腔I”The state extends through a portion of the shaft 122. The proximal end of the 133a is distal to the distal portion 126. In other embodiments, the guidewire lumen 133a can be accessed at the axis. 201223577 Figure 3A illustrates the use of a system 100 to hypothermia the renal nerve. The hypothermia treatment device 120 provides access to the renal nerve plexus via an intravascular road scale P leading to the respective renal artery RA. As illustrated, a section of the proximal portion 124 of the axis i 22 is exposed outside the patient. By manipulating the proximal portion 124 of the shaft 122 from the intravascular path p, the caregiver can advance the shaft 122 by bending the intravascular path P (e.g., via the femoral or radial artery) and maneuvering the distal portion 126 distally (e.g. Use the actuator in handle 125). For example, the shaft 122 can further include one or more pull wires or other guides to guide the distal portion 126 through the vascular structure. Image guidance (e.g., ct, radiography, US OCT) or another suitable medical device or combination thereof may be used to assist the instructor in maneuvering. After the cooling applicator 140 is properly located in the renal artery RA or at the renal ostium, the console 102 can be used (Fig. n, and/or another member to expand or otherwise deploy until the applicator 140 Contacting the inner wall of the renal artery RA. The targeted application of the cooling force of the applicator 14 向 to the tissue is then applied to induce one or more desired neuromodulatory effects on the local area of the renal artery and adjacent areas of the renal plexus, which are located in the kidney The adventitia, adjacent to the adventitia of the renal artery, or adjacent to the adventitia of the renal artery. The purposeful application of the neuromodulatory effect may be neuromodulation along all or part of the renal plexus. The neuronal delta-segment effect is generally at least partially associated with the applicator i The temperature of the crucible, the contact of the applicator 140 with the blood wall, the residence time of the applicator 14 冷却 during cooling, and the number of cooling cycles (eg, one or more cooling cycles i separated by the warming period and blood passing through the blood vessel) The flow effect varies. The cooling effect may include a cold applicator such that the target nerve fiber temperature is below the desired threshold to reach 20 201223577 = low: change or cut. For example ' In the drug device 14, the cold portion of the refrigerant gas to about, to about: the gas in the drug device 140 is 7 mesh, and the body can have about _8 (TC to The temperature of about _4〇〇c. In the specific example of J =, the neuromodulation effect can be applied within 10 seconds of the application of the cold applicator 14Q (for example, 90 seconds, ^ A month small mouth) - In a specific example,: 1 second, 30 seconds, etc. occurs. In the cooling cycle, two = can include two separated by a warming period... In the case of a his body, the method can have multiple rises The above cooling cycle. The cooling helium ring may have the same continuous field or different performance time, such as about 1 sec to about % sec each. 升: hold: the continuation time may be sufficient to partially or completely thaw the cooling interface In some specific examples, the duration of the heating period may be about 5 seconds ^ about 9 seconds. The individual heating period between cooling cycles may last for the same amount of time: the same time. The cooling cycle can be predetermined and the temperature is raised. The duration of the loop is = in the algorithm, or the system can include use based on the balloon and / or gas: appearance Automatic control calculation of the feedback loop of pressure and/or temperature on the top ^ For example, the '(4) algorithm can be used to terminate the heating cycle and initiate cooling by based on the Lili and/or temperature measurements: when the cold material has been fully resolved Depending on the number and length of the cooling cycles, the self-deployment of the cooling assembly Η, for example, as shown in Figure 2Β) to the total assembly time of the cooling assembly to the delivery state (eg, as shown in Figure 2Α) Can be less than $ minutes (eg, less: 3 minutes). When treating two renal artery R Α, deploying a total of < 13 冷却 in the first renal artery ra to reposition in the second renal artery ra, The total program time for deploying and shrinking the cooling assembly 130 can be less than 2012 minutes 21 201223577 (eg 10 knives, 4 liters, 6 minutes, etc.). In some embodiments, the procedure can be reduced by positioning the applicator 140 around the full circumference of the renal artery RA (eg, along the same plane or laterally spaced parallel planes) and performing neuromodulation in a single application. time. In other embodiments, the applicator 14 can be applied to less than the renal artery RA < full circumference and/or in more than one application. Figure 3B is a block diagram illustrating a method 300 for cryomodulating renal nerves using another system described above with reference to Figures i through 3A or another suitable system in accordance with one embodiment of the present technology. Referring collectively to FIG. 3B, method 300 can include positioning a cooling assembly 130 in a delivery state (eg, as shown in FIG. 2A) in a renal artery or renal ostium within a blood vessel (block 305). The cryotherapy device 12A and/or portions thereof (e.g., cooling assembly 130) can be inserted into a guiding catheter (e.g., sheath 150 as shown in Figures 2A-2C) to facilitate intravascular delivery of the cooling assembly 130. In certain embodiments, for example, the cryotherapy device 120 can be configured to fit within an 8 Fr guiding catheter or smaller (e.g., 7 Fr, 6 Fr, etc.) guiding catheter to access a small peripheral blood vessel. As noted above, the OTW or RX guide wire can also be used to manipulate the shaft 122 and the cooling assembly 13 〇 and enhance control of the shaft 122 and the cooling assembly 丨3 。. The method 300 can further include connecting the cryotherapy device 12A to the console 102 (block 310), and partially or fully inflating the inflatable component (eg, balloon 142) of the cooling assembly 130 to determine if the cooling assembly 130 is at the target site. The correct position (blocks 3 1 5 and 320). The expandable member can be inflated via a supply lumen 132 from a second fluid supply reservoir (e.g., air) in fluid communication with the expandable member from 22201223577 from the supply container 4 at the console 102. If the cooling is not always at the desired location, at least some of the swellable members 325 can be released. In some embodiments, for example, cryotherapy device 12 can be disconnected. And using the syringe via (4) 2: The swellable component is completely deflated for manual deflation of the expandable component. In a specific example, the cryotherapy device can remain attached to the console and a syringe (eg, a cock syringe) can be attached along the length of the shaft 122 to deflate the expandable component. In other embodiments, the controller 102 can include a different method for partially or completely deflated the expandable member. In other embodiments, a radiopaque marker and/or a radiopaque marker can be used to position the cooling assembly 130 at the target site. The cooling assembly I30 is suitably positioned within the first renal artery or its small opening _ steerable console 102 to initiate cooling of the renal system at the cooling assembly 130 to cause partial or complete denervation of the kidney ( Block 3 3 . One or more cycles of cryogenic cooling (eg, second increment, palpitations, 90 seconds increment) may be applied in one or more locations along the circumference and/or length of the first renal artery or first renal orifice. A quantity, etc.) In one particular embodiment, for example, two 9G second cycles can be used. In various embodiments, the expandable component can remain fully or partially inflated between cooling cycles to maintain the cooling assembly 130 Position at the target site. After renal neuromodulation at the first renal artery, method 300 can further include deflation of the expandable member and contraction of the cooling assembly 13 (block 335). The cryotherapy device 12〇 is separated from the console 1〇2 23 201223577 and the syringe or other suitable evacuation device is attached to the proximal end of the shaft i22 to manually deflate the expandable member. In other embodiments, the length of the shaft (2) can be connected. syringe The cryotherapy device i2 is not separated from the console or the expandable member can be automatically deflated (eg, via the controller 11 8). In a second embodiment, the cooling assembly can be retracted after the expandable member is deflated In the catheter. Optionally, the cooling assembly 130 can be removed from the guiding catheter during the repositioning and temporarily stored in a sterile position (eg, in a saline solution). The cooling assembly 13 can then be positioned in the second renal artery or The second renal orifice (block 340), and the expandable member can be inflated to confirm the position of the cooling assembly 130 (block 345) (> In selected embodiments, the contrast material can be delivered distally beyond the cooling assembly 130 The second renal artery can be located using fluoroscopy and/or other suitable imaging techniques. If necessary, the used supply container 1〇4 in the console 102 can be refilled or removed and replaced with a new one. A container (eg, a disposable cryogen cartridge) is provided to provide sufficient cryogen for renal neuromodulation at the second renal artery or the second renal ostium. The console 1〇2 is placed during repositioning of the cooling assembly 130. low In a specific example of separation of the treatment device 120, the console 1〇2 can be reconnected to the cryotherapy device 120 such that the renal nerves are circumscribing at the second renal artery or the first renal orifice by applying cryogenic cooling (squares) 3 5 0 ) to continue the method 3 〇〇. In other embodiments, the various steps in the method 3 can be modified, omitted, and/or other steps can be added. For example, outside the sterile field for cryotherapy Open the console 1 〇 2 and load the supply container 丨〇 4 and position it in a sterile pouch or sterile housing so that it can be brought into the sterile area. 24 201223577 If the supply volume must be reloaded or refilled during cryotherapy No. (10)' can remove the console 1〇2 from the sterile area, reload, and return to the sterile area ten (eg, in a sterile pouch or sterile housing). In other embodiments, the empty supply container 1〇4 can be removed from the console 1〇2 and stored in a sterile pouch or sterile enclosure surrounding the control bowl 102 and can be refilled in a sterile pouch or sterile housing. The supply container is coupled to the console 1〇2 such that the console 102 does not leave the sterile field during treatment. In other embodiments, the console 102 can remain outside of the sterile field and operate remotely. 4A is an enlarged cross-sectional view of the distal end portion 426 of the cryotherapy device 420 configured in accordance with another embodiment of the present technology. The m treatment device 420 includes cryotherapy substantially as described above with reference to FIGS. Features of device 120 that are similar in features. For example, cryotherapy devices include elongated shafts! 22. A supply lumen 132 and a discharge lumen 134 extending along at least a portion of the shaft 122, and a cooling assembly 130 at a distal end portion of the shaft 1〇2. The cooling assembly 〇 〇 includes an expandable member, such as a balloon or other suitable expandable member that defines at least a portion of the expansion chamber and receives at least substantially vapor phase refrigerant 1 〇 6 via orifice 144. In the illustrated embodiment, the distal end of the supply lumen 132 is coupled to the distal end portion 452 of the balloon 142 to provide additional support and/or control for the cooling assembly 13A, and the orifice port 44 is along the supply lumen 132. The length of the opening (e.g., rather than at the distal end 135 of the supply lumen 132 or the end of the capillary) is positioned. The distal portion 452 of the supply lumen 132 and balloon 142 can be joined together using an adhesive (e.g., thermal adhesive), fasteners, and/or other suitable attachment mechanisms known in the art. In other embodiments, the supply 25 201223577 lumen 132 can terminate at or terminate in the inflation lumen, and/or the cryotherapy device 420 can further include support extending from the axis m to at least the distal portion 452 of the balloon ι 42 Parts (not shown). As shown in FIG. 4A, the cryotherapy device 42A can further include a connector 454 at a proximal end portion of the ball 142 that can be coupled over the distal portion 426 of the shaft 122 and thereby light the balloon 142 Connected to the shaft 122. The connector 454 can be defined by a proximal portion of the balloon integral with the expandable portion (e.g., the neck of the balloon 142), as shown in Figure 4A, or the connector 454 can be a separate and distinct component relative to the balloon 142. Such as a collar or other suitable holder. Use a thermal adhesive 'adhesive, interlocking surfaces (eg threads), friction fit, snap fit, suction and/or other suitable. The attachment mechanism connects the connector 454 to the distal end portion of the shaft 122 or the connector 454 can be formed integrally with the distal end portion. In the illustrated embodiment, the connector 454 is located adjacent the step 128 above the second region 12 of the shaft 122. The first region 12~ of the end portion 426 may have a first outer cross-section and = inch or diameter 0D1, and the second region away from the step 128 may have a diameter: two: outer cross-sectional dimension 0 The second outer cross-sectional dimension or the reduced outer dimension of the outer dimension of the 2-way end portion 426 at the step 128 is "placement connection = the step of the step file. In some embodiments, the dimensions are sized such that the first area is flush with the outer surface 457 of the connector 454. Accordingly, the outer diameter OR of the second 26 201223577 region 127b can be equal to twice the outer diameter OR of the first region 127a minus the thickness of the connection benefit 454. In other embodiments, the outer diameter ODi of the second region 127b can be greater or less than twice the thickness of the connector 454. In selected embodiments, when the cooling assembly 13〇 is moved to a deployed state (eg, as shown in FIG. 4A), the connector 454 is not expandable such that it remains within the recessed area and/or substantially The area 12 to the outer surface is flush. In other embodiments, the connector 454 can expand and increase the cross-sectional area as the cooling assembly 13〇 moves to the deployed state. In the specific real economy shown in FIG. 4A, the cross-sectional area of the discharge lumen (as defined, for example, by the inner surface of the shaft 122) is also reduced at the transition between the first region 127 & and the second region 127b to cause the shaft The distal portion of 122 has a first inner cross-sectional dimension or diameter ι at the first region 127a and a smaller second inner cross-sectional dimension or diameter 1 〇 2 at the second region 127b. In order to avoid pressure buildup in the expansion chamber that may be caused by the discharge of the necking (10) 134, the second region mb may be located only at the most distal end of the shaft 122 adjacent to the expansion chamber, wherein the discharged refrigerant 117 The highest density. For example, the second region 127b can have a length of less than 4 cm (eg, 2 cm, 1 cm, etc.). The discharged refrigerant m is also sufficiently discharged via the smaller inner diameter of the second region 127b without undue limitation because the length of the second region 127b along the longitudinal axis of the shaft 122 may be relatively short. For example, the length of the second region 127b can be minimized to adequately accommodate the connector 454. According to this, the smaller discharge inner chamber 134 at the second region mb can mainly transport the high-density discharge refrigerant m' and can be discharged at the first region U7a when the density of the discharged refrigerant U7 is lowered. The refrigerant ιΐ7 27 201223577 is discharged into the larger discharge inner chamber 134 to facilitate proper discharge through the smaller second inner diameter of the second region i27b. In operation, the second region 12 recessed inwardly reduces the profile of the distal portion 426 of the shaft 122 and/or provides a substantially smooth transition from the shaft 122 to the connector 454 without jeopardizing the discharge of the discharge lumen 134. characteristic. The low profile distal end portion 426 of the shaft 122 can also contribute to the delivery of the proximal portion 124 (Fig.) from the shaft 122 to the distal portion 4% between the shaft 122 and the outer sheath 5 The fluid contrast material surrounding the cooling assembly, as shown in FIG. 2A, is delivered to image and position (eg, using a fluoroscopy) a target in the vascular structure. As shown in FIG. 4A, for example, the recessed second region 127b provides one or more passages or channels C around the distal portion of the shaft 122 that are large enough to deliver contrast material to the distal end. The assembly 130 is cooled without being blocked by the protruding connectors or balloons. In some specific examples, when the difference between the first outer diameter OD of the corresponding first region 127a and the second region 127b and the second outer diameter 0〇2 is less than 〇〇1吋 (〇254, sufficient poetry can be formed The channel c of the material. In other specific examples, the difference between the outer dimensions OR of the first region l27a and the second region n7b may be larger or smaller. When used during renal neuromodulation, The first renal artery is positioned by delivering a contrast material over the channel C to the distal end of the delivery device. The renal artery is adjusted at the first renal artery, and the cooling assembly is retracted to the self-deployed state. a delivery state in which additional contrast material can be delivered distally via channel c over the cooling assembly 13A to locate the second renal artery. In other embodiments, the distal portion of the vehicle 122 is not included (4) 28 201223577 4 A Rather than gradually reducing the discharge lumen 134, it may have a substantially uniform k-sectional dimension. The discharge lumen may be relatively easily adapted to the guidewire lumen (eg, as shown in Figures 2C-2E) a guide wire extending through the guide wire lumen The cooling assembly 13G ^ is located at the target site τ in the blood vessel V. In this specific example, after the guide wire has contracted, it can be delivered distally via the guide wire lumen for the target site (eg, two renal arteries) An imaged contrast material. Figure 4B is an enlarged cross-sectional view of a distal portion 456 of a cryotherapy device 460 configured in accordance with another embodiment of the present technology. The cryotherapy device 460 includes substantially as described above with reference to Figure 4a. Features of the cryotherapy device 420 are similar. For example, the distal portion A% of the axis I] has a step 128 that distinguishes the first region 127a from the smaller second region i27b. However, as shown in Figure 4B In a specific example, the second region 127b is defined by a separate tube 459 that protrudes from the shaft 122. Similar to the inwardly stepped portion of the shaft 122 shown in Figure 4A, the tube 459 reduces the discharge at 12% of the second region. The cross-sectional area of the cavity 134. As shown in Figure 4B, the cryotherapy device 46 can further include a proximal connector 458 that connects the balloon 142 to the distal end portion 456 of the shaft 122. Concave area The connector 456 of Figure 4B differs in that the proximal connector 458 shown in Figure 4B extends over the second region 127b to the outer surface 455 of the first region 127a. By making the proximal connector 456 Extending over a region 12, a larger surface area is available for attaching the balloon 142 to the distal portion 456 of the shaft 122. Accordingly, the length of the second region 127b can be reduced to facilitate drainage through the neck. Cavity I"

29 201223577 (例如,如圖4A及圖4B中所示)適當地排放致冷劑ιΐ7。 在某些具體實射,近端連接器458不可膨脹以使得 其在部署狀態及遞送狀態下皆維持實質上較低之剖面與第 :區域127a之外表面455相抵。此可在近端連接㈠自 部署組態收縮至遞送組態時減少或防止近端連接器458牵 羊;卜鞘150上。在其他具體實例中,近端連接器458之 至少-部分可膨脹,但經組態以在冷卻總& 13〇呈遞送狀 ㈣維持遠端部分456之低剖面。據此,具有延伸近端連 接'458之低溫治療裝置46〇可提供實質上較低剖面以用 ;s内遞送冷卻總成! 3 〇於小周邊血管(例如腎動脈) 内之目標部位處,及/或可提供-或多個通道C,可經由該 4通道向遠%遞送流體性造影材料超過冷卻總成13 〇 ^ 二如圖4B中進一步展示,低溫治療裝置46〇亦包括固持 氣球142之遠端部分452的遠端連接器462及延伸通過氣 球142的在遞送狀態及部署狀態下皆支撐氣球142之支撐 P件433。遠端連接器462亦可連接於(例如藉由熱結合) 自其向遠端延伸之非創傷性尖端464或與之整體地形成。 非創傷性尖端—自遠端連接器術延伸約〇·5 c:成至5 Cm (例如約1 Cm至2 cm),且具有約0.010吋(0.254 _) 至”勺0.050吋(1 27 )之外徑。在一個具體實例中,例 如,非創傷性尖端464可具有約2 之長度及至少〇 〇35 叶(〇.889 mm ;例如0.03 8忖(0_965 mm))之外徑。在其 他具體實例中’非創傷性尖端464可具有其他適合長度及/ 或外徑。非創傷性尖端464可充當固定引導件以有助於通 30 201223577 ‘過血管結構。在若干具體實例中,可藉由延伸通過袖i22 ' =至/部分的控制線467 (例如拉線)來調整非創傷性尖 端464之角度及/或旋轉定向。使用者可操縱控制線以 •扭轉或以其他方式移動非創傷性尖端464,從而導引軸丄22 之遠端部分456到達目標部位τ。在其他具體實例中,非創 傷性尖端464可由延伸通過# 122且超過遠端連接器似 之引導、線(例如,圖2C令所示之引導、線mb)的遠端部分 定義。 •非創傷性尖端464可由實質上平滑且可撓之材料或結 構製成,以使侍其可在低溫治療裝置46〇通過血管結構時 輕輕接觸並偏轉離開血管壁,且因此避免對其所通過之企 管造成穿孔及/或其他外傷。舉例而言,非創傷性尖端⑽ 可由在核心或線(例如不錄鋼絲)上之可撓性線圈(例如 始線圈)製成。在各種具體實例中,線可經組態以自非創29 201223577 (for example, as shown in FIGS. 4A and 4B) the refrigerant ι 7 is appropriately discharged. In some specific implementations, the proximal connector 458 is non-expandable such that it maintains a substantially lower profile in both the deployed and delivery states against the outer surface 455 of the region 127a. This can reduce or prevent the proximal connector 458 from pulling on the proximal connection (1) when the deployment configuration is contracted to the delivery configuration; In other embodiments, the proximal connector 458 is at least partially swellable, but is configured to maintain a low profile of the distal portion 456 in a cooling total & Accordingly, a cryotherapy device 46 having an extended proximal end connection '458 can provide a substantially lower profile for delivery of the cooling assembly within s! 3 at a target site within a small peripheral blood vessel (eg, a renal artery), and/or may provide - or multiple channels C through which fluid imaging material may be delivered to a far greater % than the cooling assembly 13 〇 ^ 2 As further shown in FIG. 4B, the cryotherapy device 46A also includes a distal connector 462 that retains the distal portion 452 of the balloon 142 and a support P 433 that extends through the balloon 142 to support the balloon 142 in both the delivery state and the deployed state. . The distal connector 462 can also be coupled to or integrally formed with the non-invasive tip 464 extending distally therefrom (e.g., by thermal bonding). Non-traumatic tip—extends from the distal connector by approximately 〇·5 c: to 5 Cm (eg, approximately 1 cm to 2 cm) and has approximately 0.010 吋 (0.254 _) to “spoon 0.050 吋 (1 27 ) The outer diameter. In one embodiment, for example, the non-traumatic tip 464 can have a length of about 2 and an outer diameter of at least 〇〇35 leaves (〇.889 mm; for example, 0.03 8 忖 (0_965 mm)). In a particular example, the non-invasive tip 464 can have other suitable lengths and/or outer diameters. The non-traumatic tip 464 can act as a fixed guide to facilitate passage 30 201223577 'transvascular structure. In several specific examples, The angle and/or rotational orientation of the non-traumatic tip 464 is adjusted by a control line 467 (e.g., a pull wire) extending through the sleeve i22 ' = to / portion. The user can manipulate the control line to • twist or otherwise move the non-invasive The distal tip 464, thereby guiding the distal portion 456 of the ankle 22 to the target site τ. In other embodiments, the non-traumatic tip 464 can be guided through the #122 and beyond the distal connector to guide, line (eg, Figure 2C shows the distal end of the guide, line mb) • The non-traumatic tip 464 can be made of a material and structure that is substantially smooth and flexible so that it can be gently contacted and deflected away from the vessel wall as it passes through the vascular structure, and thus avoids The tube through which it passes causes perforations and/or other trauma. For example, the non-traumatic tip (10) can be made of a flexible coil (eg, a starting coil) on a core or wire (eg, without a wire). In the example, the line can be configured to be self-invasive

傷性尖端464之近總部公γA 而—刀469a至非創傷性尖端464之遠端 部分4 6 9 b逐漸呈梅形。與点丨 丄 、 牛例而吕’楔形線在近端部分469a 處大體上可為具有約0糊时(〇 127 mm)與Q 〇15时… mm;例如請9_(G.229 mm))之間的外徑的圓形,且可 向遠端部分機變平至約〇.〇〇卜寸(〇〇25_)與約〇〇〇5 忖(〇.127匪;例如0.003忖(〇 〇76rnm))之間的厚度。 在所選具體實例中,線在非創傷性尖端⑽距近端^产 的約/3 i /2内實質上平坦。在其他具體實例巾,非創傷性 穴端464可具有楔形或非楔形之大體上圓形橫截面。在若 干具體實例中,非創傷性尖端4M之至少一部分(例如包 31 201223577 繞在線周圍之線圏)可“及/或在使用㈣技術+ 6㈣ 成像技術時可有助於使低溫治療裝置⑽通過血管結構的 其他不透射線材料(例如鉑/銥合金)製成。在本技術之某 些態樣中,氣球142亦可在其近端及遠端部分包括不透射 線標記物及/或不透射線標記(例如用不透射線墨水製造) 以進-步有助於通過及部署。在其他具體實例中非創傷 性尖端464可由其他可偏轉且輕柔材料及結構製成,諸如 聚合物材料(例如Pebax®聚合物、耐綸等)、在金屬線(例 如不鏽鋼絲)之上之聚合物材料及/或其他適合材料。 在圖4B中所說明之具體實例中,非創傷性尖端_瘦 成型及7或以其他方式形成為彎曲或傾斜部分。當非創.傷性 尖端464係由可成型材料(例如不鏽鋼、鉑等)製成時, 非創傷性尖端464可被形成及/或重新形成為所要曲率。在 其他具體實例中’非創傷性尖端464可由非可成型材料預 先形成以使得其具有不可調整之設定曲線。非創傷性尖端 464中之曲線可進—步有助於通過血管結構。舉例而言,曲 線可有助於保持冷卻總成130在所要血管(例如腎動脈 内且避開其側分支。 低溫治療率吒中之壓力監視 圖5A為根據本發明技術之另一具體實 療系統5⑽之部分示意圖,且圖5B為圖5A之系統 遠端部分的放大橫截面圖。低溫治療系統5〇〇可包括大體 上與上文參考圖i至圖3B所述之低溫治療系統之特徵 相似的特徵。參考圖5A’舉例而言,低溫治療系統5〇" 32 201223577 包括低溫治療裝置52G及控制台5G2。控制台如可包括麵 接至經組態以向低溫治療裝£ 52G輪送致冷劑遍之供應 線510 %致冷劑供應容$ 5〇4及供應控制目則。控制台 5〇2亦可視情況包括輕接至經組態以接收來自低溫治療裝 置520之已蒸發致冷劑517之排出線515的泵511及/或背 壓控㈣513。控制n 518可操作地_至供應控制闊· 及/或背壓控制閥513以調節通過低溫治療裝置52G之致冷 劑流。在所說明之具體實例中,低溫治療裝置52()包括轴 522處於軸522之近端部分524之近端區域處的手柄、 及具有處於軸522之遠端部> 526之遠端區域處之冷卻總 成530的遠端部分526。 如圖5 A中進一步展示,控制台5〇2亦可包括耦接至壓 力線571之壓力轉導器或感測器570 (例如PX209-100G5V 壓力轉導器,由 〇mega Engineering 〇f Stamf〇rd,CT 製造) 以在低溫療法期間監視冷卻總成53〇之一部分(例如膨脹 腔)内的壓力。在各種具體實例中,壓力感測器57〇可耦 接至控制器5 1 8以充當控制供應控制閥5〇8及/或背壓控制 閥513之反饋機構,且從而響應於冷卻總成53〇處所感測 之壓力來調節流向冷卻總成53〇及/或來自冷卻總成53〇之 致冷劑流。舉例而言,壓力感測器57〇可經組態以指示壓 力间於預定臨限值(例如在膨脹腔之破裂壓力範圍内)。響 應於此,控制器518可藉由至少部分關閉供應控制閥5〇8 來減少或終止致冷劑流及/或藉由降低排出線515中之背壓 (例如使用真空泵5丨丨)來增加來自冷卻總成53〇之致冷劑 33 201223577 流。在其他具體實例中,壓力感測器570可直接耦接至供 應控制閥508及/或背壓控制闊513以響應於感測壓力而自 動調節閥508及5 1 3開啟及/或關閉。在若干具體實例中, 低溫治療系統500可經組態以驗證壓力感測器570在低溫 療法前.經適當校準。舉例而言,系統500可在系統5〇〇開 機時藉由比較壓力感測器57〇之壓力讀數與環境壓力來自 動檢查壓力感測器570之功能性。 現參考圖5B ’低溫治療裝置520之遠端區域可包括大 體上與上文參考圖2A至圖2E所述之低溫治療裝置12〇之 特徵相似的特徵。舉例而言,低溫治療裝置52〇包括耦接 至供應線510 (圖5A)之供應内腔132、耦接至排出線515 (圖5A)之排出内腔134,及包括氣球142或定義膨脹腔之 其他類型可膨脹部件的施藥器1 4 0。 如圖5B中所示,低溫治療裝置52〇可進一步包括經由 壓力線571 (圖5A)耦接至壓力感測器57〇 (圖5A)之壓 诚視内腔572。壓力監視内腔572可延伸通過軸522且具 有。知脹L (例如,由氣球142 $義)流體連通之遠端開 74 [力i視内腔572之尺寸(例如橫截面面積、内徑 :或外仏)可足夠大以便以實質準確度感測膨脹腔内之壓 力讀數,但足夠小以便減少或防止干擾致冷劑經由排出内 二 机出舉例而έ,供應内腔132與壓力監視内腔572 :起可具有第一橫截面尺寸(例如第-橫截面面積),且排 '内月:1 34可具有第二橫截面尺寸(例如第二橫截面面積) '吏侍第一杈截面尺寸與第一橫截面尺寸之比率為4:丄與 34 201223577 10.1之間。在某些具體實例中,壓力監視内腔572可具有 不超過0.03叶(〇.762 _;例如〇.〇15叶(〇381匪)、〇〇1〇 吋(0_762 mm)等)之内徑及不超過〇 〇6〇吋(i 52 mm ; 例如 0.02 吋(0.508 mm)、0·015 吋(〇 381 賴)等)之外 徑,且排出内腔134可據此定大小。在圖5B中所說明之具 體實例中,在外徑在遠端部分52〇之第二區域127b處頸縮 之前,壓力監視内腔572終止於軸522中。此組態可用於 軸522之内徑頸縮(例如,如圖4A及圖4B _所示)的具 體實例中以免限制較小第二區域127b處已膨脹致冷劑 之排放。在其他具體實例中,壓力監視内腔572之開口 574 可處於氣球542處或處於氣球542中。 壓力監視内腔572亦可具有足以在血管内將開口 574 以及冷卻總成530定位於目標部位τ處(例如,經由股動 脈或橈動脈定位於腎動脈或腎小口)之長度。舉例而言, 壓力監視内腔572可具有等於軸522之全長的長度(例如 至少48彳(122 cm))。在其他具體實例中,壓力監視内腔 572可具有其他不同的適合長度及/或尺寸。舉例而言,壓 力監視内腔572可具有第一長度,且與其連接之壓力線571 可具有第二長度(例如48吋(122 cm)、3〇吋(% cm)、 12吋(30 cm)等)以使壓力監視内腔572延伸至壓力感測 器570’從而允許在低溫治療處理期間使控制台5〇2位於所 要位置(例如於台上)。 在低溫治療處理期間,壓力監視内腔572及壓力感測 器570 (圖5A )可經組態以提供指示膨脹腔内之壓力變化The proximal tip of the traumatic tip 464 is gamma gamma gamma - and the distal end of the knife 469a to the non-traumatic tip 464 is gradually plum-shaped. With the point 丨丄, 牛 而 吕 吕 楔 ' wedge line at the proximal portion 469a can generally have about 0 paste (〇 127 mm) and Q 〇 15 when ... mm; for example, please 9_ (G.229 mm)) Between the outer diameter of the circle, and can be flattened to the distal part of the machine to about 〇〇. 〇〇 寸 (〇〇 25 _) and about 忖 5 忖 (〇. 127 匪; for example 0.003 忖 (〇〇 76rnm )) The thickness between. In selected embodiments, the line is substantially flat within about /3 i /2 of the non-traumatic tip (10) from the proximal end. In other specific embodiments, the non-invasive pocket end 464 can have a generally circular cross-section that is wedge-shaped or non-wedge. In several embodiments, at least a portion of the non-traumatic tip 4M (eg, package 31 201223577 around a line around the line) may "and/or may assist in passing the cryotherapy device (10) when using (4) technology + 6 (four) imaging techniques Other radiopaque materials of the vascular structure (eg, platinum/rhodium alloy) are made. In certain aspects of the present technology, balloon 142 may also include radiopaque markers and/or no at its proximal and distal portions. Transmission line markings (e.g., made with radiopaque ink) facilitate the passage and deployment. In other embodiments, the non-invasive tip 464 can be made of other deflectable and lightweight materials and structures, such as polymeric materials ( For example, Pebax® polymer, nylon, etc.), polymeric materials on metal wires (such as stainless steel wires), and/or other suitable materials. In the specific example illustrated in Figure 4B, non-invasive tips_lean forming And 7 or otherwise formed as a curved or slanted portion. When the non-invasive. damaging tip 464 is made of a moldable material (e.g., stainless steel, platinum, etc.), the non-invasive tip 464 can be formed and / or reformed to the desired curvature. In other embodiments, the non-invasive tip 464 can be pre-formed from a non-formable material such that it has an unadjustable set curve. The curve in the non-invasive tip 464 can be further assisted By passing through the vascular structure. For example, the curve can help maintain the cooling assembly 130 within the desired blood vessel (eg, within the renal artery and avoiding its side branches. Pressure monitoring in cryotherapy rates 图 Figure 5A is in accordance with the teachings of the present invention A partial schematic view of another specific treatment system 5 (10), and Figure 5B is an enlarged cross-sectional view of the distal portion of the system of Figure 5 A. The cryotherapeutic system 5 can include substantially as described above with reference to Figures i through 3B. Features similar to those of the cryotherapy system. Referring to Figure 5A', for example, the cryotherapy system 5 〇 " 32 201223577 includes a cryotherapy device 52G and a console 5G2. The console may include facets to be configured to cry to low temperatures. The treatment packs £52G of circulating refrigerant throughout the supply line with 510% refrigerant supply capacity of $5〇4 and supply control. The console 5〇2 can also be lightly connected to configured to receive From the pump 511 and/or the back pressure control (four) 513 of the discharge line 515 of the cryogenic treatment device 520 that has evaporated the refrigerant 517. The control n 518 is operable to the supply control and/or the back pressure control valve 513 to regulate the passage. The cryogen treatment device 52G refrigerant flow. In the illustrated embodiment, the cryotherapy device 52() includes a handle having a shaft 522 at a proximal end region of the proximal portion 524 of the shaft 522, and having a distal end at the shaft 522 The distal end portion 526 of the cooling assembly 530 at the distal end of the end > 526. As further shown in Figure 5A, the console 5〇2 can also include a pressure transducer or sense coupled to the pressure line 571. A detector 570 (e.g., a PX209-100G5V pressure transducer manufactured by 〇 mega Engineering 〇f Stamf〇rd, CT) monitors the pressure within one portion of the cooling assembly 53 (e.g., the expansion chamber) during cryotherapy. In various embodiments, the pressure sensor 57A can be coupled to the controller 51 to act as a feedback mechanism that controls the supply control valve 5〇8 and/or the back pressure control valve 513, and thus in response to the cooling assembly 53 The pressure sensed by the crucible is used to regulate the flow of refrigerant to the cooling assembly 53 〇 and/or from the cooling assembly 53 。. For example, pressure sensor 57A can be configured to indicate a pressure between predetermined thresholds (e.g., within the burst pressure range of the expansion chamber). In response thereto, the controller 518 can reduce or terminate the flow of refrigerant by at least partially closing the supply control valve 5〇8 and/or by reducing the back pressure in the discharge line 515 (eg, using a vacuum pump 5丨丨). From the cooling assembly 53 〇 refrigerant 33 201223577 flow. In other embodiments, the pressure sensor 570 can be directly coupled to the supply control valve 508 and/or the back pressure control 513 to automatically adjust the valves 508 and 513 to open and/or close in response to the sensed pressure. In several specific examples, cryogenic therapy system 500 can be configured to verify that pressure sensor 570 is properly calibrated prior to cryotherapy. For example, system 500 can automatically check the functionality of pressure sensor 570 by comparing the pressure readings of pressure sensor 57 with ambient pressure when system 5 is turned on. Referring now to Figure 5B, the distal end region of the cryotherapy device 520 can include features substantially similar to those of the cryotherapy device 12A described above with reference to Figures 2A-2E. For example, cryotherapy device 52A includes a supply lumen 132 coupled to supply line 510 (FIG. 5A), an ejection lumen 134 coupled to discharge line 515 (FIG. 5A), and a balloon 142 or defined expansion lumen. The applicator 1 400 of other types of expandable components. As shown in Figure 5B, the cryotherapy device 52A can further include a pressure-seeing lumen 572 coupled to the pressure sensor 57A (Figure 5A) via a pressure line 571 (Figure 5A). Pressure monitoring lumen 572 can extend through shaft 522 and have. The swell L (eg, by the balloon 142 $) is fluidly connected to the distal end 74 [force i depending on the size of the lumen 572 (eg, cross-sectional area, inner diameter: or outer diameter) may be large enough to provide substantial accuracy The pressure readings in the expansion chamber are measured, but small enough to reduce or prevent interference with the refrigerant via the discharge, and the supply lumen 132 and the pressure monitoring lumen 572 can have a first cross-sectional dimension (eg, First-cross-sectional area), and row 'inner month: 1 34 may have a second cross-sectional dimension (eg, second cross-sectional area) 'The ratio of the first cross-sectional dimension to the first cross-sectional dimension is 4: Between 34 201223577 10.1. In some embodiments, the pressure monitoring lumen 572 can have an inner diameter of no more than 0.03 leaves (〇.762 _; such as 〇.〇15 leaves (〇381匪), 〇〇1〇吋 (0_762 mm), etc.) And not exceeding the outer diameter of 〇〇6〇吋 (i 52 mm; for example, 0.02 吋 (0.508 mm), 0·015 吋 (〇381 赖), etc.), and the discharge lumen 134 can be sized accordingly. In the particular example illustrated in Figure 5B, the pressure monitoring lumen 572 terminates in the shaft 522 before the outer diameter is necked at the second region 127b of the distal portion 52A. This configuration can be used in a specific example of the inner diameter necking of the shaft 522 (e.g., as shown in Figures 4A and 4B) to avoid limiting the discharge of the expanded refrigerant at the smaller second region 127b. In other embodiments, the opening 574 of the pressure monitoring lumen 572 can be at or in the balloon 542. The pressure monitoring lumen 572 can also have a length sufficient to position the opening 574 and the cooling assembly 530 within the vessel at the target site τ (e.g., via the femoral artery or radial artery at the renal artery or renal orifice). For example, the pressure monitoring lumen 572 can have a length equal to the full length of the shaft 522 (e.g., at least 48 彳 (122 cm)). In other embodiments, the pressure monitoring lumen 572 can have other different suitable lengths and/or sizes. For example, the pressure monitoring lumen 572 can have a first length and the pressure line 571 connected thereto can have a second length (eg, 48 吋 (122 cm), 3 〇吋 (% cm), 12 吋 (30 cm) Etc.) to extend the pressure monitoring lumen 572 to the pressure sensor 570' to allow the console 5〇2 to be in a desired position (eg, on a table) during the cryotherapy treatment. During the cryotherapy treatment, pressure monitoring lumen 572 and pressure sensor 570 (Fig. 5A) can be configured to provide pressure changes indicative of expansion within the chamber

35 201223577 的信號。舉例而言’壓力感測器57〇彳經組態以指示臨限 壓力低於氣球142之破裂壓力以降低氣球142在低溫療法 期間破裂的可能性。氣$ 142可具有至少部分視氣球142 之製造材料而定的破裂壓力。舉例而言,與可具有3〇〇 或更高破裂壓力之非順應性材料(例如耐綸)相比,順應 性材料(例如聚胺基甲酸酯)典型地具有較低破裂壓力(例 如80 psi、1〇〇 psl、200 psi等)。壓力感測器可經組態 以監視臨限壓力,其可等於提供適當反應時間以在氣球M2 破裂前對壓力變化作出反應的低於破裂壓力的壓力值。在 …他具體貫例中,壓力感測器57〇可經組態以當氣球】42 在其所要操作壓力範圍(例如20至6〇 psi)外操作時做出 指示。 膨脹腔處之壓力監視内腔572之開口 574處之壓力與 壓力感測器570處之壓力讀數之間的時間延遲可視壓力監 視内腔572之體積而定。因而,壓力監視内腔572可具有 具有足以適當響應膨脹腔中之壓力變化(例如在氣球142 破裂之前)之反應時間的體積。在某些具體實例中,舉例 而言,壓力感測器570具有少於1>5秒之反應時間,諸如少 於1秒、0.2秒、0.丨秒或15毫秒之反應時間。為了增強壓 力讀數之準確性且減少壓力感測器57〇之反應時間,可縮 紐壓力監視内腔572之長度且可減少在連接於壓力感測器 570之前壓力監視内腔572之顯著體積增加。舉例而言,壓 力監視内腔572可在軸522之近端部分524 (圖5A )處(例 如在手柄525處)耦接至壓力線571,且壓力線571可具有 36 201223577 ' 與壓力監視内腔572相似之橫截面面積。在其他具體實例 ‘ 中’壓力監視内腔572可在手柄525處耦接至壓力感測器 570 (例如,省略壓力線57丨)以縮短壓力管至壓力感測器 5 7〇之總長’且電線可耦接至壓力感測器570以向控制台 502載運信號。 一起參考圖5A及圖5B,在某些具體實例中,壓力線 5 7 1及/或壓力監視内腔5 7 2可使用接頭或配接器5 7 6 (例如 快速連接配接器)麵接至壓力感測器57〇。在圖5 A中所說 明之具體實例中’舉例而言’配接器576包括流體連接壓 力線571與壓力感測器570之内部儲集器或通道578。通道 578可具有實質上較小體積以免破壞壓力線571至壓力感測 器5 7 0之壓力差並增強壓力量測準確性。舉例而言,在一 個具體實例中,通道578具有不超過〇1立方公分之内體 積。在其他具體實例中,通道578可具有較大内體積。在 其他具體實例中,配接器576可在手柄525或鄰近軸522 之近端部分524的其他位置處耦接壓力監視内腔572與壓 力線571。因此,配接器576允許壓力監視内腔572及/或 壓力線571在低溫治療處理後自壓力轉導器57〇分離,以 使得可拋棄壓力監視内腔572且可儲存壓力轉導器5 70(例 如與手柄525及/或控制台502 一起)以用於隨後的低溫療 法處理而不破壞壓力感測器57〇處之壓力讀數準確性。 再參考圖5B,在各種其他具體實例中,低溫治療裝置 520可進一步包括耦接至供應容器5〇4 (圖5A)或其他氣體 供應儲集器之其他氣體供應内腔579以向膨脹腔遞送其他 37 201223577 氣體且從而調節施藥器140之溫度。舉例而言,氣體供應 内腔579可在經由孔口 144遞送致冷劑5〇6之前或在:: 間向氣球142中遞送致冷劑5〇6 (例如氧化亞氮)及/或其 他加壓或不加壓氣體(例如空氣)以增加氣球M2内之壓 力(例如自約5 p s i至約6 0 ό Π。名ϊ+- ! «β , ρ 1玍n 5UPS1)。軋球142中之其他氣體降 低膨脹腔中之致冷劑5G6之壓降,且從而增加氣球142内 之溫度。因而,氣體供應内腔579可用於起始、限制及/或 暫止其他氣體流入膨脹腔(例如使用閥)並調節氣球 之溫度而不需控制台502中之複雜組件(例如壓力調節器、 子冷卻器等)來改變氣$ 142内之壓降。此外,當氣體供 應内腔579耗接至獨立的氣體儲集器(例如空氣供應器) 時,氣體供應内腔579可用於在向氣冑142中遞送致冷劑 506之前向氣⑽中遞送氣體以監視施藥@ 14〇在目標部 位T處之位置。 在其他具體實例中’可向排出内腔134添加壓力調節 器(未圖示;例如減壓閥)以捕集已蒸發致冷劑517使之 不退出氣ί求142及/或將其捕集於排出内腔13”直至氣 球142内之壓力處於預定值(例如,如使用壓力監視内腔 572所感測)。在其他具體實例中,低溫治療裝置52〇之排 出内腔134及氣體供應内腔579均可包括壓力調節器,使 得可在低溫治療處理期間調節氣球142内之壓力。 j艮溫台座系絲中夕箱冷卻 在低溫腎神經調節中,可限制可用於冷卻之致冷劑體 積。據此,其可用於增加致冷劑之冷卻能力。在致冷劑於 38 201223577 冷卻總成中膨脹之前預冷卻致冷劑為可增加致冷劑之冷卻 月&力之方法的一個實例。即使當主要經由相變進行冷卻 時’在相變前使用較冷的致冷劑亦可增加冷卻量。此外, 若供應管與排出管熱連通,則降低供應管中之致冷劑溫度 可冷卻排出管中所排出之致冷劑’由此可降低相關冷卻總 成中之背壓且從而進一步增大相關冷卻總成處之冷卻。預 冷卻可減少低溫腎神經調節所需之致冷劑體積,由此可允 許在a管結構内使用更小且更具可撓性之軸。預冷卻亦可 減輕與低溫治療系統之其他組件(諸如施藥器内之絕熱部 件及在操作期間釋放熱的直列式電磁閥(in-line s〇lenoid valve ))相關的冷卻能力降低β 典型地在室溫下自血管結構外供應(例如,自室溫真 空瓶)低溫腎神經調節十所使用之加壓致冷劑。在加壓致 冷劑沿供應管在血管結構内移行時,其溫度可經由與溫暖 血液及組織之熱傳遞而增加。舉例而言,當在室溫(例如 約23 C )下供應之加壓致冷劑穿過處於體溫(例如約37。〇 ) 下之血管結構時,加壓致冷劑在到達冷卻總成前溫度可增 約2 5 C至3 7 C。根據本發明技術之若干具體實例組態之 低狐療裝置可包括經組態以在加壓致冷劑於相關冷卻總 成中膨脹之前冷卻加壓致冷劑的預冷卻總成。舉例而言, 加壓致冷劑可經冷卻以在於相關冷卻總成中膨脹之前具有 低於體溫之溫度(例如低於約2〇〇c或低於約1〇。〇該等預 冷部總成可經組態以處於血管結構外及/或利用與相關冷卻 總成相同之致冷劑供應器。在根據本發明技術組態之若干 39 201223577 具體實例中’預冷卻可用於維持致冷劑呈液體形式直至其 到達需要低溫冷卻之冷卻總成。舉例而言,可減少與致冷 劑穿過低溫治療裝置之鄰近冷卻總成之部分時之升溫相關 的蒸發。在此部分中,術語「近端」及「遠端」可參考相 對於加壓致冷劑源之位置。舉例而言,近端可指更接近加 展致冷劑源之位置’而遠端可指更遠離加壓致冷劑源之位 置。 圖6A至圖6B說明低溫治療裝置6〇〇之一部分,其包 括預冷卻總成602、定義排出通道之細長軸6〇4,及該預冷 卻總成與該軸之間的枢紐606。預冷卻總成602包括在樞紐 606與經組態以連接於加壓致冷劑源(未圖示)之配接器 610之間延伸的可撓管形部件6〇8。樞紐6〇6可包括連接於 軸604之主要連接器612、向氛圍排放之排出口 614、連接 於官形部件608之第一分支616,及連接於控制線導管62〇 之第二分支618。在若干具體實例中,樞紐6〇6可包括一或 多個額外分支,諸如包括與近端注射器配接器(例如包括 經組態以用注射器之針刺穿之膜片的近端注射器配接器35 201223577 Signal. For example, the 'pressure sensor 57' is configured to indicate that the threshold pressure is below the burst pressure of the balloon 142 to reduce the likelihood of the balloon 142 breaking during cryotherapy. The gas $ 142 may have a burst pressure that depends at least in part on the material of manufacture of the balloon 142. For example, a compliant material (eg, a polyurethane) typically has a lower burst pressure (eg, 80) than a non-compliant material (eg, nylon) that can have a burst pressure of 3 Torr or higher. Psi, 1 〇〇 psl, 200 psi, etc.). The pressure sensor can be configured to monitor the threshold pressure, which can be equal to a pressure value below the burst pressure that provides an appropriate reaction time to react to pressure changes before the balloon M2 ruptures. In his specific example, the pressure sensor 57A can be configured to indicate when the balloon 42 is operating outside of its desired operating pressure range (e.g., 20 to 6 psi). The time delay between the pressure at the opening 574 of the pressure monitoring lumen 572 at the inflation chamber and the pressure reading at the pressure sensor 570 may depend on the volume of the pressure monitoring lumen 572. Thus, the pressure monitoring lumen 572 can have a volume having a reaction time sufficient to properly respond to pressure changes in the expansion chamber (e.g., prior to balloon 142 rupture). In some embodiments, for example, pressure sensor 570 has a reaction time of less than 1 > 5 seconds, such as a reaction time of less than 1 second, 0.2 seconds, 0.1 seconds, or 15 milliseconds. To enhance the accuracy of the pressure readings and reduce the reaction time of the pressure sensor 57, the retractable pressure monitors the length of the lumen 572 and can reduce the significant volume increase of the pressure monitoring lumen 572 prior to connection to the pressure sensor 570. . For example, the pressure monitoring lumen 572 can be coupled to the pressure line 571 at the proximal portion 524 (FIG. 5A) of the shaft 522 (eg, at the handle 525), and the pressure line 571 can have 36 201223577 'with pressure monitoring Cavity 572 has a similar cross-sectional area. In other specific examples, the 'pressure monitoring lumen 572 can be coupled to the pressure sensor 570 at the handle 525 (eg, omitting the pressure line 57A) to shorten the total length of the pressure tube to the pressure sensor 57. The wires can be coupled to pressure sensor 570 to carry signals to console 502. Referring to Figures 5A and 5B together, in some embodiments, the pressure line 517 and/or the pressure monitoring lumen 572 can be joined using a joint or adapter 576 (e.g., a quick connect adapter). To the pressure sensor 57〇. In the specific example illustrated in Figure 5A, the 'example' adapter 576 includes a fluid connection pressure line 571 and an internal reservoir or channel 578 of the pressure sensor 570. Channel 578 can have a substantially smaller volume to avoid breaking the pressure differential between pressure line 571 and pressure sensor 507 and enhance pressure measurement accuracy. For example, in one embodiment, channel 578 has a volume of no more than 立方1 cubic centimeter. In other embodiments, channel 578 can have a larger internal volume. In other embodiments, the adapter 576 can couple the pressure monitoring lumen 572 with the pressure line 571 at the handle 525 or other location adjacent the proximal portion 524 of the shaft 522. Thus, the adapter 576 allows the pressure monitoring lumen 572 and/or the pressure line 571 to separate from the pressure transducer 57 after the cryotherapy treatment so that the pressure monitoring lumen 572 can be discarded and the pressure transducer 5 70 can be stored. (eg, with handle 525 and/or console 502) for subsequent cryotherapy treatment without damaging the pressure reading accuracy at pressure sensor 57. Referring again to FIG. 5B, in various other embodiments, the cryotherapy device 520 can further include other gas supply lumens 579 coupled to the supply container 5〇4 (FIG. 5A) or other gas supply reservoirs for delivery to the inflation lumen. The other 37 201223577 gas and thus the temperature of the applicator 140. For example, the gas supply lumen 579 can deliver a refrigerant 5〇6 (eg, nitrous oxide) and/or other additions to the balloon 142 prior to delivery of the refrigerant 5〇6 via the orifice 144. Pressurize or not pressurize the gas (such as air) to increase the pressure inside the balloon M2 (for example, from about 5 psi to about 60 ό Π. ϊ+- ! «β , ρ 1玍n 5UPS1). Other gases in the ball 142 reduce the pressure drop of the refrigerant 5G6 in the expansion chamber and thereby increase the temperature within the balloon 142. Thus, the gas supply lumen 579 can be used to initiate, restrict, and/or suspend other gases from flowing into the expansion chamber (eg, using a valve) and adjust the temperature of the balloon without the need for complex components in the console 502 (eg, pressure regulators, sub- Cooler, etc.) to change the pressure drop within the gas $142. Moreover, when the gas supply lumen 579 is consuming to a separate gas reservoir (e.g., an air supply), the gas supply lumen 579 can be used to deliver gas to the gas (10) prior to delivery of the refrigerant 506 to the gas cartridge 142. To monitor the position of the application @14〇 at the target site T. In other embodiments, a pressure regulator (not shown; such as a pressure relief valve) may be added to the discharge lumen 134 to capture the vaporized refrigerant 517 so that it does not exit the gas and/or capture it. The pressure in the lumen 13" is exhausted until the balloon 142 is at a predetermined value (e.g., as sensed using the pressure monitoring lumen 572). In other embodiments, the cryotherapy device 52 is configured to evacuate the lumen 134 and the gas supply lumen. Each of the 579 can include a pressure regulator such that the pressure within the balloon 142 can be adjusted during the hypothermia treatment process. j艮 The temperature in the warm pedestal is reduced in the cryo-renal neuromodulation to limit the volume of refrigerant available for cooling. Accordingly, it can be used to increase the cooling capacity of the refrigerant. Pre-cooling the refrigerant before the refrigerant expands in the cooling system at 38 201223577 is an example of a method of increasing the cooling month & force of the refrigerant. Even when cooling mainly via phase change, 'cooling the refrigerant before the phase change can increase the cooling amount. In addition, if the supply pipe is in thermal communication with the discharge pipe, the temperature of the refrigerant in the supply pipe can be lowered to cool. The refrigerant discharged from the discharge pipe' can thereby reduce the back pressure in the associated cooling assembly and thereby further increase the cooling at the associated cooling assembly. Pre-cooling can reduce the volume of refrigerant required for low-temperature renal neuromodulation This allows for the use of smaller and more flexible shafts within the a-tube structure. Pre-cooling also mitigates other components of the cryotherapy system, such as insulating components in the applicator and releasing heat during operation. In-line s〇lenoid valve) associated cooling capacity reduction β is typically supplied from outside the vascular structure at room temperature (eg, from a room temperature vacuum bottle). Coolant. When pressurized refrigerant moves along the supply tube within the vascular structure, its temperature can be increased by heat transfer to warm blood and tissue. For example, when supplied at room temperature (eg, about 23 C) When the pressurized refrigerant passes through the vascular structure under body temperature (for example, about 37 〇), the temperature of the pressurized refrigerant can be increased by about 25 C to 37 C before reaching the cooling assembly. According to the present technology Several specific example configurations The low fox treatment device can include a pre-cooling assembly configured to cool the pressurized refrigerant prior to expansion of the pressurized refrigerant in the associated cooling assembly. For example, the pressurized refrigerant can be cooled to The associated cooling assembly has a temperature below body temperature prior to expansion (eg, less than about 2 〇〇c or less than about 1 〇. 〇 The pre-cooling assemblies can be configured to be outside the vascular structure and/or utilized The refrigerant supply is the same as the associated cooling assembly. In the specific example of 39 201223577 configured in accordance with the teachings of the present invention, 'pre-cooling can be used to maintain the refrigerant in liquid form until it reaches a cooling assembly that requires cryogenic cooling. For example, evaporation associated with temperature rise as the cryogen passes through portions of the cryotherapy device adjacent the cooling assembly can be reduced. In this section, the terms "proximal" and "distal" refer to the position relative to the source of pressurized refrigerant. For example, the proximal end may refer to a location closer to the source of the refrigerant and the distal end may refer to a location further away from the source of pressurized refrigerant. Figures 6A-6B illustrate a portion of a cryotherapy device 6 that includes a pre-cooling assembly 602, an elongated shaft 6〇4 defining a discharge passage, and a hub 606 between the pre-cooling assembly and the shaft. The pre-cooling assembly 602 includes a flexible tubular member 6〇8 extending between the hub 606 and an adapter 610 configured to connect to a source of pressurized refrigerant (not shown). The hub 6 6 may include a primary connector 612 coupled to the shaft 604, a discharge port 614 for venting to the atmosphere, a first branch 616 coupled to the squaring member 608, and a second branch 618 coupled to the control conduit 62A. In several embodiments, the hub 6〇6 can include one or more additional branches, such as including a proximal syringe adapter (eg, including a proximal syringe configured to pierce the septum with a needle of a syringe) Device

填充内腔中引入填充材料。 ,驭向血管結構内的冷卻總成之 下文更詳細地論述填充材料。 參考圖6A至圖6B,兩條控制線621 (圖6b)可自控 制線導管620延伸’通過樞紐& 紐606可定義自軸6〇4經由排出 直主要排出流動路徑。 。管形部件608 606且延伸至軸604中。樞 出口 614至氛圍之大體上筆 卜608包括處於配接器610 40 201223577 處之管形近端部分622及處於第一分支616處之管形遠端 部分624。如圖6B _最明確展示,管形近端部分622可包 括第一插塞626及第二插塞628,且配接器610可包括鄰近 第二插塞628之開口 630。配接器610可包括多種適用於連 接於加壓致冷劑源之結構,諸如螺紋接頭、壓合接頭或倒 鉤接頭。 在圖6B中所示之具體實例中,裝 供應内腔之主要供應管632,且預冷卻總成602包括定義預 冷卻供應内腔之預冷卻供應管634。主要供應管632及預冷 卻供應管634可分別在第二插塞628處包括主要供應近端 開口 636及預冷卻供應近端開口 638。主要供應近端開口 630及預冷卻供應近端開口 638分別將主要供應管632及預 冷卻供應管634流體連接於開口 630所定義之通道。主要 供應管632及預冷卻供應管634自第二插塞628延伸通過 管形近端部分622及第一插塞626。管形遠端部分624定義 自第一插塞626延伸至主要排出流動路徑之預冷卻膨脹 腔。預冷卻供應管634延伸稍微超過第一插塞626且終止 於預冷部%脹腔内之預冷卻遠端開n 64Q冑。預冷卻膨服 腔據此經由預冷卻供應@ 634與致冷劑流流體連接,以使 得預冷卻排出流動路徑自預冷卻遠端開口 64〇延伸至主要 排出流動路徑。主要供應管632延伸通過預冷卻膨脹腔、 通過樞紐606且延伸至軸6〇4由 釉604中。自主要供應近端開口 636 延伸至軸的主要供應管632 之σ卩分為主要供應管632之第 一部分。主要供應管632之笛·~Αιτ、 之第—部分(未圖示)鄰近經組A filler material is introduced into the filling cavity. The filling material is discussed in more detail below with respect to the cooling assembly within the vascular structure. Referring to Figures 6A-6B, two control lines 621 (Figure 6b) can be self-controlled to guide the conduit 620. 'Bridge& 606 can be defined as a main discharge flow path from the shaft 6〇4 via discharge. . The tubular member 608 606 extends into the shaft 604. The general exit 614 to ambient 608 includes a tubular proximal portion 622 at the adapter 610 40 201223577 and a tubular distal portion 624 at the first branch 616. As best shown in FIG. 6B, the tubular proximal portion 622 can include a first plug 626 and a second plug 628, and the adapter 610 can include an opening 630 adjacent the second plug 628. Adapter 610 can include a variety of structures suitable for connection to a source of pressurized refrigerant, such as a threaded joint, a compression joint, or a barbed joint. In the particular example shown in Figure 6B, the main supply tube 632 is supplied to the inner chamber, and the pre-cooling assembly 602 includes a pre-cooling supply tube 634 defining a pre-cooling supply chamber. The primary supply tube 632 and the pre-cooling supply tube 634 can include a primary supply proximal opening 636 and a pre-cooling supply proximal opening 638 at the second plug 628, respectively. The primary supply proximal opening 630 and the pre-cooling supply proximal opening 638 fluidly connect the primary supply tube 632 and the pre-cooling supply tube 634 to the passage defined by the opening 630, respectively. Main supply tube 632 and pre-cooling supply tube 634 extend from second plug 628 through tubular proximal portion 622 and first plug 626. The tubular distal portion 624 defines a pre-cooling expansion chamber that extends from the first plug 626 to the primary exhaust flow path. The pre-cooling supply tube 634 extends a pre-cooling distal opening n 64Q that extends slightly beyond the first plug 626 and terminates in the inflation chamber. The pre-cooling expansion chamber is thereby fluidly coupled to the refrigerant stream via pre-cooling supply @634 such that the pre-cooling discharge flow path extends from the pre-cooling distal opening 64〇 to the primary exhaust flow path. The main supply tube 632 extends through the pre-cooling expansion chamber, through the hub 606 and extends into the shaft 〇4 from the glaze 604. The σ of the main supply pipe 632 extending from the main supply proximal opening 636 to the shaft is divided into the first portion of the main supply pipe 632. The main supply pipe 632 flute ·~Αιτ, the first part (not shown) adjacent to the group

41 201223577 態而處於血管結構内之冷卻總成(未圖示)。 加壓致冷劑自預冷卻供應管6 3 4膨脹至預冷卻膨脹腔 中可冷卻預冷卻膨脹腔且從而冷卻主要供應管632及主要 供應管内之液體致冷劑。若遠離血管結構之進入點進行預 冷卻(例如,若在將加壓致冷劑輸送至血管結構之進入點 之前於控制台中加以冷卻),則來自氛圍之熱可導致經預冷 卻之加壓致冷劑不合需要地升溫。將預冷卻膨脹腔定位於 鄰近樞紐處可減少該種不合需要之升溫。根據本發明技術 之若干具體實例組態之預冷卻總成可具有足以允許預冷卻 膨脹腔内之膨脹致冷劑與預冷卻膨脹腔内之主要供應管之 —部分内的加壓致冷劑之間發生熱傳遞的長度。舉例而 言’根據本發明技術之若干具體實例組態之預冷卻腔可具 有大於,力l〇cm之長度’諸如大於約15crn或大於約25cm。 根據本發明技術之若干具體實例組態之預冷卻腔具有約20 cm至約30 cm之長度。 在冷部主要供應管632後,來自預冷卻膨脹腔之致冷 J可匯s來自排出通道之致冷劑流並排放出排出口 6 14進 入氛圍。圖6B展示指示致冷劑通過排出口 614之流動方向 的第箭碩642及指示致冷劑通過預冷卻膨脹腔之流動方 向的第一前頭640致冷劑通過排出口 614之流動方向大體 二排出通道對準。相對照地,致冷劑通過預冷卻膨服腔 之机動方向與排出通道或致冷劑通過排出π 614之流動方 向不對準。 别乃 "兒明與® 6A至圖6B之低溫治療裝置_相似的 42 201223577 • 低溫治療裝置700之一部分,不同在於裝置700具有與排 出通道流體分離之預冷卻膨脹腔。舉例而言,低溫治療裝 置700包括預冷卻總成7〇2 ’該預冷卻總成7〇2包括閥7〇4 及使預冷卻膨脹腔與軸604及樞紐606之内部部分流體分 綠的第二插塞706。主要供應管632延伸通過第三插塞706 且延伸至軸604中。 箭頭708指示當閥704打開時致冷劑通過預冷卻膨脹 腔之流動方向。當閥7〇4關閉時,預冷卻膨脹腔内之壓力 可増加直至其與預冷卻供應管634平衡,從而使通過預冷 部供應管之流動停止。以此方式,打開及關閉閥7〇4可開 啟或關閉預冷卻。部分打開閥7〇4可調節預冷卻膨脹腔内 之壓力且從而調節通過預冷卻供應管634之致冷劑流及相 關預冷卻溫度。舉例而言,可將致動器710可操作地連接 於閥7〇4且經組態以接收來自處理器712之信號。處理器 712^可經組態以接收來自使用者介面了“及/或感測器 號以心引致動器7 1 〇完全或增量地打開或關閉閥。舉 二而言,感測1 716可為相關冷卻總成之溫度感測器。在 偭個具體貫例中’溫度感測器可向處理器712發送信號以 _冷卻總成或鄰近冷卻總成之組織的所偵測溫度高 ::要值’則打開物並增加預冷卻;或⑴若冷卻總 :鄰近冷部總成之組織的所偵測溫度低於所要值 閉閥704並減少預冷卻。 至圖8B說明根據本發明技術之另—具體實例組 …之具有預冷卻器802之低溫治療裝置的一部分。接 43 201223577 達管形部件608之内部部分以形成預冷卻總成6〇2之第一 插塞626 (圖6A至圖6B )可具有挑戰性。預冷卻器8〇2可 包括連接於主要供應管之分流器來替代第一插塞626及預 冷卻供應管634 (圖⑸)。舉例而言,預冷卻器8〇2可包括 連接於主要供應管806之分流器8〇4及具有容器近端部分 810及容器遠端部分812之容器8〇8。在此具體實例中分 流器804將容器8〇2分成容器近端部分81〇及容器遠端部 分812。容器近端部分81〇定義介於開口 63〇與分流器8〇4 之間的近端腔或組合供應内腔,且容器遠端部分812定義 預冷卻膨脹腔。如圖8B中最明確展示,分流器8〇4定義流 體連接於主要供應管806之主要通道814及沿分流器8〇4 周邊之預冷卻通道816。 仍參考圖8B,預冷卻通道8 16經定大小以產生足以使 致冷劑膨脹並使預冷卻膨脹腔冷卻之壓降。分流器8〇4包 括管形片段818及分流插塞820 〇分流插塞820位於主要供 應管806之外表面與容器808之内表面之間。可選擇外橫 截面尺寸(例如直徑)略小於容器808之内橫截面尺寸(例 如直徑)的管形片段8 1 8。分流插塞820可包括例如經組離 以結合至主要供應管806之外表面及容器808之内表面的 黏附材料。 在一個具體實例中’分流器804在容器808中浮動(亦 即其未固定在容器808内),使得預冷卻通道816為分流器 804與容器808之内表面之間的環形空間。在其他具體實例 中’分流器可具有不同組態。舉例而言,分流器可固定於 44 201223577 容器且預冷卻通道可圍繞分流器周邊之僅—部分(諸如腎 曲部分)&伸通過分流器。在其他具體實例中,分流器可 圍繞大體上整個容器圓周連接於容器,且分流器可包括鱼 分流器周邊向内間隔開之開口。舉例而言,分流器可包括 經組態以使致冷劑膨脹至預冷卻膨脹腔^内㈣口。 圖9A至圖9B說明除了具有不同的分流器及主要供摩 管組態以外與圖8A至圖沾之低溫治療裝置8〇〇相似之低 溫治療裝i 9G0之-部分。低溫治療裝£ 9⑽包括主要供 應管902及包括連接於主要供應管9〇2之分流器9〇6的預 冷卻器904。預冷卻g 904亦可包括具有處於分流$鳩之 相反側上之容器近端部> 91G及容器遠端部分912的容器 9〇8。在此具體實射,分流器9()6 ^括管形片段且可由 例如具有孔之圓柱形材料塊(例如橡膠、聚合物、金屬或 另一材料)建構,主要供應管9〇2可穿過該孔螺合或以其 他方式連接。如圖9B _最明確展示,分流器9〇6可定義沿 分流器906周邊之預冷卻通道914。主要供應管9〇2可延伸 通過分流器906,且可連接於鄰近開口 63〇之容器.近端部分 910之内表面。當近端腔處於高壓力下時,將主要供應管 906連接於容器近端部分91〇之可接達部分可用於防止分流 器906及主要供應管902之不合需要之縱向運動。 根據本發明技術之若干具體實例組態之預冷卻總成可 經配置成緊密組態。例如,該預冷卻總成之至少—部分可 在低溫治療裝置之手柄内。圖1〇說明包括處於手柄1〇〇6 内之預冷卻總成1 〇〇2及樞紐10〇4的低溫治療裝置丨〇〇〇之 45 201223577 一部分。預冷卻總成1002包括自樞紐1 〇〇4延伸、通過手 柄1〇〇8之底部部分1〇1〇且延伸至經組態以連接於加壓致 冷劑源(未圖示)之配接器1012的可撓管形部件1〇〇8。樞 紐1004可包括延伸通過底部部分ι〇1〇之細長排出口 1014,且控制線導管1016可自樞紐1004延伸通過底部部 分1010〇在一個具體實例中,管形部件1008纏繞在排出口 1014周圍。手柄1006亦可被絕緣以防止熱損失至氛圍中並 改良預冷卻效率。 圖Π說明在手柄内及手柄周圍具有替代組態之低溫治 療裝置11 00之一部分》低溫治療裝置i i 〇〇包括處於手柄 II 0 6内之預冷卻總成11 〇 2及樞紐11 〇 4。預冷卻總成11 〇 2 包括自樞紐11 04延伸且通過手柄丨丨〇6之底部部分u丨〇的 可撓管形部件11〇8。樞紐11〇4可包括延伸通過底部部分 III 0之細長排出口 ! ! 12’且控制線導管i i 14可自枢紐i丨 延伸通過底部部分111〇。在一個具體實例中,管形部件丨丨〇8 包括與排出口 1112間隔開之螺旋狀部分丨丨16。手柄丨丨〇6 亦可被絕緣以防止熱損失至氛圍中並改良預冷卻效率。 裝置組# 考慮到根據本發明技術之若干具體實例組態之低溫治 療裝置的以上論述,下文參考圖12至圖55描述各種不同 的冷卻總成、閉塞部件及其他低溫治療裝置組件。應瞭解, 以下所述之低溫治療裝置組件及/或以下所述之低溫治療裝 置組件之特定特徵可用於圖1中所示之低溫治療系統1 〇〇, 用於獨立或自含式手持型裝置中,或用於另一適合系統。 46 201223577 為:更:參考,本發明中使用相同參考數字來識別相似或類 =件或特徵,但使用相同參考數字不暗示該等部分應被 :為相同的。實際上’在本文所述之許多實例中,相同編 旎邛为在結構及/或功能方面不同。 &下文所述之低溫治療裝置組件之若干具體實例可經組 悲以有助於與低溫腎神經調節相關的—或多個治療目標。 ⑴下文所述之施藥n之若干具體實例經組態以按所需 局部化或總體治療型樣施加低溫冷卻。所需局部化治療型 樣可包括(例如)纟腎動脈或腎小口之一或多個縱向片段 處進行部分圓周冷卻H總體治療型樣可包括治療部位 处之局邛化/α療型樣之組合。例如,戶斤需總體治療型樣可 為在與腎動脈或腎小口垂直之平面中的部分圓周或完全圓 周。療3L #為了有助於所需局部化或總體治療型樣,根 據本發明技術之若干具體實例組態之施藥器可具有一個以 ^熱傳遞部分,諸如主要熱傳遞部分及次要熱傳遞部分。 田包括該施藥器之冷卻總成在部署狀態下操作時,施藥器 之主要熱傳遞部分可具有足以產生治療上有效之低溫腎神 經調節的熱傳遞速率。施藥器之次要熱傳遞部分在操作期 間可具有較低熱傳遞速率’諸如不足以產生治療上有效之 低溫腎神經調節的熱傳遞速率。主要熱傳遞部分及次要熱 傳遞部分的定位可對應於所需局部化或總體治療型樣。… 下文所述之施藥器之若干具體實例包括經組態以影響 主要熱傳遞部分及次要熱傳遞部分之定位的特徵。該等^ 徵可包括(例如)與以下相關的特徵:(a)施藥器内之差異 47 201223577 對流型熱傳遞;f k~ 或(C)施藥号f坐由施藥器之差異傳導型熱傳遞,·及/ 接觸或間隔Ϊ與;;處的腎動脈或腎小口之間的差異 如)紐組態以選擇性地引導 :括(例 服的致冷劑供應管及孔…二:!"之不同部分膨 傳遞相關之特徵^之差異傳導型熱 氣球及具有低冷卻位準之氣破乱球(例如,非冷卻 率及高熱傳導率材料)差里厂二、組成(例如低熱傳導 藥器 "接於軋球紅細長絕熱部件)。與施 =腎動脈或腎小口之間的差異接觸或間隔相關之特徵 可匕括(例如)其他氣球及複雜氣球之特性,諸如形狀 如螺旋狀、彎曲、縱向不對稱及徑向不對稱)、表面差異(例 如凹區、溝槽、突起及突出物)及差異膨脹.(例如部分受 限制之膨脹)〇 —下文所述之施藥器之若干具體實例亦經組態以有助於 定大小,諸如在減少(例如低剖面)橫截面尺寸下遞送及 在適合向具有不同大小之腎動脈及/或腎小口提供治療上有 效之治療的橫截面尺寸下部署。舉例而言,下文所述之施 某器之若干具體貫例包括當相關冷卻總成呈遞送狀態時至 少部分收縮且當相關冷卻總成呈部署狀態時至少部分膨脹 的氣球。與定大小相關之特徵可包括(例如)氣球組成(例 如順應性及非順應性材料)、其他氣球及複雜氣球之特性, 諸如形狀(例如順應性及非順應性形狀)。非順應性材料(例 如聚對苯二甲酸乙二酯)可具有(例如)約〇%至約3 0 %的 48 201223577 順應性(例如彈性)。順應性材料(例如 他熱塑性彈性體)可呈有( 馱酯及其 ^ b 有(例如)約3〇%至約5〇0%的順應 彳。非順應性材料與順應性材料相比典型地具有更 (例如更高壓力等級)。下文 又 )下文所述之施藥器之若干具體實例 可經組態以有助於對腎動脈 賞動脈及/或腎小口進行所要程度之閉 相而言下文所述之施藥器之若干具體實例經組態 、。刀閉塞,伙而在不阻止血流通過治療部位的情況下在 治療部位施加用於腎神經調節的治療上有效之冷卻。與邛 分閉塞相關之特徵包括(例如)複雜氣球之特性’諸如形 狀(例如螺旋狀、變曲、縱向不對稱及徑向不對稱)及差 ㈣服(例如部分受限制之膨脹)。關於某些治療,可能需 要疋王閉塞’諸如完全或幾乎完全堵塞通過腎動脈或腎小 口之血流。與完全閉塞相關之特徵可包括(例如)盥定大 :相關之任何適合特徵。如下文所述,根據本發明技術之 右干具體實例組態之低溫治療裝置可包括閉塞部件,諸如 冷卻總成之可膨脹部件(例如定義膨脹腔之氣球)或獨立 的閉塞部件(例如鄰近冷卻總成)。閉塞部件可與本文所述 之任何適合施藥器組合以協同與施藥器相_之特徵而提供 閉塞。 。。根據本發明技術組態之冷卻總成可包括利用鄰近施藥 益之冷凍及/或液體血液來促進與低溫腎神經調節相關之一 或多個治療目標的結構。鄰近施藥器之冷凍及/或液體血液 可影響諸如熱傳遞、定大小及閉塞之因素。舉例而言,若 干具體實例可經組態以冷凍施藥器周圍之血液以產生完全 49 201223577 或部分閉塞。在一些情況下,可 有小於約η » 田冷凍血液層(例如具 來進行=:7_或一之厚度的冷殊血㈣ 主要:二 冷卻、氣球可經組態以使得在氣球之 王要熱傳遞部分與腎動 ^ ,Λ ^ . 之間形成具有可藉以進 可有助於〜效之冷部之厚度的冷;東血液。舉例而言,此層 以使r在:大小或所要程度的閉塞。此外,氣球可經組態 ., |刀興月勁脈或腎小口之間形成具有 無法藉以進行治療上有 双(々部之厚度(例如大於約0.8 =、1_4 i.2_之厚度)的冷來血液。該等氣球可包 1凹入。P分及非凹人部分及如下文更詳細描述之其他 適合結構。 里滴熱傳诚 圖12至圖16Β說明可使用差異對流型熱傳遞來影響治 療之低溫治療裝置的若干具體實例。與施藥器内之對流型 熱傳遞相關之特徵可有助於低溫腎神經調節之—或多個治 療目標’諸如所需局部化或總體治療型樣。該等特徵可包 括(例如)經組態以選擇性地引導致冷劑向施藥器之不同 部分膨脹的致冷劑供應管及孔口。 圖12說明在定義排出通道之細長軸12〇6之遠端部分 1204處包括冷卻總成1202的低溫治療裝置12〇〇之一部 分°如上文所述,遠端部分1204可具有台階1208,且冷卻 總成1202可包括具有複數個熱傳遞部分(個別地定義為 1211a至1211d)之施藥器121〇。施藥器121〇亦可具有具 有遠端頸部1214之氣球1212,且氣球1212可定義經組態 50 201223577 以產生並遞送低溫冷卻之膨脹腔。裝置12〇〇可進一步包括 ’’田長引導部件12 1 6a、定義第一供應内腔之第一供應管〖2 i 8 及疋義第二供應内腔之第二供應管122〇。引導部件i2i6a 可疋義、、,i成型以接收引導線丨2丨6b之引導線内腔,如上文 更詳細描述。關於本文所述之其他低溫治療裝置組件所述 之引導部件可被類似組態,但為了清楚說明,通常未圖示 相關引導線。在所說明之具體實例中,引導部件i 2丄&具有 筆直末端且延伸至遠端頸部1214。或者,引導部件ΐ2ΐ6& 可包括圓形末端及/或延伸超過遠端頸部1214之末端。類似 地,在本文所述之其他低溫治療裝置組件中,退出氣球之 退端部分之引導部件及/或供應管之所說明之末端可具有各 種適合形狀(例如非創傷性形狀)且可相對於氣球之遠端 頸部延伸不同距離。 第一供應管1218可包括第一傾斜遠端部分1222,且冷 卻總成1202可包括處於第一傾斜遠端部分1222之末端的 第一孔口 1224。類似地,第二供應管122〇可包括第二傾斜 遠端部分1226,且冷卻總成可包括處於第二傾斜遠端部分 之末端的第二孔口 1228。所說明具體實例之第-傾斜遠端 部分1222及第二傾斜遠端部分1226沿冷卻總成η们之長 度縱向間隔開且關於冷卻總成12〇2之長度徑向間隔開。在 :干其他具體實例中,第一傾斜遠端部分1222及第:傾斜 遠端部分1226具有相同縱向及/或徑向位置或另—組態。當 冷卻總成1202呈部署狀態時,致冷劑可流過第一供應管 1218及第二供應管122G,分別流過第-傾斜遠端部分、i22S2 201223577 及第二傾斜遠端部分1226’且分別流出第一孔口 i224及第 1228°第-傾斜遠端部分1222及第二傾斜遠端部分 1226可分別向埶傳遞部分 1哥t丨刀UUa及mid引導膨脹之致冷 劑。因此’當致冷劑流出第—孔口 1224及第二孔口 1228 時熱傳遞部分12 11a及121 ld相對於施藥· 121〇之其他 熱傳遞部分可具有較高總體熱傳遞速率,尤其是對流型熱 傳遞料。此熱傳遞速率變化可對應於所要冷卻型樣,諸 々在施藥器1210之-些或所有縱向片段處之部分圓周冷卻 型樣。熱傳遞速率差異可視距熱傳遞部分1211&及i2ud 之距離而變化。熱傳遞速率之功能上顯著的差異可區分熱 傳遞部分1211a與熱傳遞部分12Uc,熱傳遞部分121^大 體上與熱傳遞部分121 la周向相對。類似地,熱傳遞速率之 功能上顯著的差異可區分熱傳遞部分12 Ud與熱傳遞部分 1211b,熱傳遞部分1211b大體上與熱傳遞部分i2ud周向 相對。在若干具體實例中,熱傳遞部分12Ua及12Ud具有 足以產生治療上有效之腎神經調節的熱傳遞速率,而熱傳 遞部分1211b及1211c具有不足以產生治療上有效之腎神經 調節的熱傳遞速率。 第一供應管1 2 1 8及第二供應管1220可經組態以(例 如)引導致冷劑在偏離施藥器1210之長度或冷卻總成1202 之長度約45°之角度下膨脹。在若干其他具體實例中,一或 多個供應管經組態以在相對於施藥器或冷卻總成之長度約 15。至約90。之角度(諸如約30。至約45。,或約30。至約40。) 下引導致冷劑。此外,第一供應管1 2 1 8與第二供應管1 220 201223577 相比可處於不同角度。根據本發明技術之若 A T丹體貫例組 態之冷卻總成的第一孔口 1224與第二孔口】90 0 之間的縱 向距離可為(例如)約1 mm至約2〇 mm,語 崎斯约2 mm至 約15 mm,或約3 mm至約1〇 mm。 根據本發明技術之若干具體實例組態之冷卻總成可替 代地包括具有彎曲及/或螺旋狀部分之供應管或供應内腔。 圖13說明在定義處於遠端部分13〇4末端之排出通道開口 之細長軸1306之遠端部分1304處包括冷卻總成13〇2^低 ⑽冶療裝置13〇〇之一部分。遠端部分13〇4可具有△階 1307,且冷卻總成1302可包括具有第一熱傳遞部分^3〇09 及第二熱傳遞部分131G之施藥器13()8。第_熱傳遞部分 "09及第二熱傳遞部》131〇為細長的且圍繞冷卻總成 =〇2之長度徑向間隔開。施藥.器13〇8亦可具有可定義經組 態以產生並遞送低溫冷卻之膨脹腔的氣球1311。裝置U⑽ 可進-步包括細長引導部件1312及沿軸13〇6之長度延伸 之供應管1313。在氣球1311内,供應管1313可包括退出 遠端部分U04且包繞在遠端部分⑽周圍(例如,遠端 ㈣⑽以義螺旋狀部分1314之中心軸線)的螺旋狀 刀1314。冷卻總成1302可包括沿螺旋狀部分1314樺向 間隔開之複數個孔口(個別地識別為㈣a至1316小在 斤兒月之具體貫例中,若螺旋狀部分【m變直,則孔口 131以至1316e將大體上徑向對準。在此具體實例中,螺旋 狀部分nu之形狀使得孔口 1316^i3i6e指向不同徑向 方向。在其他具體實例,,螺旋狀部分1314可具有不同數 53 201223577 目及/或定向之孔口 l316a至l316e。 與在供應管1312為筆直的情況相比,螺旋狀部分1314 將孔口 1 3 1 6a至1 3 1 6e定位於更接近氣球i3丨丨處。此可使 退出孔口 1316ai 131心之致冷劑以更高速度接觸氣球 1^311並增加在氣球13n之相應熱傳遞部分處之對流冷卻 量。此亦可提供對致冷劑最初接觸氣球1311之處的大小及 間隔之更多控制。㈣本發明技術之料具體實例組態之 冷卻總成可包括當冷卻總成呈部署狀態時與冷卻總成之中 心縱向軸線間隔大於約㈣mm (例如大於約G」匪、大 於約0.5麵或大於約! _)之孔口。舉例而t,若干具 體實例中之孔口在冷卻總成呈部署狀態時可距冷卻總成之 中心縱向軸線約0_01 mm與約4 _之間或約〇丨_與約 2 mm之間。類似地,根據本發明技術之若干具體實例組態 之冷卻總成可包括當冷卻總成呈部署狀態時與氣球間隔小 於約4 _ (例如小於約2 _、小於約i _或小於約〇 5 mm)之孔口。舉例而f,若干具體實例中之孔〇在冷卻總 成呈部署狀態時可距氣球約〇.〗mm與約4 mm之間或約〇 5 mm與約2 mm之間。此外,根據本發明技術之若干具體實 例組態之冷卻總成可包括孔口,該孔口經定位以使得在該 孔口處且與令心縱向軸線垂直之平面中,冷卻總成之中心 縱向軸線至s亥孔口之距離不少於該中心縱向軸線至氣球内 表面之距離的約20% (例如不少於約25%、4〇%或6〇% )。 在所说明之具體實例中,孔口 i 3 j 6a、i 3 i 6c、i 3 i 6e 大體上指向氣球1311之上半部,而孔口 m6b、m6d大體 54 201223577 上指向氣球1 3 11之下半部。當冷卻總成1 3 〇2呈部署狀態 時,通過孔口 1316a、1316c、13 16e之致冷劑流產生第一熱 傳遞部分1309,而通過孔口 U16b ' 1316d之致冷劑流產生 第二熱傳遞部分1310。第一熱傳遞部分13〇9及第二熱傳遞 部分13 10可由於該致冷劑流而相對於施藥器i 3 〇 8之其他 熱傳遞部分具有較高總體熱傳遞速率,尤其是對流型熱傳 遞速率。此熱傳遞速率變化可對應於所要冷卻型樣,諸如 在施藥器1308之一些或所有縱向片段處之部分圓周冷卻型 樣。在若干具體實例中,第一熱傳遞部分13〇9及第二熱傳 遞部分13 1 0具有足以產生治療上有效之腎神經調節的熱傳 遞速率,而處於第一熱傳遞部分13〇9與第二熱傳遞部分 13 10之間的施藥器1308之部分具有不足以產生治療上有效 之腎神經調節的熱傳遞速率。 圖14說明主要在排出組態方面不同於圖Η之裝置 1300的低溫治療裝置1400之一部分。裝置14〇〇包括處於 定義排出通道之細長軸1406之遠端部分1404處的冷卻總 成1402。遠端部分1404可具有台階1407、複數個排出開 口 1408及圓形末端1409。冷卻總成14〇2可包括具有氣球 1411之施藥器1410,氣球mu具有遠端頸部1412,且氣 球1411可定義經組態以產生並遞送低溫冷卻之膨脹腔。裝 置1400可進一步包括沿軸1406之長度延伸且延伸至氣球 1411中之供應管1413。在氣球1411内,供應管14丨3可包 括退出遠端部分1404且包繞在遠端部分14〇4周圍(例如, 遠端部分1404可定義螺旋狀部分1414之中心軸線)的螺 55 201223577 旋狀部分丨4丨4。螺旋狀部分1414之螺旋狀線圈可定位於排 出開口 1408之間。冷卻總成14〇2可包括沿螺旋狀部分Μ" 橫向間隔開之複數個孔口(個別地識別為141以至i4i6d)。 在所說明之具體實例中,遠端部分14〇4充分狭窄以使螺旋 狀部分1414在大體上不延伸超過鄰近遠端部分14〇4之軸 1406之直徑的情況下包繞在遠端部分丨4〇4周圍。據此,冷 部總成1402在遞送狀態下可經組態以裝配在根據軸丨4〇6 定大小之遞送外鞘内。複數個排出開口 14〇8可有助於排出 物流動並減輕與遠端部分14〇4之定大小相關之任何流動限 制因此,如上文所論述,進入排出通道之相對較高密度 之已膨脹致冷劑可在不一定造成背壓不當增加的情況下允 5午返端部分1 4 0 4減小。 與圖13之裝置13〇〇之孔口 1316a至1316e相似,所說 明之具體實例中之孔口 1416a至1416d沿螺旋狀部分1414 橫向間隔開。然而,與圖13之裝置1300之孔口 1316a至 13 16d不同,所說明具體實例中之孔口 1416a至14 i6d經組 態以在冷卻總成14〇2之長度周圍按不同徑向方向引導致冷 劑流。特定言之’孔口 141 6a至14 16d經組態以在徑向間隔 約90°之增量的方向中引導致冷劑流。孔口 14 1 6a至14 1 6d 經定大小以使相應熱傳遞部分具有大於約90。之圓弧。因 此’對應於孔口 14 1 6a至14 1 6d之熱傳遞部分之投影圓周大 體上為完全圓周的,而在冷卻總成1402之特定縱向片段中 為部分圓周的。 如上文參考圖1 3所論述,將主要致冷劑膨脹區域定位 56 20122357741 201223577 Cooling assembly (not shown) in the vascular structure. The pressurized refrigerant is expanded from the pre-cooling supply pipe 634 to the pre-cooling expansion chamber to cool the pre-cooling expansion chamber and thereby cool the main supply pipe 632 and the liquid refrigerant in the main supply pipe. If pre-cooling is performed away from the entry point of the vascular structure (eg, if the pressurized refrigerant is cooled in the console prior to delivery to the entry point of the vascular structure), the heat from the atmosphere may cause pre-cooling to pressurize The refrigerant heats up undesirably. Positioning the pre-cooling expansion chamber adjacent to the hub reduces this undesirable temperature rise. The pre-cooling assembly configured in accordance with some embodiments of the present technology may have a pressurized refrigerant sufficient to allow pre-cooling of the expanding refrigerant in the expansion chamber and the main supply tube in the pre-cooling expansion chamber. The length of heat transfer between them. By way of example, a pre-cooling chamber configured in accordance with several embodiments of the present technology may have a length greater than, a force l〇cm such as greater than about 15 crn or greater than about 25 cm. The pre-cooling chamber configured in accordance with several embodiments of the present technology has a length of from about 20 cm to about 30 cm. After the cold main supply pipe 632, the refrigerant from the pre-cooling expansion chamber s sinks the refrigerant flow from the discharge passage and discharges the discharge port 6 14 into the atmosphere. 6B shows the first arrow 642 indicating the flow direction of the refrigerant through the discharge port 614 and the first front head 640 indicating the flow direction of the refrigerant through the pre-cooling expansion chamber, and the flow direction of the refrigerant through the discharge port 614 is substantially discharged. Channel alignment. In contrast, the direction of flow of the refrigerant through the pre-cooling expansion chamber is not aligned with the flow direction of the discharge passage or refrigerant through the discharge π 614. A similar embodiment of the cryotherapy device 700 201223577 • A portion of the cryotherapy device 700 differs in that the device 700 has a pre-cooling expansion chamber that is fluidly separated from the discharge channel. For example, the cryotherapy device 700 includes a pre-cooling assembly 7〇2' that includes a valve 7〇4 and a fluid that separates the pre-cooling expansion chamber from the inner portion of the shaft 604 and the hinge 606. Two plugs 706. Main supply tube 632 extends through third plug 706 and into shaft 604. Arrow 708 indicates the direction of flow of refrigerant through the pre-cooling expansion chamber when valve 704 is open. When the valve 7〇4 is closed, the pressure in the pre-cooling expansion chamber can be increased until it is balanced with the pre-cooling supply pipe 634, thereby stopping the flow through the pre-cooling supply pipe. In this way, opening and closing the valve 7〇4 can turn the pre-cooling on or off. Partial opening of valve 7〇4 adjusts the pressure within the pre-cooling expansion chamber and thereby regulates the flow of refrigerant through pre-cooling supply line 634 and associated pre-cooling temperatures. For example, actuator 710 can be operatively coupled to valve 〇4 and configured to receive signals from processor 712. The processor 712 can be configured to receive a "and/or sensor number from the user interface to the actuator 7 1 〇 to fully or incrementally open or close the valve. In the second sense, sense 1 716 It can be a temperature sensor for the associated cooling assembly. In one specific example, the 'temperature sensor can send a signal to the processor 712 to _cool the assembly or the tissue detected adjacent to the cooling assembly is high: : value 'to open the object and increase pre-cooling; or (1) if cooling total: the detected temperature of the tissue adjacent to the cold section assembly is lower than the desired value of the closed valve 704 and reduce the pre-cooling. Figure 8B illustrates the technique according to the present invention A further embodiment of a cryotherapy device having a pre-cooler 802. The final portion of the tubular member 608 is connected to form a first plug 626 of the pre-cooling assembly 6〇2 (Fig. 6A to Figure 6B) can be challenging. The pre-cooler 8〇2 can include a shunt connected to the main supply pipe instead of the first plug 626 and the pre-cooling supply pipe 634 (figure (5)). For example, the pre-cooler 8 〇2 may include a shunt 8〇4 connected to the main supply pipe 806 and has a capacity The proximal portion 810 and the container distal end portion 812 are containers 8A. In this particular embodiment, the flow divider 804 divides the container 8〇2 into a container proximal portion 81〇 and a container distal portion 812. The container proximal portion 81 defines A proximal lumen or combination supply lumen between the opening 63〇 and the splitter 8〇4, and a container distal portion 812 defines a pre-cooling expansion chamber. As best shown in Figure 8B, the splitter 8〇4 defines the fluid Main passage 814 connected to main supply pipe 806 and pre-cooling passage 816 along the periphery of splitter 8〇4. Still referring to Figure 8B, pre-cooling passage 8 16 is sized to generate sufficient expansion for the refrigerant and pre-cooling expansion The pressure drop of the chamber cooling. The flow divider 8〇4 includes a tubular section 818 and a shunt plug 820. The shunt plug 820 is located between the outer surface of the main supply tube 806 and the inner surface of the container 808. The outer cross-sectional dimension can be selected ( For example, the diameter) is slightly smaller than the tubular section 8 1 8 of the cross-sectional dimension (e.g., diameter) within the container 808. The shunt plug 820 can include, for example, a set to be bonded to the outer surface of the main supply tube 806 and the inner surface of the container 808. Adhesive material. In a specific example, the shunt 804 floats in the vessel 808 (i.e., it is not fixed within the vessel 808) such that the pre-cooling passage 816 is an annular space between the splitter 804 and the inner surface of the vessel 808. In other specific examples The 'diverter' can have a different configuration. For example, the shunt can be fixed to the 44 201223577 container and the pre-cooling channel can extend around only the part of the shunt (such as the kidney flexure) & through the shunt. In a specific example, the diverter can be coupled to the vessel about a circumference of the entire container, and the diverter can include an opening that is spaced inwardly around the periphery of the fish diverter. For example, the flow splitter can include a configuration to expand the refrigerant into the pre-cooled expansion chamber (4) port. Figures 9A through 9B illustrate portions of a low temperature therapeutic device i 9G0 similar to the cryotherapy device 8 of Figure 8A, except that it has a different shunt and a primary configuration. The cryotherapy pack 9 (10) includes a main supply tube 902 and a pre-cooler 904 including a splitter 9〇6 connected to the main supply tube 9〇2. Pre-cooling g 904 may also include a container 9〇8 having a container proximal end > 91G and a container distal end portion 912 on the opposite side of the split $鸠. In this particular shot, the splitter 9() 6 includes a tubular segment and can be constructed, for example, from a block of cylindrical material having a hole (for example rubber, polymer, metal or another material), the main supply tube 9〇2 being wearable. The holes are screwed or otherwise connected. As shown most clearly in Figure 9B, the splitter 9〇6 can define a pre-cooling passage 914 along the periphery of the splitter 906. The main supply tube 9〇2 can extend through the flow divider 906 and can be coupled to the inner surface of the proximal end portion 910 of the container adjacent the opening 63〇. When the proximal chamber is under high pressure, the accessible portion of the main supply tube 906 that is coupled to the proximal portion 91 of the container can be used to prevent undesirable longitudinal movement of the splitter 906 and the main supply tube 902. The pre-cooling assembly configured in accordance with several embodiments of the present technology can be configured for close configuration. For example, at least a portion of the pre-cooling assembly can be within the handle of the cryotherapy device. Figure 1A illustrates a portion of a cryotherapy device including a pre-cooling assembly 1 〇〇 2 and a hub 10 〇 4 in the handle 1 〇〇 6 2012 20125577. The pre-cooling assembly 1002 includes an extension from the hub 1 〇〇 4, through the bottom portion 1手柄1 of the handle 1〇〇8, and extending to a mating configured to connect to a pressurized refrigerant source (not shown) The flexible tubular member 1〇〇8 of the device 1012. The hub 1004 can include an elongated discharge port 1014 extending through the bottom portion ι〇1, and the control conduit 1016 can extend from the hub 1004 through the bottom portion 1010. In one embodiment, the tubular member 1008 is wrapped around the discharge port 1014. The handle 1006 can also be insulated to prevent heat loss into the atmosphere and improve pre-cooling efficiency. The figure illustrates a portion of the cryotherapy device 11 00 having an alternate configuration within the handle and around the handle. The cryotherapy device i i includes a pre-cooling assembly 11 〇 2 and a hub 11 〇 4 in the handle II 0 6 . The pre-cooling assembly 11 〇 2 includes a flexible tubular member 11〇8 extending from the pivot 11 04 and passing through the bottom portion u丨〇 of the handle 丨丨〇6. The hub 11〇4 may include an elongated discharge port extending through the bottom portion III 0! ! 12' and the control line conduit i i 14 can extend from the hub i丨 through the bottom portion 111〇. In one embodiment, the tubular member 8 includes a helical portion 间隔 16 spaced from the discharge port 1112. The handle 丨丨〇 6 can also be insulated to prevent heat loss into the atmosphere and improve pre-cooling efficiency. Device Set # Considering the above discussion of a cryotherapy device configured in accordance with several embodiments of the present technology, various different cooling assemblies, occluding components, and other cryotherapy device components are described below with reference to Figures 12-55. It will be appreciated that the specific features of the cryotherapy device assembly described below and/or the cryotherapy device components described below can be used in the cryotherapy system 1 shown in Figure 1, for stand-alone or self-contained handheld devices. Medium, or for another suitable system. 46 201223577 To: more, the same reference numerals are used in the present invention to identify similar or like elements or features, but the use of the same reference numerals does not imply that the parts should be the same. In fact, in many of the examples described herein, the same compilation is different in structure and/or function. Several specific examples of cryotherapy device components described below can be characterized to contribute to - or multiple therapeutic goals associated with hypotensive renal neuromodulation. (1) Several specific examples of administration n described below are configured to apply cryogenic cooling in a desired localized or overall treatment format. The desired localized treatment pattern can include, for example, partial circumferential cooling at one or more longitudinal segments of the iliac artery or renal stenosis. H The overall treatment pattern can include a localized/alpha treatment at the treatment site. combination. For example, the overall treatment pattern may be a partial or complete circumference in a plane perpendicular to the renal artery or renal ostium. Treatment 3L # In order to facilitate the desired localization or overall treatment pattern, an applicator configured in accordance with several embodiments of the present technology may have a heat transfer portion, such as a primary heat transfer portion and a secondary heat transfer. section. When the field comprising the applicator cooling assembly is operated in a deployed state, the main heat transfer portion of the applicator may have a heat transfer rate sufficient to produce a therapeutically effective low temperature renal nerve regulation. The secondary heat transfer portion of the applicator may have a lower heat transfer rate during operation such as a heat transfer rate that is insufficient to produce a therapeutically effective low temperature renal neuromodulation. The positioning of the primary heat transfer portion and the secondary heat transfer portion may correspond to the desired localized or overall treatment pattern. Several specific examples of applicators described below include features that are configured to affect the positioning of the primary heat transfer portion and the secondary heat transfer portion. Such criteria may include, for example, features associated with: (a) differences within the applicator 47 201223577 convective heat transfer; fk~ or (C) application number f sitting differentially by the applicator Heat transfer, · and / contact or septum ;;; the difference between the renal artery or the renal stenosis, such as: New Zealand configuration to selectively guide: include (for example, the refrigerant supply tube and the hole... !"The difference between the different parts of the transfer transfer characteristics ^The difference between the conduction type hot air balloon and the gas ball with a low cooling level (for example, non-cooling rate and high thermal conductivity material), the second plant, composition (such as low The heat-transfer drug device is connected to the red and slender heat-insulating member of the rolling ball. The characteristics of the contact or spacing associated with the application of the renal artery or the renal orifice may include, for example, the characteristics of other balloons and complex balloons, such as shapes. Spiral, curved, longitudinal asymmetry and radial asymmetry), surface differences (eg pits, grooves, protrusions and protrusions) and differential expansion (eg partially restricted expansion) 〇 - application as described below Several specific examples of the device are also configured Helps sized, such as reduced (e.g., low profile) to deliver the cross-sectional size and suitable to have different sizes of the renal artery and / or renal provided with the opening cross-sectional dimension of a therapeutically effective treatment deployment. For example, several specific embodiments of the applicator described below include a balloon that at least partially contracts when the associated cooling assembly is in a delivery state and at least partially expands when the associated cooling assembly is in a deployed state. Features associated with a given size may include, for example, balloon composition (e.g., compliant and non-compliant materials), other balloons, and characteristics of complex balloons, such as shapes (e.g., compliant and non-compliant shapes). Non-compliant materials (e.g., polyethylene terephthalate) can have, for example, from about 〇% to about 30%, of the 2012 201227577 compliance (e.g., elasticity). A compliant material (e.g., a thermoplastic elastomer thereof) may be present (the oxime ester and its b) have, for example, from about 3% to about 5% by weight of the oxime. Non-compliant materials are typically compared to compliant materials. There are more (e.g., higher pressure levels). Several specific examples of the applicator described below can be configured to facilitate the desired degree of closure of the renal artery and/or the renal orifice. Several specific examples of applicators described below are configured. The knife is occluded and a therapeutically effective cooling for renal neuromodulation is applied to the treatment site without blocking blood flow through the treatment site. Features associated with 邛 occlusion include, for example, the characteristics of complex balloons such as shapes (e.g., helical, curved, longitudinally asymmetric, and radial asymmetry) and poor (four) garments (e.g., partially restricted expansion). With regard to certain treatments, it may be desirable to have an occlusion of the king, such as completely or almost completely blocking blood flow through the renal artery or the renal orifice. Features associated with complete occlusion may include, for example, squatting: any suitable feature associated with it. As described below, a cryotherapy device configured in accordance with a right-hand specific embodiment of the present technology can include an occluding component, such as an expandable component of a cooling assembly (eg, a balloon defining an inflation lumen) or a separate occluding component (eg, adjacent cooling) Assembly). The occlusive component can be combined with any suitable applicator described herein to provide occlusion in conjunction with the characteristics of the applicator. . . A cooling assembly configured in accordance with the teachings of the present invention can include a structure that utilizes freezing and/or liquid blood adjacent to the application of a drug to promote one or more therapeutic targets associated with hypothermic renal neuromodulation. Freezing and/or liquid blood adjacent to the applicator can affect factors such as heat transfer, sizing, and occlusion. For example, several specific examples can be configured to freeze blood around the applicator to produce a full 49 201223577 or partial occlusion. In some cases, there may be less than about η » field frozen blood layer (for example, with a thickness of = 7_ or a thickness of cold blood (four) Main: two cooling, the balloon can be configured so that the king of the balloon wants The heat transfer portion forms a cold with the renal motion ^ , Λ ^ . , which can be used to contribute to the thickness of the cold portion of the effect; the east blood. For example, the layer is such that r is: size or desired In addition, the balloon can be configured. The formation between the knife and the kidney or the small mouth of the kidney has a double (the thickness of the ankle (for example, greater than about 0.8 =, 1_4 i.2_). The thickness of the cold blood. These balloons can be recessed. P and non-concave parts and other suitable structures as described in more detail below. 滴滴热传图12 to Figure 16 Β illustrates the use of differential convection Several specific examples of heat transfer to affect the therapeutic cryotherapy device. Features associated with convective heat transfer within the applicator may contribute to hypothermic renal neuromodulation - or multiple therapeutic targets - such as desired localization or overall Treatment pattern. These features may include (for example) Configuring to selectively introduce a refrigerant supply tube and orifice that causes the refrigerant to expand to different portions of the applicator. Figure 12 illustrates the inclusion of a cooling assembly at a distal portion 1204 of the elongated shaft 12〇6 defining the discharge passage. One portion of the cryotherapy device 12 of 1202. As described above, the distal portion 1204 can have a step 1208, and the cooling assembly 1202 can include a drug having a plurality of heat transfer portions (defined individually as 1211a through 1211d) The applicator 121 can also have a balloon 1212 having a distal neck 1214, and the balloon 1212 can define a configured 50 201223577 to create and deliver a cryogenically cooled inflation lumen. The device 12 can further include ' 'Tianchang guiding member 12 1 6a, a first supply pipe defining a first supply inner cavity 〖2 i 8 and a second supply pipe 122 疋 of a second supply inner cavity. The guiding part i2i6a can be 、, ,, i The guidewire lumen is shaped to receive the guidewires 丨2丨6b, as described in more detail above. The guide components described with respect to other cryotherapy device components described herein can be similarly configured, but for clarity of illustration, typically not illustrated Show The guide wire is closed. In the illustrated embodiment, the guide member i 2 & has a straight end and extends to the distal neck portion 1214. Alternatively, the guide member ΐ2ΐ6& can include a rounded end and/or extend beyond the distal neck Similarly, in other cryotherapy device assemblies described herein, the illustrated ends of the guiding members and/or supply tubes exiting the withdrawal portion of the balloon can have a variety of suitable shapes (eg, non-invasive shapes). And may extend different distances relative to the distal neck of the balloon. The first supply tube 1218 can include a first angled distal end portion 1222, and the cooling assembly 1202 can include a first end at the end of the first angled distal portion 1222 Aperture 1224. Similarly, the second supply tube 122A can include a second angled distal end portion 1226, and the cooling assembly can include a second aperture 1228 at the end of the second angled distal end portion. The illustrated first-tilt distal end portion 1222 and second oblique distal end portion 1226 are longitudinally spaced apart along the length of the cooling assembly η and radially spaced about the length of the cooling assembly 12〇2. In other specific embodiments, the first angled distal end portion 1222 and the first: angled distal portion 1226 have the same longitudinal and/or radial position or another configuration. When the cooling assembly 1202 is in a deployed state, the refrigerant may flow through the first supply pipe 1218 and the second supply pipe 122G, respectively, through the first-tilt distal end portion, the i22S2 201223577 and the second inclined distal end portion 1226'. The first orifice i224 and the 1228° first-tilt distal portion 1222 and the second oblique distal portion 1226, respectively, can respectively transfer the portion 1 to the UUa and the mid-guided expanded refrigerant. Therefore, the heat transfer portions 12 11a and 121 ld may have a higher overall heat transfer rate relative to the other heat transfer portions of the application 121 when the refrigerant flows out of the first port 1224 and the second port 1228, especially Convection heat transfer material. This change in heat transfer rate may correspond to the desired cooling pattern, a partial circumferential cooling pattern at some or all of the longitudinal segments of the applicator 1210. The difference in heat transfer rate may vary depending on the distance from the heat transfer portions 1211 & and i2ud. A functionally significant difference in heat transfer rate distinguishes the heat transfer portion 1211a from the heat transfer portion 12Uc, which is generally circumferentially opposed to the heat transfer portion 121la. Similarly, a functionally significant difference in heat transfer rate distinguishes between heat transfer portion 12 Ud and heat transfer portion 1211b, which is generally circumferentially opposed to heat transfer portion i2ud. In several embodiments, the heat transfer portions 12Ua and 12Ud have a heat transfer rate sufficient to produce a therapeutically effective renal neuromodulation, while the heat transfer portions 1211b and 1211c have a heat transfer rate insufficient to produce a therapeutically effective renal neuromodulation. The first supply tube 1 2 1 8 and the second supply tube 1220 can be configured to, for example, cause the refrigerant to expand at an angle that is about 45 degrees from the length of the applicator 1210 or the length of the cooling assembly 1202. In several other specific examples, one or more of the supply tubes are configured to be about 15 in length relative to the applicator or cooling assembly. To about 90. The angle (such as from about 30 to about 45., or from about 30 to about 40.) leads to a cold agent. Furthermore, the first supply tube 1 2 1 8 can be at different angles than the second supply tube 1 220 201223577. The longitudinal distance between the first aperture 1224 and the second aperture 090 0 of the cooling assembly configured according to the present invention may be, for example, about 1 mm to about 2 〇 mm, The language is about 2 mm to about 15 mm, or about 3 mm to about 1 mm. A cooling assembly configured in accordance with several embodiments of the present technology may alternatively include a supply tube or supply lumen having a curved and/or helical portion. Figure 13 illustrates a portion of the distal end portion 1304 of the elongated shaft 1306 defining the discharge passage opening at the distal end portion 13〇4 including a portion of the cooling assembly 13〇2^low (10) treatment device 13〇〇. The distal end portion 13A can have a delta step 1307, and the cooling assembly 1302 can include an applicator 13() 8 having a first heat transfer portion ^3〇09 and a second heat transfer portion 131G. The first heat transfer portion "09 and the second heat transfer portion 131" are elongated and radially spaced around the length of the cooling assembly = 〇2. The applicator 13 8 can also have a balloon 1311 that can be defined to produce and deliver a cryogenically cooled expansion chamber. The apparatus U (10) can further include an elongated guide member 1312 and a supply tube 1313 extending along the length of the shaft 13〇6. Within the balloon 1311, the supply tube 1313 can include a helical blade 1314 that exits the distal portion U04 and wraps around the distal portion (10) (e.g., distal (4) (10) to the central axis of the helical portion 1314). The cooling assembly 1302 can include a plurality of apertures spaced apart along the birch portion of the helical portion 1314 (identically identified as (4) a to 1316 small in a specific example of a month, if the helical portion [m becomes straight, the hole The ports 131 and 1316e will be generally radially aligned. In this particular example, the shape of the helical portion nu is such that the apertures 1316^i3i6e point in different radial directions. In other embodiments, the helical portions 1314 can have different numbers. 53 201223577 Mesh and/or oriented orifices l316a to l316e. The helical portion 1314 positions the orifices 1 3 1 6a to 1 3 1 6e closer to the balloon i3 than in the case where the supply tube 1312 is straight. This allows the refrigerant exiting the orifice 1316ai 131 to contact the balloon 1 311 at a higher velocity and increase the amount of convective cooling at the corresponding heat transfer portion of the balloon 13n. This also provides initial contact with the refrigerant. The size and spacing of the balloon 1311 are more controlled. (4) The cooling assembly configured by the material example of the present invention may include a distance of more than about (four) mm from the central longitudinal axis of the cooling assembly when the cooling assembly is deployed. For example big An aperture of about G" 匪, greater than about 0.5 or greater than about _). For example, t, the apertures in several embodiments may be about 0_01 mm from the central longitudinal axis of the cooling assembly when the cooling assembly is deployed. Between about 4 _ or about 〇丨 and about 2 mm. Similarly, a cooling assembly configured in accordance with several embodiments of the present technology may include less than about the balloon when the cooling assembly is deployed 4 _ (for example, less than about 2 _, less than about i _ or less than about 〇 5 mm). For example, f, in some specific examples, the hole 可 can be about a distance from the balloon when the cooling assembly is deployed. Between mm and about 4 mm or between about 5 mm and about 2 mm. Further, a cooling assembly configured in accordance with several embodiments of the present technology may include an aperture that is positioned such that the aperture is in the aperture The distance between the central longitudinal axis of the cooling assembly and the aperture of the swell is not less than about 20% of the distance from the central longitudinal axis to the inner surface of the balloon in the plane perpendicular to the longitudinal axis of the core (for example, not less than about 25%, 4〇% or 6〇%). In the specific example illustrated, the orifice i 3 j 6a, i 3 i 6c, i 3 i 6e generally point to the upper half of the balloon 1311, while the apertures m6b, m6d generally 54 on the 201223577 point to the lower half of the balloon 1 3 11. When the cooling assembly 1 3 〇 2 is deployed The flow of refrigerant through the orifices 1316a, 1316c, 13 16e produces a first heat transfer portion 1309, while the flow of refrigerant through the orifices U16b' 1316d produces a second heat transfer portion 1310. The first heat transfer portion 13〇 The 9 and second heat transfer portions 13 10 may have a higher overall heat transfer rate, particularly a convective heat transfer rate, relative to other heat transfer portions of the applicator i 3 〇 8 due to the flow of refrigerant. This change in heat transfer rate may correspond to the desired cooling pattern, such as a partial circumferential cooling pattern at some or all of the longitudinal segments of applicator 1308. In several embodiments, the first heat transfer portion 13〇9 and the second heat transfer portion 1310 have a heat transfer rate sufficient to produce a therapeutically effective renal neuromodulation, while in the first heat transfer portion 13〇9 and The portion of applicator 1308 between the two heat transfer portions 13 10 has a rate of heat transfer that is insufficient to produce a therapeutically effective renal neuromodulation. Figure 14 illustrates a portion of the cryotherapy device 1400 that differs from the device 1300 of the figure primarily in terms of ejection configuration. The device 14A includes a cooling assembly 1402 at a distal end portion 1404 of the elongated shaft 1406 defining a discharge passage. The distal portion 1404 can have a step 1407, a plurality of discharge openings 1408, and a rounded end 1409. The cooling assembly 14〇2 can include an applicator 1410 having a balloon 1411 having a distal neck 1412, and the balloon 1411 can define an expansion lumen configured to generate and deliver cryogenic cooling. Apparatus 1400 can further include a supply tube 1413 extending along the length of shaft 1406 and extending into balloon 1411. Within the balloon 1411, the supply tube 14丨3 can include a screw 55 that exits the distal portion 1404 and wraps around the distal portion 14〇4 (eg, the distal portion 1404 can define a central axis of the helical portion 1414) 201223577 The shape is 丨4丨4. The helical coil of the helical portion 1414 can be positioned between the discharge openings 1408. The cooling assembly 14〇2 may include a plurality of apertures (respectively identified as 141 to i4i6d) that are laterally spaced along the helical portion. In the illustrated embodiment, the distal portion 14〇4 is sufficiently narrow such that the helical portion 1414 wraps around the distal portion without substantially extending beyond the diameter of the axis 1406 adjacent the distal portion 14〇4. 4〇4 around. Accordingly, the cold section assembly 1402 can be configured to fit within the delivery sheath of a size sized according to the axis 〇6 in the delivery state. The plurality of discharge openings 14A8 can aid in the flow of the effluent and alleviate any flow restriction associated with the size of the distal portion 14A4. Thus, as discussed above, the relatively high density of the venting channel is expanded. The refrigerant can reduce the back-end portion 1 4 4 4 in the case where the back pressure is not necessarily caused to increase unduely. Similar to the apertures 1316a through 1316e of the device 13 of Figure 13, the apertures 1416a through 1416d of the illustrated embodiment are laterally spaced apart along the helical portion 1414. However, unlike the orifices 1316a through 13 16d of the apparatus 1300 of Figure 13, the orifices 1416a through 14i6d in the illustrated embodiment are configured to be oriented in different radial directions around the length of the cooling assembly 14〇2. Coolant flow. Specifically, the orifices 141 6a through 14 16d are configured to induce a flow of refrigerant in a direction that is radially spaced by an increment of about 90°. The orifices 14 1 6a through 14 1 6d are sized such that the respective heat transfer portions have greater than about 90. The arc. Thus, the projected circumference of the heat transfer portion corresponding to the apertures 14 1 6a through 14 1 6d is substantially completely circumferential and partially circumferential in a particular longitudinal segment of the cooling assembly 1402. Positioning the primary refrigerant expansion zone as discussed above with reference to Figure 133 56 201223577

於更接近氣球處可有助於對流型熱傳遞。圖15A至圖15B 說明亦可經組態以將主要致冷劑膨脹區域定位於更接近氣 球處之低溫治療裝置1500之一部分。裝置15〇〇包括處於 定義排出通道之細長軸15〇6之遠端部分15〇4處的冷卻總 成1502。遠端部分1504可具有台階15〇7,且冷卻總成15〇2 可包括具有可定義、經組態以產生並遞送低溫冷卻之膨服腔 之外部氣球1510的施藥器1508。裝置15〇〇可進一步包括 供應管1512及内部氣球1514。供應管1512具有圓形末端 1516且可沿軸1506之長度延伸並通過外部氣球⑽之遠Converging to the balloon can contribute to convective heat transfer. Figures 15A-15B illustrate portions of a cryotherapy device 1500 that can also be configured to position a primary cryogen expansion region closer to the balloon. The device 15A includes a cooling assembly 1502 at a distal end portion 15〇4 of the elongated shaft 15〇6 defining the discharge passage. The distal portion 1504 can have a step 15〇7, and the cooling assembly 15〇2 can include an applicator 1508 having an outer balloon 1510 that can be defined, configured to create and deliver a cryogenically cooled inflation lumen. The device 15A can further include a supply tube 1512 and an internal balloon 1514. Supply tube 1512 has a rounded end 1516 and is extendable along the length of shaft 1506 and through the outer balloon (10)

端部分。内部氣球1514在外部氣球151〇内圍繞供應管MU 之一部分延伸。在根據本發明技術組態之若干其他具體實 例中,供應管1512終止於内部分佈器(諸如内部氣球i5i4) 内,及/或該裝置可包括可延伸通過内部氣球叫並通過外 部氣球1510之遠端部分的引導部件。再次參考圖i5A至圖 15B中所示之裝置15〇〇之具體實例,内部氣球i5i4内的供 應管ι512之部分可包括供應管孔口 1518。冷卻總成⑽ 可包括以螺旋狀排列或其他適合排列分佈於内部氣球b i 4 上之内部氣球孔π 152〇。内部氣球孔σ 152〇可為例如内部 氣球15U中之雷射切孔。當冷卻總成15〇2呈遞送狀態時, 外部氣球1 5 1 〇及内部氣球1 5 14可至少八Α 遞送外鞘内。 八^收縮以裝配在 當冷卻總成1 502呈部署狀態時,致 双令劑可自供鹿營 15丨2流過供應管孔口 1518並流入内部氣球ΐ5ΐ4中‘ 管孔口 1518可足夠大以允許致冷劑進 。供應 門#軋球1514而 57 201223577 不使顯著部分之液體致洽査丨「相丨a j· μ、 々劑(例如大部分液體致冷劑)發 生液體-氣體相變。舉例而士,a邮|也作 ^ m °在。卩署狀態下,供應管1512 外之内部氣球1 5 1 4内致;勒丨紹料·ϊ£ ★广 η双令劑絕對4汽壓力可為内部氣球 1514内之供應管部分内之致冷劑絕對蒸汽壓力的約桃至 約100%’諸如約20%至約!嶋或約33%至約!嶋。第一 自由通道面積(等於内部氣球孔σ 152〇之總自由通道面積) 可小於第二自由通道面積(等於供應管孔口 1518之總自由 通道面積)。可選擇内部氣球孔σ⑽之大小及以數目來 控制第-自由通道面積。類似地’可選擇供應管孔口 ΐ5ΐ8 之大j及/或數目來控制第一自由通道面積。致冷劑可自内 部氣球1514膨脹通過内部氣球孔口 152〇以冷卻施藥器 1508之一或多個相應熱傳遞部分。詳言之,内部氣球孔口 1520可經組態以冷卻大體上螺旋狀熱傳遞部分。 圖16A至圖16B說明在外部氣球形狀方面不同於圖 15A之冷卻總成1500的低溫治療裝置16〇〇。裝置16〇〇包 括冷卻總成1602,該冷卻總成1602包括具有外部氣球16〇6 之施藥器1604,該外部氣球具有升高螺旋狀部分16〇8及凹 入部分1610。升高螺旋狀部分16〇8之内表面可經組態以接 收來自内部氣球孔口 1 520之膨脹致冷劑,且升高螺旋狀部 分1608之内表面形狀可有助於使增加之對流冷卻局部化於 升尚螺旋狀部分1608處。凹入部分16 10大體上經組態成 不接觸腎動脈或腎小口。使增加之對流冷卻局部化於升高 螺旋狀部分16 0 6可有助於冷卻效率以及冷卻位置選擇性。 升高螺旋狀部分1 608可對應於與施藥器1604之其他熱傳 58 201223577 遞部分.(諸如對應於凹人部分161G之熱傳遞部分)相比具 有較高熱傳遞速率之熱傳遞部分。舉例而言,在操作期間, 升高螺旋狀部分16G8可對應於具有^以產生治療上有效之 腎神經調節之熱傳遞速率的熱傳遞部>,而施藥器之另一 熱傳遞部分(例如,對應於凹入部分161〇之熱傳遞部分) /、有不足X產生療上有效之腎神經調節的熱傳遞速率。 企導型執傳 圖17Α至圖22Β說明可使用差異傳導型熱傳遞來影響 療之低/皿/α療裝置的若干具體實例。與經由施藥器之傳 導型熱傳遞相關之特徵可有助於低溫腎神經調節之一或多 個治療目# ’諸如所需局部化或總體治療型樣。在若干具 體實例中,該等裝置使用絕熱部件控制傳導。與經由施藥 器之差異傳導型熱傳遞相關之特徵可包括(例如)其他氣 球(例如,非冷卻氣球及具有低冷卻位準之氣球)、差異組 成(例如’低熱傳導率及高熱傳導率材料)、差異厚度’('例 如’氣球壁厚)及絕熱結構(mn,氣球内或連接於氣球 壁之細長絕熱部件)。 圖ΠΑ至圖17B說明在定義排出通道之細長軸17〇6二 遠端部分1704處包括冷卻總成17G2的低溫治療裝置 之-部分。遠端部分1704可具有台階17〇7,且冷卻總力 17〇2可包括具有經組態以接觸腎動脈或腎小口之氣球pi ^施藥器测。施藥器i可進—步包括複數個細長_ 4件nil,該等細長絕熱部件之長度大體上平行於冷卻年 成1702之長度且圍繞冷卻總成17G2之圓周徑向間隔開。 59End part. The inner balloon 1514 extends around a portion of the supply tube MU within the outer balloon 151''. In several other specific embodiments configured in accordance with the teachings of the present invention, the supply tube 1512 terminates within an internal distributor (such as the internal balloon i5i4), and/or the device can include an extension that can be extended through the internal balloon and through the outer balloon 1510 The guiding part of the end part. Referring again to the specific example of apparatus 15a shown in Figures i5A through 15B, the portion of supply tube ι 512 within inner balloon i5i4 can include supply tube aperture 1518. The cooling assembly (10) may include internal balloon apertures π 152 分布 arranged in a spiral arrangement or other suitable arrangement on the inner balloon b i 4 . The inner balloon aperture σ 152 〇 can be, for example, a laser cut-out in the inner balloon 15U. When the cooling assembly 15〇2 is in a delivery state, the outer balloon 1 5 1〇 and the inner balloon 1 5 14 can be delivered into the outer sheath at least eight inches. VIII contraction to assemble when the cooling assembly 1 502 is deployed, the double agent can flow from the supply camp hole 1518 through the supply tube aperture 1518 and into the inner balloon ΐ 5 ΐ 4 'tube aperture 1518 can be large enough Allow the refrigerant to enter. Supply door #Pin ball 1514 and 57 201223577 Do not make a significant part of the liquid to inquire about the "liquid phase - a gas phase change" (for example, most liquid refrigerants). |also made ^ m ° in the state of the government, the internal balloon outside the supply tube 1512 1 5 1 4 internal; 丨 丨 ϊ ★ ★ 广 ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对 绝对The absolute vapor pressure of the refrigerant in the supply tube portion is from about 100% to about 100% 'such as from about 20% to about 嶋 or about 33% to about 嶋. The first free passage area (equal to the inner balloon aperture σ 152〇) The total free passage area) may be smaller than the second free passage area (equal to the total free passage area of the supply tube orifice 1518). The size of the inner balloon aperture σ(10) may be selected and the number of the first free passage area may be controlled by the number. Similarly The first free passage area is controlled by a large j and/or number of supply tube orifices ΐ5ΐ8. The refrigerant may expand from the inner balloon 1514 through the inner balloon aperture 152 to cool one or more corresponding heats of the applicator 1508. Passing part. In detail, the inner balloon aperture 1520 can be configured to cool the generally helical heat transfer portion. Figures 16A-16B illustrate a cryotherapy device 16A that differs from the cooling assembly 1500 of Figure 15A in terms of external balloon shape. Device 16A includes cooling total In 1602, the cooling assembly 1602 includes an applicator 1604 having an outer balloon 16〇6 having raised spiral portions 16〇8 and recessed portions 1610. Raising the inner surface of the helical portion 16〇8 The expanded refrigerant can be configured to receive the inner balloon orifice 1 520, and raising the inner surface shape of the helical portion 1608 can help localize the increased convective cooling at the raised helical portion 1608. The recessed portion 16 10 is generally configured to not contact the renal artery or renal ostium. Localizing the increased convective cooling to raise the helical portion 16 6 can contribute to cooling efficiency and cooling position selectivity. The portion 1 608 may correspond to a heat transfer portion having a higher heat transfer rate than the other heat transfer 58 201223577 of the applicator 1604, such as a heat transfer portion corresponding to the concave portion 161G. For example, During operation, the raised helical portion 16G8 may correspond to a heat transfer portion having a heat transfer rate that produces a therapeutically effective renal neuromodulation, and another heat transfer portion of the applicator (eg, corresponding to The heat transfer portion of the recessed portion 161 / has a heat transfer rate that is less than X to produce a therapeutically effective renal neuromodulation. The guided type of transfer 17 Α to 22 Β illustrates that differential conduction heat transfer can be used to influence the treatment. Several specific examples of low/dish/alpha therapy devices. Features associated with conductive heat transfer via an applicator may contribute to one or more therapeutic goals of hypothermic renal neuromodulation such as desired localization or overall treatment Model. In a number of specific examples, such devices use a thermally insulating component to control conduction. Features associated with differential conduction heat transfer via an applicator may include, for example, other balloons (eg, non-cooling balloons and balloons with low cooling levels), differential compositions (eg, 'low thermal conductivity and high thermal conductivity materials ), differential thickness ' ('for example 'balloon wall thickness) and insulation structure (mn, inside the balloon or attached to the balloon wall of the elongated insulation). Figure 17B illustrates a portion of the cryotherapy device including the cooling assembly 17G2 at the distal end portion 1704 defining the elongate shaft 17〇6 of the venting channel. The distal portion 1704 can have a step 17〇7, and the total cooling force 17〇2 can include a balloon pi^ applicator configured to contact the renal artery or the renal orifice. The applicator i can further include a plurality of elongate members, the length of the elongate insulating members being substantially parallel to the length of the cooling year 1702 and radially spaced about the circumference of the cooling assembly 17G2. 59

fw-A 201223577 氣球1710可定義經組態以產生並遞送低溫冷卻之膨脹腔。 裝置1700可進一步包括沿軸17〇6之長度延伸且延伸至氣 球1 7 1 0中的供應管i 7丨2,且該冷卻總成i 7〇2可在供應管 1712之末端包括孔口 1714。在冷卻總成17〇2呈部署狀態 時進行操作期間,絕熱部件1711可減少通過氣球171〇之相 鄰部分的傳導冷卻。舉例而言,介於絕熱部件丨7丨1之間的 氣球mo之部分可具有足以產生治療上有效之腎神經調節 的熱傳遞速率,而絕熱部件ηι丨處之氣球部分可具有較低 熱傳遞速率,諸如不足以產生治療上有效之腎神經調節的 熱傳遞速率。絕熱部件1711可為細長的且大體上沿施藥器 1708之部分的長度連續。據此,對應於絕熱部件丨7 11之間 的氣球1710之部分的熱傳遞部分在冷卻總成17〇2之縱向 片段處可為大體上非圓周的。 絕熱部件1711可包括熱傳導率低於或等於氣球171〇 之原材料之熱傳導率的原材料。在若干具體實例中,絕熱 部件1711具有與氣球171〇不同的組成且連接於氣球 之内表面。若干其他具體實例可包括組成上與氣球ΐ7ι〇相 似(例如,相同)或不同的絕熱部件1711。適用於根據本 發明技術之若干具體實例組態之絕熱部件的原材料包括絕 熱聚合發泡體(例如聚胺曱酸酯發泡體)。在若干具體實例 中,絕熱部件1711可與氣球1710整體地形成或連接於氣球 1710。 圖1 8 A至圖1 8B說明除絕熱部件之組態以外與圖17八 至圖17B之装置17〇〇相似的低溫治療裝置18〇〇之一部分。 201223577 - 根據本發明技術之若干具體實例組態之絕熱部件在遞送狀 - 態下可具有不同於部署狀態下之絕緣性質。舉例而言,在 » 部署狀態下’絕熱部件可經組態以填充有填充材料。裝置 ‘ 1 800包括具有施藥器1 8〇4之冷卻總成1 8〇2,該施藥器具 有可定義經組態以產生並遞送低溫冷卻之膨脹腔的氣球 1806。施藥器1 804亦包括複數個絕熱部件1808。裝置180〇 可進一步包括填充管1 8丨〇,且絕熱部件1 8〇8可經組態以在 部署狀態下經由填充管1 8 1 〇得以填充。在所說明之具體實 例中’填充管1810包括主要部分1812及4個分支1814, 其中該等分支流體連接主要部分與絕熱部件1 8〇8中之一 者。絕熱部件1 8 08及填充管1 8 1 〇與氣球丨806内之膨脹腔 流體分離。 填充管1 8 1 0具有經組態以接收來自血管結構外之填充 材料源(未圖示)之填充材料的近端部分(未圖示)。填充 管1 810及絕熱部件1 〇 8可經組態以在遞送狀態下完全、 大部分或部分收縮。此組態可用於允許在遞送狀態下引入 流體填充材料而不需要排放經替換之氣體。若干其他具體 實例可包括大體上不可收縮之填充管及經組態以接收來自 該填充管之經替換氣體或液體的絕熱部件。根據本發明技 術之若干具體實例組態之填充管之近端部分可流體連接於 填充口 诸如包括注射器配接器之填充口,諸如包括經組 態以用含有填充材料之注射器之針刺穿之膜片的注射器配 接器。該填充口可經組態以(例如)在填充材料通過之前、 期間及/或之後減少(例如,防止)空氣通過。然而,在若 61 201223577 干具體實例中,空氣可為適合填充材料。根據本發明技術 之若干具體實例(包括本文所述之該等具體實例)組態之 包括填充管之低溫治療裝置的其他組件可以類似方式組 。適用於根據本發界技術之若干具體實例組態之低溫治 療裝置的填充材料包括液體(例如鹽水)、氣體(例如空 氣)、生物學惰性材料及不透射線材料(例如造影劑)。 雖然圖ΠΑ至圖⑽中展示4個絕熱部件,但根據本 發明技術之若干具體實例組態之冷卻總成可包括任何適合 數目之絕熱部件’諸如至少一或多個絕熱部件。此外,根 據本發明技術之若干具體實例組態之絕熱部件大體上可為 獨立元件或單—元件之部分,且可具有各種適合形狀。 圖19A至圖19C說明低溫治療裝置19〇〇之一部分。參 考圖19A,裝置1900可包括處於定義排出通道之細長轴 1906之遠端部分19〇4處的冷卻總成19〇2。遠端部分dm 可具有台階1907,且冷卻總成19〇2可包括具有可定義經組 態以產生並遞送低溫冷卻之膨脹腔之氣球191〇的施藥器 1908 ^裝置19〇〇可進一步包括沿軸19〇6之長度延伸且延 伸至氣球i91〇中的供應管1912,且該冷卻總成19〇2可包 括處於供應管1912之末端處的孔口 19丨4。裝置19〇〇可進 步包括螺旋狀絕熱部件1916,該絕熱部件可為(例如) 在氣球1910之内表面處具有額外厚度的氣球191〇之較厚 部分(亦即氣球1910之外表面大體上可為平滑的,或以其 他方式在螺旋狀絕熱部件1 91 6處及螺旋狀絕熱部件19 ^ 6 周圍為平坦的)。在冷卻總成19〇2呈部署狀態時之操作期 201223577 間,螺旋狀絕熱部件1916可對應於與施藥器19〇8之其他 部分相比具有較低熱傳遞速率的施藥器19〇8之熱傳遞部 分。舉例而言,遠離螺旋狀絕熱部件1916之施藥器 之部分的熱傳遞速率在操作期間可足以產生治療上有效之 腎神經調節,而施藥器1908之在螺旋狀絕熱部件丨916處 之部分的熱傳遞速率可能不足以產生治療上有效之腎神: 調節。圖19B及圖19C為施藥器19〇8之不同縱向位置處之 橫截面圖。如圖19B及目19C中所示,螺旋狀絕熱部件㈣ 之圓周位置沿冷卻總成19()2之長度而變化以使得氣球測 之遠離螺旋狀絕熱部件1916之部分在沿冷卻總成19〇2之 長度之縱向片段中大體上為非圓周的。 圖20A至圖20C說明除絕熱部件形狀以外與圖19八至 圖19C之裝置1900相似之低溫治療裝置2〇〇〇之一部分。 參考圖20A,裝置2000包括具有施藥器2〇〇4之冷卻總成 2002 ’該施藥器具有可定義經組態以產生並遞送低溫冷卻 之膨脹腔的氣球2_。施藥器·4亦包括大體上類似交纏 雙螺旋(例如交纏之右手螺旋及左手螺旋)的絕熱部件 2008。施藥器2〇〇4之在絕熱部件2刚處之熱傳遞部分大 體上將施落器2GG4之熱傳遞部分與絕熱部件2刪隔離 開。絕熱部件2 0 0 8可經έ且能以告·、人a a J左、、且悲以®冷部總成2002在遞送狀 態與部署狀態之間移動時斑齑击 J矽郓于,、孔砵2000 —起收縮及/或膨 脹。舉例而言’若氣球2006大體上兔可娃。u ^ 人锻上為可撓且非順應性的, 則絕熱部件2 0 0 8可大體上可墙曰或,lls處丄 —尽 j挽且為順應性或非順應性的。 若氣球2006大體上為順應性的目丨 只u丨町則絕熱部件2008可大體 63 201223577 上為順應性的以便協同氣球雇―心彳請性地膨服及收 縮。圖!7A至圖18B中所示之絕熱部件i7i6、腦及圖 19A至圖19B令所示之螺旋狀絕熱部件丨916 相對於相應氣球㈣、、職、胸加以組態。在本發^ 術之若干具體實例中,絕熱部件之彈性模數為相應氣球之 彈性模數的約5G%與約15G%之間,諸如約鳩與約14〇% 之間或約33%與約130%之間。 根據本發明技術之其他具體實例組態之絕熱部件可完 全或部分連接於相應氣球,或在其他具體實例中,絕熱部 件不連接於氣球。當絕熱部件僅部分連接於或不連接於相 應氣球時,相應氣球之膨脹及/或收縮可與絕熱部件相對無 關。圖21A至圖21C說明包括處於定義排出通道之細長軸 21 〇6之遠端部分2丨〇4處之冷卻總成2丨〇2的低溫治療裝置 2100之一部分。遠端部分2104可具有台階2107及圓形唇 緣2108。冷卻總成2102可包括具有氣球2110之施藥器 2109 ’氣球2110具有遠端頸部2111,且氣球2110可定義 經組態以產生並遞送低溫冷卻之膨脹腔。裝置2丨〇〇可進一 步包括細長引導部件2112及沿軸2106之長度延伸並延伸至 氣球2110中的供應管2114。冷卻總成2102可包括處於供 應管之末端的孔口 2116。在所說明之具體實例中,引導部 件2112延伸至遠端頸部2111。施藥器2109進一步包括第 一細長絕熱部件2 11 8及第二細長絕熱部件2 120。第一細長 絕熱部件2118及第二細長絕熱部件2120不連接於氣球 2110 °作為替代,第一細長絕熱部件2118及第二細長絕熱 δ 64 201223577 邛件2120連接於遠端部分2104之内表面。 ^當冷卻總成2102呈部署狀態時’第一絕熱部件2ιΐ8 及第二絕熱部件212〇可響應於重力而相對於氣球2⑽移 動。第-絕熱部件2118及第二、絕熱部件2m可在其於氣球 内沈降時在圓形唇緣2⑽之上移動。如圖2ia中所示,第 一絕熱部件2118及第二絕熱部件2120可沿氣球211〇之下 P邛刀沈降。如圖2 i B中所示,第一絕熱部件2 11 8及第二 絕熱部件212()具有類似圓化三角形之橫截面面積。在其他 具體實例巾,類似絕熱部件可具有不同的橫截面面積。圓 化三角形橫截面面積可尤其適用於增加大體上未連接之絕 熱部件之側面與氣球之内表面的接觸面積,同時防止多個 大體上未連接之絕熱部件重疊。參考圖21C,展示呈遞送狀 態的處於遞送外鞘2122内之裝置21〇〇。如圖21C中所示, 在遞送狀態下,第一絕熱部件2118及第二絕熱部件212〇 可與氣球2 11 〇 —起收縮。 圖22 A至圖22B說明除絕熱部件之組態以外與圖2 i a 至圖21C之裝置2100相似之低溫治療裝置2200之一部分。 裝置2200包括具有施藥器2204之冷卻總成22〇2,該施藥 器具有可定義經組態以產生並遞送低溫冷卻之膨脹腔的氣 球2206。施藥器2204亦包括第一細長絕熱部件2208及第 一絕熱部件2210®裝置2200可進一步包括填充管2212, 且第一絕熱部件2208及第二絕熱部件2210可經組態以在 部署狀態下經由填充管2212加以填充。填充管22 12可包 括樞紐2214,填充管2212在樞紐2214處分支成第一絕熱 65 201223577 部件2208及第二絕熱部件2210。如上文參考圖18A至圖 1 8 B中所不之裝置1 8 0 0之絕熱部件1 8 〇 8所論述,第一絕熱 部件2208及第二絕熱部件2210及填充管2212可與氣球 2206流體分離。填充管22 12可具有經組態以接收來自企管 構外之填充材料的近端部分(未圖示)。填充管2 2 1 2及 第一絕熱部件2208及第二絕熱部件2210可經組態以在冷 郃總成2202呈遞送狀態時完全、大部分或部分收縮。 根據本發明技術之若干具體實例組態之冷卻總成可包 括一或多個具有各種適合形狀之絕熱部件以在施藥器周圍 產生不同型樣之熱傳遞部分。舉例而言,可選擇型樣以便 在絕熱部件處大體上不間斷之熱傳遞部分可足夠大以充分 局部化對於腎神經調節而言治療上有效之冷卻(例如,^ 2對於腎神、_節而言治療上有效之冷卻大體上不會在絕 件處跨過熱傳遞部分)。此外或作為替代,可選擇型樣 絕熱部件間隔開之熱傳遞部分足夠大以允許進 比例,因此若效之冷卻°熱傳遞與面積成 過熱傳遞部分件間隔開之熱傳遞部分過小,則通 神經調節而分的總熱傳遞可能不足以產生對於腎 D 療上有效之冷卻。 圖23A至圖3 干具體實例,、說月包括複雜氣球之低溫治療裝置的若 關之-或多個:療複曰雜氣球可有助於與低溫腎神經調節相 樣、定大小及八、標,諸如所需局部化或總體治療型 Q为閉塞。複雜氣球可具有各種適合特性, 66 201223577 • 諸如形狀(例如螺旋狀、曲線、縱向不對稱及徑向不對稱)、 ‘ 表面差異(例如凹區、溝槽、突起及突出物)及差異膨脹 * (例如部分受限制之膨脹)。 » 圖23A至圖23B說明包括處於定義排出通道之細長轴 23 00之遠端部分23〇4處之冷卻總成2302的低溫治療褒置 23 00之一部分。遠端部分23〇4可具有台階2307、第—排 出口 23 08、第二排出口 23〇9及圓形末端231〇。冷卻總成 2302可包括具有定義第一膨脹腔之第一氣球2312及定義第 二膨脹腔之第二氣球2313的施藥器2311。第一氣球2312 及第二氣球2313分別經由第一排出口 2308及第二排出口 2 3 0 9流體連接於排出通道。裝置2 3 0 0可進一步包括沿車由 2306之長度延伸的供應管2314,且冷卻總成2302可進— 步包括第一孔口 2316及第二孔口 2318。第一孔口 2316與 第一排出口 2308對準以使得致冷劑膨脹通過第一排出口 23 08並進入第一氣球2312,且第二孔口 2318與第二排出 口 2309對準以使得致冷劑膨脹通過第二排出口 23〇9並進 入第二氣球23 13。 第一氣球23 12及第一氣球23 13沿冷卻總成230.2之長 度間隔開且經組態以沿冷卻總成2302之長度橫向膨脹跨越 不同部分圓弧。當冷卻總成2302呈部署狀態時,第一氣球 2 3 12可經組態以接觸腎動脈或腎小口内表面之第一部分圓 周部分,且第二氣球23 13可經組態以接觸腎動脈或腎小口 内表面之第二部分圓周部分。第一部分圓周部分及第二部 分圓周部分在垂直於腎動脈或腎小口之長度的平面中可具 67 201223577 有凡王圓周組合投影。據此,當治療要求在縱向片段處的 部分圓周冷卻及完全圓周總體冷卻型樣時,冷卻總成2302 可經組態以有助於該治療而不需在治療期間重新定位冷卻 總成23 02。 虽第—氣球23 12及第二氣球23丨3均呈部署狀態時, 其可向腎動脈或腎小口内表面之大體上相反側推動彼此。 舉例而5,遠端部分23〇4可在第一氣球23 12與第二氣球 2313之間傳遞力,而鄰近遠端部分之軸23〇6之部分保持遠 端°卩刀大體上平行於腎動脈或腎小口之長度。在此期間及 其他操作期間,冷卻總成23〇2可經組態以不閉塞(亦即並 不完全閉塞腎動脈或腎小口)。舉例而言,冷卻總成23〇2 可經組態以允許正常血流之一百分比(例如,正常灰流之 至少約1%、至少約10%或至少約25%)通過腎動脈或腎小 D 〇 圖24A至圖24B說明主要在排出組態方面不同於圖 23A至圖23B之裝置2300的低溫治療裝置24〇〇之_部分。 裝置2400 &括處於定義排出通道之細長車由24〇6之遠端部 分2404處的冷卻總成24〇2。遠端部分24〇4可具有台階 2407、第一排出口 24〇8、第二排出口 24〇9及圓形末= 2410。 冷卻總成24〇2可包括具有定義第一膨脹腔之第—氣 球24丨2及定義第二膨脹腔之第二氣球2413的施藥器 2411。 第一氣球2412及第二氣球2413分別經由第—排出口 2408及第二排出口 2409流體連接於排出通道。裝置24〇〇 可進一步包括沿軸2406之長度延伸且具有第一橫向分支fw-A 201223577 Balloon 1710 may define an expansion chamber configured to generate and deliver cryogenically cooled. The device 1700 can further include a supply tube i 7丨2 extending along the length of the shaft 17〇6 and extending into the balloon 171, and the cooling assembly i 7〇2 can include an aperture 1714 at the end of the supply tube 1712 . The heat insulating member 1711 can reduce conduction cooling through the adjacent portion of the balloon 171 while the cooling assembly 17 is in the deployed state. For example, the portion of the balloon mo between the insulating members 丨7丨1 may have a heat transfer rate sufficient to produce a therapeutically effective renal neuromodulation, while the balloon portion at the insulating member ηι丨 may have a lower heat transfer The rate, such as a rate of heat transfer that is insufficient to produce a therapeutically effective renal neuromodulation. The insulating component 1711 can be elongated and generally continuous along the length of a portion of the applicator 1708. Accordingly, the heat transfer portion corresponding to the portion of the balloon 1710 between the heat insulating members 丨7 11 may be substantially non-circular at the longitudinal section of the cooling assembly 17〇2. The heat insulating member 1711 may include a raw material having a thermal conductivity lower than or equal to the thermal conductivity of the raw material of the balloon 171A. In several embodiments, the insulating member 1711 has a different composition than the balloon 171 and is attached to the inner surface of the balloon. Several other specific examples may include a heat insulating member 1711 that is similar (e.g., identical) or different in composition to the balloon ΐ7ι. Raw materials suitable for the heat insulating member configured in accordance with several specific examples of the present technology include adiabatic polymeric foams (e.g., polyamine phthalate foams). In several embodiments, the insulating component 1711 can be integrally formed with or coupled to the balloon 1710. Fig. 18A to Fig. 8B illustrate a portion of the cryotherapy device 18A similar to the device 17A of Figs. 17-8 to 17B except for the configuration of the heat insulating member. 201223577 - Insulation components configured in accordance with several embodiments of the present technology may have different insulating properties than the deployed state in the delivery state. For example, in the » deployment state, the insulation component can be configured to be filled with a filler material. Apparatus ' 1 800 includes a cooling assembly 1 8〇2 having an applicator 1 8〇4 having a balloon 1806 that defines an expansion chamber configured to produce and deliver cryogenically cooled. The applicator 1 804 also includes a plurality of insulating members 1808. The device 180A may further include a fill tube 18 丨〇, and the insulating member 18 8 may be configured to be filled via the fill tube 1 8 1 在 in the deployed state. In the particular embodiment illustrated, the fill tube 1810 includes a main portion 1812 and four branches 1814, wherein the branch fluids connect the main portion to one of the insulating members 18 8 . The insulating member 108 08 and the filling tube 1 8 1 流体 are fluidly separated from the expansion chamber in the balloon 806. The fill tube 1 8 1 0 has a proximal portion (not shown) configured to receive a fill material from a source of filler material (not shown) outside of the vascular structure. The fill tube 1 810 and the insulating member 1 〇 8 can be configured to fully, largely or partially contract in the delivery state. This configuration can be used to allow the introduction of fluid fill material in the delivery state without the need to vent a replaced gas. Several other specific examples can include a substantially non-shrinkable fill tube and a thermally insulating member configured to receive a replacement gas or liquid from the fill tube. The proximal portion of the fill tube configured in accordance with several embodiments of the present technology can be fluidly coupled to a fill port such as a fill port including a syringe adapter, such as including a needle configured to be pierced with a syringe containing a filler material. Syringe adapter for the diaphragm. The fill port can be configured to reduce (eg, prevent) air passage, for example, before, during, and/or after the fill material passes. However, in the dry example of 61 201223577, air may be suitable for the filling material. Other components of the cryotherapy device including the fill tube configured in accordance with several embodiments of the present technology, including the specific examples described herein, may be grouped in a similar manner. Filling materials suitable for use in cryotherapy devices configured in accordance with several embodiments of the present technology include liquids (e.g., saline), gases (e.g., air), biologically inert materials, and radiopaque materials (e.g., contrast agents). Although four insulating members are shown in Figures (10), a cooling assembly configured in accordance with several embodiments of the present technology can include any suitable number of insulating members such as at least one or more insulating members. Moreover, the thermally insulating component configured in accordance with several embodiments of the present technology may generally be a separate component or a single component, and may have a variety of suitable shapes. 19A to 19C illustrate a portion of the cryotherapy device 19. Referring to Figure 19A, device 1900 can include a cooling assembly 19〇2 at a distal end portion 19〇4 of an elongated shaft 1906 defining a discharge passage. The distal portion dm can have a step 1907, and the cooling assembly 19〇 can include an applicator 1908 having a balloon 191 that can define an expansion lumen configured to generate and deliver cryogenic cooling. The device 19 can further include Extending along the length of the shaft 19〇6 and extending into the supply tube 1912 in the balloon i91〇, the cooling assembly 19〇2 may include an aperture 19丨4 at the end of the supply tube 1912. The device 19 can be advanced to include a helical insulating member 1916 which can be, for example, a thicker portion of the balloon 191 having an additional thickness at the inner surface of the balloon 1910 (i.e., the outer surface of the balloon 1910 is substantially It is smooth, or otherwise flat around the spiral heat insulating member 1 916 and around the spiral heat insulating member 19^6. The spiral heat insulating member 1916 may correspond to the applicator 19〇8 having a lower heat transfer rate than the other portions of the applicator 19〇8 during the operation period 201223577 when the cooling assembly 19〇2 is in the deployed state. The heat transfer part. For example, the rate of heat transfer away from the portion of the applicator of the helical insulating member 1916 may be sufficient to produce a therapeutically effective renal neuromodulation during operation, while the portion of the applicator 1908 at the helical insulating member 916 is The rate of heat transfer may not be sufficient to produce a therapeutically effective kidney god: regulation. 19B and 19C are cross-sectional views at different longitudinal positions of the applicator 19〇8. As shown in Fig. 19B and Fig. 19C, the circumferential position of the spiral heat insulating member (4) is varied along the length of the cooling assembly 19 () 2 so that the portion of the balloon measured away from the spiral heat insulating member 1916 is along the cooling assembly 19 〇. The longitudinal segments of length 2 are generally non-circular. 20A to 20C illustrate a portion of the cryotherapy device 2 similar to the device 1900 of Figs. 19 to 19C except for the shape of the heat insulating member. Referring to Figure 20A, device 2000 includes a cooling assembly 2002' having an applicator"2'. The applicator has a balloon 2_ that can define an expansion chamber configured to produce and deliver cryogenically cooled. The applicator 4 also includes a thermal insulation component 2008 that is substantially similar to an interlaced double helix (e.g., an entangled right handed helix and a left handed helix). The heat transfer portion of the applicator 2〇〇4 in the heat insulating portion 2 substantially separates the heat transfer portion of the applicator 2GG4 from the heat insulating member 2. The heat insulating member 2 0 0 8 can be smashed and can be moved between the delivery state and the deployed state by the suffix, the person aa J left, and the sorrow® cold assembly 2002.砵2000 starts to shrink and/or expand. For example, if the balloon 2006 is generally rabbit, it can be a baby. u ^ If the forging is flexible and non-compliant, then the insulating member 2000 can be substantially wall-walled or lls--supplied and compliant or non-compliant. If the balloon 2006 is generally compliant, only the 丨 则 则 则 则 则 则 则 则 2008 2008 2008 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 Figure! The heat insulating member i7i6, the brain shown in Figs. 7A to 18B, and the spiral heat insulating member 916 shown in Figs. 19A to 19B are configured with respect to the respective balloons (four), positions, and chests. In some embodiments of the present invention, the thermal modulus of the insulating member is between about 5 G% and about 15 G% of the elastic modulus of the respective balloon, such as between about 〇 and about 14% or about 33%. About 130%. The insulating member configured in accordance with other embodiments of the present technology may be fully or partially coupled to the respective balloon, or in other embodiments, the insulating member may not be attached to the balloon. When the insulating member is only partially connected or not connected to the corresponding balloon, the expansion and/or contraction of the corresponding balloon may be relatively independent of the insulating member. 21A-21C illustrate a portion of a cryotherapeutic device 2100 that includes a cooling assembly 2丨〇2 at a distal end portion 2丨〇4 of an elongated shaft 21 〇6 defining a discharge passage. The distal portion 2104 can have a step 2107 and a rounded lip 2108. The cooling assembly 2102 can include an applicator 2109 having a balloon 2110. The balloon 2110 has a distal neck 2111, and the balloon 2110 can define an expansion lumen configured to generate and deliver cryogenic cooling. The device 2 can further include an elongated guide member 2112 and a supply tube 2114 extending along the length of the shaft 2106 and extending into the balloon 2110. Cooling assembly 2102 can include an orifice 2116 at the end of the supply tube. In the illustrated embodiment, the guiding member 2112 extends to the distal neck 2111. The applicator 2109 further includes a first elongated thermal insulation member 2 11 8 and a second elongated thermal insulation member 2 120. Instead of the balloon 2110°, the first elongated thermal insulation component 2118 and the second elongated thermal insulation component 2120 are instead attached, and the first elongated thermal insulation component 2118 and the second elongated thermal insulation δ 64 201223577 邛 2120 are attached to the inner surface of the distal end portion 2104. When the cooling assembly 2102 is in the deployed state, the first heat insulating member 2 ι 8 and the second heat insulating member 212 are movable relative to the balloon 2 (10) in response to gravity. The first heat insulating member 2118 and the second heat insulating member 2m are movable over the circular lip 2 (10) as they settle in the balloon. As shown in Fig. 2ia, the first heat insulating member 2118 and the second heat insulating member 2120 can be settled along the P 邛 under the balloon 211〇. As shown in Fig. 2 i B, the first heat insulating member 2 11 8 and the second heat insulating member 212 () have a cross-sectional area similar to a rounded triangle. In other specific examples, similar insulating members may have different cross-sectional areas. The circular triangular cross-sectional area may be particularly useful for increasing the contact area of the sides of the substantially unconnected insulating member with the inner surface of the balloon while preventing overlapping of a plurality of substantially unconnected insulating members. Referring to Figure 21C, the device 21A in the delivery sheath 2122 is shown in a delivery state. As shown in Fig. 21C, in the delivery state, the first heat insulating member 2118 and the second heat insulating member 212 are contracted together with the balloon 2 11 . 22A through 22B illustrate a portion of the cryotherapy device 2200 similar to the device 2100 of Figs. 2a through 21C, except for the configuration of the insulating member. Apparatus 2200 includes a cooling assembly 22A having an applicator 2204 having a balloon 2206 that defines an expansion chamber configured to produce and deliver cryogenically cooled. The applicator 2204 also includes a first elongated thermal insulation component 2208 and a first thermal insulation component 2210®. The device 2200 can further include a fill tube 2212, and the first thermal insulation component 2208 and the second thermal insulation component 2210 can be configured to be deployed in a deployed state. The fill tube 2212 is filled. The fill tube 22 12 can include a hub 2214 that branches at the hub 2214 into a first insulation 65 201223577 component 2208 and a second insulation component 2210. The first insulating member 2208 and the second insulating member 2210 and the filling tube 2212 can be fluidly separated from the balloon 2206 as discussed above with reference to the insulating member 1 8 〇 8 of the device 1 800 of FIG. 18A to FIG. . The fill tube 22 12 can have a proximal portion (not shown) configured to receive a fill material from outside the tubular structure. The fill tube 2 2 1 2 and the first insulating member 2208 and the second insulating member 2210 can be configured to fully, largely or partially contract when the cold heading assembly 2202 is in a delivery state. A cooling assembly configured in accordance with several embodiments of the present technology may include one or more insulating members having various suitable shapes to create different types of heat transfer portions around the applicator. For example, the pattern can be selected such that the substantially uninterrupted heat transfer portion at the insulating member can be large enough to adequately localize therapeutically effective cooling for renal neuromodulation (eg, 2 for kidney, _ section) In other words, therapeutically effective cooling does not generally cross the heat transfer portion at the extrudate). Additionally or alternatively, the heat transfer portion spaced apart by the pattern of insulating members may be selected to be large enough to allow for proportionality, such that if the cooling heat transfer is too small as the heat transfer portion of the area that is separated by the heat transfer portion, the nerve is passed through The adjusted total heat transfer may not be sufficient to produce a therapeutically effective cooling for kidney D. FIG. 23A to FIG. 3 are specific examples of the hypothermia treatment device including a complex balloon, or more: the therapeutic doped balloon can contribute to the same size and size as the hypothermic renal nerve regulation. The target, such as the desired localization or overall treatment type Q, is occlusion. Complex balloons can have a variety of suitable properties, 66 201223577 • Such as shapes (eg spiral, curved, longitudinal asymmetry and radial asymmetry), 'surface differences (eg recesses, grooves, protrusions and protrusions) and differential expansion* (eg partially restricted expansion). Figures 23A-23B illustrate a portion of a cryotherapy device 23 00 that includes a cooling assembly 2302 at a distal end portion 23〇4 of an elongated shaft 23 00 defining a discharge passage. The distal end portion 23A can have a step 2307, a first discharge port 23 08, a second discharge port 23〇9, and a rounded end 231〇. The cooling assembly 2302 can include an applicator 2311 having a first balloon 2312 defining a first inflation lumen and a second balloon 2313 defining a second inflation lumen. The first balloon 2312 and the second balloon 2313 are fluidly connected to the discharge passage via the first discharge port 2308 and the second discharge port 2 3 0 9 , respectively. The device 2300 can further include a supply tube 2314 extending along the length of the vehicle 2306, and the cooling assembly 2302 can further include a first aperture 2316 and a second aperture 2318. The first orifice 2316 is aligned with the first discharge port 2308 such that the refrigerant expands through the first discharge port 23 08 and into the first balloon 2312, and the second orifice 2318 is aligned with the second discharge port 2309 to cause The refrigerant expands through the second discharge port 23〇9 and enters the second balloon 23 13 . The first balloon 23 12 and the first balloon 23 13 are spaced apart along the length of the cooling assembly 230.2 and are configured to expand laterally across different portions of the arc along the length of the cooling assembly 2302. When the cooling assembly 2302 is in a deployed state, the first balloon 2312 can be configured to contact a first portion of the circumferential portion of the renal artery or the small lumen inner surface, and the second balloon 23 13 can be configured to contact the renal artery or The second partial circumferential portion of the inner surface of the renal orifice. The first partial circumferential portion and the second partial circumferential portion may have a combined projection of the phoenix circumference in a plane perpendicular to the length of the renal artery or the small renal opening. Accordingly, when treatment requires partial circumferential cooling and a full circumferential overall cooling pattern at the longitudinal segments, the cooling assembly 2302 can be configured to facilitate the treatment without repositioning the cooling assembly during treatment 23 02 . While both the first balloon 23 12 and the second balloon 23 丨 3 are deployed, they can push each other toward the generally opposite side of the renal artery or the inner surface of the renal orifice. For example, 5, the distal portion 23〇4 can transmit a force between the first balloon 23 12 and the second balloon 2313, while the portion adjacent the distal portion of the shaft 23〇6 maintains the distal end. The file is substantially parallel to the kidney. The length of the arteries or kidneys. During this and other operations, the cooling assembly 23〇2 can be configured to be non-occlusive (i.e., not completely occluding the renal artery or renal ostia). For example, the cooling assembly 23〇2 can be configured to allow a percentage of normal blood flow (eg, at least about 1%, at least about 10%, or at least about 25% of normal ash flow) through the renal artery or small kidney D FIGS. 24A to 24B illustrate a portion of the cryotherapy device 24 that is different from the device 2300 of FIGS. 23A to 23B mainly in terms of discharge configuration. Apparatus 2400 & includes a cooling assembly 24〇2 at the distal end portion 2404 of the elongated vehicle defining the discharge passage. The distal end portion 24A can have a step 2407, a first discharge port 24〇8, a second discharge port 24〇9, and a round end = 2410. The cooling assembly 24〇2 can include an applicator 2411 having a first balloon 24丨2 defining a first inflation lumen and a second balloon 2413 defining a second inflation lumen. The first balloon 2412 and the second balloon 2413 are fluidly connected to the discharge passage via the first discharge port 2408 and the second discharge port 2409, respectively. The device 24A can further include a length extending along the length of the shaft 2406 and having a first lateral branch

68 201223577 • 2416及第二橫向分支2418的供應管2414。冷卻總成“Μ ‘可進一步包括處於第一橫向分支2416之末端的對第一氣球 • 2412開放之第—孔口 242()及處於第二橫向分支mu之末 •端的對第二氣球2413開放之第二孔口 2422。與圖23A至圖 23B中所不之裝置23〇〇不同,裝置24〇〇包括處於遠端部分 2404之周向相反側且針對第一氣球2412及第二氣球“η 的致冷劑供應器及致冷劑排出裝置。第一氣球2412及第二 氣球2413圍繞遠端部分24〇4之完全圓周縱向片段延伸, 但連接於遠端部分2404且經成型以便關於遠端部分24〇4 不對稱地膨脹。 根據本發明技術之若干具體實例組態之冷卻總成可包 括與圖23A至圖24B中所示之冷卻總成23〇2、24〇2不同的 部分圓周氣球數目《舉例而言,在若干具體實例中,冷卻 總成2302可包括第一氣球2312或第二氣球2313而不是包 括兩者。類似地,冷卻總成24〇2可包括第一氣球2412或 第二氣球2413而不是包括兩者。圖23A至圖24B中所示之 冷卻總成2302、2402亦可包括更多數目之氣球,諸如縱向 及徑向間隔開之3或4個氣球。此外,氣球之大小可變化。 舉例而s,在若干具體實例中,冷卻總成23〇2之第一氣球 2312及第二氣球2313或冷卻總成24〇2之第一氣球2412及 第二氣球2413經組態以提供部分圓周總體冷卻型樣。 根據本發明技術之若干具體實例組態之冷卻總成可包 括具有氣球之施藥器’該等氣球具有各種適合表面特性, 諸如經組態以有助於單獨或與完全圓周總體冷卻型樣組合 Ο J! 69 201223577 之在縱向片段處的部分圓周冷卻的表面特性。圖25說明在 定義排出通道之細長軸2506之遠端部分2504處包括冷卻 總成2502的低溫治療裝置25〇〇之一部分。遠端部分 了 有σ.Ρό 2507’且冷卻總成2502可包括具有定義膨脹腔 且具有遠端頸部2 5 11、螺旋狀凹區2 5丨2及非凹入部分2 5丄3 之氣球2510的施藥器2508。裝置2500可進一步包括延伸 通過遠端頸部2511之細長引導部件2514 ’以及沿軸25〇6 之長度延伸且延伸至氣球25〖〇中的供應管25丨6。冷卻總成 2502可進一步包括處於供應管2516之遠端的孔口 2518。 當冷卻總成2502.呈遞送狀態時,螺旋狀凹區2512可對應 於施藥器2508之具有比與螺旋狀凹區2512間隔開之施藥 器2508之部分低之熱傳遞速率的熱傳遞部分。 介於螺旋狀凹區2512與治療部位處的腎動脈或腎小口 内表面之間的空間可使最接近螺旋狀凹區25丨2之腎動脈或 腎小口的部分與氣球251〇内之低溫溫度絕熱。舉例而言, 此空間内之冷凍或液體血液可提供熱絕緣。螺旋狀凹區 2512相對於非凹入部分2513之深度可為(例如)對應於足 以使腎動脈或腎小口之—部分與氣球251G内之低溫冷卻絕 熱之材料(例如液體或冷凍血液)厚度的深度。舉例而言, 该深度可為約0.2 mm與約2 mm之間,諸如約〇 3 mm與約 mm之間。在本文所述之低溫治療裝置組件之若干其他 具體實例中,氣球之凹入部分相對於氣球之非凹入部分可 具有類似深度。 圖26說明包括處於定義排出通道之細長軸26〇6之遠 70 201223577 . 端部分2604處之冷卻總成2602的低溫治療裝置26〇〇之另 • 一具體實例之一部分。遠端部分2604可具有台階26〇7,且 . 冷卻總成2602可包括具有定義膨脹腔且具有遠端頸部 , 2611、複數個凹區2612及非凹入部分2613之氣球2610的 施藥器2608。凹區2612可經配置而以螺旋狀型樣圍繞氣球 2610之圓周。冷卻總成2602可進一步包括延伸通過遠端頸 部2611之細長引導部件2614。裝置2600亦可包括沿軸26〇6 之長度延伸且延伸至氣球2610中的供應管26 1 6。冷卻總成 2602可進一步包括處於供應管2616之遠端的孔口 2618。 當冷卻總成2602呈部署狀態時,凹區2612及非凹入部分 2613之功能可類似於圖25中所示之裝置2500之螺旋狀凹 區2512及非凹入部分2513。 圖27A至圖27C說明與圖26之裝置2600相似之低溫 治療裝置2700 <—部分,但與圖26之裝置2600相比,裝 置2700經組態以在腎動脈或腎小口内具有較小閉塞性。裝 置2700包括處於定義排出通道之細長轴2706之遠端部分 2704處的冷卻總成2702。遠端部分2704可具有台階2707, 且冷卻總成2702可包括具有定義膨脹腔且具有近端分支 271卜管形主要部分2712、遠端分支2713、複數個凹區2714 及非凹入部分2716之氣球2710的施藥器2708。複數個凹 區27 14可經配置而以螺旋狀型樣圍繞氣球27 1 0之圓周。 當冷卻總成2702呈部署狀態時,凹區2714及非凹入部分 2716之功能可類似於圖26 t所示之裝置2600的凹區2612 及非凹入部分2613。近端分支2711可經組態以將管形主要 71 201223577 部分2712流體連接於排出通道。裝置2700可進一步包括 可沿軸2706之長度延伸且連接於遠端分支2713之細長引 導部件2718,以及沿軸2706之長度延伸、通過近端分支 2711中之一者且延伸至管形主要部分2712中的供應管 2 720。近端分支2711及遠端分支2713可經組態以使管形主 要部分2712與引導部件271 8間隔開。冷卻總成2702可進 一步包括處於供應管2720之遠端的孔口 2722。 當冷卻總成2702呈部署狀態時,冷卻總成2702可定 義處於引導部件27 1 8之外表面與氣球27 1 0之間的流動路 徑(例如血流路徑)。舉例而言,該流動路徑可圍繞近端分 支2711、通過管形主要部分2712 (例如在引導部件2718 與管形主要部分2712之内表面之間)且圍繞遠端分支271 3 延伸。如圖27B中所示,管形主要部分2712可包括圍繞該 流動路徑之絕熱内部部分2724。絕熱内部部分2724可經組 態以至少部分地使流動路徑中之流體與管形主要部分丄2 内之低溫冷卻絕緣。在所說明之具體實例中,絕熱内部部 分2724可為與氣球271〇之其他部分相比具有較大厚度的 氣球2710之部分。在若干其他具體實例中絕熱内部部分 2724具有與氣球271〇之其他部分不同的組成及/或包括一 或多個獨立的絕熱結構。或者,氣球271〇可包括具有與氣 球2 7 1 〇之其他部分相比並不更絕熱之内部部分的管形主要 部分2712。 圖28忒明除凹入部分及非凹入部分之組態以外與圖26 之裝置2600相似的低溫治療裝置2800之一部分。裝置28〇〇 72 201223577 包括2有施藥器2804之冷卻總成28〇2,該施藥器28〇4具 有可疋義膨脹腔之氣球28〇6。氣球28〇6包括複數個突起 2808及非犬起部分281〇。突起28〇8可經配置而以螺旋狀 型樣或其他適合型樣圍繞氣球28〇6之圓周。當冷卻總成 2802呈遞送狀態時,非突起部分281〇可對應於與在突起 2808處之施藥器部分相比具有較低熱傳遞速率的施藥器 2804之熱傳遞部分。非突起部分2810與在治療部位處之腎 動脈或腎小口之内表面之間的空間可使最接近非突起部分 之腎動脈或腎小π的部分與氣球28()6内之低溫溫度絕熱。 舉例而σ此工間内之冷凍或液體jk液可提供熱絕緣。 八有不同形狀之氣球可有助於與低溫腎神經調節相關 的某些治療Μ票。舉例而言,螺旋狀形狀可有助於所需局 部化或總體治療型樣。圖29說明包括處於^義排出通道之 細長軸29〇6之遠端部分29〇4處之冷卻總成29〇2的低溫治 療4置00之部分。遠端部分2904可具有台階2907、 出口孔2908及排出口 29〇9。冷卻總成29〇2可包括具有定 義膨脹腔且具有氣球近端部分29 12及氣球遠端部分29 14 之螺旋狀氣球2911的施藥器2910。氣球近端部分2912經 由出口孔2908而與排出通道具有微弱《體連接。氣球遠端 部分2914連接於排出開口 2909周圍之遠端部分2904之外 表面,從而將螺旋狀氣球2911流體連接於排出通道。螺旋 狀耽球2911包繞在遠端部分29〇4周圍(例如遠端部分μ⑽ 可定義螺旋狀氣球291丨之中心軸線^裝置29〇〇可進一步 包括疋義供應内腔且具有沿軸29〇6之長度延伸之主要部分 73 201223577 291 8及通過出口孔2908退φ缸 退出軸2906之傾斜遠端部分2920 的供應管2916。冷卻她成2Qno + _Ω〇Λ Ρ〜成2902亦可包括處於傾斜遠端部分 之遠端的孔口 2922。供應管2 s 2916及孔口 2922可經組 — 致冷劑在大體上對應於氣球近端部分29 Η之縱向 :向的:向中膨脹至氣球近端部分2912中。當冷卻總成 署狀態時,致冷劑可自氣球近端部分2912向氣球 :編。P刀2914流動’且接著沿排出通道向近端流動。在到 達氣球遠端部分2914後,致冷劑可能已消耗-些、大部分 或所有低溫冷卻能力。 圖30說明主要在致冷劑流動方向方面不同於圖μ之 :置2900的低溫治療裝置3〇〇〇之—部分。裝置3_包括 處於定義排出.通道之細長軸贿之遠端部分蘭處的冷 部總成3002。遠端部分3〇〇4可具有台階靡,且冷卻始 成·可包括具有定義膨脹腔且具有氣球近端部分編 及规球遠端部分3018之螺旋狀氣球3〇14的施藥器测。 氣球近端部分鳩可連接於鄰近遠端部分3_之遠端的 遠端部分3_之外表面,從而將螺旋狀氣球則*流體連 接於排出通道。裝置侧可進一步包括具有彎曲遠端部分 3〇2〇之供應管3019。螺旋狀氣球3〇14可包繞在供應管3㈣ 周圍(例如,供應管3〇19可定義螺旋狀氣球“Μ之中、、 軸線)。供應管3〇19可沿軸3_之長度延伸、延心該^ 延伸出氣球近端部分編、沿螺旋狀氣球3〇14之_心轴線 延伸並延伸至氣球遠端部分卿中。氣球遠端部分3〇16 可在供應管侧周圍密封且至少部分連接於f曲遠端部分68 201223577 • 2416 and supply tube 2414 of the second lateral branch 2418. The cooling assembly "Μ" may further include an opening to the first balloon 2412 at the end of the first lateral branch 2416 - the opening 242 () and the second balloon 2413 at the end of the second lateral branch mu Second aperture 2422. Unlike device 23A, which is not shown in Figures 23A-23B, device 24A includes a circumferentially opposite side of distal portion 2404 and for first balloon 2412 and second balloon "n" Refrigerant supply and refrigerant discharge device. The first balloon 2412 and the second balloon 2413 extend around a fully circumferential longitudinal segment of the distal portion 24〇4, but are coupled to the distal portion 2404 and shaped to expand asymmetrically about the distal portion 24〇4. The cooling assembly configured in accordance with several embodiments of the present technology may include a number of partial circumferential balloons different from the cooling assemblies 23〇2, 24〇2 shown in Figures 23A-24B. For example, in a number of specific In an example, the cooling assembly 2302 can include the first balloon 2312 or the second balloon 2313 instead of including both. Similarly, the cooling assembly 24〇2 may include the first balloon 2412 or the second balloon 2413 instead of including both. The cooling assemblies 2302, 2402 shown in Figures 23A-24B may also include a greater number of balloons, such as 3 or 4 balloons spaced longitudinally and radially apart. In addition, the size of the balloon can vary. For example, in several specific examples, the first balloon 2312 and the second balloon 2313 of the cooling assembly 23〇2 or the first balloon 2412 and the second balloon 2413 of the cooling assembly 24〇2 are configured to provide a partial circumference. Overall cooling pattern. Cooling assemblies configured in accordance with several embodiments of the present technology may include applicators having balloons that have various suitable surface characteristics, such as being configured to facilitate separate or combined with a fully circumferential overall cooling pattern. Ο J! 69 201223577 The surface characteristics of the partial circumferential cooling at the longitudinal section. Figure 25 illustrates a portion of a cryotherapy device 25 that includes a cooling assembly 2502 at a distal end portion 2504 defining an elongated shaft 2506 of the venting channel. The distal portion has σ.Ρό 2507' and the cooling assembly 2502 can include a balloon having a defined expansion lumen and having a distal neck 2 5 11 , a helical recess 2 5丨2, and a non-recessed portion 2 5丄3 2510 applicator 2508. The device 2500 can further include an elongated guide member 2514' extending through the distal neck portion 2511 and a supply tube 25A6 extending along the length of the shaft 25〇6 and extending into the balloon 25. The cooling assembly 2502 can further include an aperture 2518 at the distal end of the supply tube 2516. When the cooling assembly 2502 is in a delivery state, the helical recess 2512 can correspond to a heat transfer portion of the applicator 2508 having a lower heat transfer rate than a portion of the applicator 2508 spaced apart from the helical recess 2512. . The space between the helical recessed region 2512 and the inner surface of the renal artery or renal small opening at the treatment site allows the portion of the renal artery or renal orifice closest to the helical recessed region 25丨2 to be at a low temperature in the balloon 251 Insulation. For example, frozen or liquid blood within this space can provide thermal insulation. The depth of the helical recessed region 2512 relative to the non-recessed portion 2513 can be, for example, corresponding to a thickness of a material (eg, liquid or frozen blood) sufficient to insulate the renal artery or renal orifice from the cryo-cooling within the balloon 251G. depth. For example, the depth can be between about 0.2 mm and about 2 mm, such as between about 3 mm and about mm. In several other specific embodiments of the cryotherapy device assembly described herein, the concave portion of the balloon can have a similar depth relative to the non-recessed portion of the balloon. Figure 26 illustrates a portion of another embodiment of a cryotherapy device 26 that includes a cooling assembly 26602 at the end portion 2604 at a distance 70 23 6 defining the venting passage. The distal portion 2604 can have a step 26〇7, and the cooling assembly 2602 can include an applicator having a balloon 2610 defining an inflation lumen and having a distal neck portion 2611, a plurality of concave regions 2612, and a non-recessed portion 2613 2608. The recess 2612 can be configured to surround the circumference of the balloon 2610 in a helical pattern. The cooling assembly 2602 can further include an elongated guide member 2614 that extends through the distal neck portion 2611. Device 2600 can also include a supply tube 26 16 that extends along the length of shaft 26〇6 and that extends into balloon 2610. Cooling assembly 2602 can further include an aperture 2618 at the distal end of supply tube 2616. When the cooling assembly 2602 is deployed, the function of the recessed portion 2612 and the non-recessed portion 2613 can be similar to the helical recessed portion 2512 and the non-recessed portion 2513 of the device 2500 shown in FIG. Figures 27A-27C illustrate a cryotherapy device 2700 <- portion similar to device 2600 of Figure 26, but device 2700 is configured to have a smaller occlusion in the renal artery or renal ostium compared to device 2600 of Figure 26 Sex. Apparatus 2700 includes a cooling assembly 2702 at a distal end portion 2704 of an elongated shaft 2706 defining a discharge passage. The distal portion 2704 can have a step 2707, and the cooling assembly 2702 can include a defined expansion lumen and having a proximal branch 271, a tubular main portion 2712, a distal branch 2713, a plurality of recesses 2714, and a non-recessed portion 2716. The applicator 2708 of the balloon 2710. A plurality of recesses 27 14 can be configured to surround the circumference of the balloon 27 1 in a spiral pattern. When the cooling assembly 2702 is in a deployed state, the function of the recessed portion 2714 and the non-recessed portion 2716 can be similar to the recessed portion 2612 and the non-recessed portion 2613 of the device 2600 shown in Figure 26t. The proximal branch 2711 can be configured to fluidly connect the tubular primary 71 201223577 portion 2712 to the exhaust passage. The device 2700 can further include an elongated guide member 2718 that can extend along the length of the shaft 2706 and that is coupled to the distal branch 2713, and extends along the length of the shaft 2706, through one of the proximal branches 2711, and extends to the tubular main portion 2712 Supply tube 2 720. The proximal branch 2711 and the distal branch 2713 can be configured to space the tubular major portion 2712 from the guiding member 2718. The cooling assembly 2702 can further include an aperture 2722 at the distal end of the supply tube 2720. When the cooling assembly 2702 is in a deployed state, the cooling assembly 2702 can define a flow path (e.g., a blood flow path) between the outer surface of the guiding member 27 1 8 and the balloon 27 1 0. For example, the flow path can extend around the proximal branch 2711, through the tubular main portion 2712 (e.g., between the guide member 2718 and the inner surface of the tubular main portion 2712) and around the distal branch 271 3 . As shown in Figure 27B, the tubular main portion 2712 can include an insulated inner portion 2724 that surrounds the flow path. The adiabatic inner portion 2724 can be configured to at least partially insulate the fluid in the flow path from the cryogenic cooling within the tubular main portion 丄2. In the illustrated embodiment, the insulated inner portion 2724 can be part of the balloon 2710 having a greater thickness than the other portions of the balloon 271. In several other embodiments, the adiabatic inner portion 2724 has a different composition than the other portions of the balloon 271 and/or includes one or more separate insulating structures. Alternatively, the balloon 271A can include a tubular main portion 2712 having an inner portion that is not more thermally insulated than other portions of the balloon 2731. Figure 28 illustrates a portion of a cryotherapy device 2800 similar to device 2600 of Figure 26 except for the configuration of the recessed and non-recessed portions. Apparatus 28〇〇 72 201223577 includes 2 a cooling assembly 28〇2 having an applicator 2804 having a balloon 28〇6 with a detonable expansion chamber. The balloon 28〇6 includes a plurality of protrusions 2808 and a non-dog-up portion 281〇. The projections 28〇8 can be configured to surround the circumference of the balloon 28〇6 in a helical pattern or other suitable pattern. When the cooling assembly 2802 is in the delivery state, the non-protruding portion 281A can correspond to the heat transfer portion of the applicator 2804 having a lower heat transfer rate than the applicator portion at the protrusion 2808. The space between the non-protrusion portion 2810 and the inner surface of the renal artery or renal ostium at the treatment site may insulate the portion of the renal artery or kidney π that is closest to the non-protrusion portion from the cryogenic temperature within the balloon 28 () 6. For example, the frozen or liquid jk liquid in this chamber can provide thermal insulation. Eight balloons of different shapes can contribute to certain treatment tickets associated with hypothermic renal neuromodulation. For example, the helical shape can contribute to the desired localization or overall treatment profile. Figure 29 illustrates the portion of the cryotherapy 4 set 00 comprising the cooling assembly 29〇2 at the distal end portion 29〇4 of the elongated shaft 29〇6 of the venting channel. The distal portion 2904 can have a step 2907, an exit aperture 2908, and a discharge port 29〇9. The cooling assembly 29〇2 can include an applicator 2910 having a helical balloon 2911 defining a balloon lumen and having a balloon proximal portion 29 12 and a balloon distal portion 29 14 . The balloon proximal portion 2912 has a weak "body connection" to the exit channel via the exit aperture 2908. The balloon distal end portion 2914 is coupled to the outer surface of the distal end portion 2904 around the discharge opening 2909 to fluidly connect the helical balloon 2911 to the discharge passage. The helical globule 2911 is wrapped around the distal end portion 29〇4 (e.g., the distal portion μ(10) defines a central axis of the helical balloon 291丨. The device 29〇〇 can further include a sinusoidal supply lumen and has an axis along the axis 29〇 The main portion of the length extension of 6 is 201223577 291 8 and the supply tube 2916 of the inclined distal end portion 2920 of the shaft 2906 is retracted through the exit hole 2908. Cooling her into 2Qno + _ Ω Ρ 成 ~ 2902 may also include tilting The distal end of the distal portion is 2922. The supply tube 2 s 2916 and the aperture 2922 can be grouped - the refrigerant in the longitudinal direction substantially corresponding to the proximal portion 29 of the balloon: toward: inwardly expanding to the balloon In the end portion 2912, when cooling the state of the assembly, the refrigerant may flow from the balloon proximal portion 2912 to the balloon: the P blade 2914 flows 'and then flows proximally along the discharge channel. Upon reaching the balloon distal portion 2914 Thereafter, the refrigerant may have consumed some, most, or all of the low temperature cooling capacity. Figure 30 illustrates a portion of the cryotherapy device that is different from the figure in the direction of flow of the refrigerant: Device 3_included in definition The cold portion assembly 3002 of the distal portion of the elongated shaft of the passageway. The distal portion 3〇〇4 may have a stepped 靡 and the cooling initiation may include a defined expansion chamber and a balloon proximal portion And the applicator of the helical balloon 3〇14 of the distal portion 3018 of the ball. The proximal portion of the balloon can be attached to the outer surface of the distal portion 3_ adjacent to the distal end of the distal portion 3_, thereby The balloon is fluidly connected to the discharge passage. The device side may further include a supply tube 3019 having a curved distal end portion 3〇2〇. The spiral balloon 3〇14 may be wrapped around the supply tube 3(4) (for example, the supply tube 3〇) 19 can define a spiral balloon "in the middle, the axis". The supply tube 3〇19 can extend along the length of the shaft 3_, and extend the heart to extend the outer part of the balloon, along the spiral balloon 3〇14 The heart axis extends and extends into the distal portion of the balloon. The balloon distal portion 3〇16 can be sealed around the supply tube side and at least partially connected to the distal end portion of the f-curve

S 74 201223577 3020。冷卻總成3002可進一步包括將供應管3〇i9流體連 接於氣球遠端部分3018之孔口 3021。供應管3〇19及孔口 3〇2i可經組態以引導致冷劑在大體上對應於氣球遠端部分 3018之縱向定向的方向中膨脹至氣球遠端部分中。當 冷卻總成3002呈部署狀態時,致冷劑可自氣球遠端部分 3018向氣球近端部分3016流動,且接著沿排出通道向近端 流動。 圖3 1說明除螺旋狀氣球形狀以外與圖3〇之裝置 相似的低溫治療裝置3 1 00之一部分。裝置3丨〇〇包括處於 定義排出通道之細長軸3 1 06之遠端部分3 1 04處的冷卻總 成3102»遠端部分3104可具有台階3108,且冷卻總成31〇2 可包括具有定義膨脹腔且具有氣球近端部分3丨M及氣球遠 端部分3116之螺旋狀氣球3112的施藥器311〇。氣球近端 部分3114可連接於鄰近遠端部分31〇4之遠端的遠端部分 3104之外表面,從而將螺旋狀氣球3112流體連接於排出通 道。裝置3100可進一步包括具有候斜遠端部分3丨丨8之供應 管3 11 7。螺旋狀氣球3 112可包繞在供應管3 11 7周圍,但 亦可與供應官3117徑向間隔開。供應管3117可沿轴3106 之長度延伸、延伸出軸3 106、延伸出氣球近端部分3丨14、 沿螺旋狀氣球3 112之中心軸線延伸並延伸至氣球遠端部分 3116中。氣球遠端部分3U6可在供應管3117周圍被密封。 冷卻總成可進一步包括將供應管3丨17流體連接於氣球遠端 部分3 116之孔口 3 119。當冷卻總成3 102呈i卩署狀態時, 致冷劑可自氣球遠端部分3 116向氣球近端部分3丨14流動, Ο 75 201223577 且接著沿排出通道向近 狀直徑可有助於部八心I錢狀氣球3U2之寬螺旋 、刀荀土 。舉例而言,當冷卻铯成3 1 02呈 部署狀態時,冷卻她# ^ 田7 Ρ〜成3102呈 Ρ總成3102可定義介於供應管3117之外農 面與螺旋狀氣球311川7之外表 之間的流動路徑(例如,血流路徑)。 圖32Α至圖32R % 、 6兒明可具有對應於成型部件(諸如且 有幵》狀記憶之成型部杜彳 '、 ^牛)之複雜形狀的低溫治療裝置3200 之一‘刀。如上文所論述,根據本發明技術之若干且 例組態之低溫治療裝置中的 、 ’、置中的乳球可自當相應冷卻總成呈遞 送狀態時之至少部分收縮移動至當冷卻總成呈部署狀態時 乂 4刀膨脹。當在部署狀態下膨脹時,複雜氣球可且 有預定義之形狀.(例如模製或以其他方式併入氣球中之整 體形狀)或對應於獨立成型結構之形狀。圖32a至圖MB 中所示之低溫治療裝置3200包括處於定義排出通道之細長 軸3206之遠端部分32〇4處的冷卻總成32〇2。遠端部分32〇4 可具有台階3207,且冷卻總成32〇2可包括施藥器32〇8。 裝置3200可進一步包括細長成型部件321〇及具有傾斜遠 端部分3214之供應管3212。施藥器3208可包括具有遠端 密封件3217之氣球3216。氣球3216可圍繞細長成型部件 3210延伸且可定義膨脹腔。遠端的密封件3217可為氣球 32 1 6之壓平部分’氣球32 16之壁在此處密封在一起(例如 用熱及/或用黏附劑)。根據本發明技術之若干其他具體實例 組態之氣球可具有另一類型之閉合遠端。如上文所論述, 氣球可在諸如引導部件及/或供應管之結構周圍閉合。氣球 亦可在插塞周圍閉合。此外,氣球可具有一體式閉合遠端。 76 201223577 .舉例而t,氣球可經模t (例如浸潰模製)❿具有一體式 閉合遠端。 •匕成型部件3210可經組態以在冷卻總成3202呈遞送狀 心時具有大體上線性組態且在冷卻總成3202呈部署狀態時 具有曲線組態。冷卻總成32〇2亦可包括處於傾斜遠端部分 3214之遠端的孔口 3218。供應管3212及孔口 w18可經組 態以引導致冷劑在大體上對應於鄰近孔口 3218之氣球KM 之縱向定向的方向中膨脹至氣球3216中。如_ 32八中所 ^氣球321 6具有在部署狀態下至少部分對應於成型部件 3210之曲線組態的形狀。所說明之曲線組態大體上為螺旋 狀仁亦可為另一形狀,諸如蛇形。成型部件3 21 〇可具有 形狀記憶(例如單向形狀記憶或雙向形狀記憶),且可包括 形狀記憶材料,諸如鎳-鈦合金(例如鎳鈦諾(nitin〇i))。 形狀記憶可允許成型部件321〇及氣球3216在部署狀態下 移動至預先選擇組態(例如彎曲、曲線、螺旋狀或蛇形組 態)。舉例而言,可選擇組態以允許施藥器32〇8施加所需 局部化或總體治療型樣。類似地,可選擇圖32A中所示之 螺旋狀形狀及其他形狀來在治療部位提供一定程度的閉 塞,諸如部分閉塞而不是完全閉塞。當曝露於低溫溫度時, 形狀δ己憶材料可損失一些或所有成型性質。根據本發明技 術之若干具體實例組態<冷卻總成32〇2可包括纟低溫冷卻 之前或初步低溫冷卻期間移動至對應於成型部件32丨〇之形 狀的預先選擇之組態中的氣球3216。當低溫冷卻使成型部 件3210損失一些或所有成型性質時,氣球3216與外部材 77 201223577 料(例如血液及/或組織)之間的低溫黏附可使氣球Μ Μ維 持其預先選擇組態至少直至低溫黏附結束。 在圖32A至圖32B中所說明之具體實例中成型部件 3210大體上被展示於氣球内之中心,亦即氣球3216大體上 圍-堯成型件32 1 Q均勻膨脹。或者,當冷卻總成呈 部署狀態時,成型部件321G可在氣球3216内具有不同位 置。舉例而言’成型部件321()可在氣球3216之内表面附 近。當成型部件321〇與氣球3216之壁間隔開時,氣球Kb 可使作用於腎動脈或腎小口之壓力、消散。如圖32A中所示, 成型部件3210可延伸通過遠端密封件3217。或者,成型部 件321"不連接於氣球3216及/或終止於鄰近遠端密封件 α之孔球3216之部分處。此外’成型部件3210之·遠端 :分可經組態以在冷卻總成3202呈部署狀態時與腎動脈或 小口間隔開。在一些具體實例中,氣球3216經組態以在 不具有任何内部支撐結構的情況下圍繞成型部件3210大體 :均勻膨脹。或者,氣球3216可包括跨越氣球3216之内 ^延伸的内部結構(例如網狀物),且成型部件3210可在 與氣球3216夕λι生^ ^ _ ▲内表面間隔開的位置處連接於該内部結構。 二1内部結構可為介於獨立氣球之間的分割區(例 >考圖45 A至圖所論述)。在一些具體實例 二括在部署狀態下沿氣球3216之中心轴線延 2、、,。構。舉例而言,在部署狀態下,遠端部分3綱可沿 之中心軸線延伸,且氣球3216及成型部件3210 於遠端部分3204之橫向開口。作為另一實例,遠端S 74 201223577 3020. The cooling assembly 3002 can further include fluidly connecting the supply tube 3〇i9 to the aperture 3021 of the balloon distal end portion 3018. The supply tube 3〇19 and the orifice 3〇2i can be configured to cause the coolant to expand into the distal portion of the balloon in a direction generally corresponding to the longitudinal orientation of the balloon distal portion 3018. When the cooling assembly 3002 is deployed, the refrigerant can flow from the balloon distal portion 3018 to the balloon proximal portion 3016 and then flow proximally along the discharge channel. Figure 3 illustrates a portion of the cryotherapy device 3 00 that is similar to the device of Figure 3 except for the shape of the helical balloon. The device 3丨〇〇 includes a cooling assembly 3102 at the distal end portion 3 1 04 of the elongated shaft 3 1 06 defining the discharge passage. The distal end portion 3104 can have a step 3108, and the cooling assembly 31〇2 can include definitions The applicator 311A of the spiral balloon 3112 that expands the lumen and has a balloon proximal portion 3丨M and a balloon distal portion 3116. The balloon proximal portion 3114 can be coupled to the outer surface of the distal portion 3104 adjacent the distal end of the distal portion 31〇4 to fluidly connect the helical balloon 3112 to the discharge channel. The device 3100 can further include a supply tube 3 11 7 having a distal end portion 3丨丨8. The spiral balloon 3 112 can be wrapped around the supply tube 3 11 7 but can also be radially spaced from the supply officer 3117. The supply tube 3117 can extend along the length of the shaft 3106, extend out of the shaft 3 106, extend out of the balloon proximal portion 3丨14, extend along the central axis of the helical balloon 3 112 and extend into the balloon distal portion 3116. The balloon distal portion 3U6 can be sealed around the supply tube 3117. The cooling assembly can further include fluidly connecting the supply tube 3丨17 to the orifice 3 119 of the balloon distal portion 3 116. When the cooling assembly 3 102 is in the state of being deployed, the refrigerant may flow from the balloon distal portion 3 116 to the balloon proximal portion 3丨14, Ο 75 201223577 and then along the discharge channel to a proximal diameter may help The eight-hearted I-shaped balloon 3U2 wide spiral, knife and soil. For example, when the cooling 铯3 3 02 is deployed, cooling her #^田7 Ρ~3102 Ρ Ρ 3102 can be defined outside the supply pipe 3117 and the spiral balloon 311 chuan 7 The flow path between the appearances (for example, the blood flow path). Fig. 32A to Fig. 32R%, 6 may have one of the low temperature treatment devices 3200 corresponding to the complicated shape of the molded part (such as the shape of the cuckoo). As discussed above, in a plurality of and configured hypothermia devices according to the present teachings, the centered milk ball can be at least partially retracted from when the corresponding cooling assembly is in a delivery state to the cooling assembly. When deployed, the 刀 4 knife expands. When inflated in the deployed state, the complex balloon can have a predefined shape (e.g., molded or otherwise incorporated into the overall shape of the balloon) or corresponding to the shape of the separately formed structure. The cryotherapy device 3200 shown in Figures 32a-MB includes a cooling assembly 32〇2 at a distal end portion 32〇4 of the elongated shaft 3206 defining the discharge passage. The distal portion 32〇4 can have a step 3207, and the cooling assembly 32〇2 can include an applicator 32〇8. The device 3200 can further include an elongated profiled member 321 and a supply tube 3212 having a sloped distal end portion 3214. The applicator 3208 can include a balloon 3216 having a distal seal 3217. Balloon 3216 can extend around elongated shaped member 3210 and can define an expansion lumen. The distal seal 3217 can be the flattened portion of the balloon 32 16 . The walls of the balloon 32 16 are sealed together here (e.g., with heat and/or with an adhesive). A balloon configured in accordance with several other embodiments of the present technology can have another type of closed distal end. As discussed above, the balloon can be closed around a structure such as a guide member and/or supply tube. The balloon can also be closed around the plug. Additionally, the balloon can have an integral closed distal end. 76 201223577. By way of example, t, the balloon can be molded over the mold (e.g., dipped) with an integral closed distal end. • The crucible forming component 3210 can be configured to have a generally linear configuration when the cooling assembly 3202 is in a delivery center and has a curvilinear configuration when the cooling assembly 3202 is in a deployed state. The cooling assembly 32〇2 can also include an aperture 3218 at the distal end of the angled distal end portion 3214. The supply tube 3212 and the orifice w18 can be configured to cause the coolant to expand into the balloon 3216 in a direction generally corresponding to the longitudinal orientation of the balloon KM adjacent the orifice 3218. The balloon 3216 has a shape that at least partially corresponds to the curved configuration of the molded part 3210 in the deployed state. The illustrated configuration of the curve is generally a spiraled kernel or may be another shape, such as a serpentine shape. The molded part 3 21 may have shape memory (e.g., one-way shape memory or two-way shape memory), and may include a shape memory material such as a nickel-titanium alloy (e.g., nitinium). The shape memory may allow the molded part 321 and the balloon 3216 to move to a pre-selected configuration (e.g., curved, curved, spiral or serpentine configuration) in the deployed state. For example, the configuration can be selected to allow the applicator 32〇8 to apply the desired localized or overall treatment pattern. Similarly, the helical shape and other shapes shown in Figure 32A can be selected to provide a degree of occlusion at the treatment site, such as partial occlusion rather than complete occlusion. When exposed to cryogenic temperatures, the shape delta recall material may lose some or all of the molding properties. Configurations according to several embodiments of the present technology <cooling assembly 32〇2 may include moving to a balloon 3216 in a pre-selected configuration corresponding to the shape of the molded component 32丨〇 prior to or during preliminary cryogenic cooling. . When cryogenic cooling causes the molded part 3210 to lose some or all of the molding properties, the low temperature adhesion between the balloon 3216 and the outer material 77 201223577 (eg, blood and/or tissue) allows the balloon to maintain its pre-selected configuration at least until low temperature The adhesion ends. In the particular example illustrated in Figures 32A-32B, the molded component 3210 is generally shown in the center of the balloon, i.e., the balloon 3216 is substantially uniformly expanded around the 尧-shaped member 32 1 Q. Alternatively, the molded part 321G may have a different position within the balloon 3216 when the cooling assembly is in a deployed state. For example, the molded part 321() can be near the inner surface of the balloon 3216. When the molded member 321 is spaced apart from the wall of the balloon 3216, the balloon Kb can cause pressure and dissipate acting on the renal artery or the renal orifice. As shown in Figure 32A, the molded component 3210 can extend through the distal seal 3217. Alternatively, the molded component 321" is not attached to the balloon 3216 and/or terminates at a portion of the apertured ball 3216 adjacent the distal seal a. Further, the distal end of the molded component 3210 can be configured to be spaced apart from the renal artery or orifice when the cooling assembly 3202 is deployed. In some embodiments, the balloon 3216 is configured to generally surround the molded component 3210 without any internal support structure: uniform expansion. Alternatively, the balloon 3216 can include an internal structure (eg, a mesh) extending across the interior of the balloon 3216, and the molded component 3210 can be coupled to the interior at a location spaced from the inner surface of the balloon 3216. structure. The internal structure of the two 1 may be a partition between separate balloons (example > as illustrated in Figure 45A to Figure). In some specific examples, it is extended along the central axis of the balloon 3216 in the deployed state. Structure. For example, in the deployed state, the distal portion 3 can extend along the central axis, and the balloon 3216 and the molded member 3210 can be laterally open at the distal portion 3204. As another example, the far end

S 78 201223577 部分3204可包括沿氣球32丨6之中心軸線延伸的直徑減小 的延伸部分及獨立於直徑減小的延伸部分的將氣球3216流 體連接於排出通道的另—開口。沿氣球32丨6之中心軸線延 伸的結構可包括内腔(例如經組態以接收引導線或控制線 之内腔)保 >>蒦裝置(例如過濾器)及/或監視裝置(例如熱 電偶或壓力轉導器)。 裝置3200可經修改以用於非低溫治療應用。舉例而 言,可移除供應管32丨2,且裝置3200可用於受益於治療部 位處的並不兀全閉塞之其他應用。在腎神經調節應用及其 他應用中,氣球3216在部署狀態下可為非閉塞性的,例如 可沿氣球3216之中心軸線形成血流路徑。在一些非低溫治 療應用中,遠端部分3204可支撐經組態以在血管户 療(例如企栓切除術)之結構,同時氣球3216將裝置3200 錫定至血管壁。在此等及其他具體實例中,氣球3216有利 地可將遠端部分3204維持於血管内之中心位置。 • A至圖33D s兒明在部署組態下可具有預定義彎曲 =低溫治療裝置330。之一部分。裝置33〇〇包括處於 I 3302出Γ道之細長軸3306之遠端部分3304處的冷卻總 =2。遠端部分3304可具有台階33〇7,且冷卻總成33〇2 二可定義膨脹腔之氣球331°的施藥器3308。氣球 、有氣球近端部分3312、氣球中 球遠端部分3316。裝置33〇〇進一 及乱 311« 乂包括沿軸3306延伸之 冷卻總成33G2可具有處於供應管則之 、處於氣球近端部分3312内之孔口咖。當冷卻總成The S 78 201223577 portion 3204 can include a reduced diameter extension extending along a central axis of the balloon 32A6 and a further opening that fluidly connects the balloon 3216 to the discharge passage independently of the reduced diameter extension. The structure extending along the central axis of the balloon 32丨6 can include an internal cavity (e.g., configured to receive a lumen of a guide or control line) >>> device (e.g., filter) and/or monitoring device (e.g., Thermocouple or pressure transducer). Device 3200 can be modified for non-hyperthermia therapeutic applications. By way of example, the supply tube 32丨2 can be removed and the device 3200 can be used to benefit from other applications at the treatment site that are not fully occluded. In renal neuromodulation applications and other applications, the balloon 3216 can be non-occlusive in the deployed state, e.g., can form a blood flow path along the central axis of the balloon 3216. In some non-cryogenic treatment applications, the distal portion 3204 can support a configuration configured for vascularization (e.g., a resection), while the balloon 3216 tints the device 3200 to the vessel wall. In these and other embodiments, the balloon 3216 advantageously maintains the distal portion 3204 in a central position within the blood vessel. • A to Figure 33D can have a predefined bend = cryotherapy device 330 in the deployed configuration. Part of it. The device 33A includes a total cooling = 2 at the distal end portion 3304 of the elongated shaft 3306 at the I 3302 exit ramp. The distal portion 3304 can have a step 33〇7, and the cooling assembly 33〇2 can define an applicator 3308 of the balloon 331° of the inflation lumen. The balloon has a balloon proximal portion 3312 and a balloon distal portion 3316. The device 33 is slid into and out of the 311 « 冷却 including the cooling assembly 33G2 extending along the shaft 3306 and may have an aperture in the proximal portion 3312 of the balloon. Cooling assembly

79 201223577 3302呈部署狀態時,氣球33 1〇沿其長度彎曲且具有大體上 凹陷第-壁刪展示為M 33A中之氣球之下部部分)及 大體上非凹陷(例如凸出)第二壁3324 (展示為圖Μ中 之氣球之上部部分)。 氣球近端部分3312、氣球中間部分3314及氣球遠端部 分可經組態以部分接觸腎動脈或腎小口之圓周部分。 舉例而 ',當冷卻總成33〇2呈部署狀態時,氣球中間部分 可經組態以大體上沿第二壁3324且大體上不沿第一壁 =接觸腎動脈或腎小D。舉例而言,當冷卻總成3302呈 =態時,氣球近端部分3312及氣球遠端部分 上沿第1 3322且大體上不沿第二壁⑽ 接觸腎動脈或腎小口。 球·之弯曲形狀可有:均勻的接觸型樣’因此氣 Λ θ 了有助於所需局部化或總體治療型樣。 如圖33Β至圖33c + 0 Η 氣球中間部分3314 # 球3310可包括處於 3326。在所說明之二第—Μ 3322之彈性減小部分 球3310之較厚部:。例中,彈性減小部分3326可為氣 呈遞送狀態時,氣如圖33D中所示,當冷卻總成3302 3328内。…31G可部分收縮以便裝配在遞送外稍 3326可保持V::: 33。2呈遞送狀態時,彈性減小部分 為平坦的1冷::成=’彈性減小部分咖可大體上 分3326相比,^ u 2呈部署狀態時’與彈性減小部 分,尤其部分3326以崎球則之部 球3310之部分 ^部分3314處沿第二壁3324之氣 °、、里’’且態以膨脹(例如順應性膨脹)至更大 80 201223577 =。在料具體實例中,彈性減小部分⑽大體上為非 ㈣性的’且處於氣球中間部分3314處沿第二壁則之 孔球3310之部分大體上為順應性的。當冷卻總成3術呈 部署狀態時,與彈性減小部分 I刀相關之限制可有助於氣 球侧-曲。彈性減小部分3326可經組態以當冷卻總成 3302/部署狀態時相對於腎動脈或腎小口凹入,且相應地 不涵蓋具有足以產生治療上有效之腎神經調節之熱傳遞速 率的熱傳遞部分。除減小彈性以外,彈性減小部分3326之 厚度可降低其熱傳導率’從而可有助於改良冷卻效率及/或 進一步有助於所需局部化或總體治療型樣。 圖34。兒明除具有不同支撐物組態以外與圖μ a至圖 33D之裝置3300相似之低溫治療裝置3400之一部分。裝置 3400^括具有施藥器34〇4之冷卻總成34〇2,施藥器^⑽ 八有定義膨脹腔之氣球34〇6。冷卻總成34〇2亦包括具有彎 曲遠端3410之細長支撐部件34〇8。細長支撐部件3彻及 本文所述之其Μ支撐部件可在冷卻總成力遞送狀態與部署 =態之間移動時輔助氣球隨相應冷卻總成移動。舉例而 。,細長支撐部件3408可有助於防止氣球34〇6在治療期 間黏者或扭曲。細長支撐部件可視情況連接於相應氣球之 遠端4分。此舉可用於例如維持氣球呈細長組態。 圖35Α至圖35Β說明低溫治療裝置35〇〇之—部分,其 I與弓I導部件之相互作用至少部分造成複雜氣球形狀。在 右干其他具體實例中,I雜氣球至少部&係由與另一低溫 治療裂置組件(例如軸或供應管)之相互作用而成型。圖 ;> 81 201223577 ^至圖35B中所示之裝置3則包括處於定義排出通道之 、、田長軸3506之遠端部分測處的冷卻總成35。2。裝置 可包括細長引導部件3508及供應管3512,且冷卻總成35 :包括處於供應管3512之遠端的孔π 3514。冷卻總成可進 厂步包括具有可定義膨脹腔且可具有氣球近端部分3川、 連接於遠端部分3504之近端一體式頸部352g及 導部件3508之遠端—體式頸部助之氣球3516的施“ 叫〇。氣球3516亦可具有受限制縱向部分3524 (圖3 及可膨服縱向部分3526 (圖加)。受限制縱向部分仙 可至少部分連接於引導部件35G8。舉例而言,自遠端 式頸部3522至氣球近端部分3518,氣球“Μ之内表面可 連接於引導。p件35〇8。當冷卻總成35()2呈部署狀態時,可 ㈣縱向部分3526可與引導部件侧間隔開。氣球3516 之部分受限制形狀可用於促進所要局部化或總體治療型 樣。此外’受限制縱向部分3524可定義氣球3516周圍之 至少-部分縱向流動路徑(例如血流路徑)。此舉可用於例 如促進治療部位處之閉塞程度,諸如部分閉塞而 閉塞。 、圖36說明除在氣球與引導部件之間具有不同連接型樣 以外與圖35A至圖35B之低溫治療裝置相似的低溫治療裝 置36〇〇。® 36可被視為替代圖35B來說明如下獨立具體實 圖5A至圖35B中所示之低溫治療裝置之所有元 件中除圖36中展示相對於圖35β不同者以外均相似。低溫 治療裝置3600包括細長引導部件鳩2及具有徑向間隔開 82 201223577 受限制縱向部分3 $ μ β , 氣球3604。雖狄圖.36展禮=隔開膨服縱向部分3·之 個膨脹縱向部;3二 同齡曰+ / —了猎由例如在引導部件3602之不 =:;rr將氣球_連接於引導部件而 3608。此外之又限制縱向部分3606及/或膨脹縱向部分 之分佈;1受限制縱向部分雇及膨服縱向部分则 ::::r稱或不對稱(例如沿平行於引導部件廳之 3 700之—Λ說月包括具有%形形狀之氣球的低溫治療裝置 雇之—Λ分。裝置3期包括處於定義排出通道之細長軸 測。~=部分3704處的冷卻總成37G2,以及供應管 及且有成37G2包括處於供應管3·遠端之孔口 371〇 3714之施藥器3712,氣球3714具有第-氣球 第:及第二氣球片段3718。第-氣球片…具有 氣球遠㈣Γ相部分3724及第:遠端部分3726。第一 總成37〇;刀3722流體連接於第二遠端部分3726。當冷卻 向第—部署狀態時,致冷劑可自第-近端部分3720 動。:Γ: 3722流動,接著向第二遠端部分流 =二遠端部分後’致冷劑可能已消耗一些、 主要冷卻能力。據此,第二氣球片段可 排出來自第一遠端部分3722之致冷劑,且具有執 低的第 '氣球片段3716之熱傳遞部分之熱傳遞速率 …、傳遞部分。在若干替代具體實例中,第 '氣球片段 83 201223577 3716及第二氣球片段3718為在其遠端流體連接之獨立氣 球。在另-實施财,第一氣球片段及第二氣球片段可為 經指疊之單一·翁抹+ *rr \ f 、 、 _ 太之。卩分。與下文所述之非冷卻氣球相 似第一氣球片段3718可使治療部位處之腎動脈或腎小口 之。P刀與第-氣球片段3716内之低溫溫度絕熱。此舉可 用於例如促進所需局部化或總體治療型樣。 多個氣捸 *圖3 8至圖51說明包括多個氣球之低溫治療裝置彼等 右干具體實例’該等氣球可有助於與低溫腎神經調節相關 或多個治療目標,諸如所需局部化或總體治療型樣、 ,大J及凡王閉塞。在根據本發明技術之若干具體實例組 邊之低溫治療裝置巾,_P⑽人士 、’ 、f置中可聯合使用經組態以產生戋谀详 療上有效之冷卻以進行腎神經調節之主要氣球(=: 主要熱傳遞部分)IM h % . 刀J /、經組態以在所選位置防止或抑制治療 士有效之冷卻溫度的次要氣球。在若干具體實例中次要 乳球包括次要熱傳遞部分。舉例而言,次要氣球可升溫、 :熱、:冷卻或具有低冷卻程度。或者,若干具體實:包 夕個氣5求β玄等氣球包括主要熱傳遞部分且存在次 球或不存在次要氣球。 ' 圖 3 8 Α 至圖 3 8 R bb θ + β / 口此說明可具有多個主要氣球之低溫治瘠 敦置3800之一邱八壯m ’、 P刀。裝置3 800包括處於定義排出通道 、"田長軸3 8 0 6之读姐部八 刀3804處的冷卻總成3802。遠 分3804可具有a n比qcn<>7 。 D、3807,且裝置3800可包括細長引導 件3808及供應瞢ι81Λ . 3810。冷卻總成38〇2可包括處於供應管 84 201223577 3810之运端的孔口 之長度而定p i大體上平行於冷卻總成細 具有共用折 長氣球3814的施藥器训2。氣球3814 佈、碥部分3816,或者圍繞引導部件3808呈周向分 同丘 '、共用近端部分3816内,且氣球3814連 部署狀能:部分3816可定義膨脹腔。當冷卻總成38°2呈 二八3 = Γ,自供應f 3810膨脹之致冷劑可進入共用近端 :刀丨6並在氣球38U内循環以使其膨脹並冷卻。致冷 =可'㈣共用近端部分3816退出氣球觀且沿排出通 道·向近流動。痛姑' q只1 d 、 孔球3814可經組態以接觸治療部位處之腎 脈或腎小口之間隔開部分(例如間隔開之縱向部分)。此 舉可用於促進所需局部化或總體治療型樣。此外,氣球3814 =間的空間可定義氣球3814周圍之至少一部分縱向流動路 钇(例如血机路徑)。此舉可用於例如促進治療部位處之閉 塞程度,諸如部分閉塞而不是完全閉塞。 严圖39A至圖39C說明可具有多個具有不同冷卻程度之 氣球的低溫治療裝置3900之一部分。裝置39〇〇包括處於 細長軸3906之遠端部分39〇4處之冷卻總成、細長引導部 件3907及複數個供應管(個別地識別為39〇8a至39〇8d)。 冷卻總成3902可包括處於供應管39〇8a至39〇8d之遠端的 複數個孔口(個別地識別為391(^至391〇d),且施藥器3912 包括複數個細長氣球(在圖39A及圖39c中個別地識別為 3914a至3914d)。氣球3914a至39l4d圍繞引導部件39〇7 周向分佈,且個別包括可將氣球3914a至3914d流體連接於 排出通道的近端頸部3916(圖39A)。孔口 39l〇a、3910d 85 201223577 孔口 3910b、3910c相比具有較大自由通道面積。類似地, 供應管3908a、3908d與供應管3908b、3908d相比具有較小 自由通道面積。氣球3914a至3914d之尺寸大體上相等且具 有大體上相等之内部表面積及外部表面積。與氣球39i4b、 3914c相比’氣球3914a、3914d之孔口及/或供應管自由通 道面積與内表面積之比率可更大。由此可導致氣球391耗、 3 9 1 4d内相對於氣球3 9丨仆、3 9 i 4c之差異冷卻。舉例而言, 氣球3914a、3914d可經組態以在與氣球391仆、391訐相比 較低之溫度下循環氣態致冷劑。此外或替代地,當冷卻總 成3902呈部署狀態時,氣球3914a、3914d可經組態以進行 大體上表面積限制之冷卻,而當冷卻總成39〇2呈部署狀態 時,氣球3914b、3914c經組態以進行大體上致冷劑限制之 冷卻。向治療上有效之腎神經調節之目標面積附近的組織 提供一定程度之冷卻(例如較低冷卻程度,諸如不足以進 行低溫腎神經調節之冷卻)彳用於例如減少治療上有效之 腎神經調節之目標面積處之組織周圍的熱增加。使用多個 氣球亦可有助於所需局部化或總體料型樣及/或治療部位 之所要閉塞程度,諸如部分閉塞而不是完全閉塞。 圖40說明除具有不同的差異冷卻機制以外^圖μ至 圖39C之低溫治療裝置测相似的低溫治療裝置侧。圖 可被視為替代圖39B來說明如下獨立具體實例:圖Μ 至圖39C中所示之低溫治療裝置39 ,^ ^ 所有兀件中除圖40 中展不相對於_ 39B不同者以外均相似。低溫治療裝置 侧包括具有將軸侧分成流體分離排出通道之内壁 δ 86 201223577 4004的軸4002及個別地處於該等排出通道内之供應管 4006。供應管4006具有大體上相等之尺寸且可具有尺寸大 體上相等之孔口(未圖示)。低溫治療裝置4000亦包括複 數個與排出通道流體連通之壓力調節器(個別地識別為 4008a至4008d)。壓力調節器4008a至4008d可經組態而位 於血官結構外。調節排出通道内之背壓可引起相應氣球(未 圖不)内之溫度變化。舉例而言,壓力調節器4〇〇8a、4〇〇8d 可維持相應排出通道及氣球中之第一背壓,且壓力調節器 4〇〇8b、4008c可維持相應排出通道及氣球中之第二(不同) 月壓。以此方式可達成與上文參考圖39A至圖39C中所示 之裝置3900所述之差異冷卻相似的差異冷卻。 圖4 1 s兒明可具有多個螺旋狀氣球之低溫治療裝置41⑽ 之一部分。裝置4100包括處於定義排出通道之細長軸41〇3 之遠端部分4102處的冷卻總成4101、供應管4104及填充 官4105。冷卻總成4101可包括第一供應孔口 41〇6、第二 供應孔口 4107及處於填充管4105之遠端的填充孔口 ^1〇8冷部總成4 1 0 1亦包括具有複數個螺旋狀氣球之施藥 Γ 09在一個具體實例中,施藥器4109包括具有第一遠 *端部分4112及第一近端部分4114之第一螺旋狀氣球 4110、具有第二遠端部分4118及第二近端部分412〇之第二 ”走狀氣球4116 (加點顯示以便清楚說明),以及具有第三 邛刀4124及第三近端部分4126之第三螺旋狀氣球 4122。第一供應孔口 41〇6及第二供應孔口 41〇?可分別流 體連接於第—遠端部分4112及第三遠端部分4124,且第一 87 201223577 螺旋狀氣球4110及第三螺旋狀氣球4122可定義膨脹腔。第 二氣球近端部分4120可圍繞填充管4107密封並流體連接 於填充孔口 4108 ’且第二螺旋狀氣球4116可定義填充腔。 當冷卻總成4101呈部署狀態時,第二螺旋狀氣球4116可經 組態以經由填充管4105填充。致冷劑可膨脹至第一遠端部 分4112及第三遠端部分4124中,且第一螺旋狀氣球4ιι〇 及第三螺旋狀氣球4122可以獨立蜾旋狀型樣或組合螺旋狀 型樣提供主要冷卻。第二螺旋狀氣球4 11 6可使腎動脈或腎 小口之部分與第一螺旋狀氣球4丨丨0及第三螺旋狀氣球4丨22 内之低溫冷卻絕熱。此舉可用於例如促進所需局部化或纳 體治療型樣。此外,供應管40〇4與第一螺旋狀氣球411〇、 第二螺旋狀氣球4116及第三螺旋狀氣球4122之間的内部空 間可定義至少一部分縱向流動路徑(例如血流路徑)。此舉 可用於例如促進治療部位處之閉塞程度,諸如部分閉塞而 不是完全閉塞。 圖42說明與圖41中所示之裝置4100相似但在螺旋狀 氣球中具有經改進之供應組態及排出組態的低溫治療裝置 4200之一部分。裝置4200包括處於定義排出通道之細長軸 4204之遠端部分4203處的冷卻總成4202、細長5丨導部件 4205及供應管4206。冷卻總成4202可包括處於供應管42〇6 之遠端的供應孔口 4207及具有複數個螺旋狀氣球的施藥器 4208。在一個具體實例中,施藥器4208包括具有第一遠端 部分4212及第一近端部分4214之第一螺旋狀氣球421〇、 具有第二遠端部分4218及第二近端部分422〇之第二螺旋 88 201223577 狀氣球42i6 (加點顯示以便清楚說明),以及具有第三遠端 部分4224及第三近端部分4226之第三螺旋狀氣球4222。 第一遠端部分4212及第三遠端部分彼此流體連接且 流體連接於第二遠端部分4218。第_近端部分及第三 近端部分4226流體連接於排出通道。當冷卻總成撕呈 部署狀態時’致冷劑可膨脹至第二近端部分422() _,且第 二螺旋狀氣球4216可以螺旋狀型樣提供主要冷卻。第一螺 方疋狀氣球4210及第二螺旋狀氣球4222可接收自第二遠端 部分4218排出之致冷劑,且可使腎動脈或腎小口部分與第 ,螺旋狀氣球4216内之低溫冷卻絕熱。相對於圖41中所 不之低溫治療裝置4200,當需要較少冷卻及/或需要主要冷 卻面積之間的間隔更大時,裝置侧可適用。在若干立他 具體㈣中’ $同數目之螺旋狀氣球(該等氣球升溫、絕 熱、不冷卻或具有較低冷卻程度)以各種排列(其中螺旋 狀氣球經組態以提供主要冷卻)交纏’以便有助於所需局 部化或總體治療型樣。 圖43 A至圖43C說明可包括相對於冷卻總成之其他部 分可移動之氣球的低溫治療裝置43〇〇之一部分。裝置C⑽ 包括處於定義排出通道之細長軸43〇3之遠端部分“Μ處 的冷郃總成430卜以及細長成型部件43〇4、第一供應管Μ” 及第二供應管4306。遠端部分4302可具有台階4307,且 冷卻總成4301可包括處於第一供應管4305之遠端的第一 孔口 4308及處於第二供應管43〇6之遠端的第二孔口 侧。冷卻總成4301進—步包括具有定義第-膨脹腔之第 89 201223577 一細長'氣球43U及定義第二膨脹腔之第二細長氣球43i2 的施藥器43U)。第一氣球43u具有第一近端部分43i4、第 一中間部分4S15及第一遠端部分4316。第二氣球4312且 有第二近端部分4318、第二中間部分4319及第二遠端部分 4320。第-氣球4311A第二氣球仙具有最接近成型部件 43〇4之内側4322及與内側4322相對之外側4324。第一遠 端部分4316及第二遠端部分432〇連接於成型部件43〇4。 在若干具體實例中’成型部件43。4亦定義引導線可穿過之 引導内腔。 如圖43C中所不,當冷卻總成43()1呈部署狀態時,成 型部件4304相對於軸43 03收縮可使第一中間部分43工5及 第二中間部分4319遠離成型部件43()4橫向移動。第—中 間部分4315之-部分及/或第二中間部分4319之—部分可 經削弱(例如折痕、經熱處理以導致削弱、及/或經薄化) 或以其他方式經組態以定義優先腎曲位置。如冑伙中所 示,成型部件4304收縮後,第—令間部分4315及第二中 /刀43 19之内側4322 —般沿其長度凹陷,同時第一中 1 P刀43 15及第二中間部分4319之外側4324 一般沿其長 =凸出。氣球之受控制偏轉可尤其適用於例如促進在^腎 〜脈或腎小口施加過度膨脹壓力之風險較低的情況下進行 ::小。當施藥器之-或多個氣球大體上為非順應性及/或 二川員應性膨脹達成定大小不切實際時受控制偏轉可尤 兵週用。 圖44A至圖44C說明與圖43A至圖43β中所示之低溫 90 201223577 •治療裝置4300相似但具有更多數目之細長氣球且包括次要 •氣球的低溫治療裝置4400之—部分。裝置4400包括具有 *台階4405且定義排出通道之細長軸4404之遠端部分 .4402、處於遠端部分4402處之冷卻總成4406、及細長成型 部件4408。成型部件4304可為固體或可定義一内腔,諸如 引導線可穿過之引導内腔。裝置侧進一步包括第一供應 官4410、第二供應管4414、第三供應管(未圖示)及填充 管4416。冷卻總成4406可包括處於第一供應管441〇之遠 端的第一供應孔口 4418、處於第二供應管4414之遠端的第 —供應孔口 4420、處於第三供應管遠端之第三孔口(未圖 示)及處於填充管44丨6之遠端的填充孔口 4422。冷卻總成 料06亦包括具有定義第一膨脹腔之細長第一氣球4426、定 義第二膨脹腔之細長第二氣球4428、定義第三膨脹腔之細 長第三氣球4430 (圖44B)及定義填充腔之細長第四氣球 4432的施藥器4424。第一氣球4426、第二氣球々々Μ及第 三氣球4430流體連接於第一供應孔口 4418、第二供應孔口 4420及第二供應孔口。第四氣球流體連接於填充孔口 4422,且密封在填充管4416周圍。第一氣球4426、第二氣 球4428、第二氣球443〇及第四氣球4432連接於成型部件 4408,以便如圖44c中所示,當冷卻總成44〇6呈部署狀態 時,成型部件4408相對於軸4404收縮致使施藥器4424橫 向膨脹。第—氣球料26、第二氣球4428及第三氣球4430 可具有熱傳遞速率足以產生治療上有效之賢神經調節的熱 傳遞部分。第—氣球4426、第二氣球4428及第三氣球4430 91 201223577 可經組態以提供主要冷卻。第四氣球4432可為次要氣球。 在若干其他具體實例中,可以與圖43A至圖43B中所示之 低溫治療裝置4300及圖44A至圖44C中所示之低溫治療裝 置4400之組態相似的組態包括不同數目之主要氣球(存在 次要氣球或不存在次要氣球)。除定大小以外,此等組態可 有助於其他治療目標,諸如所需局部化或總體治療型樣。 圖45A至圖45B說明包括可具有不同組成之主要氣球 及次要氣球的低溫治療裝置4500之一部分《裝置4500包 括處於定義排出通道之細長軸4506之遠端部分4504處的 冷卻總成4502、供應管4508及填充管4509。冷卻總成4502 包括處於供應管4508之遠端的供應孔口 4510及處於填充 官4509之遠端的填充孔口 4514。冷卻總成4502亦包括具 有定義膨脹腔之第一氣球4518及可定義填充腔之第二氣球 4520的施藥器4516。第一氣球4518具有處於遠端部分45〇4 内且將第一氣球4518流體連接於排出通道的近端頸部 4522。第二氣球密封在填充管45〇9周圍且流體連接於填充 孔口 4514。當冷卻總成45〇2呈部署狀態時,第一氣球4518 可經組態以遞送主要冷卻,且第二氣球452〇可為次要氣球。 在若干具體實例中,第一氣球4518與第二氣球452〇 相比具有較低順應性及/或彈性程度。舉例而言,第一氣球 45 18可為大體上非順應性的,而第二氣球可為大體上順應 f生的。此外’第—氣球4518可為大體上非順應性的,而第 二氣球可為A體上順應性的。非順應性材料與順應性材料 相比典型地具有較高強度(例如較高壓力等級為此及/ 92 201223577 • 或出於其他原因,大體上順應性材料可良好適用於經組態 • 以接收直接來自孔口之膨脹致冷劑及/或施加治療上有效冷 . 卻以進行腎神經調節的氣球。大體上順應性材料可良好適 . 用於膨脹至不同尺寸以適應具有不同橫戴面尺寸的腎動脈 及腎小口。圖45A至圖45B中所示之裝置45〇〇及本文所述 之若干其他低溫治療裝置組件可經組態以利用非順應性材 料及順應性材料之不同性質。圖45B及圖45C為經定大小 以裝配在具有不同橫截面尺寸之腎動脈或腎小口内的裝置 45〇0的橫戴面圖。圖45B及圖45C中之第一氣球4518具 有大體上相同之尺寸。然而,圖45C中之第二氣球452〇與 圖45B中相比順應性地膨脹至更大程度。即使第一氣球 4518大體上非順應性地膨脹,第二氣球452〇之可變順應性 膨脹亦可移動第一氣球與腎動脈或腎小口之内表面接觸。 可經由填充管4509小心地控制第二氣球452〇之順應性膨 脹以防止腎動脈或腎小口上之過度膨脹力。 圖45B- 1中之放大展示包括非順應性材料層4526及順 應性材料層4528的分割區4524。非順應性材料層4526可 為第一氣球4518之一部分,且順應性材料層4528可為第 二氣球4520之一部分。在一個具體實例令,第一氣球4518 及第二氣球4520可在分割區4524處連接在一起,但在其 他”體實例中’第一氣球45 (8及第二氣球彼此不連 接。 圖46說明除具有不同分割區外與圖45a至圖之低 溫治療裝置4500相似的低溫治療裝置46〇〇。圖46可被視 93 201223577 為替代圖45B來說明如下獨立具體實例·· 45八至圖伙 中所示之低溫治療裝置4500之所有元件中除圖46中展示 相對於圖45B不同者以外均相似。低溫治療裝置4_包括 第一氣球4602、第二氣球测及處於第—氣球觀與第 二氣球4604之間的分割區46〇6。如圖461中之放大中所 不’分割區4606包括-單層,該單層可為第_氣球之非順 應性層。在另—具體實例中,分割區彻6可包括—單層, 该早層為第二氣球4604之順應性層。為構造裝置46〇〇,大 體上順應性氣球部 例如不完全氣球)可連接於大體上 非㈣性氣球以㈣具有至少部分由大體上非順應性氣球 之-部分所定義之腔室的大體上順應性氣球。在橫截面 中’如圖46中所示,第—氣球46〇2可為大體上D形氣球, 且第二氣球4604可為連接於大體上D形氣球的大體上^形 氣球。 根據本發明技術之若干具體實例組態之低溫治療裝置 可包括螺旋狀主要氣球及非螺旋狀次要氣球。47說明包 括處於定義排出通道之細長軸47〇6之遠端部分處之 飞、’心成4702的低溫治療裝置4700之一部分。裝置47〇〇 =包括供應管4707。冷卻總成4702包括具有螺旋狀第一氣 球二二〇之施藥器4708,該氣球具有第一近端部分叼以及 第端部分4714且定義膨脹腔。供應管47〇7可延伸至 第:近端部分4712中,且冷卻總成4702可具有處於第一 近端部分4712内之供應管4707之遠端的孔口 4718。第一 近端部分4712密封在供應管4707周圍。冷卻總成47〇2可 201223577 進:步包括具有第二近端部& 4722及第二遠端部分4724 出腔的第二氣球472G。第二遠端部分4724可流體 ,接於第-遠端部分4714,且第—氣球·可包繞在第二 風球4720周圍。第二近端部分4722可流體連接於排出通 道。當冷卻總成47G2呈部署狀態時,致冷劑可自第—近端 部分4712向第—遠端部分4714流動,接著通過第二氣球 4720向近端流動。來自致冷劑之背壓可使第:氣球咖膨 服(例如順應性膨脹),由此使第一氣玉求471〇之螺旋直徑 增加。此舉可用於例如促進定大小。此外氣球侧 之螺旋狀形狀可用於例如促進所需局部化或總體治療型 樣。 圖48A至圖48B說明具有呈不同組態之螺旋狀主要氣 球及非螺旋狀次要氣球的低溫治療裝置48〇〇之一部分。裝 置4800包括處於定義排出通道之細長軸48〇6之遠:部^ 4804處的冷卻總成4802。遠端部分48〇4可具有台階48〇/, 且冷卻總成4802可包括具有定義膨脹腔且具有第一近端部 分4812及第一遠端部分4814之螺旋狀第一氣球的施 藥器4808。裝置4800亦可包.括延伸至第一近端部分“η 中之供應管4816,且冷卻總成4802可具有處於第一近端部 分4812内之供應管4816之遠端的孔口 4818。第一近端部 分4812密封在供應管4816周圍。冷卻總成48〇2可進一步 包括具有連接於遠端部分4804之一體式近端頸部4822的 第二氣球4820。第二氣球4820可定義經組態以響應於來自 第一氣球4810所排出之致冷劑的背壓而膨脹(例如順應性 95 201223577 地膨服)的排出腔。第一氣球4810可連接於第二氣球4820 内,帛—氣球4820之膨脹(例如順應性膨脹)可使 *風求4810之螺旋直徑增加從而移動第一氣球a 1〇 之彎曲部分更接近腎動 . 矿勁脈次腎小口之内表面。將第一氣球79 201223577 3302 is in a deployed state, the balloon 33 1〇 is curved along its length and has a generally concave first-wall cut-out shown as a lower portion of the balloon in M 33A) and a substantially non-recessed (eg, convex) second wall 3324 (Shown as the upper part of the balloon in the picture). The balloon proximal portion 3132, the balloon intermediate portion 3314, and the balloon distal portion can be configured to partially contact the circumferential portion of the renal artery or renal ostium. For example, when the cooling assembly 33〇2 is deployed, the balloon intermediate portion can be configured to generally follow the second wall 3324 and generally not along the first wall = contact the renal artery or the renal small D. For example, when the cooling assembly 3302 is in the = state, the balloon proximal portion 3312 and the distal portion of the balloon are along the first 3322 and generally do not contact the renal artery or renal orifice along the second wall (10). The curved shape of the ball can have a uniform contact pattern so that the gas θ contributes to the desired localization or overall treatment pattern. As shown in Fig. 33A to Fig. 33c + 0 Η balloon intermediate portion 3314 #ball 3310 may be included at 3326. In the illustrated second - Μ 3322, the elastic portion of the ball 3310 is thicker: In the example, when the reduced elastic portion 3326 can be in a gas delivery state, the gas is as shown in Figure 33D, within the cooling assembly 3302 3328. ... 31G can be partially shrunk so that the assembly can be kept outside the delivery 3326 can maintain V::: 33. 2 in the delivery state, the elastic reduction portion is flat 1 cold:: = = 'elastic reduction portion can be roughly divided into 3326 In contrast, when ^ u 2 is in the deployed state, the portion with the elastic reduction portion, especially the portion 3326, is at the portion of the second portion 3324 along the second wall 3324 of the portion of the ball 3310 of the squash ball. Expansion (eg, compliance expansion) to a greater 80 201223577 =. In the material embodiment, the reduced elastic portion (10) is substantially non-tetra' and substantially compliant at the portion of the balloon intermediate portion 3314 along the second wall of the apertured ball 3310. When the cooling assembly 3 is deployed, the limitations associated with the reduced portion I knife can contribute to the side of the ball. The reduced elasticity portion 3326 can be configured to be recessed relative to the renal artery or renal orifice when the cooling assembly 3302/deployed state, and accordingly does not encompass heat having a heat transfer rate sufficient to produce a therapeutically effective renal neuromodulation Pass the part. In addition to reducing the elasticity, the thickness of the reduced elastic portion 3326 can reduce its thermal conductivity' to help improve cooling efficiency and/or further contribute to the desired localized or overall therapeutic profile. Figure 34. A portion of the cryotherapy device 3400 that is similar to the device 3300 of Figures 51 to 33D except for having different support configurations. The device 3400 includes a cooling assembly 34〇2 having an applicator 34〇4, and the applicator (10) eight has a balloon 34〇6 defining an inflation lumen. The cooling assembly 34〇2 also includes an elongated support member 34〇8 having a curved distal end 3410. The elongate support member 3 and its ankle support member as described herein can move with the respective cooling assembly as the cooling assembly is delivered between the force delivery state and the deployed = state. For example. The elongated support member 3408 can help prevent the balloon 34〇6 from sticking or twisting during treatment. The elongate support member can optionally be attached to the distal end of the respective balloon by four points. This can be used, for example, to maintain the balloon in a slender configuration. Figures 35A through 35A illustrate a portion of the cryotherapy device 35, the interaction of which with the guide member at least partially results in a complex balloon shape. In other specific examples of the right stem, the at least one & balloon is shaped by interaction with another cryotherapy rupture component (e.g., a shaft or supply tube). Figure 3 > 81 201223577 ^ The apparatus 3 shown in Fig. 35B includes a cooling assembly 35 which is located at the distal end portion of the longitudinal axis 3506 defining the discharge passage. The device can include an elongated guide member 3508 and a supply tube 3512, and the cooling assembly 35: includes a bore π 3514 at the distal end of the supply tube 3512. The cooling assembly can be stepped into a distal end-body neck with a definable inflation lumen and having a proximal portion 3 of the balloon, a proximal integral neck 352g coupled to the distal portion 3504, and a guide member 3508. The balloon 3516 is squeaked. The balloon 3516 can also have a restricted longitudinal portion 3524 (Fig. 3 and the expandable longitudinal portion 3526 (Fig.). The restricted longitudinal portion can be at least partially coupled to the guiding member 35G8. For example From the distal neck 3522 to the balloon proximal end portion 3518, the balloon "the inner surface of the cymbal can be connected to the guide. The p piece 35 〇 8. When the cooling assembly 35 () 2 is deployed, the (four) longitudinal portion 3526 Can be spaced apart from the side of the guide member. The partially constrained shape of the balloon 3516 can be used to promote the desired localized or overall treatment pattern. Further, the 'restricted longitudinal portion 3524 can define at least a portion of the longitudinal flow path around the balloon 3516 (eg, blood flow) Path.) This can be used, for example, to promote occlusion at the treatment site, such as partial occlusion and occlusion. Figure 36 illustrates a different connection pattern between the balloon and the guide member and Figure 35A. The cryotherapy device similar to the cryotherapy device of Fig. 35B. 36 can be considered as an alternative to Fig. 35B to illustrate all of the components of the cryotherapy device shown in the following specific figures 5A to 35B except for Fig. 36. The display is similar to that of Figure 35. The cryotherapy device 3600 includes an elongated guide member 鸠2 and has a radially spaced apart 82 201223577 restricted longitudinal portion 3 $ μ β , balloon 3604. Although Ditu.36 exhibit = separate Opening the longitudinal portion of the longitudinal portion 3; expanding the longitudinal portion; 3 two-year-old 曰 + / - hunting by, for example, the guide member 3602 does not =: rr connects the balloon _ to the guiding member 3608. In addition, the longitudinal portion is restricted 3606 and / or the distribution of the longitudinal part of the expansion; 1 the longitudinal part of the restricted longitudinal part and the longitudinal part of the expansion: ::: r or asymmetry (for example, 3 700 parallel to the guide part hall - the month includes the % The cryotherapy device of the shaped balloon is employed. The third phase of the device includes an elongated shaft measurement at a defined discharge passage. The cooling assembly 37G2 at the portion 3704, and the supply tube and the 37G2 are included in the supply tube 3. ·The opening of the distal end 371〇3714 applicator 3712, balloon 3714 has a first balloon first: and a second balloon segment 3718. The first balloon slice has a balloon far (four) Γ phase portion 3724 and a: distal portion 3726. The first assembly 37 〇 The knife 3722 is fluidly coupled to the second distal portion 3726. When cooled to the first deployed state, the refrigerant may move from the first-near end portion 3720.: Γ: 3722 flow, then flow to the second distal portion = After the two distal parts, the refrigerant may have consumed some of the main cooling capacity. Accordingly, the second balloon segment can discharge the refrigerant from the first distal end portion 3722 and has a heat transfer rate ..., a transfer portion of the heat transfer portion of the 'th balloon segment 3716. In several alternative embodiments, the 'balloon segment 83 201223577 3716 and the second balloon segment 3718 are separate balloons that are fluidly coupled at their distal ends. In another implementation, the first balloon segment and the second balloon segment may be a single stack of the fingertips + *rr \ f , , _ too. Score. The first balloon segment 3718, similar to the non-cooling balloon described below, allows the renal artery or kidney to be at the treatment site. The P-knife is insulated from the low temperature in the first balloon segment 3716. This can be used, for example, to promote the desired localization or overall treatment profile. A plurality of sputums* Figures 38 to 51 illustrate cryotherapy devices including a plurality of balloons, such as right-handed specific examples, which may contribute to hypothermic renal neuromodulation or multiple therapeutic goals, such as desired localities Or general treatment type, big J and Van Wang occlusion. In a plurality of embodiments of the cryotherapy device according to the present invention, _P(10) persons, ', and f can be used in combination with a primary balloon configured to generate a therapeutically effective cooling for renal neuromodulation ( =: Main heat transfer part) IM h % . Knife J /, a secondary balloon configured to prevent or suppress the effective cooling temperature of the therapist at the selected location. In several embodiments, the secondary milk ball includes a secondary heat transfer portion. For example, the secondary balloon can be warmed up, hot: cooled or has a low degree of cooling. Or, a number of specific facts: a balloon such as a qi qi and a β-element include a main heat transfer portion and a secondary ball or no secondary balloon. ' Fig. 3 8 至 to Fig. 3 8 R bb θ + β / mouth This description can have multiple low temperature treatments of the main balloon. One of the 3800s of the Dunhuang 3800, the P knife. Apparatus 3 800 includes a cooling assembly 3802 at a defined discharge passage, "Tianchang Axis 3800. The far minute 3804 may have an n ratio qcn<>7. D, 3807, and the device 3800 can include an elongated guide 3808 and a supply Λ 81 81 . The cooling assembly 38〇2 may include the length of the orifice at the end of the supply tube 84 201223577 3810, which is substantially parallel to the cooling assembly, having a common folding balloon 3414. The balloon 3814 cloth, the ankle portion 3816, or circumferentially sub-hills around the guiding member 3808, the common proximal portion 3816, and the balloon 3814 can be deployed: the portion 3816 can define an inflation lumen. When the cooling assembly is 38° 2 at 287 = Γ, the refrigerant expanded from the supply f 3810 can enter the common proximal end: the knives 6 and circulate within the balloon 38U to expand and cool. Refrigeration = '(4) The shared proximal portion 3816 exits the balloon view and flows along the discharge channel. The acupoints are only 1 d, and the globules 3814 can be configured to contact the septum between the renal veins or the renal orifice at the treatment site (e.g., spaced apart longitudinal portions). This can be used to promote the desired localization or overall treatment profile. In addition, the space between the balloons 3814 = may define at least a portion of the longitudinal flow path (e.g., blood path) around the balloon 3814. This can be used, for example, to promote a degree of occlusion at the treatment site, such as partial occlusion rather than complete occlusion. Strictly illustrated in Figures 39A-39C, a portion of a cryotherapy device 3900 that can have a plurality of balloons having different degrees of cooling is illustrated. The device 39A includes a cooling assembly at the distal end portion 39〇4 of the elongated shaft 3906, an elongated guide member 3907, and a plurality of supply tubes (identified individually as 39〇8a to 39〇8d). The cooling assembly 3902 can include a plurality of apertures (identically identified as 391 (^ to 391 〇d) at the distal ends of the supply tubes 39〇8a to 39〇8d, and the applicator 3912 includes a plurality of elongated balloons (at 39A and 39c are individually identified as 3914a through 3914d). Balloons 3914a through 3914d are circumferentially distributed about guide members 39A, and individually include a proximal neck 3916 that can fluidly connect balloons 3914a through 3914d to the discharge passage ( Figure 39A). The orifices 39l, 3910d 85 201223577 orifices 3910b, 3910c have a larger free passage area. Similarly, the supply tubes 3908a, 3908d have a smaller free passage area than the supply tubes 3908b, 3908d. The balloons 3914a to 3914d are substantially equal in size and have substantially equal internal surface area and external surface area. The ratio of the free channel area to the inner surface area of the orifices and/or supply tubes of the balloons 3914a, 3914d compared to the balloons 39i4b, 3914c may This can result in balloon 391 consumption, cooling within 39.14d relative to the balloon, and 3i 4c. For example, balloons 3914a, 3914d can be configured to serve with balloon 391 391讦 compared The gaseous refrigerant is circulated at a low temperature. Additionally or alternatively, when the cooling assembly 3902 is deployed, the balloons 3914a, 3914d can be configured for substantially surface area limited cooling, while the cooling assembly 39〇2 In the deployed state, balloons 3914b, 3914c are configured for substantially cryogen limited cooling. A certain degree of cooling is provided to tissue near the target area of therapeutically effective renal neuromodulation (eg, a lower degree of cooling, such as Insufficient for cooling of hypothermic renal neuromodulation.) For example, to reduce the increase in heat around the tissue at the target area of therapeutically effective renal neuromodulation. The use of multiple balloons may also contribute to the desired localization or overall size. The degree of occlusion of the sample and/or treatment site, such as partial occlusion rather than complete occlusion. Figure 40 illustrates a cryotherapy device side similar to the cryotherapy device of Figures 39C, except for having different differential cooling mechanisms. The following independent specific examples are described instead of FIG. 39B: FIG. 39 to the cryotherapy device 39 shown in FIG. 39C, except for all the components except FIG. 0 The midamble is not similar to the other than the _39B. The cryotherapy device side includes a shaft 4002 having an inner wall δ 86 201223577 4004 that divides the shaft side into a fluid separation discharge passage, and a supply tube 4006 individually located in the discharge passages. The supply tube 4006 has substantially equal dimensions and may have apertures (not shown) of substantially equal size. The cryotherapy device 4000 also includes a plurality of pressure regulators (individually identified as 4008a to) in fluid communication with the discharge passages. 4008d). Pressure regulators 4008a through 4008d can be configured to be located outside of the blood structure. Adjusting the back pressure in the discharge passage can cause a temperature change in the corresponding balloon (not shown). For example, the pressure regulators 4〇〇8a, 4〇〇8d can maintain the first discharge pressure in the corresponding discharge passage and the balloon, and the pressure regulators 4〇〇8b, 4008c can maintain the corresponding discharge passages and the first of the balloons. Two (different) monthly pressure. In this way, differential cooling similar to the differential cooling described above with respect to apparatus 3900 shown in Figures 39A-39C can be achieved. Figure 4 1 shows a portion of a cryotherapy device 41 (10) having a plurality of helical balloons. The device 4100 includes a cooling assembly 4101, a supply tube 4104, and a filler 4105 at a distal portion 4102 defining an elongated shaft 41〇3 of the discharge passage. The cooling assembly 4101 may include a first supply aperture 41〇6, a second supply aperture 4107, and a filling aperture at the distal end of the filling tube 4105. The cold portion assembly 4 1 0 1 also includes a plurality of Application of a spiral balloon Γ 09 In one embodiment, the applicator 4109 includes a first helical balloon 4110 having a first distal end portion 4112 and a first proximal portion 4114, having a second distal portion 4118 and The second proximal portion 412 has a second "shaped balloon 4116 (shown in dots for clarity of illustration), and a third helical balloon 4122 having a third file 4124 and a third proximal portion 4126. The first supply aperture 41〇6 and the second supply port 41〇 can be fluidly connected to the first distal end portion 4112 and the third distal end portion 4124, respectively, and the first 87 201223577 spiral balloon 4110 and the third spiral balloon 4122 can define expansion. The second balloon proximal portion 4120 can be sealed around the fill tube 4107 and fluidly coupled to the fill aperture 4108' and the second spiral balloon 4116 can define a fill cavity. When the cooling assembly 4101 is deployed, the second spiral Balloon 4116 can be configured to fill The filling tube 4105 is filled. The refrigerant can be expanded into the first distal end portion 4112 and the third distal end portion 4124, and the first spiral balloon 4 ιι and the third spiral balloon 4122 can be independently convoluted or combined. The helical pattern provides primary cooling. The second helical balloon 4 11 6 can insulate the portion of the renal artery or renal orifice from the cryogenic cooling within the first helical balloon 4丨丨0 and the third helical balloon 4丨22. This can be used, for example, to promote the desired localized or nanobody treatment pattern. Further, the interior between the supply tube 40〇4 and the first spiral balloon 411〇, the second spiral balloon 4116, and the third spiral balloon 4122 The space may define at least a portion of the longitudinal flow path (e.g., blood flow path). This may be used, for example, to promote occlusion at the treatment site, such as partial occlusion rather than complete occlusion. Figure 42 illustrates similar to device 4100 shown in Figure 41 but A portion of the cryotherapy device 4200 having an improved supply configuration and drainage configuration in a spiral balloon. The device 4200 includes a cold portion at a distal portion 4203 of the elongated shaft 4204 defining the discharge channel. The assembly 4202, the elongated 5 turns guide 4205 and the supply tube 4206. The cooling assembly 4202 can include a supply aperture 4207 at the distal end of the supply tube 42〇6 and an applicator 4208 having a plurality of helical balloons. In a specific example, the applicator 4208 includes a first helical balloon 421A having a first distal portion 4212 and a first proximal portion 4214, a second distal portion 4218, and a second proximal portion 422〇 The spiral 88 201223577 shaped balloon 42i6 (shown in a dotted view for clarity) and a third helical balloon 4222 having a third distal end portion 4224 and a third proximal end portion 4226. The first distal portion 4212 and the third distal portion are fluidly coupled to one another and fluidly coupled to the second distal portion 4218. The first proximal portion and the third proximal portion 4226 are fluidly coupled to the exhaust passage. The refrigerant expands to the second proximal end portion 422() when the cooling assembly is torn into the deployed state, and the second helical balloon 4216 can provide primary cooling in a helical pattern. The first spiral balloon 4210 and the second spiral balloon 4222 can receive the refrigerant discharged from the second distal portion 4218, and can cool the renal artery or the renal small portion and the first, spiral balloon 4216. Insulation. With respect to the cryotherapy device 4200 not shown in Fig. 41, the device side is applicable when less cooling is required and/or the interval between major cooling areas is required to be larger. In a number of specifics (four), the same number of spiral balloons (the balloons are warmed up, insulated, not cooled, or have a lower degree of cooling) are intertwined in various arrangements (where the spiral balloon is configured to provide primary cooling) 'To facilitate the desired localization or overall treatment profile. Figures 43A through 43C illustrate a portion of a cryotherapy device 43 that can include a movable balloon relative to other portions of the cooling assembly. The apparatus C (10) includes a cold head assembly 430 at the distal end portion of the elongated shaft 43〇3 defining the discharge passage, and an elongated molding member 43〇4, a first supply tube 及, and a second supply tube 4306. The distal portion 4302 can have a step 4307, and the cooling assembly 4301 can include a first aperture 4308 at a distal end of the first supply tube 4305 and a second aperture side at a distal end of the second supply tube 43〇6. The cooling assembly 4301 further includes an applicator 43U having a first elongated balloon 14U defining a first expansion chamber and a second elongated balloon 43i2 defining a second inflation chamber. The first balloon 43u has a first proximal portion 43i4, a first intermediate portion 4S15, and a first distal portion 4316. The second balloon 4312 has a second proximal portion 4318, a second intermediate portion 4319, and a second distal portion 4320. The first balloon 4311A has a second balloon that has an inner side 4322 closest to the molded member 43〇4 and an outer side 4324 opposite the inner portion 4322. The first distal end portion 4316 and the second distal end portion 432 are coupled to the molded member 43A. In a number of specific examples, the molded part 43. 4 also defines a guide lumen through which the guide wire can pass. As shown in Fig. 43C, when the cooling assembly 43() 1 is in the deployed state, the molded member 4304 is contracted relative to the shaft 43 03 to move the first intermediate portion 43 and the second intermediate portion 4319 away from the molded member 43 (). 4 lateral movement. The portion of the first-middle portion 4315 and/or the second intermediate portion 4319 may be weakened (eg, creased, heat treated to cause weakening, and/or thinned) or otherwise configured to define priority Kidney curvature position. As shown in the figure, after the molded part 4304 is contracted, the inner side portion 4315 and the inner side 4322 of the second middle/knife 43 19 are generally recessed along the length thereof, while the first middle 1 P knife 43 15 and the second middle portion are simultaneously recessed. The outer side 4324 of the portion 4319 is generally convex along its length. The controlled deflection of the balloon may be particularly useful, for example, to facilitate a small risk of a low risk of applying excessive inflation pressure to the kidney or vein or the small renal orifice. Controlled deflection can be used when the applicator's - or multiple balloons are substantially non-compliant and/or the size of the expander is not realistic. Figures 44A-44C illustrate portions of the cryotherapy device 4400 similar to the low temperature 90 201223577 • treatment device 4300 shown in Figures 43A-43, but having a greater number of elongated balloons and including secondary balloons. The device 4400 includes a distal end portion of the elongated shaft 4404 having a *step 4405 and defining a discharge passage. 4402, a cooling assembly 4406 at the distal end portion 4402, and an elongated profiled member 4408. The molded component 4304 can be solid or can define a lumen, such as a guidewire through which the guide lumen can pass. The device side further includes a first supply 4410, a second supply tube 4414, a third supply tube (not shown), and a fill tube 4416. The cooling assembly 4406 can include a first supply aperture 4418 at a distal end of the first supply tube 441A, a first supply aperture 4420 at a distal end of the second supply tube 4414, and a distal end of the third supply tube A three-port (not shown) and a fill port 4422 at the distal end of the fill tube 44丨6. Cooling assembly 06 also includes an elongated first balloon 4426 defining a first expansion lumen, an elongated second balloon 4428 defining a second inflation lumen, an elongated third balloon 4430 defining a third inflation lumen (Fig. 44B), and defining a fill The applicator 4424 of the elongated fourth balloon 4432 of the cavity. The first balloon 4426, the second balloon 々々Μ, and the third balloon 4430 are fluidly coupled to the first supply aperture 4418, the second supply aperture 4420, and the second supply aperture. The fourth balloon is fluidly coupled to the fill orifice 4422 and is sealed around the fill tube 4416. The first balloon 4426, the second balloon 4428, the second balloon 443〇, and the fourth balloon 4432 are coupled to the molded component 4408 such that when the cooling assembly 44〇6 is deployed, the molded component 4408 is opposite, as shown in FIG. 44c. Contraction of the shaft 4404 causes the applicator 4424 to expand laterally. The first balloon material 26, the second balloon 4428, and the third balloon 4430 can have a heat transfer portion having a heat transfer rate sufficient to produce a therapeutically effective stimulator. The first balloon 4426, the second balloon 4428, and the third balloon 4430 91 201223577 can be configured to provide primary cooling. The fourth balloon 4432 can be a secondary balloon. In several other specific examples, configurations similar to those of the cryotherapy device 4300 shown in FIGS. 43A-43B and the cryotherapy device 4400 shown in FIGS. 44A-44C include a different number of primary balloons ( There are secondary balloons or no secondary balloons). In addition to size, such configurations may contribute to other therapeutic goals, such as the desired localization or overall treatment profile. 45A-45B illustrate a portion of a cryotherapy device 4500 that includes a primary balloon and a secondary balloon that can have different compositions. The device 4500 includes a cooling assembly 4502 at a distal portion 4504 of an elongated shaft 4506 defining a discharge channel. Tube 4508 and fill tube 4509. Cooling assembly 4502 includes a supply orifice 4510 at the distal end of supply tube 4508 and a fill orifice 4514 at the distal end of filler 4509. Cooling assembly 4502 also includes an applicator 4516 having a first balloon 4518 defining an inflation lumen and a second balloon 4520 defining a filling lumen. The first balloon 4518 has a proximal neck 4522 that is within the distal portion 45〇4 and fluidly connects the first balloon 4518 to the venting channel. The second balloon is sealed around the fill tube 45A and fluidly coupled to the fill port 4514. When the cooling assembly 45〇2 is deployed, the first balloon 4518 can be configured to deliver primary cooling and the second balloon 452〇 can be a secondary balloon. In several embodiments, the first balloon 4518 has a lower degree of compliance and/or flexibility than the second balloon 452A. For example, the first balloon 45 18 can be substantially non-compliant, while the second balloon can be substantially conformable. Further, the 'first balloon' 4518 can be substantially non-compliant, and the second balloon can be compliant on the A body. Non-compliant materials typically have higher strength than compliant materials (eg, higher pressure ratings for this and / 92 201223577 • or for other reasons, generally compliant materials are well suited for configuration • to receive Expanded cryogen directly from the orifice and/or balloon that is therapeutically effective to cool the kidney for neuromodulation. The compliant material is generally suitable for expansion to different sizes to accommodate different cross-sectional dimensions Renal artery and renal orifice. The device 45〇〇 shown in Figures 45A-45B and several other cryotherapy device components described herein can be configured to take advantage of the different properties of non-compliant materials and compliant materials. 45B and 45C are transverse cross-sectional views of a device 45 〇 0 sized to fit within a renal artery or renal orifice having different cross-sectional dimensions. The first balloon 4518 in Figures 45B and 45C has substantially the same Dimensions. However, the second balloon 452A in Fig. 45C compliantly expands to a greater extent than in Fig. 45B. Even if the first balloon 4518 expands substantially non-compliant, the second balloon 452 The compliant expansion can also move the first balloon into contact with the inner surface of the renal artery or the renal orifice. The compliance expansion of the second balloon 452 can be carefully controlled via the filling tube 4509 to prevent excessive expansion of the renal artery or renal orifice. The enlarged view of FIG. 45B-1 includes a non-compliant material layer 4526 and a segment 4524 of a compliant material layer 4528. The non-compliant material layer 4526 can be a portion of the first balloon 4518, and the compliant material layer 4528 can be A portion of the second balloon 4520. In one specific example, the first balloon 4518 and the second balloon 4520 can be joined together at the segment 4524, but in other "body instances" the first balloon 45 (8 and the second balloon) Figure 24 illustrates a cryotherapy device 46 that is similar to the cryotherapy device 4500 of Figures 45a, except for having different partitions. Figure 46 can be viewed as 93 201223577 instead of Figure 45B to illustrate the following independent examples. All of the elements of the cryotherapy device 4500 shown in Figure VIII are similar except that shown in Figure 46 with respect to Figure 45. The cryotherapy device 4_ includes the first balloon 46. 02, the second balloon measures and the partition 46 〇 6 between the first balloon view and the second balloon 4604. As shown in the enlargement in FIG. 461, the partition 4606 includes a single layer, which may be the first layer a non-compliant layer of the balloon. In another embodiment, the partition 6 may comprise a single layer, the early layer being a compliant layer of the second balloon 4604. The constructing device 46〇〇, a substantially compliant balloon A portion, such as an incomplete balloon, can be coupled to a substantially non-(four) balloon, (iv) a substantially compliant balloon having a chamber defined at least in part by a portion of the substantially non-compliant balloon. In cross-section, as shown in Figure 46, the first balloon 46〇2 can be a generally D-shaped balloon, and the second balloon 4604 can be a generally ^-shaped balloon attached to a generally D-shaped balloon. The cryotherapy device configured in accordance with several embodiments of the present technology can include a helical primary balloon and a non-helical secondary balloon. 47 illustrates a portion of a cryotherapy device 4700 that includes a fly, 'heart 4702' at the distal end portion of the elongated shaft 47〇6 defining the discharge passage. Device 47 〇〇 = includes supply tube 4707. Cooling assembly 4702 includes an applicator 4708 having a helical first balloon dichotomy, the balloon having a first proximal portion 叼 and a first end portion 4714 and defining an inflation lumen. Supply tube 47A can extend into: proximal portion 4712, and cooling assembly 4702 can have an orifice 4718 at the distal end of supply tube 4707 within first proximal portion 4712. The first proximal portion 4712 is sealed around the supply tube 4707. The cooling assembly 47〇2 can be 201223577. The step includes a second balloon 472G having a second proximal end & 4722 and a second distal end portion 4724 exiting the cavity. The second distal end portion 4724 can be fluidly coupled to the first distal end portion 4714 and the first balloon can be wrapped around the second air balloon 4720. The second proximal portion 4722 can be fluidly coupled to the exhaust passage. When the cooling assembly 47G2 is deployed, the refrigerant can flow from the first proximal portion 4712 to the first distal portion 4714 and then to the proximal end through the second balloon 4720. The back pressure from the refrigerant can cause the balloon to expand (e.g., compliant expansion), thereby increasing the diameter of the spiral of the first gas. This can be used, for example, to facilitate sizing. In addition, the helical shape of the balloon side can be used, for example, to promote the desired localization or overall treatment profile. Figures 48A through 48B illustrate a portion of a cryotherapy device 48 having helically shaped primary and non-helical secondary balloons in different configurations. Apparatus 4800 includes a cooling assembly 4802 at a portion of the elongated shaft 48〇6 defining the discharge passage: portion 4804. The distal portion 48〇4 can have a step 48〇/, and the cooling assembly 4802 can include an applicator 4808 having a helical first balloon defining an inflation lumen and having a first proximal portion 4812 and a first distal portion 4814 . The device 4800 can also include a supply tube 4816 that extends into the first proximal portion "n" and the cooling assembly 4802 can have an aperture 4818 at the distal end of the supply tube 4816 within the first proximal portion 4812. A proximal portion 4812 is sealed around the supply tube 4816. The cooling assembly 48〇2 can further include a second balloon 4820 having a body proximal neck 4822 coupled to the distal portion 4804. The second balloon 4820 can be defined as a group The state is in a discharge chamber that expands (e.g., compliance 95 201223577) in response to back pressure from the refrigerant discharged from the first balloon 4810. The first balloon 4810 can be coupled to the second balloon 4820, a balloon The expansion of 4820 (for example, compliant expansion) can increase the diameter of the spiral of the wind 4810 to move the curved portion of the first balloon a 1 更 closer to the kidney movement. The inner surface of the small vein of the kidney is the first balloon.

481〇置於第二氣球4820内可用於彳¢,1 4 A Μ j用於例如在血管結構内提供冗 餘致冷劑容載。 圖4 9說明具有呈另—組態之螺旋狀主要氣球及非螺旋 狀次要氣球的低溫治療裝置侧之—部分。裝置49〇〇包 括處於定義排出通道之細長軸娜之遠端部分處的 冷卻總成侧。遠端部分49()4可具有台階4_及複數個The 481 〇 is placed in the second balloon 4820 for 彳¢, and 14 A Μ j is used, for example, to provide redundant cryogen loading within the vascular structure. Figure 49 illustrates a portion of the cryotherapy device side having a spiral configuration of a primary balloon and a non-helical secondary balloon. The device 49 includes a cooling assembly side at a distal end portion of the elongated shaft defining the discharge passage. The distal portion 49() 4 can have a step 4_ and a plurality of

排出開口 4907。冷卻她出jQno—γα» L P〜成4902可包括具有定義膨脹腔且具 有第一近端部分4912及第-遠端部分4914之螺旋狀第一 氣球⑼〇的施藥器49〇8。裝置49〇〇亦可包括延伸至第一 近端P刀4912中之供應管4916,且冷卻總成可具有 處於供應管4916之遠端的孔口 4918。第一近端部分4912 可密封在供應管4916周圍。冷卻總成49〇2可進一步包括 位於遠端部分49G4周圍^具有連接於遠端部分侧之一 體式近端頸部4922的第二氣球。第-氣球_可包 凌在第一氣球4920周圍,且第一遠端部分4914可流體連 接於第二氣球4920遠端之遠端部分49〇4。當冷卻總成49〇2 呈部署狀態時’第二氣球492〇可經組態以被動接收通過排 出開口 4907來自排出通道之致冷劑,且可經組態以響應於 來自第一氣球4910所排出之致冷劑的背壓而膨脹(例如順 應性地膨脹)。第二氣球492〇之膨脹(例如順應性膨脹)The opening 4907 is discharged. Cooling her out jQno - γα» L P~ into 4902 may include applicator 49〇8 having a helical first balloon (9) 定义 defining an inflation lumen and having a first proximal portion 4912 and a distal-end portion 4914. The device 49A can also include a supply tube 4916 that extends into the first proximal P-knife 4912, and the cooling assembly can have an orifice 4918 at the distal end of the supply tube 4916. The first proximal portion 4912 can be sealed around the supply tube 4916. The cooling assembly 49〇2 can further include a second balloon located around the distal end portion 49G4 and having a proximal proximal neck portion 4922 attached to the distal portion side. The first balloon _ can be wrapped around the first balloon 4920, and the first distal portion 4914 can be fluidly coupled to the distal portion 49〇4 of the distal end of the second balloon 4920. The second balloon 492A can be configured to passively receive refrigerant from the discharge passage through the discharge opening 4907 when the cooling assembly 49〇2 is deployed, and can be configured to respond to the first balloon 4910 The discharged refrigerant is expanded by the back pressure (for example, compliantly expanded). Expansion of the second balloon 492 (eg, compliance expansion)

S 96 201223577 可使第-氣球侧之螺旋直徑增加,由 4910之部分(例如纟考曲 弟轧球 口之内表面。 曲移動以更接近腎動脈或腎小 圖50說明具有呈另—組態之螺旋狀主要氣球及非螺旋 狀次要氣球的低溫治療裝置侧之—部分。裝置雇包 括處於^義排出通道之細長軸之遠端部分则處之冷卻濟 成5002、填充管5_、處於填充管篇之遠端的填充孔 口 5005、及供應管5〇〇6。冷卻總成5〇〇2包括處於供應管 之遠端的供應孔口 _7。供應管5_可包括處歸 應孔口湖7附近之拐角5嶋’諸如肘狀物。冷卻總成灣 進一步包括具有定義膨脹腔且具有第一近端部分5〇ιι及第 一遠端部分5G12之螺旋狀第—氣球购的施藥器5009。 冷卻總成5002亦可包括具有第二近端部分5〇16及第二遠 端部分5㈣之第二氣球5〇14。第二近端部分5〇16可流體 連接於填充孔口 5005且密封在填充管5〇〇4周圍。第二遠 端部分5018可密封在供應f 5⑽6周圍’但與供應管观 及第一氣球5010流體分離。第—氣球5〇1〇可包繞在第二 氣球5〇14周圍且經組態以接收來自供應f 5嶋之致㈣ 並經由第一近端部分5011將致冷劑排入排出通道中。^二 氣球5014可經組態以接收來自填充管5〇〇4之填充材料2 膨脹(例如順應性地膨脹),從而使第一氣球5〇'1〇之螺旋 直徑增加,由此使第-氣球5〇1()之—部》(例如彎曲部= 移動以更接近腎動脈或腎小口之内表面。 圖51說明具有呈另-組態之螺旋狀主要氣球及非螺旋 97 201223577 狀次要氣球的低溫治療裝置5丨〇〇之一部分。裴置5 1 包 括處於定義排出通道之細長軸51〇3之遠端部分51〇2處的 冷卻總成510卜供應管51〇6及填充管51〇8<>遠端部分51〇2 可具有台階5104及出口孔5105。冷卻總成51〇1可包括處 於供應管5106之遠端的供應孔口 51〇7及處於填充管 之遠端的填充孔口 5109。冷卻總成5101可進一步包括具有 定義膨脹腔且具有第一近端部分5112及第一遠端部分Η Μ 之螺旋狀第一氣球5111的施藥器5110。供應管51〇6可自 出口孔5105延伸並延伸至第一近端部分5112中且第一近 端部分5112可密封在供應管51〇6周圍。冷卻總成5ι〇ι可 進一步包括位於遠端部分5102周圍且具有連接於遠端部分 5102之一體式近端頸部5118的第二氣球5U6。第二氣球 5U6可經組態以接收來自填充管51〇8之填充材料並膨脹 (例如順應性地膨脹),從而使第一氣球5111之螺旋直徑增 加,由此使第一氣球5丨丨丨之一部分(例如彎曲部分)移動 以更接近腎動脈或腎小口之内表面。 近端次要葡.球 主要氣球及次要氣球可沿根據本發明技術之若干具體 實例組態之低溫治療裝置之一部分之長度縱向間隔開。舉 例而言,次要氣球可為經組態以完全或部分閉塞腎動脈及/ 或腎小口之閉塞部件之部分。圖52Α至圖53說明包括近端 次要氣球之低溫治療裝置之若干具體實例。 圖52Α至圖52Β說明包括沿定義排出通道之細長軸 5206縱向間隔開之冷卻總成52〇2及閉塞部件52〇4的低溫 δ 98 201223577 治療裝置5200之—部分。軸52〇6可具有第一逐步減小部 分52 08、處於第一逐步減小部分52〇8處之冷卻總成排出口 5209、第二逐步減小部分52丨〇及處於第二逐步減小部分 52 1 0處之閉塞部件排出口 52丨i。冷卻總成52〇2及閉塞部件 52〇4可分別位於第—逐步減小部分52〇8及第二逐步減小部 分5210處。裝置5200可包括供應管5212,且冷卻總成52〇2 可具有處於供應管5212之遠端的孔口 5213。冷卻總成52〇2 亦可包括具有定義膨脹腔之第一氣球5215的施藥器5214。 供應管5212可以一定角度自軸5206中伸出並進入第一氣 球52 15中。閉塞部件52〇4可包括定義閉塞腔之第二氣球 52 1 6。第二氣球52 1 6可經組態以被動接收通過閉塞部件排 出口 5 2 11來自排出通道之致冷劑,且可經組態以響應於來 自冷卻總成5202所排出之致冷劑的背壓而膨脹(例如順應 性地膨脹)。冷卻總成5202及閉塞部件5204在遞送狀態下 可至少部分收縮,且分別以膨脹狀態及部署狀態示於圖52八 至圖52B令。在膨脹狀態下,閉塞部件52〇4可具有經組態 以完全閉塞腎動脈及/或腎小口之橫截面尺寸。 如圖52B中所示,裝置5200可進一步包括第一細長控 制部件5218、第二細長控制部件5220以及具有第一遠端分 支5224及第二遠端分支52%之控制管5222。軸52〇6可進 一步包括第一遠端連接點5228、第二遠端連接點523〇及處 於第一逐步減小部分5208與第二逐步減小部分521〇之間 的撓曲部分5232。第一細長控制部件5218可沿控制管5222 延伸、沿第一遠端分支5224延伸並連接於第一遠端連接點 99 201223577 5228。第二細長控制部件522〇可沿控制管5222延伸、沿 第二遠端分支5226延伸並連接於第二遠端連接點523〇。裝 置5200可經組態以便增加或降低第一控制部件5218及/或 第二控制部件5220之張力可控制軸52〇6之偏轉。軸π% 在撓曲部分5232處為可撓的以便定位第一氣球與血管壁或 小口相抵。除了完全閉塞血管或小口以外或作為替代閉 塞部件5204可在膨脹狀態下經組態以在腎動脈或腎小口内 .支撐軸5206’從而在腎動脈或腎小口内受控制地重新定位 冷卻總成5202。舉例而言,冷卻總成52〇2可經重新定位以 在腎動脈或腎小口之不同部分產生治療上有效之低溫腎神 經調節。 圖53說明與圓53Α至圖53Β中所示之低溫治療裝置 5200相似的低溫治療裝置53〇〇之—部分,但裝置μ㈧且 有其他遠端冷卻組態以及不同的供應及控制組態。裝置 包括沿定義排出通道之細長軸53Q6縱向間隔開之冷卻 總成=及閉塞部件53〇4。轴_可具有遠端連接點加 定義遠端膨脹腔之遠端尖端部分5308。冷卻總成53〇2包 括具有定義膨脹腔之第一氣球5312的施藥器WO 部件侧包括定義與排出通道㈣分離 = 球5314。裝置_進一步_ 的第一乳 充管.53i6以及具有延伸至第”第—氣球5314之填 八’延1甲主弟一氣球53 12夕拌 及延伸至遠端尖端部分53G p刀支5320 管分5322的供應 ^ 步包括可向第二氣球5314供 應填充材料的填充孔口 5324。 ’、 7郃〜成5302進一步包括經 δ 100 201223577 組態以引導致冷劑膨脹至第一氣球53 12中的第一供應孔口 53 26及經組態以引導致冷劑膨脹至遠端尖端部分5308 _的 第二供應孔口 5 3 2 8。 裝置5300進一步包括細長控制部件5330及控制管 5 3 3 2。控制部件5 3 3 0可沿控制官5 3 3 2延伸並連接於遠端 連接點5307。裝置5300可經組態以便增加或降低控制部件 5330之張力可控制軸5306之偏轉。除了完全閉塞血管或小 口以外或作為替代’閉塞部件5 3 0 4可在膨脹狀態下經組態 以在腎動脈或腎小α内支撐軸5306,從而在腎動脈或腎小 口内受控制地重新定位冷卻總成5302。舉例而言,冷卻總 成53 02可經重新定位以在腎動脈或腎小口之不同部分產生 治療上有效之低溫腎神經調節。 替代性洽卻 根據本發明技術之若干具體實例組態之冷卻總成在部 署狀瘧下具有不涉及致冷劑蒸發之冷卻機制。舉例而言, 該等具體實例可包括經組態以使液體致冷劑或超臨界致冷 劑在低溫溫度下循環以引起通過施藥器之主要熱傳遞部分 進行對流型及傳導型冷卻的冷卻總成。在該等施藥器中, 供應器之流動阻抗可大體上等於排出裝置之流動阻抗。舉 例而言,供應内腔之橫截面面積可大體上等於排出通道之 橫截面面積。在一些具體實例中,具有經組態以使致冷劑 在不發生相變的情況下循環的冷卻總成的低溫治療裝置可 具有有助於向冷卻總成供應致冷劑及/或自冷卻總成排出致 冷劑的特徵。舉例而言,可包括第一泵以增加流向冷卻總 101 201223577 成之致冷劑之壓力,及/或可包括真空源(例如第二泵)以 減少流出冷部總成之致冷劑之壓力。除第一泵以外或者替 代地,可自加壓來源供應致冷劑。基於操作考慮,例如供 應器、排出裝置之致冷劑黏度及流動阻抗以及低溫治療裝 置之熱傳遞部分,可選擇供應壓力及排出壓力來產生不同 的致冷劑流速。舉例而言,可對應於足以產生治療上有效 之低溫腎神經調節的熱傳遞速率來選擇流速。 圖54說明可經組態以在不發生致冷劑相變的情況下進 行對流型熱傳遞的低溫治療裝置54〇〇之一部分。裝置54〇〇 包括處於定義排出通道之細長軸54〇6之遠端部分54〇4處 的冷卻總成5402。冷卻總成54〇2包括具有定義循環腔之氣 球5410的施藥器5408。裝置5400亦包括沿軸5406之長度 延伸且延伸至氣球5410中的供應管5412,且冷卻總成54〇2 包括處於供應管5412之遠端的孔口 541〇在若干具體實例 中,供應管5412相對較大且經組態以輸送液體致冷劑,且 孔口 54 14未經組態'以產生足以使致冷劑蒸發的壓降。當冷 卻總成5402呈部署狀態時,氣球541〇可經組態以填充呈 至少實質上液相之致冷劑。致冷劑可自供應管5412循環至 排出通道。圖54包括指示致冷劑通過氣球541〇流動之方 向的箭頭5416。致冷劑可為具有較低凝固點之液體(例如 乙醇)’且可在低溫溫度下經由供應管54丨2輸送。致冷劑 與亂球5410之間的對流型熱傳遞可冷卻腎動脈或腎小口以 產生治療上有效之腎神經調節。 圖55說明可經組態以在不發生致冷劑相變的情況下進S 96 201223577 can increase the diameter of the spiral on the first balloon side by the part of 4910 (for example, the inner surface of the ball of the ball of the 纟考曲弟. The movement of the curve is closer to the renal artery or the small figure 50 shows that there is another configuration The spiral main balloon and the non-helical secondary balloon are at the side of the cryotherapy device. The device employs a cooling fin 5002 at the distal end portion of the elongated shaft of the venting channel, and the filling tube 5_ is filled. a filling opening 5005 at the distal end of the pipe and a supply pipe 5〇〇 6. The cooling assembly 5〇〇2 includes a supply opening _7 at the distal end of the supply pipe. The supply pipe 5_ may include a return hole The corner of the mouth near the lake 7 is 5嶋' such as an elbow. The cooling assembly bay further includes a spiral-shaped balloon having a defined expansion cavity and having a first proximal portion 5〇1 and a first distal portion 5G12. The medicinal device 5009. The cooling assembly 5002 can also include a second balloon 5〇14 having a second proximal portion 5〇16 and a second distal portion 5(4). The second proximal portion 5〇16 can be fluidly coupled to the filling aperture 5005 and sealed around the filling tube 5〇〇4. The second distal end The minute 5018 can be sealed around the supply f 5 (10) 6 'but fluidly separated from the supply tube view and the first balloon 5010. The first balloon 5 〇 1 〇 can be wrapped around the second balloon 5 〇 14 and configured to receive from the supply f 5(4) and discharging the refrigerant into the discharge passage via the first proximal portion 5011. The second balloon 5014 can be configured to receive expansion of the filler material 2 from the fill tube 5〇〇4 (eg, compliantly Swelling, thereby increasing the diameter of the first balloon 5〇'1〇, thereby causing the first balloon 5〇1() to be moved (for example, the bending portion = moving closer to the inner surface of the renal artery or the renal orifice) Figure 51 illustrates a portion of a cryotherapy device 5 having a spiral configuration of a main balloon and a non-helical 97 201223577 secondary balloon. The device 5 1 includes an elongated shaft 51 〇 3 in a defined discharge channel. The cooling assembly 510 at the distal end portion 51〇2, the supply tube 51〇6, and the filling tube 51〇8<> the distal end portion 51〇2 may have a step 5104 and an outlet hole 5105. The cooling assembly 51〇1 may Included in the supply port 51〇7 at the distal end of the supply tube 5106 and at the far end of the fill tube The filling orifice 5109. The cooling assembly 5101 can further include an applicator 5110 having a helical first balloon 5111 having a first proximal portion 5112 and a first distal portion 5Η defining an inflation lumen. The supply tube 51〇 6 may extend from the exit aperture 5105 and extend into the first proximal end portion 5112 and the first proximal end portion 5112 may be sealed around the supply tube 51A. The cooling assembly 5ι may further include a portion located around the distal portion 5102 and There is a second balloon 5U6 coupled to a body proximal neck 5118 of the distal portion 5102. The second balloon 5U6 can be configured to receive the filling material from the filling tube 51〇8 and expand (e.g., compliantly expand), thereby increasing the helical diameter of the first balloon 5111, thereby causing the first balloon 5 to A portion (eg, a curved portion) moves closer to the inner surface of the renal artery or renal ostium. The proximal secondary balloon and the secondary balloon may be longitudinally spaced apart along the length of a portion of the cryotherapy device configured in accordance with several specific embodiments of the present technology. For example, the secondary balloon can be part of an occlusion component configured to completely or partially occlude the renal artery and/or the renal orifice. Figures 52A through 53 illustrate several specific examples of cryotherapy devices including proximal secondary balloons. Figure 52A to Figure 52B illustrate a portion of the cryogenic δ 98 201223577 treatment device 5200 including the cooling assembly 52〇2 and the occluding member 52〇4 that are longitudinally spaced apart along the elongated shaft 5206 defining the discharge passage. The shaft 52〇6 may have a first step-down portion 52 08, a cooling assembly discharge port 5209 at the first step-down portion 52〇8, a second step-down portion 52丨〇, and a second step-down. The occlusion member discharge port 52丨i at the portion 52 1 0. The cooling assembly 52〇2 and the occluding member 52〇4 may be located at the first step-down portion 52〇8 and the second step-down portion 5210, respectively. Device 5200 can include a supply tube 5212, and cooling assembly 52〇2 can have an aperture 5213 at the distal end of supply tube 5212. The cooling assembly 52〇2 can also include an applicator 5214 having a first balloon 5215 defining an inflation lumen. The supply tube 5212 can extend from the shaft 5206 at an angle and into the first balloon 5215. The occluding member 52〇4 can include a second balloon 52 16 that defines an occlusion cavity. The second balloon 52 16 can be configured to passively receive refrigerant from the discharge passage through the occlusion member discharge port 5 2 11 and can be configured to respond to the back of the refrigerant discharged from the cooling assembly 5202 Compressed and expanded (eg, compliantly expanded). Cooling assembly 5202 and occluding member 5204 can be at least partially collapsed in the delivery state, and are shown in Figures 52-52B, respectively, in an expanded state and a deployed state. In the expanded state, the occluding member 52A can have a cross-sectional dimension configured to completely occlude the renal artery and/or the small renal orifice. As shown in Figure 52B, device 5200 can further include a first elongate control member 5218, a second elongate control member 5220, and a control tube 5222 having a first distal branch 5224 and a second distal branch 52%. The shaft 52〇6 can further include a first distal attachment point 5228, a second distal attachment point 523〇, and a flex portion 5232 between the first step-down portion 5208 and the second step-down portion 521〇. The first elongate control member 5218 can extend along the control tube 5222, extend along the first distal branch 5224, and is coupled to the first distal connection point 99 201223577 5228. The second elongated control member 522 can extend along the control tube 5222, extend along the second distal branch 5226, and be coupled to the second distal attachment point 523A. The device 5200 can be configured to increase or decrease the deflection of the first control member 5218 and/or the second control member 5220 to control the deflection of the shaft 52〇6. The axis π% is flexible at the flex portion 5232 to position the first balloon against the vessel wall or port. In addition to fully occluding a blood vessel or a small orifice or as an alternative occlusion component 5204 can be configured in an expanded state within the renal artery or renal ostium. Supporting the shaft 5206' to controllably reposition the cooling assembly within the renal artery or renal orifice 5202. For example, the cooling assembly 52〇2 can be repositioned to produce a therapeutically effective low temperature renal neuromodulation in different portions of the renal artery or renal ostium. Figure 53 illustrates a portion of the cryotherapy device 53 similar to the cryotherapy device 5200 shown in Figure 53A, but with device μ (eight) and other remote cooling configurations and different supply and control configurations. The apparatus includes a cooling assembly = and an occluding member 53 〇 4 that are longitudinally spaced apart along an elongated shaft 53Q6 defining a discharge passage. The shaft _ can have a distal attachment point plus a distal tip portion 5308 defining a distal inflation lumen. The cooling assembly 53〇2 includes an applicator WO member side having a first balloon 5312 defining an inflation lumen including a definition separate from the discharge passage (4) = ball 5314. The first milk filling tube of the device_further_.53i6 and the filling of the first "the balloon" 5314, the filling of the eight's 1st, the first brother, the first balloon, the balloon, the balloon, and the distal end portion 53G, the knife 5320 The supply step of 5322 includes a fill aperture 5324 that can supply a fill material to the second balloon 5314. ', 7郃~ into 5302 further includes a configuration via δ 100 201223577 to cause the refrigerant to expand into the first balloon 53 12 The first supply aperture 53 26 and the second supply aperture 5 3 2 8 configured to cause the coolant to expand to the distal tip portion 5308 — the device 5300 further includes an elongated control member 5330 and a control tube 5 3 3 2. The control unit 5 3 3 0 can extend along the control officer 5 3 3 2 and connect to the remote connection point 5307. The device 5300 can be configured to increase or decrease the tension of the control member 5330 to control the deflection of the shaft 5306. An occlusion vessel or a small orifice or as an alternative to the 'occlusion component 5 3 0 4 can be configured in an expanded state to support the shaft 5306 within the renal artery or renal small alpha, thereby controlled repositioning cooling within the renal artery or renal orifice Assembly 5302. For example The cooling assembly 53 02 can be repositioned to produce therapeutically effective hypothermia renal neuromodulation in different portions of the renal artery or renal ostium. Alternatively, the cooling assembly configured in accordance with several embodiments of the present technology is deployed There is a cooling mechanism under malaria that does not involve evaporation of the refrigerant. For example, such specific examples may include configuring to circulate a liquid cryogen or supercritical refrigerant at a cryogenic temperature to cause passage through the applicator The primary heat transfer portion performs a convection-type and conduction-type cooling cooling assembly. In these applicators, the flow resistance of the supply can be substantially equal to the flow resistance of the discharge device. For example, the cross-sectional area of the supply lumen Can be substantially equal to the cross-sectional area of the discharge passage. In some embodiments, a cryotherapy device having a cooling assembly configured to circulate a refrigerant without phase change can have a cooling aid The assembly supplies the refrigerant and/or the characteristics of the refrigerant discharged from the cooling assembly. For example, the first pump may be included to increase the flow to the total cooling 101 201223577 The pressure of the refrigerant, and/or may include a vacuum source (eg, a second pump) to reduce the pressure of the refrigerant flowing out of the cold section assembly. In addition to or in addition to the first pump, the refrigerant may be supplied from a pressurized source. Based on operational considerations, such as the refrigerant viscosity and flow resistance of the supply, the discharge device, and the heat transfer portion of the cryotherapy device, the supply pressure and the discharge pressure may be selected to produce different refrigerant flow rates. For example, The flow rate is selected at a rate sufficient to produce a therapeutically effective low temperature renal neuromodulation. Figure 54 illustrates a cryotherapy device 54 that can be configured to perform convective heat transfer without a refrigerant phase change. Part of it. The device 54A includes a cooling assembly 5402 at a distal end portion 54A4 of the elongated shaft 54A6 defining the discharge passage. The cooling assembly 54A includes an applicator 5408 having a balloon 5410 defining a circulation chamber. The device 5400 also includes a supply tube 5412 extending along the length of the shaft 5406 and extending into the balloon 5410, and the cooling assembly 54〇2 includes an aperture 541 at the distal end of the supply tube 5412. In several embodiments, the supply tube 5412 It is relatively large and configured to deliver liquid refrigerant, and the orifices 54 14 are unconfigured to produce a pressure drop sufficient to vaporize the refrigerant. When the cooling assembly 5402 is deployed, the balloon 541 can be configured to fill a refrigerant that is at least substantially liquid phase. The refrigerant can be circulated from the supply pipe 5412 to the discharge passage. Figure 54 includes an arrow 5416 indicating the direction in which the refrigerant flows through the balloon 541. The refrigerant may be a liquid having a lower freezing point (e.g., ethanol)' and may be delivered via the supply pipe 54丨2 at a low temperature. Convective heat transfer between the cryogen and the chaotic ball 5410 cools the renal artery or renal orifice to produce a therapeutically effective renal neuromodulation. Figure 55 illustrates that it can be configured to enter without a refrigerant phase change.

S 102 201223577 行對流型熱傳遞的低溫治療梦 縻裝置5500之—部分。裝置55〇〇 包括處於細長轴5 5 0 、 之退端部分5504處的冷卻總 5 5 0 2,細長軸5 5 〇 6句括眩吟± , 匕括將该軸分成定義供應内腔之第一 向部分5 5 10及定義排中搞 我徘出通道之第二縱向部分55 I2的轴分 割區5 5 0 8。冷卻嫩成$ ς m ^ 包括具有氣球5516之施藥 ^4,氣球5516包括在氣球灿内定義U形腔之氣料 # 5518。氣球5516可經(態以使液體致冷劑自第—縱向 部分5 5 1 0開始循環,桶㈣Ττ 僱衣通過υ形腔室,並進入第二縱向部分 5512中。圖55包括指示致冷劑通過氣球5516流動之 的箭頭5520。 Ν 在若干具體實例中,冷卻總成經組態以使超臨界流體 (例如超臨界氮氣或水)循環"超臨界流體可在不發 的情況下提供顯著冷卻’但典型地必須維持在相對較高之 壓力下。經組態以使超臨界流體循環的冷卻總成可包括具 有:壓力等級之供應結構、熱傳遞結構及排出結構。舉: 而言’該等冷卻總成可包括不可膨脹之施藥器(例如 金屬壁)。該等施藥器在治療期間可移動以接觸腎動脈或腎 小口之不同部分。 θ 甚他具體膏例 可改進上文所述以及圖i至圖5Β及圖12至圖Μ中 說明之低溫治絲置㈣㈣徵㈣成㈣本㈣技術电 態之其他具體實例。舉例而言,目17Α至圖ΐ7Β中 之低溫治療裝置noo以及上文所述及圖i至圖5Β及圖^ 至圖55中所說明之不具有引導部件之其他低溫治療裝置可 〇 103 201223577 包括在氣球之遠端部分附近延伸或延伸通過氣球之遠端部 分的引導部件。類似地’上文所述以及圖1至圖5B及圖12 至圖5 5中所說明之低溫治療裝置可包括經組態以接收控制 線(例如牵拉線)之控制部件。舉例而言,可使用控制線 來控制(例如偏轉、傾斜、定位或導引)冷卻總成、施藥 器或血管結構外之另一低溫治療裝置組件。 上文所述以及圖1至圖及圖12至圖55中所說明之 低溫治療裝置組件包括具有各種特徵(例如形狀及組成) 的氣球。在某些情況下’製造考慮及其他因素可使得某些 特徵在一定程度上合乎需要。舉例而言,與模製製程相比 某些材朴可能與擠壓製程更相容,或相反。類似地,使用 某些製造製程與使用其他製造製程相比可能更易於形成有 些氣球形狀i舉例而言,在有些情況下,使用擠出可能難 以形成具有一體式閉合遠端之氣球。可根據該等因素改進 或互換上文所述以及圖i至圖5B及圖12至圖W中 之低溫治療裝置組件中的氣球及氣球特徵。舉例而言,在 上文所述以及圖i至圖5B及圖12至圖55中所說明之氣球 中,遠端頸部(例如密封遠端頸部)可替代為一體式閉合 遠端。此舉可用於例如製造與擠出製造製程更相容之氣球。 上述低溫治療裝置纟且件拉 徵亦可互換㈣成本發明 技術之其他具體實例。舉S 102 201223577 The convection-type heat transfer of the cryotherapy device 5500 part. The device 55A includes a total cooling of 5 5 0 2 at the untwisted portion 5504 of the elongated shaft 550, and the elongated shaft 5 5 〇6 includes a squint ±, including dividing the shaft into a defining supply cavity The vertical portion 5 5 10 and the axis division area 5 5 0 8 defining the second longitudinal portion 55 I2 of the exit channel. The cooling is reduced to $ ς m ^ including the application of the balloon 5516 ^4, and the balloon 5516 includes the gas material # 5518 defining the U-shaped cavity in the balloon. The balloon 5516 can be circulated such that the liquid refrigerant circulates from the first longitudinal portion 5 5 1 0, and the barrel (4) Τ τ is passed through the dome-shaped chamber and into the second longitudinal portion 5512. Figure 55 includes the indicating refrigerant Arrow 5520 through balloon 5516. Ν In several embodiments, the cooling assembly is configured to circulate a supercritical fluid (eg, supercritical nitrogen or water) "supercritical fluid can provide significant without agitation Cooling 'but typically must be maintained at a relatively high pressure. The cooling assembly configured to circulate the supercritical fluid may include a supply structure having a pressure rating, a heat transfer structure, and a discharge structure. The cooling assemblies can include non-expandable applicators (e.g., metal walls) that can be moved during treatment to contact different portions of the renal artery or renal orifice. θ Even other specific pastes can improve the above The low temperature wire set (4) (4) sign (4) into (4) (4) other specific examples of the technical state of electricity described in the above Figures i to Fig. 5 and Fig. 12 to Fig.. For example, the low temperature treatment device of the item 17Α to Fig. 7Β Noo and other cryotherapy devices without the guiding members described above and illustrated in Figures i to 5 and Figures 1-5 may be included in the vicinity of the distal portion of the balloon or extend through the balloon. Guide member of the end portion. The cryotherapy device similarly described above and illustrated in Figures 1 to 5B and Figures 12 to 5 may comprise controls configured to receive control lines (e.g., pull wires) Components. For example, a control wire can be used to control (eg, deflect, tilt, position, or guide) another cryotherapy device assembly outside of the cooling assembly, applicator, or vascular structure. The cryotherapy device assembly illustrated in Figures 12 to 55 includes balloons having various features (e.g., shape and composition). In some cases, 'manufacturing considerations and other factors may make certain features desirable to some extent. For example, certain materials may be more compatible with the extrusion process than the molding process, or vice versa. Similarly, using certain manufacturing processes may be more likely than using other manufacturing processes. In forming some balloon shapes i, for example, in some cases it may be difficult to form a balloon with an integral closed distal end using extrusion. The above may be modified or interchanged according to such factors and Figures i to 5B and 12 to balloon and balloon features in the cryotherapy device assembly of Figure W. For example, in the balloons described above and illustrated in Figures i to 5B and Figures 12 to 55, the distal neck ( For example, sealing the distal neck can be replaced by an integral closed distal end. This can be used, for example, to make balloons that are more compatible with the extrusion manufacturing process. The cryotherapy devices described above can also be interchanged. Other specific examples.

,〗向。圖15A中所說明之冷卻 總成1502之内部氣球15M 开入圖19A至圖J9C中所+ 之冷㈣成19〇2 t + a 中所不 .^ # ^ 作為另—霄施例,圖12中所說明之 低/皿/口療裝置120〇之且古哲 八有第一傾斜遠端部分1222之第一 201223577 供應管1218可併入圖17A至圖17B中所說明之冷卻總成 1702中,其中第一傾斜遠端部分1222經組態以引導致冷劑 在絕熱部件1 7 11之間膨脹。 相關解杂丨舉乃哇採學 交感神經系統(SNS)與腸神經系統及副交感神經系統 一起均為自主神經系統之分支。其主動性總是處於基本水 準(稱為交感神經緊張)且在應激期期間變得更主動。如 同神經系統之其他部分,交感神經系統經由一系列互連神 .’、至元運作。雖然很多父感神經元位於中樞神經系統(Cns ) 内’但往往被視為周圍神經系統(PNS )之一部分。脊髓(為 CNS之一部分)之交感神經元經由一系列交感神經節與周 圍交感神經元聯繫。在神經節内,脊髓交感神經元與周圍 交感神經元經由突觸連接。因此,脊髓交感神經元稱為突 觸前(或節前)神經元,而周圍交感神經元稱為突觸後(或 節後)神經元。 在交感神經節内之突觸處’節前交感神經元釋放乙醯 膽鹼(一種結合且活化位於節後神經元上之菸鹼乙醯膽鹼 党體的化學信使)。作為對此刺激之反應,節後神經元首要 釋放去甲腎上腺素(nor adrenal ine/norep inephrine )。延長之 活化作用可誘使腎上腺髓質釋放腎上腺素。 去甲腎上腺素及腎上腺素釋放後,即結合周圍組織上 的腎上腺素激導性受體。結合至腎上腺素激導性受體引起 神、.£元及激素反應。生理表現包括瞳孔擴張、心率加快、 偶發性'•區吐及血壓上升。由於膽鹼激導性受體結合汗腺, 105 201223577 因此亦見出汗增多。 交感神經系統負責上調及下調活有機體體内之多種恆 定機制。SNS之纖維神經支配幾乎所有器官系統中之組織, 為多種生理學特徵如瞳孔直徑、腸蠕動性及尿排出量提供 至少一些調節功能◊此反應亦稱為身體之交感腎上腺性反 應’因為終止於腎上腺髓質的節前交感神經纖維(而且所 有其他交感神經纖維)分泌乙醯膽鹼,活化腎上腺素 (adrenaline/epinephrine )之分泌及正腎上腺素 (n〇radrenaline/norepinephrine)在較小程度上之分泌。因 此,主要作用於心血管系統之此反應直接經由交感神經系 統所傳輸之脈衝介導及間接經由腎上腺髓質所分 酚胺介導。 科學上通常將SNS視為自動調節系統,亦即,不典音 識意念干擾而運作的系統。-些改良的理論者提出,^ =統在早期有機體中運作是為了維持存活,因為交成 神經系統負貴為身體活動作好準備。此作好準備之一實: 為醒來之前的時刻,交感神經性傳出 動作好準備。 θ找以為活 1. 交感神.勉絲 如圖56中所示’ SNS提供 ajh .. 于細興身體通^吕的神缔細 路。父感神經發起於脊柱内部 H周 視為延伸至第二或第三腰節 匈郎且 的脊髓中部。因為交感神經 4旬角) _ 0 此始於脊髓之胸區及腿^ 所以稱SNS具有胸腰傳出 腰£, 專神經之軸突經由前根離開 106 201223577 脊髓。其靠近脊(感覺)神經節通過,進入脊神經之前枝 内。然而,不同於體神經分佈,此等神經之軸突經由與脊 枉並排延伸的白枝連接體快速分出,白枝連接體係連接於 脊椎旁(位於脊柱附近)或椎骨前(位於主動脈分叉點附 近)神經節。 為了到達目標器官及腺體,軸突應在體内長距離移 行,且為此,多個軸突將其訊息經由突觸傳輸傳達至第二 細胞。軸突之末端跨越突觸間隙連至第二細胞之樹突。第 一細胞(突觸前細胞)呈遞的神經傳遞質跨越突觸間隙, 將第二細胞(突觸後細胞)活化。接著將訊息傳送至最終 目的地。 在SNS及周圍神經系統之其他組成部分中,此等突觸 在上文所述之稱為神經節的位置處形成。#出纖維的細胞 稱為節前細胞,而纖維離開神經節的細胞稱為節後細胞。 如前文所提及,SNS之節前細胞位於脊髓之第一胸節(τι) 與第三腰節(L”《間。節後細胞在神經節中具有其細胞 體且發出其軸突至目標器官或腺體。 神經節不僅包括交感神經幹,而且包括發出交感神經 纖維至頭及胸器官的頸神經節(頸上、頸中及頸下),及腹 腔神經節及腸系膜神經節(其發出交感神經纖維至腸)。 2. 腎神經分佈 如圖57所示’與腎動脈緊密結合的腎神經叢 支配腎。腎神經叢RP為圍繞腎動脈且歲埋於腎動脈之^ 内的自主神經叢。腎神經叢处沿著腎動脈延伸直至其到達 107 201223577 腎實體為止。促成腎神經叢RP的纖維來源於腹腔神經節、 腸系膜上神經節、主動脈腎神經節及主動脈神經叢。腎神 經叢RP亦稱為腎神經,主要包含交感神經性組成部分。腎 中不存在(或存在至少極少)副交感神經分佈。 節前神經元細胞體位於脊髓之中間外側細胞柱。節前 軸突通過脊椎旁神經節(其不形成突觸)而變成小髒神經 (最小的内臟神經)、第一腰内臟神經、第二腰内臟神經, 且移行至腹腔神經節、腸系膜上神經節及主動脈腎神經 節。節後神經元細胞體離開腹腔神經節、腸系膜上神經節 及主動脈腎神經節至腎神經叢RP且神經支配腎血管結構。 3. 腎交感神經活動 sil息以雙向流傳遞通過S N S。傳出訊息可引起身體不 同部分同時發生變化。舉例而言,交感神經系統可加快心 率;拓寬支氣管通道;降低大腸蠕動性(運動);收縮血管; 增強食管蠕動;引起瞳孔擴張、豎毛(雞皮疙瘩)及出汗 (發汗);及升高血壓。傳入訊息將來自體内各種器官及感 覺接受器的信號傳送至其他器官,尤其腦。 高血壓、心臟衰竭及慢性腎病為因SNS (特別是腎交 感神經系統)長期活躍所引起之多種疾病狀態中的幾種。 SNS長期活躍為驅使此等疾病狀態進展之不利於適應的反 應。腎素-血管緊張素-醛固酮醫藥管理系統(RAAS )為已 長期存在、但不太有效的降低SNS過度活動的方法。 如上所述,腎交感神經系統在實驗與人體中均已識別 為引起高血壓、容積超負荷狀態(諸如心臟衰竭)及進行,〗to. The inner balloon 15M of the cooling assembly 1502 illustrated in Fig. 15A is opened into the cold (four) + 19 〇 2 t + a of the + in Fig. 19A to J9C. ^ ^ ^ as another embodiment, Fig. 12 The first 201223577 supply tube 1218 of the low/dish/ourgency device 120 illustrated and illustrated in FIG. 17A to FIG. 17B can be incorporated into the cooling assembly 1702 illustrated in FIGS. 17A-17B. Wherein the first angled distal end portion 1222 is configured to cause the coolant to expand between the insulating members 177. The related sympathy is the branch of the autonomic nervous system. The sympathetic nervous system (SNS) is a branch of the autonomic nervous system together with the enteric nervous system and the parasympathetic nervous system. Its initiative is always at a basic level (called sympathetic tone) and becomes more active during the stress period. As with other parts of the nervous system, the sympathetic nervous system operates through a series of interconnected gods. Although many paternal neurons are located within the central nervous system (Cns), they are often considered part of the peripheral nervous system (PNS). Sympathetic neurons of the spinal cord, which is part of the CNS, are associated with peripheral sympathetic neurons via a series of sympathetic ganglia. Within the ganglion, spinal sympathetic neurons are connected to surrounding sympathetic neurons via synapses. Therefore, spinal sympathetic neurons are called presynaptic (or preganglionic) neurons, while peripheral sympathetic neurons are called postsynaptic (or postganglionic) neurons. At the synapse in the sympathetic ganglia, preganglionic sympathetic neurons release acetylcholine, a chemical messenger that binds to and activates the nicotine acetylcholine at the postganglionic neurons. As a response to this stimulus, post-ganglionic neurons release nor adrenal ine/norep inephrine. Prolonged activation induces the release of adrenaline from the adrenal medulla. After the release of norepinephrine and adrenaline, it binds to the adrenergic receptor on the surrounding tissue. Binding to adrenergic receptors causes a god, a dollar and a hormone response. Physiological manifestations include dilated pupils, increased heart rate, sporadic '• regional vomiting, and increased blood pressure. Since the choline-activated receptor binds to the sweat gland, 105 201223577 therefore also showed an increase in sweating. The sympathetic nervous system is responsible for up-regulating and down-regulating multiple constant mechanisms in living organisms. The fibrous nerves of SNS innervate tissue in almost all organ systems, providing at least some regulatory functions for a variety of physiological characteristics such as pupil diameter, intestinal peristalsis, and urinary output. This reaction is also known as the sympathetic adrenal response of the body' because it ends in Adrenal medulla's preganglionic sympathetic nerve fibers (and all other sympathetic nerve fibers) secrete acetylcholine, activate adrenaline (adrenaline/epinephrine) secretion and norepinephrine (n〇radrenaline/norepinephrine) to a lesser extent secretion. Therefore, this response, which acts primarily on the cardiovascular system, is mediated directly by the pulse transmitted by the sympathetic nervous system and indirectly via the adrenal medulla. Scientifically, the SNS is generally regarded as an automatic adjustment system, that is, a system in which the syllabary sounds interfere with the mind. - Some improved theorists suggest that ^ = system works in early organisms to maintain survival, because the delivery of the nervous system is more expensive for physical activity. One of the preparations for this: In order to wake up, the sympathetic outreach is ready. θ finds that it is alive. 1. Sympathetic god. Silk as shown in Figure 56. SNS provides ajh.. in the fine body of the body through the Lu's gods. The paternal nerve originates from the inside of the spine. H week is considered to extend to the middle of the second or third lumbar region. Because the sympathetic nerves are 4 angstroms) _ 0 This begins in the thoracic region of the spinal cord and the legs ^ So the SNS has a thoracolumbar outcome, and the axons of the specific nerve leave the anterior root 106 201223577 spinal cord. It passes near the ridge (sensory) ganglion and enters the branch before the spinal nerve. However, unlike the distribution of somatic nerves, the axons of these nerves are rapidly separated by a white-branched junction that extends alongside the spinal cord, and the white-branched connection system is connected to the vertebra (near the spine) or to the front of the vertebra (at the aortic bifurcation point). Nearby) ganglion. In order to reach the target organ and gland, the axons should travel long distances in the body, and for this purpose, multiple axons communicate their messages to the second cell via synaptic transmission. The end of the axon is connected across the synaptic cleft to the dendrites of the second cell. The neurotransmitter presented by the first cell (presynaptic cell) spans the synaptic cleft and activates the second cell (post-synaptic cell). The message is then sent to the final destination. In the SNS and other components of the peripheral nervous system, these synapses are formed at locations referred to above as ganglia. The cells that are out of the fiber are called preganglionic cells, and the cells that leave the ganglion are called post-ganglionic cells. As mentioned earlier, the pre-segment cells of the SNS are located in the first thoracic (τι) and third lumbar (L" of the spinal cord. The post-ganglionic cells have their cell bodies in the ganglion and emit their axons to the target. Organs or glands. The ganglion not only includes the sympathetic trunk, but also the cervical ganglia (neck, neck, and neck) that emit sympathetic nerve fibers to the head and thoracic organs, as well as the celiac ganglia and mesenteric ganglia. Sympathetic nerve fibers to the intestines. 2. Renal nerve distribution As shown in Figure 57, the renal plexus is tightly bound to the renal artery. The renal plexus RP is an autonomic nerve that surrounds the renal artery and is buried in the renal artery. The renal nerve plexus extends along the renal artery until it reaches 107 201223577 kidney entity. The fibers that contribute to the renal plexus RP are derived from the celiac ganglia, superior mesenteric ganglia, aortic renal ganglia, and aortic plexus. The plexus plexus RP, also known as the renal nerve, mainly contains sympathetic components. There is no (or at least very few) parasympathetic distribution in the kidney. The preganglionic neuronal cell body is located in the middle of the spinal cord. Cell column. The preganglionic axon becomes a small splanchnic nerve (the smallest splanchnic nerve), the first lumbar splanchnic nerve, the second lumbar splanchnic nerve, and migrates to the abdominal cavity through the paraspinal ganglia (which does not form a synapse). Ganglia, superior mesenteric ganglia and aortic renal ganglia. Post-ganglionic neuronal cell bodies leave the celiac ganglia, superior mesenteric ganglia and aortic renal ganglia to the renal plexus RP and innervate the renal vascular structure. The sympathetic activity is transmitted through the SNS in a bidirectional flow. The outgoing message can cause different parts of the body to change at the same time. For example, the sympathetic nervous system can speed up the heart rate; widen the bronchial passage; reduce the peristalsis (motion) of the large intestine; Enhances esophageal peristalsis; causes dilated pupils, piloerection (goose bumps) and sweating (sweating); and elevated blood pressure. The incoming message transmits signals from various organs and sensory receptors in the body to other organs, especially the brain. Blood pressure, heart failure, and chronic kidney disease are several of various disease states caused by long-term activity of SNS (especially the renal sympathetic nervous system). The long-term activity of SNS is a response that is unfavorable for adaptation that drives the progression of these diseases. The renin-angiotensin-aldosterone medical management system (RAAS) is a long-standing but less effective method of reducing SNS overactivity. As described, the renal sympathetic nervous system has been identified in both experiments and humans to cause hypertension, volume overload conditions (such as heart failure) and

S 108 201223577 •性腎病之複雜病理生理學現象的主要因素。使用放射性示 „ 縱劑稀釋方法量測自替磁、、技 J自mH溢入血漿中之去曱腎上腺素之溢 .出量的研究顯示’原發性高血壓患者之H f腎上腺素 .(E)溢出率較间’在幼年高血屡個體_尤其如此,與較高 之心礙NE溢出率一致,彻旦#n , 致與早期面血壓中通常所見之血液動 2學特徵一致,且特徵為心率加快、心輸出量增加及腎血 s &性增強。現已知原發柹古 原發性问血壓一般具有神經原性,通 吊伴有明顯的交感神經系統過度活動。 在心臟衰竭令,心腎交感神經活動之活躍更加明顯, 如依據此組患者體内NE自心臟及腎臟溢入血漿令之溢出 =幅提高所證明。最近,涉及所有病因死亡及充血性心 移植之腎交感神經活躍的強陰性預測值 :付。錢點,該預測值獨立於總體交感神經活動、腎 、,糸球過濾率及左心室射血分數。此 減少瞥丄Θ U, 寺叙現也明,设計成可 成y腎乂感神經性刺激的治療方案 者之存活率。 莱有^ “心臟衰竭患S 108 201223577 • The main factors of the complex pathophysiology of nephropathy. The radioactive sputum dilution method was used to measure the sputum adrenaline overflow from the mH overflow into the plasma. The study showed that H f adrenaline in patients with essential hypertension. E) The rate of overflow is more than the same as in the case of high blood in childhood, especially with the higher rate of NE overflow rate, which is consistent with the blood dynamics commonly seen in early facial blood pressure, and It is characterized by an increase in heart rate, an increase in cardiac output, and an increase in renal blood s & sensitization. It is known that the primary primary blood pressure is generally neurogenic, and the sling is accompanied by significant sympathetic nervous system overactivity. Inflammation, the activity of heart and kidney sympathetic nerve activity is more obvious, as evidenced by the overflow of NE from the heart and kidneys in this group of patients, which is evidenced by the increase in amplitude. Recently, all kidneys involving etiological death and congestive heart transplantation are involved. Strong negative predictive value of sympathetic activity: pay. The money point, the predicted value is independent of the overall sympathetic activity, kidney, sputum filtration rate and left ventricular ejection fraction. This reduction 瞥丄Θ U, the temple is also known Designed to be y The survival rate of the treatment plan for renal sensation of nerve sensation. Lai has ^ "heart failure

慢性腎病與末期賢病的特徵均A 均為交感神經性神經活躍 曰強。已證明,末期腎病患者血襞 ^ Φ ^ ^ τ云曱腎上腺素含量超 對於所有病因死亡與因心▲管疾病所致之死亡且有 預測性。對於罹患糖尿病性腎病 八 的串者而上a饮〇 跫次迈衫劑引起之腎病變 的患者而5,此發現亦為正確的。存在有 源於病變腎臟之感覺傳入信號為引丘 , 中樞交感神經傳出升高的主要因素,由:持此組患者體内 長期父感神經過度活動不利後果,諸 .、、的 回血壓、左心室肥 109 201223577 大、〜室性心律失常、心源性猝死、抗胰島素症、糖尿病 及代謝症候群。 (1 ) 1·^·^神經傳屮法叙 去往腎臟的交感神經終止於血管、近腎絲球器 (juxtaglomerular apparatus )及腎小管。刺激腎交感神經可 引起腎素釋放增多、鈉(Na+ )再吸收增多及腎血流量減少。 神經調節之腎功能之此等組成部分在以交感神經緊張增強 為特徵之疾病狀癌下觉到很大刺激,且明顯導致高血壓患 者血壓上升。因腎交感神經傳出刺激所引起的腎血流量及 腎絲球過濾率降低可能為心腎症候群中腎功能下降的基本 原因,作為慢性心臟衰竭之進行性併發症心腎症候群為腎 功能障礙,其臨床過程通常為波動性地出現患者臨床病狀 及治療。抵制腎傳出交感神經刺激之後果的藥理學策略包 括中樞起效之交感神經阻斷藥P阻斷劑(旨在減少腎素釋 放)、血管緊張素轉化酶抑制劑及受體阻斷劑(旨在阻斷金 管緊張素II之活性及腎素釋放後發生之醛固酮活化)及利 尿劑(旨在抵消腎交感神經性介導之鈉及水滯留)。然而, 現行藥理學策略具有明顯的侷限性,包括功效有限、順應 性問題、副作用及其他問題。 (ii) 腎感覺傳入神經活叙 腎臟經由腎感覺傳入神經與中柩神經系統之整體結構 聯繫。多種形式之「腎損傷」可誘導感覺傳入信號活躍。 舉例而言,心搏量或腎企流量減少、或富含腺苷酶可引起 傳入神經聯繫活躍。如圖58A及58B中所示,此傳入聯繫 δ 110 201223577 可能為自腎臟至腦,或可能為自一個腎臟至另一個腎臟(經 由中柩神經系統)。此等傳入信號在中樞整合且可引起交感 神經傳出增多。此交感神經壓力指向腎臟,從而活化raas 且誘導增強的腎素分泌、納滞留、容積滯留及血管收縮。 中樞交感神經過度活動亦影響分佈有交感神經的其他器官 及身體結構,諸如心臟及周邊血管結構,致使交感神經活 躍引起所述的不良影響,其中多個方面亦導致血壓上升。 因此生理學提出(i)調節具有傳出交感神經之組織可 減少不適當的腎素釋放、鹽滯留及減少腎血流量,及(η) 調節具有傳入感覺神經之組織可經由其對後丘腦下部以及 對側腎的直接作用而減少引起高血壓及與中樞交感神經緊 張增強相關之其他疾病I態的全身性因素。&去除傳入腎 神f具有中枢性低也壓效果外,亦預期傳至其他各種分佈 有父感神經之器官(諸如心臟及血管結構)的中樞 經傳出呈現所需的減少。 成砷 B· 之其他臨庆茬處 如上文所提供’去除腎神經可能有益於治療以總體交 感神Ί舌動增強(尤其腎交感神經活動增強)為特徵之多 種臨床病狀,諸如高血壓、代謝症候群、抗胰島素症、二 尿病左心至肥大、慢性末期腎病、心臟衰竭中之不者麫 液滯遠、〜腎症候群及捽死。由於減少傳人神經信 低全身性交感神經緊張/壓力,因此去除腎神經亦^ -療與全身性交感神經活動過度相關之其他病狀' 去除腎神經亦可有益於分佈有交感神經的其他器官=體 111 201223577 結構’包括圖56中所識別之彼等器官及身體結構。舉例而 言’如先前所論述,降低中枢性交感神經壓力可減輕罹患 代謝症候群及II型糖尿病之患者的抗胰島素症。另外,骨 質疏鬆症患者之交感神經亦活躍且亦可受益於去除腎神經 所帶來的交感神經壓力下調。 C. 達成血管内進入腎動脈 根據本技術,可經由血管内通路對與左及/或右腎動脈 緊密結合的左及/或右腎神經叢RP實現神經調節。如圖59a 所示’心臟收I®搏出的血液自心臟之左心室、經主動脈傳 輸。主動脈下行通過胸腔且在分支為左及右腎動脈。在腎 動脈下方,主動脈分為左及右髂動脈兩枝。左及右髂動脈 分別下行通過左腿及右腿且連接左及右股動脈。 如圖59B所示,也液經由股靜脈進入髂靜脈及進入下 腔靜脈而彙集於靜脈中且返回至心臟。下腔靜脈分支為左 及右腎靜脈。在腎靜脈上方,下腔靜脈上行傳輸血液至心 臟之右〜房中。血液自右心房系出,經由右心室進入肺中, 在肺中與氧化合。與氧化合的血液自肺輸入左心房中。來 自左〜房之與氧化合的血液經左心室輸回至主動脈中。 如下文將更詳細描述,可在股三角之基部(剛好位於 腹股溝韌帶之中點下方)進入股動脈且插入導管。導管可 、’S·由此進入。卩位皮下插入股動脈内,通入藤動脈及主動 脈並置入左腎動脈或右腎動脈中。此包含以最小侵入性 通往各別腎動脈及/或其他腎血管的血管内路徑。 腕部、上臂及肩部區域提供可將導管引入動脈系統内 112 201223577 . 的其他位置。最仏丨a丄 r ^ ^ . 吕,在選擇性情況下可使用橈動脈、 •術,可使經由此等進Λ弓。使用標準血管攝影技 •脈(或經由右側之雜典丁心 動 ’貞月下動脈及頭臂動脈)、經由主動脈 弓μ者:仃主動脈且通入腎動脈中。 °' 之性皙乃 及/或右腎神經叢RP ㈣Ml ^血官内通路達成,因此腎㈣結構之性f及特徵可約汁 達成此腎神經調節之裝置、系統及方法的 : “匕等性質及特徵可因患者群體而異及/或在特定 ^ ^ 字門而異,且可隨疾病狀態(諸如高血壓、声 症:ΐ等厂病、末期腎病、抗胰島素症、糖尿病、代謝 涉及.ΤΙ 。此等性質及特徵,如本文所說明,可能 £ <功效以及血f内設備之特定設計。相關性質可 :括例如材料/機械、空間、流體動力學 力學性質。 干汉熟 如前文所述,導管可經由最小侵入性血管内路炉皮下 Μ動脈内。然而’確定最小侵人性腎動脈料可 二^性,原因在於,舉例而言,與使料管常規插入的 —他動脈相比’ f動脈通常極度扭曲,直徑相對更小 患或長度相對更短。此外,腎動脈動脈粥樣硬化常見於許 。者中’尤其心血管疾病患者。腎動脈 :=而顯著不同,使得確定最小侵入性通路更:: μ的患者間相異性可見於例如相對扭度、直徑、長 113 201223577 度及/或動脈粥樣硬化斑負荷’以及腎動脈自主動脈分出支 路之偏離角。經由血管内通路達成腎神經調節的裝置、系 統及方法當以最小侵人性進人腎動脈内時,應解決腎動脈 解剖學之此等及其他方面以及其在患者群體間之相異性。 除確定腎動脈通路複雜外,腎臟解剖學之特殊性亦使 得在神經調節裝置與腎動脈之内腔表面或壁之間建立穩定 接觸變得複雜。當神經調節裝置包括低溫治療裝置時厂一 致定位、藉由低溫治療裝置向血管壁施加適當接觸力、及 低溫施藥器與血管壁之間的黏附對於可預測性而言非常重 要。然而’腎動脈内之緊湊空間以及動脈扭曲有礙於通行。 此外,建立一致接觸因患者移動、呼吸及/或心動週期而複 雜化’因為此等因素可導致腎動脈相對於主動脈產生明顯 移動’且心動週期可使腎動脈短暫擴張(亦即導致 脈動h 即使在進入腎動脈内且促進神經調節裝置與動脈内腔 表面之間穩定接觸之後,動脈外膜内及圍繞動脈外膜之^ 經應經由神經調節裝置安全地調節。馨於與該療法相關之 潛在臨床併發症,自腎動脈内有效應用熱治療並非易事。 舉例而言’腎動脈之内膜及十膜極易受到熱損傷。如下文 更詳細論述,分隔立管管腔與其外膜的内膜_中膜厚度意謂 目標腎神經與動脈内腔表面的距離可為數毫米。應向目^ 腎神經遞送或自目標腎神經移除足夠能量以調節目標腎^ 、屋而不會將血管壁過度冷卻或加熱至血管壁被冷凍、乾縮 之程度或者可能影響至不s想程纟。與過度力口熱相關:潛 114 201223577 在臨床併發症為流經動脈之血液凝結而形成血拴。馨於此 血栓會導致腎梗塞,從而導致腎臟受到不可逆的損傷,、因 此應小心地應用自腎動脈内熱治療。據此治療期間存在 於腎動脈中的複雜體液機制及熱力學條件,尤其是可能影 響治療部位處之熱傳遞動力學的條件,對於自_脈3 加能量(例如,加熱之熱能)及/或自組織移除熱(例如冷 卻熱條件)可能非常重要。 7 神經調節裝置亦應經組態以允許可調整能量傳遞元件 在腎臟動脈内之定位及重新定位,因為治療位置亦可影響 臨床效力。舉例而言,#於腎神經可圍繞腎動脈周向間隔, 因此自腎動脈内施加全周向治療可能具吸引力。在有些情 形下,連續周向治療可能引起的全環損害可能與腎動脈二 窄有關。因此,可能需要經由低溫治療裝置沿腎動脈之縱 向維度形成更複雜損害及/或使神經調節裝置重新定位 個治療位置處。然巾’應注意,進行周向切除之益處可能 比腎動脈狹窄可能性重要,或可用某些具體實例或在某些 患者中減輕該風險,且進行周向切除可能為一個目的 外,可改變的神經調節裝置定位及重新定位經證明可適用 於腎動脈特別扭曲的愔开< $ 分支血管、導致在===動脈主血管存在近側 動脈中操作裝置亦應:虑戰性的情形。在腎 μ ^ 裝置詩動脈所施加之機械性 裝置在動脈中之運動,例如藉由插入、操作、克服 考曲,,可有助於解剖、穿孔、剝去内膜或破壞内彈性膜。 可在極少併發症或無併發症的情況下暫時閉塞通過腎Both chronic kidney disease and terminal sinus are characterized by sympathetic nerve activity and reluctance. It has been shown that patients with end stage renal disease have a blood stasis ^ Φ ^ ^ τ cloud adrenaline content for all causes of death and death due to heart disease, and predictive. This finding is also true for patients with diabetic nephropathy and those who suffer from kidney disease caused by sputum sputum. There is a main cause of the sensory afferent signal that is active in the diseased kidney, and the central sympathetic nerve is elevated. The adverse effects of long-term paternal nerve hyperactivity in this group of patients, the blood pressure of the . Left ventricular hypertrophy 109 201223577 Large, ~ ventricular arrhythmia, sudden cardiac death, insulin resistance, diabetes and metabolic syndrome. (1) 1·^·^Nerve transmission method The sympathetic nerve to the kidney terminates in the blood vessel, the juxtaglomerular apparatus and the renal tubule. Stimulation of the renal sympathetic nerve can cause increased renin release, increased sodium (Na+) reabsorption, and reduced renal blood flow. These components of the neuromodulated renal function are highly irritating in disease-like cancer characterized by increased sympathetic tone and clearly cause an increase in blood pressure in hypertensive patients. Renal blood flow and renal spheroid filtration rate caused by renal sympathetic efferent stimulation may be the basic cause of renal function decline in heart and kidney syndrome. As a progressive complication of chronic heart failure, cardio-resin syndrome is renal dysfunction. The clinical course is usually volatility in the clinical pathology and treatment of patients. Pharmacological strategies to counteract renal sympathetic stimulation include centrally acting sympatholytic blocker P (to reduce renin release), angiotensin-converting enzyme inhibitors and receptor blockers ( It is designed to block the activity of angiotensin II and aldosterone activation after renin release) and diuretics (to counteract renal sympathetically mediated sodium and water retention). However, current pharmacological strategies have significant limitations, including limited efficacy, compliance issues, side effects, and other problems. (ii) Renal sensory afferent nerves The kidneys are linked to the overall structure of the medial sacral nervous system via the renal sensory afferent nerve. Various forms of "kidney damage" can induce sensory afferent signals to be active. For example, a decrease in stroke volume or renal patency, or adenosine enrichment, can cause afferent neural connections to be active. As shown in Figures 58A and 58B, this afferent link δ 110 201223577 may be from the kidney to the brain, or may be from one kidney to another (via the medial sacral nervous system). These incoming signals are centrally integrated and can cause increased sympathetic outflow. This sympathetic pressure is directed to the kidney, thereby activating raas and inducing enhanced renin secretion, nanoretention, volume retention, and vasoconstriction. Central sympathetic overactivity also affects other organs and body structures that distribute sympathetic nerves, such as the heart and peripheral vascular structures, causing the sympathetic activity to cause the aforementioned adverse effects, many of which also lead to an increase in blood pressure. Therefore, physiology suggests that (i) regulating tissue with efferent sympathetic nerves can reduce inappropriate renin release, salt retention, and reduce renal blood flow, and (η) modulate tissue with afferent sensory nerves via which the hypothalamus can be The direct action of the lower part and the contralateral kidney reduces systemic factors that cause hypertension and other diseases associated with increased central sympathetic tone. & Removal of Afferent Kidneys f has a central low-pressure effect, and it is also expected that the central transects that are transmitted to other organs that have paternal nerves, such as the heart and vascular structures, exhibit the desired reduction. Other linings in arsenic B. As provided above, 'removing the renal nerves may be beneficial for the treatment of a variety of clinical conditions characterized by increased sympathetic sacral motility (especially enhanced renal sympathetic activity), such as hypertension, Metabolic syndrome, insulin resistance, diuretic left heart to hypertrophy, chronic end stage renal disease, heart failure, sputum stagnation, ~ renal syndrome and sudden death. Because of the reduction of systemic sympathetic tone/stress, the removal of renal nerves is also associated with other conditions associated with systemic sympathetic overactivity. Removal of renal nerves may also benefit other organs with sympathetic distribution. Body 111 201223577 Structure 'includes the organs and body structures identified in Figure 56. For example, as discussed previously, reducing central sympathetic stress can reduce insulin resistance in patients with metabolic syndrome and type 2 diabetes. In addition, the sympathetic nerves of patients with osteoporosis are also active and can also benefit from the down-regulation of sympathetic nerves caused by the removal of renal nerves. C. Intravascular Access to the Renal Artery According to the present technique, neuromodulation can be achieved by the intravascular access to the left and/or right renal plexus RP that is tightly bound to the left and/or right renal artery. As shown in Figure 59a, the blood from the heart is pumped from the left ventricle of the heart and through the aorta. The aorta descends through the chest and branches into the left and right renal arteries. Below the renal artery, the aorta is divided into two branches, the left and right iliac arteries. The left and right radial arteries descend through the left and right legs and connect the left and right femoral arteries. As shown in Fig. 59B, the fluid also enters the iliac vein through the femoral vein and enters the inferior vena cava to collect in the vein and return to the heart. The inferior vena cava branches into left and right renal veins. Above the renal vein, the inferior vena cava transmits blood up to the right of the heart~ room. Blood is drawn from the right atrium, enters the lungs through the right ventricle, and is oxidized in the lungs. The blood combined with oxygen is input into the left atrium from the lungs. Oxidized blood from the left to the chamber is returned to the aorta through the left ventricle. As will be described in more detail below, the femoral artery can be accessed at the base of the femoral triangle (just below the midpoint of the inguinal ligament) and the catheter can be inserted. The catheter can be accessed by 'S. The ankle is inserted subcutaneously into the femoral artery, and the cane artery and the active vein are inserted into the left renal artery or the right renal artery. This includes intravascular pathways that lead to the respective renal arteries and/or other renal blood vessels with minimal invasiveness. The wrist, upper arm, and shoulder regions provide additional locations for introducing catheters into the arterial system 112 201223577 . Finally, a仏丨 r ^ ^ . Lu, in the selective case can use the radial artery, • surgery, can be used to enter the zygomatic arch. Using standard angiography techniques (or via the right side of the syndrome, the lower iliac artery and the brachiocephalic artery), through the aortic arch, the aorta and the renal artery. The '°' and/or the right renal plexus RP (4) Ml ^ blood official access is achieved, so the nature of the kidney (four) structure f and characteristics can be achieved by the juice device, system and method of renal nerve regulation: "匕The nature and characteristics may vary from patient to patient and/or may vary from one specific to the other, and may vary with the disease state (such as hypertension, vocal: sputum, plant disease, end stage renal disease, insulin resistance, diabetes, metabolism). Such properties and characteristics, as described herein, may be £ <efficacy and specific design of equipment within the blood. Relevant properties may include, for example, material/mechanical, spatial, and hydrodynamic mechanical properties. As mentioned earlier, the catheter can be placed in the inferior iliac artery through the minimally invasive endovascular approach. However, it is determined that the minimally invasive renal arterial material can be ambiguous because, for example, the catheter is routinely inserted into the artery. Compared with the 'f arteries, which are usually extremely distorted, the diameter is relatively smaller or the length is relatively shorter. In addition, renal artery atherosclerosis is common in Xu. Among the patients with cardiovascular disease. Renal artery: = significantly different To make the determination of the minimum invasive pathway more:: Inter-patient dissimilarity of μ can be seen, for example, relative torsion, diameter, length 113 201223577 degrees and / or atherosclerotic plaque load' and the deviation angle of the renal artery autonomous artery branching branch Devices, systems, and methods for achieving renal neuromodulation via an intravascular pathway should address these and other aspects of renal artery anatomy and their heterogeneity among patient populations when entering the renal artery with minimal invasiveness. In addition to the complexity of the renal artery pathway, the specificity of the kidney anatomy also complicates the establishment of stable contact between the neuromodulation device and the lumen surface or wall of the renal artery. When the neuromodulation device includes a cryotherapy device, the plant is uniformly positioned. The application of appropriate contact forces to the vessel wall by the cryotherapy device and adhesion between the cryoapplicator and the vessel wall is very important for predictability. However, the compact space within the renal artery and arterial distortion are impeding access. In addition, establishing consistent contact is complicated by patient movement, respiration, and/or cardiac cycle' because these factors can cause kidney movement Significant movement relative to the aorta' and the cardiac cycle can cause the renal artery to dilate briefly (ie, cause pulsation h even after entering the renal artery and promoting stable contact between the neuromodulation device and the surface of the arterial lumen, and within the adventitia of the artery The surrounding of the adventitia of the artery should be safely regulated by the neuromodulation device. It is not easy to effectively apply thermal therapy from the renal artery in the clinical complications associated with the therapy. For example, the endometrium of the renal artery Ten membranes are highly susceptible to thermal damage. As discussed in more detail below, the intima-media thickness separating the lumen of the riser and its outer membrane means that the distance between the target renal nerve and the surface of the arterial lumen can be several millimeters. The nerve delivers or removes sufficient energy from the target renal nerve to modulate the target kidney, without overcooling or heating the vessel wall to the extent that the vessel wall is frozen, shrunk, or may affect it. Related to excessive heat of mouth: late 114 201223577 The clinical complications are blood clotting caused by blood clotting through the arteries. The thrombus can cause a renal infarction, which can cause irreversible damage to the kidney. Therefore, care should be taken from the renal arterial heat treatment. The complex humoral and thermodynamic conditions present in the renal arteries during this treatment, especially those that may affect the heat transfer kinetics at the treatment site, add energy to the pulse (eg, heat of heating) and/or Tissue removal of heat (such as cooling heat conditions) can be very important. 7 The neuromodulation device should also be configured to allow for the positioning and repositioning of the adjustable energy delivery element within the renal artery, as the treatment location can also affect clinical efficacy. For example, # renal nerves may be circumferentially spaced around the renal artery, so applying full circumferential treatment from within the renal artery may be attractive. In some cases, a full-circle damage that may be caused by continuous circumferential treatment may be associated with a narrow renal artery. Thus, it may be desirable to form more complex lesions along the longitudinal dimension of the renal artery via the cryotherapy device and/or to reposition the neuromodulation device at the treatment site. However, it should be noted that the benefits of performing circumferential resection may be more important than the possibility of renal artery stenosis, or may be mitigated by some specific examples or in some patients, and that circumferential resection may be an objective and may be altered The positioning and repositioning of the neuromodulation device has been shown to be applicable to the particularly distorted opening of the renal artery < $ branch vessel, resulting in the operation of the device in the presence of the proximal artery of the === arterial main vessel should also be: a war situation. The movement of the mechanical device applied to the carotid artery in the renal device can be used to dissect, perforate, strip the inner membrane or destroy the inner elastic membrane by, for example, inserting, manipulating, or overcoming the test. Temporarily occluded through the kidney with minimal or no complications

115 201223577 =之血流較短時間。“,應避免閉塞大量時間,因為 腎造成㈣,諸如局部缺血。完全避免閉塞或在 1 土〜、體實例有益時限制閉塞持續時間(例如2至5分 知)可能有益。 根據上述挑戰:⑴腎動脈介入;⑴與血管壁相抵 :罪而穩定地安置治療元件;⑺跨越血管壁有效施加治 '、·’ 4)允許在多個治療位置進行治療裝置定位及重新定 位’及(5 )避免血流閉塞或限制灰流閉塞持續時間,可能 :關之腎血管結構之各種無關及相關性質包括例如:⑴血 ^血&長度、内膜-甲膜厚度、摩擦係數及扭度;(b) 血管壁之擴張性、硬度及彈性模數;(c)心縮期、心舒末期 之峰值血流速度’以及平均心縮期心舒期峰值血流速度及 平均/最大容積血流速度;⑷血液及/或血管壁之比熱容、 血液及/或血管壁 < 導熱性、及/或血液流過血管壁治療部位 之熱對流性及/或輻射熱傳遞;(e)呼吸、患者移動及/或血 流脈動所誘導之腎動脈相對於主動脈運動;及(f)以及腎 動脈相對於主動脈之偏離角。將針對腎動脈更詳細地論述 此等性質。然ίό ’視用於達成腎神經調節的裝置系統及 方法而定,腎動脈之該等性質亦會決定及/或約束設計特徵。 如上所述,定位於腎動脈内之裝置應符合動脈之幾何 形狀。腎動脈血管直徑Dra典型地在約2 mm至1〇 mm範 圍内,大部分患者群體之Dra為約4 mm至約8 mm且平均 值為約6 mm。腎動脈血管長度Lra (介於其處於主動脈/腎 動脈接合處之小口與其末端分支之間)一般在約5 至 116 201223577 70mm範圍内,且大部分患者 件體在約2 0 mm至5 0 m m益 圍内。由於目標腎神瘦當旗 ^ ^ ^ 叢砍埋於腎動脈外膜内,因此複入 内膜-中膜厚度ιΜΤ (亦即έ ^ 口此複口 社構之外膜& 動脈内腔表面至含有目標神經 結構之外膜的徑向向外 ^ )亦為顯著的且一般在約0.5 π至.5随乾圍内,平均值為約15酿。雖然某一治療 冰度對於到達目標神經纖維 在、’、 深(例如距腎動脈内壁要作用,但治療不應過 mm) __目標組織及解剖結 構’堵如腎靜脈。 腎動脈的另一可關注特性為呼吸及/或血流脈動所誘導 之腎臟相料^料動之程度。位於㈣脈相之 腎臟可在呼吸性偏移作用下向頭端移動Μ 4”。由此^ 起連接主動脈與腎臟之腎動脈發生明顯移動,從而需要神 經調節裝置之硬度與可撓性達成絕佳平衡,以在呼吸循環 期間維持低溫施藥器或其他熱處理元件與血管壁接觸。此 外’腎動脈與主動脈之偏離角可因患者而顯著不同,且亦 可因例如腎臟移動而在患者體内顯著變化。偏離角 在約30。至135〇範圍内。 又 /低孤療裝置之上述具體實例經組態以經由股動脈途 仅橈動脈途控或另-適合金管途徑將低溫施藥器精確定 位於腎動脈及/或腎小口中及/或附近。在上文參考圖玉至圖 55所述之任何上述具體實例中,單一氣球可經組態以充氣 至直控為約3 mm至約8 mm,且多個氣球可全體經組態以 充氣至直徑為約3 mm至約8 mm,且在若干具體實例中為 4 mm至8 mm。此外,在上文參考圖i至圖55所示及所述 117 201223577 =何具體實财’氣球可個別及/或全體具有約8 _至 ;,圖1 ::度’且在右干具體實例中為10 _。舉例而 〇 圖至圖55中所示之裝_置的甚不杖… 經組態以充氣至4賴至8 ^具體實例可具有 女i去闻, 之直徑的10 mm長氣球。上 圖1至圖55中所示之任何具體實例所述之裝置的軸 可紐定大小以裝配在…卜鞠内,諸如4Fr轴大小。的轴 實施例 1 · 一種低溫治療裝置,其包含: 管内:遠端部分之細長軸,其中該轴經組態以在血 内將该遠端部分定位於腎動脈 鄰近腎動脈或腎小口之治療部位處;]巾或以其他方式 離以:::該軸之至少一部分之供應内Μ,該供應内腔經組 也以接收液體致冷劑;及 且有一 之該遠端部分處的冷卻總成,該冷卻總成 器::。狀態及一部署狀態,該冷卻總成包括-施藥 m益至少具有一與該供應内腔流體 — 傳遞部分及一第二熱傳遞部分 通弟熱 ,,.J- ^ A 第一熱傳遞部分經組態 成接收致冷劑時在該部署狀態下具有一第- 接收致ί率’且該第二熱傳遞部分經組態以在該冷卻總成 二ΪΠΓ部署狀態下具有-小於該第-熱傳遞速 卜,、傳遞速率’ i其中該第—熱傳遞部分在沿該冷 p〜成之長度之縱向片段處為非圓周的。 有實施例1之低溫治療褒置,其中該冷卻總成具 有一中心縱向轴線且包括-致冷劑可流動通過之孔口,該 201223577 施藥器包括-具有-内表面之氣J求,且在該孔口處且與該 ··.'向軸線垂直的平面中,在該部署狀態下該中心縱向115 201223577 = The blood flow is short. "The occlusion should be avoided for a large amount of time because the kidneys cause (d), such as ischemia. It is beneficial to avoid occlusion completely or to limit the duration of occlusion (eg 2 to 5 minutes) when the body is beneficial. According to the above challenges: (1) renal artery intervention; (1) against the vessel wall: sin and stable placement of the treatment element; (7) effective treatment across the vessel wall ', · '4) allowing treatment device positioning and repositioning at multiple treatment locations ' and (5) Avoid blood flow occlusion or limit the duration of ash occlusion, possibly: various irrelevant and related properties of the renal vascular structure including, for example: (1) blood, blood & length, intima-membrane thickness, friction coefficient and torsion; b) dilatation, hardness and elastic modulus of the vessel wall; (c) systolic phase, peak blood flow velocity at the end of diastolic period, and mean systolic peak diastolic blood flow velocity and mean/maximum volume blood flow velocity (4) specific heat capacity of blood and/or blood vessel wall, blood and/or blood vessel wall < thermal conductivity, and/or thermal convection and/or radiant heat transfer of blood flowing through the treatment wall of the vessel wall; (e) breathing, patient movement / or movement of the renal artery induced by blood flow pulsation relative to the aorta; and (f) and the deviation angle of the renal artery from the aorta. These properties will be discussed in more detail for the renal artery. Depending on the system and method of renal neuromodulation, these properties of the renal artery may also determine and/or constrain design features. As noted above, the device positioned within the renal artery should conform to the geometry of the artery. Renal artery diameter Dra Typically in the range of about 2 mm to 1 mm, most patients have a Dra of about 4 mm to about 8 mm and an average of about 6 mm. Renal artery length Lra (between it in the aorta/renal artery) The small mouth of the joint and its end branch are generally in the range of about 5 to 116 201223577 70 mm, and most of the patient's body is within the range of about 20 mm to 50 mm. Because the target kidney is thin and thin flag ^ ^ ^ The plexus is occluded in the adventitia of the renal artery, so the intima-media thickness ΜΤ is re-introduced (ie, the membranous surface of the ventricle & the luminal surface of the artery to the outer membrane containing the target nerve structure) Outward ^) is also significant and generally About 0.5 π to .5 with the dry circumference, the average is about 15 brewing. Although a certain treatment ice is in the ', deep, (for example, from the inner wall of the renal artery, the treatment should not exceed mm) __Target tissue and anatomical structure 'plugs such as the renal vein. Another characteristic feature of the renal artery is the degree of movement of the kidney phase material induced by breathing and / or blood flow pulsation. The kidney located in the (four) pulse phase can breathe Move to 头 4" under the action of sexual shift. This significantly shifts the renal arteries connecting the aorta to the kidneys, requiring an excellent balance of stiffness and flexibility of the neuromodulation device to maintain a low temperature applicator or other heat treatment element in contact with the vessel wall during the breathing cycle. . Further, the angle of deviation of the renal artery from the aorta may vary significantly from patient to patient and may also vary significantly in the patient due to, for example, kidney movement. The off angle is about 30. Up to 135 miles. The above specific examples of the/low ambulatory device are configured to be positioned in and/or near the renal artery and/or renal stenosis via the femoral artery only the radial artery or another suitable for the golden tube approach. In any of the above specific examples described above with reference to Figures J-55, a single balloon can be configured to inflate to a direct control of from about 3 mm to about 8 mm, and the plurality of balloons can all be configured to inflate to The diameter is from about 3 mm to about 8 mm, and in some specific examples from 4 mm to 8 mm. In addition, the above-mentioned reference to Figures i to 55 and the description of 117 201223577 = What specific real money 'balloons can be individually and / or all have about 8 _ to;, Figure 1: :: degrees ' and on the right specific examples In the middle is 10 _. For example, 〇 至 置 置 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 经 经 经 经 经 经The shaft of the device described in any of the specific examples shown in Figures 1 through 55 can be sized to fit within, such as the 4Fr axis size. Shaft embodiment 1 - A cryotherapy device comprising: an intraductal: an elongated shaft of a distal portion, wherein the shaft is configured to position the distal portion in the blood adjacent to the renal artery or renal ostium a portion; a towel or otherwise separated from::: at least a portion of the supply of the shaft, the supply chamber is also configured to receive liquid refrigerant; and there is a total cooling at the distal portion Into, the cooling assembly::. a state and a deployment state, the cooling assembly includes - the application of the benefit has at least one with the supply of the inner cavity fluid - the transfer portion and a second heat transfer portion of the heat transfer, . J - ^ A first heat transfer portion Configuring to receive a refrigerant having a first-receiving rate in the deployed state and the second heat-transfer portion is configured to have - less than the first in the cooling assembly deployment state The heat transfer rate, the transfer rate 'i, wherein the first heat transfer portion is non-circular at a longitudinal segment along the length of the cold p~. The cryotherapy device of embodiment 1, wherein the cooling assembly has a central longitudinal axis and includes an orifice through which a refrigerant can flow, the 201223577 applicator comprising - having an inner surface And in the plane at the orifice and perpendicular to the axis, the center longitudinal direction in the deployed state

車由線至5亥孔口夕拓τ I 之距離不小於在該部署狀態下該中心縱向軸 線至該内表面之距離的約2〇〇/0。 =3·如實施例1之低溫治療裝置,其進一步包含—沿 。軸之至ν —部分的排出通道丨令該冷卻總成包括—致 冷劑可流動通過之孔σ,該供應内腔具有—包括該孔口之 大體上螺旋狀之部分’該螺旋狀部分包繞在該排出通道周 圍,且該孔口經組態以自該供應内腔向該第一熱傳遞部分 地引導致冷劑之膨脹。 4'如實施例3之低溫治療裝置,其中該冷卻總成具 有中心縱向轴、線,且在該部署狀態下該孔口與該中心縱 向軸線間隔開超過約0.1 nun。 5 ·如實施例3之低溫治療裝置,其中該施藥器包括 一具有一内表面之氣球,且在該部署狀態下該孔口距該内 表面小於約1 mm。 ’其中該冷卻總成包 且該等孔口配置於該 6· 如實施.例3之低溫治療裝置 括致冷劑可流動通過之複數個孔口, 螺旋狀部分周圍的不同圓周位置處。 7·如實施例1之低溫治療裴置,其進一步包含一鄰 近該第二熱傳遞部分之絕熱部件。 8·如實施例7之低溫治療裝置,其中該施藥器包括 =具有一内表面之氣球,該第二熱傳遞部分為該氣球之一 部分,且該絕熱部件鄰近該内表面。 * 119 201223577 9.如實施例8之低溫治療裝置,其中該第—熱傳遞 部分及該第二熱傳遞部分大體上呈螺旋狀。 \〇.如實施例7之低溫治療裝置,其中該施藥器包括 一氣球’該第一熱傳遞部分為該氣球之一具有—第—平均 厚度之第一部分,該笫二熱傳遞部分為該氣球之—具有二 第二平均厚度之第二部分,且該第一平均厚度小於該第一 平均厚度。 ~~ U .如實施例1之低溫治療裝置,其進一步包含一第 一細長絕熱部件及一第二細長絕熱部件,其中: 該施藥器具有一第三熱傳遞部分’該第三熱傳遞部八 在該部署狀態下在該冷卻總成接收致冷劑聘具有—大於該 第二熱傳遞速率之第三熱傳遞速率; ^ 該施藥器具有一第四熱傳遞部分,該第四熱傳遞部分 在該部署狀態下在該冷卻總成接收致冷劑時具有—小於= 第一熱傳遞速率及該第三熱傳遞速率之第四熱傳遞速率 該第一絕熱部件鄰近該第二熱傳遞部分; 該第二絕熱部件鄰近該第四熱傳遞部分;且 單獨或與該第一熱傳遞部分組合之該第三熱傳遞部八 在沿該冷卻總成之長度之縱向片段處為非圓周的。 12. 如實施例U之低溫治療裝置,其中該第—絕熱部 件及該第二絕熱部件定義經組態以接收填充材料之填== 腔,且該等填充内腔具有收縮組態及膨脹組態。 13. 如實施例U之低溫治療裝置,其中該第—絕 件及忒第一絕熱部件大體上平行於該冷卻總成在該部署狀 120 201223577 態下之長夜。 14. j,d ^ 埶a 實施例1之低溫治療裝置,其進一步包含一細 長、’’、、、卩件,其中該施藥器包括—氣球,且該絕熱部件之 至少一部八 π不連接於該氣球且在該部署狀態下可在該氣球 内移動。 一 15.如實施例14之低溫治療裝置,其中該絕熱部件具 有一大體上三角形之橫截面面積。 二.如實施例14之低溫治療裝置,其中該絕熱部件之 該部分經缸態以響應於該部署狀態下之重力而 移動。 門 如實施例14之低溫治療裝置,其中該絕熱部件 義紅=態以接收填充材料之填充内腔,且該填充内腔具 有一收縮組態及一膨脹組態。 ―、 18·如實施你"之低溫治療裝置,其進一步包含— 義一與該供應内腔流體連通之内部氣球腔的内部氣球^ 中該施藥器包括一外部潢破,α + α ^ Ν机球,4内部氣球在該外 内,該内部氣球包括一致冷劑可汽翻、g、m 广 7⑴J成動通過之孔口,且該 部氣球具有一收縮組態及一膨脹組態。 z ^如實施例18之低溫治療裝置,其中該供應 一部分延伸通過該内部氣球。 ( 20. 如實施例18之低溫治療奘 縻裝置,其中該内部 括在該内部氣球周圍配置於不同圓 ’、^ J圓周位置的複數個 21. 如實施例20之低溫治療裝 * 。 一螺旋狀型樣配置。 係以 201223577 22.如實施例18之低溫治療梦 有-凹入部分及一非凹入部 非凹入部分,且該第二熱傳遞部傳遞部分包括該 刀包括該凹入部分 3.如實施例22之低溫治療裝置,且刀0 大體上呈螺旋狀。 八非凹入部分 4.如實施例丨8之低溫治療裝置,苴 義-外部氣球腔,肖内部氣球與 /邛軋球定 體連接具有一第一自由通道面積::=之間的-總流 :腔之間的 '總流體連接具有一第二自由通 , 由通道面積小於该第二自由通道面積。 25·—種低溫治療裝置,其包含: 管内:遠端部分之細長轴,其中該轴經組態以在血 鄰m 部分定位於腎動脈或腎小口中或以其他方式 腎動脈或腎小口之治療部位處;及 —處於該軸之該遠端部分處的冷卻總成,該冷卻她成 具有-遞送狀態及一部署狀態,且該'冷卻總成包括一施藥 益及致冷劑可流動通過之複數個孔口,該等孔口係關於該 施樂器配置以將致冷劑流引導至該施藥器中的提供一非圓 周總體低溫冷卻型樣的離散區域。 26. 如實施例25之低溫治療裝置,其進—步包含一經 態以/〇 5亥軸向該冷卻總成輸送致冷劑之供應内腔,其中 5玄供應内腔至少部分在該施藥器内延伸,且該等孔口為沿 5亥施藥器中之該供應内腔之一部分的彼此間隔開之孔。 27. 如實施例20之低溫治療裝置,其中該施藥器中之 122 201223577 該供應内腔之該部分為一線性I,且該等孔在該供應内腔 周圍配置於不同的圓周位置。 28·如實施例26之低溫治療裝置,其中該施藥器中之 4仏應内腔之該部分為一螺旋管,且該等孔沿該螺旋管之 —外側部分配置。 29·如實施例26之低溫治療裝置,其進一步包含一傾 斜第-供應分支及一傾斜第二供應分支,纟中該等孔口中 之一者處於該第一供應分支之一遠端,且該等孔口中之另 者處於。亥第一供應分支之—遠端,且該第一供應分支及 »亥第一供應分支沿該冷卻總成之該長度縱向間隔開。 30.如實施例29之低溫治療裝置,其進一步包含一第 :供應内腔及一第二供應内腔,纟中該第一供應内腔及該 第仏應内腔經組態以沿該軸向該冷卻總成輸送致冷劑, °亥第供應分支定義該第一供應内腔之一遠端部分,且該 第一供應为支定義該第二供應内腔之一遠端部分。 31· 一種低溫治療裝置,其包含: 一具有一遠端部分之細長軸,其中該軸經組態以在血 管内將該遠端部分定位於腎動脈或腎小口中或以其他方式 4近腎動脈或腎小口之治療部位處; 一沿该軸之至少一部分之供應内腔,該供應内腔具有 第一流動阻抗且經組態以輸送液體及/或超臨界致冷劑; 一沿該軸之至少一部分的排出通道,該排出通道具有 —第二流動阻抗且經組態以輸送液體及/或超臨界致冷劑; 及 123 201223577 一處於該轴之該遠端部分的冷卻總成,該冷卻總成具 有一遞送狀態及一部署狀態,該冷卻總成包括一施藥器, 該施藥器具有一與該供應内腔及該排出通道流體連通之氣 球,且其中該第—流動阻抗大體上等於該第二流動阻抗。 32_ —種用於治療一患者之方法,該方法包含: 在血管内將一低溫治療裝置之一冷卻總成之一施藥器 疋位於腎動脈或腎動脈小口中或以其他方式鄰近腎動脈或 腎動脈小口之治療部位處,其中該施藥器處於一細長軸之 一遠端部分處;及 藉由在該冷卻總成内將液體致冷劑轉變成氣態致冷劑 經由該施藥器之一熱傳遞部分在足以產生治療上有效之低 溫腎神經調節的一熱傳遞速率下冷卻該治療部位之—部 分,其中該熱傳遞部分在垂直於該腎動脈之—長度的大體 上任何平面内大體上為非圓周的β 33.如實施例32之方法,其中: 該治療部位之該部分為該治療部位之—第一部分· 該熱傳遞部分為一第一熱傳遞部分; 二熱傳遞部分 一熱傳遞速率 —孔口向該第 口向該第二埶 1 *、、\ 該方法進一步包含經由該施藥器之一第 在足以產生治療上有效之低溫腎神經調節的 下冷卻該治療部位之一第二部分; 轉變液體致冷劑包括使致冷劑經由一第 一熱傳遞部分膨脹及使致冷劑經由一第二孔 傳遞部分膨脹; 該第一孔口及該第二孔 口係沿該冷卻總成之該 長度在 124 201223577 . 縱向及徑向上間隔開;且 • 單獨成與該第一熱傳遞部分組合之該第二熱傳遞部分 ’在垂直於该腎動脈之該長度的大體上任何平面中大體上為 .非圓周的。 34·如實施例32之方法,該方法進一步包含在將液體 、々%丨轉I成氣態致冷劑之前經由一供應内腔之一大體上 呈螺旋狀之部分輸送液體致冷劑。 35.如實施例34之方法,該方法進一步包含經由一沿 遠螺旋狀部分之一中心軸線延伸之排出通道排出氣態致冷 劑。 3 6.如實施例3 4之方法,其中: 該治療部位之該部分為該治療部位之一第一部分; 該熱傳遞部分為一第一熱傳遞部分; 該方法進一步包含經由該施藥器之一第二熱傳遞部分 在足以產生治療上有效之低溫腎神經調節的一熱傳遞速率 下冷卻該治療部位之一第二部分; 轉變液體致冷劑包括使致冷劑經由一第一孔口向該第 一熱傳遞部分膨脹及使致冷劑經由一第二孔口向該第二熱 傳遞部分膨脹; 該第一孔口及該第二孔口係處於該螺旋狀部分上,且 沿該冷卻總成之該長度在縱向及徑向上間隔開;且 單獨或與該第一熱傳遞部分組合之該第二熱傳遞部分 在垂直於該腎動脈之該長度的大體上任何平面中大體上為 非圓周的。 125 201223577 37·如實施例32之方法,其令: 該治療部位之該部分為該治療部位之一第一部分. 5亥熱傳遞部分為一第一熱傳遞部分; …該方法進一步包含使該治療部位之—第二部分與該施 藥器之一第二熱傳遞部分絕熱;且 »亥施藥器包括一鄰近該第二熱傳遞部分之絕熱部件。 38.如實施例37之方法,其中該帛—熱傳遞部分及該 第二熱傳遞部分大體上呈螺旋狀。 3 9.如實施例3 7之方法,其中: 該治療部位之該部分為該治療部位之—第一部分; 該熱傳遞部分為一第一熱傳遞部分; 該方法進一步包含經由該施藥器之一第二熱傳遞部分 在足以產生治療上有效之低溫腎神經調節的一熱傳遞速率 下冷卻該治療部位之一第二部分; 該方法進一步包含使該治療部位之一第三部分與該施 藥器之一第三熱傳遞部分絕熱; 該第三熱傳遞部分大體上位於該第一熱傳遞部分與該 第二熱傳遞部分之間; 3亥施藥器包括—鄰近該第三熱傳遞部分之細長絕熱部 件;且 單獨或與該第一熱傳遞部分組合之該第二熱傳遞部分 在垂直於該腎動脈之一長度的大體上任何平面中大體上為 非圓周的。 40.如實施例39之方法,該方法進一步包含向該絕熱 126 201223577 部件之一 α管内自 41. 且使該填充内腔在 填充内腔十引入一填充材料, —收縮組態膨脹至—膨脹組態 一種低溫治療裝置,其包含: 該軸經組態以在血管内 口内或以其他方式鄰近 具有一遠端部分之細長轴, 將該遠端部分定位於腎動脈或腎小 腎動脈或腎小口之治療部位處; 一沿該轴之至少一都八+The distance from the line to the 5 hole opening τ I is not less than about 2 〇〇 / 0 of the distance from the central longitudinal axis to the inner surface in the deployed state. =3. The cryotherapy device of embodiment 1, further comprising - along. The discharge passage of the shaft to the ν portion is such that the cooling assembly includes a hole σ through which the refrigerant can flow, the supply chamber having a substantially helical portion including the orifice 'the spiral portion Winding around the discharge passage, and the orifice is configured to direct from the supply lumen to the first heat transfer portion to cause expansion of the refrigerant. 4' The cryotherapy device of embodiment 3, wherein the cooling assembly has a central longitudinal axis, a line, and in the deployed state the aperture is spaced from the central longitudinal axis by more than about 0.1 nun. 5. The cryotherapy device of embodiment 3, wherein the applicator comprises a balloon having an inner surface, and wherein the aperture is less than about 1 mm from the inner surface in the deployed state. Wherein the cooling assembly is packaged and the orifices are disposed in the apparatus. The cryotherapy device of Embodiment 3 includes a plurality of orifices through which the refrigerant can flow, at different circumferential locations around the helical portion. 7. The cryotherapy device of embodiment 1, further comprising a heat insulating member adjacent to the second heat transfer portion. 8. The cryotherapy device of embodiment 7, wherein the applicator comprises a balloon having an inner surface, the second heat transfer portion being a portion of the balloon, and the insulating member adjacent the inner surface. * 119 201223577 9. The cryotherapy device of embodiment 8, wherein the first heat transfer portion and the second heat transfer portion are substantially helical. The cryotherapy device of embodiment 7, wherein the applicator comprises a balloon, the first heat transfer portion is a first portion of the first average thickness of the balloon, and the second heat transfer portion is the The balloon has a second portion having a second average thickness and the first average thickness is less than the first average thickness. The low temperature treatment device of embodiment 1, further comprising a first elongated heat insulating member and a second elongated heat insulating member, wherein: the applicator has a third heat transfer portion 'the third heat transfer portion Receiving, in the deployed state, the refrigerant assembly receives a refrigerant having a third heat transfer rate greater than the second heat transfer rate; ^ the applicator has a fourth heat transfer portion, the fourth heat transfer portion being In the deployed state, when the cooling assembly receives the refrigerant, having a first heat transfer rate adjacent to the second heat transfer rate adjacent to the first heat transfer rate and the third heat transfer rate; The second insulating member is adjacent to the fourth heat transfer portion; and the third heat transfer portion VIII, alone or in combination with the first heat transfer portion, is non-circular at a longitudinal segment along the length of the cooling assembly. 12. The cryotherapy device of embodiment U, wherein the first thermal insulation component and the second thermal insulation component are configured to receive a filling cavity of the filling material, and the filling lumens have a contracted configuration and an expansion group state. 13. The cryotherapy device of embodiment U, wherein the first and second primary thermal insulation members are substantially parallel to the long night of the cooling assembly in the deployed state 120 201223577. 14. j, d ^ 埶a The cryotherapy device of embodiment 1, further comprising an elongated, '',,," member, wherein the applicator includes a balloon, and at least one of the insulating members is occluded Connected to the balloon and movable within the balloon in the deployed state. 15. The cryotherapy device of embodiment 14 wherein the insulating member has a substantially triangular cross-sectional area. 2. The cryotherapy device of embodiment 14 wherein the portion of the insulating member is in a cylinder state to move in response to gravity in the deployed state. The cryotherapy device of embodiment 14 wherein the insulating member is in a red state to receive a filled lumen of the filling material, and the filling lumen has a collapsed configuration and an expanded configuration. ―, 18· Implementing your " hypothermia treatment device further comprising - an inner balloon of the inner balloon cavity in fluid communication with the supply lumen, wherein the applicator comprises an externally broken, alpha + alpha ^ Ν The ball, 4 internal balloon is in the outer part, the inner balloon includes an orifice that can be steamed, g, m wide and 7 (1) J is moved through, and the balloon has a contracted configuration and an expanded configuration. The cryotherapy device of embodiment 18, wherein the supply portion extends through the inner balloon. (20. The cryotherapy apparatus according to embodiment 18, wherein the interior is surrounded by a plurality of circumferences disposed at different circumferential positions of the inner balloon, 21. The cryotherapy device of the embodiment 20 is a spiral. Shaped configuration. 201223577 22. The hypothermia treatment of the embodiment 18 has a concave portion and a non-recessed portion non-recessed portion, and the second heat transfer portion transmitting portion includes the knife including the concave portion 3. The cryotherapy device of embodiment 22, and the knife 0 is substantially helical. Eight non-recessed portions 4. The cryotherapy device of Example 丨8, 苴--outer balloon cavity, shaw interior balloon and /邛The ball rolling body connection has a first free passage area: -= between the total flow: the 'total fluid connection between the chambers has a second free passage, the passage area being smaller than the second free passage area. A cryotherapy device comprising: an intraductal: an elongated shaft of a distal portion, wherein the shaft is configured to be positioned in the renal artery or renal ostium in the blood m portion or otherwise treated in the renal artery or renal ostium And; in the axis a cooling assembly at the distal end portion, the cooling being in a delivery-to-delivery state and a deployed state, and the 'cooling assembly' includes a plurality of orifices through which a drug agent and a refrigerant can flow, the holes A discrete area of the mouthpiece that provides a non-circular total cryogenic cooling pattern for directing the flow of refrigerant into the applicator. 26. The cryotherapy device of embodiment 25, wherein the step comprises The cooling assembly delivers a refrigerant supply lumen, wherein the 5 Xuan supply lumen extends at least partially within the applicator, and the orifices are along the 5 Hai applicator The apertured portion of one of the inner chambers is spaced apart from each other. 27. The cryotherapy device of embodiment 20, wherein the portion of the supply lumen is 122 201223577, the portion of the supply lumen is a linear I, and the holes The cryotherapy device of Embodiment 26, wherein the portion of the applicator is a spiral tube, and the holes are along the hole The outer portion of the spiral tube is disposed. 29 as in embodiment 26 a cryotherapy device further comprising a tilted first supply branch and a tilted second supply branch, one of the apertures being distal to one of the first supply branches, and the other of the apertures being The first supply branch and the first supply branch are longitudinally spaced along the length of the cooling assembly. 30. The cryotherapy device of embodiment 29, further comprising a first inner supply chamber and a second supply inner chamber, wherein the first supply inner chamber and the second inner chamber are configured to transport the refrigerant along the axial direction of the cooling assembly, The branch defines a distal end portion of the first supply lumen and the first supply defines a distal portion of the second supply lumen. 31. A cryotherapy device comprising: an elongated shaft having a distal portion, wherein the shaft is configured to position the distal portion within a renal artery or renal ostium within a blood vessel or otherwise 4 proximal to the kidney At a treatment site of the arterial or renal ostium; a supply lumen along at least a portion of the shaft, the supply lumen having a first flow impedance and configured to deliver a liquid and/or supercritical refrigerant; At least a portion of the exhaust passage having a second flow impedance configured to deliver liquid and/or supercritical refrigerant; and 123 201223577 a cooling assembly at the distal end of the shaft, The cooling assembly has a delivery state and a deployed state, the cooling assembly including an applicator having a balloon in fluid communication with the supply lumen and the discharge passage, and wherein the first flow impedance is substantially Equal to the second flow impedance. 32_ A method for treating a patient, the method comprising: placing one of the cryotherapy devices, one of the cryotherapy devices, in the blood vessel, the applicator, the renal artery or the renal artery, or otherwise adjacent to the renal artery or At a treatment site of a small renal artery, wherein the applicator is at a distal end portion of an elongated shaft; and wherein the liquid refrigerant is converted into a gaseous refrigerant in the cooling assembly via the applicator A heat transfer portion cools a portion of the treatment site at a rate of heat transfer sufficient to produce a therapeutically effective hypotensive renal neuromodulation, wherein the heat transfer portion is substantially planar in substantially any plane perpendicular to the length of the renal artery The method of embodiment 32, wherein: the portion of the treatment site is the treatment site - the first portion - the heat transfer portion is a first heat transfer portion; the second heat transfer portion is a heat Transfer rate - the orifice to the second port to the second 埶 1 *, \ the method further comprises, via one of the applicators, sufficient to produce a therapeutically effective hypotensive renal neuromodulation Cooling down a second portion of the treatment site; converting the liquid refrigerant includes expanding the refrigerant through a first heat transfer portion and expanding the refrigerant through a second hole transfer portion; the first orifice and the The second orifice is spaced longitudinally and radially along the length of the cooling assembly at 124 201223577. and • the second heat transfer portion combined with the first heat transfer portion is perpendicular to the renal artery The length of the length is substantially non-circular in substantially any plane. 34. The method of embodiment 32, the method further comprising delivering the liquid cryogen through a substantially helical portion of a supply lumen prior to converting the liquid, 々%丨 to the gaseous refrigerant. 35. The method of embodiment 34, the method further comprising discharging the gaseous refrigerant via a discharge passage extending along a central axis of the distal helical portion. 3. The method of embodiment 3-4, wherein: the portion of the treatment site is a first portion of the treatment site; the heat transfer portion is a first heat transfer portion; the method further comprising passing the applicator A second heat transfer portion cools a second portion of the treatment site at a rate of heat transfer sufficient to produce a therapeutically effective low temperature renal neuromodulation; converting the liquid cryogen comprises passing the refrigerant through a first orifice The first heat transfer portion expands and expands the refrigerant to the second heat transfer portion via a second orifice; the first orifice and the second orifice are on the spiral portion, and the cooling is along the cooling The length of the assembly is spaced longitudinally and radially apart; and the second heat transfer portion alone or in combination with the first heat transfer portion is substantially non-perpendicular in substantially any plane perpendicular to the length of the renal artery Circumferential. 125 201223577 37. The method of embodiment 32, wherein: the portion of the treatment site is the first portion of the treatment site. The heat transfer portion is a first heat transfer portion; the method further comprises: treating the treatment The second portion of the portion is insulated from the second heat transfer portion of the applicator; and the application device includes a heat insulating member adjacent the second heat transfer portion. 38. The method of embodiment 37, wherein the crucible-heat transfer portion and the second heat transfer portion are substantially helical. 3. The method of embodiment 3, wherein: the portion of the treatment site is the first portion of the treatment site; the heat transfer portion is a first heat transfer portion; the method further comprising passing the applicator a second heat transfer portion cooling a second portion of the treatment site at a rate of heat transfer sufficient to produce a therapeutically effective low temperature renal neuromodulation; the method further comprising administering a third portion of the treatment site to the administration One of the third heat transfer portions is insulated; the third heat transfer portion is located substantially between the first heat transfer portion and the second heat transfer portion; and the third applicator includes adjacent to the third heat transfer portion The elongated heat insulating member; and the second heat transfer portion alone or in combination with the first heat transfer portion is substantially non-circular in substantially any plane perpendicular to a length of one of the renal arteries. 40. The method of embodiment 39, the method further comprising introducing into the alpha tube from the insulating tube 126 201223577 a component from the 41. and introducing the filling lumen into the filling chamber 10 to introduce a filling material, the shrinking configuration expanding to - expanding Configuring a cryotherapy device comprising: the shaft configured to be positioned within the intravascular orifice or otherwise adjacent to an elongated shaft having a distal portion that is positioned in the renal artery or renal small renal artery or kidney At the treatment site of the small mouth; at least one of the eight along the axis +

At 刀之供應内腔,該供應内腔經組 態以接收液體致冷劑;及 、一處於該遠端#分處之冷卻總&,該冷卻總成具有一 遞送狀態及-部署狀態,該冷卻總成包括—孔口及一包括 第氣球及一第二氣球之施藥器,該孔口與該供應内腔 μ體連通’該第一氣球具有一與該孔口流體連通之熱傳遞 刀’其中該第二氣球在該遞送狀態下至少部分收縮,其 中遠熱傳遞部分在該部署狀態下在該冷卻總成接收致冷劑 時具有一足以產生治療上有效之低溫腎神經調節的熱傳遞 速率’且其中該熱傳遞部分在沿該冷卻總成之該長度之縱 向片段處為非圓周的。 . —種低溫治療裝置,其包含: 一具有一遠端部分之細長轴,該軸經組態以在血管内 將該遠端部分定位於腎動脈或腎小口内或以其他方式鄰近 腎動脈或腎小口之治療部位處; —沿該軸之至少一部分之供應内腔,該供應内腔經組 態以接收液體致冷劑;及 一處於該遠端部分處之冷卻總成,該冷卻總成具有一 • * 127 201223577 遞送狀態及-部署狀態,該冷卻總成包括-孔口及一包括 -第-氣球及—第二氣球之施藥器,該孔口與該供應内腔 流體連通’ 5亥第―氣球具有―與該孔口流體連通之第一熱 :遞ρ刀„亥第一氣球具有一第二熱傳遞部分,且該第二 虱球在該遞送狀態下至少部分收縮,纟中該第一熱傳遞部 ::順應性大體上小於該第二熱傳遞部分,其中該第一熱 ,遞部分在該部署狀態下在該冷卻總成接收致冷劑時具有 ;豆生/α療上有效之低溫腎神經調節的第一熱傳遞速 :’其中该第二熱傳遞部分在該部署狀態下在該冷卻總成 :致冷劑時具有一小於該第一熱傳遞速率的第二熱傳遞 、〜且其中該第—熱傳遞部分在沿該冷卻總成之該長度 之縱向片段處為非圓周的。 如貫施例42之低溫治療裝置 順應性小於該第二氣球。 :4· %實施例42之低溫治療裝置’其中該第一氣球大 為非順應性的’且該第二氣球大體上為順應性的。 :5:如實施例42之低溫治療裝置,其中: °亥第㉛球具有-大體上呈D形之橫截面面積; 該第:熱傳遞部分大體上為非順應性的; I球具有一連接於該第一氣球之該Λ體上呈ε 形之橫截面面積的 ^ 體上呈C形之橫截面面積;且 ::第二熱傳遞部分大體上為順應性的。 士實施例42之低溫治療裝置,其中該施藥器可膨 服且經組態以完全 / 王閉塞具有不同橫截面尺寸之腎動脈At the supply of the inner cavity, the supply inner cavity is configured to receive the liquid refrigerant; and a cooling total & at the remote end, the cooling assembly has a delivery state and a deployment state, The cooling assembly includes an orifice and an applicator including a first balloon and a second balloon, the orifice being in communication with the supply lumen μ. The first balloon has a heat transfer in fluid communication with the orifice a knife wherein the second balloon at least partially contracts in the delivery state, wherein the distal heat transfer portion has a heat sufficient to produce a therapeutically effective hypotensive renal neuromodulation when the cooling assembly receives the refrigerant in the deployed state The transfer rate 'and wherein the heat transfer portion is non-circular at a longitudinal segment along the length of the cooling assembly. A cryotherapy device comprising: an elongated shaft having a distal portion configured to position the distal portion within a renal artery or renal ostium within a blood vessel or otherwise adjacent to a renal artery or a treatment site at the renal mouth; - a supply lumen along at least a portion of the shaft, the supply lumen configured to receive a liquid cryogen; and a cooling assembly at the distal portion, the cooling assembly Having a • * 127 201223577 delivery status and deployment state, the cooling assembly includes an orifice and an applicator including a - balloon and a second balloon, the orifice being in fluid communication with the supply lumen ' 5 The first balloon has a first heat in fluid communication with the orifice: the first balloon has a second heat transfer portion, and the second balloon is at least partially contracted in the delivery state, The first heat transfer portion:: the compliance is substantially smaller than the second heat transfer portion, wherein the first heat transfer portion has in the deployed state when the cooling assembly receives the refrigerant; the bean/alpha therapy The first effective low temperature renal nerve regulation Transfer speed: 'where the second heat transfer portion has a second heat transfer less than the first heat transfer rate in the cooling state in the deployed state, and wherein the first heat transfer portion The non-circumferential portion of the length along the length of the cooling assembly is as follows. The cryotherapy device according to Example 42 is less compliant than the second balloon. 4: % The cryotherapy device of Example 42 wherein the A balloon is substantially non-compliant and the second balloon is substantially compliant. : 5: The cryotherapy device of embodiment 42, wherein: the 31st ball has a - substantially D-shaped cross section The first heat transfer portion is substantially non-compliant; the I ball has a C-shaped cross-sectional area of a cross-sectional area of the 气球-shaped body attached to the first balloon; And: the second heat transfer portion is substantially compliant. The cryotherapy device of embodiment 42 wherein the applicator is expandable and configured to completely occlude the renal artery having different cross-sectional dimensions

S 128 201223577 小口。 47. 如實施例42之低溫治療裝置,其中該第二氣球在 該部署狀態下經組態以使該治療部位之一部分與該 5 球絕熱。 & 48. 如實施例42之低溫治療裴置,其中該施藥器包括 一處於該第一氣球與該第二氣球之間的分割區,該分割區 大體上為非順應性的。 49. 如實施例42之低溫治療裝置,其中該第一氣球定 義一第一腔室,該第二氣球定義—第二腔室,該第—腔室 與該第二腔室流體分離,該裝置進一步包含一沿該軸2至 少一部分的填充内腔,且該填充内腔經組態以向該第二腔 室供應填充材料。 5〇·如實施例42之低溫治療裝置,其中: 該冷卻總成具有一第一長度; 一長度, 三長度;且 二長度在該部署狀態 該第一氣球為細長型且具有一第 6玄第一氣球為細長型且具有一第 該第一長度、該第二長度及該第 下大體上平行。 5 1. —種低溫治療裝置,其包含: ★ -具有-長度的遠端部分之細長轴,該軸經組態以在 血管内將該遠端部分定位於腎動脈或腎小口内或以其他方 式鄰近腎動脈或腎小口之治療部位處; 一沿該抽之至少一部分之供廡 丨刀之供應内腔,該供應内腔經組 態以接收液體致冷劑;及 129 201223577 -處於該軸之該遠端部分處之施藥器,該施藥器具有 -遞送狀態及一部署狀態且包括—第—腔室及一第二腔 室,該第-腔室具有-與該供應内腔流體連通之第一熱傳 遞部分,且該第二腔室星有一篦__ 有第一熱傳遞部分,其中該第 一熱傳遞部分之順應性大體上 ^七咕 肢上】於忒第二熱傳遞部分,其 中忒第一熱傳遞部分在該部署下 L下在该冷卻總成接收致 冷劑時具有一足以產生治 “、Α 厣上有效之低溫腎神經調節的第 …、傳遞速率’其中該第二轨傳,邦八— 、 “,、1寻遞°卩分在該部署狀態下在 S玄冷卻總成接收致冷劑時具有一 一 彳於6亥第一熱傳遞速率之 第一熱傳遞速率,且盆中咭笛 ^ ^ /、τ °玄第—熱傳遞部分在t直於該長 度千面中圍繞小於該施藥器之完全圓周延伸。 ’ 52· 一種低溫治療裝置,其包含: 收::有-遠端部分之細長軸,該軸經組態以㈣内 將该运端部分定位於腎動 '月勁脈或腎小口内或以其他方式鄰折 腎動脈或腎小口之治療部位處; 其他方式鄰近 離以接:::之至少一部分之供應内腔,該供應内腔經組 態以接收液體致冷劑; 於該轴之該遠端部分處之冷卻總成 .^咕 卩署狀態,該冷卻總成包括一孔口及 .. 第一軋球之施藥器,該孔口盥該供 應内腔流體連通,哕笛—> i 一茨仏 軋球定義一第一腔室且具有一盥 该孔口流體連通之第一埶 有” 二腔室且且右… 遞部分,该第二氣球定義-第 狀態下至少部分收缩… 第一氣球在該遞送 收鈿其令該第一熱傳遞部分在該部署狀 130 201223577 態下在該冷卻總成接收致冷劑時具有一足以產生治療上有 效之低溫腎神經調節的第一熱傳遞速率,其中該第二熱傳 遞部分在該部署狀態下在該冷卻總成接收致冷劑時具有一 ;^第熱傳遞速率之第二熱傳遞速率,且其中該第一 熱傳遞;+ '、 。刀在沿該冷卻總成之長度之縱向片段處為非圓周S 128 201223577 Small mouth. 47. The cryotherapy device of embodiment 42, wherein the second balloon is configured in the deployed state to insulate one of the treatment sites from the 5 ball. & 48. The cryotherapy device of embodiment 42, wherein the applicator includes a segment between the first balloon and the second balloon, the segment being substantially non-compliant. 49. The cryotherapy device of embodiment 42, wherein the first balloon defines a first chamber, the second balloon defines a second chamber, the first chamber is fluidly separated from the second chamber, the device Further included is a fill lumen along at least a portion of the shaft 2, and the fill lumen is configured to supply a fill material to the second chamber. 5. The cryotherapy device of embodiment 42, wherein: the cooling assembly has a first length; a length, three lengths; and two lengths in the deployed state, the first balloon is elongated and has a sixth The first balloon is elongate and has a first length, a second length, and the second substantially parallel. 5 1. A cryotherapy device comprising: - an elongated shaft having a distal portion of a length configured to position the distal portion within a renal artery or renal ostium within a blood vessel or other Means adjacent to the treatment site of the renal artery or the renal ostium; a supply lumen provided for at least a portion of the extraction, the supply lumen configured to receive a liquid cryogen; and 129 201223577 - at the axis An applicator at the distal end portion, the applicator having a delivery state and a deployed state and including a first chamber and a second chamber having a fluid with the supply lumen Connecting the first heat transfer portion, and the second chamber star has a 篦__ having a first heat transfer portion, wherein the first heat transfer portion is substantially compliant with the second heat transfer Part, wherein the first heat transfer portion of the crucible has a sufficient amount to produce a "lowering renal neuromodulation effective at the cooling assembly" when the cooling assembly receives the refrigerant under the deployment L, wherein the The second track, the state eight -, ",, 1 search °卩 In this deployment state, when the S Xuan cooling assembly receives the refrigerant, it has the first heat transfer rate of the first heat transfer rate of 6 hai, and the flute in the pot ^ ^ /, τ ° The first heat transfer portion extends less than the full circumference of the applicator in t straight to the length of the face. 52. A cryotherapy device comprising: an: an elongated shaft having a distal portion, the shaft being configured to position the terminal portion in the renal artery or the renal sinus or (in the renal sinus) Other means adjacent to the treatment site of the renal artery or renal stenosis; other means adjacent to the supply::: at least a portion of the supply lumen, the supply lumen configured to receive liquid cryogen; The cooling assembly at the distal end portion, the cooling assembly includes an orifice and a first ball applicator, the orifice is in fluid communication with the supply lumen, and the flute-&gt i 仏 仏 仏 ball defines a first chamber and has a first port in which the orifice is in fluid communication with a "two chamber and a right ... hand portion, the second balloon defines - at least partially contracted The first balloon is in the delivery so that the first heat transfer portion has a first amount sufficient to produce therapeutically effective hypotensive renal neuromodulation when the cooling assembly receives the refrigerant in the deployment state 130 201223577 Heat transfer rate, wherein the second heat transfer portion is a second heat transfer rate of the first heat transfer rate when the cooling assembly receives the refrigerant in the deployed state, and wherein the first heat transfer; + ', the knife is along the length of the cooling assembly The longitudinal segment is non-circular

、且悲以輸送來自該第一腔室之致冷劑;及 沿該軸之至少一部分 第__ 通道經相 丨刀之第一排出通道,該第二排出 、、〜、以輸送來自該第二腔室之致 出通道流體分離。 W且與違第一排 5一3·二Γ例52之低溫治療裝置,其進-步包含: -二第—排出通道流體連接之第-壓力調節器;及 d:r出通道流體連接之第二壓力調節器。 該 列52之低溫治療裝置,其中: 該第一氣球具有-第-内表面積, 乳球具有一第二内表面積, 喵孔口為—θ 該第-腔室二第二=通道面積之第-孔口, 第 該冷卻總成進:二流體連通, 孔口,—步包具有-第二自由通道面積之 室與該第二孔°流體連通,且 第 自由通道^^*^ 表面積之—比率大於該 面積與該第二表面積之一比率。 131 201223577 5 5 .如會她7 , 包例52之低溫治療裝置,其中: 该孔口為1_孔口, s亥第一胺金 _ . 與該第一孔口流體連通, s亥冷卻總成 战進一步包含一第二孔口, δ亥第二腔@ 與該第二孔口流體連通, 5亥第—孑1* 口;^二 及該第一腔室經組態以在該部署狀態下進 文表面積限制之冷卻;且 該第二孔口 a Λ 产 — 及該第二腔室經組態以在該部署狀態下進 η 上文致冷劑限制之冷卻。 w 56.如實施例52之低溫治療裝置,其中該冷卻總成在 、,署狀匕、下經組態以使致冷劑在該第一腔室内在一第一 平均'皿度下#環'使致冷劑在該第二腔室内在-第二平均 狐度下循% ’該第—平均溫度低於讓第二平均溫度。 如實施例52之低溫治療裝置,其中該施藥器包括 一第二氣球,該第一氣球及該第二氣球處於該第三氣球内。 58·如實施例52之低溫治療裝置,其中: 該冷卻總成具有一第一長度, 该第一氣球為細長型且具有一第二長度, 该第二氣球為細長型且具有一第三長度,且 該第一長度、該第二長度及該第三長度在該部署狀態 下大體上平行。 “ 59. —種低溫治療裝置,其包含: 一具有一長度的遠端部分之細長軸,該軸經組態以在 血管内將該遠端部分定位於腎動脈或腎小口内或以其他方And sorrowfully conveying the refrigerant from the first chamber; and at least a portion of the __ channel along the shaft passes through the first discharge passage of the phase boring tool, the second discharge, ~, to convey from the first The two chambers are separated from the channel fluid. And the violation of the first row of 5:32. The cryotherapy device of the example 52, the further step comprising: - the second - discharge channel fluid connection of the first - pressure regulator; and d: r out channel fluid connection Second pressure regulator. The cryotherapy device of the column 52, wherein: the first balloon has a -first internal surface area, the milk ball has a second internal surface area, the pupil opening is - θ, the first chamber is second, and the second is the channel area - An orifice, the first cooling assembly inlet: two fluid communication, the orifice, the chamber having the second free passage area is in fluid communication with the second orifice, and the ratio of the surface area of the free passage ^^*^ Greater than a ratio of the area to the second surface area. 131 201223577 5 5 . If she is 7 , the cryotherapy device of the case 52 , wherein: the orifice is 1_ orifice, shai first amine gold _. in fluid communication with the first orifice, shai cooling total The battle further includes a second aperture, the second cavity @δH is in fluid communication with the second aperture, 5Hi-孑1* mouth; ^2 and the first chamber is configured to be in the deployed state The lower surface area limits the cooling; and the second orifice a is produced - and the second chamber is configured to enter the above-described refrigerant limited cooling in the deployed state. The cryotherapy device of embodiment 52, wherein the cooling assembly is configured to have a refrigerant in the first chamber at a first average 'degree of ## ring 'Let the refrigerant in the second chamber at - the second average fox degree is followed by '% - the average temperature is lower than the second average temperature. The cryotherapy device of embodiment 52, wherein the applicator comprises a second balloon, the first balloon and the second balloon being within the third balloon. 58. The cryotherapy device of embodiment 52, wherein: the cooling assembly has a first length, the first balloon is elongated and has a second length, the second balloon is elongated and has a third length And the first length, the second length, and the third length are substantially parallel in the deployed state. A 59. A cryotherapy device comprising: an elongated shaft having a distal portion of a length configured to position the distal portion within the renal artery or renal ostium within the blood vessel or otherwise

S 132 201223577 式鄰近腎動脈或腎小口之治療部位處; 一沿該轴之$ + 離以接… 供應内"供應内腔經組 態以接收液體致冷劑; 處於該軸之該遠端部分處之施藥器 一遞送狀態及一部罢貼能n —』 也糸窃具有 p署狀態且包括至少一第-腔室及-第-腔室,該第一腔官且古 _ 乐一 工至-有一與该供應内腔流體連通之埶傳遞 部勿,且其中該埶傳遽 ^ 寻遞。ρ刀在一垂直於該長度之平面中圍 繞小於该施藥器之完全圓周延伸; 、第―排出總成’其經組態以輸送來自該第—腔室之 二Γ寻該第一腔室在該部署狀態下在該冷卻總成接 楚時具有一足以產生治療上有效之低溫腎神經調節 的弟一熱傳遞速率;及 第-排出總成,其經組態以輸送來自該第二腔室之 致冷劑以使得μ二腔室在該部署狀態下在該冷卻總成接 收致冷劑時具有—小於該第—熱傳遞速率的第二熱傳遞速 箏八中忒第一排出總成與該第一排出總成流體分離。 60. 一種低溫治療裝置,其包含: “ 八有运端。卩分之細長轴,該軸經組態以在血管内 \ ^遠端口ρ刀定位於腎動脈或腎小口内或以其他方式鄰近 腎動脈或腎小口之治療部位處; α /α該軸之至少—部分之供應内腔,該供應内腔經組 態以接收液體致冷劑;及 —處於該軸之該 具有一遞送狀態及— 遠端部分處之冷卻總成,該冷卻總成 部署狀態,該冷卻總成包括一孔口及 3 133 201223577 一包括一第一氣球及一第二氣球之施藥器,該孔口與該供 應内腔流體連通亥第-氣球具有一圍繞該第二氣球彎曲 且與該孔口流體連通之螺旋狀熱傳遞部分,且該第二氣球 在該遞送狀態下至少部分收縮,其中該熱傳遞部分在該部 署狀態下在該冷卻總成接收致冷劑時具有一足以產生治療 上有效之低溫腎神經調節的熱傳遞速率。 61.如實施例60之低溫治療裝置,其中該第一氣球大 體上為非順應性的,且該第二氣球大體上為順應性的。 62·如實施例60之低溫治療裝置,其中該第一氣球大 體上為順應性的,且該第二氣球大體上為非順應性的。 63. 如實施例60之低溫治療裝置,其中該第一氣球及 該第二氣球大體上為順應性的。 64. 如實施例60之低溫治療裝置,其中該第—氣球及 該第二氣球大體上為非順應性的。 65. 如實施例60之低溫治療裝置,其中該熱傳遞部分 為一第一熱傳遞部分,該熱傳遞速率為一第一熱傳遞速 率,该第二氣球具有一在該部署狀態下在該冷卻總成接收 致冷劑時具有一小於該第一熱傳遞速率之第二熱傳遞速率 的第二熱傳遞部分。 66·如實施例60之低溫治療裝置,其中該施藥器可膨 脹且’’’呈組態以完全閉塞具有不同橫截面尺寸之腎動脈或腎 小口。 67·如實施例60之低溫治療裝置,其中該熱傳遞部分 具有一螺旋直徑’該第二氣球大體上為順應性的,且在該S 132 201223577 is located adjacent to the treatment site of the renal artery or renal ostium; a $+ along the axis is connected to the supply... The supply lumen is configured to receive liquid cryogen; at the distal end of the axis In some places, the delivery state of the applicator and a disposition can also plagiarize and have at least one first-chamber and -th-chamber, the first cavity officer and the ancient _ Leyi The worker-to-there is a sputum transfer unit in fluid communication with the supply lumen, and wherein the 埶 遽 寻 is found. The knives extend around a full circumference of the applicator in a plane perpendicular to the length; the first-discharge assembly is configured to deliver the first chamber from the second chamber In the deployed state, the cooling assembly has a heat transfer rate sufficient to produce a therapeutically effective low temperature renal neuromodulation; and a first-discharge assembly configured to deliver from the second lumen The refrigerant of the chamber is such that when the cooling chamber receives the refrigerant in the deployed state, the second heat transfer kite, the second heat transfer kite, and the first discharge assembly are smaller than the first heat transfer rate. Separating from the first discharge assembly fluid. 60. A cryotherapy device comprising: "eight-ported end. The elongated shaft of the iliac crest, the shaft configured to be positioned within the renal artery or renal ostium in the blood vessel, or otherwise Adjacent to the treatment site of the renal artery or renal ostium; α / α at least a portion of the supply lumen, the supply lumen configured to receive liquid cryogen; and - the delivery state of the shaft And a cooling assembly at the distal end portion, the cooling assembly is deployed, the cooling assembly includes an aperture and 3 133 201223577 an applicator including a first balloon and a second balloon, the orifice The supply lumen fluid communication Hei-balloon has a helical heat transfer portion bent about the second balloon and in fluid communication with the orifice, and the second balloon is at least partially constricted in the delivery state, wherein the heat transfer In the deployed state, the cooling assembly has a heat transfer rate sufficient to produce a therapeutically effective low temperature renal neuromodulation when the cooling assembly receives the refrigerant. 61. The cryotherapy device of embodiment 60, wherein the first balloon is substantially The second balloon is substantially compliant, and the second balloon is substantially compliant. The cryotherapy device of embodiment 60, wherein the first balloon is substantially compliant, and the second balloon is substantially The non-compliant device of claim 60, wherein the first balloon and the second balloon are substantially compliant. 64. The cryotherapy device of embodiment 60, wherein the first balloon and The second balloon is substantially non-compliant. The cryotherapy device of embodiment 60, wherein the heat transfer portion is a first heat transfer portion, the heat transfer rate being a first heat transfer rate, the first The second balloon has a second heat transfer portion having a second heat transfer rate less than the first heat transfer rate when the cooling assembly receives the refrigerant in the deployed state. 66. The cryotherapy as in Example 60 a device, wherein the applicator is expandable and configurable to completely occlude a renal artery or a renal orifice having a different cross-sectional dimension. 67. The cryotherapy device of embodiment 60, wherein the heat transfer portion has a helix straight The second balloon is generally compliant and is

S 134 201223577 部署狀態下使該第二氣球膨服使該螺旋直徑增加。 6 8.如實施例6 0之低溫治療裝置,其中該第〜氣 義一第一腔室,該第二氣球定義一第二腔室,該第一腔— 與該第二腔室流體分離’該裝置進—步包含一沿該輪至 少一部分之填充内腔,且該填充内腔經組態以向該第二胪 室供應填充材料。 "" 69.如實施例60之低溫治療襞置,其中該第一氣球包 =一螺旋狀部分,該第二氣球在該部署狀態下具有二經= 悲以閉塞腎動脈或腎小口之大體上圓形之橫截面尺寸,且 該螺旋狀部分包繞在該第二氣球周圍。 7〇·如實施例60之低溫治療裝置,其中該第二氣球具 有-外壁表面且該第一氣球至少部分地插入該外壁表面 中0 氣球具 — 71.如實施例60之低溫治療裝置,其中該第二 有内壁表面且該第一氣球處於該内壁表面處。 氣球定 一腔室 收來自 實施例60之低溫治療裝置,其中該第— 我—第一腔室,該笛一 a 流俨ϋ 第一虱球疋義一第二腔室,該第 流體連接於該第二腔 兮笛 至且6亥第一腔室經組態以接 3亥第一腔室之致冷劑。 73 ·—種低溫治療裝置,其包含: 血管内 式鄰近 腔經組 具有一遠端部分 將該遠端部分定位㈣ 軸’該輛經組態以在 移缸 位於腎動脈或腎小口内式以豆物古 腎動脈或腎小口之、、“ Θ或以其他方 之療部位處; 5亥袖之至小 乂 — 4分的供應内腔,該供應内 135 201223577 態以接收液體致冷劑;及 一處於該遠端部分處之施藥器,該施藥器具有—與該 供應内腔流體連通之第_腔室及一第二腔室,該第—腔室 具有一與該供應内㈣體連通之熱傳遞部分,且該第一= 室包括-圍繞該第二腔室彎曲之螺旋狀部分,#中該螺旋 狀部分在該部署狀態下在該冷卻總成接收致冷劑時具有: 足以產生治療上有效之低溫腎神經調節的熱傳遞速率、。 74. 一種低溫治療裝置,其包含: # -具有-長度的遠端部分之細長軸,該軸經組態以在 血管内將該遠端部分定位於腎動脈或腎小口内或以其他方 式鄰近腎動脈或腎小口之治療部位處; -沿該軸之至少一部分之供應内腔,該供應内腔經組 態以接收液體致冷劑;及 一處於該遠端部分處之冷卻總成,該冷卻總成具有— 遞送狀態及一部署狀態,該冷卻總成包括一孔口及一包括 -第-螺旋狀氣球及一第二螺旋狀氣球之施藥器,該二 與該供應内腔及該第一螺旋狀氣球流體連通,且該第一螺 旋狀氣球及該第二螺旋狀氣球捲繞在該軸之一部=周圍且 至少部分父纏,其中該第一螺旋狀氣球在該部署狀態下在 該冷卻總成接收致冷劑時具有一足以產生治療上有效之低 溫腎神經調節的第一熱傳遞速率,且其中該第二螺旋狀氣 球在該部署狀態下在該冷卻總成接收致冷劑時具有一小於 該第一熱傳遞速率之第二熱傳遞速率。 75.如實施例74之低溫治療裝置,其中該裝置進一步 136 201223577 . 包3 /σ 3亥軸之至少一部分之排出通道,且其中該第一螺 旋狀氣球及该第二螺旋狀氣球包繞在該排出通道周圍。 . 76.如實施例74之低溫治療裝置,其中該第一螺旋狀 •氣球定義一第一腔室,該第二螺旋狀氣球定義一第二腔 室,該第一腔室與該第二腔室流體分離,該裝置進一步包 3 &該輛之至少一部分之填充内腔,且該填充内腔經組 態以向該第二腔室供應填充材料。 77·如實施例74之低溫治療裝置,其中該第一螺旋狀 氣球定義一第一腔室,該第二螺旋狀氣球定義一第二腔 室,該第—腔室流體連接於該第二腔室,且該第二腔室經 組態以接收來自該第一腔室之致冷劑。 78. 如實施例74之低溫治療裝置,其中該施藥器包括 一第二螺旋狀氣球,該第三螺旋狀氣球在該部署狀態下在 该冷卻總成接收致冷劑時具有一小於該第一熱傳遞速率之 第三熱傳遞速率,且其中該第三螺旋狀氣球至少部分與該 第一螺旋狀氣球及s亥第二螺旋狀氣球交纏。 79. 如實施例78之低溫治療裝置,其中: 該冷卻總成具有一長度, 該第一螺旋狀氣球具有一第一弯曲部分, 該第二螺旋狀氣球具有一第二弯曲部分, 該第三螺旋狀氣球具有一第三彎曲部分,且 該第二彎曲部分及該第三彎曲部分沿該長度處於該第 一弯曲部分之相反側。 80_如實施例78之低溫治療裝置,其中該第一螺旋狀S 134 201223577 The second balloon is swollen in the deployed state to increase the diameter of the spiral. 6. The cryotherapy device of embodiment 60, wherein the first gas chamber defines a first chamber, the second balloon defines a second chamber, the first chamber is fluidly separated from the second chamber The device further includes a fill lumen along at least a portion of the wheel, and the fill lumen is configured to supply a fill material to the second chamber. "" 69. The cryotherapy device of embodiment 60, wherein the first balloon package = a helical portion, the second balloon having a second pass = sorrow in the deployed state to occlude the renal artery or the renal mouth A substantially circular cross-sectional dimension, and the helical portion is wrapped around the second balloon. The cryotherapy device of embodiment 60, wherein the second balloon has an outer wall surface and the first balloon is at least partially inserted into the outer wall surface. The balloon device is 71. The cryotherapy device of embodiment 60, wherein The second has an inner wall surface and the first balloon is at the inner wall surface. The balloon sets a chamber to receive the cryotherapy device of the embodiment 60, wherein the first - the first chamber, the flute a flows, the first ball, the second chamber, the first fluid is connected to the The second chamber flutes to and the first chamber of 6 hai is configured to receive the refrigerant of the first chamber of 3 hai. 73--a cryotherapy device comprising: an intravascular proximal cavity group having a distal portion for positioning the distal portion (four) axis 'the vehicle is configured to be located in the renal artery or renal sinus Beans in the ancient kidney arteries or small renal mouth, "Θ or other treatment sites; 5 袖 sleeve to small 乂 - 4 points supply lumen, the supply 135 201223577 state to receive liquid refrigerant; And an applicator at the distal end portion, the applicator having a first chamber and a second chamber in fluid communication with the supply lumen, the first chamber having a supply and a supply (4) a heat transfer portion that is in communication with the body, and the first = chamber includes a helical portion that is curved around the second chamber, and wherein the helical portion has a state in the deployed state when the cooling assembly receives the refrigerant: A heat transfer rate sufficient to produce a therapeutically effective hypothermia renal neuromodulation, 74. A cryotherapy device comprising: #- an elongated shaft having a distal portion of a length that is configured to be placed within a blood vessel The distal portion is positioned within the renal artery or renal ostium or Other means adjacent to the treatment site of the renal artery or renal ostium; - a supply lumen along at least a portion of the shaft, the supply lumen configured to receive liquid cryogen; and a total cooling at the distal portion The cooling assembly has a delivery state and a deployed state, the cooling assembly including an orifice and an applicator including a -th-spiral balloon and a second spiral balloon, the two and the supply The cavity and the first spiral balloon are in fluid communication, and the first spiral balloon and the second spiral balloon are wound around one of the shafts== at least part of the parent, wherein the first spiral balloon is a first heat transfer rate sufficient to produce a therapeutically effective hypotensive renal neuromodulation in the deployed state when the cooling assembly receives the cryogen, and wherein the second helical balloon is in the cooling assembly in the deployed state Receiving a refrigerant having a second heat transfer rate less than the first heat transfer rate. 75. The cryotherapy device of embodiment 74, wherein the device is further 136 201223577. at least one of the package 3 / σ 3 a discharge channel, and wherein the first spiral balloon and the second spiral balloon are wrapped around the discharge channel. 76. The cryotherapy device of embodiment 74, wherein the first spiral balloon defines a first a chamber, the second spiral balloon defining a second chamber, the first chamber being fluidly separated from the second chamber, the device further comprising at least a portion of the filling chamber of the vehicle The filling lumen is configured to supply a filling material to the second chamber. 77. The cryotherapy device of embodiment 74, wherein the first spiral balloon defines a first chamber, the second spiral balloon defining a a second chamber fluidly coupled to the second chamber, the second chamber configured to receive cryogen from the first chamber. 78. cryotherapy as in Example 74 The device, wherein the applicator includes a second spiral balloon having a third heat transfer less than the first heat transfer rate when the cooling assembly receives the refrigerant in the deployed state Rate, and wherein the third spiral balloon A small portion of the first spiral helical balloon and the second balloon s Hai interlacing. 79. The cryotherapy device of embodiment 78, wherein: the cooling assembly has a length, the first spiral balloon has a first curved portion, and the second spiral balloon has a second curved portion, the third The spiral balloon has a third curved portion, and the second curved portion and the third curved portion are on the opposite side of the first curved portion along the length. 80_ The cryotherapy device of embodiment 78, wherein the first spiral

137 201223577 氣球定義—第一腔室,該第二螺旋狀氣球定義一第二腔 室,該第三螺旋狀氣球定義一第三腔室,該第一腔室與該 第二腔室及該第三腔室流體分離,該裝置進一步包含一沿 該轴之至少一部分之填充内腔,且該填充内腔經組態以向 該第二腔室、該第三腔室或兩者供應填充材料。 8 1.如實施例78之低溫治療裝置,其中該第一螺旋狀 氣球定義—第一腔室,該第二螺旋狀氣球定義一第二腔 至 。亥第一螺旋狀氣球定義一第三腔室,該第—腔室流體 連接於°玄第二腔室及該第三腔室,且該第二腔室及該第三 腔室經組態以接收來自該第一腔室之致冷劑。 82·如實施例74之低溫治療裝置,其中該施藥器包括 一第三螺旋狀氣球,該第三螺旋狀氣球在該部署狀態下在 該冷卻總成接收致冷劑時具有一足以產生治療上有效之低 温腎神經調節的第三熱傳遞速率,且其中該第三螺旋狀氣 球至^'。卩分與該第一螺旋狀氣球及該第二螺旋狀氣球交 纏。 83.如實施例8 2之低溫治療裝置,其中: 該冷卻總成具有一長度, 該第一螺旋狀氣球具有一第一彎曲部分, 該第二螺旋狀氣球具有一第二彎曲部分, 該第三螺旋狀氣球具有一第三彎曲部分,且 該第一彎曲部分及該第三彎曲部分沿該長度處於該第 二變曲部分之相反側。 84_如實施例82之低溫治療裝置,其尹該第—螺旋狀 138 201223577 氣球定義一第一腔室,該第二螺旋狀氣球定義一第二腔 室,該=三螺旋狀氣球定義-第三腔室,該第二腔室與該 第-腔至及該第三腔室流體分離,該裝置進一步包含一沿 „玄軸之至V部分之填充内腔,且該填充内腔經組態以向 該第二腔室供應填充材料。 85.如實施例82之低溫治療裝置,其中該第一螺旋狀 氣球定義第一腔室,該第二螺旋狀氣球定義一第二腔 室,該第三螺旋狀氣球定義一第三腔室,該第一腔室及該 第三腔室流體連接於兮泫-映& 〇 ^ 粗廷按趴4第一腔至,且該第二腔室經組態以 接收來自該第一腔室之致冷劑。 86· 種低溫治療裝置,其包含: 有長度的遠端部分之細長軸,該軸經組態以在 血管内將該遠端部分定位於腎動脈或腎小口内或以其他方 式鄰近腎動脈或腎小口之治療部位處; /〇 4軸之至少—部分之供應内腔,該供應内腔經組 態以接收液體致冷劑;及 一處於該遠端部分處之施藥器,該施藥器具有一遞送 狀態部署狀態且包括一第一腔室及一第二腔室,該第 -腔室具有-與該供應内腔流體連通之第—熱傳遞部分, &第-腔室包括-第_大體上呈螺旋狀之部分,該第二腔 至包括-第二大體上呈螺旋狀之部分,且該第一大體上呈 螺旋狀之部分及該第二大m累《之部分至少部分地 交纏’其中該熱傳遞部分在該部署狀態下在該冷卻總成接 收致、蜊時具冑《以產生治療上有效之低溫腎神經調節137 201223577 Balloon definition - a first chamber, the second spiral balloon defines a second chamber, the third spiral balloon defines a third chamber, the first chamber and the second chamber and the first The three chamber fluid is separated, the apparatus further includes a fill lumen along at least a portion of the shaft, and the fill lumen is configured to supply a fill material to the second chamber, the third chamber, or both. 8. The cryotherapy device of embodiment 78, wherein the first helical balloon defines a first chamber, the second helical balloon defining a second lumen to. The first spiral balloon defines a third chamber, the first chamber is fluidly connected to the second chamber and the third chamber, and the second chamber and the third chamber are configured A refrigerant from the first chamber is received. 82. The cryotherapy device of embodiment 74, wherein the applicator comprises a third helical balloon having a sufficient amount of treatment in the deployed state when the cooling assembly receives the cryogen The third heat transfer rate of the effective hypothermia renal neuromodulation, and wherein the third spiral balloon is to ^'. The split is interlaced with the first spiral balloon and the second spiral balloon. 83. The cryotherapy device of embodiment 8 wherein: the cooling assembly has a length, the first spiral balloon has a first curved portion, and the second helical balloon has a second curved portion, the first The triple spiral balloon has a third curved portion, and the first curved portion and the third curved portion are on the opposite side of the second curved portion along the length. 84_ The cryotherapy device of embodiment 82, wherein the first spiral-shaped 138 201223577 balloon defines a first chamber, the second spiral balloon defines a second chamber, the = three spiral balloon definition - the first a three chamber, the second chamber is fluidly separated from the first chamber to the third chamber, the device further comprising a filling cavity along the "Xuan axis to the V portion", and the filling cavity is configured The cryotherapy device of embodiment 82, wherein the first spiral balloon defines a first chamber, and the second spiral balloon defines a second chamber, the first The triple spiral balloon defines a third chamber, and the first chamber and the third chamber are fluidly connected to the first chamber of the crucible, and the second chamber is Configuring to receive refrigerant from the first chamber. 86. A cryotherapy device comprising: an elongated shaft having a distal portion having a length configured to position the distal portion within a blood vessel At the treatment site of the renal artery or renal stenosis or otherwise adjacent to the renal artery or renal orifice / / 4 at least a portion of the supply lumen, the supply lumen configured to receive a liquid cryogen; and an applicator at the distal portion, the applicator having a delivery state deployment state And including a first chamber having a first heat transfer portion in fluid communication with the supply lumen, and a first chamber including - a substantially helical shape a portion of the second cavity to include a second substantially helical portion, and the first substantially helical portion and the second large portion are at least partially intertwined The delivery portion is in the deployed state when the cooling assembly receives the sputum and sputum to produce therapeutically effective hypotensive renal neuromodulation

139 201223577 的熱傳遞速率,且其中兮劫# Λ μ .、、、傳遞部分在一垂直於該長度之 平面中圍繞小於該施藥器之完全圓周延伸。 87. —種低溫治療裝置其包含: 一具有一达端部分之% 、'、田長轴’該軸經組態以在血管内 將該遠端部分定位於腎動脈 助脈或腎小口内或以其他方式鄰近 腎動脈或腎小口之治療部位處; 一沿該軸之至少一部分 & 之供應内腔,該供應内腔經組 態以接收液體致冷劑; 一處於該遠端部分虛夕& ν & # 令Ρ〜成,該冷卻總成具有一 遞送狀態及一部署狀離,&、人,、 ^以7部總成包括一孔口及一施藥 器,該施樂器包括一定義一笛 疋我第—腔室之第一氣球及一定義 一第二腔室之第二氣球,該 ^ ^ . s ^ 孔口與該供應内腔流體連通, 以第軋球具有一與該孔口流體連诵笛 嗲笛-名β目士⑯ 趙運通之弟一熱傳遞部分, 狀離下m、分’該第二氣球在該遞送 狀也下至少。卩分收縮,該第二 力工至興自亥第一腔宮總公 離,其中該第一埶傳遞邱八.加w 至抓體刀 “人 P刀在部署狀態下在該冷卻蛐成接 收致冷劑時具有—足連 Λ Ρ、·,心成接 屋生’口療上有效之^ 的第-熱傳遞速率,其中該第 二U調卽 下在該冷卻總成接收致冷劑時具有、傳,二 该部署狀態139 201223577 The heat transfer rate, and wherein the transfer portion extends around a full circumference of the applicator in a plane perpendicular to the length. 87. A cryotherapy device comprising: a % having a terminal portion, ', a long shaft' of the field, the shaft being configured to position the distal portion within the renal artery or the renal ostium within the blood vessel or Otherly adjacent to the treatment site of the renal artery or renal ostium; a supply lumen along at least a portion of the shaft, the supply lumen configured to receive liquid cryogen; & ν &#令Ρ〜成, the cooling assembly has a delivery state and a deployment, &, person, ^ to 7 assemblies including an orifice and an applicator, the instrument includes a first balloon defining a first chamber and a second balloon defining a second chamber, the ^^.s ^ orifice being in fluid communication with the supply lumen, the first ball having a The orifice fluid is connected to the flute flute-name β 目士16, Zhao Yuntong's brother, a heat transfer part, and the shape of the second balloon is at least m. The splitting contraction, the second force to the Xing Zihai first cavity palace total public departure, wherein the first pass transmits Qiu Ba. Plus w to the body knife "P P in the deployment state in the cooling into the reception In the case of a refrigerant, there is a first heat transfer rate which is effective for the oral therapy, wherein the second U is under the enthalpy when the cooling assembly receives the refrigerant. Have, pass, and two deployment status

率之第二熱傳遞速率,且…:一::㈣-熱傳遞速 ,、 八Τ 〇亥第一熱傳遞部分為'V«兮A 部總成之長度之縱向片段處為非圓周的;A ’° °” …D亥軸之至少一部分之填, 離以仓吋铱-純 。茨填充内腔經組 〜、以向忒第一腔室供應一填充材料。 Μ.如實施例87之低溫 縻式置,其中該第—氣球不Rate of the second heat transfer rate, and ...: a:: (4) - heat transfer rate, the first heat transfer portion of the gossip is the non-circular longitudinal segment of the length of the 'V«兮A assembly; A '° °" ... at least a portion of the D-axis is filled, and the chamber is filled with a chamber-to-paste to supply a filling material to the first chamber of the crucible. 如. Low temperature 縻, where the first balloon does not

S 140 201223577 可收縮以使得其具有一固定體積。 89.如實施例87之低溫治療裝置,其中該第一熱傳遞 部分包括一金屬熱傳遞部件。 90·如實施例87之低溫治療裝置,其中該第二氣球在 該第一氣球内。 91. 如實施例87之低溫治療裝置,其中: 該遠端部分具有一長度, s玄第二氣球經組態以優先大體上在相對於該長度之一 第一方向中膨脹; 該孔口經組態以引導致冷劑大體上在相對於該長度之 —第二方向中自該供應内腔向該第一熱傳遞部分膨脹;且 該第—方向與該第二方向之間的一角度為約15。至約 180〇。 92. 如實施例87之低溫治療裝置,其中該第二氣球具 有一内表面,且該填充内腔大體上不可收縮並連接於該内 表面。 93·如實施例87之低溫治療裝置,其中該施藥器可膨 脹且經組態以完全閉塞具有不同橫截面尺寸之腎動脈或吹 小口。 94.如實施例87之低溫治療裝置,其中該第二氣球在 部署狀態下經組態以使該治療部位之一部分鱼 絕熱。 …亥第-氣球 9 5.—種低温治療裝置,其包含: 一具有一長度的遠端部分之細長軸,該軸經組態以在 3 141 201223577 血管内將該遠端部分定位於腎動脈或腎小口内或以其他方 式鄰近腎動脈或腎小口之治療部位處; 一沿該軸之至少一部分之供應内腔,該供應内腔經組 態以接收液體致冷劑; 一處於該遠端部分處之施藥器,該施藥器具有一遞送 狀態及一部署狀態且包括一第一腔室及一第二腔室,該第 一腔室具有一與該供應内腔流體連通之第一熱傳遞部分, 該第二腔室具有-第二熱傳遞部分,且該第二腔室與該第 -腔室流體分離中該第_熱傳遞部分在該部署狀態下 在該冷卻總成接收致冷劑時具有—足以產生治療上有效之 低溫腎神經調節的第一熱傳遞速率,"該第二轨傳遞部 分在該部署狀態下在該冷卻總成接收致冷劑時具有一小於 該第一熱傳遞速率之第二埶傳M球.玄, ^ ^ …1寻遴速率,且其中該第一熱傳 遞部分在一垂直於該長度之平 十面中圍繞小於該施藥器之完 全圓周延伸;及 一沿該軸之至少一部分之埴 真充内腔,該填充内腔經 態以向該第二腔室供應填充材料。 96. —種低溫治療裝置,其包含: 具有一达端部分之細長細,兮± ^ 軸8亥輛經組態以在血管 將該达端部分定位於腎動脈或腎 ^ . . ^ 口内或以其他方式鄰 腎動脈或腎小口之治療部位處; 一沿該軸之至少一部分之供座 A. '、心内腔,該供應内腔經; 態以接收液體致冷劑;及 一處於該軸之該遠端部分處 处之冷郃總成,該冷卻總)S 140 201223577 can be contracted such that it has a fixed volume. 89. The cryotherapy device of embodiment 87, wherein the first heat transfer portion comprises a metal heat transfer member. 90. The cryotherapy device of embodiment 87, wherein the second balloon is within the first balloon. 91. The cryotherapy device of embodiment 87, wherein: the distal portion has a length, and the second balloon is configured to preferentially expand substantially in a first direction relative to the length; the orifice Configuring to cause the refrigerant to expand from the supply lumen to the first heat transfer portion substantially in a second direction relative to the length; and an angle between the first direction and the second direction is About 15. To about 180 baht. 92. The cryotherapy device of embodiment 87, wherein the second balloon has an inner surface and the filling lumen is substantially non-retractable and attached to the inner surface. 93. The cryotherapy device of embodiment 87, wherein the applicator is expandable and configured to completely occlude a renal artery or a small orifice having a different cross-sectional dimension. 94. The cryotherapy device of embodiment 87, wherein the second balloon is configured in a deployed state to insulate a portion of the fish from the treatment site. ...Hai-Balloon 9 5. A cryotherapy device comprising: an elongated shaft having a distal portion of a length configured to position the distal portion in the renal artery within 3 141 201223577 blood vessels Or at a treatment site adjacent to the renal artery or renal ostium in the renal orifice or otherwise; a supply lumen along at least a portion of the shaft, the supply lumen configured to receive a liquid cryogen; a portion of the applicator having a delivery state and a deployed state and including a first chamber and a second chamber, the first chamber having a first heat in fluid communication with the supply lumen a transfer portion, the second chamber has a second heat transfer portion, and the second chamber is in fluid separation from the first chamber, and the first heat transfer portion receives refrigeration in the cooling assembly in the deployed state The agent has a first heat transfer rate sufficient to produce a therapeutically effective low temperature renal neuromodulation, " the second rail transfer portion has a less than the first in the deployed state when the cooling assembly receives the cryogen Second heat transfer rate Passing M ball. Xuan, ^ ^ ... 1 seek rate, and wherein the first heat transfer portion extends around a full circumference of the applicator in a flat ten plane perpendicular to the length; and a along the axis At least a portion of the cavity is filled with a cavity that is filled to supply the filling material to the second chamber. 96. A hypothermia treatment device comprising: a slender thin portion having a terminal portion, the 兮±^ axis 8 hp configured to position the proximal portion of the blood vessel in the renal artery or kidney ^ . . Other than the treatment site of the adjacent renal artery or renal ostium; a seat along at least a portion of the shaft A. ', the inner lumen, the supply lumen; state to receive liquid cryogen; a cold heading assembly at the distal end portion of the shaft, the cooling total)

S 142 201223577 -·具有一遞送狀態及一部署狀態,該冷卻油 1〜成包括一孔口及 一施樂器,該施藥器包括—定義一笸 . ―矣咕 疋義弟—腔室之第一氣球及 • 一疋義一第二腔室之第二氣球,該孔口 興5亥供應内腔流體 .,,該第-氣球具有一與該孔口流體連通之第 '熱傳遞 部分,該第—氣球具有一第二熱傳遞部分,該第二氣球在 邊遞达狀態下至少部分收縮,該第二 一 腔至流體連接於該第 -至〜、t該第二腔室經組態以接收來自該第一腔室之 致冷劑,其中該第一熱傳遞部分在該部署狀態下在該冷卻 總成接收致冷劑時具有一足以產生 , 厓王,口療上有效之低溫腎神 經調節的第一熱傳遞速率,立中 一 a 八甲这第一熱傳遞部分在該部 署狀態下在該冷卻總成接收致冷劑 ^ ^ + 川时具有—小於該第一熱 傳遞速率之第二熱傳遞速率,且1 ^、中。亥第一熱傳遞部分在 玄冷卻成之長度之縱向片段處為非圓周的。 97_如實施例96之低溫治療 _ ^ d 我置,其中該第一腔室在 该部署狀恶下具有一第一致冷劑 _ A 命邊時間,該第二腔室在 该部署狀態下具有一第二致冷劑 片J ~留時間,日兮篦—致洽 劑滯留時間小於該第二致冷劑滯留時間。 ° 98.如實施例96之低溫治療穿 勺人席瑕置,其中該裝置進一步 包3 —沿该軸之至少一部分之 兮铱-咖—+ 却通道,且該第一腔室及 忒第一脸至流體連接於該排出通道。 &quot;·如實施例96之低溫治療萝罢 匕 .^ 席裝置,其中該裝置進一步 包έ 一沿該軸之至少一部分之排 日 一排* .a、苦土 出通道’該排出通道具有 排出通道m端部分,且該第— ^ ,χ ^ ^ , 腔至經由該排出通道遠端 4刀而流體連接於該第二腔室。 143 201223577 ▲ 1〇〇·如實施例96之低溫治療裝置,其中該第二氣球經 組態以被動填充來自該第一氣球之致冷劑。 i 101·如實施例96之低溫治療裝置,其中該施藥器可胗 脹且經組態以完全閉塞具有不同橫截面尺寸之腎動脈或^ 102.如實施例96之低溫治療裝置其中該第二氣球在 該部署狀態下經組態以使該治療部位之—部分i該第一 球絕熱。 一 ^ 1 0 3 ·如貫施例9 6之低溫治療裝置,其中 該冷卻總成具有一第一長度, 二長度, 三長度,且 三長度在該部署狀 態 該第一氣球為細長型且具有—第 該第二氣球為細長型且具有—第 該第一長度、該第二長度及該第 下大體上平行。 該軸經組態以在 σ内或以其他方 §亥供應内腔經組 104. —種低溫治療裝置,其包含: 一具有一長度的遠端部分之細長軸, 血管内將該遠端部分定位於腎動脈或腎小 式鄰近腎動脈或腎小口之治療部位處. 一沿該軸之至少一部分之供應内腔 態以接收液體致冷劑;及 一處於該遠端部分處之施藥 β 或施樂器具有一遞送 狀態及-部署狀態且包括—第 、有邐圮 至及 第二腔官,辞第 一腔室具有一與該供應内腔流體連 — ° 該第二腔室具有一第二熱傳遞部=熱傳遞部分, I °亥第二腔室流體連 201223577 接於該第一腔室,其中該第二腔室經組態以接收來自續第 一腔室之致冷劑,其中該第一熱傳遞部分在該部署狀熊下 在該冷卻總成接收致冷劑時具有一足以產生治療上有效之 低溫腎神經調節的第一熱傳遞速率,其中該第二熱傳遞部 刀在该部署狀態下在該冷卻總成接收致冷劑時具有—丨於 該第一熱傳遞速率之第二熱傳遞速率,且其中該第—熱傳 遞部分在一垂直於該長度之平面中圍繞小於該施藥器2完 全圓周延伸。 70 105.如實施例1〇4之低溫治療裝置,其進一 &gt;vL ^ 、少匕含一 二少一部分之排出通道,該排出通道經組態以輸 該二 腔室之致冷劑’其中該第二腔室經組態以向 出通道輸送來自該第一腔室之致冷劑。 106·如實施例105之低溫治療裝置,其中. 端4第:一第一腔室遠端邹分;-第-腔室近 遠端部分輪送致冷#丨 向以-腔室 6亥第二腔室具有一第二腔室遠 端部分,且經組態以自該第二腔室遠=及、一第二腔室近 近端部分輪送致冷劑, 心部分向該第二腔室 =排出通道具有-排出通道遠端部分,且 减第二腔室近端部分鄰近該排 107 玛通道遠端部分。 .々實施例105之低溫治療萝 自該笛 、罝’其中該施荦哭目 °亥第-腔室至該排出通道 樂盗具 #亥主要劲、人十,士 要致冷劑流動路牺 夂令劑流動路徑穿過該第二腔室 仫, 有 145 3 該軸經組態以在 口内或以其他方 該供應内腔經組 201223577 108. —種低溫治療裝置其包含. -具有-長度的遠端部分之細長軸, 血管内將該遠端部Μ位於腎動脈或腎小 式鄰近腎動脈或腎小口之治療部位處; -沿該軸之至少一部分之供應内腔, 態以接收液體致冷劑; 一處於該軸之該遠端部分 一破详肫能κ 刀處之施樂益,該施藥 一遞送狀‘4及一部署狀態且包括一第一腔室及一 二且腔室具有一與該供應内腔流體連通之 :二其中該熱傳遞部分在該部署狀態下在該冷卻 二tr具有一足以產生治療上有效之低溫腎神 ^專遞速率,且其中該熱傳遞部分在-垂直於該 千面中圍繞小於該施藥器之完全圓周延伸;及 -沿該轴之至少一部分之排出通道,該排出通 W輸送來自㈣-腔室之致冷劑,其中該第二腔 態以向該排出通道輸送來自該卜腔室之致冷劑。 1 09.種用於治療一患者之方法,該方法包含 器具有 第二腔 熱傳遞 總成接 經調節 長度之 道經組 室經組 一在血管内將一低溫治療裝置之一冷卻總成之一施藥器 於腎動脈或腎動脈小口内或以其他方式鄰近腎動脈或 腎動脈小口之治療部位處,其中該施藥器處於一細長軸之 遠端部分處; ^使邊冷卻總成自一遞送狀態部署至一部署狀態,該施 二L括第一氣球及一第二氣球,該第二氣球在該遞送 狀態下至少部分收縮;及 201223577 藉由在該冷卻總成内將液體致冷劑轉變成氣態致冷劑 經由該第—氣球之一熱傳遞部分在-足以產生治療上有效 之低’凰月神經調節的熱傳遞速率下冷卻該治療部位之一部 分,該 &gt;’台'療部位之該部分在垂直於該腎動脈之一長度的大 體上任何平面内大體上為非圓周的。 11 〇.—種用於治療一患者之方法,該方法包含: 在血管内將一低溫治療裝置之一冷卻總成之一施藥器 疋位於月動脈或腎動脈小口内或以其他方式鄰近腎動脈或 月動脈小口之治療部位處,其中該施藥器處於一細長軸之 一遠端部分處; 使該冷卻總成自一遞送狀態部署至一部署狀態,該施 藥益包括一第一氣球及一第二氣球,該第二氣球在該遞送 狀態下至少部分收縮,其中部署該冷卻總成包括使該第一 乳球大體上非順應性地膨脹及使該第二氣球大體上順應性 地膨脹; 藉由在該冷卻總成内將液體致冷劑轉變成氣態致冷劑 經由該第一氣球之一熱傳遞部分在一足以產生治療上有效 之低溫腎神經調節的熱傳遞速率下冷卻該治療部位之—第 一部分,該治療部位之該第—部分在垂直於該腎動脈之一 長度的大體上任何平面内大體上為非圓周的;及 在該部署狀態下使該治療部位之一第二部分與該第二 氣球絕熱。 111.如實施例110之方法,其中部署該冷卻總成包括 使該施藥器膨脹以跨越該腎動脈或該腎動脈之該小口的—S 142 201223577 -· has a delivery state and a deployment state, the cooling oil 1~ includes an aperture and an instrument, the applicator includes - defining a 笸. 矣咕疋 矣咕疋 弟 - the first chamber a balloon and a second balloon of the second chamber, the orifice is supplied with a fluid of the inner cavity. The first balloon has a first heat transfer portion in fluid communication with the orifice, the first balloon Having a second heat transfer portion that at least partially contracts in an edge-delivered state, the second chamber being fluidly coupled to the first-to-t, t-second chamber configured to receive from a refrigerant of the first chamber, wherein the first heat transfer portion has a sufficient amount of low temperature renal neuromodulation effective in the treatment of the cooling assembly when the cooling assembly receives the refrigerant in the deployed state a heat transfer rate, the first heat transfer portion of the center, the first heat transfer portion having a second heat transfer rate less than the first heat transfer rate when the cooling assembly receives the refrigerant in the deployed state Rate, and 1 ^, medium. The first heat transfer portion of the hai is non-circular at the longitudinal segment of the length of the icy cooling. 97_ The cryotherapy as in Example 96 _ ^ d I, wherein the first chamber has a first refrigerant _ A edge time in the deployment state, the second chamber is in the deployed state There is a second refrigerant sheet J ~ retention time, and the residence time of the helium-consistency agent is less than the residence time of the second refrigerant. </ RTI> 98. The hypothermia treatment perforating device of embodiment 96, wherein the device further comprises 3 - along the at least a portion of the axis - café - + channel, and the first chamber and first The face to fluid is connected to the discharge passage. &quot;· The apparatus of claim 96, wherein the apparatus further comprises a row along a row of at least a portion of the shaft *.a, the bitter soil outlet channel The m-terminal portion of the channel, and the first - ^ , χ ^ ^, the cavity is fluidly connected to the second chamber via the distal end of the discharge channel. 143 201223577 ▲ 1. The cryotherapy device of embodiment 96, wherein the second balloon is configured to passively fill the refrigerant from the first balloon. The cryotherapy device of embodiment 96, wherein the applicator is swellable and configured to completely occlude a renal artery having a different cross-sectional dimension or 102. The cryotherapy device of embodiment 96 wherein the The two balloons are configured in the deployed state to insulate the first ball of the treatment site. A cryotherapy device according to the embodiment of the invention, wherein the cooling assembly has a first length, two lengths, three lengths, and three lengths in the deployed state, the first balloon is elongated and has - the second balloon is elongate and has - the first length, the second length and the second substantially parallel. The shaft is configured to supply a lumen set within σ or in other directions. The cryotherapy device comprises: an elongated shaft having a distal portion of a length, the distal portion of the vessel being intravascularly Positioned at the treatment site of the renal artery or renal proximal renal artery or renal ostium. A supply of internal cavity state along at least a portion of the shaft to receive liquid cryogen; and a drug application at the distal portion Or the instrument has a delivery state and a deployed state and includes - a first, a second to the second chamber, the first chamber has a fluid connection with the supply lumen - the second chamber has a second Heat transfer portion = heat transfer portion, I ° second chamber fluid connection 201223577 is connected to the first chamber, wherein the second chamber is configured to receive refrigerant from the first chamber, wherein The first heat transfer portion has a first heat transfer rate sufficient to produce a therapeutically effective low temperature renal nerve regulation under the deployment bear when the cooling assembly receives the refrigerant, wherein the second heat transfer portion is In the deployment state, the cooling assembly is received The refrigerant has a second heat transfer rate at the first heat transfer rate, and wherein the first heat transfer portion extends around a full circumference of the applicator 2 in a plane perpendicular to the length. 70 105. The cryotherapy device of embodiment 1 to 4, wherein the lower portion contains a portion of the discharge channel, and the discharge channel is configured to deliver the refrigerant of the two chambers. The second chamber is configured to deliver refrigerant from the first chamber to the outlet passage. 106. The cryotherapy device of embodiment 105, wherein: the end 4: a first chamber distal end; - the first chamber near the distal portion of the rotational cooling #丨向向-室室六亥第二The chamber has a second chamber distal portion and is configured to transfer refrigerant from the second chamber to the second chamber near the proximal portion, the core portion to the second chamber = The discharge passage has a distal end portion of the discharge passage, and the proximal portion of the second lower chamber is adjacent to the distal end portion of the row 107 passage.低温The low temperature treatment of the embodiment 105 is from the flute, the 罝 'the 荦 荦 荦 ° 亥 亥 亥 腔 腔 腔 腔 腔 腔 腔 腔 腔 腔 腔 至 至 至 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥The flow path of the agent passes through the second chamber, 145 3 the shaft is configured to supply the lumen in the mouth or otherwise. 201223577 108. A cryotherapy device comprising - having - length An elongated shaft of the distal portion, the endoscopic portion of the distal end portion located at a treatment site of the renal artery or renal proximal renal artery or renal ostium; - a supply of the lumen along at least a portion of the shaft to receive liquid a refrigerant; a Xerox at the distal end portion of the shaft that breaks through the knives, and the application is in a delivery state of '4 and a deployed state and includes a first chamber and a chamber having a fluid communication with the supply lumen: wherein the heat transfer portion has a temperature sufficient to produce a therapeutically effective low temperature renal delivery rate in the deployed state, and wherein the heat transfer portion is in-vertical Surrounding less than the applicator in the thousand faces a circumferential extension; and - a discharge passage along at least a portion of the shaft, the discharge passage W conveying refrigerant from the (four)-chamber, wherein the second chamber state is to deliver refrigeration from the chamber to the discharge passage Agent. 1 09. A method for treating a patient, the method comprising the second cavity heat transfer assembly receiving the adjusted length, the group chamber, the group cooling unit, and a cooling device of the cryotherapy device An applicator is located in the small portion of the renal artery or renal artery or otherwise adjacent to the treatment site of the renal artery or the small opening of the renal artery, wherein the applicator is at the distal end portion of an elongated shaft; a delivery state deployed to a deployed state, the second balloon comprising a first balloon and a second balloon, the second balloon being at least partially contracted in the delivery state; and 201223577 by using a liquid cryogen in the cooling assembly Converting the gaseous refrigerant to a portion of the treatment site via a heat transfer portion of the first balloon that is sufficient to produce a therapeutically effective low phoenix neuromodulation heat transfer rate, the &apos; This portion is substantially non-circular in substantially any plane perpendicular to the length of one of the renal arteries. 11 〇 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — At a treatment site of an arterial or lunar artery orifice, wherein the applicator is at a distal end portion of an elongated shaft; deploying the cooling assembly from a delivery state to a deployed state, the application benefit comprising a first balloon And a second balloon that at least partially contracts in the delivery state, wherein deploying the cooling assembly includes expanding the first balloon substantially non-compliantly and substantially conforming the second balloon Expanding by converting the liquid cryogen into a gaseous refrigerant within the cooling assembly via a heat transfer portion of the first balloon to cool the heat transfer rate sufficient to produce a therapeutically effective low temperature renal neuromodulation a first portion of the treatment site, the first portion of the treatment site being substantially non-circular in substantially any plane perpendicular to a length of one of the renal arteries; and in the deployed state The second portion of one of the treatment sites is insulated from the second balloon. 111. The method of embodiment 110, wherein deploying the cooling assembly comprises expanding the applicator to span the renal artery or the small opening of the renal artery -

147 201223577 橫截面尺寸。 112·如實施例110之方法,其中該第一氣球定.義—第 一腔室’該第二氣球定義一第二腔室,且該方法進—步包 含經由一沿該軸之至少一部分之填充内腔向該第二腔室中 引入填充材料,其中該第一腔室與該第二腔室流體分離。 113·如實施例112之方法,其中該填充材料在生物學 上為惰性的。 114.—種用於治療一患者之方法,該方法包含: 在血管内將一低溫治療裝置之—冷卻總成之一施藥器 定位於腎動脈或腎動脈小口内或以其他方式鄰近腎動脈或 腎動脈小口之治療部位處,#中該施藥器處於一細長軸之 一遠端部分處; “使該冷卻總成自-遞送狀態部署至一部署狀態、,該之 藥器包括一定義一第一腔室之第—氣球及一定義一第二力 室之第二氣球’該第二氣球在該遞送狀態下至少部分收縮 在一第一壓力下使氣態致冷劑經由該第一腔室循環; 在不同於該第一壓力之一篦— 弟—壓力下使氣態致冷劑| 由該第二腔室循環; 藉由在該冷卻總成内將液體絲 一 牌狀體致冷劑轉變成氣態致冷今 經由該第一氣球之一第一埶傳诚 …得遞。卩分在一足以產生治療_ 有效之低溫腎神經調節的第一埶 ,、、'得遞速率下冷卻該治療4 位之一弟一部分,該治療部位 .„ 3第—部分在垂直於該f 動脈之一長度的大體上任何平 ‘ _ τ大體上為非圓周的;石 經由S亥第一氣球之一第二埶 …、得遞部分在小於該第一 ^147 201223577 Cross-sectional dimensions. The method of embodiment 110, wherein the first balloon defines a first chamber, the second balloon defines a second chamber, and the method further comprises passing at least a portion along the axis A fill lumen introduces a fill material into the second chamber, wherein the first chamber is fluidly separated from the second chamber. 113. The method of embodiment 112, wherein the filler material is biologically inert. 114. A method for treating a patient, the method comprising: positioning an applicator of a cryotherapy device, a cooling assembly, within a small lumen of a renal artery or renal artery or otherwise adjacent to a renal artery Or at the treatment site of the small renal artery, the applicator is at a distal end portion of one of the elongated shafts; "to deploy the cooling assembly from a delivery state to a deployed state, the medication includes a definition a first balloon of a first chamber and a second balloon defining a second force chamber. The second balloon is at least partially contracted at a first pressure in the delivery state to allow gaseous refrigerant to pass through the first chamber Circulating; circulating a gaseous refrigerant at a pressure different from the first pressure - by the second chamber; by using a liquid filament-shaped refrigerant in the cooling assembly Turning into a gas-cooling, this is the first 埶 诚 ... 得 经由 得 得 得 得 得 得 得 得 得 得 得 得 得 得 得 得 得 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该Treatment of one of the 4 brothers, the treatment department The third portion is substantially non-circular in any substantially perpendicular to the length of one of the f arteries; the stone passes through one of the first balloons of the Shai second 埶..., the delivery portion is less than First ^

S 148 201223577 傳遞速率之— 部分。 熱傳遞速率下冷卻該治療部位S 148 201223577 Transfer rate - part. Cooling the treatment site at a heat transfer rate

11 5.如實施例 體上受表面積限制 限制。 4之方法’其中該第一熱傳遞速率大 ’且該第二熱傳遞速率大體上受致冷劑 Μ如實施例114之方法,該方法進一步包含調節該 第一壓力及該第二麗力。 11 7·—種用於治療—患者之方法,該方法包含: 在血官内將—低溫治療裝置之一冷卻總成之一施藥器 疋位於月動脈或腎動脈小口内或以其他方式鄰近腎動脈或 月動脈小π之治療部位處,纟中該施藥器處於—細長轴之 一遠端部分處; —彳忒冷卻總成自一遞送狀態部署至一部署狀態,該施 藥器包括—第一氣球及一第二氣球,#第一氣球包括一至 少部分包繞在該第二氣球周圍的螺旋狀部&amp;,且該第二氣 球在該遞送狀態下至少部分收縮;及 一藉由在該冷卻總成内將液體致冷劑轉變成氣態致冷劑 、在由及第-氣球之—熱傳遞部分在—足以產生治療上有效 之低/皿腎神經調節的熱傳遞速率下冷卻該治療部位之一部 分’該治療部位之該部分在垂直於該腎動脈之—長度的大 體上任何平面内大體上為非圓周的。 118:如實施例117之方法,其中部署該冷卻總成包括 使邊施樂器膨脹以跨越該腎動脈或該腎動脈之該小一 橫截面尺寸。 149 201223577 119.如實施例117之方法,其中部署該冷卻總成包括 使该第一氣球大體上順應性地膨脹以增加該螺旋狀部分之 一螺旋直徑。 12 0 ·如貫施例π 7之方法,該方法進一步包含: 排出來自該第一氣球之氣態致冷劑;及 向該第二氣球供應來自該第一氣球之氣態致冷劑。 1 2 1. —種用於治療一患者之方法,該方法包含: 在血管内將一低溫治療裝置之一冷卻總成之一施藥器 定位於腎動脈或腎動脈小口内或以其他方式鄰近腎動脈或 腎動脈小口之治療部位處’其中該施藥器處於一細長輔之 一遠端部分處; 使該冷卻總成自一遞送狀態部署至一部署狀態,該施 藥器包括一第一氣球及一第二氣球,該第一氣球包括_第 一螺旋狀部分,該第二氣球包括一第二螺旋狀部分,且該 第一螺旋狀部分及該第二螺旋狀部分至少部分交纏; 藉由在該冷卻總成内將液體致冷劑轉變成氣態致冷劑 經由該第一氣球之一熱傳遞部分在一足以產生治療上有效 之低溫腎神經調師的熱傳遞速率下冷卻該治療部位之一第 一部分,該治療部位之該第一部分在垂直於該腎動脈之一 長度的大體上任何平面内大體上為非圓周的;及 在該部署狀態下使該治療部位之一第二部分與該第二 氣球絕熱。 12 2 ·如實施例12 1之方法’該方法進一步包含: 排出來自該第一氣球之氣態致冷劑;及11 5. As an example, the body is limited by surface area. The method of 4 wherein the first heat transfer rate is &apos; and the second heat transfer rate is substantially a refrigerant, such as the method of embodiment 114, the method further comprising adjusting the first pressure and the second force. 11 7 - A method for treating a patient, the method comprising: in the blood department, one of the cooling devices of the cryotherapy device is located in the small artery of the lunar artery or the renal artery or otherwise adjacent At the treatment site of the renal artery or the lunar artery small π, the applicator is at a distal end portion of the elongated shaft; the helium cooling assembly is deployed from a delivery state to a deployed state, the applicator comprising a first balloon and a second balloon, the first balloon comprising a spiral portion &amp; at least partially surrounding the second balloon, and the second balloon at least partially contracting in the delivery state; By cooling the liquid refrigerant into a gaseous refrigerant in the cooling assembly, cooling at a heat transfer rate sufficient to produce a therapeutically effective low/plate renal neuromodulation at the heat transfer portion of the first balloon One portion of the treatment site 'this portion of the treatment site is substantially non-circular in substantially any plane perpendicular to the length of the renal artery. 118. The method of embodiment 117, wherein deploying the cooling assembly comprises expanding an instrument to span the small cross-sectional dimension of the renal artery or the renal artery. 119. The method of embodiment 117, wherein the deploying the cooling assembly comprises expanding the first balloon substantially conformally to increase a helical diameter of the helical portion. 120. The method of embodiment π, the method further comprising: discharging a gaseous refrigerant from the first balloon; and supplying the second balloon with a gaseous refrigerant from the first balloon. 1 2 1. A method for treating a patient, the method comprising: positioning an applicator of a cooling assembly of a cryotherapy device within a blood vessel or otherwise adjacent to a renal artery or a renal artery Where the renal artery or renal artery is at a treatment site where the applicator is at a distal end portion of an elongated auxiliary; the cooling assembly is deployed from a delivery state to a deployed state, the applicator including a first a balloon and a second balloon, the first balloon including a first spiral portion, the second balloon including a second spiral portion, and the first spiral portion and the second spiral portion are at least partially intertwined; Converting the liquid cryogen into a gaseous refrigerant within the cooling assembly, cooling the treatment via a heat transfer portion of the first balloon at a rate of heat transfer sufficient to produce a therapeutically effective cryo-renal neuromodulator a first portion of the portion, the first portion of the treatment site being substantially non-circular in substantially any plane perpendicular to a length of one of the renal arteries; and the treatment site being deployed in the deployed state One of the second portions is insulated from the second balloon. 12 2 · The method of Embodiment 12 1 The method further comprising: discharging a gaseous refrigerant from the first balloon;

S 150 201223577 勹孩卓二氣球供應來自 1 . Μ第一氣球之氣態致冷劑。 如實施例121之方、 使·^玄施藥4 ’其中部署該冷卻總成包括 脈或該腎動脈之該小口的一 便4施杲器膨脹以跨越該腎動 橫截面尺寸。 法’其中該第一氣球定義一第 室,且該方法進一 部分之填充内腔向該第 該第一腔室與該第二腔室流 124.如實施例U1之方 一腔室,該第二氣球定義一 人第二腔室,且該方法進一步包 3在血官内經由一沿該軸之至少 二腔室中引入填充材料,其中 體分離。 12 5 .如實施例12 4之古 &lt; # ’其中該填充材料在生物學 上為惰性的。 126· I種用於、冶療—患者之方法,該方法包含: 、在血管内將一低溫治療裝置之一冷卻總成之一施藥器 :位於腎動脈或腎動脈小口内或以其他方式鄰近腎動脈或 月動脈小口之治療部位處,《中該施藥器處於—細長轴之 一遠端部分處; 使該冷卻總成自一遞送狀態部署至一部署狀態,該施 藥器包括一定義一第一腔室之第一氣球及一定義一第二腔 至之第二氣球,該第二腔室在該遞送狀態下至少部分收縮; 藉由在該冷卻總成内將液體致冷劑轉變成氣態致冷劑 經由該第一氣球之一熱傳遞部分在一足以產生治療上有效 之低溫腎神經調節的熱傳遞速率下冷卻該治療部位之—第 一部分,該治療部位之該第一部分在垂直於該腎動脈之一 長度的大體上任何平面中大體上為非圓周的;S 150 201223577 勹 卓 卓 二 Balloon supply from 1. 气 The first balloon of gaseous refrigerant. As in Example 121, the application of the cooling assembly including the vein or the small port of the renal artery is expanded to cross the renal cross-sectional dimension. The method wherein the first balloon defines a first chamber, and the method further fills a portion of the filling chamber to the first chamber and the second chamber 124. As in the chamber of the embodiment U1, the first The two balloons define a second chamber for one person, and the method further includes introducing a filling material into the blood donor through at least two chambers along the axis, wherein the body is separated. 12 5 as in Example 12 4 &lt;# ' wherein the filler material is biologically inert. 126. A method for use in a therapy-patient, the method comprising: cooling an applicator of a cryotherapy device in a blood vessel: located in a small opening of a renal artery or renal artery or otherwise Adjacent to the treatment site of the renal artery or the small orifice of the lunate artery, the applicator is at a distal end portion of the elongated shaft; the cooling assembly is deployed from a delivery state to a deployed state, the applicator comprising a Defining a first balloon of a first chamber and a second balloon defining a second cavity, the second chamber being at least partially contracted in the delivery state; by means of a liquid refrigerant in the cooling assembly Converting the gaseous refrigerant to a first portion of the treatment site via a heat transfer portion of the first balloon at a rate of heat transfer sufficient to produce a therapeutically effective hypothermia renal neuromodulation, the first portion of the treatment site being In substantially any plane perpendicular to the length of one of the renal arteries, substantially non-circular;

151 201223577 部分之填充内腔向該 一腔室與該第二腔室 第一部分與該第 在血管内經由一沿該軸之至少一 第二腔室中引入填充材料,其中該第 流體分離;及 在S亥部署狀態下使該治療部位之 氣球絕熱。 1 2 7.如實施例1 2 6之方法,並中兮亩 /、Τ δ亥填充材料在生物學 上為惰性的。 128·如實施例126之方法,其中冷卻該治療部位之該 第一部分包括經由該熱傳遞部分之—金屬熱傳遞部件冷卻 3亥治療部位之該第一部分。 129·如實施例126之方法,其中該第二氣球在該第一 氣球内’ I向該第二腔室中引入填充材料使該第二氣球在 該第一氣球内所佔據之空間的量增加。 13〇.如實施例120之方法,其中部署該冷卻總成包括 使該施藥器膨脹以跨越該腎動脈或該腎動脈之該小口的一 橫截面尺寸。 131.如實施例126之方法,該方法進一步包含優先使 该第二氣球在相對於該冷卻總成之一長度之一第一方向中 膨脹,其中使液體致冷劑轉變成氣態致冷劑包括大體上在 寸於。玄長度之—第二方向中弓丨導致冷劑向該熱傳遞部分 膨脹,且該第一方向與該第二方向之間的一角度為約15。至 約 180。 〇 13厶一種用於治療一患者之方法,該方法包含: 在血管内將一低溫治療裝置之一冷卻總成之一施藥器 152 201223577 -·定位於腎動脈或腎動脈小口内或以其他方式鄰近腎動脈或 . 腎動脈小口之治療部位處,其中該施藥器處於一細長軸之 • —遠端部分處; . 使該冷卻總成自一遞送狀態部署至一部署狀態,該施 藥器括疋義一第一腔室之第一氣球及一定義一第二腔 至之第氣球’ 3亥第一氣球在該遞送狀態下至少部分收縮; 藉由在該冷卻總成内將液體致冷劑轉變成氣態致冷劑 、·座由》亥第一氣球之一熱傳遞部分在一足以產生治療上有效 之低恤腎神經調節的熱傳遞速率下冷卻該治療部位之一第 一部分,該治療部位之該第—部分在垂直於該腎動脈之一 長度的大體上任何平面中大體上為非圓周的; 在°亥°卩署狀態下使該治療部位之一第二部分與該第二 氣球絕熱; 排出來自該第一腔室之氣態致冷劑;及 向该第二腔室供應來自該第一腔室之氣態致冷劑。 1 3 3 .如實施例132之方法,其_部署該冷卻總成包括 使該施藥器膨脹以跨越該腎動脈或該腎動脈之該小口的一 橫截面尺寸。 134.如實施例132之方法,其中向該第二腔室供應來 自該第一腔室之氣態致冷劑包括使該第二氣球被動填充氣 態致冷劑。 、” 135·如實施例132之方法,其中向該第二腔室供應來 自該第一腔室之氣態致冷劑包括經由一沿該軸之至少一部 分之排出通道的一遠端部分供應氣態致冷劑,該排出通道 153 201223577 經組態以輪送來自該第一腔室之氣態致冷劑。 1 3 6 _如實施例1 3 2之方法,該方法進一步包含: 在一第一致冷劑滯留時間使氣態致冷劑在該第一腔室 内循環;及 在一第二致冷劑滯留時間使氣態致冷劑在該第二腔室 内循環’其中該第一致冷劑滯留時間小於該第二致冷劑滞 留時間。 13 7.如實施例132之方法,其中向該第二腔室供應來 自該第一腔室之氣態致冷劑包括向一排出通道輸送來自今 第一腔室之氣態致冷劑,該排出通道沿該軸之至少一部分 138.如實施例137之方法,該方法進一步包含: 自該第一腔室之一近端部分向該第一腔室之一遠端部 分輸送氣態致冷劑; 自該第一腔室之該遠端部分向該第二腔室之一遠端部 分輸送氣態致冷劑;及 自該第二腔室之該遠端部分向該第二腔室之一近端部 分輸送氣態致冷劑。 13 9.如實施例137之方法,其中排出來自該第—腔室 之氟態致冷劑包括沿一主要氣態致冷劑流動路徑排出來= 該笫一腔室之氣態致冷劑,且該主要氣態致冷劑流動路徑 聲過該第二腔室。 二 140. —種低溫治療裝置,其包含: 一具有一遠端部分之細長軸,該軸經組態以在血管内 將該遠端部分定位於腎動脈或腎小口中或以其他方式鄰近151 201223577 part of the filling lumen to the chamber and the second chamber first portion and the first vessel are introduced into the filling material via a second chamber along the shaft, wherein the first fluid is separated; The balloon at the treatment site is insulated in the S Hai deployment state. 1 2 7. The method of Example 1 2 6 and the intermediate /mu/, δ 亥海 filling material is biologically inert. 128. The method of embodiment 126, wherein cooling the first portion of the treatment site comprises cooling the first portion of the treatment site via the metal heat transfer component of the heat transfer portion. 129. The method of embodiment 126, wherein the second balloon introduces a filler material into the second chamber within the first balloon to increase an amount of space occupied by the second balloon within the first balloon. . 13. The method of embodiment 120, wherein deploying the cooling assembly comprises expanding the applicator to span a cross-sectional dimension of the renal artery or the small opening of the renal artery. 131. The method of embodiment 126, the method further comprising preferentially expanding the second balloon in a first direction relative to one of the lengths of the cooling assembly, wherein converting the liquid refrigerant to a gaseous refrigerant comprises Generally in the inch. The length of the sinus-in the second direction causes the coolant to expand toward the heat transfer portion, and an angle between the first direction and the second direction is about 15. To about 180. 〇13厶 A method for treating a patient, the method comprising: positioning one of the cryotherapy devices in a blood vessel, the applicator 152 201223577 - positioning in the small artery of the renal artery or renal artery or other Means adjacent to the treatment site of the renal artery or the small portion of the renal artery, wherein the applicator is at the distal end of an elongated shaft; the deployment of the cooling assembly from a delivery state to a deployed state, the administration The first balloon of the first chamber and the second balloon to the first balloon are at least partially contracted in the delivery state; the liquid is cooled in the cooling assembly The agent is converted into a gaseous refrigerant, and the heat transfer portion of the first balloon of the first sea is cooled in a first portion of the treatment site at a heat transfer rate sufficient to produce a therapeutically effective low-shirt renal neuromodulation, the treatment The first portion of the portion is substantially non-circular in substantially any plane perpendicular to a length of one of the renal arteries; the second portion of the treatment site is seconded to the second gas Thermal insulation; discharged from the first chamber of the gaseous refrigerant; and a second chamber to supply the gaseous refrigerant from the first chamber. 1 3 3. The method of embodiment 132, wherein deploying the cooling assembly comprises expanding the applicator to span a cross-sectional dimension of the renal artery or the small opening of the renal artery. 134. The method of embodiment 132, wherein supplying the second chamber with gaseous refrigerant from the first chamber comprises passively filling the second balloon with a gaseous refrigerant. 135. The method of embodiment 132, wherein supplying the second chamber with gaseous refrigerant from the first chamber comprises supplying a gaseous state via a distal portion of the exhaust passage along at least a portion of the shaft The refrigerant, the discharge passage 153 201223577 is configured to rotate the gaseous refrigerant from the first chamber. 1 3 6 _ The method of Embodiment 1 3 2, the method further comprising: at a first refrigeration The residence time of the agent causes the gaseous refrigerant to circulate in the first chamber; and the circulation of the gaseous refrigerant in the second chamber during a second refrigerant residence time wherein the first refrigerant residence time is less than the The second refrigerant retention time. The method of embodiment 132, wherein supplying the second chamber with gaseous refrigerant from the first chamber comprises delivering the first chamber to a discharge passage a gaseous refrigerant, the discharge passage being along at least a portion of the shaft 138. The method of embodiment 137, the method further comprising: from a proximal portion of the first chamber to a distal portion of the first chamber Delivering a gaseous refrigerant; from the first chamber The distal portion delivers a gaseous refrigerant to a distal portion of the second chamber; and delivers a gaseous refrigerant from the distal portion of the second chamber to a proximal portion of the second chamber 9. The method of embodiment 137, wherein discharging the fluorine-containing refrigerant from the first chamber comprises discharging a gaseous refrigerant along the flow path of a main gaseous refrigerant to the chamber, and The primary gaseous refrigerant flow path vocalizes through the second chamber. II. A cryotherapy device comprising: an elongated shaft having a distal portion configured to be distally within the blood vessel The end portion is located in the renal artery or renal small mouth or otherwise adjacent

154 S 201223577 腎動脈或腎小口之治療部位處; 一沿該軸之至少—部分之供應内腔,該供應内腔經組 態以接收液體致冷劑; 一處於該遠端部分之冷卻總成,該冷卻總成具有一遞 送狀態及一部署狀態,該冷卻總成包括一孔口及一包括一 定義一施藥腔之施藥氣球的施藥器,該孔口與該供應内腔 流體連通’該施藥氣球具有一與該孔口流體連通之熱傳遞 部分’其中該施藥器經組態以在該部署狀態下在該冷卻總 成接收致冷劑時產生治療上有效之低溫腎神經調節;及 一自該施藥器附近間隔開之閉塞部件,該閉塞症部件 具有一收縮狀態及一膨脹狀態,其中該閉塞部件具有經組 邊以在該膨脹狀態下完全閉塞該治療部位附近之該腎動脈 及/或賢小口的一橫截面尺寸。 14 1 ·如實施例140之低溫治療裝置,其中該閉塞部件 包括一閉塞氣球,該閉塞氣球定義—流體連接於該施藥腔 之閉塞腔。 142.如實施例 ,…一…坏衣罝,具進一步包含一 沿該軸之至少一部分之排出诵;曾,甘+ u 1 拼Κ逋道其中該閉塞腔流體連接 於該排出通道。 '原式置’其中該施藥腔在 14 3 .如實施例14 1之低溫治 該部署狀態下具有一第一致冷劑滞齒 W布留時間,其中該閉塞腔 在該膨脹狀態下具有一第二致冷劑滯 留時間,且其中該第 一致冷劑滯留時間小於該第二致冷劑滞留時間。 144.如實施例141之低溫治療裝置,其進—步包含— 155 201223577 沿該軸之至少一部分之填充内腔,其中該填充内腔流體連 接於該閉塞腔,且其中該閉塞腔與該供應内腔流體分離。 145·如實施例140之低溫治療裝置,其中該閉塞部件 可膨脹且經組態以在該膨脹狀態下完全閉塞具有不同直徑 之腎動脈或腎小口。 146·如實施例140之低溫治療裝置,其中該閉塞部件 包括一閉塞氣球,且該閉塞.氣球大體上為順應性的。 147•如實施例140之低溫治療裝置,其進一步包含一 手柄,該軸具有一處於該手柄處之近端部分,其中該軸包 括一控制内腔及一處於該控制内腔内之細長控制部件,且 其中該控制部件可操作地耦接於該遠端部分及該手柄以使 得增加或降低該控制部件之張力可控制遠離該閉塞部件之 該遠端部分之至少一個區段的偏轉。 148.如實施例140之低溫治療裝置,其中該施藥器在 該部署狀態下具有一小於該閉塞部件在該膨脹狀態下之該 検截面尺寸的施藥器橫截面尺寸以使得該施藥器在該部署 狀態下不完全閉塞該治療部位處之該腎動脈及/或腎小口。 1 4 9.如實施例1 40之低溫治療裝置,其中該冷卻總成 包括一細長支撐部件,且其中該施藥腔包括一包繞在該支 撐部件之至少一部分周圍的螺旋狀氣球。 1 50.如實施例140之低溫治療裝置,其中: 該冷卻總成具有一長度, 該施藥氣球在該部署狀態下具有一包括複數個凹入部 分及一圍繞該複數個凹入部分之非凹入區域的形狀, 156 201223577 該非凹入區域至少部分地定義該熱傳遞部分,且 該熱傳遞部分在沿該長度之縱向片段處為非圓周的。 151.如實施例150之低溫治療裝置,其中該施藥氣球 在該部署狀態下之該形狀大體上為圓柱形。 1 52•如實施例140之低溫治療袭置,其中: 該冷卻總成具有一長度, 該施藥氣球在該部署狀態下具有一包括複數個突起及 一圍繞該複數個突起之非突起區域的形狀, 該複數個突起至少部分地定義該熱傳遞部分;且 該熱傳遞部分在沿該長度之縱向片段處為非圓周的。 153.如實施例140之低溫治療裝置,其中. 該冷卻總成具有一長度及一沿該長度之至少一部分之 細長支撐部件, 疋按邵分 該施藥氣球包括一非圓 該連接部分連接於該支撐部件 該非圓周部分在該部署狀態下與該支撐部件間隔開, 該非圓周部分至少部分地定義該熱傳遞部分,且汗 該熱傳遞部分在沿該長度之縱向片 口月奴處為非圓周的。 1 54.如實施例1 53之低溫治療裝置,其中. 該連接部分為一第一連接部分, 該非圓周部分為一第一非圓周部分, 該施藥氣球包括一連接於該支撐部 分 1 1千之第二連接部 該施藥氣球包括一 在該部署狀態下 與該支撐部件 間隔 157 201223577 開之第二非圓周部分, δ亥第一非圓周部分處於該第一連接 部分之間, 卩分與該第二 β亥第二非圓周部分處於該第一連接 部分之間,且關认 °刀與該第二 且關於該長度而與該第一非 開丨且 F圓周部分徑冷 邊第—非圓周部分及該第二非圓周部八 義該熱傳遞部分。 至少部交 15 5.如實施例I53之低溫治療裝置,其中. &quot;亥施藥氣球為一第一施藥.氣球, δ玄連接部分為一第一連接部分, 該非圓周部分為一第一非圓周部分, 該施本器包括一沿該長度斑兮當 開之第二施藥氣球, 第—施藥氣球心 部分該第二施藥氣球包括一第二非圓周部分及—第: 該第二連接部分連接於該支撐部件, 該第二非圓周部分在該部署狀態下 部件縱向間隔開,且 又’、^ 該第-非圓周部分及該第二非圓 義該熱傳遞部分。 π t4夂 156.如實施例14()之低溫治療裝置,其中: 該冷卻總成具有一長度, 、 該施藥氣球具有一螺旋狀凹入部分及一螺旋狀^ 連接 連接 間隔 地定 間隔 連接 支撐 地定 凹入 158 201223577 部分, 該螺旋狀非凹入部分至少部分地定義該熱傳遞部分 且 該熱傳遞部分在沿該長度之縱向片段處為非圓周的。 157.如實施例14〇之低溫治療裝置,其中: 該施藥氣球為細長型且具有一長度、沿該長度之一施 藥氣球近端部分、一施藥氣球中間部分及一施藥氣球遠端 部分, 而 該施藥氣球沿該長度彎曲以使該施藥氣球在該部署狀 態下具有一具有一沿該長度之大體上凹曲率的第一壁部分 及一具有一沿該長度之大體上非凹曲率的第二壁部分,刀 該施藥氣球中間部分經組態以在該部署狀態下大體上 沿該第二壁部分且大體上不沿該第一壁部分接觸該腎動脈 及/或腎小口, 壁部分至少部分 處於該施藥氣球中間部分處之該第 地定義該熱傳遞部分;且 該熱傳遞部分在沿該長度之縱向片段冑為非圓周的。 158.如實施例157之低溫治療裝置,其中該第一壁告丨 分具有-第-厚度’且其中該第二壁部分具有一小於該第 一厚度之第二厚度。 159.如實施例14〇之低溫治療裝置,其中: 該施藥氣球為細長型且具有一長度, 一部分之細長成型 該冷卻總成包括一沿該長度之至少 部件, 201223577 該成型部件在該遞送狀態下具有一大體上線性之組態 且在該部署狀態下具有一曲線組態,且 該施藥氣球在該部署狀態下具有一至少部分對應於該 曲線組態之形狀。 160·如實施例159之低溫治療裝置,其中該施藥氣球 在該部署狀態下之該形狀大體上為螺旋狀。 161.如實施例159之低溫治療裝置,其中該施藥氣球 在該部署狀態下之該形狀大體上為蛇形。 1 62.如實施例1 40之低溫治療裝置,其中: 該冷卻總成具有一長度, 該裝置包括一可相對於該軸縱向移動之細長成型部 件, 該施藥氣球沿該長度具有一第一氣球近端部分、一第 一氣球中間部分及一第一氣球遠端部分, 該施藥器包括一沿該長度具有一第二氣球近端部分、 一第二氣球中間部分及一第二氣球遠端部分之第二細長氣 球, *&gt;玄第一氣球遠端部分及s亥第二氣球遠端部分連接於今 成型部件以使得相對於該軸收縮該成型部件可使該第一氣 球及該第二氣球沿該長度彎曲,並使該第一氣球中間部分 及β亥第一氣球中間部分橫向移動遠離該成型部件, 該第一氣球中間部分具有一第一外側,該第—外侧在 該部署狀態下沿該長度具有一大體上非凹曲率, 該第二氣球中間部分具有一第二外側,該第二外側在154 S 201223577 at the treatment site of the renal artery or renal stenosis; a supply lumen along at least a portion of the shaft, the supply lumen configured to receive a liquid cryogen; and a cooling assembly at the distal portion The cooling assembly has a delivery state and a deployed state, the cooling assembly including an orifice and an applicator including a dispensing balloon defining a dispensing chamber, the orifice being in fluid communication with the supply lumen The application balloon has a heat transfer portion in fluid communication with the orifice, wherein the applicator is configured to produce a therapeutically effective hypotensive renal nerve in the deployed state when the cooling assembly receives the cryogen Adjusting; and an occluding member spaced apart from the applicator, the occlusive component having a collapsed state and an expanded state, wherein the occluding member has a set edge to completely occlude the vicinity of the treatment site in the expanded state A cross-sectional dimension of the renal artery and/or spleen. The cryotherapy device of embodiment 140, wherein the occluding member comprises an occlusion balloon, the occlusion balloon defining a fluid connection to the occlusion chamber of the application chamber. 142. The embodiment, ... a bad sputum, further comprising a discharge raft along at least a portion of the shaft; a gamma + u 1 spelling channel wherein the occlusion chamber is fluidly coupled to the discharge passage. 'Original setting' wherein the application chamber has a first refrigerant damper W burial time in the deployed state of the low temperature treatment of Example 141, wherein the occlusion chamber has a deflation state in the expanded state a second refrigerant residence time, and wherein the first refrigerant residence time is less than the second refrigerant residence time. 144. The cryotherapy device of embodiment 141, further comprising - 155 201223577 filling a lumen along at least a portion of the shaft, wherein the filling lumen is fluidly coupled to the occlusion chamber, and wherein the occluding chamber is coupled to the supply The lumen fluid is separated. 145. The cryotherapy device of embodiment 140, wherein the occluding component is expandable and configured to completely occlude a renal artery or renal orifice having a different diameter in the expanded state. 146. The cryotherapy device of embodiment 140, wherein the occluding component comprises an occlusion balloon and the occlusion balloon is substantially compliant. 147. The cryotherapy device of embodiment 140, further comprising a handle having a proximal portion at the handle, wherein the shaft includes a control lumen and an elongated control member within the control lumen And wherein the control member is operatively coupled to the distal portion and the handle such that increasing or decreasing the tension of the control member can control deflection of at least one section of the distal portion away from the occluding member. 148. The cryotherapy device of embodiment 140, wherein the applicator has an applicator cross-sectional dimension in the deployed state that is less than the cross-sectional dimension of the occluding member in the expanded state such that the applicator The renal artery and/or renal orifice at the treatment site is not completely occluded in this deployed state. The cryotherapy device of embodiment 1 40, wherein the cooling assembly comprises an elongate support member, and wherein the applicator chamber includes a helical balloon wrapped around at least a portion of the support member. The cryotherapy device of embodiment 140, wherein: the cooling assembly has a length, the application balloon having a plurality of concave portions and a plurality of concave portions surrounding the plurality of concave portions in the deployed state The shape of the recessed region, 156 201223577 The non-recessed region at least partially defines the heat transfer portion, and the heat transfer portion is non-circular at a longitudinal segment along the length. 151. The cryotherapy device of embodiment 150, wherein the application balloon is substantially cylindrical in shape in the deployed state. 1 52. The cryotherapy treatment of embodiment 140, wherein: the cooling assembly has a length, the application balloon having a plurality of protrusions and a non-protruding region surrounding the plurality of protrusions in the deployed state a shape, the plurality of protrusions at least partially defining the heat transfer portion; and the heat transfer portion is non-circular at a longitudinal segment along the length. 153. The cryotherapy device of embodiment 140, wherein: the cooling assembly has a length and an elongated support member along at least a portion of the length, wherein the application balloon comprises a non-circular connection portion The non-circular portion of the support member is spaced apart from the support member in the deployed state, the non-circular portion at least partially defining the heat transfer portion, and the heat transfer portion of the sweat is non-circular at the longitudinal section of the length along the length . 1 54. The cryotherapy device of embodiment 1, wherein: the connecting portion is a first connecting portion, the non-circular portion is a first non-circular portion, and the applying balloon comprises a connecting to the supporting portion 1 1 thousand The second connecting portion of the dispensing balloon includes a second non-circular portion spaced apart from the supporting member by the 157 201223577 in the deployed state, and the first non-circumferential portion of the ΔH is between the first connecting portion, The second non-circular portion of the second β-hai is between the first connecting portion, and the knives and the second and the second non-opening and the circumferential portion of the F are cold-finished The circumferential portion and the second non-circumferential portion define the heat transfer portion. At least 15: 5. The cryotherapy device of embodiment I53, wherein the &quot;Hai application balloon is a first application. The balloon, the δ metajunction is a first connecting portion, and the non-circular portion is a first The non-circumferential portion, the applicator includes a second applicator balloon along the length of the spot, the first application balloon portion of the second applicator balloon includes a second non-circumferential portion and - the: the second The connecting portion is coupled to the support member, and the second non-circular portion is longitudinally spaced apart in the deployed state, and further, the first non-circumferential portion and the second non-circular heat transfer portion. π t4夂156. The cryotherapy device of embodiment 14 (), wherein: the cooling assembly has a length, the application balloon has a spiral concave portion and a spiral connection connection interval spacing connection Supportingly recesses 158 201223577 portion, the helical non-recessed portion at least partially defines the heat transfer portion and the heat transfer portion is non-circular at longitudinal segments along the length. 157. The cryotherapy device of embodiment 14 wherein: the application balloon is elongate and has a length, a proximal portion of the application balloon along one of the lengths, a middle portion of the application balloon, and a dispensing balloon. An end portion, and the applicator balloon is curved along the length such that the applicator balloon has a first wall portion having a generally concave curvature along the length and a substantially along the length in the deployed state a second wall portion having a non-concave curvature, the knife intermediate portion of the application balloon being configured to contact the renal artery substantially along the second wall portion and substantially not along the first wall portion in the deployed state and/or The renal orifice, the wall portion defining the heat transfer portion at least partially at the intermediate portion of the application balloon; and the heat transfer portion is non-circular in the longitudinal segment along the length. 158. The cryotherapy device of embodiment 157, wherein the first wall segment has a -th thickness - and wherein the second wall portion has a second thickness that is less than the first thickness. 159. The cryotherapy device of embodiment 14 wherein: the application balloon is elongate and has a length, and a portion of the elongated shaped cooling assembly includes at least a component along the length, 201223577 the molded component is in the delivery The state has a substantially linear configuration and has a curved configuration in the deployed state, and the dispensing balloon has a shape at least partially corresponding to the curved configuration in the deployed state. 160. The cryotherapy device of embodiment 159, wherein the application balloon is substantially helical in shape in the deployed state. 161. The cryotherapy device of embodiment 159, wherein the application balloon is substantially serpentine in shape in the deployed state. The cryotherapy device of embodiment 1 40, wherein: the cooling assembly has a length, the device includes an elongated molded member longitudinally movable relative to the shaft, the application balloon having a first length along the length a proximal portion of the balloon, a first portion of the first balloon, and a distal portion of the first balloon, the applicator including a second balloon proximal portion, a second balloon intermediate portion, and a second balloon distally along the length a second elongated balloon of the end portion, *&gt; a distal end portion of the first balloon and a distal portion of the second balloon are coupled to the molded part to allow the first balloon to be retracted relative to the axis The two balloons are bent along the length, and the intermediate portion of the first balloon and the intermediate portion of the first balloon are laterally moved away from the molding member, and the first balloon intermediate portion has a first outer side, and the first outer side is in the deployed state. The lower portion has a substantially non-concave curvature along the length, the second balloon intermediate portion has a second outer side, and the second outer side is

S 160 201223577 該部署狀態下沿該長度具有一大體上非凹曲率, 該第一外側及該第二外側至少部萬 刀地疋義該熱傳遞部 分,且 該熱傳遞部分在沿該長度之縱向片 乃奴處為非圓周的。 263. -種用於治療-患者之方法,該方法包含: 在血管内將-低溫治療裝置之一冷卻總成之一施藥号 定位於鄰近腎動脈或腎小口之治療部位處,其中該施藥器 處於一細長軸之一遠端部分處; 藉由在該冷卻系統内將液體致冷劑轉變成氣態致冷劑 而經由該施藥器之一熱傳遞部分冷卻該治療部位之一縱向 片段之至少一個非圓周部分,且從而產生治療上有效之低 溫腎神經調節;及 使一閉塞部件在該腎動脈及/或腎小口中之一閉塞部位 處膨脹以減少通過該治療部位之血流,其中該治療部位遠 離該閉塞部位。 164. 如實施例163之方法,其中使該閉塞部件膨脹包 括使該閉塞部件之一閉塞氣球填充氣態致冷劑。 165. 如實施例163之方法,其中使該閉塞部件膨脹包 括使該閉塞部件之一閉塞氣球被動填充氣態致冷劑。 1 66·如實施例丨63之方法,其中使該閉塞部件膨脹包 括經由沿該軸之至少一部分之一填充内腔向該閉塞部件之 一閉塞腔中引入填充材料。 167·如實施例163之方法,其中使該閉塞部件膨脹包 括使該閉塞部件自一收縮狀態膨脹至一膨脹狀態,該閉塞 .¾ 161 201223577 4件在忒%脹狀態下具有約4 與約1 〇爪爪之間的一直 徑。 1 6 8.如貫施例163之方法,其中該閉塞部件包括一順 應杜乱球且使該閉塞部件膨脹包括使該順應性氣球膨服至 大體上符合該腎動脈或腎小口之一内壁。 169·如實施例163之方法,其中該非圓周部分為一第 非圓周邛分且§亥方法進—步包含將該熱傳遞部分重新定 位以冷卻該治療部位之—縱向片段之一第二非圓周部分, 且從而產生治療上有效之低溫腎神經調節。 广.如實施例163之方法,其中該施藥器具有一遞送 狀匕、及彳署狀態以及經組態以在該部署狀態下並不完全 閉塞該腎動脈及/或腎小口之橫截面尺寸。 m.如實施例163之方法,其中使該閉塞部件膨服係 在冷卻該至少一個非圓周部分之前進行。 1 72. 一種低溫治療裝置,其包含: 離以IS 一遠端部分及一近端部分之細長軸’該軸經組 “在贏管内將該遠端部分定位於鄰近腎動脈或腎小口之 …療。P位處’②近端部分經組態以處於血管結構外; 一處於該軸之該遠端部分處之低温冷卻總成; 一沿該軸之至少一部分之具有一第一部分及—第二 分之主要供應内腔,其中該主要供應内腔之該第 近該低溫冷卻總成;及 刀 一經組態以處於該灰管結構外之預冷卻總成 卻總成包括-預冷卻供應内腔及—預冷卻膨脹腔 162 201223577 部膨服腔與該預冷卻供應内腔流體連通以使得來自該預冷 部供應内腔之液體致冷劑在該預冷卻膨脹腔中膨脹,且該 主要供應内腔之該第一部分延伸通過該預冷卻膨脹腔。 P3·—種低溫治療裝置,其包含: 具有一遠端部分及一近端部分之細長軸,該軸經組 匕以在血官内將該遠端部分定位於鄰近賢動脈或腎小口之 治療部位處; 一處於該遠端部分處之冷卻總成; 一沿该軸之至少一部分之主要供應内腔,該主要供應 内腔經組悲以接收液體致冷劑;及 一圍繞該主要供應内腔之一部分且處於血管結構外的 預冷郃總成,該預冷卻總成包括一預冷卻供應内腔、一經 組態以接收來自該預冷卻供應内腔之致冷劑的細長預冷卻 月二及排出口,該預冷卻腔具有一大於約1〇 cm之長度,其 中忒主要供應内腔之一近端部分延伸通過該預冷卻腔。 1 74.如實施例丨73之低溫治療裝置,其進一步包含一 沿3亥軸之至少一部分之排出通道,其中該排出口流體連接 於該排出通道。 175.如實施例174之低溫治療裝置,其進—步包含一 誕於s亥預冷卻總成與該軸之間的交又處的樞紐,該排出通 道具有一通過該枢紐之大體上筆直之排出流動路徑,其中 該長度不與該排出流動路徑對準。 1 76.如實施例1 73之低溫治療裝置,其進—步包含一 經組態以將該主要供應内腔及該預冷卻供應内腔連接於一 163 201223577 液體致冷劑源之配接器。 1 77.如實施例1 76之低溫治療裝置,其進一步包含一 具有一管形近端部分及一管形遠端部分之管形部件,該管 形近端部分包括該預冷卻供應内腔,且該管形遠端部分包 括該預冷卻腔,其中: 該配接器包括一處於該管形部件内的處於該管形近端 部分與該管形遠端部分之間的插塞, 該主要供應内腔及該預冷卻供應内腔延伸通過該插 塞, 該主要供應内腔具有一處於該管形近端部分内之開 D , 該預冷卻供應内腔具有一處於該管形近端部分内之開 口,且 該管形近端部分經組態以連接於該液體致冷劑源。 1 78·如實施例1 73之低溫治療裝置,其中該長度為約 2〇 cm 至約 3〇 cm。 179·如實施例173之低溫治療裝置,其中該預冷卻腔 中之該主要供應内腔之該部分之至少一個區段為至少部分 蛇形的。 180. 如實施例173之低溫治療裝置,其進一步包含一 處於該近端部分之手柄,其中該預冷卻總成之至少一部分 處於該手柄内。 181. 如實施例173之低溫治療裝置,其中該排出口包 括一閥。S 160 201223577 has a substantially non-concave curvature along the length in the deployed state, the first outer side and the second outer side at least partially singulating the heat transfer portion, and the heat transfer portion is in a longitudinal direction along the length The film is a non-circular. 263. A method for treating a patient, the method comprising: positioning a treatment number of a cooling assembly of a cryotherapy device in a blood vessel at a treatment site adjacent to a renal artery or a renal orifice, wherein the application The drug holder is at a distal end portion of an elongated shaft; the longitudinal portion of the treatment site is cooled via a heat transfer portion of the applicator by converting the liquid refrigerant into a gaseous refrigerant in the cooling system At least one non-circumferential portion, and thereby producing a therapeutically effective low temperature renal neuromodulation; and expanding an occlusive component at one of the renal artery and/or the renal ostia to reduce blood flow through the treatment site, Wherein the treatment site is remote from the occlusion site. 164. The method of embodiment 163, wherein expanding the occluding member comprises occluding one of the occluding members with a balloon filled with a gaseous refrigerant. 165. The method of embodiment 163, wherein expanding the occluding component comprises passively filling one of the occluding members with a balloon to passively fill the gaseous refrigerant. The method of embodiment 63, wherein expanding the occluding member comprises introducing a filling material into an occluding cavity of the occluding member via filling the lumen along one of at least a portion of the shaft. 167. The method of embodiment 163, wherein expanding the occluding member comprises expanding the occluding member from a contracted state to an expanded state, the occlusion having a condition of about 4 and about 1 in a swelled state. A diameter between the claws. The method of embodiment 163, wherein the occluding component comprises a compliant balloon and expanding the occluding component comprises expanding the compliant balloon to substantially conform to an inner wall of the renal artery or renal ostium. 169. The method of embodiment 163, wherein the non-circular portion is a non-circumferential enthalpy and the step further comprises repositioning the heat transfer portion to cool the treatment site - one of the longitudinal segments and the second non-circumferential In part, and thereby producing a therapeutically effective hypotensive renal neuromodulation. The method of embodiment 163, wherein the applicator has a delivery condition, a deployed condition, and a cross-sectional dimension configured to not completely occlude the renal artery and/or renal ostium in the deployed state. The method of embodiment 163, wherein the occluding the occluding component is performed prior to cooling the at least one non-circular portion. 1 72. A cryotherapy device comprising: an elongated shaft that is separated from an IS distal end portion and a proximal end portion, the shaft group "positioning the distal portion within the winning tube adjacent to the renal artery or the renal sac... Treatment. The proximal portion of the '2 position is configured to be outside the vascular structure; a cryogenic cooling assembly at the distal end portion of the shaft; a first portion along the at least a portion of the shaft The second is mainly supplied to the inner cavity, wherein the primary supply of the inner cavity is close to the cryogenic cooling assembly; and the pre-cooling assembly of the knife once configured to be outside the gray pipe structure comprises a pre-cooling supply a chamber and a pre-cooling expansion chamber 162 201223577 The expansion chamber is in fluid communication with the pre-cooling supply chamber such that liquid refrigerant from the pre-cooling portion supply chamber expands in the pre-cooling expansion chamber, and the main supply The first portion of the lumen extends through the pre-cooling expansion chamber. P3 - a hypothermia treatment device comprising: an elongated shaft having a distal portion and a proximal portion, the shaft being configured to be within the blood The distal part is positioned a treatment site adjacent to the spleen artery or the renal ostium; a cooling assembly at the distal portion; a main supply lumen along at least a portion of the shaft, the main supply lumen being sorrowful to receive liquid cryogen And a pre-cooling cartridge assembly surrounding the main supply chamber and outside the vascular structure, the pre-cooling assembly including a pre-cooling supply lumen, configured to receive the pre-cooling supply lumen An elongated pre-cooling month of the refrigerant and a discharge port having a length greater than about 1 〇cm, wherein a proximal end portion of the 供应 main supply lumen extends through the pre-cooling chamber. 1 74. As an example The cryotherapy device of 丨73, further comprising a discharge passage along at least a portion of the 3D axis, wherein the discharge port is fluidly connected to the discharge passage. 175. The cryotherapy device of Embodiment 174, wherein the step further comprises a a hub that is located at the intersection between the pre-cooling assembly and the shaft, the discharge passage having a substantially straight discharge flow path through the hub, wherein the length is not associated with the discharge flow Path alignment. 1 76. The cryotherapy device of embodiment 1 73, wherein the step further comprises configuring the main supply lumen and the pre-cooling supply lumen to be connected to a 163 201223577 liquid cryogen source 77. The cryotherapy device of embodiment 1 76, further comprising a tubular member having a tubular proximal portion and a tubular distal portion, the tubular proximal portion including the pre-cooling Supplying a lumen, and the tubular distal portion includes the pre-cooling chamber, wherein: the adapter includes a plug in the tubular member between the tubular proximal portion and the tubular distal portion a plug, the primary supply lumen and the pre-cooling supply lumen extending through the plug, the primary supply lumen having an opening D in the tubular proximal portion, the pre-cooling supply lumen having a tube in the tube An opening in the proximal portion is shaped and the tubular proximal portion is configured to be coupled to the source of liquid cryogen. 1 78. The cryotherapy device of embodiment 1, wherein the length is from about 2 〇 cm to about 3 〇 cm. 179. The cryotherapy device of embodiment 173, wherein at least one section of the portion of the pre-cooling chamber that is primarily supplied to the lumen is at least partially serpentine. 180. The cryotherapy device of embodiment 173, further comprising a handle at the proximal portion, wherein at least a portion of the pre-cooling assembly is within the handle. 181. The cryotherapy device of embodiment 173, wherein the discharge port comprises a valve.

S 164 201223577 182.如實施例181之低溫治療裝置,其中該預冷卻腔 大體上與該排出通道流體分離。 1 83· 一種低溫治療裝置,其包含: 八有~逆端部分及一近端部分之細長輪,該軸經組 態以在血·管内將該遠端部分定位於鄰近腎動脈或腎小口之 治療部位處並將該近端部分定位於血管結構外; 一處於該遠端部分處之冷卻總成; 一沿該軸之至少一部分之主要供應内腔,該主要供應 内腔經組態以接收液體致冷劑; 一沿該軸之至少一部分之排出通道,該排出通道經組 態以輸送來自該冷卻總成之氣態致冷劑;及 —處於該主要供應内腔之一近端部分處且處於該血管 結構外之預冷卻總成,該預冷卻總成包括一預冷卻腔、一 處於該預冷卻腔室之一近端部分中的歧管及一遠離該歧管 之預冷卻排出裝置,其令該歧管具有一耦接於該主要供應 内腔之主要通道及一由該主要通道徑向向外之周邊通道, 且其中該預冷卻總成經組態以使來自該預冷卻供應内腔之 液體致冷劑膨脹以冷卻該預冷卻腔。 184. —種低溫治療裝置,其包含: 一具有一遠端部分及一近端部分之細長軸,該軸經組 態以在血管内將該遠端部分定位於鄰近腎動脈或腎小口之 治療部位處,該近端部分經組態以處於血管結構外; —處於該軸之該遠端部分處之低溫冷卻總成; —沿該軸之至少一部分之具有/第一部分及一第二部 165 201223577 分之主要供應内腔,其中該主要供應内腔之該第二部分鄰 近該低溫冷卻總成;及 一預冷卻器,其具有一經組態以接收一液體致冷劑流 之容器、一處於該容器中之分流器、一沿該分流器之一周 邊之預冷卻通道,及一處於該容器中的具有一由該分流器 所定義.之近端部分之預冷卻膨脹腔,其中該分流器具有一 連接於該主要供應内腔之該第一部分的主要通道以使得一 部分液體致冷劑通過該主要通道向該主要供應内腔流動且 另一部分液體致冷劑通過該預冷卻通道流入該預冷卻膨脹 腔中。 185. 内腔包括 186. 一内表面 187. 定義該主 有一定義 188. 定義該主 有一外表 於該主要 預冷卻腔 一部分。 一處於該預冷卻供應内腔内之開口。 如實施例1 84之低溫治療裝置,其中該容器具有 且該主要供應内腔不固定於該内表面。 如實施例184之低溫治療裝置,其進一步包含一 要供應内腔之主要供應導管,該主要供應導管具 該周邊通道之至少一部分的外表面。 如實施例1 84之低溫治療裝置,其進一步包含一 I供應内腔之Μ供應導f ’該主要供應導管且 ^,其中該腔室具有一内表面’且該分流器固定 供應導管的該外表面介於該預冷卻供應内腔與該 之間,且其中該分流器定義該預冷卻通道之至少 其中該主要供應 189‘如實施例1 84之低溫治療裝置 166 201223577 導管具有一處於該預冷卻腔内之平均外徑,且其中該分流 器為該主要供應導管之外徑大於該平均外徑之一部分。 190. 如實施例184之低溫治療裝置’其中該容器具有 一内表面,且該預冷卻通道包括—處於該分流器與該内表 面之間的彎曲間隙。 191. 如實施例184之低溫治療裝置,其中該容器具有 一内表面,且該預冷卻通道包括一處於該分流器與該内表 面之間的環形間隙。 192. —種用於治療一患者之方法,該方法包含: 在血管内將一低溫治療裝置之一冷卻總成之一施藥器 定位於鄰近腎動脈或腎小口之治療部位處,其中該施藥器 處於一細長軸之一遠端部分處,該細長軸包括處於血管結 構外之一近端部分; 使液體致冷劑通過沿該轴之至少一部分的一主要供靡 内腔; 在該主要供應内腔之一預冷卻部分内預冷卻液體致冷 劑,該預冷卻部分處於該血管結構外之一預冷卻總成之一 預冷卻腔内,其中在該預冷卻部分内預冷卻液體致冷劑包 括使液體致冷劑自一孔口膨脹至該預冷卻腔中,該孔口接 收來自該預冷卻總成之一預冷卻供應内腔的液體致冷劑; 及 使液體致冷劑在該冷卻總成内膨脹成氣態致冷劑。 1 9 3 · —種用於治療一患者之方法,該方法包含: 在金管内將一低溫治療裝置之一冷卻總成之一施藥器 167 201223577 定位於鄰近腎動脈或腎小口之治療部位處,其中該施藥器 處於一細長軸之—遠端部分處,該細長軸包括處於血管結 構外之一近端部分; 使液體致冷劑通過沿該轴之至少一部分的一主要供應 内腔; 在6亥主要供應内腔之一預冷卻部分内預冷卻液體致冷 劑,δ亥預冷卻部分處於該丘管結構外之一預冷卻總成之一 細長預冷卻腔内,其中在該預冷卻部分内預冷卻液體致冷 劑包括使液體致冷劑自經組態以接收來自該預冷卻總成之 一預冷卻供應内腔之液體致冷劑的一孔口膨脹至該預冷卻 腔中並沿該預冷卻腔之大於約10 cm之一長度輸送氣態致 冷劑;及 使液體致冷劑在該冷卻總成内膨脹成氣態致冷劑。 1 94_如實施例丨93之方法,其中該冷卻總成包括一排 出口,且輸送軋態致冷劑包括自該孔口向該排出口輸送氣 態致冷劑。 195. 如實施例193之方法,該方法進一步包含自該冷 卻總成通過沿該軸之至少一部分之一排出通道排出氣態致 冷劑’其中s亥排出口流體連接於該排出通道。 196. 如實施例193之方法,其中該排出口包括一閥, 且該方法進一步包含關閉或打開該閥以控制該預冷卻腔内 之氣態致冷劑之一壓力。 197. —種用於治療一患者之方法,該方法包含: 在血管内將一低溫治療裴置之一冷卻總成之一施藥器182. The cryotherapy device of embodiment 181, wherein the pre-cooling chamber is substantially fluidly separated from the venting channel. 1 83. A cryotherapy device comprising: an esculent end having a distal end portion and a proximal end portion, the shaft configured to position the distal end portion adjacent to the renal artery or the renal ostium in the blood vessel At the treatment site and positioning the proximal portion outside of the vascular structure; a cooling assembly at the distal portion; a primary supply lumen along at least a portion of the shaft, the primary supply lumen configured to receive a liquid refrigerant; a discharge passage along at least a portion of the shaft, the discharge passage configured to deliver a gaseous refrigerant from the cooling assembly; and - at a proximal portion of the main supply chamber and a pre-cooling assembly outside the vascular structure, the pre-cooling assembly including a pre-cooling chamber, a manifold in a proximal portion of the pre-cooling chamber, and a pre-cooling drain away from the manifold The manifold has a main passage coupled to the main supply chamber and a peripheral passage radially outward from the main passage, and wherein the pre-cooling assembly is configured to be from the pre-cooling supply Liquid in cavity The refrigerant expands to cool the pre-cooling chamber. 184. A cryotherapy device comprising: an elongated shaft having a distal portion and a proximal portion, the shaft configured to position the distal portion adjacent to a renal artery or a small renal orifice within a blood vessel a portion, the proximal portion configured to be outside the vascular structure; - a cryogenic cooling assembly at the distal portion of the shaft; - having a / first portion and a second portion 165 along at least a portion of the shaft 201223577 is mainly supplied to the inner cavity, wherein the second portion of the main supply inner cavity is adjacent to the cryogenic cooling assembly; and a pre-cooler having a container configured to receive a liquid refrigerant flow, a diverter in the container, a pre-cooling passage along a periphery of one of the diverters, and a pre-cooling expansion chamber in the container having a proximal portion defined by the diverter, wherein the shunt device a main passage connected to the first portion of the main supply chamber to allow a portion of the liquid refrigerant to flow through the main passage to the main supply chamber and another portion of the liquid refrigerant to pass therethrough Pre-cooling the cooling channels flows into the expansion chamber. 185. The inner chamber includes 186. an inner surface 187. defines the main body to have a definition 188. The main body is defined to have a surface that is part of the main pre-cooling chamber. An opening in the pre-cooling supply lumen. The cryotherapy device of embodiment 1, wherein the container has and the primary supply lumen is not fixed to the inner surface. The cryotherapy device of embodiment 184, further comprising a primary supply conduit to supply the lumen, the primary supply conduit having an outer surface of at least a portion of the peripheral passage. The cryotherapy device of embodiment 1 84, further comprising a supply of a lumen to the main supply conduit and wherein the chamber has an inner surface and the shunt secures the outer portion of the supply conduit The surface is interposed between the pre-cooling supply lumen and wherein the shunt defines at least the primary supply 189' of the pre-cooling passage, such as the cryotherapy device 166 201223577 of the embodiment 184. The conduit has a pre-cooling An average outer diameter within the cavity, and wherein the flow divider has an outer diameter of the primary supply conduit that is greater than a portion of the average outer diameter. 190. The cryotherapy device of embodiment 184 wherein the container has an inner surface and the pre-cooling channel comprises - a curved gap between the shunt and the inner surface. 191. The cryotherapy device of embodiment 184, wherein the container has an inner surface and the pre-cooling passage includes an annular gap between the flow divider and the inner surface. 192. A method for treating a patient, the method comprising: positioning an applicator of a cooling assembly of a cryotherapy device in a blood vessel at a treatment site adjacent to a renal artery or a renal orifice, wherein the application The drug holder is at a distal end portion of an elongated shaft including a proximal portion at an outer portion of the vascular structure; the liquid cryogen is passed through a primary supply lumen along at least a portion of the shaft; Providing a pre-cooling liquid refrigerant in a pre-cooling portion of the inner chamber, the pre-cooling portion being in a pre-cooling chamber of one of the pre-cooling assemblies outside the vascular structure, wherein the pre-cooling portion pre-cools the liquid to be cooled The agent includes expanding a liquid refrigerant from an orifice into the pre-cooling chamber, the orifice receiving a liquid refrigerant from a pre-cooling supply chamber of the pre-cooling assembly; and causing the liquid refrigerant to be The cooling assembly expands into a gaseous refrigerant. 1 9 3 · A method for treating a patient, the method comprising: positioning an applicator 167 201223577 of a cooling device of a cryotherapy device in a gold tube at a treatment site adjacent to the renal artery or the renal orifice Wherein the applicator is at a distal end portion of an elongate shaft, the elongate shaft comprising a proximal portion at an outer portion of the vascular structure; passing a liquid cryogen through a primary supply lumen along at least a portion of the shaft; Pre-cooling the liquid refrigerant in a pre-cooling portion of the main supply chamber of the 6th sea, wherein the pre-cooling portion is in an elongated pre-cooling chamber of one of the pre-cooling assemblies outside the dome structure, wherein the pre-cooling The partially pre-cooled liquid refrigerant includes expanding the liquid refrigerant into the pre-cooling chamber from an orifice configured to receive the liquid refrigerant from the pre-cooling supply inner chamber of the pre-cooling assembly and The gaseous refrigerant is delivered along a length of the pre-cooling chamber of greater than about 10 cm; and the liquid refrigerant is expanded into a gaseous refrigerant within the cooling assembly. The method of embodiment 93, wherein the cooling assembly comprises a row of outlets, and conveying the rolled refrigerant comprises delivering a gaseous refrigerant from the orifice to the discharge port. 195. The method of embodiment 193, the method further comprising discharging gaseous refrigerant from the cooling assembly through a discharge passage along at least a portion of the shaft, wherein the discharge outlet is fluidly coupled to the discharge passage. 196. The method of embodiment 193, wherein the discharge port comprises a valve, and the method further comprises closing or opening the valve to control a pressure of one of the gaseous refrigerants in the pre-cooling chamber. 197. A method for treating a patient, the method comprising: applying a cryotherapy device to one of the cooling assemblies in the blood vessel

S 168 201223577 定位於鄰近腎動脈或 處於一細長軸之一遠 構外之一近端部分; 腎小口之治療部位處,其中該施藥器 端部分處’該細長軸包括處於血管結 使液體致冷劑通過沿該軸 内腔; 之至少一部分之一主要供應 在該主要供應内胁夕—箱人欠 腔之預冷郃部分内預冷卻液體致冷 劑,該預冷卻部分處於該血管結構外之—預冷卻總成之— 細長預冷卻腔内’丨中在該預冷卻部分内預冷卻液體致冷 劑包括限制來自-組合供應内腔之液體致冷劑通過至少部 分由定義遠組合供應内腔之一組合供應導管之一内表面所 定義之一孔口流入該預冷卻腔; 通過4組合供應内腔向該孔口及該主要供應内腔供應 液體致冷劑;及 使液體致冷劑在該冷卻總成内膨脹成氣態致冷劑。 198. 如實施例丨97之方法,其中該主要供應内腔處於 具有一外表面之一主要供應導管内,且其中限制來自該組 口供應内腔之液體致冷劑通過該孔口流入該預冷卻腔中包 括限制該外表面與該内表面之間的流動。 199. 如實施例197之方法’其中該主要供應内腔處於 具有一外表面之一主要供應導管内,其中該預冷卻總成包 括固疋於該外表面的介於該組合供應内腔與該預冷卻腔 〜間的流動限制元件,且其中限制來自該組合供應内腔之 液體致冷劑通過該孔口流入該預冷卻腔中包括限制該流動 P艮制元件與該内表面之間的流動。 169 201223577 其包含:S 168 201223577 is located adjacent to the renal artery or at a proximal portion of one of the elongated shafts; at the treatment site of the renal orifice, wherein the applicator end portion includes the vascular junction causing liquid cooling The pre-cooling liquid refrigerant is pre-cooled in a pre-cooling portion of the primary supply chamber, the at least one of the at least one portion of the inner chamber; the pre-cooling portion is outside the vascular structure - pre-cooling assembly - pre-cooling the liquid refrigerant in the pre-cooling portion in the elongate pre-cooling chamber - including limiting the liquid refrigerant from the -combination supply chamber through at least a portion of the defined remote combination supply chamber One of the openings defined by the inner surface of one of the combined supply conduits flows into the pre-cooling chamber; the liquid refrigerant is supplied to the orifice and the main supply chamber through the combined supply chamber; and the liquid refrigerant is The cooling assembly expands into a gaseous refrigerant. 198. The method of embodiment 97, wherein the primary supply lumen is in a primary supply conduit having an outer surface, and wherein liquid refrigerant from the set of supply lumens is restricted from flowing into the preform through the orifice The cooling chamber includes a restriction between the outer surface and the inner surface. 199. The method of embodiment 197, wherein the primary supply lumen is in a primary supply conduit having an outer surface, wherein the pre-cooling assembly comprises an internal supply lumen between the outer surface and the outer surface Pre-cooling the flow restricting member between the chambers, and wherein restricting the flow of liquid refrigerant from the combined supply chamber into the pre-cooling chamber through the orifice includes restricting flow between the flow P-clamping member and the inner surface . 169 201223577 It contains:

態以接收液體致冷劑;及 200. —種低溫治療裝置,其自 一具有一遠端部分之細長輛,State to receive a liquid refrigerant; and 200. a cryotherapy device from an elongated vehicle having a distal portion,

與该孔口流體連通之熱傳遞部分, 战E括一札口及一施藥 下具有一圓周不均勻形 體連通,該氣球具有一 其中該熱傳遞部分在該 部署狀態下在該冷卻總成接收致冷劑時具有一足以產生治 療上有效之低溫腎神經調節的熱傳遞速率。 2〇 1 .—種低溫治療裝置,其包含: 一具有一遠端部分之細長軸,該軸經組態以在血管内 將該遠端部分定位於鄰近腎動脈或腎小口之治療部位處. 一沿該軸之至少一部分之供應内腔,該供應内腔經組 態以接收液體致冷劑;及 一處於該遠端部分處之冷卻總成,該冷卻總成具有一 遞送狀態及一部署狀態,該冷卻總成包括—孔口及一施藥 器,該施藥器包括一氣球,該氣球在該部署狀態下具有一 具有複數個凹入部分及/圍繞該複數個凹入部分 1々心并凹入 區域之形狀,該孔口與該供應内腔流體連通,該氣球具有 一與該孔口流體連通之熱傳遞部分,該非凹入區域至少部 分地定義該熱傳遞部分’其中該熱傳遞部分在該部署狀熊 170 201223577 y在卻總成接收致冷劑時具有一足以產生治療上有效 之低溫腎神經調節的熱傳遞速率。 202.如實施例2〇1之低溫治療裝置,其中該複數個凹 入部分在該施藥器上具有一圓周不均勻分佈。 203·如實施例201之低溫治療裝置,其中該氣球之該 形狀大體上為圓柱形。 ,2〇4·如實施例201之低溫治療裝置,其中該氣球之該 形狀:體上為具有一縱向軸線之管形,且其中該氣球之該 形狀定義—沿該縱向軸線之血流路徑之至少一部分。 2_05.如實施例201之低溫治療裝置,其中該冷卻總成 具有長度,且其中該熱傳遞部分在沿該冷卻總成之該長 度之縱向片段處為非圓周的。 2 6. 種低溫治療裝置’其包含: 土具有一遠端部分之細長軸,該軸經組態以在血管内 將該^端部分定位於鄰近腎動脈或腎小口之治療部位處; 一沿該軸之至少一部分之供應内腔,該供應内腔經組 態以接收液體致冷劑;及 一處於該遠端部分處之冷卻總成,該冷卻總成具有一 遞·、. ^及°卩署狀態,該冷卻總成包括一孔口及一施藥 器 藥器包括—氣球,該氣球在該部署狀態下具有具· 有複數個突起及一圍繞該複數個突起之非突起區域之形 狀“孔口與該供應内腔流體連通’該氣球具有-與該孔 / 、通之熱傳遞部分,該複數個突起至少部分地定義 名熱傳遞。p分’其中該熱傳遞部分在該部署狀態下在該冷 171 201223577 足以產生治療上有效之低温腎 卻總成接收致冷劑時具有 神經調節的熱傳遞速率。 /JUU. /〇 欺裝置,其中 起在該施藥器上具有一圓周不均勻分佈 2〇8•如實施例206之低、戸、、二由邮 低m /σ療裝置,其中該氣球之玄 形狀大體上為圓柱形。 貫施例2〇6之低溫治療裝置,其中該氣球之該 形狀大體上為具有一縱向轴線之管形,且其中該氣球之該 形狀定義-沿該縱向軸線之血流路經之至少一部分。 210.如實施例206之低溫治療裳置,其中該冷卻總成 具有-長度,且其中該熱傳遞部分在沿該冷卻總成之該長 度之縱向片段處為非圓周的。 2 1 1 ·—種低溫治療裝置,其包含: 具有一遂端部分之細長軸,該軸經組態以在血管内 將該:端部分定位於鄰近腎動脈或腎小口之治療部位處; ^ 〜5亥軸之至少一部分之供應内腔,該供應内腔經組 態以接收液體致冷劑;及 處於該遠端部分處之冷卻總成,該冷卻總成具有一 遞送狀態及一部署狀態,該冷卻總成包括一孔口及一施藥 器攻施藥器具有一螺旋狀氣球,該孔口與該供應内腔流 體連通忒螺旋狀氣球具有一與該孔口流體連通之熱傳遞 刀其中該熱傳遞部分在該部署狀態下在該冷卻總成接 收致冷劑時具有一足以產生治療上有效之低溫腎神經調節 的熱傳遞速率。a heat transfer portion in fluid communication with the orifice, having a circumferentially non-uniform body communication under the application, the balloon having a heat transfer portion in the deployed state being received at the cooling assembly The cryogen has a rate of heat transfer sufficient to produce a therapeutically effective low temperature renal neuromodulation. 2. A cryotherapy device comprising: an elongated shaft having a distal portion configured to position the distal portion within a vessel adjacent to a treatment site adjacent to a renal artery or a renal orifice. a supply chamber along at least a portion of the shaft, the supply chamber configured to receive a liquid cryogen; and a cooling assembly at the distal portion, the cooling assembly having a delivery state and a deployment In the state, the cooling assembly includes an orifice and an applicator, the applicator including a balloon having a plurality of concave portions and/or surrounding the plurality of concave portions in the deployed state. The heart is recessed into the shape of a region, the orifice being in fluid communication with the supply lumen, the balloon having a heat transfer portion in fluid communication with the orifice, the non-recessed region at least partially defining the heat transfer portion 'where the heat The delivery portion has a heat transfer rate sufficient to produce a therapeutically effective hypothermia renal neuromodulation when the assembly receives the cryogen at the deployment bear 170 201223577 y. 202. The cryotherapy device of embodiment 2, wherein the plurality of concave portions have a circumferentially uneven distribution on the applicator. 203. The cryotherapy device of embodiment 201, wherein the shape of the balloon is substantially cylindrical. 2. The cryotherapy device of embodiment 201, wherein the shape of the balloon is a tubular shape having a longitudinal axis, and wherein the shape of the balloon defines a blood flow path along the longitudinal axis At least part. The cryotherapy device of embodiment 201, wherein the cooling assembly has a length, and wherein the heat transfer portion is non-circular at a longitudinal segment along the length of the cooling assembly. 2 6. A cryotherapy device comprising: an elongated shaft having a distal portion, the shaft configured to position the end portion in a blood vessel adjacent to a treatment site adjacent to the renal artery or the renal orifice; At least a portion of the shaft is supplied to the inner chamber, the supply chamber is configured to receive a liquid refrigerant; and a cooling assembly at the distal end portion, the cooling assembly having a transfer ·, . In the state of the deployment, the cooling assembly includes an orifice and an applicator comprising a balloon, the balloon having a shape having a plurality of protrusions and a non-protruding region surrounding the plurality of protrusions in the deployed state "The orifice is in fluid communication with the supply lumen" the balloon has - and the heat transfer portion of the aperture, the plurality of protrusions at least partially defining the name heat transfer. p minutes 'where the heat transfer portion is in the deployed state The cold 171 201223577 is sufficient to produce a therapeutically effective low temperature kidney but the assembly has a neuromodulation heat transfer rate when receiving the refrigerant. /JUU. / 〇 装置 device, wherein the applicator has a circumference Evenly distributed 2 8) The low, 戸, and 由 由 m m m m m m 如 如 如 m m m m m m m m m m m m m m m m m m m m m m m 低温 低温 低温 低温 低温 低温 低温 低温 低温 低温The shape is generally tubular in shape having a longitudinal axis, and wherein the shape of the balloon defines at least a portion of the blood flow path along the longitudinal axis. 210. The cryotherapy treatment of embodiment 206, wherein the cooling The assembly has a length, and wherein the heat transfer portion is non-circular at a longitudinal segment along the length of the cooling assembly. 2 1 1 - a cryotherapy device comprising: an elongated portion having a distal end portion An axis configured to position the end portion in a blood vessel adjacent to a treatment site adjacent to the renal artery or the renal orifice; ^ at least a portion of the supply lumen of the ~5-axis axis, the supply lumen configured Receiving a liquid refrigerant; and a cooling assembly at the distal end portion, the cooling assembly having a delivery state and a deployed state, the cooling assembly including an orifice and an applicator tapping device having a spiral Balloon, the aperture and the Supplying a lumen fluid communication 忒 helical balloon having a heat transfer knife in fluid communication with the orifice, wherein the heat transfer portion has a therapeutically effective low temperature in the deployed state when the cooling assembly receives the refrigerant The rate of heat transfer in renal neuromodulation.

S 172 201223577 212.如實施例211 球具有一螺旋軸線且定 少一部分。 之低溫治療裝置, 義一沿該螺旋軸線 其中該螺旋狀氣 之血流路徑之至 2 1 3 如實施例2 11之低溫治療裝罟 “ ’其中該冷卻嫩志 具有一長度,且其中該熱傳遞部分在 仕該冷卻總成之該長 度之縱向片段處為非圓周的。 214.如實施例211之低溫治療裝置,其進一步包含一 沿該軸之至少一部分之排出通道,其中: 乂 I 3 該排出通道經組態以輸送氣態致冷劑 Π ; 於該供應内 該螺旋狀氣球具有一近端開口及一遠端開 該螺旋狀氣球在該遠端開口處流體連接 腔;且 道 該螺旋狀氣球在該近端開 口處流體連接於該排出通 215·如實施例211之低溫治療農置,其中該冷卻總成 包括-細長支樓部件,且其中該螺旋狀氣球包繞在該支樓 部件之至少一部分周圍。 216.如實施例215之低溫治療裝置’其中該支撐部件 包括該供應内腔之一部分。 217·如實施例211之低溫治療裝置,其中該冷卻總成 、有長度,其中s亥螺旋狀氣球包括一第一螺旋狀線圈及 一第二螺旋狀線圈,且其中該第—螺旋狀線圈與該第二螺 旋狀線圈沿該長度間隔開。 218· —種低溫治療裝置,其包含: 173 201223577 -具有-遠端部分之細長軸,該軸經組態以在血管内 將該退端部分定位於鄰近腎動脈或腎小口之治療部位處; /〇。亥軸之至少一部分之供應内腔,該供 態以接收液體致冷劑;及 /、’、豇!組 一處於該遠端部分處之冷卻總成, 遞送狀態及-部署狀態,該冷卻總成包括 二§:=括一在該部署狀態下具有—螺旋狀凹入部 刀及-螺旋狀非凹入部分之氣球,該孔口 體連通’該氣球具有一與該 U應内腔流 诂碑祕此- L /瓜體連通之熱傳遞部分, 該螺旋狀非凹入部分至少部分 ^ ^ A 刀地疋義该熱傳遞部分,苴中 該熱傳遞部分在該部署狀態 令 具有-足以產生治療上有…部總成接收致冷劑時 率。 療上有效之低溫腎神經調節的熱傳遞速 219.如實施例218之低溫 且有一具许η ^ 褒置其中該冷卻總成 :有卩度’且其中該熱傳遞部分在沿該冷卻總成之該長 度之縱向片段處為非圓周的。 22〇· 一種低溫治療裝置,其包含: -具有-遠端部分之細長軸,該軸經組態以在 將該遠端部分定位於鄰近腎叙 s内 … 於鄰近腎動脈或腎小口之治療部位處; 沿邊軸之至少一部分 %^ „ 之供應内腔,該供應内腔經組 L以接收液體致冷劑;及 遽一處於該遠端部分處之冷卻總成,該冷卻總成具有一 遞送狀態及一部署狀態,該冷 DO Λ ~部總成包括一孔口及一施藥 益,该施藥器包括一具有一長度、沿該長度之—氣球近端S 172 201223577 212. As in embodiment 211 the ball has a helix axis and is partially reduced. The cryotherapy device, Yiyi along the spiral axis, wherein the blood flow path of the spiral gas is 2 1 3 as in the low temperature treatment device of the embodiment 2 11 "where the cooling tender has a length, and wherein the heat transfer 214. The cryotherapy device of embodiment 211, further comprising a discharge channel along at least a portion of the axis, wherein: 乂I 3 The discharge passage is configured to deliver a gaseous refrigerant Π; the spiral balloon has a proximal opening and a distal end opening the helical balloon fluidly connecting the cavity at the distal opening; and the spiral is a balloon is fluidly coupled to the venting opening 215 at the proximal opening. The cryogenic treatment component of the embodiment 211, wherein the cooling assembly comprises an elongate branch member, and wherein the helical balloon is wrapped around the branch member 216. The cryotherapy device of embodiment 215 wherein the support member comprises a portion of the supply lumen. 217. The cryotherapy device of embodiment 211, wherein a cooling assembly having a length, wherein the s-helical balloon comprises a first helical coil and a second helical coil, and wherein the first helical coil and the second helical coil are spaced apart along the length. - A cryotherapy device comprising: 173 201223577 - an elongated shaft having a distal portion configured to position the retracted portion within a blood vessel adjacent to a treatment site of a renal artery or a renal orifice;至少. at least a portion of the inner axis of the supply axis, the supply state to receive the liquid refrigerant; and /, ', 豇! a cooling assembly at the distal end portion, delivery state and - deployment state, The cooling assembly includes two §: = a balloon having a helical concave knife and a helical non-recessed portion in the deployed state, the orifice body communicating 'the balloon having a lumen flow with the U The heat transfer portion of the L/gut body is connected, the spiral non-recessed portion at least partially dissipates the heat transfer portion, and the heat transfer portion has a sufficient amount in the deployment state Produce a treatment The rate at which the cryogen is received. The heat transfer rate of the therapeutically effective hypothermia renal neuromodulation 219. The low temperature as in Example 218 and having a η ^ 褒 where the cooling assembly: has a twist 'and where the heat transfer The portion is non-circular at a longitudinal segment along the length of the cooling assembly. 22. A cryotherapy device comprising: - an elongated shaft having a distal portion that is configured to The end portion is positioned adjacent to the kidney s ... at a treatment site adjacent to the renal artery or the renal ostium; a supply lumen is provided along at least a portion of the side axis, the supply lumen, through the group L to receive the liquid cryogen; a cooling assembly at the distal end portion, the cooling assembly having a delivery state and a deployed state, the cold DO assembly comprising an orifice and a drug benefit, the applicator comprising a Has a length along the length - the proximal end of the balloon

S 174 201223577 4为、一氣球中間部分及一氣球遠端部分之細長氣球,該 乱球沿該長度彎曲以使得該氣球在該部署狀態下具有一沿 該長度具有一大體上凹曲率的第一壁部分及一沿該長度具 有一大體上非凹曲率的第二壁部分,其中該氣球中間部分 經組態以在該部署狀態下大體上沿該第二壁部分且大體上 不沿該第一壁部分接觸該腎動脈及/或腎小口,該氣球具有 與該孔口流體連通之熱傳遞部分,其中該氣球中間部分 處之该第二壁部分至少部分地定義該熱傳遞部分,且其中 戎熱傳遞部分在該部署狀態下在該冷卻總成接收致冷劑時 具有一足以產生治療上有效之低溫腎神經調節的熱傳遞速 率。 2 2 1 ’如貫化例2 2 0之低溫治療裝置,其中該冷卻總成 具有一長度,且其中該熱傳遞部分在沿該冷卻總成之該長 度之縱向片段處為非圓周的。 222.如實施例220之低溫治療裝置,其中該氣球中間S 174 201223577 4 is an elongated balloon of a balloon intermediate portion and a balloon distal portion, the chaotic ball being curved along the length such that the balloon has a first, substantially concave curvature along the length in the deployed state a wall portion and a second wall portion having a substantially non-concave curvature along the length, wherein the balloon intermediate portion is configured to generally follow the second wall portion and substantially not along the first portion in the deployed state The wall portion contacts the renal artery and/or the renal orifice, the balloon having a heat transfer portion in fluid communication with the orifice, wherein the second wall portion at the intermediate portion of the balloon at least partially defines the heat transfer portion, and wherein The heat transfer portion has a heat transfer rate in the deployed state that is sufficient to produce a therapeutically effective hypothermia renal neuromodulation when the cooling assembly receives the cryogen. 2 2 1 'A cryotherapy device according to the embodiment 2, wherein the cooling assembly has a length, and wherein the heat transfer portion is non-circular at a longitudinal segment along the length of the cooling assembly. 222. The cryotherapy device of embodiment 220, wherein the balloon is in the middle

置,其中該氣球遠端 沿該第一壁部分且大 部分經組態以在該部署狀態下大體上 體上不沿該第二壁部分接觸該腎動脈及/或腎小口 224.如實施例223 之低溫治療裝置,其中該氣球遠端Positioned, wherein the distal end of the balloon is along the first wall portion and is configured to substantially non-contact the renal artery and/or renal orifice 224 along the second wall portion in the deployed state. As an embodiment 223 cryotherapy device, wherein the balloon is distal

175 201223577 部分經組態以在該部署狀態下大體上沿該第一壁部分且大 體上不沿該第二壁部分接觸該腎動脈及/或腎小口。 226.如實施例225之低溫治療裝置,其中該氣球近端 部分處之該第一壁部分至少部分地定義該熱傳遞部分。 ..2 2 7. —種低溫治療裝置,其包含: 一具有一遠端部分之細長軸’該軸經組態以在血管内 將該遠端部分定位於鄰近腎動脈或腎小口之治療部位處; 一沿該軸之至少一部分之供應内腔,該供應内腔經级 態以接收液體致冷劑;及 一處於該遠端部分處之冷卻總成,該冷卻總成具有/ 遞送狀態及一部署狀態,該冷卻總成包括一細長支撐部 件 孔口及一施藥器,該孔口與該供應内腔流體連通, 該施藥器具有一氣球’言亥氣球具有—可膨脹縱向部分及〆 受限制縱向部分,該受限制縱向部分連接於該支樓部件, 該可膨脹縱向部分在該部署狀態下與該支樓部件間隔開, 該氣球具有一與該孔口流體連通之熱傳遞部分,其中該町 膨脹縱向部分至少部分地定義該熱傳遞部&amp;,且其中該熱 ^遞部分在該部署狀態下在該冷卻總成接收致冷劑時具有 足以產生治療上有效之低溫腎神經調節的熱傳遞速率。 228.如實施例227之低溫治療裝置,其中該冷卻總成 ”有長度,且其中該熱傳遞部分在沿該冷卻總成之該長 度之縱向片段處為非圓周的。 且如實施例227之低溫治療裝置其中該冷卻總成 *度’且其中6亥梵限制縱向部分定義-沿該冷卻總The 175 201223577 portion is configured to contact the renal artery and/or the renal orifice substantially along the first wall portion and generally not along the second wall portion in the deployed state. 226. The cryotherapy device of embodiment 225, wherein the first wall portion at the proximal portion of the balloon at least partially defines the heat transfer portion. .. 2 2 7. A cryotherapy device comprising: an elongated shaft having a distal portion configured to position the distal portion within a vessel adjacent to a renal artery or a small renal orifice a supply chamber along at least a portion of the shaft, the supply chamber being leveled to receive liquid refrigerant; and a cooling assembly at the distal portion, the cooling assembly having/delivering state and In a deployed state, the cooling assembly includes an elongated support member aperture and an applicator in fluid communication with the supply lumen, the applicator having a balloon having a swellable longitudinal portion and a sputum a constrained longitudinal portion coupled to the branch member, the expandable longitudinal portion being spaced apart from the branch member in the deployed state, the balloon having a heat transfer portion in fluid communication with the aperture Wherein the expansion longitudinal portion of the town at least partially defines the heat transfer portion &amp; and wherein the thermal transfer portion is sufficient to produce therapeutically effective when the cooling assembly receives the refrigerant in the deployed state The rate of heat transfer in hypothermic renal neuromodulation. 228. The cryotherapy device of embodiment 227, wherein the cooling assembly" has a length, and wherein the heat transfer portion is non-circular at a longitudinal segment along the length of the cooling assembly. and as in Example 227 a cryotherapy device in which the cooling assembly is *degree' and wherein 6

176 S 201223577 成之該長度之血流路徑的至少—部八 23〇.如實施例227之低溫治療裝置, 包括該供應内腔之一部分。 其中該支撐部件 23〗.如實施例227之低溫治療裝置, 該冷卻總成具有一長度, ^ . 該受限制縱向部分為—第—受限制 該可膨脹縱向部分為一第一可膨脹縱二:, 分 該氣球包括-連接於該支撐 第° α刀’ 件之第二受限制縱向部 第 該氣球包括-在該部署狀態下與該支 可膨脹縱向部分, 牛間隔開之 該第-可膨脹縱向部分處於該第 該第二受限制縱向部分之間, -限制縱向部分與 及第—可膨脹縱向部分處於該 =二受限制縱向部分之間,且關於該分與 膨脹縱向部分徑向間隔開,且 可 1第-可膨脹縱㈣分及該第二可膨 部分地定義該熱傳遞部分。 卩刀至少 232.如實施例231之低溫治療裝置,其中該 制縱向邹分洛兮够/ 布欠限 刀及該第二受限制縱向部分沿該長度伸長。 23 3 · 一種低溫治療裝置,其包含: &quot; ^3 || 、有一遠端部分之細長軸’該軸經組態以在 將該遠端却八— 风官内 —、。卩分疋位於鄰近腎動脈或腎小口之治療部位處. 〜遠軸之至少一部分之供應内腔,該供應内腔料 、、Ί 177 201223577 態以接收液體致冷劑;及 一處於該遠端部分處之冷卻總成,該冷卻總成具有一 長度、-遞送狀態及一部署狀態,該冷卻總成包括一孔口 及-施藥n ’該施藥器包括沿該長度間隔開之一第一氣球 及一第二氣球,該孔口與該供應内腔流體連通,該第一氣 球具有一在該部署狀態下與該支撐部件間隔開之第一非圓 周部分,该第二氣球具有一在該部署狀態下與該支撐部件 間隔開之第二非圓周部分,纟中該施藥器具有一熱傳遞部 刀,違熱傳遞部分在該部署狀態下在該冷卻總成接收致冷 劑時具有-足以產生治療上有效之低溫腎神經調節的熱傳 遞速率其中該第一非圓周部分及該第二非圓周部分至 少部分地定義該熱傳遞部分。 如實施例233之低溫治療裝置,纟中該第一非圓 周部分定義該熱傳遞部分之-第-縱向區段,纟中該第二 非圓周部分定義該熱傳遞部分之一第二縱向區&amp;,且其中 該第一縱向區段及該第-锐 ^ 弟—縱向區段沿該長度間隔開且在垂 直於s玄長度之一平面中呈右丄Λ 卞”有—大體上完整之圓周投影。 叫·如實施例233之低溫治療裝置,其中該孔口為一 第一孔口且與該第一非圓 Π彳分流體連通,且其中該冷卻 總成包括一與該第二.非圓周 卩刀流體連通之第二孔口。 一種低溫治療裝置,其包含: 具有一遠端部分之細#心 ^ ^ Λ 灸軸,該軸經組態以在血管内 將。亥退、邹分定位於鄰近腎 一机 &gt; 動脈或腎小口之治療部位處; &amp;垓軸之至少一部分之 供應内腔’該供應内腔經組176 S 201223577 is at least a portion of the blood flow path of the length. The cryotherapy device of embodiment 227 includes a portion of the supply lumen. Wherein the support member 23. The cryotherapy device of Embodiment 227, the cooling assembly has a length, ^. The restricted longitudinal portion is - the first restricted, the expandable longitudinal portion is a first expandable longitudinal :, the balloon includes - a second restricted longitudinal portion connected to the support portion, the balloon includes - in the deployed state, the first portion of the expandable longitudinal portion The expanded longitudinal portion is between the second, second constrained longitudinal portion, the constraining longitudinal portion and the first expandable longitudinal portion being between the = two restricted longitudinal portions, and being radially spaced about the split longitudinal portion The heat transfer portion is defined by a first-expandable longitudinal (four) minute and the second expandable portion. The trowel is at least 232. The cryotherapy device of embodiment 231, wherein the longitudinally extending/deflecting knife and the second restricted longitudinal portion are elongated along the length. 23 3 · A cryotherapy device comprising: &quot; ^3 ||, an elongated shaft having a distal end portion, the shaft being configured to be in the distal end but within the interior of the wind. The iliac crest is located adjacent to the treatment site of the renal artery or the renal ostium. - at least a portion of the distal axis of the supply lumen, the supply of the lumen material, Ί 177 201223577 state to receive the liquid cryogen; and one at the distal end a portion of the cooling assembly, the cooling assembly having a length, a delivery state, and a deployed state, the cooling assembly including an orifice and - application n 'the applicator includes one of the intervals along the length a balloon and a second balloon, the orifice being in fluid communication with the supply lumen, the first balloon having a first non-circular portion spaced from the support member in the deployed state, the second balloon having an a second non-circular portion spaced apart from the support member in the deployed state, wherein the applicator has a heat transfer portion knife, and the heat transfer transfer portion has a state in the deployment state when the cooling assembly receives the refrigerant - A heat transfer rate sufficient to produce a therapeutically effective low temperature renal neuromodulation wherein the first non-circular portion and the second non-circumferential portion at least partially define the heat transfer portion. The cryotherapy device of embodiment 233, wherein the first non-circumferential portion defines a -first longitudinal section of the heat transfer portion, and wherein the second non-circumferential portion defines one of the heat transfer portions and a second longitudinal region & And wherein the first longitudinal section and the first-sharp-longitudinal section are spaced apart along the length and are right-handed in a plane perpendicular to the s-sinus length"--a substantially complete circumference The cryotherapy device of Embodiment 233, wherein the orifice is a first orifice and is in fluid communication with the first non-circular raft, and wherein the cooling assembly comprises a second and a second a second orifice in fluid communication with the circumferential file. A cryotherapy device comprising: a thin #心^^ 灸 moxibustion shaft having a distal portion configured to be placed within a blood vessel. Located at the treatment site adjacent to the renal artery&gt; arterial or renal ostium; &amp; at least a portion of the iliac shaft is supplied to the lumen&apos;

S 178 201223577 怨以接收液體致冷劑;及 一處於該遠端部分處之冷卻總成,該冷卻總成具有一 遞送狀態及一部署狀態’該冷卻總成包括一細長成塑部 件、一孔口及一施藥器,該施藥器包括一氣球,該成蛰部 件具有一形狀記憶、一在該遞送狀態下之第一組態及一在 该部署狀態下之第二組態,該氣球在該部署狀態下具有一 至少部分對應於該第二組態之形狀,該孔口與該供應内腔 流體連通,該氣球具有一與該孔口流體連通之熱傳遞部 分,其中該熱傳遞部分在該部署狀態下在該冷卻總成接收 致冷劑時具有一足以產生治療上有效之低溫腎神經調節的 熱傳遞速率。 237. 如貫施例236之低溫治療裝置,其中該第一組態 與該第二組態相比更細長。 238. 如實施合&quot;36之低溫治療裝置,其中該冷卻總成 具有-長度,且其中該熱傳遞部分在沿該冷卻總成之該長 度之縱向片段處為非圓周的。 2 3 9.如貫施例2 3 6之低消、、厶也壯 低/胤療裝置,其中該成型部件 包括錄鈦合金。 部署 24〇.如實施例236之低溫治 狀態下之該形狀大體上為螺 療裝置,其中該氣球在該 旋狀。 241. —種治療裝置,其包含: 該軸經組態以在血管内 及 一具有一遠端部分之細長軸 將该遠端部分定位於治療部位處 一處於該遠端部分處之治 療總成,該治療總成具有一S 178 201223577 complaining of receiving liquid refrigerant; and a cooling assembly at the distal end portion, the cooling assembly having a delivery state and a deployed state 'the cooling assembly comprising an elongated plastic part, a hole a mouthpiece and an applicator, the applicator comprising a balloon having a shape memory, a first configuration in the delivery state, and a second configuration in the deployed state, the balloon In the deployed state, having a shape at least partially corresponding to the second configuration, the orifice being in fluid communication with the supply lumen, the balloon having a heat transfer portion in fluid communication with the orifice, wherein the heat transfer portion In the deployed state, the cooling assembly has a heat transfer rate sufficient to produce a therapeutically effective low temperature renal neuromodulation when the cryogen is received. 237. The cryotherapy device of embodiment 236, wherein the first configuration is more elongated than the second configuration. 238. The cryotherapy device of claim 36, wherein the cooling assembly has a length, and wherein the heat transfer portion is non-circular at a longitudinal segment along the length of the cooling assembly. 2 3 9. If the embodiment 2 3 6 is low, the sputum is also strong/therapeutic device, wherein the molded part comprises a titanium alloy. The configuration is substantially a screw device in the low temperature treatment state of embodiment 236, wherein the balloon is in the shape of a spiral. 241. A therapeutic device comprising: the shaft configured to position the distal portion at a treatment site at a distal end portion of the distal end portion of the treatment assembly at the distal end portion The treatment assembly has a

179 201223577 遞送狀態及一部署狀態,該治療總成包括一細長成型部件 及氣球,忒成型部件具有一形狀記憶、一在該遞送狀態 下之第一組態及一在該部署狀態下之第二組態,其中該氣 球在《•亥。卩署狀態下具有一至少部分對應於該第二組態之形 狀。 242. —種低溫治療裝置,其包含: 具有一遠端部分之細,長軸,該軸經組態以在血管内 將-亥遠端部分定位於鄰近腎動脈或腎小口之治療部位處; /〇 °玄轴之至少—部分之供應内腔,該供應内腔經組 態以接收液體致冷劑; 〜°玄軸之至少一部分之成型部件内腔; 一處於該成型部件内腔之至少一部分内的細長成型部 件°玄成型部件可相對於該軸縱向移動;及 一處於該遠端部分處之冷卻總成,該冷卻總成具有一 度 《送狀態及一部署狀態,該冷卻總成包括一孔口 及-施藥ϋ,該施藥器包括一第一細長氣球及一第二細長 氣球,該第-氣球沿該長度具有一第—氣球近端部分、一 第:氣球中間部分及-第-氣球遠端部分,該第二細長氣 :“亥長度具有一第二氣球近端部分、一第二氣球中間部 为及一第二氣球遠端部分,㈣—氣球遠端部分及該第二 ^球通端部分連接於該成型部件以使得相對於該軸拉動該 2部件將使該第—氣球中間部分及該第二氣料間部分 向移動遠離該成型部件1第-氣球中間部分具有一在 该部署狀態下沿該長度具有-大體上非凹曲率之第一外179 201223577 The delivery state and a deployed state, the treatment assembly comprising an elongated molded part and a balloon, the molded part having a shape memory, a first configuration in the delivery state, and a second in the deployed state Configuration, where the balloon is in "Hai. In the state of the deployment, there is a shape at least partially corresponding to the second configuration. 242. A cryotherapy device comprising: a thin, long axis having a distal portion configured to position a distal portion of the vessel in a blood vessel adjacent a treatment site adjacent the renal artery or renal orifice; At least a portion of the supply of the inner cavity, the supply lumen being configured to receive a liquid cryogen; at least a portion of the inner cavity of the shaped component; at least a portion of the interior of the molded component a portion of the elongate shaped member is longitudinally movable relative to the shaft; and a cooling assembly at the distal portion, the cooling assembly having a one-degree "sending state" and a deployed state, the cooling assembly including An orifice and a dispensing device, the applicator comprising a first elongated balloon and a second elongated balloon, the first balloon having a first balloon front portion, a first balloon intermediate portion and - along the length a first balloon-shaped distal portion, the second elongated gas: "the length of the sea has a second balloon proximal portion, a second balloon intermediate portion and a second balloon distal portion, (4) - the balloon distal portion and the first Two ^ ball end part connection The molded component is such that pulling the two components relative to the shaft causes the first balloon intermediate portion and the second air material portion to move away from the first balloon intermediate portion of the molded component 1 to have a state in the deployed state The length has a first outer diameter that is substantially non-concave

S 180 201223577 : 側,戎第二氣球中間部分具有一在該部署狀態下沿該長度 一 具有一大體上非凹曲率之第二外側,其中該施藥器具有一 .熱傳遞部分,該熱傳遞部分在該部署狀態下在該冷卻總成 .接收致冷劑時具有一足以產生治療上有效之低溫腎神經調 節的熱傳遞速率,且其中該第一外側至少部分地定義該熱 傳遞部分。 243.如實施例242之低溫治療裝置,其中該熱傳遞部 分在沿該冷卻總成之該長度之縱向片段處為非圓周的。 244·如實施例242之低溫治療裝置,其中該第一氣球 沿該長度具有一優先彎曲位置,且其中相對於該軸拉動該 成型部件將使該第一氣球在該優先彎曲位置處沿該長度彎 曲0 2 4 5 ·如實施例2 4 4之低溫治療裴置,其中該優先彎曲 位置包括一折痕。 246·如實施例242之低溫治療裝置,其中該第一氣球 近端部分及該第二氣球近端部分連接於該軸。 247.如實施例242之低溫治療裝置,其進—步包含一 沿該軸之至少一部分之排出通道,其中·· &quot;玄排出通道經組態以輪送氣態致冷劑, 該第〜氣球具有一第一遠端開口及一第一近端開口, °亥第〜氣球具有一第二遠端開口及一第二近端開口, s亥第〜氣球在該第一遠端開口處流體連接於該供應内 腔, 该第二氣球在該第二遠端開口處流體連接於該供應内 181 201223577 腔, 處流體連接於該排出通 該第一氣球在該第一遠端開口 道,且 道 該第二氣球在該第二遠端開α 處流體連接於該排出通 8.如實施例242之低溫治療裝置,其進一步包含一 沿該軸之至少-部分之填充内腔,其中該填充内腔經組態 Ί玄第二氣球供應填充材料,其中該第一氣球流體連接 於礼應内腔’且其中該第一氣球與該第二氣球流體分離。 249·:種用於治療一患者之方法,該方法包含: 、在血Β内將-低溫治療裝置之一冷卻總成之一施藥器 定位於鄰近腎動脈或腎動脈小口之治 藥器處於-細長軸之一遠端部分處; 丄&quot; 一使該冷卻總成自一遞送狀態部署至一部署狀態,該施 樂器包括一在該部署狀態下具有-圓周不均勻形狀之氣 球’該氣球在該遞送狀態下至少部分收縮;及 _藉由在該冷㈣成㈣㈣致冷_變錢態致冷劑 而經由該氣球之一熱傳遞部分冷卻該治療部位之一部分且 從而產生治療上有效之低溫腎神經調節,該治療部位之該 部分在垂直於該腎動脈之一長度的大體上任何平面中大體 上為非圓周的。 2 5 0.種用於治療一患者之方法,該方法包含: 在血^内將低溫治療裝置之一冷卻總成之一施藥器. 定位於鄰近腎動脈或腎動脈小口之治療部位處,其中該施 182 201223577 樂器處於一細長轴之一遠端部分處; 使該冷卻總成自一遞送狀態部署至一部署狀態,該施 藥器包括一氣球’該氣球在該部署狀態下具有一具有複數 個凹入部分及一圍繞該複數個凹入部分之非凹入區域的形 狀’該氣球在該遞送狀態下至少部分收縮;及 藉由在該冷卻總成内使液體致冷劑轉變成氣態致冷劑 而經由該非凹入區域冷卻該治療部位之一部分,且從而產 生冶療上有效之低溫腎神經調節,該治療部位之該部分在 垂直於該腎動脈之一長度的大體上任何平面中大體上為非 圓周的。 2 5 1.如實施例2 5 0之方法,其中該形狀大體上為具有 一縱向軸線之管形’其中該形狀定義一沿該縱向軸線之血 流路徑之至少一部分’且其中該方法進一步包含當該施藥 器處於該部署狀態中時導引血液通過該血流路徑。 2 5 2. —種用於治療一患者之方法,該方法包含: 在血管内將一低溫治療裝置之一冷卻總成之一施藥器 定位於鄰近腎動脈或腎動脈小口之治療部位處,其中該施 藥器處於一細長軸之一遠端部分處; 使該冷卻總成自一遞送狀態部署至一部署狀態,該施 樂器包括一虱球’ δ玄氣球在该部署狀'態下具有一具有複數 個突起及一圍繞s玄複數個突起之非突起區域的形狀,該氣 球在該遞送狀態下至少部分收縮;及 藉由在該冷卻總成内使液體致冷劑轉變成氣態致冷劑 而經由該複數個大起冷卻該治療部位之一部分,且從而產 183 201223577 生治療上有效之低溫腎神經 _ ^ 门郎5玄治療部位之該部分在 垂直於談腎動脈之一長廑的夬 负没的大體上任何平面中大體上為非 圓周的。 253.如實施例252之方 ^ 其中该氣球之該形狀大體 上為具有一縱向軸線之管形,其 ^ 再中该氣球之該形狀定義一 沿該縱向軸線之血流路徑之 丨、 I夕—部分’且其中該方法進 一步包含在該冷卻總成處於該部 必°丨署狀態中時導引血液通過 該血流路徑。 254· 一種用於治療-患者之方法,該方法包含: 在i管内將一低溫治療袭置之-冷卻總成之-施藥号 定位於鄰近腎動脈或腎動脈小口 # &lt;燎4位處,其中該施 樂器處於該軸之一遠端部分處; 使該冷卻總成自一遞送肤能 “ 您圮狀態部署至一部署狀態,該施 樂器包括一螺旋狀氣球,該螺 * , ^、足狀氣球在这遞送狀態下至 少部分收縮;及 &amp; 藉由在該冷卻總成内將液體致冷劑轉變成氣態致冷劑 而經由該螺旋狀氣球之一熱傳遞部分冷卻該治療部位之一 。”刀且從而產生治療上有效之低溫腎神經調節,該治療部 位之該部分在垂直於該腎動脈之—長度的大體上任何平面 中大體上為非圓周的。 255.如實施例254之方法,其中該螺旋狀氣球具有一 中心軸線且定義一沿該中心軸線之血流路徑之至少—部 分’且其中該方法進-步包含在該冷卻總減於該部署狀 態中時導引血液通過該血流路徑。 184 201223577 256.如實施例254之方法,其中冷卻該治療部位之一 部分包括使氣態致冷劑自該螺旋狀氣球之一遠端部分向該 螺旋狀氣球之一近端部分流動。 2 57. —種用於治療一患者之方法,該方法包含: 在血管内將一低溫治療裝置之一冷卻總成之一施藥器 定位於鄰近腎動脈或腎動脈小口之治療部位處,其中該施 藥器處於一細長軸之一遠端部分處; 使該冷卻總成自一遞送狀態部署至一部署狀態,該施 藥器包括一氣球,該氣球在該部署狀態下具有一螺旋狀凹 入部分及一螺旋狀非凹入部分,該氣球在該遞送狀態下至 少部分收縮;及 藉由在該冷卻總成内使液體致冷劑轉變成氣態致冷劑 而經由該螺旋狀非凹入部分冷卻該治療部位之一部分,且 從而產‘生治療上有效之低溫腎神經調節,該治療部位之該 邛为在垂直於该腎動脈之一長度的大體上任何平面中大體 上為非圓周的。 258. —種用於治療一患者之方法,該方法包含: 在金言内將—低溫治療裝置之一冷卻總成之一施藥器 定位於鄰近腎動脈或腎動脈小口之治療部位處,其中該施 藥器處於一細長輛之一遠端部分處; 使該冷卻總成自一遞送狀態部署至一部署狀態,該施 藥益包括-細長氣球,肖氣球具有—長度、沿該長度之— 氣球近端分、—氣球中間部分及—氣球遠端部分,該氣 球沿該長度彎曲以使得該氣球在該部署狀態下具有一沿該 185 201223577 長度具有一大體上凹曲率的第一壁部分及—沿該長度具有 大體上非凹曲率的第二壁部分,該氣球中間部分經組態 以在該部署狀態下大體上沿該第二壁部分且大體上不沿該 第一壁部分接觸該腎動脈及/或腎小口,該氣球在該遞送狀 態下至少部分收縮;及 藉由在S玄冷卻總成内使液體致冷劑轉變成氣態致冷劑 而經由該氣球中間部分處之該第二壁部分冷卻該治療部位 之一部分,且從而產生治療上有效之低溫腎神經調節,該 /。療部位之該部分在垂直於該腎動脈之一長度的大體上任 何平面中大體上為非圓周的。 259. 如實施例258之方法,其中該治療部位之該部分 為該治療部位之第-部分,且該方法進—步包含經由該氣 夂达知。卩刀處之s玄第一壁部分冷卻該治療部位之一第二部 分,從而產生治療上有效之低溫腎神經調節,其中該治療 部位之該第二部分在垂直於該腎動脈之該長度的大體上任 何平面中大體上為非圓周的。 260. 如實施例259之方法,該方法進一步包含經由該 氣球近端部分處之該第一壁部分冷卻該治療部位之一第三 部分,從而產生治療上有效之低溫腎神經調節,其中該治 療部位之該第三部分在垂直於該腎動脈之該長度的大體上 任何平面中大體上為非圓周的。 26 1. -種用於治療_患者之方法,該方法包含: 在血S内將低溫治療裝置之一冷卻總成之一施藥器 定位於鄰近腎動脈或腎動脈小口之治療部位處,其中該施S 180 201223577: The side, the second balloon intermediate portion has a second outer side having a substantially non-concave curvature along the length in the deployed state, wherein the applicator has a heat transfer portion, the heat transfer portion In the deployed state, the cooling assembly receives a refrigerant having a heat transfer rate sufficient to produce a therapeutically effective low temperature renal neuromodulation, and wherein the first outer side at least partially defines the heat transfer portion. 243. The cryotherapy device of embodiment 242, wherein the heat transfer portion is non-circular at a longitudinal segment along the length of the cooling assembly. 244. The cryotherapy device of embodiment 242, wherein the first balloon has a preferentially curved position along the length, and wherein pulling the molded component relative to the axis causes the first balloon to follow the length at the preferentially curved position Bending 0 2 4 5 · The cryotherapy device of Example 4 4 4 wherein the preferential bending position comprises a crease. 246. The cryotherapy device of embodiment 242, wherein the first balloon proximal portion and the second balloon proximal portion are coupled to the shaft. 247. The cryotherapy device of embodiment 242, wherein the step further comprises a discharge passage along at least a portion of the shaft, wherein the &quot;&quot; Xuan discharge passage is configured to deliver a gaseous refrigerant, the first balloon Having a first distal opening and a first proximal opening, the balloon has a second distal opening and a second proximal opening, and the balloon is fluidly connected at the first distal opening In the supply chamber, the second balloon is fluidly connected to the supply port 181 201223577 cavity at the second distal opening, and the fluid is connected to the first balloon at the first distal opening channel. The second balloon is fluidly coupled to the discharge port at the second distal opening a. The cryotherapy device of embodiment 242 further comprising a filled lumen along at least a portion of the shaft, wherein the filling The cavity is configured to supply a fill material to the second balloon, wherein the first balloon is fluidly coupled to the ritual lumen and wherein the first balloon is fluidly separated from the second balloon. 249·: A method for treating a patient, the method comprising: positioning a drug applicator of a cooling assembly of a cryotherapy device in a blood vessel at a drug applicator adjacent to a renal artery or a small renal artery a distal end portion of one of the elongated shafts; 丄&quot; a deployment of the cooling assembly from a delivery state to a deployed state, the instrument comprising a balloon having a circumferentially uneven shape in the deployed state At least partially contracting in the delivery state; and - cooling a portion of the treatment site via a heat transfer portion of the balloon by the cold (four) to (four) (four) refrigeration-money-state refrigerant and thereby producing a therapeutically effective low temperature Renal neuromodulation, the portion of the treatment site being substantially non-circular in substantially any plane perpendicular to the length of one of the renal arteries. 205. A method for treating a patient, the method comprising: placing an applicator in a cooling assembly of a cryotherapy device in the blood; positioning the treatment site adjacent to the renal artery or the small opening of the renal artery, Wherein the 182 201223577 musical instrument is at a distal end portion of an elongated shaft; the cooling assembly is deployed from a delivery state to a deployed state, the applicator includes a balloon having a plurality of balloons in the deployed state a recessed portion and a shape surrounding the non-recessed region of the plurality of recessed portions' the balloon at least partially shrinks in the delivery state; and by converting the liquid refrigerant into a gaseous state within the cooling assembly Cooling agent cools a portion of the treatment site via the non-recessed region and thereby produces a therapeutically effective hypothermia renal neuromodulation, the portion of the treatment site being generally planar in substantially any plane perpendicular to one of the lengths of the renal artery The upper is non-circular. The method of embodiment 2, wherein the shape is substantially a tubular shape having a longitudinal axis 'where the shape defines at least a portion of a blood flow path along the longitudinal axis' and wherein the method further comprises Blood is directed through the blood flow path when the applicator is in the deployed state. 2 5 2. A method for treating a patient, the method comprising: positioning an applicator of a cooling assembly of a cryotherapy device in a blood vessel at a treatment site adjacent to a renal artery or a small orifice of a renal artery, Wherein the applicator is at a distal end portion of an elongated shaft; the cooling assembly is deployed from a delivery state to a deployed state, the instrument comprising a ball ' δ 玄 balloon having a state in the deployed state a shape having a plurality of protrusions and a non-protrusion region surrounding the plurality of protrusions, the balloon at least partially contracting in the delivery state; and converting the liquid refrigerant into a gaseous refrigerant by the cooling assembly And cooling the part of the treatment site through the plurality of large ones, and thereby producing the therapeutically effective low-temperature renal nerve _ 201223577 _ ^ This part of the treatment site of the lang xiaoxuan is perpendicular to the 廑 of one of the renal artery Negative is generally substantially non-circular in any plane. 253. The method of embodiment 252, wherein the shape of the balloon is substantially tubular in shape having a longitudinal axis, and wherein the shape of the balloon defines a blood flow path along the longitudinal axis, a portion 'and wherein the method further comprises directing blood through the blood flow path while the cooling assembly is in the state of the portion. 254. A method for treating a patient, the method comprising: positioning a hypothermia treatment-cooling assembly-application number in a tube adjacent to a renal artery or a renal artery small port # &lt;燎4 position Wherein the instrument is located at a distal end portion of the shaft; the cooling assembly is deployed from a delivery skin to a deployed state, the instrument comprising a spiral balloon, the screw*, ^, foot The balloon at least partially contracts in the delivery state; and &amp; cooling one of the treatment sites via one of the heat transfer portions of the helical balloon by converting the liquid cryogen into a gaseous refrigerant within the cooling assembly. The knife and thus the therapeutically effective hypothermia renal neuromodulation, the portion of the treatment site being substantially non-circular in substantially any plane perpendicular to the length of the renal artery. 255. The method of embodiment 254, wherein the helical balloon has a central axis and defines at least a portion of the blood flow path along the central axis and wherein the method is further included in the cooling total less than the deployment In the state, blood is guided through the blood flow path. The method of embodiment 254, wherein cooling one of the treatment sites comprises flowing a gaseous refrigerant from a distal end portion of the helical balloon to a proximal portion of the helical balloon. 2 57. A method for treating a patient, the method comprising: positioning an applicator of a cooling assembly of a cryotherapy device in a blood vessel at a treatment site adjacent to a renal artery or a small orifice of a renal artery, wherein The applicator is at a distal end portion of an elongated shaft; the cooling assembly is deployed from a delivery state to a deployed state, the applicator including a balloon having a helical recess in the deployed state And a helical non-recessed portion that at least partially contracts in the delivery state; and through the helical non-recessed by converting the liquid cryogen into a gaseous refrigerant within the cooling assembly Partially cooling a portion of the treatment site and thereby producing a therapeutically effective hypothermia renal neuromodulation, the tendon of the treatment site being substantially non-circular in substantially any plane perpendicular to one of the lengths of the renal artery . 258. A method for treating a patient, the method comprising: positioning an applicator of a cooling assembly of a cryotherapy device in a place of treatment at a treatment site adjacent to a renal artery or a small orifice of a renal artery, wherein The applicator is at a distal end portion of an elongated vehicle; the cooling assembly is deployed from a delivery state to a deployed state, the application benefit comprising - an elongated balloon having a length, along the length - a balloon a proximal end, a middle portion of the balloon, and a distal portion of the balloon, the balloon being curved along the length such that the balloon, in the deployed state, has a first wall portion having a generally concave curvature along the length of the 185 201223577 and a second wall portion having a substantially non-concave curvature along the length, the balloon intermediate portion being configured to contact the renal artery substantially along the second wall portion and substantially not along the first wall portion in the deployed state And/or a small renal mouth, the balloon at least partially contracting in the delivery state; and passing the middle portion of the balloon by converting the liquid refrigerant into a gaseous refrigerant in the S-cooling assembly The portion of the second wall portion of the cooling of the treatment site, and the low temperature resulting in an effective treatment for renal neuromodulation, the /. The portion of the treatment site is substantially non-circular in substantially any plane perpendicular to the length of one of the renal arteries. 259. The method of embodiment 258, wherein the portion of the treatment site is the first portion of the treatment site, and the method further comprises via the gas. The first wall portion of the scorpion portion cools a second portion of the treatment site to produce a therapeutically effective hypothermia renal neuromodulation, wherein the second portion of the treatment site is perpendicular to the length of the renal artery Generally substantially non-circular in any plane. 260. The method of embodiment 259, the method further comprising cooling a third portion of the treatment site via the first wall portion at the proximal portion of the balloon to produce a therapeutically effective hypotensive renal neuromodulation, wherein the treatment The third portion of the portion is substantially non-circular in substantially any plane perpendicular to the length of the renal artery. 26 1. A method for treating a patient, the method comprising: positioning an applicator of a cooling assembly of a cryotherapy device in a blood S at a treatment site adjacent to a renal artery or a small orifice of a renal artery, wherein The application

S 186 201223577 藥器處於一細長軸之一遠端部分處; 使該冷卻總成自一遞送狀態部署至一部署狀態,包括 使該施藥器之—氣球之—可膨脹縱向部分優先膨脹並使該 氣球之-受限制縱向部分大體上不膨脹,言亥氣球在該遞送 狀態下至少部分收縮;及 藉由在該冷卻總成内使液體致冷劑轉變成氣態致冷劑 而經由該可膨脹縱向部分冷卻該治療部位之一部分且從 而產生治療上有效之低溫腎神經調節,該治療部位之該部 分在垂直於該腎動脈之一長度的大體上任何平面中大體上 為非圓周的。 262. 如實施例261之方法,其中該受限制縱向部分定 義一沿該施藥器之一縱向軸線之血流路徑之至少一部分, 且其中該方法進一步包含在該冷卻總成處於該部署狀態中 時導引企液通過該血流路徑。 263. —種用於治療—患者之方法,該方法包含: 在血管内將一低溫治療裝置之一冷卻總成之一施藥器 定位於鄰近腎動脈或腎動脈小口之治療部位處,其中該施 藥器處於一細長軸之一遠端部分處; 使δ亥冷卻總成自一遞送狀態部署至一部署狀態,包括 縱向移動-細長成型部件、—限制外誠兩者以使該^型 部件自一第一組態變成-第二組態,Μ第二組態對應於該 成型部件之一形狀記憶,其中該施藥器包括一氣球,該^ 球在該部署狀態下具有—至少部分對應於該第二組態之形 狀’该氣球在該遞送狀態下至少部分收縮;及 187 201223577 藉由在該冷卻總成内將液體致冷劑轉變成氣態致冷劑 而經由該氣球之-熱傳遞部分冷卻該治療部位之_部分且 從而產生治療上有效之低溫腎神經 .刀 竹、土 °周卽,s亥治療部位之該 部分在垂直於該腎動脈之—長度 食度的大體上任何平面中大體 上為非圓周的。 264·如實施例263之方法,並中 八甲5亥第一組態與該第二 組態相比更細長。 265. -種用於治療—患者之方法,該方法包含: 將-治療總成在A管内定位於治療部位處,其中該治 療總成處於一細長軸之—遠端部分處; 使該治療總成自一遞送狀態部署至—部署狀態包括 縱向移動-細長成型部件、一限制外勒或兩者以使該成型 部件自一第一組態變成一第__ 弟一,,·且嘘,s亥第二組態對應於該 成型部件之一形狀記憶,其中該施藥器包括一氣球,該氣 球在該部署狀態下具有一至少部分對應於該第二組態之大 體上呈螺旋狀之形狀’言亥氣球在該遞送狀態下至少部分收 縮;及 用一治療部件治療該治療部位之一部分,該治療部件 在該部署狀態下沿該氣球之該大體上呈螺旋狀之形狀的一 中心軸線延伸。 2“·如實施例265之方法,其中當該治療總成處於該 部署狀態中時,通過該治療部位之血流並不完全閉塞。 267. -種用於治療―患者之方法,該方法包含: 在血管内將一低溫治療裝置之一冷卻總成之一施藥器 188 201223577 定位於鄰近腎動脈或腎動脈小口之治療部位處,其中該施 藥器處於一細長軸之一遠端部分處; 使該冷卻總成自一遞送狀態部署至一部署狀態,包括 相對於該軸縱向移動一成型部件,從而使該施藥器之一第 -細長氣球之-第-中間部分及該施藥器之一第二細長氣 球之一第二中間部分橫向移動遠離該成型部件,該第一氣 球中間部分具有—在該部署狀態下沿該長度具有—大體上 非凹曲率的第-外側’㈣二氣球中間部分具有一在該部 署狀態下沿該長度具有一大體上非凹曲率的第二外側,該 氣球在該遞送狀態下至少部分收縮,該第一氣球中間部分 處於一第一氣球近端部分與一第一氣球遠端部分之間,該 第二氣球中間#分處》一第2氣球近端冑分與—帛二氣球 遠端部分之間’該第一氣球及該第二氣球在該遞送狀態下 至少部分收縮;及 藉由在該冷卻總成内使液體致冷劑轉變成氣態致冷劑 而經由該第一外側冷卻該治療部位之一部分,且從而產生 治療上有效之低溫腎神經調節,該治療部位之該部分在垂 直於該腎動脈之一長度的大體上任何+面中大體上為非圓 周的。 268•如實施例267之方法,其中該治療部位之該部分 為該治療部位之一第一部分,且該方法進一步包含經由該 第二外側冷卻該治療部位之一第二部分’從而產生治療: 有效之低溫腎神經調節’其中該治療部位之該第二部分在 垂直於該腎動脈之該長度的大體上任何平面中大體上為非S 186 201223577 The drug dispenser is at a distal end portion of an elongated shaft; deploying the cooling assembly from a delivery state to a deployed state includes preferentially expanding the balloon-expandable longitudinal portion of the applicator The restricted longitudinal portion of the balloon does not substantially expand, the balloon is at least partially constricted in the delivery state; and the swellable is achieved by converting the liquid cryogen into a gaseous refrigerant within the cooling assembly The longitudinal portion cools a portion of the treatment site and thereby produces a therapeutically effective hypothermia renal neuromodulation, the portion of the treatment site being substantially non-circular in substantially any plane perpendicular to one of the lengths of the renal artery. 262. The method of embodiment 261, wherein the restricted longitudinal portion defines at least a portion of a blood flow path along a longitudinal axis of the applicator, and wherein the method further comprises the cooling assembly being in the deployed state When the liquid is guided through the blood flow path. 263. A method for treating a patient, the method comprising: positioning an applicator of a cooling assembly of a cryotherapy device within a blood vessel at a treatment site adjacent to a renal artery or a small orifice of a renal artery, wherein The applicator is at a distal end portion of an elongated shaft; deploying the delta cooling assembly from a delivery state to a deployed state, including longitudinal movement - an elongated molded component, - limiting externality to enable the component From a first configuration to a second configuration, the second configuration corresponds to one of the shaped parts of the shape memory, wherein the applicator comprises a balloon, the ball having at least partially corresponding in the deployed state In the shape of the second configuration 'the balloon at least partially contracts in the delivery state; and 187 201223577 via the balloon-heat transfer by converting the liquid refrigerant into a gaseous refrigerant within the cooling assembly Partially cooling the portion of the treatment site and thereby producing a therapeutically effective hypotensive renal nerve. The bamboo stalk, the soil circumference, and the portion of the s treatment site are substantially perpendicular to the length of the renal artery. Plane generally on a non-circumferential. 264. The method of embodiment 263, wherein the first configuration of the Bajia 5 Hai is slimmer than the second configuration. 265. A method for treating a patient, the method comprising: positioning a treatment assembly in a tube at a treatment site, wherein the treatment assembly is at a distal portion of an elongated shaft; Deploying from a delivery state to a deployed state includes a longitudinal movement - an elongated molded part, a restricted outer part or both to change the shaped part from a first configuration to a first one, and 嘘, s The second configuration corresponds to a shape memory of the molded part, wherein the applicator includes a balloon having, in the deployed state, a substantially helical shape at least partially corresponding to the second configuration The balloon is at least partially constricted in the delivery state; and a portion of the treatment site is treated with a treatment component that extends in the deployed state along a central axis of the generally helical shape of the balloon . 2. The method of embodiment 265, wherein the blood flow through the treatment site is not completely occluded when the treatment assembly is in the deployed state. 267. A method for treating a patient, the method comprising : one of the cryotherapy device cooling device applicators 188 201223577 is positioned in the blood vessel at a treatment site adjacent to the renal artery or the small opening of the renal artery, wherein the applicator is at a distal end portion of one of the elongated shafts Deploying the cooling assembly from a delivery state to a deployed state, comprising longitudinally moving a molded component relative to the shaft such that the first-elongated balloon-first intermediate portion of the applicator and the applicator A second intermediate portion of one of the second elongated balloons moves laterally away from the molded component, the first intermediate portion of the balloon having a first-outer (four) balloon having a substantially non-concave curvature along the length in the deployed state The intermediate portion has a second outer side having a substantially non-concave curvature along the length in the deployed state, the balloon being at least partially constricted in the delivery state, the first portion of the first balloon Between a first balloon proximal end portion and a first balloon distal end portion, the second balloon intermediate #分处" a second balloon proximal end split between the second balloon distal end portion The balloon and the second balloon at least partially contract in the delivery state; and cooling a portion of the treatment site via the first outer side by converting the liquid cryogen into a gaseous refrigerant within the cooling assembly, and thereby Producing a therapeutically effective hypothermia renal neuromodulation, the portion of the treatment site being substantially non-circular in substantially any + face perpendicular to the length of one of the renal arteries. 268. The method of embodiment 267, wherein The portion of the treatment site is a first portion of the treatment site, and the method further comprises cooling the second portion of the treatment site via the second lateral portion to produce a treatment: effective hypothermia renal neuromodulation, wherein the treatment site The second portion is substantially non-perpendicular in substantially any plane perpendicular to the length of the renal artery

189 201223577 圓周的.。 269.如實施例267之方法,該方法進一步包含經由沿 該軸之至少一部分之一填充内腔向該第二氣球供應填充材 料’其中冷卻該治療部位之該部分包括使氣態致冷劑經由 該第一氣球流動。 2 7 0. —種低溫治療裝置,其包含: 一具有一遠端部分之軸,其中該軸經組態以在血管内 將該遠端部分定位於至少鄰近腎動脈或腎小口之治療部位 處; 一處於該軸之該遠端部分處之冷卻總成,該冷卻總成 包括一膨脹腔,該膨脹腔具有一破裂壓力及一低於該破裂 壓力之臨限壓力; 沿該軸之至少一部分之壓力監視内腔,該壓力監視内 腔具有一處於該軸之該遠端部分處的第一開口及一處於該 軸之s亥近端部分處的第二開口,其中該第一開口與該膨脹 腔流體連通;及 一經組態以位於患者體外且可操作地耦接於該壓力監 視内腔的壓力感測器,其中該壓力監視内腔及該壓力感測 器經組態以提供一指示該膨脹腔内之一壓力變化的信號。 27 1.如實施例270之低溫治療裝置,其中: 該壓力監視内腔具有一至少等於該軸之一長度的長 度;且 該壓力監視内腔經組態以提供自該膨脹腔至該壓力感 測器的一至多0.5秒之反應時間。189 201223577 The circumference of the . 269. The method of embodiment 267, the method further comprising supplying a filling material to the second balloon via filling the lumen along one of at least a portion of the shaft, wherein cooling the portion of the treatment site comprises passing a gaseous refrigerant through the The first balloon flows. 207. A cryotherapy device comprising: a shaft having a distal portion, wherein the shaft is configured to position the distal portion within the vessel at a treatment site adjacent at least adjacent to the renal artery or renal orifice a cooling assembly at the distal end portion of the shaft, the cooling assembly including an expansion chamber having a burst pressure and a threshold pressure below the burst pressure; at least a portion along the shaft The pressure monitoring lumen, the pressure monitoring lumen having a first opening at the distal end portion of the shaft and a second opening at a proximal end portion of the shaft, wherein the first opening is An inflation chamber is in fluid communication; and a pressure sensor configured to be external to the patient and operatively coupled to the pressure monitoring lumen, wherein the pressure monitoring lumen and the pressure sensor are configured to provide an indication A signal of a change in pressure within the expansion chamber. 27. The cryotherapy device of embodiment 270, wherein: the pressure monitoring lumen has a length at least equal to one of the lengths of the shaft; and the pressure monitoring lumen is configured to provide from the inflation lumen to the pressure sense One to more 0.5 second reaction time of the detector.

S 190 201223577 2 7 2 如實施例2 7 0之低溫治療裝置,其進一步包含: 一沿該軸之至少一部分之供應内腔,該供應内腔與該 膨脹腔流體連通; 一沿該軸之至少一部分之排出内腔,該排出内腔與該 膨脹腔流體連通; 一耦接於該供應内腔及該廢力感測器之閥;且 其中: 該膨服腔包含一氣球, 該閥經組態以在該壓力感測器量測到該可膨脹部件内 之一壓力高於該臨限壓力時至少部分地減少通過該供應内 腔之致冷劑流, 該壓力監視内腔具有一經組態以準確測定該可膨服部 件内之壓力的内徑及一經組態以對致冷劑通過該排出内腔 流出具有一可忽略之作用的外徑;且 該壓力監視内腔經組態以提供自該膨脹腔至該壓力咸 測器的一小於1秒之反應時間。 273·如實施例270之低溫治療裝置,其進_步包含. 一沿該軸之至少一部分之供應内腔,該供應内腔經組 態以接收至少一實質上為液體之致冷劑; 一沿該軸之至少一部分之排出内腔,該排出内腔與該 膨脹腔流體連通;且 其中: §亥排出内腔具有一内部橫截面尺寸,. 該供應内腔及該壓力監視内腔一起在該鉦 你硪釉之該遠端部 191 201223577 分處具有一外部橫截面尺寸,且 該内部橫截面尺寸與該外部橫截面尺寸之—比率介於 4:1與1 0:1之間。 274. 如實施例270之低溫治療裝置,其中: 該軸具有一第一長度;且 該壓力監視内腔具有一約o.olo吋之内徑、—約〇 〇15 吋(0.381 mm)之外徑及一至少等於該軸之該第一長度的 第二長度。 275. 如實施例274之低溫治療裝置,其中該軸經組態 以裝配在一 6 Fr引導外鞘内,該軸之該第—長度為至少12〇 cm ° 2 7 6 •如實施例2 7 0之低溫治療裝置,其進一步包含一 耦接於該軸及該壓力感測器之控制器,其中該控制器經組 態以在該壓力感測器量測到該臨限壓力或更高壓力時至少 減少向該膨脹腔之致冷劑流。 2 7 7.如實施例.2 7 0之低溫治療裝置,其進一步包含一 配接器’該配接器具有一處於該壓力感測器與該壓力監視 内腔之間的通道’其中該通道具有一不超過cc之體積。 278·如實施例270之低溫治療裝置,其中該膨脹腔包 含破裂壓力為至少300 psi之一順應性材料。 2 7 9 ·如實施例2 7 0之低溫治療裝置,其中該膨脹腔包 含破裂壓力為至多200 psi之一順應性材料。 2 8 0.如實施例2 7 0之低溫治療裝置,其中: 該軸經組態以裝配在一 6 Fr引導外勒内;且S 190 201223577 2 7 2 The cryotherapy device of Embodiment 2 70, further comprising: a supply lumen along at least a portion of the shaft, the supply lumen being in fluid communication with the inflation lumen; a portion of the discharge chamber is in fluid communication with the expansion chamber; a valve coupled to the supply chamber and the waste force sensor; and wherein: the expansion chamber includes a balloon, the valve group And at least partially reducing a flow of refrigerant through the supply chamber when the pressure sensor measures that one of the pressures in the expandable member is higher than the threshold pressure, the pressure monitoring chamber having a configuration An inner diameter for accurately determining the pressure within the expandable component and configured to flow an outer diameter of the refrigerant through the discharge lumen having a negligible effect; and the pressure monitoring lumen is configured to provide A reaction time from the expansion chamber to the pressure detector of less than one second. 273. The cryotherapy device of embodiment 270, further comprising: a supply lumen along at least a portion of the shaft, the supply lumen configured to receive at least one substantially liquid cryogen; Discharge the inner cavity along at least a portion of the shaft, the discharge lumen being in fluid communication with the expansion chamber; and wherein: the inner discharge lumen has an internal cross-sectional dimension, the supply lumen and the pressure monitoring lumen are together The distal end portion 191 201223577 of the enamel enamel has an outer cross-sectional dimension, and the ratio of the inner cross-sectional dimension to the outer cross-sectional dimension is between 4:1 and 1 0:1. 274. The cryotherapy device of embodiment 270, wherein: the shaft has a first length; and the pressure monitoring lumen has an inner diameter of about o. olo, - about 15 吋 (0.381 mm) And a second length that is at least equal to the first length of the shaft. 275. The cryotherapy device of embodiment 274, wherein the shaft is configured to fit within a 6 Fr guiding sheath, the first length of the shaft being at least 12 〇cm ° 2 7 6 • as in Example 2 7 The cryotherapy device of claim 0 further comprising a controller coupled to the shaft and the pressure sensor, wherein the controller is configured to measure the threshold pressure or higher pressure at the pressure sensor At least the flow of refrigerant to the expansion chamber is reduced. 2 7 7. The cryotherapy device of embodiment 207, further comprising an adapter having a channel between the pressure sensor and the pressure monitoring lumen, wherein the channel has One does not exceed the volume of cc. 278. The cryotherapy device of embodiment 270, wherein the expansion chamber comprises a compliant material having a burst pressure of at least 300 psi. 2 7 9 The cryotherapy device of embodiment 2, wherein the expansion chamber comprises a compliant material having a burst pressure of at most 200 psi. 2 0 0. The cryotherapy device of embodiment 2, wherein: the shaft is configured to fit within a 6 Fr guide; and

S 192 201223577 該冷卻總成包括一具有一诉2 u、A 膨脹部件,β 、 送狀態及一膨脹狀態之可 ϋ亥可膨服部件之至少 中該可膨脹邱杜* &amp; 夕—部分定義該膨脹腔,其 賬邛件在该膨脹狀態下具 之外徑。 另、,'勺3 mm至約1〇叻坩 種低溫治療裝置,其包含: 八有一近端部分及一遠端部分之軸; 一處於該軸之該遠端部分處 ϋ 魄 化心令部總成,其中s玄冷卻 一 —/、該軸之該遠端部分流體連通之膨脹腔;及 ^壓力感測器,其處於該轴之該近端部分處且與該膨 腔流體連通以使得該膨㈣中之—壓力變化與該壓力感 測益處之—量測壓力之間的一時間延遲在一反應時間内, 從而防止該膨脹腔破裂。 282.如實施例281之低溫治療裝置,其中該反應時間 小於0.01秒。 283. 如實施例281之低溫治療裝置其進一步包含一 壓力監視内腔,該壓力監視内腔具有一耦接於該壓力感測 器之近端部分及一與該膨脹腔流體連通之遠端部分。 284. 如實施例283之低溫治療裝置,其中該壓力監視 内腔具有一不超過0.030吋( 0.762 mm)之内徑及一不超過 0.060 吋(1.52 mm)之外徑。 2 8 5.如實施例2 8 3之低溫治療裂置,其中該壓力監視 内腔具有一至少48吋(122 cm )之長度。 286.如實施例283之低溫治療裝置,其進一步包含一 配接器,該配接器耦接於亨壓力感測器與該壓力監視内腔 193 201223577 之間’其中該配接器具有一小於0.丨cc之内部體積。 287•如實施例281之低溫治療裝置,其中: 該反應時間小於〇 · 1秒;且 該低溫治療裝置進一步包含一壓力監視内腔,該壓力 監視内腔具有一耦接於該壓力感測器之近端部分及一與該 膨脹腔流體連通之遠端部分,該壓力監視内腔具有一至少 120 cm之長度。 288.如實施例28 1之低溫治療裝置,其中: 該軸經組態以裝配在6 Fr引導外勒内;且 β亥冷卻總成包括一具有一遞送狀態及一膨脹狀態之可 膨脹部件,該可膨脹部件之至少一部分定義該膨脹腔,其 中邊可膨脹部件在該膨脹狀態下具有一 1 〇 mm之最大外徑 及一至多l〇mm之長度,。 2 8 9. —種用於治療一患者之方法,該方法包含: 將一冷卻總成定位於一至少鄰近周邊血_管之轴的一遠 知。卩分處’其中該冷卻總成包括一具有一臨限壓力之膨脹 腔; 使一致冷劑在該膨脹腔中膨脹; 用s亥冷卻總成向鄰近該周邊血管之神經施加治療性冷 卻; 用一外部壓力感測器量測該膨脹腔内之一壓力,其中 §玄外部壓力感測器耦接於與該膨脹腔流體連通之一壓力監 視内腔;及 當該膨脹腔内之量測壓力气少為該臨限壓力時,提供S 192 201223577 The cooling assembly includes at least one of the expandable Qiu Du* & 夕 部分-part definition having a voucher 2 u, an A-expansion member, a β, a delivery state, and an expansive state The expansion chamber has its outer diameter in the expanded state. In addition, 'spoon 3 mm to about 1 低温 low temperature treatment device, comprising: a shaft having a proximal end portion and a distal end portion; and a distal portion of the shaft at the distal end portion An assembly, wherein sth cools one-/, an expansion chamber in which the distal end portion of the shaft is in fluid communication; and a pressure sensor at the proximal end portion of the shaft and in fluid communication with the expansion chamber such that A time delay between the pressure change in the expansion (four) and the pressure sensing benefit - the measurement pressure is within a reaction time to prevent the expansion chamber from rupturing. 282. The cryotherapy device of embodiment 281, wherein the reaction time is less than 0.01 seconds. 283. The cryotherapy device of embodiment 281, further comprising a pressure monitoring lumen having a proximal portion coupled to the pressure sensor and a distal portion in fluid communication with the inflation chamber . 284. The cryotherapy device of embodiment 283, wherein the pressure monitoring lumen has an inner diameter of no more than 0.030 吋 (0.762 mm) and an outer diameter of no more than 0.060 吋 (1.52 mm). 2 8 5. The cryotherapy treatment of Example 2 8 3, wherein the pressure monitoring lumen has a length of at least 48 吋 (122 cm). 286. The cryotherapy device of embodiment 283, further comprising an adapter coupled between the hen pressure sensor and the pressure monitoring lumen 193 201223577 'where the adapter has a less than 0 . The internal volume of 丨cc. 287. The cryotherapy device of embodiment 281, wherein: the reaction time is less than 〇·1 second; and the cryotherapy device further comprises a pressure monitoring lumen having a coupling to the pressure sensor The proximal portion and a distal portion in fluid communication with the inflation lumen, the pressure monitoring lumen having a length of at least 120 cm. 288. The cryotherapy device of embodiment 28, wherein: the shaft is configured to fit within a 6 Fr guide; and the beta cooling assembly includes an expandable member having a delivery state and an expanded state, At least a portion of the expandable member defines the expansion chamber, wherein the edge expandable member has a maximum outer diameter of 1 mm and a length of one to ten mm in the expanded state. 2 8 9. A method for treating a patient, the method comprising: positioning a cooling assembly at a predetermined location at least adjacent to an axis of the peripheral blood tube. Wherein the cooling assembly includes an expansion chamber having a threshold pressure; causing the co-coolant to expand in the expansion chamber; applying a therapeutic cooling to the nerve adjacent to the peripheral blood vessel using the s cooling assembly; An external pressure sensor measures a pressure in the expansion chamber, wherein the 玄 external pressure sensor is coupled to a pressure monitoring lumen in fluid communication with the expansion chamber; and when the pressure is measured in the expansion chamber When the gas is less than the threshold pressure, provide

S 194 201223577 指示。 290·如實施例289之方法,其中用一外部壓力感測器 量測該膨脹腔内之一壓力包含量測該膨脹腔内之一壓力以 使得該膨脹腔内之一壓力變化與該外部壓力感測器處之該 量測壓力之間的一時間延遲小於1秒。 29 1 ·如實施例289之方法,其中當該膨脹腔内之該量 測壓力至少為該臨限壓力時提供指示包含當該量測壓力接 近該膨脹腔之一破裂壓力時提供指示。 292. 如實施例289之方法,該方法進一步包含用内部 體積不超過0.1 cc之一配接器將該外部壓力感測器耦接於 該壓力監視内腔。 293. 如實施例289之方法,其中: 將該冷卻總成定位於至少鄰近該周邊血管之該軸之該 遠端部分處包含將該冷卻總成定位於至少鄰近腎動脈之該 軸之該遠端處; 用該外部壓力感測器量測該膨脹腔内之一壓力包含經 由具有一至少120 cm之長度的一壓力監視内腔來量測該膨 脹腔内之一壓力;且 當該膨脹腔内之該量測壓力至少為該臨限壓力時提供 指示包含在一反應時間内指示該量測壓力,從而防止該膨 服腔破裂。 294. —種用於治療一患者之方法,該方法包含: 在血管内將一膨脹腔定位於鄰近神經支配該患者之腎 臟的節後神經纖維處;S 194 201223577 Instructions. 290. The method of embodiment 289, wherein measuring the pressure in the expansion chamber with an external pressure sensor comprises measuring a pressure in the expansion chamber such that a pressure change in the expansion chamber is associated with the external pressure A time delay between the measured pressures at the sensor is less than 1 second. The method of embodiment 289, wherein providing an indication when the measured pressure in the expansion chamber is at least the threshold pressure comprises providing an indication when the measured pressure approaches a burst pressure of the expansion chamber. 292. The method of embodiment 289, the method further comprising coupling the external pressure sensor to the pressure monitoring lumen with an adapter having an internal volume of no more than 0.1 cc. 293. The method of embodiment 289, wherein: positioning the cooling assembly at the distal portion of the shaft at least adjacent the peripheral blood vessel comprises positioning the cooling assembly at least about the axis of the adjacent renal artery Measuring the pressure in the expansion chamber by the external pressure sensor comprises measuring a pressure in the expansion chamber via a pressure monitoring lumen having a length of at least 120 cm; and when the expansion chamber The indication that the measured pressure is at least the threshold pressure includes indicating the measured pressure within a reaction time to prevent the expansion chamber from rupturing. 294. A method for treating a patient, the method comprising: positioning an inflation lumen within a blood vessel adjacent a posterior nerve fiber that innervates the kidney of the patient;

195 201223577 低溫調節鄰近該膨脹腔之該等神經纖維之至少一部 分;及 用一外部壓力感測器量測該膨脹腔内之一壓力,其中 該外部壓力感測器與該膨脹腔流體連通。 295. 如實施例294之方法,其中用一外部壓力感測器 量測該膨脹腔内之一壓力包含將該外部壓力感測器耦接於 自一軸之一遠端部分延伸至該軸之一近端部分之一壓力監 視内腔,該膨脹腔處於該軸之該遠端部分處。 296. 如實施例295之方法,其中量測一壓力包括用該 外部壓力感測器經由該壓力監視内腔在該膨脹腔處的一壓 力變化的0.1秒内量測一壓力。 2 9 7.如實施例296之方法,其中量測一壓力包括使用 八有至乂 1mm之長度及一不超過0.7 62 mm之内徑的 —壓力監視内腔。 2 9 8 . —種低溫治療裝置,其包含: 一軸,其包括一近端部分及一遠端部分,其中該遠端 部分包括一相對於該近端部分向内之凹區; 一沿該軸之至少一部分之排出内腔; 一沿該軸之至少一部分之供應内腔;及 區處之可膨脹部件及一 與該供應内腔及該排出内腔流體連195 201223577 low temperature adjusting at least a portion of the nerve fibers adjacent the expansion chamber; and measuring a pressure in the expansion chamber with an external pressure sensor, wherein the external pressure sensor is in fluid communication with the expansion chamber. 295. The method of embodiment 294, wherein measuring the pressure in the expansion chamber with an external pressure sensor comprises coupling the external pressure sensor to one of the distal ends of the shaft to one of the shafts One of the proximal portions is pressure monitoring the lumen, the expansion chamber being at the distal end portion of the shaft. 296. The method of embodiment 295, wherein measuring a pressure comprises measuring a pressure with the external pressure sensor via the pressure monitoring lumen within 0.1 second of a change in pressure at the expansion chamber. The method of embodiment 296, wherein measuring the pressure comprises monitoring the lumen using a pressure of eight to 乂 1 mm and an inner diameter of no more than 0.7 62 mm. A cryotherapy device comprising: a shaft comprising a proximal portion and a distal portion, wherein the distal portion includes a concave region inwardly relative to the proximal portion; At least a portion of the discharge lumen; a supply lumen along at least a portion of the shaft; and an expandable member at the region and a fluid connection with the supply lumen and the discharge lumen

冷部總成,其包括一連接於鄰近該遠端部分之該凹a cold section assembly including a recess connected to the distal end portion

S 196 201223577 分之該凹區中。 299. 如實施例298之低溫治療裝置,其 件進一步包括一經組態以連接鄰近該凹區令°亥可膨脹部 的連接器。 °° °亥可膨脹部件 300. 如實施例299之低溫治療裝置,其 件為-氣球’且其t該連接器由該氣球之一:4可膨脹部 近端部分定# 3(H.如實施例299之低溫治療裝置,其中:刀疋義。 該軸之該遠端部分包括一第一區域、—^ 域之笛——墓# 艰離該第—區 第二區域之台階J 本區域與該 該連接器至少部分在該台階及該第—區域之上,誃、 接器在該部署狀態下具有—與在該遞送狀:連 之外徑。 I買上相似 3 02.如實施例299之低溫治療裝置,其中: 該轴之該遠端部分包括一第一區域、—遠離該第一區 域之第二區域及一定義該向内凹區且區別該第—區域與該 第二區域之台階;且 該連接器之至少一部分處於鄰近該台階之該凹區中。 303.如實施例298之低溫治療裝置,其中: 該可膨脹部件包括—遠端部分;且 該低溫治療裝置進—步包含一自該可膨脹部件之該遠 端部分延伸之非創傷性尖端。 304•—種低溫治療裝置,其包含: 一軸,其包括一經組態以位於腎血管中之遠端部分, 197 201223577 该軸之该延端部分包括一具 从加p丄 ^第一外部尺寸之第一區域 及一具有一小於該第一外部 寸之第一外部尺寸的第二區 域,/、中该第二區域遠離該第—區域. -沿該軸之至少一部分之排出内腔;及 一處於該軸之該遠端部分處之冷卻總成,其中該冷卻 總'包括-在該遠端部分之該第二區域之上的可膨脹部S 196 201223577 is divided into the recessed area. 299. The cryotherapy device of embodiment 298, further comprising a connector configured to connect the expandable portion adjacent the recess. ° ° °Hulable member 300. The cryotherapy device of embodiment 299, the member of which is - balloon 'and its t connector is one of the balloons: 4 the proximal portion of the inflatable portion is fixed # 3 (H. The cryotherapy device of Embodiment 299, wherein: the distal end portion of the shaft comprises a first region, a flute of the -^ domain - a tomb # 艰 steps away from the second region of the first region And the connector is at least partially above the step and the first region, the ferrule, in the deployed state, having an outer diameter in the delivery state: I bought a similar 3 02. as in embodiment 299 The cryotherapy device, wherein: the distal end portion of the shaft includes a first region, a second region remote from the first region, and a defined inward concave region and distinguishing the first region from the second region a step; and at least a portion of the connector is in the recess adjacent the step. 303. The cryotherapy device of embodiment 298, wherein: the expandable member comprises a distal portion; and the cryotherapy device is stepped Including extending from the distal end portion of the expandable member Non-invasive tip. 304• A cryotherapy device comprising: a shaft comprising a distal portion configured to be located in a renal blood vessel, 197 201223577. The extended portion of the shaft includes a pair of p丄^ a first region of the first outer dimension and a second region having a first outer dimension smaller than the first outer dimension, /, wherein the second region is away from the first region. - discharging at least a portion of the axis An inner cavity; and a cooling assembly at the distal end portion of the shaft, wherein the cooling total includes - an expandable portion above the second region of the distal portion

件,該可膨脹部件且有一姆鈿A 八 、’&amp;、,且悲以接收膨脹致冷劑且與該 排出内腔流體連通之膨脹腔。 3 05.如實施例3〇4之低溫治療裝置,其中: 該軸之該遠端部分包括—區別該第一區域與該第二區 域之台階;且 該可膨脹部件包括一在與該台階相鄰之該第二區域之 上之連接器,該可膨脹部件自該連接器向遠端延伸。 3 0 6.如貫施例3 0 4之低溫治療裝置,其中. 該軸之該遠端部分包括一區別該第一區域與該第二區 域之台階;且 該可膨脹部件包括一在該第—區域之至少一部分之上 的連接器,該可膨脹部件自該連接器向遠端延伸。 307.如實施例3〇4之低溫治療裝置,其中: 該遠端部分之該第一區域具有一第—外表面· 該遠端部分進一步包含一區別該第—區域與該第二區 域之台階; 該可膨脹部件包括一在該遠端部分之該第二區域之上 的連接器;And the expandable member has an expansion chamber that receives expansion refrigerant and is in fluid communication with the discharge lumen. 3. The cryotherapy device of embodiment 3-4, wherein: the distal portion of the shaft includes a step that distinguishes the first region from the second region; and the expandable member includes a phase opposite the step Adjacent to the connector above the second region, the expandable member extends distally from the connector. 3. The cryotherapy device of Embodiment 3, wherein the distal portion of the shaft includes a step that distinguishes the first region from the second region; and the expandable member includes a a connector over at least a portion of the region, the expandable member extending distally from the connector. 307. The cryotherapy device of embodiment 3-4, wherein: the first region of the distal portion has a first outer surface. The distal portion further includes a step that distinguishes the first region from the second region The expandable member includes a connector over the second region of the distal portion;

S 198 201223577 該膨脹腔具有一具有一第一體積的遞送狀態及一具有 一大於該第一體積之第二體積的部署狀態;且 該可膨脹部件之該連接器至少鄰近該台階且在該膨脹 腔呈該遞送狀態時實質上與該第一區域之該第一外表面齊 平 〇 3 08.如實施例304之低溫治療裝置,其中: 該軸之該遠端部分進一步包含一區別該第一區域與該 第二區域之台階; 該膨脹腔具有一具有一第一體積的遞送狀態及一具有 一大於該第一體積之第二體積的部署狀態;且 該可膨脹部件包括一在該部署狀態及該遞送狀態下具 有/實質上恆定之外徑的連接器。 309·如實施例308之低溫治療裝置,其中該連接器在 該台階之上。 3 10.如實施例304之低溫治療裝置,其中: 處於該第一區域處之該排出内腔具有一第—内徑;且 處於該第二區域處之該排出内腔具有一小於該第一直 種_之第二内徑。 3 11 •如實施例304之低溫治療裝置,其中: 該膨脹腔之至少一部分具有一治療溫度;且 處於該遠端部分之該第二區域處的該排出内腔具 經組態以在該致冷劑經由該第二區域處之該 /、 w出内腔排屮 時至·少實質上維持该知脹腔之該治療溫度的體積 312.如實施例311之低溫治療裝置,发 、嗞軸之該遠 199 201223577 端部分之該第二區域具有 mi 个艾過約4 cm之長度。 J丄·ί.如實施例3 〇4之低么 人一且古 里/α療展置,其中該膨脹腔包 3 —具有〜連接器之氣球,且装 邱八夕,、中该連接盗連接於該遠端 °Ρ分之该第二區域之上。 314. 如實施例304之低溫治療裝置,其十: 該可膨脹部件包含一在該第_ 乐一 £域之上之連接器,該 連接1§具有一厚度; 該遠端部分之該第-區域具有—第一外徑;且 該軸之該遠端部分之該第二區域具有一等於/不超過該 第-直徑減去該連接部分之該厚度之兩倍的第二外徑。 315. 如實施例304之低溫治療裝置,其中該軸之該遠 鳊。卩分包括一區別s玄第一區域與該第二區域之嵌槽。 316. —種治療一患者之方法,該方法包含: 在血管内將一冷卻總成定位於至少鄰近周邊血管處, 其中該冷卻總成包括一可膨脹部件,該可膨脹部件具有一 在一轴之一遠端部分之上的連接器及一由該可膨脹部件之 至少一部分所定義的膨脹腔,其中該軸之該遠端部分具有 處於一第一區域處之一第一橫截面外部尺寸及處於一第二 區域處之小於該第一橫截面尺寸的一第二橫截面外部尺 寸,且其中該可膨脹部件之該連接器鄰近該遠端部分之該 第一區域與該第二區域之間的一邊界; 使一致冷劑在該膨脹腔中膨脹;及 低溫調節鄰近該冷卻總成之該周邊血管之至少一部分 神經纖維。 ‘S 198 201223577 The expansion chamber has a delivery state having a first volume and a deployed state having a second volume greater than the first volume; and the connector of the expandable member is at least adjacent to the step and in the expansion The cavity is substantially flush with the first outer surface of the first region in the delivery state. The cryotherapy device of embodiment 304, wherein: the distal portion of the shaft further comprises a difference to the first a step of the region and the second region; the expansion chamber having a delivery state having a first volume and a deployment state having a second volume greater than the first volume; and the expandable member includes a deployment state And a connector having a substantially constant outer diameter in the delivery state. 309. The cryotherapy device of embodiment 308, wherein the connector is above the step. 3. The cryotherapy device of embodiment 304, wherein: the discharge lumen at the first region has a first inner diameter; and the discharge lumen at the second region has a smaller than the first Straight seed _ the second inner diameter. The cryotherapy device of embodiment 304, wherein: at least a portion of the inflation lumen has a treatment temperature; and the drainage lumen at the second region of the distal portion is configured to The volume of the therapeutic temperature of the sensation chamber is 312. The cryotherapy device of the embodiment 311, the hair shaft and the iliac shaft, are substantially reduced by the ventricle at the second region. The second region of the end portion of the 199 201223577 has a length of about 4 cm. J丄·ί. As in the third embodiment, the 么4 and the 古古古/αtherapy exhibition, wherein the expansion cavity package 3 - has a balloon of the connector, and the Qiu Xi'an, the connection connection Above the second region of the distal end. 314. The cryotherapy device of embodiment 304, wherein: the expandable member comprises a connector over the first field, the connection 1 § having a thickness; the first portion of the distal portion - The region has a first outer diameter; and the second region of the distal portion of the shaft has a second outer diameter equal to/not exceeding the first diameter minus twice the thickness of the connecting portion. 315. The cryotherapy device of embodiment 304, wherein the axis is further away. The split includes a difference between the first region of the first region and the recessed region of the second region. 316. A method of treating a patient, the method comprising: positioning a cooling assembly within the blood vessel at least adjacent the peripheral blood vessel, wherein the cooling assembly includes an expandable member having an axis a connector above the distal end portion and an expansion lumen defined by at least a portion of the expandable member, wherein the distal end portion of the shaft has a first cross-sectional outer dimension at a first region and a second cross-sectional outer dimension at the second region that is less than the first cross-sectional dimension, and wherein the connector of the expandable member is adjacent the first region and the second region of the distal portion a boundary; expanding the uniform refrigerant in the expansion chamber; and lowering the at least a portion of the nerve fibers adjacent to the peripheral blood vessel of the cooling assembly. ‘

S 200 201223577 3 1 7 如實施例3 16之方法,其中該周邊血管為一第一 周邊血管’其中該膨脹腔具有一遞送狀態及一部署狀態, 且其中該方法進一步包含: 終止對該第一周邊血管中的該等神經纖維之低溫調節 且使該膨脹腔收縮至該遞送狀態,該可膨脹部件具有一在 該第二區域之上之連接器,其中該連接器在該膨脹腔呈該 遞送狀態時實質上與該第一區域之該第一橫截面外部尺寸 齊平; 自該第一周邊血管移除該冷卻總成; 自該軸之該近端部分將一造影材料遞送於該軸之該遠 端部分及該可膨脹部件周圍; 營光定位第二周邊血管; 在血管内將該冷卻總成定位於至少鄰近該第二周邊血 管處; 使該致冷劑在該膨脹腔中膨脹;及 低溫調節鄰近該冷卻總成之該第二周邊血管之至少一 部分神經纖維。 3 1 8 · —種治療一患者之方法,該方法包含: 至少鄰近腎動脈或腎小口定位一冷卻總成,其中該冷 卻總成包栝一可膨脹部件,該可膨脹部件具有一鄰近一軸 之一遠端部分處之一向内台階的連接器,其中該遠端部分 具有一鄰近該向内台階之第一區域及一遠離該向内台階之 第二區域; 使一致冷劑在該可膨脹部件之至少一部分中膨脹; 201 201223577 使該致冷劑通過該遠端邱八A ^ % 4分之該第二區域處之一排出 入口;及 用該冷卻總成向神經#耐跃尬 ,+ ^ 叉配《臟之腎神經施加治療性冷 卻。 其中定位該冷卻總成包含 其中在施加治療性冷卻之 319. 如實施例318之方法 自一外鞘部署該可膨脹部件。 320. 如實施例3 19之方法 後,該方法進一步包含: 使該冷卻總成收縮至該外顆中; 至少鄰近另一腎臟之瞥叙时斗 貪動脈或腎小口重新定位該冷卻 總成,同時使一造影劑沿該軸流動;及 重複該等膨脹、通過及施加程序。 321·—種低溫治療裝置,其包含: 一軸,其包括一遠端部分, 七 八中该轴經組態以裝配在 一 6 Fr引導外鞘内;及 一處於該軸之該遠端部分虚 具古从。 之冷部總成,該冷卻總成 、有、为8 cm與約15 cm之間的—县 A -^ m u, 長度及—具有一遞送狀痞 膨脹狀態之可膨脹部件,j: +兮 狀能-r目士 ,、甲3亥可膨脹部件在該膨脹 心下具有約3 mm與約! 〇 mm之門 nun (間的—外徑。 =實施例321之低溫治療襄置, 鈿。卩分包括—具有一第—外 該第仅夂第一區域及一具有一小於 乂第外從之第二外徑的第二區域〇 如實滅322之低溫治療裝置,其進― °°別忒第〜區域與該第二區域之台階。、〆。The method of embodiment 3, wherein the peripheral blood vessel is a first peripheral blood vessel 'where the inflation chamber has a delivery state and a deployed state, and wherein the method further comprises: terminating the first The low temperature regulation of the nerve fibers in the peripheral blood vessels and the contraction of the expansion chamber to the delivery state, the expandable member having a connector over the second region, wherein the connector is in the delivery chamber for the delivery a state substantially flush with the outer dimension of the first cross-section of the first region; removing the cooling assembly from the first peripheral blood vessel; delivering a contrast material from the proximal portion of the shaft to the shaft The distal portion and the expandable member are surrounded; the camping light positions the second peripheral blood vessel; the cooling assembly is positioned within the blood vessel at least adjacent to the second peripheral blood vessel; causing the refrigerant to expand in the expansion chamber; And low temperature adjusting at least a portion of the nerve fibers of the second peripheral blood vessel adjacent to the cooling assembly. 3 1 8 - A method of treating a patient, the method comprising: positioning a cooling assembly at least adjacent to a renal artery or a renal orifice, wherein the cooling assembly comprises an expandable member having a adjacent axis a connector of an inward step at a distal end portion, wherein the distal end portion has a first region adjacent the inward step and a second region remote from the inward step; causing a uniform refrigerant in the expandable member Expanding in at least a portion; 201 201223577 passing the refrigerant through the distal end of the second portion of the second region at the second region; and using the cooling assembly to the nerve #耐跃尬, + ^ Fork with "dirty kidney nerves applied therapeutic cooling. Wherein the positioning of the cooling assembly comprises 319 in which therapeutic cooling is applied. The method of embodiment 318 deploys the expandable member from an outer sheath. 320. After the method of embodiment 3 19, the method further comprising: shrinking the cooling assembly into the outer member; relocating the cooling assembly at least adjacent to the other kidney At the same time, a contrast agent flows along the axis; and the expansion, passage and application procedures are repeated. A cryotherapy device comprising: a shaft comprising a distal portion, the shaft being configured to fit within a 6 Fr guiding sheath; and a distal portion of the shaft being virtual With ancient times. The cold assembly, the cooling assembly, having between 8 cm and about 15 cm, the county A-^mu, the length and the expandable member having a delivery state, the j: + shape The energy-r, the A 3 swellable component has about 3 mm and about under the expansion core! 〇mm door nun (inter- OD. = Example 321 of the low temperature treatment device, 钿. 卩 includes - has a first - outer first only 夂 first region and one has a smaller than 乂 从The second region of the second outer diameter is deflated as the cryotherapy device of the 322, which enters the step of the region and the second region.

S 202 201223577 32=實施例323之低溫治㈣置,其中該可膨脈部 件包括一鄰近該第一區域與該第二區域 接器 之間的該台階的速 325.如實施例321之低溫治療裝置, 目-’其中: 該可膨脹部件之至少一部分I古— ”令—治療溫度; 該低溫治療裝置進一步包含—:儿 〜该軸之至少—部分之 排出内腔,該排出内腔具有一處於哕 处π通弟一區域處之第〆内 徑及一處於該第二區域處之小於該第一内徑之第二内徑, 其中該排出内腔經組態以在一致冷劑經由該第二:域:之 該排出内腔排出時至少實質上維持該可膨脹部件之該治療 溫度。 326. 如實施例321之低溫治療裝置,其中該軸具有一 4 Fr轴大小。 327. 如實施例321之低溫治療裝置,其中可膨脹部件 包括至少一個氣球,且其中該氣球在一膨脹狀態下具有一 至多10 cm之長度及一至多8 mm之外徑。 328. —種使用一低溫裝置之方法,該方法包含: 自一 6 Fr外鞘部署一冷卻總成,其中該冷卻總成包括 -可膨脹部件,該可膨脹部件具有―鄰近―軸之一遠端部 分處之-向内台階的連接器,其中該遠端部分具有―鄰近 該向内台階之第-區域及—遠離該向内台階之第二區域; 使一致冷劑在該可膨脹部件之至少一部分中膨脹;及 使該致冷劑通過該遠端部分之該第二區域處之—排出 入口。 203 201223577 ,該方法進一步包含 脹部件中膨脹; Fr外鞘中; 329.如實施例328之方法 使该致冷劑終止在該可膨 使该冷卻總成收縮至該6 使一造影材料沿該外鞘流動;及 重複該等部署、膨脹及通過程序。 330. —種低溫治療裝置,其包含: 管 一具有一遠端部分之細長軸,其中 内將s亥返端部分定位於治療部位處; 該軸經組態以在血 忒軸之至少一部分之供應内腔,該供應内腔經組 態以接收至少一實質上液體致冷劑; 一沿该軸之至少一部分之排出内腔,該排出内腔具有 一第一直徑且開放以在膨脹後向近端輸送該致冷劑;及 一處於該軸之該遠端部分處之冷卻總成,該冷卻總成 具有一具有一第二直徑且與該供應内腔流體連通之孔口及 一與S玄孔口流體連通之膨脹腔,該第一直徑及該第二直徑 之一比率為4:1與1 〇 : 1之間,其中該孔口經組態以向該膨 脹腔遞送呈實質上氣態之該致冷劑。 33 1.如實施例330之低溫治療裝置,其中: 該排出内腔具有約0.030吋(0_762 mm)與約0.05吋 (1.27 mm)之間的一内徑;且 該冷卻總成進一步包含一處於該供應内腔中之流動限 制内腔’該流動限制内腔具有一處於該膨脹腔中之遠端部 分’其中該孔口鄰近該流動限制内腔之該遠端部分,該孔 口及該流動限制内腔具有約0.0030吋( 0.076 mm)與約S 202 201223577 32=The low temperature treatment (IV) of embodiment 323, wherein the expandable pulse member comprises a velocity 325 adjacent to the step between the first region and the second region connector. The cryotherapy as in Example 321 The device, wherein: - wherein: at least a portion of the expandable member is - the treatment temperature; the cryotherapy device further comprises: - at least - a portion of the shaft of the discharge lumen, the discharge lumen having a a third inner diameter at a region of the π-passenger and a second inner diameter at the second region less than the first inner diameter, wherein the discharge lumen is configured to pass the uniform refrigerant Second: the field: the venting lumen is at least substantially maintained at the therapeutic temperature of the expandable member. 326. The cryotherapy device of embodiment 321 wherein the shaft has a 4 Fr axis size. The cryotherapy device of Example 321 wherein the expandable member comprises at least one balloon, and wherein the balloon has a length of one to 10 cm and an outer diameter of one to eight mm in an expanded state. 328. Using a cryogenic device square The method includes: deploying a cooling assembly from a 6 Fr outer sheath, wherein the cooling assembly includes an expandable member having an inward step at a distal end portion of one of the adjacent shafts a connector, wherein the distal portion has a first region adjacent to the inward step and a second region remote from the inward step; expanding a co-coolant in at least a portion of the expandable member; and causing The refrigerant passes through the second region of the distal portion - the outlet. 203 201223577, the method further comprises expanding in the expansion member; Fr in the outer sheath; 329. the method of embodiment 328 terminates the refrigerant at The expandable causes the cooling assembly to contract to the 6 to cause a contrast material to flow along the outer sheath; and repeats the deployment, expansion, and passage procedures. 330. A cryotherapy device comprising: the tube has a distal end a portion of the elongated shaft, wherein the inner end portion is positioned at the treatment site; the shaft is configured to supply a lumen to at least a portion of the blood stasis shaft, the supply lumen configured to receive at least one substantially liquid a refrigerant; a discharge lumen along at least a portion of the shaft, the discharge lumen having a first diameter and open to deliver the refrigerant proximally after expansion; and a distal portion of the shaft a cooling assembly having an orifice having a second diameter and in fluid communication with the supply lumen and an expansion chamber in fluid communication with the S-port, the first diameter and the second diameter A ratio between 4:1 and 1 〇:1, wherein the orifice is configured to deliver the substantially gaseous refrigerant to the inflation chamber. 33. The cryotherapy device of embodiment 330, wherein The discharge lumen has an inner diameter between about 0.030 吋 (0-762 mm) and about 0.05 吋 (1.27 mm); and the cooling assembly further includes a flow restricting lumen in the supply lumen. Restricting the lumen having a distal portion in the inflation lumen, wherein the orifice is adjacent the distal portion of the flow restricting lumen, the orifice and the flow restricting lumen having about 0.0030 吋 (0.076 mm) and about

S 204 201223577 . 0.0080 时(0.2.03 mm )之間的一内徑。 332•如實施例330之低溫治療裴置,Α推—止 ♦ /、艰一步包含一 . 處於該供應内腔中且對該膨脹腔開放之流動限制内腔其 中該流動限制内腔具有約2吋(5.1 cm)與約3〇咕 ’、 ' '、 ’6.2 cm) 之間的一長度。 3 3 3 .如實施例3 3 0之低溫治療裝置,其中: 該治療部位為腎動脈及腎小口中之至少一者. §亥供應内腔具有一第一内徑及—第一長度;且 該冷卻總成進一步包含一處於該供應内腔中且對該膨 脹腔開放之毛細管,該毛細管具有—小於該第一内徑之第 二外,及一小於該第一長度之第二長度,其中該毛:管包 括一疋義该孔口之遠端部分’且其中該致冷劑呈至少一實 質上液態自該供應内腔向該毛細管流動並呈至少一實質上 氣態退出該孔口;且 忒膨脹腔包含一經組態以產生治療上有效之低溫腎神 經調節的施藥器。 334.如實施例330之低溫治療裝置,其中該供應内腔 之一遠端部分定義該孔口,且其中該供應内腔之一内徑為 勺 0.0040 吋(〇 1〇2 mm)與約 〇 〇1〇 吋(〇 254 mm )之間。 335·如實施例330之低溫治療裝置,其進一步包含一 至 &gt;、卩刀處於s亥恥脹腔中之流動限制内腔,其中該流動限 .則内腔包括—定義該孔口之遠端部分,且其中該供應内腔 具有第—長度且該流動限制内腔具有至多為該第一長度 之V3的一第二長度。 205 201223577 3 3 6.如實施例3 3 0 之低溫治療裝置,其中該軸經組態S 204 201223577 . An inner diameter between 0.0080 (0.2.03 mm). 332. The cryotherapy device of embodiment 330, Α push-stop ♦, and the rigorous step comprises: a flow restricting lumen in the supply lumen and open to the inflation lumen, wherein the flow restriction lumen has about 2 A length between 吋 (5.1 cm) and approximately 3〇咕', ' ', '6.2 cm). 3 3 3. The cryotherapy device of embodiment 3, wherein: the treatment site is at least one of a renal artery and a renal ostium. § Hai supply lumen has a first inner diameter and a first length; The cooling assembly further includes a capillary tube in the supply lumen and open to the expansion chamber, the capillary having a second outer portion that is smaller than the first inner diameter and a second length smaller than the first length, wherein The hair: the tube includes a distal portion of the orifice and wherein the refrigerant flows into the capillary from the supply lumen in at least one substantially liquid state and exits the orifice in at least one substantially gaseous state; The inflation lumen contains an applicator configured to produce a therapeutically effective low temperature renal neuromodulation. 334. The cryotherapy device of embodiment 330, wherein a distal end portion of the supply lumen defines the orifice, and wherein an inner diameter of the supply lumen is a scoop of 0.0040 吋 (〇1〇2 mm) and about 〇 〇1〇吋 (〇254 mm ). 335. The cryotherapy device of embodiment 330, further comprising: a flow restricting lumen in the swell of the swell, wherein the flow limit. The lumen comprises - defining the distal end of the orifice a portion, and wherein the supply lumen has a first length and the flow restriction lumen has a second length of at most V3 of the first length. 205 201223577 3 3 6. The cryotherapy device of Example 3 3 0, wherein the shaft is configured

338.如實施例330之 艮域之一比率為4:丨至小於丨〇_ 1。 之低溫治療裝置,其進一步包含一 延伸通過該軸之至少一部分的引導線内腔。 3 3 9.如實施例3 3 8之低溫治療裝置,其中: 一遠端開 該軸具有一具有一近端開口之近端及一具有 口之遠端;且 3亥引導線内腔至少在該近端開口與該遠端開口之間延 伸。 340.如實施例338之低溫治療裝置,其中: δ玄轴在一近端與一迫端之間具有一長度;且 该引導線内腔在該軸之該近端與該遠端之間具有一近 端開口。 34 1 · —種低溫治療裝置,其包含: 一具有一遠端部分之細長軸,其中該軸經組態以在血 管内將該遠端部分定位於至少鄰近腎動脈及腎小口中之至 少一者的治療部位處; 一沿該軸之至少一部分之供應内腔’該供應内腔經組 態以接收一液體致冷劑; 一沿該軸之至少一部分之排出通道,該排出通道具有 一經組態以輸送一膨脹之致冷劑的橫截面開口;及338. One of the regions of Example 330 has a ratio of 4: 丨 to less than 丨〇_1. The cryotherapy device further includes a guidewire lumen extending through at least a portion of the shaft. 3 3 9. The cryotherapy device of Embodiment 3 3, wherein: a distal opening of the shaft has a proximal end having a proximal opening and a distal end having a mouth; and the lumen of the 3 Guidewire is at least The proximal opening extends between the distal opening. 340. The cryotherapy device of embodiment 338, wherein: the δ mysterious axis has a length between a proximal end and a forced end; and the guidewire lumen has a between the proximal end of the shaft and the distal end Proximal opening. 34 1 - A cryotherapy device comprising: an elongated shaft having a distal portion, wherein the shaft is configured to position the distal portion within the vessel at least adjacent to at least one of a renal artery and a renal orifice At a treatment site; a supply lumen along at least a portion of the shaft 'the supply lumen configured to receive a liquid cryogen; a discharge passage along at least a portion of the shaft, the discharge passage having a set State to convey a cross-sectional opening of an expanded refrigerant; and

S 206 201223577 :該軸之該遠端部分處之冷卻總成,該冷卻總成 具有一經鈿站 . ^ 、·心以接收來自該供應内腔之呈實質上氣態之該 致冷劑的日&amp; y腔’其中該排出通道於該冷卻總成處之該橫 '面開口及該供應内腔於該冷卻總成處之一橫截面尺寸的 —比率為4:1與1〇:1之間。 342.如實施例341之低溫治療裝置,其進一步包含一 ^於該供應内腔中且對該膨脹腔開放之毛細管,其中該毛 細管具有—直徑為至少〇_⑶4吋(0.102mm)之開口。 343·如實施例342之低溫治療裳置,其中該供應内腔 具有一第一長度且該毛細管具有至多為該第一長度之%的 —第二長度。 344. 如實施例341之低溫治療裝置,其進—步包含— 經組態以用於經由線遞送該冷卻總成之引導線内腔。 345. 如實施例341之低溫治療裝置,其進一步包含一 快速交換弓丨導線内腔。 346. 如實施例341之低溫治療裝置,其中該排出通道 具有一第一區诚,且該供應内腔佔據該排出通道中之一第 二區域,且其中該第一區域與該第二區域之一比率為心1 小於10:1。 ’ 一…A α· 在血管内將一細長軸之一施藥器定位於至少鄰近腎動 脈或腎小口之治療部位處,其中該施藥器處於 : 端部分處; 31 使一欵冷劑自與該軸之該遠端部分處 ^ ^供應内腔流 13 207 201223577 體連通之一孔口膨脹,其中該供應内腔沿該軸之至少一部 分延伸; 使來自該施藥器之該致冷劑經由一排出内腔傳遞,該 排出内腔沿該軸之至少一部分延伸,其中該排出内腔具有 一第一内部橫截面面積,該孔口具有一第二内部橫截面面 積’且該第一内部橫截面面積與該第二内部橫截面面積之 一比率為4 : 1與1 〇: 1之間;及 經由該施藥器之一熱傳遞部分冷卻該治療部位之一部 分’並產生治療上有效之低溫腎神經調節。 348. 如實施例347之方法,其中使一致冷劑自與該軸 之該遠端部分處之一供應内腔流體連通之一孔口膨脹包含 使該致冷劑自直徑為約0.003叫·(〇.〇76mm)與約〇_〇〇8〇寸 (0.203 mm )之間的一孔口膨脹。 349. 如實施例348之方法,其中使一致冷劑自與該轴 之該遠端部分處之一供應内腔流體連通之一孔口膨脹包含 使該致冷劑自一流動限制内腔之一遠端部分處的一孔口膨 服’ 3亥供應内腔具有一第一長度’該流動限制内腔具有至 多為該第一長度之V3的一第二長度。 3 5 0.如實施例347之方法’其中在血管内將該細長軸 之該施藥器定位於該治療部位處包含使該軸之至少一部分 經由一引導線延伸’其中δ亥引導線延伸通過該抽中之—引 導線内腔。 3 5 1 ·如實施例3 5 0之方法,其中使該軸之至少一部分 經由該引導線延伸包含使一引導線完全通過該軸之一長度S 206 201223577 : a cooling assembly at the distal end portion of the shaft, the cooling assembly having a sputum station. ^, · heart to receive the substantially gaseous refrigerant from the supply lumen The ratio of the cross-sectional opening of the discharge passage at the cooling assembly and the cross-sectional dimension of the supply chamber at the cooling assembly is between 4:1 and 1〇:1 . 342. The cryotherapy device of embodiment 341, further comprising a capillary in the supply lumen and open to the expansion lumen, wherein the capillary has an opening having a diameter of at least 〇 (3) 4 吋 (0.102 mm). 343. The cryotherapy treatment of embodiment 342, wherein the supply lumen has a first length and the capillary has a second length that is at most % of the first length. 344. The cryotherapy device of embodiment 341, further comprising - configured to deliver the guidewire lumen of the cooling assembly via a wire. 345. The cryotherapy device of embodiment 341, further comprising a rapid exchange archwire lumen. 346. The cryotherapy device of embodiment 341, wherein the discharge channel has a first zone and the supply lumen occupies a second zone of the discharge channel, and wherein the first zone and the second zone A ratio of heart 1 is less than 10:1. '一...A α· positioning an applicator of an elongated shaft in the blood vessel at a treatment site at least adjacent to the renal artery or the renal orifice, wherein the applicator is at: the end portion; 31 And the distal portion of the shaft is supplied with a flow of the lumen flow 13 207 201223577, wherein the supply lumen extends along at least a portion of the shaft; the refrigerant from the applicator Passing through a discharge lumen extending along at least a portion of the shaft, wherein the discharge lumen has a first internal cross-sectional area, the aperture having a second internal cross-sectional area 'and the first interior a ratio of one of the cross-sectional area to the second internal cross-sectional area is between 4:1 and 1 〇:1; and cooling a portion of the treatment site via one of the applicators to cool and effect therapeutically effective Low temperature renal neuromodulation. 348. The method of embodiment 347, wherein expanding the co-coolant from one of the fluid ports in fluid communication with the one of the distal end portions of the shaft comprises causing the refrigerant to have a diameter of about 0.003. 〇.〇76mm) and an orifice expansion between about 〇_〇〇8 inches (0.203 mm). 349. The method of embodiment 348, wherein expanding the co-coolant from one of the fluid ports in fluid communication with the one of the distal end portions of the shaft comprises expanding the cryogen from a flow restricting lumen An orifice expansion at the distal end portion '3H supply lumen has a first length'. The flow restriction lumen has a second length of at most V3 of the first length. The method of embodiment 347, wherein the positioning of the applicator of the elongated shaft within the blood vessel at the treatment site comprises extending at least a portion of the shaft via a guide line, wherein the δ guide line extends through The pumping - guiding the inner lumen of the line. The method of embodiment 3, wherein the extending of at least a portion of the shaft through the guide line comprises passing a guide wire completely through a length of the shaft

208 201223577 ' 延伸’其中該軸之該長度為自一遠端至一近端。 - 352.如實施例35〇之方法,其中使該軸之至少—部八 , 經由該引導線延伸包含使用一快速交換引導線組態將該2 、 藥器遞送於該治療部位處。 3 5 3 · —種用於治療一患者之方法,該方法包含: 在血管内將一低溫治療裝置定位於該患者之腎動脈或 腎小口中之目標部位處; — 使該低溫治療裝置至少鄰近該目標部位地自一遞送狀 態部署至一部署狀態; 移除來自該目標部位處之組織的熱’且從而產生治療 上有效之腎神經調節;及 使該低溫治療裝置自該部署狀態收縮至該遞送狀態, 其中該低溫治療裝置自部署至收縮之一程序週期小於5分 鐘。 3 54.如實施例353之方法,其中該目標部位為第一腎 動脈或第一腎小口中之第一目標部位,且其中該方法進一 步包含: 在血管内將呈該遞送狀態之該低溫治療裝置定位於至 少鄰近該患者之第二腎動脈或第二腎小口中之第二目標部 位處; 使該低溫治療裝置至少鄰近該第二目標部位地自該遞 送狀態部署至該部署狀態; 移除來自該第二目標部位處之組織的熱,且從而產生 治療上有效之腎神經調節;及208 201223577 'Extension' wherein the length of the shaft is from a distal end to a proximal end. The method of embodiment 35, wherein at least the portion of the shaft is extended via the guidewire comprising delivering the medicament to the treatment site using a rapid exchange guidewire configuration. 3 5 3 - A method for treating a patient, the method comprising: positioning a cryotherapy device in a blood vessel at a target site in a renal artery or a renal stenosis of the patient; - making the cryotherapy device at least adjacent Dislocating the target site from a delivery state to a deployed state; removing heat from tissue at the target site and thereby producing a therapeutically effective renal neuromodulation; and contracting the cryotherapy device from the deployed state to the A delivery state wherein the cryotherapy device has a programmed period of less than 5 minutes from deployment to contraction. The method of embodiment 353, wherein the target site is a first target site in the first renal artery or the first renal ostium, and wherein the method further comprises: the cryotherapy to be in the delivery state within the blood vessel The device is positioned at least adjacent to the second target site of the second renal artery or the second renal orifice of the patient; deploying the cryotherapy device from the delivery state to the deployed state at least adjacent to the second target site; removing Heat from the tissue at the second target site, and thereby producing a therapeutically effective renal neuromodulation; and

209 201223577 使該低溫治療襄置自該部署狀態收縮至該遞送狀態, 其中m酿/σ療裝置部署在該第_目標部位處至該低溫 治療裝置在該第二目標處收縮之一程序週期小於12分鐘。 355.如實施例3S3之方法,其中: 在血f内將該低溫治療裝置定位於至少鄰近該目標部 位處包含將該低溫治療裝置之—施藥器定位於至少鄰近該 患者之該腎動脈處;且 移除來自该目標部位處之組織的熱包含經由該施藥器 在足以產生治療上有效之低溫腎神經調節的一熱傳遞速率 下冷卻該腎動脈之至少-部分,纟中該冷卻具有至少一個 至多1 0 0秒之冷卻循環。 356.如實施例353之方法,其中移除來自該目標部位 處之組織的熱包含在該程序週期内在一單次施用低溫冷卻 中調節該等腎神經。 3 5 7.如實施例3 5 3之方法,其中移除來自該目標部位 處之組織的熱包含以足以在該腎動脈之完全圓周周圍產生 治療上有效之腎神經調節的量移除來自該目標部位處之組 織的熱。 3 5 8 ·如貫施例3 5 3之方法,其中移除來自該目標部位 處之組織的熱包含以足以在該腎動脈之並非完全圓周周圍 產生治療上有效之腎神經調節的量移除來自該目標部位處 之組織的熱。 359.如實施例353之方法,其中移除來自該目標部位 處之組織的熱包含在由一升溫週期分開之至少兩個冷卻循209 201223577 contracting the cryotherapy device from the deployed state to the delivery state, wherein the m brewing/sigma therapy device is deployed at the first target site until the cryotherapy device contracts at the second target for a program period less than 12 minutes. 355. The method of embodiment 3S3, wherein: positioning the cryotherapy device within the blood f at least adjacent the target site comprises positioning the cryotherapy device at least adjacent to the renal artery of the patient And removing heat from the tissue at the target site comprises cooling at least a portion of the renal artery via the applicator at a rate of heat transfer sufficient to produce therapeutically effective hypotensive renal neuromodulation, the cooling having At least one cooling cycle of up to 1000 seconds. 356. The method of embodiment 353, wherein removing heat from the tissue at the target site comprises modulating the renal nerves in a single application cryocooling during the program cycle. The method of embodiment 3, wherein the removal of heat from the tissue at the target site comprises removing from the amount sufficient to produce a therapeutically effective renal neuromodulation around the full circumference of the renal artery. The heat of the tissue at the target site. The method of claim 3, wherein the removal of heat from the tissue at the target site is removed in an amount sufficient to produce a therapeutically effective renal neuromodulation around the renal artery. The heat from the tissue at the target site. 359. The method of embodiment 353, wherein removing heat from the tissue at the target site comprises at least two cooling cycles separated by a warming cycle

S 210 201223577 環中低溫冷卻該等腎神經。 3 60.如實施例359之方法,其中在各自具有小於6〇秒 之一持續時間的至少兩個冷卻循環中低溫冷卻該等腎神 經。 36 1. —種用於治療一患者之方法,該方法包含: 將一能量遞送裝置定位於至少鄰近神經支配該患者之 腎臟的節後神經纖維處; 在血管内使該能量遞送裝置自一遞送狀態部署至一部 署狀態;及 經由該能量遞送裝置遞送一足以調節該等節後神經纖 維之神經功能的能量場,其中部署該能量遞送及遞送該能 量場具有一小於5分鐘之程序時間。 3 6 2.如實施例3 61之方法,其中: 將該能量遞送裝置定位於至少鄰近該等節後神經纖維 處包含在血管内將一低溫治療裝置之一施藥器定位於至少 鄰近該等節後神經纖維處;且 遞送該能量場包含: 使一致冷劑在該施藥器之至少一部分中膨脹,及 經由該施藥器低溫冷卻並調節該等神經支配腎臟之節 後神經纖維以使得治療上有效之低溫冷卻包括至少一個小 於100秒之冷卻循環。 363.如實施例362之方法,其中經由該能量遞送裝置 遞送一足以調節該等節後神經纖維之神經功能的能量場包 含使用由一升溫週期分開之至少兩個冷卻循環來低溫冷卻S 210 201223577 The renal nerves are cooled by cryogenic cooling. The method of embodiment 359, wherein the renal nerves are cryogenically cooled in at least two cooling cycles each having a duration of less than 6 sec. 36. A method for treating a patient, the method comprising: positioning an energy delivery device at at least adjacent nerve fibers that innervate the kidney of the patient; delivering the energy delivery device from within the blood vessel The state is deployed to a deployed state; and an energy field sufficient to modulate the neural function of the post-ganglionic nerve fibers is delivered via the energy delivery device, wherein deploying the energy delivery and delivering the energy field has a program time of less than 5 minutes. 2. The method of embodiment 3, wherein: locating the energy delivery device at least adjacent to the post-ganglionic nerve fibers comprises positioning an applicator of a cryotherapy device at least adjacent to the blood vessel Post-ganglionic nerve fibers; and delivering the energy field comprises: expanding a co-coolant in at least a portion of the applicator, and subcooling and adjusting the post-ganglionic nerve fibers of the innervating kidney via the applicator to cause The therapeutically effective cryogenic cooling comprises at least one cooling cycle of less than 100 seconds. 363. The method of embodiment 362, wherein the delivering an energy field sufficient to modulate nerve function of the post-ganglionic nerve fibers via the energy delivery device comprises cryogenically cooling using at least two cooling cycles separated by a warming cycle

C 211 201223577 神經支配腎臟之節後神經纖維。 3 64.種低溫治療裝置,其包含: 二有⑧端部分之細長軸,其中該軸經組態以在血 g内將该遠端部分定位於治療部位處; 一處於該軸之該遠端部分處之冷部總成,該冷卻總成 具有-遞送狀態、—部署狀態及—膨脹腔,—致冷劑在該 膨脹腔中膨脹,·且 其令該低溫裝置經組態以在小於5分鐘内自動終止一 程序週期’且其中該程序週期在該冷卻總成於該治療部位 處自該遞送狀態移動至該部署狀態時開始,且該程序週期 在該冷卻總成終止向該膨脹腔遞送該致冷劑時結束。 3 65.如實施例364之低溫治療裝置,其中: 該治療部位鄰近腎動脈及腎小口中之至少一者; 該冷卻總成進一步包含一經組態以在該部署狀態下具 有足^在10 0移内產生治療上有效之低溫腎神經調節的 熱傳遞速率的施藥器;且 該低溫治療裝置進一步包含: 一沿該軸之至少一部分之供應内腔,該供應内腔經組 I、以接收至-實質上液體致冷劑’且該供應内腔與該膨 脹腔流體連通,及 一沿該軸之至少一部分之排出内腔,該排出内腔與該 膨脹腔流體連通。 366·如實施例364之低溫治療裝置,其中該程序週期 小於兩分鐘。C 211 201223577 The nerves innervate the nerve fibers of the kidney. 3 64. A cryotherapy device comprising: an elongated shaft having an 8-terminal portion, wherein the shaft is configured to position the distal portion at a treatment site within blood g; a distal end of the shaft a portion of the cold section assembly, the cooling assembly having a -delivered state, a deployed state and an expansion chamber, wherein the refrigerant expands in the expansion chamber, and which causes the cryogenic device to be configured to be less than 5 Automatically terminating a program cycle within minutes and wherein the program cycle begins when the cooling assembly moves from the delivery state to the deployed state at the treatment site, and the program cycle terminates delivery to the inflation lumen at the cooling assembly The refrigerant ends. 3. The cryotherapy device of embodiment 364, wherein: the treatment site is adjacent to at least one of a renal artery and a renal ostium; the cooling assembly further comprising a configuration configured to have a foot in the deployed state An applicator that produces a therapeutically effective rate of heat transfer of hypothermic renal neuromodulation; and the cryotherapy device further comprises: a supply lumen along at least a portion of the shaft, the supply lumen being received by the group I To - substantially liquid refrigerant ' and the supply lumen is in fluid communication with the expansion chamber, and a discharge lumen along at least a portion of the shaft, the discharge lumen being in fluid communication with the expansion chamber. 366. The cryotherapy device of embodiment 364, wherein the programmed period is less than two minutes.

S 212 201223577 3 6 7 ·如貫施例3 64之低溫治療裝置,其中該冷卻總成 進 v包^ —施藥器,該施藥器具有一在該施藥器之並非 完全圓周周圍延伸之熱傳遞部分,且其中該熱傳遞部分經 組態以在該冷卻總成處於該部署狀態中時在該治療部位處 遞送治療上有效之低溫神經調節。 8 ’如實施例3 64之低溫治療裝置,其中該冷卻總成 v ^&quot;括—施藥器,該施藥器具有一在該施藥器之完全 圓周周圍延伸之熱傳遞部分,且其中該熱傳遞部分經組態 2在該冷卻總成處於該部署狀態中時在該治療部位處遞送 治療上有效之低溫神經調節。 、一 369.如實施例364之低溫治療裝置,其中該冷卻總成 進一步包含一經組態以在該程序週期内在一單次施用中在 該’冶療部位虛诚接法通l μ古舲+把、、e a _S 212 201223577 3 6 7 · The cryotherapy device of Embodiment 3 64, wherein the cooling assembly is provided with an applicator having a heat extending around a circumference of the applicator that is not completely circumferential A delivery portion, and wherein the heat transfer portion is configured to deliver a therapeutically effective hypothermia neuromodulation at the treatment site when the cooling assembly is in the deployed state. 8' The cryotherapy device of embodiment 3, wherein the cooling assembly v^&quot; includes an applicator having a heat transfer portion extending around a full circumference of the applicator, and wherein The heat transfer portion is configured via configuration 2 to deliver therapeutically effective hypothermia neuromodulation at the treatment site while the cooling assembly is in the deployed state. 369. The cryotherapy device of embodiment 364, wherein the cooling assembly further comprises a configuration configured to imaginatively pass through the μ in the single application during the program cycle. Put, ea _

實施例364之低溫治療裝置, 其中該低溫裝置 其中當該冷卻系 I週期結束。 213 201223577 經组態以在使用一預置量之該致冷劑時自動終止該程序週 期。 3 7 4 ·如貫施例3 6 4之低溫治療裝置,其進一步包含一 控制器’該控制器包括使該控制器在一預置時間間隔自動 終止該程序週期之指令。 結論 本技術之具體實例之以上詳細描述不意欲為詳盡的’ 或用於將本技術限制於上文所揭示之精確形式。雖然上文 出於說明目的描述本技術之特定具體實例及實施例,但在 本技術範疇内可進行各種相等修改,如熟習相關技術者應 瞭解。例如,雖然以指定順序提供步驟,但替代性具體實 例可進行呈不同順序之步驟。本文所述之各種具體實例亦 可組合以提供其他具體實例。 根據上述,應瞭解本文已出於說明目的而描述本技術 之特定具體實例,但未展示或詳細描述熟知結構及功能以 免不必要地模糊對本技術之具體實例的描述。若上下文允 5午,則單數術語或複數術語亦可分別包括複數術語或單數 術語。 此外,關於具有兩項或兩項以上之清單,除非字組「或」 明確限制於僅意謂排除其他項之單一項,否則該清單中使 用或」應解釋為包括(a)該清單中之任何單一項,(匕) 該清單中之所有項,或(c)該清單中各項之任何組合。此 外,術語「包含」在全文中用於意謂至少包括所述特徵, 從而不排除任何更大數目之相同特徵及/或其他類型之其他The cryotherapy device of embodiment 364, wherein the cryogenic device is wherein the cooling system I cycle ends. 213 201223577 is configured to automatically terminate the program cycle when a preset amount of the refrigerant is used. 3 7 4 The cryotherapy device of Embodiment 3 6 4 further comprising a controller&apos; the controller includes instructions for causing the controller to automatically terminate the program cycle at a preset time interval. The above detailed description of the specific examples of the present invention is not intended to be exhaustive or to limit the invention to the precise forms disclosed. While the specific embodiments and examples of the present technology have been described above for illustrative purposes, various equivalent modifications can be made within the scope of the present technology, as will be appreciated by those skilled in the art. For example, although steps are provided in a specified order, alternative specific embodiments may be performed in a different order. The various specific examples described herein can also be combined to provide other specific examples. The above description of the specific embodiments of the present invention is not to be construed as a If the context permits 5 noon, the singular or plural terms may also include plural or singular terms, respectively. In addition, with regard to a list with two or more items, unless the word "or" is expressly restricted to only a single item that excludes other items, the use or "in the list shall be construed as including (a) in the list. Any single item, (匕) all items in the list, or (c) any combination of items in the list. In addition, the term "comprising" is used throughout to mean to include at least the features, and does not exclude any greater number of the same features and/or other types.

S 214 201223577 特徵。亦應瞭解,本文中已出於說明目的而描述特定具體 實例’但在不背離本技術的情況下可進行各種修改。此外, 雖然在該等具體實例之内容中已描述與本技術之某些具體 實例相關的優勢’但其他具體實例亦可展現該等優勢,且 並非所有具體實例均必然需要展現該等優勢以處於本技術 範疇内。據此,本發明及相關技術可涵蓋本文中未明確展 示或描述之其他具體實例。 【圖式簡單說明】 圖1說明根據本發明技術之一具體實例之低溫治療系 統0 圖2A為說明根據本發明技術之一具體實例的軸遠端部 分及呈遞送狀態(例如低剖面或收縮纽態)之冷卻總成之 具體實例的放大橫截面圖。 圖2B為呈部署狀態(例如,膨脹組態)的圖2A之冷 卻總成的放大横截面圖。 圖2C及圖2D為根據本發明技術之另一具體實例組態 之冷卻總成的放大橫截面側視圖及端視圖。 圖2E為根據本發明技術之另一具體實例組態之低溫治 療裝置之近端部分及遠端部分的放大橫截面圖。 圖3 A說明用根據本技術之一具體實例之低溫治療系統 低溫調節腎神經。 圖3B為β兒明根據本發明技術之任何具體實例之低溫調 節月神經之方法的方塊圖〇 圖4Α及圖4Β為根據本發明技術之具體實例組態之具 215 201223577 有台階狀遠端部分之低溫治療裝置的放大橫截面圖。 圖5 A為根據本發明技術之另一具體實例組態之低溫治 療系統的部分示意圖。 圖5B為根據本發明技術之—具體實例之軸遠端部分及 呈部署狀態之冷卻總成的放大橫截面圖。 圖6A為說明根據本發明技術之一具體實例組態之預冷 卻總成的平面圖。 圖6B為說明圖6A之預冷卻總成的橫截面圖。 圖7為說明根據本發明技術之一具體實例組態之預冷 卻總成的橫截面圖,該預冷卻總成具有閥。 7 圖8A為說明根據本發明技術之一具體實例組態之預冷 卻總成的橫截® «’該預冷卻總成具有分流器。 圖8B為說明圖8 A之預冷卻總成的橫截面圖。 ^為說明根據本發明技術之另一具體實例組態之預 冷卻〜'成的橫截面圖,該預冷卻總成具有分流器。 圖9B為說明圖9A之預冷卻總成的橫截面圖。 圖10為說明根據本發明技術之一具體實例組態之 卻總成之管形Λβ # μ 。件纏繞於手柄内的排出口周圍的部分示 圖。 μ 1 根據本發明技術之—具體實例組態之預 卻 形部件纏繞於手柄内的排出口附近的部分干 圖。 I刀不 圖12為說明 總成的橫截面圖 根據本發明技術之一具體實例組態之冷卻 ,該冷卻總成具有供應管,該等供應管具S 214 201223577 Features. It is also to be understood that the specific embodiments have been described herein for the purposes of illustration In addition, although advantages associated with certain specific examples of the present technology have been described in the context of these specific examples, other specific examples may exhibit such advantages, and not all specific examples necessarily require that such advantages be presented Within the scope of this technology. Accordingly, the present invention and related art may cover other specific examples not explicitly shown or described herein. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a cryotherapy system 0 in accordance with an embodiment of the present technology. FIG. 2A is a diagram illustrating a distal end portion of a shaft and a delivery state (eg, a low profile or a contraction button) in accordance with an embodiment of the present technology. An enlarged cross-sectional view of a specific example of the cooling assembly of the state. Figure 2B is an enlarged cross-sectional view of the cooling assembly of Figure 2A in a deployed state (e.g., an expanded configuration). 2C and 2D are enlarged cross-sectional side and end views of a cooling assembly configured in accordance with another embodiment of the present technology. Figure 2E is an enlarged cross-sectional view of the proximal and distal portions of a cryotherapy device configured in accordance with another embodiment of the present technology. Figure 3A illustrates hypothermic regulation of renal nerves using a cryotherapy system in accordance with one embodiment of the present technology. FIG. 3B is a block diagram of a method for low temperature regulation of the lunar nerve according to any specific example of the present technology. FIG. 4A and FIG. 4B are diagrams of a specific example according to the present invention. 215 201223577 Stepped distal portion An enlarged cross-sectional view of the cryotherapy device. Figure 5A is a partial schematic illustration of a cryotherapy system configured in accordance with another embodiment of the present technology. Figure 5B is an enlarged cross-sectional view of the distal end portion of the shaft and the cooling assembly in a deployed state in accordance with the teachings of the present invention. Figure 6A is a plan view showing a pre-cooling assembly configured in accordance with one embodiment of the present technology. Figure 6B is a cross-sectional view illustrating the pre-cooling assembly of Figure 6A. Figure 7 is a cross-sectional view showing a pre-cooling assembly configured with a valve in accordance with an embodiment of the present technology. 7A is a cross-sectional view of a pre-cooling assembly configured to be configured according to one embodiment of the present technology. The pre-cooling assembly has a shunt. Figure 8B is a cross-sectional view illustrating the pre-cooling assembly of Figure 8A. To illustrate a pre-cooled to 'cross-sectional view of a configuration according to another embodiment of the present technology, the pre-cooling assembly has a shunt. Figure 9B is a cross-sectional view illustrating the pre-cooling assembly of Figure 9A. Fig. 10 is a view showing the tubular shape Λβ # μ of the assembly according to an embodiment of the present technology. A partial view of the piece around the discharge opening in the handle. μ 1 A partial dry view of a pre-formed component that is configured to be wrapped around a discharge opening in the handle in accordance with the teachings of the present invention. I. Fig. 12 is a cross-sectional view illustrating the assembly. According to one embodiment of the present technology, the cooling is configured, and the cooling assembly has supply pipes, and the supply pipes are provided.

S 216 201223577 有傾斜遠端部分。 圖13為說明根據本發明技術之一具體實例組態之冷卻 總成的橫截面目,該冷卻總成具有供應管,該供應管具有 包繞在排出通道周圍的螺旋狀部分。 圖14為說明根據本發明技術之另-具體實例組態之冷 卻總成的橫截面圖’該冷卻總成具有供應管該供應管具 有包繞在排出通道周圍的螺旋狀部分。 圖15A為說明根據本發明技術之一具體實例組態之冷 卻總成的橫截面圖,該冷卻總成具有内部氣球,該内部氣 球具有内部氣球孔口。 圖15B為說明圖15A之冷卻總成的橫截面圖。 圖16^為說明根據本發明技術之一具體實例組態之冷 卻總成的橫戴面目,該冷卻總成具有内部a球及外部氣 球,忒内4氣球具有内部氣球孔口,該外部氣球具有升高 嫘旋狀部分。 圖1 6B為說明圖丨6 A之冷卻總成的橫截面圖。 圖17A為說明根據本發明技術之一具體實例組態之冷 卻總成的橫截面圖,該冷卻總成具有細長絕熱部件。 圖178為說明圖17A之冷卻總成的橫截面圖。 圖18A為說明根據本發明技術之另一具體實例組態之 冷卻總成的横戴面圖,該冷卻總成具有細長絕熱部件。 圖18B為說明圖18A之冷卻總成的橫截面圖。 圖19A為說明根據本發明技術之一具體實例組態之冷 卻總成的剖面圖,該冷卻總成具有螺旋狀絕熱部件。 217 3 201223577 圖19B及圖19C為說明圖19A之冷卻總成的橫截面圖。 圖20A為說明根據本發明技術之一具體實例組態之冷 卻L成的面圖,该冷卻總成具有類似交纏雙螺旋之絕熱 部件。 '' 圖20Β及圖2〇c為說明圖2〇Α之冷卻總成的橫截面圖。 圖21Α為說明根據本發明技術之另一具體實例組態之 冷卻總成的橫截面圖,該冷卻總成具有可在氣球内移動之 細長絕熱部件。 圖2 1B為說明圖21 A之冷卻總成的橫截面圖。 圖2ic為說明呈遞送狀態處於遞送外鞘内之圖Ua之 冷卻總成的橫截面圖。 圖22A為說明根據本發明技術之一具體實例組態之冷 卻總成的橫截面圖,該冷卻總成具有可在氣球内移動之二 長絕熱部件。 、 圖22B為說明圖22A之冷卻總成的橫截面圖。 ,、圖23八為說明根據本發明技術之一具體實例組態之冷 I7 成的面圖’該冷卻總成具有多個部分圓周氣球。 圖23B為說明圖23 A之冷卻總成的等角視圖。 、,圖24 A為說明根據本發明技術之另—具體實例組態 成的。’j面圖’該冷卻總成具有多個部分圓周氣球。 圖24B為說明圖24A之冷卻總成的等角視圖。 圖25為說明根據本發明技術之_具體實例組態之 〜成的剖面圖’該冷卻總成具有螺旋狀凹區。 圖%為說明根據本發明技術之一具體實例組態之冷卻 218 201223577 總成的剖面圖,該冷卻總成具有間隔開之凹區。 圖27A為說明根據本發明技術之另一具體實例組萌之 冷卻總成的剖面圖,該冷卻總成具有間隔開之凹區。 圖27B為說明圖27A之冷卻總成的橫截面圖。 圖27C為說明圖27A之冷卻總成的等角視圖。 、圖28為說明根據本發明技術之一具體實例組態之冷郜 總成的剖面圖,該冷卻總成具有間隔開之突起。 17 齒圖29為說明根據本發明技術之一具體實例組態之冷卸 i成的剖面圖’該冷卻總成具有包繞在排出通道周圍的 旋狀氣球。 系 泡圖30為說明根據本發明技術之一具體實例組態之冷省 …成的剖面圖’該冷卻總成具有包繞在供應内腔周圍的蟫 旋狀氣球。 的螺 她圖31為說明根據本發明技術之另一具體實例組態之八 P :成的剖面_,該冷卻總成具有包繞在供應内腔 螺旋狀氣球。 阁的 圖32A為說明根據本發明技術之一具 成的剖面》,該冷卻總成具有成型部件,該成型= 具有形狀記憶。 丨件 圖32B為說明圖32A之冷卻總成的橫截面圖。 卻绅H A為說明根據本發明技術之-具體實例組態之冷 剖面圖,該冷卻總成具有沿其長度彎曲之氣球。 圖圖加為說明圖33A之冷卻總成的橫截面圖。 ’、’、°兒明呈遞送狀態處於遞送外鞘内之圖33八之 •3 219 201223577 冷卻總成的橫截面圖。 圖34為說明根據本發明技術之另一具體實例組態之冷 卻總成的橫截面圖,該冷卻總成具有沿其長度彎曲之氣球。 圖3 5 A為說明根據本發明技術之一具體實例組態之冷 卻總成的剖面圖,該冷卻總成具有氣球,該氣球具有受限 制之縱向部分。 圖35B為說明圖35A之冷卻總成的橫截面圖。 圖3 6為說明根據本發明技術之另一具體實例組態之冷 卻總成的橫截面圖,該冷卻總成具有氣球,該氣球具有受 限制之縱向部分。 圖3 7為說明根據本發明技術之一具體實例組態之冷卻 總成的剖面圖,該冷卻總成具肴環狀氣球。 圖38A為說明根據本發明技術之一具體實例組態之冷 卻總成的剖面圖,該冷卻總成具有多個細長氣球。 圖38B為說明圖38A之冷卻總成的橫截面圖。 圖39A為說明根據本發明技術之另一具體實例組態之 冷卻總成的剖面圖’該冷卻總成具有多個細長氣球。 圖39B及圖3 9C為說明圖39A之冷卻總成的橫截面圖。 圖40為說明根據本發明技術之另一具體實例組態之冷 &quot;P⑽成的;^截面圖’該冷卻總成具有多個細長氣球。 圖4 1為說明根據本發明技術之一具體實例組態之冷卻 總成的剖面圖’該冷卻總成具有多個螺旋狀氣球。 2為5兒明根據本發明技術之另一具體實 卻總成的立丨丨品面 、、悲'之冷 Λ的。j面圖’該冷卻總成具有多個螺旋狀氣球。 220 201223577 圖43 A為說明根據本發明技術之一具體眘如,… , 、赶貫例組態之冷 卻總成的剖面圖,該冷卻總成具有多個連接於士、 〜W &gt;7、战型部件之 細長氣球。 圖43B為說明圖43 A之冷卻總成的橫截面圖。 圖43C為說明圖43A之冷卻總成的剖面圖,其中$成 型部件收縮。 圖44A為說明根據本發明技術之另一具體實例組雜之 冷卻總成的剖面圖,該冷卻總成具有多個連接於成型部件 之細長氣球。 圖44B為說明圖44 A之冷卻總成的橫截面圖。 圖44C為說明圖44A之冷卻總成的剖面圖,其中該成 型部件收縮。 圖4 5 A為說明根據本發明技術之一具體實例組態之冷 卻總成的剖面圖,該冷卻總成具有多個細長氣球,該等氣 球具有不同組成。 圖45B為說明圖45 A之冷卻總成膨脹至第一橫截面尺 寸之橫截面圖。 圖4 5B-1為說明圖45B中所示之分割區的放大橫截面 圖。 圖45C為說明圖45 A之冷卻總成膨脹至第二橫截面尺 寸之橫截面圖,該第二橫截面尺寸大於該第一橫截面尺寸。 圖46為說明根據本發明技術之另一具體實例組態之冷 卻總成的橫戴面圖,該冷卻總成具有多個細長氣球,該等 氣球具有不同組成。 221 201223577 圖46_1為說明圖46中所示之分割區的放大橫截面圖。 圖47為說明根據本發明技術之一具體實例組態之冷卻 總成的剖面圖,該冷卻總成具有包繞在次要氣球周圍的螺 旋狀主要氣球。 圖48A為說明根據本發明技術之一具體實例組態之冷 卻總成的剖面圖,該冷卻總成具有處於次要氣球内之螺旋 狀主要氣球。 圖48B為說明圖48A之冷卻總成的橫截面圖。 圖49為說明根據本發明技術之另一具體實例組態之冷 部總成的剖面圖,該冷卻總成具有包繞在次要氣球周圍的 螺旋狀主要氣球。 圖50為說明根據本發明技術之另一具體實例組態之冷 部總成的剖面圖,該冷卻總成具有包繞在次要氣球周圍的 蜾旋狀主要氣球。 圖51為說明根據本發明技術之另一具體實例組態之冷 7〜成的°·*面該冷卻總成具有包繞在次要氣球周圍的 螺旋狀主要氣球。 ^ A為說明根據本發明技術之一具體實例組態之低 成及閉塞部件。 -’。療裝置之遠端部分的剖面圖,該遠端邹分包括冷卻總 圖52B為說明圖52A之遠端部S 216 201223577 has a slanted distal part. Figure 13 is a cross-sectional view illustrating a cooling assembly configured in accordance with one embodiment of the present technology, the cooling assembly having a supply tube having a helical portion wrapped around the discharge passage. Figure 14 is a cross-sectional view illustrating a cooling assembly configured in accordance with another embodiment of the present technology. The cooling assembly has a supply tube having a helical portion wrapped around the discharge passage. Figure 15A is a cross-sectional view showing a cooling assembly configured in accordance with one embodiment of the present technology, the cooling assembly having an inner balloon having an internal balloon aperture. Figure 15B is a cross-sectional view illustrating the cooling assembly of Figure 15A. Figure 16 is a cross-sectional view of a cooling assembly configured in accordance with one embodiment of the present technology, the cooling assembly having an inner a ball and an outer balloon, the inner balloon having an inner balloon aperture having an inner balloon aperture Raise the convoluted portion. Figure 1 6B is a cross-sectional view illustrating the cooling assembly of Figure 6A. Figure 17A is a cross-sectional view showing a cooling assembly configured in accordance with one embodiment of the present technology, the cooling assembly having elongated heat insulating members. Figure 178 is a cross-sectional view illustrating the cooling assembly of Figure 17A. Figure 18A is a cross-sectional view showing a cooling assembly configured in accordance with another embodiment of the present technology, the cooling assembly having elongated thermal insulation components. Figure 18B is a cross-sectional view illustrating the cooling assembly of Figure 18A. Figure 19A is a cross-sectional view showing a cooling assembly configured in accordance with one embodiment of the present technology, the cooling assembly having a spiral insulating member. 217 3 201223577 FIGS. 19B and 19C are cross-sectional views illustrating the cooling assembly of FIG. 19A. Fig. 20A is a plan view showing the cooling L of a configuration according to an embodiment of the present invention, the cooling assembly having a heat insulating member similar to an interlaced double helix. 20' and FIG. 2〇c are cross-sectional views illustrating the cooling assembly of FIG. Figure 21 is a cross-sectional view showing a cooling assembly configured in accordance with another embodiment of the present technology, the cooling assembly having elongated thermal insulation members movable within the balloon. Figure 2B is a cross-sectional view illustrating the cooling assembly of Figure 21A. Figure 2ic is a cross-sectional view showing the cooling assembly of Figure Ua in a delivery sheath in a delivery state. Figure 22A is a cross-sectional view showing a cooling assembly configured in accordance with one embodiment of the present technology, the cooling assembly having two long thermal insulation members movable within the balloon. 22B is a cross-sectional view illustrating the cooling assembly of FIG. 22A. Figure 23 is a plan view showing a cold I7 configuration according to an embodiment of the present technology. The cooling assembly has a plurality of partial circumferential balloons. Figure 23B is an isometric view illustrating the cooling assembly of Figure 23A. Figure 24A is a diagram illustrating another embodiment of the techniques in accordance with the present invention. 'j-face' The cooling assembly has a plurality of partial circumferential balloons. Figure 24B is an isometric view illustrating the cooling assembly of Figure 24A. Figure 25 is a cross-sectional view showing the configuration of the embodiment of the present invention. The cooling assembly has a spiral recess. Figure % is a cross-sectional view showing a cooling 218 201223577 assembly configured in accordance with one embodiment of the present technology, the cooling assembly having spaced apart recesses. Figure 27A is a cross-sectional view showing a cooling assembly of another embodiment of the present invention having spaced apart recesses in accordance with the teachings of the present invention. Figure 27B is a cross-sectional view illustrating the cooling assembly of Figure 27A. Figure 27C is an isometric view illustrating the cooling assembly of Figure 27A. Figure 28 is a cross-sectional view showing a cold heading assembly configured in accordance with an embodiment of the present technology, the cooling assembly having spaced apart protrusions. 17 Teeth Figure 29 is a cross-sectional view showing the cold discharge of a configuration according to one embodiment of the present technology. The cooling assembly has a spiral balloon wrapped around the discharge passage. The bubble diagram 30 is a cross-sectional view illustrating a cold configuration according to one embodiment of the present technology. The cooling assembly has a convoluted balloon wrapped around the supply lumen. Figure 31 is a cross-sectional view of a configuration of another embodiment of the present invention having a helical balloon surrounded by a supply lumen. Figure 32A is a cross section showing one of the techniques of the present invention having a molded part having a shape memory. Figure 32B is a cross-sectional view illustrating the cooling assembly of Figure 32A. However, H A is a cold cross-sectional view illustrating a configuration according to the embodiment of the present invention, the cooling assembly having a balloon curved along its length. Figure is a cross-sectional view illustrating the cooling assembly of Figure 33A. ‘,’, ° 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Figure 34 is a cross-sectional view showing a cooling assembly configured in accordance with another embodiment of the present technology, the cooling assembly having a balloon curved along its length. Figure 3 5A is a cross-sectional view showing a cooling assembly configured in accordance with one embodiment of the present technology, the cooling assembly having a balloon having a restricted longitudinal portion. Figure 35B is a cross-sectional view illustrating the cooling assembly of Figure 35A. Figure 36 is a cross-sectional view showing a cooling assembly configured in accordance with another embodiment of the present technology, the cooling assembly having a balloon having a restricted longitudinal portion. Figure 37 is a cross-sectional view showing a cooling assembly configured in accordance with one embodiment of the present technology, the cooling assembly having an annular balloon. Figure 38A is a cross-sectional view showing a cooling assembly configured in accordance with one embodiment of the present technology, the cooling assembly having a plurality of elongated balloons. Figure 38B is a cross-sectional view illustrating the cooling assembly of Figure 38A. Figure 39A is a cross-sectional view showing a cooling assembly configured in accordance with another embodiment of the present technology. The cooling assembly has a plurality of elongated balloons. 39B and FIG. 3C are cross-sectional views illustrating the cooling assembly of FIG. 39A. Figure 40 is a diagram showing the configuration of a cold &quot;P(10) according to another embodiment of the present technology; the cooling assembly has a plurality of elongated balloons. Figure 4 is a cross-sectional view showing a cooling assembly configured in accordance with one embodiment of the present technology. The cooling assembly has a plurality of spiral balloons. 2 is a clarification of the appearance of another concrete assembly according to the technology of the present invention, and the sorrow of the sorrow. j. The cooling assembly has a plurality of spiral balloons. 220 201223577 FIG. 43A is a cross-sectional view showing a cooling assembly according to one of the techniques of the present invention, which is configured with a plurality of connections, and the cooling assembly has a plurality of connections to the s, 〜W &gt; A slender balloon of combat components. Figure 43B is a cross-sectional view illustrating the cooling assembly of Figure 43A. Figure 43C is a cross-sectional view illustrating the cooling assembly of Figure 43A with the forming member contracted. Figure 44A is a cross-sectional view showing a further embodiment of a cooling assembly having a plurality of elongated balloons attached to a molded component in accordance with another embodiment of the present technology. Figure 44B is a cross-sectional view illustrating the cooling assembly of Figure 44A. Figure 44C is a cross-sectional view illustrating the cooling assembly of Figure 44A with the shaped member contracted. Figure 4 5A is a cross-sectional view showing a cooling assembly configured in accordance with one embodiment of the present technology, the cooling assembly having a plurality of elongated balloons having different compositions. Figure 45B is a cross-sectional view illustrating the expansion of the cooling assembly of Figure 45A to a first cross-sectional dimension. Fig. 4 5B-1 is an enlarged cross-sectional view illustrating the divided area shown in Fig. 45B. Figure 45C is a cross-sectional view illustrating the expansion of the cooling assembly of Figure 45A to a second cross-sectional dimension that is greater than the first cross-sectional dimension. Figure 46 is a cross-sectional view showing a cooling assembly configured in accordance with another embodiment of the present technology, the cooling assembly having a plurality of elongated balloons having different compositions. 221 201223577 Figure 46_1 is an enlarged cross-sectional view illustrating the divided area shown in Figure 46. Figure 47 is a cross-sectional view showing a cooling assembly configured in accordance with an embodiment of the present technology, having a spiral-shaped primary balloon wrapped around a secondary balloon. Figure 48A is a cross-sectional view showing a cooling assembly configured in accordance with one embodiment of the present technology having a spiral main balloon in a secondary balloon. Figure 48B is a cross-sectional view illustrating the cooling assembly of Figure 48A. Figure 49 is a cross-sectional view showing a cold section assembly configured in accordance with another embodiment of the present technology, having a spiral primary balloon wrapped around a secondary balloon. Figure 50 is a cross-sectional view showing a cold section assembly configured in accordance with another embodiment of the present technology having a convoluted primary balloon wrapped around a secondary balloon. Fig. 51 is a view showing a cold-formed configuration of a cold-shaped main balloon surrounded by a secondary balloon in accordance with another embodiment of the present technology. ^ A is a low- and occlusive component configured to be configured in accordance with one embodiment of the present technology. -’. A cross-sectional view of the distal portion of the treatment device, the distal portion including cooling total Figure 52B for illustrating the distal end portion of Figure 52A

總成及閉塞部件。 52A之遠端部分的橫戴面圖。 一具體實例組態之低 該遠蠕部分包括冷卻Assembly and occlusion components. A cross-sectional view of the distal portion of the 52A. The low configuration of a specific example includes the cooling

S 222 201223577 圖54為說明根據本發明技術之一具體實例組態之冷卻 總成的橫截面圖,該冷卻總成可十分適於在不發生相變的 情況下循環致冷劑。 圖55為說明根據本發明技術之另一具體實例組態之冷 卻總成的橫截面圖,該冷卻總成可十分適於在不發生相變 的情況下循環致冷劑。 圖56為交感神經系統(SNS)及腦如何經由_ 體通信之概念性說明。 /、 圖57為神經支配左腎而形成圍繞左腎動脈 的神經的放大解剖圖。 、&amp;叢 圖58A及圖58B分別為描繪腦 描 興月之間的神經傳屮Η 傳入通信的人體解剖圖及概念圖。 出及 圖 剖圖 59Α及圖59Β分別為人類動脈及靜脈血管結構之解 【主要元件符號說明】 223S 222 201223577 Figure 54 is a cross-sectional view illustrating a cooling assembly configured in accordance with one embodiment of the present technology, which may be well suited for circulating a refrigerant without phase change. Figure 55 is a cross-sectional view showing a cooling assembly configured in accordance with another embodiment of the present technology, which is well suited for circulating a refrigerant without phase change. Figure 56 is a conceptual illustration of how the sympathetic nervous system (SNS) and brain communicate via _ body. /, Figure 57 is an enlarged anatomical view of the nerve that innervates the left kidney to form a nerve surrounding the left renal artery. &amp; Clusters Figure 58A and Figure 58B are human anatomy diagrams and conceptual diagrams depicting the incoming communication of neurotransmissions between brains and months. Fig. 59Α and Fig. 59Β are the solutions of human arterial and venous vascular structures respectively [Main component symbol description] 223

Claims (1)

201223577 七、申請專利範圍: 1·一種低溫治療裝置,其包含: 、有這1^ °卩分之細長轴,該轴經組態以在血管内 將忒逖端。P分疋位於腎動脈或腎小口中或以其他方式鄰近 腎動脈或腎小口之治療部位處; 一沿該轴之至φ _ \ / ~ 4分之供應内腔,該供應内腔.經組 態以接收液體致冷劑; 一處於該遠端部分之冷卻總成,該冷卻總成具有一遞 =狀態及:部署狀態,t亥冷卻總成包括一孔口及一包括一 定義一施藥腔之施藥氣球的施藥器,該孔口與該供應内腔 /M體連通孩施藥氣球具有一與該孔口流體連通之熱傳遞 部分,其中該施藥器經組態以在該部署狀態下在該冷卻總 成接收致冷劑時產生治療上有效之低溫腎神經調節;及 一自該施藥n附近間隔開之閉塞部件,該閉塞症部件 具有-收縮狀態及一膨脹狀態,丨中該閉塞部件具有經組 態以在該膨脹狀態下完全閉塞該治療部位附近之該腎動脈 及/或腎小口的一橫截面尺寸。 2 ·如申請專利範圍第丨項之低溫治療裝置,其中該閉塞 部件包括-閉塞氣球,制塞氣球^義—流體連接於該施 藥腔之閉塞腔。 3.如申請專利範圍第2項之低溫治療裝置,其進一步包 含-沿該軸之至少一部分之排出通道,其中該閉塞腔流體 連接於該排出通道。 4,如申請專利範圍第2項之低溫治療裝置,其中該施藥 224 201223577 ^ 腔在該部署狀態下具有一第一致冷劑滯留時間,其中該閉 •基腔在該膨脹狀態下具有一第二致冷劑滯留時間,且其中 - 該第—致冷劑滯留時間小於該第二致冷劑滯留時.間。 - 5.如申請專利範圍第2項之低溫治療裝置,其進一步包 含一沿該軸之至少一部分之填充内腔,其中該填充内腔流 體連接於該閉塞腔,且其中該閉塞腔與該供應内腔流體分 離。 6.如申請專利範圍第1項之低溫治療裝置,其中該閉塞 4件可知脹且經組態以在該膨脹狀態下完全閉塞具有不同 直徑之腎動脈或腎小口。 7·如申請專利範圍第丨項之低溫治療裝置,其中該閉塞 邠件包括一閉塞氣球,且該閉塞氣球大體上為順應性的。 8. 如申請專利範圍第丨項之低溫治療裝置,其進一步包 έ手柄,該軸具有一處於該手柄處之近端部分,其中該 軸包括一控制内腔及一處於該控制内腔内之細長控制部 件,且其中該控制部件可操作地耦接於該遠端部分及該手 柄以使得增加或降低該控制部件之張力可控制遠離該閉塞 部件之該遠端部分之至少一個區段的偏轉。 9. 如申請專利範圍第丨項之低溫治療裝置,其中該施藥 器在該部署狀態下具有一小於該閉塞部件在該膨脹狀態下 之邊検截面尺寸的施藥器橫截面尺寸以使得該施藥器在哕 部署狀態下不完全閉塞該治療部位處之該腎動脈及/或腎小 σ 〇 10. 如申請專利範圍第1項之低溫治療裝置,其中唁冷 225 201223577 卻總成包括一細長支撐部件’且其中該施藥腔包括一包繞 在該支樓部件之至少一部分周圍的螺旋狀氣球。 11. 如申請專利範圍第1項之低溫治療裝置,其中: 該冷卻總成具有一長度, 該施藥氣球在該部署狀態下具有一包括複數個凹入部 分及一圍繞該複數個凹入部分之非凹入區域的形狀, 該非凹入區域至少部分地定義該熱傳遞部分,且 該熱傳遞部分在沿該長度之縱向片段處為非圓周的。 12. 如申請專利範圍第u項之低溫治療裝置,其中該施 藥氣球在該部署狀態下之該形狀大體上為圓柱形。 13. 如申請專利範圍第丨項之低溫治療裝置,其中: 該冷卻總成具有一長度, .該施藥氣球在該部署狀態下具有:一包括複數個突起及 一圍繞該複數個突起之非突起區域的形狀, 該複數個突起至少部分地定義該熱傳遞部分;且 該熱傳遞部分在沿該長度之縱向片段處為非圓周的。 14. 如申凊專利範圍第1項之低溫治療裝置,其中:201223577 VII. Patent application scope: 1. A cryotherapy device comprising: an elongated shaft having the 1^°卩, which is configured to be a sacral end in a blood vessel. P bifurcation is located in the renal artery or renal stenosis or otherwise adjacent to the treatment site of the renal artery or renal ostium; a supply lumen to the φ _ \ / ~ 4 points along the axis, the supply lumen. a state to receive a liquid refrigerant; a cooling assembly at the distal end portion, the cooling assembly having a delivery state and a deployment state, the t-cooling assembly includes an orifice and a formulation including a definition An applicator for the application balloon of the chamber, the orifice being in communication with the supply lumen/M body, the application balloon having a heat transfer portion in fluid communication with the orifice, wherein the applicator is configured to In the deployed state, the cooling assembly receives therapeutically effective low temperature renal nerve regulation; and an occlusive component spaced apart from the vicinity of the application n, the occlusive component having a contracted state and an expanded state, The occlusion member has a cross-sectional dimension configured to completely occlude the renal artery and/or renal orifice adjacent the treatment site in the expanded state. 2. The cryotherapy device of claim 3, wherein the occluding component comprises a occlusion balloon, and the occlusion balloon is fluidly coupled to the occlusion cavity of the application chamber. 3. The cryotherapy device of claim 2, further comprising - a discharge passage along at least a portion of the shaft, wherein the occlusion chamber is fluidly coupled to the discharge passage. 4. The cryotherapy device of claim 2, wherein the application 224 201223577 ^ cavity has a first refrigerant residence time in the deployed state, wherein the closed base cavity has a first state in the expanded state The second refrigerant residence time, and wherein - the first refrigerant retention time is less than the second refrigerant retention time. 5. The cryotherapy device of claim 2, further comprising a filling lumen along at least a portion of the shaft, wherein the filling lumen is fluidly coupled to the occlusion cavity, and wherein the occluding cavity and the supply The lumen fluid is separated. 6. The cryotherapy device of claim 1, wherein the occlusion is operative and configured to completely occlude a renal artery or a renal orifice having a different diameter in the expanded state. 7. The cryotherapy device of claim 3, wherein the occlusion element comprises an occlusion balloon and the occlusion balloon is substantially compliant. 8. The cryotherapy device of claim 2, further comprising a handle having a proximal portion at the handle, wherein the shaft includes a control lumen and a lumen within the control lumen An elongated control member, and wherein the control member is operatively coupled to the distal portion and the handle such that increasing or decreasing tension of the control member controls deflection of at least one section of the distal portion away from the occluding member . 9. The cryotherapy device of claim 2, wherein the applicator has a cross-sectional dimension of the applicator that is smaller than a cross-sectional dimension of the occluding member in the expanded state in the deployed state such that The applicator does not completely occlude the renal artery and/or glomerular σ 该 at the treatment site in the sputum deployment state. 10. The cryotherapy device of claim 1 wherein the sputum 225 201223577 assembly includes a An elongated support member 'and wherein the applicator chamber includes a spiral balloon wrapped around at least a portion of the branch member. 11. The cryotherapy device of claim 1, wherein: the cooling assembly has a length, the application balloon having a plurality of concave portions and a surrounding concave portion in the deployed state The shape of the non-recessed region, the non-recessed region at least partially defining the heat transfer portion, and the heat transfer portion being non-circular at a longitudinal segment along the length. 12. The cryotherapy device of claim 5, wherein the application balloon is substantially cylindrical in shape in the deployed state. 13. The cryotherapy device of claim 2, wherein: the cooling assembly has a length, the dispensing balloon has, in the deployed state, a plurality of protrusions and a plurality of protrusions surrounding the plurality of protrusions The shape of the raised region, the plurality of protrusions at least partially defining the heat transfer portion; and the heat transfer portion being non-circular at a longitudinal segment along the length. 14. The cryotherapy device of claim 1 of the patent scope, wherein: 該施藥氣球包括一非圓周部分及一連接部分, 該連接部分連接於該支撐部件,The dispensing balloon includes a non-circular portion and a connecting portion, the connecting portion being coupled to the support member, .邊非圓周部分在該部署狀態 該非圓周部分至少部分地定 該熱傳遞部分在沿該長度之 226The non-circular portion is in the deployed state, the non-circular portion at least partially defining the heat transfer portion along the length 226 201223577 分 範園第一_置,其中: 第—連接部分, 該非圓周部分為— 該施藥氣球包括第一非圓周部分, 估一連接於該支撐部件之第二連接部 該施藥氣球包括一 開之第二非圓周部分,β部署狀⑧下與該支撐部件間p 該第—非圓周部八 部分之間, 卩刀處於該第一連接部分與該第二連4 該第二非圓周部分處 部分之間,且關於 示迕按丨刀與忒第二連幸 開;且 以長度而與該第一非圓周部分徑向間丹 少部分地另 該 :遞=周部分及該第二非圓周部分至 義該熱傳遞部分。 16·如申請專利範 兮Μ &amp;严 靶圍第14項之低溫治療裝置,其 該施樂氧球為―第―施藥氣球, 該連接部分為一第一連接部分, 5亥非圓周部分為 刀為一第一非圓周部分, 該施藥器白虹 開之第-施~沿該長度與該第一施藥氣球縱向 间之弟—施樂氣球, 該第二施藥氣球一 部分, 枯弟一非®周部分及一第二 °亥第一連接部分連接於該支撐部件, 5亥第二非圓周部分在該部署狀態下沿該長度與該支撐 227 201223577 部件縱向間隔開,且 該第—非圓周部分及該第二非圓周部分至少部分地定 義該熱傳遞部分。 厂·如申請專利範圍冑丄項之低溫治療裝置,其中: 該冷卻總成具有一長度, 玄施藥氣球具有一螺旋狀凹入部分及一螺旋狀非凹入 部分, 該螺旋狀非凹入部分至少部分地定義該熱傳遞部分, 且 該熱傳遞部分在沿該長度之縱向片段處為非圓周的。 18. 如申請專利範圍第1項之低溫治療裝置,其中: 該施藥氣球為細長型且具有—長度、沿該長度之一施 藥氣球近端部分、一始醢备+ 施樂軋球中間部分及一施藥氣球遠端 部分, 該施藥氣球沿該長度彎曲以使該施藥氣球在該部署狀 態下具有—具有—沿該長度之大體上凹曲率的第-壁部分 及-具有:沿該長度之大體上非凹曲率的第二壁部分, «玄施藥軋球中間部分經組態以在該部署狀態下大體上 沿該第m且大體上不沿該第—壁部分接觸該腎動脈 及/或腎小口, 處於該施藥氣球中間部分處之該第二壁部分至少部分 地定義該熱傳遞部分;且 該熱傳遞部分在沿該長度之縱向片段處為非圓周的。 19. 如申請專利範圍第18項之低溫治療裴置,其中該第 S 228 201223577 -壁部分具有一第一厚度,且其中該第二壁部分具有一小 於該第一厚度之第二厚度。 2〇·如申請專利範圍第丨項之低溫治療裝置,其中: 忒施藥氣球為細長型且具有一長度, 該冷卻總成包括· _ ώ: 1 ^ /α s亥長度之至少一部分之細長成型 部件, 該成型部件在該遞送狀態下具有一大體上線性之組態 且在該部署狀態下具有—曲線組態,且 /施藥氣球在該部署狀態下具有一至少部分對應於該 曲線組態之形狀。 # 21.如申請專利範圍第2〇項之低溫治療裝置其中該施 樂氣球在該部署狀態下之該形狀大體上為螺旋狀。 士申明專利範圍第20項之低溫治療裝置,其中該施 藥氣球在該部署狀態下之該形狀大體上為蛇形。 23.如申請專利範圍第1項之低溫治療裝置,其中: 該冷卻總成具有一長度, 該裝置包括一可相對於該轴縱向移$之細長成型部 球 該施藥氣球沿該長度具有 氧球近端部分、 第 氣球中間部分及-第-氣球遠端部分 該施藥器包括—沿該長度具有一第二氣球近端部分、 第二氣球中間部分及一第二氣球遠端部分之第二細長氣 氣球遠端部分及該第 礼艰%端部分連接於該201223577 分范第一第一_, wherein: a first connection portion, the non-circumferential portion is - the application balloon includes a first non-circumferential portion, an estimated second connection portion connected to the support member, the application balloon includes a a second non-circumferential portion, between the beta deployment 8 and the support member p, the first non-circumferential portion, the file is at the first connection portion and the second connection portion 4 the second non-circumferential portion Between the parts, and about the 迕 迕 忒 忒 忒 忒 忒 忒 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The circumferential portion is to the heat transfer portion. 16. If the cryotherapy device of claim 14 is applied to the patent, the Xerox oxygen ball is a “first” application balloon, the connecting portion is a first connecting portion, and the non-circular portion of the The knife is a first non-circumferential portion, and the applicator is white-opened by the first-to-shoulder along the length and the longitudinal direction of the first application balloon-- Xerox balloon, the second application balloon part, the abdomen a first circumferential portion and a second first connecting portion are connected to the supporting member, and the second non-circular portion of the second portion is longitudinally spaced apart from the supporting portion 227 201223577 in the deployed state, and the first non-circumferential The portion and the second non-circular portion define, at least in part, the heat transfer portion. The invention relates to a cryotherapy device according to the scope of the patent application, wherein: the cooling assembly has a length, the Xuan application balloon has a spiral concave portion and a spiral non-recessed portion, the spiral non-recessed portion The portion of the heat transfer portion is at least partially defined, and the heat transfer portion is non-circular at a longitudinal segment along the length. 18. The cryotherapy device of claim 1, wherein: the application balloon is elongated and has a length, a proximal portion of the application balloon along one of the lengths, a beginning device + a middle portion of the Xerox ball And a distal portion of the application balloon, the application balloon being curved along the length such that the application balloon has, in the deployed state, a first wall portion having a substantially concave curvature along the length and having: a second wall portion of the length that is substantially non-concavely curved, the middle portion of the "Xuan application pill ball is configured to contact the kidney substantially along the mth portion and substantially not along the first wall portion in the deployed state An arterial and/or renal orifice, the second wall portion at the intermediate portion of the application balloon at least partially defines the heat transfer portion; and the heat transfer portion is non-circular at a longitudinal segment along the length. 19. The cryotherapy device of claim 18, wherein the S 228 201223577 - the wall portion has a first thickness, and wherein the second wall portion has a second thickness that is less than the first thickness. 2. The cryotherapy device of claim 2, wherein: the sputum application balloon is elongated and has a length, and the cooling assembly comprises at least a portion of the length of the _ ώ: 1 ^ /α s hai a molded part having a substantially linear configuration in the delivery state and having a curve configuration in the deployed state, and/the application balloon having an at least partially corresponding portion of the curve set in the deployed state The shape of the state. # 21. The cryotherapy device of claim 2, wherein the shape of the Schole balloon in the deployed state is substantially helical. The cryotherapy device of claim 20, wherein the application balloon has a substantially serpentine shape in the deployed state. 23. The cryotherapy device of claim 1, wherein: the cooling assembly has a length, the device includes an elongated shaped portion ball longitudinally movable relative to the axis, the application balloon having oxygen along the length The proximal portion of the ball, the intermediate portion of the balloon, and the distal portion of the first balloon - the applicator includes - a second balloon proximal portion, a second balloon intermediate portion, and a second balloon distal portion along the length a distal portion of the elongated balloon and a portion of the first end of the balloon 229 201223577 ==以使得相對於該軸收縮該成型部件可 第一乳球沿該長度f曲並使該第—氣球 二 及該第二氣球中間部分橫向移動遠離該成型部件,3°刀 該第一氣球中間部分具有一第一外側,該第一 該部署狀態下沿該長度具有一大體上非凹曲率, 該第二氣球中間部分具有一第二外側,該第二外側在 部署狀態下沿該長度具有一大體上非凹曲率, 邊第-外側及該第二外側至少部分地定義該熱傳 分,且 該熱傳遞部分在沿該長度之縱向片段處為非圓周的。 24·一種用於治療一患者之方法,該方法包含: 在血s内將低溫治療裝置之一冷卻總成之一施藥器 定位於鄰近腎動脈或腎小口之治療部位處,其中該施藥器 處於一細長軸之—遠端部分處; 藉由在該冷卻系統内將液體致冷劑轉變成氣態致冷劑 而經由該施藥器之一熱傳遞部分冷卻該治療部位之一縱向 片段之至少一個非圓周部分,且從而產生治療上有效之低 溫腎神經調節;及 使一閉塞部件在該腎動脈及/或腎小口中之一閉塞部位 處膨脹以減少通過該治療部位之血流,其中該治療部位遠 離該閉塞部位。 25.如申請專利範圍第24項之方法,其中使該閉塞部件 膨脹包括使該閉塞部件之一閉塞氣球填充氣態致冷劑。 26·如申請專利範圍第24項之方法,其中使該閉塞部件 201223577 膨脹包括使該閉塞部件之一閉塞氣球被動填充氣態致冷 劑。 27. 如申請專利範圍第24項之方法,其中使該閉塞部件 膨脹包括經由沿該軸之至少一部分之一填充内腔向該閉塞 部件之一閉塞腔中引入填充材料。 28. 如申請專利範圍第24項之方法,其中使該閉塞部件 私脹包括使§亥閉塞部件自一收縮狀態膨脹至一膨脹狀態, 該閉塞部件在該膨脹狀態下具有约4 mm與約1〇 mm之間 的一直徑。 2 9.如申請專利範圍第2 4項之方法,其中該閉塞部件包 括一順應性氣球且使該閉塞部件膨脹包括使該順應性氣球 膨脹至大體上符合該腎動脈或腎小口之—内壁。 3〇·如申請專利範圍第24項之方法,其中該非圓周部分 為-第-非圓周部分且該方法進一步包含將該熱傳遞部分 重新定位以冷卻該治療部位之_縱向片段之—第二非圓周 部分,且從而產生治療上有效之低溫腎神經調節。 31. 如申請專利範圍第24項之方法,其中該施藥器星有 -遞送狀態及一部署狀態以及經組態以在該部署狀態下並 不完全閉塞該腎動脈及/或腎小口之橫截面尺寸。 32. 如申請專利範圍第24項之方法,其中使該閉塞部件 ㈣係在〇卩該至少—個非圓周部分之前進行。 八、圖式: (如次頁)229 201223577 == such that the first milk ball is bent along the length f and the intermediate portion of the second balloon and the second balloon are laterally moved away from the molded part by shrinking the molded part relative to the axis, 3° knife a balloon intermediate portion having a first outer side, the first deployed state having a substantially non-concave curvature along the length, the second balloon intermediate portion having a second outer side, the second outer side being disposed in the deployed state The length has a substantially non-concave curvature, the edge-outer side and the second outside portion at least partially defining the heat transfer, and the heat transfer portion is non-circular at a longitudinal segment along the length. 24. A method for treating a patient, the method comprising: positioning an applicator of a cooling assembly of a cryotherapy device in a blood s at a treatment site adjacent to a renal artery or a renal orifice, wherein the administering The device is at a distal end portion of an elongated shaft; the longitudinal portion of the treatment site is cooled by a heat transfer portion of the applicator by converting the liquid refrigerant into a gaseous refrigerant in the cooling system At least one non-circumferential portion, and thereby producing a therapeutically effective low temperature renal neuromodulation; and expanding an occlusive component at one of the renal artery and/or the renal ostia to reduce blood flow through the treatment site, wherein The treatment site is remote from the occlusion site. 25. The method of claim 24, wherein expanding the occluding member comprises occluding one of the occluding members with a balloon filled with a gaseous refrigerant. The method of claim 24, wherein expanding the occluding member 201223577 comprises passively filling one of the occluding members with a balloon to passively fill the gaseous refrigerant. 27. The method of claim 24, wherein expanding the occluding member comprises introducing a filling material into the occluding cavity of one of the occluding members via filling the lumen along one of the at least one portion of the shaft. 28. The method of claim 24, wherein the occluding the occluding member comprises expanding the occluding member from a contracted state to an expanded state, the occluding member having about 4 mm and about 1 in the expanded state. A diameter between 〇mm. 2. The method of claim 24, wherein the occluding component comprises a compliant balloon and expanding the occluding component comprises expanding the compliant balloon to an inner wall substantially conforming to the renal artery or renal ostium. The method of claim 24, wherein the non-circumferential portion is a -th-non-circumferential portion and the method further comprises repositioning the heat transfer portion to cool the longitudinal portion of the treatment site - the second non- The circumferential portion, and thus the therapeutically effective low temperature renal neuromodulation. 31. The method of claim 24, wherein the applicator has a delivery state and a deployed state and is configured to not completely occlude the renal artery and/or the renal orifice in the deployed state. Section size. 32. The method of claim 24, wherein the occluding member (4) is attached prior to the at least one non-circular portion. Eight, schema: (such as the next page) 231231
TW100139039A 2010-10-26 2011-10-26 Neuromodulation cryotherapeutic devices and associated systems and methods TW201223577A (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US40696810P 2010-10-26 2010-10-26
US201161528091P 2011-08-26 2011-08-26
US201161528684P 2011-08-29 2011-08-29
US201161546510P 2011-10-12 2011-10-12
US27932411A 2011-10-23 2011-10-23
US13/279,330 US9060755B2 (en) 2010-10-26 2011-10-23 Neuromodulation cryotherapeutic devices and associated systems and methods
US13/279,316 US20120158104A1 (en) 2010-10-26 2011-10-23 Neuromodulation cryotherapeutic devices and associated systems and methods
US13/279,312 US20120143294A1 (en) 2010-10-26 2011-10-23 Neuromodulation cryotherapeutic devices and associated systems and methods
US13/279,325 US9066713B2 (en) 2010-10-26 2011-10-23 Neuromodulation cryotherapeutic devices and associated systems and methods
US13/279,328 US9060754B2 (en) 2010-10-26 2011-10-23 Neuromodulation cryotherapeutic devices and associated systems and methods
US13/279,326 US9439708B2 (en) 2010-10-26 2011-10-23 Neuromodulation cryotherapeutic devices and associated systems and methods
US13/279,327 US8945107B2 (en) 2010-10-26 2011-10-23 Neuromodulation cryotherapeutic devices and associated systems and methods
US13/279,321 US20120136344A1 (en) 2010-10-26 2011-10-23 Neuromodulation cryotherapeutic devices and associated systems and methods
PCT/US2011/057490 WO2012058156A1 (en) 2010-10-26 2011-10-24 Neuromodulation cryotherapeutic devices associated systems and methods

Publications (1)

Publication Number Publication Date
TW201223577A true TW201223577A (en) 2012-06-16

Family

ID=46725587

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100139039A TW201223577A (en) 2010-10-26 2011-10-26 Neuromodulation cryotherapeutic devices and associated systems and methods

Country Status (1)

Country Link
TW (1) TW201223577A (en)

Similar Documents

Publication Publication Date Title
TWI564044B (en) Neuromodulation cryotherapeutic devices
US9060754B2 (en) Neuromodulation cryotherapeutic devices and associated systems and methods
CN103536350A (en) Neural regulation cold therapy device and relevant system
TW201223577A (en) Neuromodulation cryotherapeutic devices and associated systems and methods