201222969 六、發明說明: 【發明所屬之技術領域】 本發明涉及反射器天線。更且辨 ==置其具有提供改進的電性 【先前技術】 雙極化微波通信鏈路_-對制不同極化的錢,因此同 單信號/雙極通信鏈路她,能使鏈路容4幡地增加。但是,由 於信號分離的要求和/或每個錢之_指,因此姆於每個作 號,電性能會降低。隨著在地面通信系統中,尤其是在有限的处 頻譜環境巾,對鏈雜量稍增加的絲,化齡鏈路的使 用正在增加。 與單信號/雙極性通信鏈路-起使用的傳統地面通信反射器天 線可被設置在緊湊組件中,其中收發機緊接反射盤的背部安裝。 從而’對天線回波損耗的要求可放寬’插人祕和鏈路預算得到 改進。 由於額外的通道和功能複製能使雙信號處理成為可能,典型 的雙極化通信鏈路使用具有遠端收發機座架的反射器天線,因此 需要額外的波導管和/或收發機座架要求。 反射器天線接收的雙極化電信號由插入通道中的0MT分 離。分離後的信號之後各自運送至專用的收發機。 雙極化反射器天線元件需要考慮的電性能包括天線饋送和收發機 上的兩個正交極化埠之間的埠間隔離(ΙΡΙ)。OMT的IPI性能對 4 201222969 整個天線元件的交叉極化鑒別特性作貢獻。如果雙極化天線元件 的XPD降低,交又極化串_除(XPIC)將會㈣,這意味著正 交通道之間將會相互干擾,整铜信鏈路賴能降低。但是,如 果OMT/通道在物理意義上很大,由於信號能量不得不在無線電璋 和饋送埠之間傳播的距離增加,因此去極化成為額外因素。 國際專利申請公佈wo雇糊議和wo 2〇_88m分別 公開了 OMT和互連波導元件’可一同使用於具有緊接反射器背部 安裝的收發機的雙極化反射器天線元件中。w〇2〇〇7/〇88i83中的 OMT的内部信號表面包括一個複雜凸台隔板極化器特徵,由於 OMT元件勤騎道正交料,目麟㈣成本有效地進行 精確地機加工。目為OMT還是反㈣天線的饋独,協調不同的 反器天線配置之間的部分和/或將可選擇的〇MT配置應用到已 有的設施’例如在已有的反射肢線元件從單極化到雙極化操作 的場轉換/升級中的設施,可能是困難的。 【發明内容】 需要OMT内的90度通道變化以使在〇MT/饋送轂收發機側 的OMT輸出埠同反射器天線的縱軸對準。w〇 2〇〇7/〇88184中在 OMT和收發機的輸入埠之間的互連波導元件因此必須具有額外 的90度的彎曲部以在同反射||天線的縱軸正交的近祕配置中與 收發機配合。每個額外的9〇度通道的變化使製造複雜,延長了總 的通道’並且引入了用於IPI和/或信號的去極化衰減的額外機會。 微波工作頻率在一個寬的頻率範圍内擴展,通常在^之 S; 5 201222969 間現有的反射斋天線的解決方案典型地僅針對該頻段的窄帶設 計,因此需要全部重新設計、加卫、製造和完全不_反射器天 線元件的庫存以滿足市場需求。 反射器天線市場的競爭躲意力針於提高電性能和將總的 製造、庫存、分配、絲和維護成本_最小。因此,本發明的 目的是提供種此夠克服現有技術缺陷的雙極化反射器天線配 置。 【實施方式】 發明人發明了一種雙極化反射器天線元件,其中可安裝於反 射器/反射n饋送轂的背面上的0ΜΤ/互連波導元件,能使收發機 座架緊接反射器的背面且改進電性能。此外,ΟΜτ/波導元件的模 組特徵還能使便於互換/配置,用於以不同工作頻率和/或要求的電 性能折衷特性進行工作。 在雙極化反射器天線元件2的第一個實施例中,如圖1和2 中所示,為了清楚起見收發機(可選擇為單獨的接收機和/或發射 機)被去掉,收發機托架4緊接反射盤6的背面耦接,固定於反 射器天線10的饋送轂8上。例如,ΟΜΤ/饋送元件12可在近端16 耦接至饋送轂8的饋送埠14’並且在遠端18由收發機托架4支承。 本領域技術人員可認識到,近端16和遠端18是便於解釋元件取 向和/或互連關係而引入的端部名稱。元件中的每個元件還具有近 蠕16和遠端18,即,元件的端部分別面向相關元件的近端16或 遠端18。 6 201222969 如圖3中最好地被示出,0MT/饋送組件!2包括圓·方波導轉 齡22、方波導歡24、〇MT26和—對極化適配器π,它們串 聯搞接以形成從饋送轂8的饋送埠14到收發機輸入璋的波導通 道。 圓-方波導轉換器22可形成為一整體式元件,消除沿通道側壁 的縫隙’縫隙可引入信號衰減。 在近端與圓—方波導轉換器22輕接且在遠端18與〇赃⑽接 的方波導模組24具有在近端16和遠端18之間延伸的方波導%。 如圖4和5中最好地被示出,方波導3〇的三個側壁別被形成在 方波導模組24的凹槽部分32中,並且方波導30的第四側壁別 被形成在枝導池24喊料36中。哺部分%和蓋部分% ^通過鍵部件38比如插人插σ _釘蝴靖固件抑 螺釘等配合在一起。 由於方波導30的三個邊形成於凹槽部分 32和蓋部分36之間沿著方鱗3G的縫隙位於方波導刀 艾遠離麟側壁34的中心’在方波導信號傳播過程中所述中心 ^ 降低L賴_。此外,本領域技術人員 造過程中,方波導3〇的高容差方形 用非差《成本有_方錢得,由於讀導倒壁Μ 的中心配合的部分之_緊密斜向對準不是問題。 為了允許瞻26 (圖3 )的輸料42與〇ΜΤ/饋送元件12 的縱轴對稱鮮,使⑽τ %的_終Μ _長度最小 201222969 化’可採取方波導30的遠端18橫向偏移,使得〇Μτ/饋送組件 12成流線型並且不需要一對9〇度彎曲部和矩形波導3〇路徑上的 過渡部分。方波導30的縱向長度被選擇成以將輸出埠42設置于 相對於收發機托架4的所需爐位置3;1 ’用於同收發機的輸入璋 對準。 如圖6和7中示出的,〇游26可由兩個〇ΜΤ半片恥形成, 凜兩個ΟΜΤ半片通過鍵部件比如銷釘和插口和/或多個緊固件比 如螺釘等配合在-起。〇ΜΤ 26分離且轉換從方波導輸人痒糾進 入到彼此成90度取向的矩形波導44的每個極性,即在〇μτ的 交又口 49處轉換為垂直和水_化信號。根據本領域熟知的微波 傳播理論,0Μ丁交叉口 49的設計和尺寸取決於輸入和輸出波導 的尺寸和工作頻率,因而在此不再進一步詳細描述。雖然兩個 ΟΜΤ半片46之間的縫隙位於各自矩形波導側壁34的中心,但是 僅通過將方波導30的-値小的部錢置於GMT26的方波導^ 入埠48 ’可使出現在中心側壁縫隙的通道部分最小化。此外,= 26的兩個0MT半片結構極大地簡化了方波導%和每個矩形波導 44之間過渡表面的加X,例如齡了任何精密凸台特徵。 如圖3中最好地被示^ ’饋送埠14和輸料之間的波導通道包括 僅三個的90度彎曲部,每個彎曲部位於〇MT26内。 9〇度彎曲部的數量的減少可縮短總的通道長度並且提高電性 能。 極化適配器28可與每個輸出埠42相輕接以將各自通道同每 8 201222969 個收發機的輸人料準。每練發财取向為在同另—收發機成 鏡像的位置,保持收發機的任何散熱、服和/或環境封焊優選/ 要求的取向。 ' 在13Ghz 作頻段評估,根據第—個實施例的雙極化反射器 天線元件2與常規的遠端安裝收發機裝置相比在m方面具有顯著 的改進。 雙極化反射&天線元件2的第二個實施例中,如圖S和9中 不出的,為了清楚起見收發機(可選擇為單獨的接收機和/或發射 機)被去掉,收發機托架4緊接反射盤6的背面耦接,並固定在 反射器天線10的饋送轂8上。OMT/饋送組件12在近端16耦接 於饋送轂8的饋送埠14,並且在遠端18由收發機托架4支承。 如圖10,中最好地被示出’OMT/饋送組件12包括圓_方波導轉換器 22、OMT 26和極化適配器28,它們串聯耦接以形成從饋送轂8 的饋送埠14到收發機輸入埠的通道。 如圖11和12中示出’OMT26可由兩個OMT半片46形成, 該兩個OMT半片也通過鍵部件38比如銷釘和插口和/或多個緊固 件40比如螺釘等配合在一起。OMT 26分離並且轉換從方波導輸 入埠48進入彼此成90度取向的矩形波導44的每個極性,即,在 OMT的交叉口 49處轉換為垂直和水準極化信號。根據本領域熟 知的微波傳播理論,OMT交叉口 49的設計和尺寸取決於輸入和 輸出波導的尺寸和工作頻率’因而,在此不再進一步詳細描述。 矩形波導44的縱向長度被選擇為以將輸出埠42設置于相對於收201222969 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a reflector antenna. Moreover, it is determined that it has improved electrical properties. [Prior Art] Dual-polarized microwave communication links _-the money for different polarizations, so the same single-signal/bipolar communication link can enable the link. Increased capacity. However, due to the requirements of signal separation and/or the value of each money, the electrical performance is degraded for each number. With the use of ground-based communication systems, especially in limited spectrum environment towels, the use of age-old links is increasing for filaments with a slightly increased chain amount. The conventional terrestrial communication reflector antenna used with the single signal/bipolar communication link can be placed in a compact assembly in which the transceiver is mounted next to the back of the reflective disk. Thus, the requirement for antenna return loss can be relaxed, and the insertion budget and link budget are improved. Since additional channel and functional duplication enable dual signal processing, a typical dual-polarized communication link uses a reflector antenna with a remote transceiver mount, requiring additional waveguide and/or transceiver mount requirements . The dual polarized electrical signal received by the reflector antenna is separated by 0MT inserted into the channel. The separated signals are then each transported to a dedicated transceiver. The electrical properties to be considered for a dual polarized reflector antenna element include the inter-turn isolation (ΙΡΙ) between the antenna feed and the two orthogonal polarizations on the transceiver. The IPI performance of the OMT contributes to the cross-polarization discrimination characteristics of the entire antenna element of 4 201222969. If the XPD of the dual-polarized antenna element is reduced, the cross-polarization string_XPIC will be (4), which means that the positive traffic lanes will interfere with each other and the whole copper link will be reduced. However, if the OMT/channel is physically large, depolarization becomes an additional factor because the signal energy has to increase the distance traveled between the radio 璋 and the feed 埠. The international patent application publication and the disclosure of the OMT and the interconnected waveguide element respectively can be used together in a dual polarized reflector antenna element having a transceiver mounted immediately behind the reflector. The internal signal surface of the OMT in the w〇2〇〇7/〇88i83 includes a complex boss spacer polarizer feature. Due to the OMT component divergence orthogonal material, the eyeliner (4) is cost-effectively and accurately machined. The target is OMT or anti-(four) antenna feed, coordinating the parts between different inverter antenna configurations and / or applying the optional 〇MT configuration to existing facilities 'eg in existing reflective limb components from single Facilities that are polarized to field conversion/upgrade in dual-polarized operation can be difficult. SUMMARY OF THE INVENTION A 90 degree channel variation within the OMT is required to align the OMT output on the 〇MT/feed hub transceiver side with the longitudinal axis of the reflector antenna. The interconnected waveguide element between the OMT and the input port of the transceiver in w〇2〇〇7/〇88184 must therefore have an additional 90 degree bend to be orthogonal to the longitudinal axis of the same || The configuration works with the transceiver. The variation of each additional 9-turn channel complicates manufacturing, extends the total channel' and introduces an additional opportunity for depolarization attenuation of the IPI and/or signal. The microwave operating frequency extends over a wide frequency range, usually in the S; 5 201222969. The existing solution for reflex antennas is typically only designed for narrowbands in this band, so it needs to be completely redesigned, reinforced, manufactured and The inventory of the antenna elements is not at all responsive to market demand. The competition in the reflector antenna market is aimed at improving electrical performance and minimizing total manufacturing, inventory, distribution, wire and maintenance costs. Accordingly, it is an object of the present invention to provide a dual polarized reflector antenna configuration that overcomes the deficiencies of the prior art. [Embodiment] The inventors have invented a dual polarized reflector antenna element in which a 0 ΜΤ/interconnected waveguide element mountable on the back side of a reflector/reflecting n-feed hub enables the transceiver mount to be placed next to the reflector The back side and improved electrical performance. In addition, the modular features of the ΟΜτ/waveguide components can also be easily interchanged/configured for operation at different operating frequencies and/or required electrical performance tradeoffs. In a first embodiment of the dual polarized reflector antenna element 2, as shown in Figures 1 and 2, the transceiver (optionally a separate receiver and/or transmitter) is removed for clarity, transceiving The machine bracket 4 is coupled to the back surface of the reflector disk 6 and is fixed to the feed hub 8 of the reflector antenna 10. For example, the weir/feed element 12 can be coupled at the proximal end 16 to the feed cassette 14' of the feed hub 8 and at the distal end 18 by the transceiver tray 4. Those skilled in the art will recognize that the proximal end 16 and the distal end 18 are end names that are introduced to facilitate interpretation of component orientation and/or interconnection relationships. Each of the elements also has a proximal 16 and a distal end 18, i.e., the ends of the elements face the proximal end 16 or distal end 18 of the associated element, respectively. 6 201222969 As best shown in Figure 3, the 0MT/feed component! 2 includes a circular square waveguide age 22, a square waveguide 24, a 〇MT26, and a pair of polarization adapters π which are connected in series to form a waveguide channel from the feed port 14 of the feed hub 8 to the transceiver input port. The circular-square waveguide converter 22 can be formed as a one-piece component that eliminates the gaps along the sidewalls of the channel to introduce signal attenuation. The square waveguide module 24, which is lightly coupled at the proximal end to the circular-square waveguide converter 22 and to the bore (10) at the distal end 18, has a square waveguide % extending between the proximal end 16 and the distal end 18. As best shown in Figures 4 and 5, the three side walls of the square waveguide 3 are formed in the recessed portion 32 of the square waveguide module 24, and the fourth side wall of the square waveguide 30 is formed in the branch. The pilot 24 is shouting 36. The feeding portion % and the cap portion % ^ are fitted together by a key member 38 such as a plug-in _ _ _ _ _ _ _ _ _ _ _ _ _ Since the three sides of the square waveguide 30 are formed between the groove portion 32 and the cover portion 36 along the slit of the square scale 3G, the square waveguide knife is located away from the center of the lining wall 34' during the propagation of the square waveguide signal. Lower L _. In addition, in the process of manufacturing a person skilled in the art, the high tolerance square of the square waveguide 3〇 is non-difference "the cost has a square money, and the alignment of the center of the inverted wall 读 is not a problem. . In order to allow the feed 42 of the reticle 26 (Fig. 3) to be symmetrical with the longitudinal axis of the 〇ΜΤ/feed element 12, the _final _ length of (10) τ % is minimized to 201222969. The distal end 18 of the square waveguide 30 can be laterally offset. The 〇Μτ/feed assembly 12 is streamlined and does not require a pair of 9-turn bends and a transition portion on the rectangular waveguide 3 〇 path. The longitudinal length of the square waveguide 30 is selected to set the output port 42 to the desired furnace position 3 relative to the transceiver bay 4; 1 'for alignment with the input port of the transceiver. As shown in Figures 6 and 7, the migratory 26 can be formed by two half-shadows, the two half-pieces being mated by key members such as pins and sockets and/or a plurality of fasteners such as screws. 〇ΜΤ 26 separates and converts each of the polarities of the rectangular waveguides 44 that are oriented at 90 degrees from each other, i.e., at the intersection 49 of 〇μτ, into a vertical and water-based signal. The design and dimensions of the Μ 交叉 intersection 49 are dependent on the size and operating frequency of the input and output waveguides, and thus will not be described in further detail herein, in accordance with the microwave propagation theory well known in the art. Although the gap between the two half-half sheets 46 is located at the center of the respective rectangular waveguide side walls 34, it can be present on the center side wall only by placing the small-sized portion of the square waveguide 30 in the square waveguide of the GMT 26. The channel portion of the gap is minimized. In addition, the two 0MT half-piece structures of = 26 greatly simplify the addition of X to the transition surface between the square waveguide % and each rectangular waveguide 44, such as any precision boss feature. The waveguide channel between the feed raft 14 and the feed material, as best shown in Fig. 3, includes only three 90 degree bends, each bend being located within the 〇MT26. A reduction in the number of 9 turns can shorten the total channel length and improve electrical performance. The polarization adapter 28 can be lightly coupled to each of the output ports 42 to direct the respective channels to the input of each of the 201222969 transceivers. Each practice is oriented to maintain the preferred/required orientation of any heat sink, service and/or environmental seal of the transceiver at a location mirrored to the other transceiver. In the 13Ghz band evaluation, the dual polarized reflector antenna element 2 according to the first embodiment has a significant improvement in m compared to conventional remotely mounted transceiver devices. In a second embodiment of the dual polarized reflection & antenna element 2, as shown in Figures S and 9, the transceiver (optionally a separate receiver and/or transmitter) may be removed for clarity, The transceiver carrier 4 is coupled to the back side of the reflector disk 6 and is fixed to the feed hub 8 of the reflector antenna 10. The OMT/feed assembly 12 is coupled at the proximal end 16 to the feed cassette 14 of the feed hub 8 and at the distal end 18 by the transceiver carriage 4. As best seen in Figure 10, the 'OMT/feed assembly 12 includes a circular-square waveguide converter 22, an OMT 26, and a polarization adapter 28 that are coupled in series to form a feed port 14 from the feed hub 8 to the transceiver. The input channel of the machine. As shown in Figures 11 and 12, the OMT 26 can be formed from two OMT half sheets 46 that are also mated together by key members 38 such as pins and sockets and/or a plurality of fasteners 40 such as screws or the like. The OMT 26 separates and converts each polarity of the rectangular waveguide 44 that is oriented 90 degrees from each other from the square waveguide input 埠 48, i.e., to the vertical and level polarization signals at the intersection 49 of the OMT. The design and dimensions of the OMT intersection 49 depend on the size and operating frequency of the input and output waveguides, as is well known in the art, and thus will not be described in further detail herein. The longitudinal length of the rectangular waveguide 44 is selected to set the output 埠 42 relative to the receiving
S 9 201222969 發機托架4的所需減位置31,用於同收發機的輸入稍準。· 26的兩個晴半片、结構極大地簡化了方波導%和每個矩形波導 44之間過渡表面的加工,例如消除了任何精密凸台特徵。 如圖1〇中最好地示出的,饋稱14和輸出埠之間的通道包 括僅五個90度的f曲部,每個彎曲部位於〇Μτ %内。9〇度彎曲 部的數量的減少可賴總的通道長度並且提高電性能。 極化適配器28 (圖10)可與每個輸出埠42輕接以將各自通 道同每個收發機的輸人稍準。從騎鍊發機可被取向在同另 -收發機錢像驗置’保躲發機驗何散熱、引流和/或環境 封焊優選/要求的取向。 本領域技術人貞可領會到’隨著辭增加,高性能的雙模式 波導信號傳播會更加依賴於波導的高尺寸公差特性。因此,第二 個實施例騎盡可能靠近饋糾設置〇MT使方波導的長度最小 化,而不是使用單極性矩形波導44獲得要求_於將收發機靠近 反射盤6背面安裝的通道偏移。 在雙極化反射器天線元件2的第三個實施例中,如圖13和14中 示出的,為了清楚起見收發機(可選擇為單獨的接收機和/或發射 機)被去掉,收發機托架4緊接反射盤6的背面耦接,並固定在 反射器天線10的饋送轂8上。ΟΜΤ/饋送組件12在近端16耦接 於饋送轂8的饋送埠14,並且在遠端18由收發機托架4支承。 如圖15中最好地示出的,ΟΜΤ/饋送組件12包括饋送埠適配器 5〇、圓波導52、圓-方波導轉換器22、ΟΜΤ 26和極化適配器28, 201222969 它們串聯耦接以形成從饋送轂8的饋送埠14到收發機輸入埠的通 道0 如圖16和17中示出的,OMT 26可由兩個OMT半片46形 成,該兩個OMT半片也通過鍵部件38比如銷釘和插口和/或多個 緊固件40比如螺釘等配合在一起。〇MT 26分離並且轉換從方波 導輸入埠48進入彼此成90度取向的矩形波導44的每個極性,即, 在OMT的交又口 49處轉換為垂直和水準極化信號。根據本領域 熱知的微波傳播理論,OMT交叉口 49的設計和尺寸取決於輸入 和輸出波導的尺寸和工作鮮,目而,在此不再進—步詳細描述。 圓波導52的縱向長度被選擇為以將輸出埠42設置于相對於收發 機托架4的所需耦接位置31,用於同收發機的輸入埠對準。因此, 矩形波導44的長度可顯著縮短。OMT 26的兩個OMT半片結構 極大地g化了方波導3〇和每伽形波導Μ之_渡表面的加 工’例如消除了任何精密凸台特徵。 如圖15中最好地示出的,饋送埠14和輸出埠之間的通道包 括僅—個9〇度的彎曲部,每個彎曲部位於⑽T26内。9〇度彎进 部的數㈣減少可驗總的通道長度姐提高電性能。" 極化適配器28 (圖15 )可與每個輸出埠42 _以將各自通道 每個收發機的輸入埠對準。從而每個收發機可被取向在同 發機成鏡像齡置,倾㈣機的任何散熱、服和 優選/要求的取向。 兄对~ 本員域技術人員可領會到,隨著頻率增加,在圓波導2中古 201222969 性能的雙模式波導信號傳播變得更加依賴於圓波導的橢圓率。 由於柱狀圓波導52從副反射器(未示出)延伸過饋送轂8到達圓 -方波導轉換器22,沒有尺寸上的變化或縱向側壁縫隙,因此,就 橢圓率來說,延伸的圓波導通道的高容差可成本有效地得到保 持。此外’因為OMT 26的單極性矩形波導44部分通過使OMT 26 緊接收發機設置得以最小化,因此OMT26中的90度彎曲部的數 量和互連矩形波導44的總長度得以最小化。 使用了共同的反射盤6、饋送轂8和收發機托架4,每個OMT/ 饋送元件12的實施例可彼此互換,因此可獲得在典型微波頻率的 寬頻段範圍内的最優操作的簡單配置,而不必要求單獨設計、製 造和庫存多個頻率專用的反射器天線配置。此外,能使現有的單 極性天線元件裝置簡單地就地升級到雙極化配置,因為饋送轂8 和相聯繫的副反射器/饋送元件不需要被打亂,包括副反射器/饋 送、饋送轂8和/或反射盤6之間的對準和/或封焊。 元件表 2 雙極化反射器天線元件 ~~ 4 收發機托架 6 反射盤 8 饋送轂 10 反射器天線 201222969 12 OMT/饋送組件 14 饋送埠 16 近端 18 遠端 22 圓·方波導轉換器 24 方波導模組 26 正交模式轉換器(OMT) 28 極化適配器 30 方波導 31 耗接位置 32 凹槽部分 34 側壁 36 蓋部分 38 鍵部件 40 緊固件 42 輸出埠 44 矩形波導 46 OMT半片 48 方波導輸入埠 49 OMT交叉口 50 饋送埠適配器 13 201222969 圓波導 在上述的描述中,已經參考了具有已知等同物的材料、比率、 整數或部件’錢這铸同物被結合於此,就像被單姻述一樣。 雖然已通過其中的實施例的描述對本發明進行了示出,以及 雖然對實施例的描述相當詳細,但是申請人的賴不是限制或以 任何方式限定附屬的制要求的範圍於這些細節。額外的優點和 改進對本躺的技術人貞而言是_易見的。因此,本發明在其 更廣的方面沒有較於示出和描述的具體的細節、代表性的器 件、方法和不出的例子。因此,不f離巾請人總體發明構思的精 神或範圍可以背離這些細節。此外,要意削的是,在不背離本 發明由隨後的翻要求所限定的細和精神内可進行改進和/或修 改。 【圖式簡單說明】 結合於且組成本說明書一部分的附圖圖示了本發明的實施 例,其中關中相似的附圖標記代表同—特徵或树,並且可处 不會在每-幅它們出現的附圖中,都作詳細描述,並且同上面= 出的本發_大體制和下面給出的實施_詳細· 於解釋本發明的原理; 圖!是雙極化反射器天線元件的第—個實_的示·的等 面視圖,為了清楚起見收發機被去掉; 圖2是圖】所示組件的示意性的等距背面視圖,為了清楚起見收 201222969 發機被去掉,並且OMT/饋送組件被抽出; 圖3 圖1中qMt/饋送元件的示意性的等距背面分解視圖; 圖疋圖3中的方波導模組裝配後的示意性的等距底部視圖; 圖5是圖3中的方波導模_示意性的等距底部分解視圖; 圖6是圖3中〇MT的示意性的等㈣面分解視圖; 圖7是圖3中0MT裝配後的示意性的等距背面視圖; 圖8疋雙極化反射ϋ天線元件的第二個實補的㈣的示意性的 背面視圖’為了清楚起見收發機被去掉; 圖9是圖8所靴件的示意性的等距背面棚,為了清楚起見收 發機被去掉,並且ΟΜΤ/饋送組件被抽出; 圖10是圖8中ΟΜΤ/饋送元件的示意性的等距背面分解視圖; 圖11是圖10中ΟΜΤ的示意性的等距背面分解視圖; 圖12是圖10中ΟΜΤ裝配後的示意性的等距背面視圖; 圖13是雙極化反射器天線元件的第三個實施例的示意性的等角的 背面視圖’為了清楚起見收發機被去掉; 圖14是圖13所示組件的示意性的等距背面視圖,為了清楚起見 收發機被去掉,並且ΟΜΤ/饋送組件被抽出; 圖15是圖13中ΟΜΤ/饋送元件的示意性的等距背面分解視圖; 圖16是圖13中ΟΜΤ的示意性的等距背面分解視圖; 圖17是圖13中ΟΜΤ裝配後的示意性的等距背面分解視圖。 201222969 【主要元件符號說明】 2 雙極化反射器天線元件 4 收發機托架 6 反射盤 8 饋送轂 10反射器天線 12 OMT/饋送組件 14饋送埠 16近端 18遠端 22圓-方波導轉換器 24方波導模組 26正交模式轉換器(OMT) 28極化適配器. 30方波導 31耦接位置 32 凹槽部分 34側壁 36蓋部分 38鍵部件 40緊固件 42輸出埠 44矩形波導 46 OMT半片 48方波導輸入埠 49 OMT交叉口 50饋送埠適配器 52圓波導 16S 9 201222969 Desired position 31 of the engine bay 4 for a slight alignment with the transceiver input. The two clear halves of the 26 structure greatly simplify the processing of the transition surface between the square waveguide % and each rectangular waveguide 44, for example eliminating any precision boss features. As best shown in Figure 1A, the passage between the feed 14 and the output weir includes only five 90 degree f-curves, each bend being located within 〇Μτ %. The reduction in the number of 9-turn bends can depend on the total channel length and improve electrical performance. Polarization adapter 28 (Fig. 10) can be tapped with each output port 42 to align the respective channels with the input of each transceiver. From the riding chain, the machine can be oriented in the same way as the other - transceivers, such as the inspection, to ensure that the heat dissipation, drainage and/or environmental sealing is preferred/required orientation. Those skilled in the art will appreciate that as the word increases, high performance dual mode waveguide signal propagation is more dependent on the high dimensional tolerance characteristics of the waveguide. Therefore, the second embodiment rides as close as possible to the feed correction setting 〇MT to minimize the length of the square waveguide, instead of using the unipolar rectangular waveguide 44 to obtain the requirement to offset the channel of the transceiver mounted near the back of the reflective disk 6. In a third embodiment of the dual polarized reflector antenna element 2, as shown in Figures 13 and 14, the transceiver (optionally a separate receiver and/or transmitter) may be removed for clarity, The transceiver carrier 4 is coupled to the back side of the reflector disk 6 and is fixed to the feed hub 8 of the reflector antenna 10. The cassette/feed assembly 12 is coupled at the proximal end 16 to the feed cassette 14 of the feed hub 8 and at the distal end 18 by the transceiver tray 4. As best shown in Figure 15, the ΟΜΤ/feed assembly 12 includes a feed 埠 adapter 5 〇, a circular waveguide 52, a circular-square waveguide converter 22, a ΟΜΤ 26 and a polarization adapter 28, 201222969 which are coupled in series to form From the feed port 14 of the feed hub 8 to the channel 0 of the transceiver input port, as shown in Figures 16 and 17, the OMT 26 can be formed from two OMT half sheets 46 that also pass through key members 38 such as pins and sockets. And/or a plurality of fasteners 40 such as screws or the like are fitted together. The 〇 MT 26 separates and converts each polarity of the rectangular waveguide 44 that is oriented 90 degrees from each other from the square waveguide input 埠 48, i.e., to the vertical and level polarization signals at the intersection 49 of the OMT. According to the microwave propagation theory well known in the art, the design and size of the OMT intersection 49 depends on the size and operation of the input and output waveguides, and will not be described in detail herein. The longitudinal length of the circular waveguide 52 is selected to position the output port 42 at a desired coupling position 31 relative to the transceiver carrier 4 for alignment with the input port of the transceiver. Therefore, the length of the rectangular waveguide 44 can be significantly shortened. The two OMT half-piece structures of the OMT 26 greatly gravate the processing of the square waveguide 3〇 and the surface of each gamma waveguide, for example, eliminating any precision boss features. As best shown in Figure 15, the passage between the feed weir 14 and the output weir includes only a 9 degree bend, each bend being located within (10) T26. The number of bends in the 9th turn (4) reduces the total length of the channel and improves the electrical performance. " Polarization Adapter 28 (Fig. 15) can be aligned with each output 埠42_ to input the input 每个 of each transceiver of the respective channel. Thus each transceiver can be oriented at the same time as the mirror, any heat sink, service and preferred/required orientation of the tilting machine. Brother~ The technicians in the field can understand that as the frequency increases, the dual-mode waveguide signal propagation in the circular waveguide 2 in the middle of 201222969 becomes more dependent on the ellipticity of the circular waveguide. Since the cylindrical circular waveguide 52 extends from the sub-reflector (not shown) through the feeding hub 8 to the circular-square waveguide converter 22, there is no dimensional change or longitudinal sidewall slit, and therefore, in terms of ellipticity, the extended circle The high tolerance of the waveguide channel can be cost effectively maintained. Moreover, because the unipolar rectangular waveguide 44 portion of the OMT 26 is minimized by the OMT 26 tight receiver setting, the number of 90 degree bends in the OMT 26 and the overall length of the interconnected rectangular waveguide 44 are minimized. Using a common reflector disk 6, feed hub 8 and transceiver carrier 4, the embodiments of each OMT/feed element 12 can be interchanged with one another, thus providing easy operation for optimal operation over a wide frequency range of typical microwave frequencies. Configuration without having to separately design, manufacture, and stock multiple frequency-specific reflector antenna configurations. Furthermore, the existing unipolar antenna element arrangement can be simply upgraded in situ to a dual polarization configuration, since the feed hub 8 and associated sub-reflector/feed elements need not be disturbed, including sub-reflectors/feeds, feeds Alignment and/or sealing between the hub 8 and/or the reflective disk 6. Component Table 2 Dual Polarized Reflector Antenna Element ~~ 4 Transceiver Bracket 6 Reflector 8 Feed Hub 10 Reflector Antenna 201222969 12 OMT/Feed Assembly 14 Feeder 近 16 Proximal 18 Remote 22 Round-Blank Waveguide Converter 24 Square Waveguide Module 26 Orthogonal Mode Converter (OMT) 28 Polarization Adapter 30 Square Waveguide 31 Consuming Position 32 Groove Section 34 Sidewall 36 Cover Section 38 Key Assembly 40 Fastener 42 Output 埠44 Rectangular Waveguide 46 OMT Half 48 Waveguide Input 埠 49 OMT Intersection 50 Feed 埠 Adapter 13 201222969 Circular Waveguide In the above description, reference has been made to materials, ratios, integers or parts with known equivalents. The same as the marriage. While the invention has been shown and described with reference to the embodiments thereof, Additional advantages and improvements are easy to see for the technical staff. Therefore, the invention in its broader aspects is945945 Therefore, the spirit or scope of the general inventive concept can be divorced from these details. In addition, it is intended that modifications and/or modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a drawing The drawings are described in detail, and the same as the above, the present invention and the implementation given below are explained in detail to explain the principle of the present invention; Is an isometric view of the first embodiment of the dual polarized reflector antenna element, the transceiver being removed for clarity; FIG. 2 is a schematic isometric rear view of the assembly shown for clarity At the beginning of the collection 201222969, the engine was removed and the OMT/feed assembly was extracted; Figure 3 is a schematic isometric back exploded view of the qMt/feed element in Figure 1. Figure 3 is a schematic representation of the square waveguide module after assembly Figure 5 is a schematic isometric exploded view of the square waveguide mode of Figure 3; Figure 6 is a schematic isometric (four) face exploded view of the 〇MT of Figure 3; Figure 7 is Figure 3 Schematic isometric rear view of the 0MT assembly; Figure 8 is a schematic rear view of the second (4) of the dual-polarized reflection ϋ antenna element 'The transceiver is removed for clarity; Figure 9 is Figure 8 is a schematic isometric backside shed of the shoe, the transceiver is removed for clarity and the ΟΜΤ/feed assembly is withdrawn; Figure 10 is a schematic isometric rear exploded view of the ΟΜΤ/feed element of Figure 8 Figure 11 is a schematic isometric exploded view of the cymbal in Figure 10 Figure 12 is a schematic isometric rear view of the ΟΜΤ assembly of Figure 10; Figure 13 is a schematic isometric rear view of a third embodiment of a dual polarized reflector antenna element 'transceived for clarity Figure 14 is a schematic isometric rear view of the assembly of Figure 13, with the transceiver removed for clarity and the ΟΜΤ/feed assembly being withdrawn; Figure 15 is a schematic illustration of the ΟΜΤ/feed element of Figure 13 FIG. 16 is a schematic isometric rear exploded view of the cymbal of FIG. 13; FIG. 17 is a schematic isometric exploded rear view of the cymbal assembly of FIG. 201222969 [Main component symbol description] 2 Dual polarized reflector antenna element 4 Transceiver bracket 6 Reflector disk 8 Feed hub 10 Reflector antenna 12 OMT / Feed assembly 14 Feed 埠 16 Proximal end 18 Remote 22 round-square waveguide conversion 24 square waveguide module 26 orthogonal mode converter (OMT) 28 polarization adapter. 30 square waveguide 31 coupling position 32 groove portion 34 side wall 36 cover portion 38 key member 40 fastener 42 output 埠 44 rectangular waveguide 46 OMT Half piece 48 square waveguide input 埠 49 OMT intersection 50 feed 埠 adapter 52 circular waveguide 16