TW201222917A - Application method of lithium ion battery modifier, separator of lithium ion battery, and battery - Google Patents

Application method of lithium ion battery modifier, separator of lithium ion battery, and battery Download PDF

Info

Publication number
TW201222917A
TW201222917A TW099140716A TW99140716A TW201222917A TW 201222917 A TW201222917 A TW 201222917A TW 099140716 A TW099140716 A TW 099140716A TW 99140716 A TW99140716 A TW 99140716A TW 201222917 A TW201222917 A TW 201222917A
Authority
TW
Taiwan
Prior art keywords
ion battery
modifier
lithium ion
aluminum
separator
Prior art date
Application number
TW099140716A
Other languages
Chinese (zh)
Other versions
TWI566455B (en
Inventor
xiang-ming He
wei-hua Pu
li-chun Zhang
Jian-Guo Ren
Jian-Jun Li
Jian Gao
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW099140716A priority Critical patent/TWI566455B/en
Publication of TW201222917A publication Critical patent/TW201222917A/en
Application granted granted Critical
Publication of TWI566455B publication Critical patent/TWI566455B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The invention relates to an application method of lithium ion battery modifier. In the method, a porous membrane used for separator of lithium ion battery and the modifier are provided. The modifier includes a liquid mixture of a phosphorus source having phosphate anion, a trivalent aluminum source and a metallic oxide. The modifier is coated on the surface of the porous membrane to form a coating layer. The porous membrane with the coating layer is dried to form a modifier layer on the surface of the porous membrane. The invention also relates to a separator of lithium ion battery prepared by the method above. The separator is applied to the lithium ion battery to increase the thermal stability and safety of the lithium ion battery.

Description

201222917 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種裡離子電池改性劑在鋰離子電池中的使 用方法及鋰離子電池隔膜’以及含該隔膜的鋰離子電池 【先前技術·】 [0002] 目前,隨著電動汽車及可檇式電子設備如手機、數碼相 機和筆記本電腦等的迅猛發展,市場對高功率、高能量 密度電池的需求越來越大。鋰離子電池係迄今為止已經 實用化的電池中電壓最高、能量密度最大的電池,具有 良好的發展前景。 [0003] 鋰離子電池主要由電極、隔膜以及電解液構成。隔膜係 鋰離子電池的重要組成部分,在電池中起著防止電極短 路以及在充放電過程中提供離子傳輸通道的作用,其性 能的好壞直接影響锂離子電池的容量、循環性能以及安 全性能等特性。 :: [0004] 隨著科技的發展,越來越多的電子設備需要鋰離子電池 具有更大的谷量,但谷量的增大會使鐘離子電池在充放 電過私中產生的熱量增多,從而造成嚴重的安全性問題 。傳統作為隔膜的單層或複數層聚合物多孔膜會在受熱 的情況下導致熔融,從而容易造成電極之間的短路,甚 至會使鋰離子電池燃燒或爆炸,限制了鋰離子電池的應 用。 099140716 為解決上述問題,先前技術中通常在隔膜表面塗覆無機 陶竟材料如氧化銘來『方止充放電過程中隔膜破壞或穿刺 表單編號A0101 第4頁/共40頁 099207087-! [0005] 201222917 [0006]Ο [0007] Ο [0008] [0009] 099140716 等造成的電池短路或自放電。中國專利ZL03820566.1中 公開了一種隔膜,該隔膜中含有複數孔的無機電絕緣塗 層,在鋰離子電池過熱的情況下,即使隔膜的聚合物基 體融化,無機電絕緣塗層仍然可防止電極之間的短路, 從而提高了鋰離子電池的安全性能。然而,由於氧化鋁 係難溶物質,故塗覆的均勻性不宜控制,從而使隔膜的 熱穩定性受到影響。 【發明内容】 有鑒於此,提供一種鋰離子電池改性劑在鋰離子電池中 的使用方法從而獲得一種熱穩定性較好的鋰離子電池隔 膜以及安全性較高的鋰離子電池實為必要。 一種鋰離子電池改性劑的使用方法,包括如下步驟:提 供用於鋰離子電池隔膜的多孔膜以及鋰離子電池改性劑 ,該改性劑包括含磷酸根的磷源、三價鋁源以及金屬氧 化物在液相溶劑中的混合;將該改性劑塗覆於該多孔膜 表面形成塗覆層,以及乾燥該塗覆有該改性劑的多孔膜 ,從而在該多孔膜表面形成改性劑層。 一種鋰離子電池隔膜,包括一多孔膜以及設置於該多孔 膜表面的改性劑層,該改性劑層藉由將含磷酸根的磷源 、三價鋁源以及金屬氧化物在液相溶劑中混合後塗覆於 該多孔膜表面形成塗覆層,並乾燥處理該塗覆層後形成 〇 一種鋰離子電池,包括正極片、負極片、隔膜、非水電 解液以及外部封裝結構,其中,該隔膜為上述鋰離子電 池隔膜。 表單編號Α0101 第5頁/共40頁 0992070874-0 201222917 [0010] [0011] [0012] [0013] [0014] 099140716 相較於先前技術,本發明將所述鋰離子電池改性劑塗覆 於所述多孔膜表面來製驗離子電池隔膜。由於所述改 性劑為-澄清的溶液’故易於在所❹顏的表面形成 均勻連續且厚度較薄的改,_層,從而提高了該隔膜的 熱穩定性以及包含該隔膜的_子電池安全性能。 【實施方式】 以下將結合附圖詳細說明本發明實施例鋰離子電池改性 劑在鐘離子電池巾的使时法、娜子電池隔膜及經離 子電池。由於該鋰離子電池隔膜中包含該鋰離子電池改 性劑的成分,故,下面首先對該鋰離子電池改性劑及其 使用方法進行介紹。 .· (一)链離子電池改性劑及其製備方法 本發明實施例首先提供一種鋰離子電池改性劑,該改性 劑包括含鱗酸根的磷源、三價鋁源以及金屬氧化物在液 相溶劑中的混合。 該磷酸根可為正磷酸根(PO 3 —)、磷妓二氫根^⑼乃及 4 i 4 磷酸一氫根(HP〇42_)中的一輕或幾種的混合。其中,所 述含PO 3_的磷源可為磷酸(Η,ΡΟ J、磷酸三銨 ((ΝΗ4)3Ρ〇4)及磷酸紹(Α1Ρ〇4)中的一種或複數種;所述 含112?0/的磷源可為磷酸二氫銨(ΝΗ4Η2Ρ〇4)及磷酸二氫 銘(Α1(Η2Ρ〇4)3)中的一種或複數種;所述含ΗΡ〇42_的 磷源可為磷酸一氫敍((ΝΗ4)2ΗΡ〇4)及磷酸一氫銘 (Α12(ΗΡ〇4)3)中的一種或複數種。該三價銘源可為氫氧 化鋁(Α1(0Η\)、氧化鋁(A1Q0Q)、磷酸鋁U1P04)、磷 〇 L 〇 砝 酸二氫铭(Α1(Η2Ρ〇4)3)以及磷酸一氮銘(Α12(ΗΡ〇4)3)中 表單編號A0101 第6頁/共40頁 0992070874-0 201222917 的一種或複數種。該含磷酸根的磷源和該三價鋁源可同 時為Α1Ρ〇4、Α1(Η2Ρ〇4)3以及Α12(ΗΡ04)3中的一種或幾 種。該金屬氧化物包括三氧化鉻(Cr〇 )、氧化鋅(ΖηΟ) υ 、氧化銅(CuO)、氧化鎂(Mg〇)、二氧化锆(Zr〇2)、三氧 化鉬(Mo〇3)、五氧化二釩(v 〇 )、五氧化二銳(Nb 〇 ) 及五氧化一组(Ta2〇5)中的一種或幾種。 [0015] Ο ο [0016] 該改性劑為一種有一定黏性的澄清溶液。該液相溶劑可 為水或N-甲基吡咯烷酮(NMP)等,該磷源、三價鋁源以及 金屬氧化物的摩爾比優選為(Al+M) :P = 1:2. 5至1:4。其 中’該Al、Μ和P分別為該鋁源中的鋁元素、金屬氡化物 中的金屬元素以及該磷源中的磷元素的摩爾數。更為優 選地’該比例為(Al+M) :P=1:2. 5至1。當該金屬氧化 物為Cr〇3時’該改性劑為紅色的澄清溶液。可以理解, 為利於塗覆形成薄且均勻的塗層,可製備濃度較低的改 性劑,或者在使用時將該改性劑稀釋成較小的濃度,所 述磷源的磷酸根、三價鋁源中的鋁元素和备屬氧化物中 的金屬元素的總質量佔所述改性劑總體積的體積密度優 選為0. 02g/ml 至0. 08g/ml。 該改性劑可均勻塗覆於鋰離子電池集流體或電極片表面 。該改性劑受熱(大於10〇°C )後發生反應,受熱生成物 的成分為AlxMyP〇4以及AlxMy(P〇3)3中的一種或該兩種物 質的混合物;其中Μ的價態為k,Μ可為Cr、Zn、Cu、Mg 、Zr、Mo、V、Nb及Ta中的一種或複數種的混合;〇<χ<1 ’ 0<y<l且3x + ky = 3。優選地,所述μ為Cr,k = 3,所述 受熱生成物的成分為AlxCrl xP〇以及Al Cr (PO )中 x4 xl~*x 3 3 099140716 表單編號A0101 第7頁/共40頁 0992070874-0 201222917 的種或该兩種的混合。 [0017] [0018] [0019] [0020] [0021] 所述鋰離子電池改性劑可藉由如下方法來製備,包括如 下步驟: 步驟一,提供含磷酸根的磷源、三價鋁源和金屬氧化物 ’以及 步驟二,在液相溶劑中混合該磷源、鋁源和所述金屬氧 化物,反應生成一澄清溶液。 上述澄清溶液即為本發明實施例鋰離子電池改性劑。 在上述步驟一中,所述鱗酸根可為正磷酸根(p〇43—)、碟 酸二氫根(h2p〇4—)及磷酸一氫根(HP〇42—)中的一種或幾 種的混合。其中,所述含的磷源可為磷酸PO ) 4 3 4y 、磷酸三銨((Nh4)3p〇4)及磷酸銘(aip〇4)中的一種或複 數種;所述含LP0/的磷源可為磷酸二氫銨(ΝΗ Η P0 ) ^ 4 4 2 4 及磷酸二氫鋁(Α1(Η2Ρ04)3),的一種或複數種;所述含 ΗΡ〇42_的磷源可為磷酸一氫銨表(Pg)2HP〇4)及磷酸一氫 紹(A12(HP〇4)3)中的一種或複數種。該三價銘源可為氫 氧化鋁(Al(〇H) J、氧化鋁(AIqOO、磷酸鋁(A1P0 )、 3 ^ 6 4 磷酸二氫铭(Α1(Η2Ρ〇4)3)以及磷酸一氫紹(Α12(ΗΡ〇4)3) 中的一種或複數種。優選地,所述磷源的磷酸根、三價 鋁源中的鋁元素和金屬氧化物中的金屬元素的總質量佔 所述改性劑總體積的體積密度為〇. 〇2g/ral至0. 08g/ml 。可以理解,該含磷酸根的磷源和該三價鋁源可同時為 aip〇4、ai(h2p〇4)3以及ai2(hp〇4)3中的一種或幾種。 該金屬氧化物包括三氧化鉻(Cr03)、氧化鋅(Zn0)、氧 099140716 表單編號A0101 第8頁/共40頁 0992070874-0 201222917 化銅(CU〇)、氧化 Λ、 錢(Mg0)、二氧化锆(ZrO )、三氧化鉬 (M0\)、五氧化-4 h 2 9 4,,_ 一釩(V2〇5)、五氧化二說(Nb2〇5)及五 氧化一纽(TaQ〇 )中沾 H 2 5 Y的—種或幾種。本發明實施例中採用 3 4為所料源,該Η3Ρ(\的濃度優選為6G%至90% ;採 (〇H)3私末作為所述鋁源;採用CrO粉末作為所述金 屬氧化物。 3 ^ [0022] _ 所述液相溶劑可為水或Ν Μ Ρ等 價紹源以及金屬氧化物的摩爾比優選為 Ο [0023] Ο [0024] 099140716 (ΑΗΜ):ρ=ι .〇 η , .二b至U。其中,該A1、Μ和Ρ分別為該鋁 原中的鋁兀素、該金屬氧化物申的金屬元素以及該磷源 中的碟疋素的摩爾數。更為優選地,該摩爾比為 (α1+μ):ιμ:2·5^:3。 所述在液相溶劑中混合可為將該填源 、銘源和金屬氧化 物同時或逐一加入到該液相溶劑中混合;也可將所述碟 源先配置成溶液,再將所述鋁溽和所述金屬氧化物同時 或先後加入到該磷溽溶液中混合。其中,所述鋁源和所 述金屬氧化物加入的順序不影響最終的反應生成物。. 發明實施例中先配置η3ρ〇4水溶液,然後將人1(01〇3粉末 加入到該113?〇4水溶液中,反應一段時間後,生成Alp〇 白色懸濁液,接著在該白色懸濁液中加ACr〇粉末,— 3 段時間後,白色懸濁液逐漸消失,最終溶液變成—種紅 色澄清溶液。 上述步驟二可進一步包括攪拌和/或加熱的步驟來使該鱗 源、鋁源和金屬氧化物在所述液相溶劑中的混合更加均 勻,反應更加完全。所述加熱的溫度優選為6(TC至l〇〇ec 表單編號A0101 第9頁/共40頁 0992070874-0 201222917 ,所述反應的時間優選為2至3小時。 [0025] 實施例1 :鋰離子電池改性劑的製備 [0026] 將34. 5克濃度為85%的113?〇4和14克去離子水加入燒杯中 配置成溶液;80°C下磁力攪拌該溶液5分鐘;將5. 9克 Α1(ΟΗ)3加入到上述燒杯中,反應2小時,所述燒杯中溶 液生成一溶膠狀液體;接著,在該燒杯中加入2.5克CrOq 粉末,繼續反應2小時,使燒杯中的產物變為澄清的紅色 溶液。 [0027] (二)鋰離子電池改性劑的應用 [0028] ( 1 )用於鋰離子電池集流體 [0029] 上述鋰離子電池改性劑可用來提高鋰離子電池的穩定性 。以鋰離子電池集流體為例,由於該改性劑為一種澄清 溶液,故易於在鋰離子電池集流體表面均勻塗覆,且塗 覆後經過乾燥等處理可在該集流體表面形成均勻且薄的 保護膜,該保護膜可阻止集流體與鋰離子電池電解液之 間的副反應且不影響該集流體的導電性。 [0030] 本發明實施例進一步提供一種上述鋰離子電池改性劑的 使用方法,該方法包括如下步驟: [0031] S11,將上述鋰離子電池改性劑塗覆於鋰離子電池集流體 表面形成一塗覆層,以及 [0032] S12,熱處理該塗覆後的鋰離子電池集流體。 [0033] 在上述步驟S11中,所述鋰離子電池集流體材料可為鋁、 銅或鎳等純金屬或含有鋁、銅或鎳等的合金。該鋰離子 099140716 表單編號A0101 第10頁/共40頁 0992070874-0 201222917 電池改性劑可藉由刮塗、刷塗、喷塗、靜電塗覆⑴ tr〇static coating)、黏輥(r〇u ⑶如⑷絲 網印刷或提拉法等方式均勻塗覆於所驗離子電池集流 體〆個或兩個表面。該塗覆層不能太厚,太厚會降低該 集流體的導電性。所述提拉法可使在所述集流體的兩個 纟面形成的塗覆層均勻連續,且可較好地控制所述塗覆 層的厚度,故本發明實施例採用提拉法在該鋰離子電池 集流體的兩個表面塗覆所述鋰離子電池改性劑。 [〇〇34]本發明實施例提拉法的具體過程包括:將該鋰離子電池 〇 集流禮完全浸潤到..已:配置好.的所述鐘離子電池改性劑中 :旅將該浸潤後的鋰離子電池集流體提拉出所述改性劑 外。在提拉時,可使該鐘離子電池集流體與改性劑頁面 基本蚕直。上述浸潤和提拉的步驟可重複複數次以控制 所述集流體表面塗覆層的厚度以及均勻性。可以理解’ 上述鏍離子電池改性劑的濃度越小’以及將該浸潤後的 集流體提拉出所述改性劑外的速度越快,形成的所述塗 覆層的厚度越薄。201222917 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a method for using a ionic battery modifier in a lithium ion battery, and a lithium ion battery separator and a lithium ion battery including the separator Technology·] [0002] At present, with the rapid development of electric vehicles and portable electronic devices such as mobile phones, digital cameras and notebook computers, the demand for high-power, high-energy density batteries is increasing. Lithium-ion batteries are the batteries with the highest voltage and highest energy density among the batteries that have been put to practical use so far, and have good development prospects. [0003] A lithium ion battery is mainly composed of an electrode, a separator, and an electrolyte. Diaphragm is an important component of lithium-ion batteries, which plays a role in preventing short-circuiting of electrodes and providing ion transmission channels during charge and discharge. Its performance directly affects the capacity, cycle performance and safety performance of lithium-ion batteries. characteristic. :: [0004] With the development of technology, more and more electronic devices require lithium-ion batteries to have a larger amount of grain, but the increase in the amount of grain will increase the amount of heat generated by the charge and discharge of the ion battery. This causes serious safety problems. The single-layer or multi-layer polymer porous film conventionally used as a separator causes melting under heat, which easily causes a short circuit between the electrodes, and even causes the lithium ion battery to burn or explode, which limits the application of the lithium ion battery. 099140716 In order to solve the above problems, in the prior art, the surface of the diaphragm is usually coated with an inorganic ceramic material such as oxidized in order to "break the diaphragm during charging and discharging or puncture form number A0101 page 4 / 40 pages 099207087-! [0005] 201222917 [0006] Ο [0008] [0009] 099140716 or the like caused by short circuit or self-discharge of the battery. Chinese Patent No. ZL03820566.1 discloses a separator having a plurality of porous inorganic insulating coatings. In the case of overheating of a lithium ion battery, the inorganic electrically insulating coating can prevent the electrode even if the polymer matrix of the separator melts. A short circuit between them improves the safety performance of the lithium ion battery. However, since alumina is a poorly soluble substance, the uniformity of coating is unsuitable for control, so that the thermal stability of the separator is affected. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a lithium ion battery modifier in a lithium ion battery to obtain a lithium ion battery separator having good thermal stability and a lithium ion battery having high safety. A method for using a lithium ion battery modifier, comprising the steps of: providing a porous film for a lithium ion battery separator and a lithium ion battery modifier, the modifier comprising a phosphate source containing phosphoric acid, a source of trivalent aluminum, and Mixing a metal oxide in a liquid phase solvent; applying a modifier to the surface of the porous film to form a coating layer, and drying the porous film coated with the modifier to form a surface on the porous film Layer of agent. A lithium ion battery separator comprising a porous membrane and a modifier layer disposed on the surface of the porous membrane, the modifier layer being in a liquid phase by using a phosphate-containing phosphorus source, a trivalent aluminum source, and a metal oxide After mixing in a solvent, coating on the surface of the porous film to form a coating layer, and drying the coating layer to form a lithium ion battery, including a positive electrode sheet, a negative electrode sheet, a separator, a non-aqueous electrolyte, and an external package structure. Wherein, the separator is the above lithium ion battery separator. Form No. 1010101 Page 5 of 40 0992070874-0 201222917 [0010] [0014] [0014] 099140716 Compared to the prior art, the present invention applies the lithium ion battery modifier to The porous membrane surface is used to test an ion battery separator. Since the modifier is a -clear solution, it is easy to form a uniform continuous and thinner layer on the surface of the surface, thereby improving the thermal stability of the separator and the sub-cell including the separator. Security performance. [Embodiment] Hereinafter, a timing method of a lithium ion battery modifier, a nano battery separator, and an ion battery of a lithium ion battery modifier according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Since the lithium ion battery separator contains the component of the lithium ion battery modifier, the lithium ion battery modifier and the method of using the same will be described below. (I) Chain Ion Battery Modifier and Preparation Method Thereof First, a lithium ion battery modifier is provided in the embodiment of the present invention, and the modifier includes a sulphate-containing phosphorus source, a trivalent aluminum source, and a metal oxide. Mixing in a liquid phase solvent. The phosphate may be a light or a mixture of orthophosphate (PO 3 -), phosphonium dihydrogen (9), and 4 i 4 monohydrogen phosphate (HP 〇 42_). Wherein, the PO 3 -containing phosphorus source may be one or more of phosphoric acid (Η, ΡΟ J, triammonium phosphate ((ΝΗ4) 3Ρ〇4) and phosphoric acid (Α1Ρ〇4); The phosphorus source of ?0/ may be one or more of ammonium dihydrogen phosphate (ΝΗ4Η2Ρ〇4) and dihydrogen phosphate (Α1(Η2Ρ〇4)3); the phosphorus source containing ΗΡ〇42_ may be One or more of the monohydrogen phosphate ((ΝΗ4)2ΗΡ〇4) and the monohydrogen phosphate (Α12(ΗΡ〇4)3). The trivalent source may be aluminum hydroxide (Α1(0Η\), Alumina (A1Q0Q), aluminum phosphate U1P04), bismuth bisphosphonate (Α1(Η2Ρ〇4)3), and nitric acid phosphate (Α12(ΗΡ〇4)3) Form No. A0101 Page 6 One or more of a total of 40 pages 0992070874-0 201222917. The phosphate-containing phosphorus source and the trivalent aluminum source may be one of Α1Ρ〇4, Α1(Η2Ρ〇4)3, and Α12(ΗΡ04)3 at the same time. Or several. The metal oxides include chromium trioxide (Cr〇), zinc oxide (ΖηΟ) υ, copper oxide (CuO), magnesium oxide (Mg〇), zirconium dioxide (Zr〇2), molybdenum trioxide ( Mo〇3), vanadium pentoxide (v 〇), pentoxide One or more of sharp (Nb 〇) and pentoxide groups (Ta2 〇 5). [0015] The modifier is a clear solution having a certain viscosity. Water or N-methylpyrrolidone (NMP), etc., the molar ratio of the phosphorus source, the trivalent aluminum source, and the metal oxide is preferably (Al + M) : P = 1: 2. 5 to 1: 4. Al, bismuth and P are respectively the aluminum element in the aluminum source, the metal element in the metal halide and the number of moles of the phosphorus element in the phosphorus source. More preferably, the ratio is (Al + M) : P = 1:2. 5 to 1. When the metal oxide is Cr〇3, the modifier is a red clear solution. It is understood that in order to facilitate coating to form a thin and uniform coating, a lower concentration can be prepared. a modifier, or the modifier is diluted to a smaller concentration at the time of use, the total mass of the phosphate of the phosphorus source, the aluminum element of the trivalent aluminum source, and the metal element of the subsidiary oxide The bulk density of the total volume of the modifier is preferably from 0.02 g/ml to 0.08 g/ml. The modifier can be uniformly applied to the surface of the lithium ion battery current collector or the electrode sheet. The reaction occurs after heat (greater than 10 〇 ° C), and the composition of the heat-generating product is one of AlxMyP〇4 and AlxMy(P〇3)3 or a mixture of the two substances; wherein the valence of lanthanum is k, Μ It is a mixture of one or more of Cr, Zn, Cu, Mg, Zr, Mo, V, Nb, and Ta; 〇 < χ <1 ' 0<y<l and 3x + ky = 3. Preferably, the μ is Cr, k = 3, the composition of the heat-generating product is AlxCrl xP〇, and Al Cr (PO ) is x4 xl~*x 3 3 099140716 Form No. A0101 Page 7 / Total 40 Page 0992070874 -0 201222917 of the species or a mixture of the two. [0018] [0020] [0021] The lithium ion battery modifier can be prepared by the following method, including the following steps: Step one, providing a phosphate source containing phosphoric acid, a source of trivalent aluminum And the metal oxide 'and the second step, mixing the phosphorus source, the aluminum source and the metal oxide in a liquid phase solvent to form a clear solution. The above clear solution is the lithium ion battery modifier of the embodiment of the present invention. In the above step 1, the sulphate may be one or more of orthophosphate (p〇43-), dihydrogen dihydrogenate (h2p〇4-) and monohydrogen phosphate (HP〇42-). the mix of. Wherein, the phosphorus source may be one or more of phosphoric acid PO) 4 3 4y , triammonium phosphate ((Nh4)3p〇4) and phosphoric acid (aip〇4); the phosphorus containing LP0/ The source may be one or more of ammonium dihydrogen phosphate (ΝΗ Η P0 ) ^ 4 4 2 4 and aluminum dihydrogen phosphate (Α1(Η2Ρ04) 3); the phosphorus source containing ΗΡ〇42_ may be phosphoric acid One or more of ammonium hydrogen hydrochloride (Pg) 2HP 〇 4) and monohydrogen phosphate (A12 (HP 〇 4) 3). The trivalent source may be aluminum hydroxide (Al(〇H) J, alumina (AIqOO, aluminum phosphate (A1P0), 3^6 4 dihydrogen phosphate (Α1(Η2Ρ〇4)3)) and monohydrogen phosphate One or more of Α12(ΗΡ〇4)3. Preferably, the total mass of the phosphate of the phosphorus source, the aluminum element of the trivalent aluminum source, and the metal element of the metal oxide accounts for The bulk density of the total volume of the modifier is 〇. 〇2g/ral to 0.08g/ml. It is understood that the phosphate source containing phosphoric acid and the source of the trivalent aluminum can be simultaneously aip 〇 4, ai (h2p 〇 4 One or more of 3 and ai2(hp〇4) 3. The metal oxide includes chromium trioxide (Cr03), zinc oxide (Zn0), oxygen 099140716 Form No. A0101 Page 8 of 40 0992070874-0 201222917 Copper (CU〇), yttrium oxide, money (Mg0), zirconium dioxide (ZrO), molybdenum trioxide (M0\), pentoxide-4 h 2 9 4,, _ vanadium (V2〇5), The pentoxide oxide (Nb2〇5) and the pentoxide oxide (TaQ〇) are in the form of one or more of H 2 5 Y. In the embodiment of the present invention, 34 is used as the source, and the concentration of Η3Ρ(\ Preferably 6G% to 90%; mining (〇H)3 private end as a place A source of aluminum; using CrO powder as the metal oxide. 3 ^ [0022] The liquid phase solvent may be water or Ρ Ρ Ρ equivalent source and the metal oxide molar ratio is preferably Ο [0023] Ο [ 0024140716 (ΑΗΜ): ρ=ι .〇η , . 2 b to U. wherein A1, Μ and Ρ are respectively the aluminoin in the aluminum, the metal element of the metal oxide and the phosphorus More preferably, the molar ratio is (α1+μ): ιμ: 2·5^: 3. The mixing in the liquid solvent may be the source, the name The source and the metal oxide are simultaneously or separately added to the liquid phase solvent for mixing; the dish source may be first configured as a solution, and the aluminum crucible and the metal oxide may be added to the phosphonium solution simultaneously or sequentially. In the mixing, wherein the order in which the aluminum source and the metal oxide are added does not affect the final reaction product. In the embodiment of the invention, the η3ρ〇4 aqueous solution is first disposed, and then the human 1 (01〇3 powder is added to the solution). In a 113??4 aqueous solution, after a period of reaction, an Alp〇 white suspension is formed, and then ACr is added to the white suspension. 〇 powder, after 3 hours, the white suspension gradually disappears, and finally the solution becomes a red clear solution. Step 2 above may further comprise a stirring and/or heating step to make the scale source, aluminum source and metal oxide The mixing in the liquid phase solvent is more uniform and the reaction is more complete. The heating temperature is preferably 6 (TC to l〇〇ec Form No. A0101, page 9 / total 40 pages 0992070874-0 201222917, the reaction The time is preferably 2 to 3 hours. [0025] Example 1: Preparation of a lithium ion battery modifier [0026] 34.5 grams of 85% concentration of 113? 〇 4 and 14 grams of deionized water were added to the beaker to configure a solution; magnetic force at 80 ° C The solution was stirred for 5 minutes; 5.9 g of Α1(ΟΗ)3 was added to the above beaker and reacted for 2 hours. The solution in the beaker formed a sol-like liquid; then, 2.5 g of CrOq powder was added to the beaker, and the continuation was continued. The reaction was allowed to proceed for 2 hours to turn the product in the beaker into a clear red solution. [0027] (II) Application of Lithium Ion Battery Modifier [0028] (1) For Lithium Ion Battery Current Collector The above lithium ion battery modifier can be used to improve the stability of a lithium ion battery. Taking the lithium ion battery current collector as an example, since the modifier is a clear solution, it is easy to uniformly coat the surface of the lithium ion battery current collector, and after drying and the like after coating, a uniform and thin surface can be formed on the current collector surface. The protective film prevents the side reaction between the current collector and the lithium ion battery electrolyte and does not affect the conductivity of the current collector. [0030] An embodiment of the present invention further provides a method for using the above lithium ion battery modifier, the method comprising the following steps: [0111] S11, applying the lithium ion battery modifier to a surface of a lithium ion battery current collector A coating layer, and [0032] S12, heat treats the coated lithium ion battery current collector. [0033] In the above step S11, the lithium ion battery current collector material may be a pure metal such as aluminum, copper or nickel or an alloy containing aluminum, copper or nickel. The lithium ion 099140716 Form No. A0101 Page 10 / Total 40 Page 0992070874-0 201222917 Battery modifier can be applied by knife coating, brushing, spraying, electrostatic coating (1) tr〇static coating, adhesive roller (r〇u (3) uniformly applied to one or both surfaces of the collected ion battery collector as in (4) screen printing or pulling. The coating layer should not be too thick, too thick to reduce the conductivity of the current collector. The pulling method can make the coating layer formed on the two sides of the current collector uniform and continuous, and can better control the thickness of the coating layer, so the embodiment of the invention adopts the pulling method in the lithium ion. The two surfaces of the battery current collector are coated with the lithium ion battery modifier. [34] The specific process of the lifting method of the embodiment of the present invention includes: fully infiltrating the lithium ion battery sputum to .. The well-configured plasma ion battery modifier: the bridging the infiltrated lithium ion battery current collector is pulled out of the modifier. When pulling, the clock ion battery current collector can be The modifier page is basically silky straight. The above steps of infiltration and lifting can be repeated several times. Controlling the thickness and uniformity of the current collector surface coating layer. It can be understood that 'the lower the concentration of the above-mentioned cerium ion battery modifier' and the higher the speed at which the infiltrated current collector is pulled out of the modifier Fast, the thinner the thickness of the coating layer formed.

QQ

[0035] 上述步驟S12中,在進行所述熱處理步驟前可進一步包括 預先乾燥該塗覆後的經離子電池的步驟來蒸乾該塗覆層 中的溶劑’該乾燥的方式可為常溫自然晾乾也可為加熱 烘乾。 [0036] 所述熱處理步驟一方面可進一步蒸乾該塗覆層中的溶劑 ;另一方面可使該蒸乾後的塗覆層轉化為連續的保護膜 形成於所述裡離子電池集流體表面,該保護膜可保護該 集流體免受裡離子電池電解液的腐钮。所述熱處理的溫 099140716 表單編號A0101[0035] In the above step S12, before the performing the heat treatment step, the method further includes the step of pre-drying the coated ion battery to evaporate the solvent in the coating layer. The drying method may be dry at room temperature. Dry can also be dried by heating. [0036] The heat treatment step may further evaporate the solvent in the coating layer on the one hand; on the other hand, the evaporated coating layer may be converted into a continuous protective film formed on the surface of the current collector of the ionic battery. The protective film protects the current collector from the corrosion of the electrolyte of the ionic battery. The temperature of the heat treatment 099140716 Form No. A0101

第11頁/共40 I 0992070874-0 201222917 度為100°C至350°c,優選地,該溫度為150t至250t。 熱處理的時間優選為1小時至3小時。該保護膜的厚度可 為 10nm至200nm,優選為50nm至60nm。 [0037] [0038] [0039] [0040] [0041] [0042] 凊參閱圖1,本發明實施例還利用上述链離子電池改性劑 製備了一種鋰離子電池集流體10 0,該鋰離子電池集流體 100包括一金屬片102和一保護膜106設置於該金屬片1〇2 表面。其中’該保護膜106的成分為Α1 Μ PO以及 X y 4 久Page 11 of 40 I 0992070874-0 201222917 degrees are from 100 ° C to 350 ° C, preferably, the temperature is from 150 t to 250 t. The heat treatment time is preferably from 1 hour to 3 hours. The protective film may have a thickness of 10 nm to 200 nm, preferably 50 nm to 60 nm. [0040] Referring to FIG. 1, an embodiment of the present invention further prepares a lithium ion battery current collector 100 using the above-mentioned chain ion battery modifier, and the lithium ion is used. The battery current collector 100 includes a metal piece 102 and a protective film 106 disposed on the surface of the metal piece 1〇2. Wherein the composition of the protective film 106 is Α1 Μ PO and X y 4 for a long time

AlxMy(P〇3)3中的一種或該兩種物質的混合物;其中μ的 價態為k ’ Μ可為Cr、Zn、Cu、Mg、Zr、Mo、V、Nb及Ta 中的一種或複數種的混合;〇<x<l,。 所述金屬片102的材料可為鋁 '銅或鎳等純金屬或含有銘 、銅或鎳等的合金。該金屬片102的厚度優選為^至⑽ #Π1 ’寬度優選為10mm至3〇〇mm。所述保護膜1〇6的厚度 可為10nm至200nm,優選為50nm至60nm。優選地,所述 保護膜的成分為AlxCrl xP〇4以及中的一 種或該兩種的混合。 該鐘離子電池集流體100可藉由如下方法製備. S21,提供上述方法製備的鋰離子電池改性劑和金屬片 102 ; S22,將該鋰離子電池改性劑塗覆於該金屬片表面形成塗 覆層,以及 S23,熱處理該塗覆後的金屬片1Q2,上述塗覆層轉化為 保護膜106形成於金屬片102表面。 099140716 表單編號A0101 第12頁/共40頁 0992070874-0 201222917 [0043] [0044] ❹ [0045] Ο 在上述步驟S21中,所述金屬片102可為鋁、銅或鎳等純 金屬或含有鋁、銅或鎳等的合金。該金屬片102的厚度優 選為5//111至60//111,寬度優選為10_至30〇111111。本發明實 施例中採用鋁箔作為所述金屬片102。 上述步驟S22可藉由刮塗、刷塗、喷塗、靜電塗覆( electrostatic coating)、黏辕(roll coating) 、絲網印刷或提拉法等方式將所述鋰離子電池改性劑均 勻塗覆於所述金屬片102—個或兩個表面。該塗覆層不能 太厚,太厚會降低該金屬片102的導電性。所述提拉法可 使在所述金屬片102的兩個表面形成的塗覆層均勻連續, 且可較好地控制所述塗覆層的厚度,故本發明實施例採 用提拉法來在該金屬片102的兩個表面塗覆所述鋰離子電 池改性劑。 該提拉法的具體過程包括:將該金屬片102浸潤到已配置 好的所述鋰離子電池改性劑中;並將該浸潤後的金屬片 102提拉出所述改性劑外。在提拉時,可使該金屬片102 與改性劑液面基本垂直。上述浸潤和提拉的步驟可重複 複數次以控制所述金屬片102表面塗覆層的厚度以及均勻 性。可以理解,上述鋰離子電池改性劑的濃度越小,以 及將該浸潤後的所述金屬片102提拉出所述改性劑外的速 度越快,形成的所述塗覆層的厚度越薄。 上述步驟S23中,在進行熱處理步驟前可進一步包括預先 乾燥該塗覆後的金屬片102的步驟來除去該塗覆層中的溶 劑,該乾燥的方式可為常溫自然晾乾也可為加熱烘乾。 099140716 表單編號A0101 第13頁/共40頁 0992070874-0 [0046] 201222917 _7]所述熱處理步驟—方面可進—步蒸乾該塗覆層中的液相 溶劑;另一方面可使該蒸乾後的塗覆層轉化為連續的保 護膜106形成於該金屬片102表面,該保護膜1〇6可保護 該金屬片102免受鋰離子電池電解液的腐蝕。該保護膜 106的厚度可為i〇nm至2〇〇nm,優選為5〇咖至6〇咖。所 述熱處理的溫度為l〇(TC至35(rc,優選地,該溫度為 150°C至250°C。熱處理的時間優選為丨小時至3小時。 [0048]由於本發明實施例中所述鋰離子電池改性劑為一種澄清 溶液,可較容易地在所述鋰離子電池集流體1〇〇的金屬片 102表面形成薄且均勻連讀的保護膜1〇6,從而能更好地 保護所述鋰離子電池集流體1〇〇免受腐蝕,且對所述鋰離 子電池集流體1 〇 〇的導電性能影響不大。 [_本發明實_湘上述方法製備了链離子電池改性劑和 具有保護膜的鋰離子電池集流體,並在酸性環境下測試 該具有保護膜的鋰離子電池集流體與未塗覆保護膜的鋰 離子電池集流體的穩定性。 . . : [0050]實施例2 :鋰離子電池集流體的製借 剛纟發明實施例利用上述链離子電池改性劑來製備具有保 護膜的鐘離子電池集流體。本發明實施例中選用㈣為 所述金屬片’該金屬片的厚度為2〇//m,寬度為3〇mm。該 链離子包池集流體的製備過程為:向上述製備好的鋰離 子電池改性劑中加入0‘5ml的曲拉通和3〇11]1水,超聲震 盪20分鐘使其混合均勻;然後用提拉法將該改性劑塗覆 於铭箱表面形成塗覆層;接著將該具有塗覆層的銘羯放 099140716 表單編號A0101 第14頁/共40頁 0992070874-0 201222917One of AlxMy(P〇3)3 or a mixture of the two; wherein the valence of μ is k ' , or one of Cr, Zn, Cu, Mg, Zr, Mo, V, Nb, and Ta or a mixture of plural; 〇 <x<l,. The material of the metal piece 102 may be a pure metal such as aluminum 'copper or nickel or an alloy containing inscriptions, copper or nickel. The thickness of the metal piece 102 is preferably from 0 to (10) #Π1 ', preferably from 10 mm to 3 mm. The protective film 1〇6 may have a thickness of 10 nm to 200 nm, preferably 50 nm to 60 nm. Preferably, the composition of the protective film is one of AlxCrl x P〇4 and a mixture of the two. The clock ion current collector 100 can be prepared by the following method. S21, providing a lithium ion battery modifier prepared by the above method and a metal sheet 102; S22, applying the lithium ion battery modifier to the surface of the metal sheet The coating layer, and S23, heat-treats the coated metal sheet 1Q2, and the coating layer is converted into a protective film 106 formed on the surface of the metal sheet 102. 099140716 Form No. A0101 Page 12/Total 40 Page 0992070874-0 201222917 [0044] [0045] In the above step S21, the metal piece 102 may be a pure metal such as aluminum, copper or nickel or contain aluminum. An alloy such as copper or nickel. The thickness of the metal piece 102 is preferably 5//111 to 60//111, and the width is preferably 10_ to 30〇111111. In the embodiment of the present invention, an aluminum foil is used as the metal piece 102. The above step S22 can uniformly coat the lithium ion battery modifier by means of blade coating, brush coating, spray coating, electrostatic coating, roll coating, screen printing or pulling. Covering one or both surfaces of the metal sheet 102. The coating layer should not be too thick, too thick to reduce the electrical conductivity of the metal sheet 102. The pulling method can make the coating layer formed on the two surfaces of the metal piece 102 uniform and continuous, and can better control the thickness of the coating layer, so the embodiment of the invention adopts the pulling method to Both surfaces of the metal sheet 102 are coated with the lithium ion battery modifier. The specific process of the pulling process includes: wetting the metal sheet 102 into the prepared lithium ion battery modifier; and pulling the wetted metal sheet 102 out of the modifier. The metal sheet 102 can be made substantially perpendicular to the level of the modifier during pulling. The above steps of wetting and pulling may be repeated a plurality of times to control the thickness and uniformity of the surface coating layer of the metal piece 102. It can be understood that the smaller the concentration of the above lithium ion battery modifier, and the faster the speed of pulling the wetted metal sheet 102 out of the modifier, the more the thickness of the coating layer formed. thin. In the above step S23, before the heat treatment step, the step of drying the coated metal sheet 102 may be further included to remove the solvent in the coating layer, and the drying method may be natural drying at room temperature or heating. dry. 099140716 Form No. A0101 Page 13 / Total 40 Page 0992070874-0 [0046] 201222917 _7] The heat treatment step - the aspect of the liquid phase solvent in the coating layer can be further evaporated; on the other hand, the evaporation can be carried out The subsequent coating layer is converted into a continuous protective film 106 formed on the surface of the metal sheet 102, which protects the metal sheet 102 from corrosion by the lithium ion battery electrolyte. The protective film 106 may have a thickness of from i 〇 nm to 2 〇〇 nm, preferably from 5 至 to 6 〇. The temperature of the heat treatment is 1 〇 (TC to 35 (rc, preferably, the temperature is 150 ° C to 250 ° C. The heat treatment time is preferably 丨 hour to 3 hours. [0048] due to the embodiment of the present invention The lithium ion battery modifier is a clear solution, and a thin and uniformly read protective film 1〇6 can be formed on the surface of the metal piece 102 of the lithium ion battery current collector relatively easily, thereby being better Protecting the lithium ion battery current collector 1 from corrosion, and having little influence on the conductivity of the lithium ion battery current collector 1 [ [ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ And a lithium ion battery current collector having a protective film, and testing the stability of the lithium ion battery current collector having the protective film and the lithium ion battery current collector not coated with the protective film under an acidic environment. [0050] Example 2: Preparation of Lithium Ion Battery Current Collector Inventive Example The above-described chain ion battery modifier was used to prepare a clock ion battery current collector having a protective film. In the embodiment of the present invention, (4) is the metal piece ' The thickness of the metal piece is 2 //m, the width is 3〇mm. The preparation process of the chain ion-packed pool current collector is: adding 0'5ml of Triton and 3〇11]1 water to the prepared lithium ion battery modifier. Ultrasonic shaking for 20 minutes to make it evenly mixed; then applying the modifier to the surface of the box to form a coating layer by pulling; then placing the coating with the coating layer 099140716 Form No. A0101 Page 14 / Total 40 pages 0992070874-0 201222917

[0052] Ο [0053] [0054] [0055] G[0052] [0055] [0055]

[0056] [0057] 099140716 入烘箱中80°C下乾燥0. 5小時,最後再將該具有塗覆層的 鋁箔放入馬弗爐中,於200°C下保溫1小時,即得到本發 明實施例製備的具有保護膜的鋰離子電池集流體。所述 保護膜的厚度為52nm。所述鋰離子電池改性劑的濃度為 0. 0432g/ml,該濃度為上述磷源的磷酸根、三價鋁源中 的鋁和金屬氧化物中的金屬的總質量佔該改性劑總體積 的體積密度。 請參閱圖2和圖3,在掃描電鏡下觀察可發現,傳統的鋁 集流體表面有許多缺陷的坑洞;而本發明具有保護膜的 集流體表面緻密平滑。 測試實驗 將本發明實施例所述鋰離子電池集流體與未塗覆所述改 性劑的鋁集流體分別放入稀鹽酸溶液中浸泡觀察。本測 試實驗中稀鹽酸的濃度為lmol/L。 觀察發現,未塗覆改性劑的鋁集流體放入稀鹽酸中靜置 一段時間後產生氣泡,表明該集流體已被腐蝕;而本發 明實施例鋰離子電池集流體在稀鹽酸中浸泡4小時後,未 發現該集流體表面有氣泡產生,表明該集流體未受到腐 蝕。另外,將該具有保護膜的集流體進行導電性能測試 ,證明該集流體仍具有較好的導電性,能夠滿足鋰離子 電池集流體的要求。 (2)用於鋰離子電池電極 請參閱圖4,本發明實施例提供一種鋰離子電池電極200 ,其包括鋰離子電池集流體202,電極材料層204以及設 表單編號A0101 第15頁/共40頁 0992070874-0 201222917 置於該電極材料層上的賴賴6。其中,㈣護膜2〇6 :成分為Α1χΜγΡ〇4以及Α1χ〜(p〇3)3中的—種或該兩種物 質的現合物;其中«價態為k,M可為Cr、Zn、Cu、Mg 、Ζι·、Mo、V、Nb及Ta中的一種或複數種的混合;oqu 〇<y<l且3x + ky = 3。該保護膜206由前述鋰離子電池改 性劑製成。 [0058][0057] 099140716 was dried in an oven at 80 ° C for 0.5 hours, and finally the coated aluminum foil was placed in a muffle furnace and incubated at 200 ° C for 1 hour, the invention was obtained. A lithium ion battery current collector having a protective film prepared in the examples. The thickness of the protective film was 52 nm. The concentration of the lithium ion battery modifier is 0.024 g / ml, and the concentration is the total mass of the phosphate in the phosphate source, the aluminum in the trivalent aluminum source, and the metal in the metal oxide. Volume density of volume. Referring to Fig. 2 and Fig. 3, it can be found by scanning electron microscopy that the surface of the conventional aluminum current collector has many defective pits; and the surface of the current collector having the protective film of the present invention is dense and smooth. Test Experiment The lithium ion battery current collector of the embodiment of the present invention and the aluminum current collector not coated with the modifier were respectively placed in a dilute hydrochloric acid solution for observation. The concentration of dilute hydrochloric acid in this test was 1 mol/L. It was observed that the aluminum current collector not coated with the modifier was placed in dilute hydrochloric acid for a period of time to generate bubbles, indicating that the current collector had been corroded; whereas the lithium ion battery current collector of the present invention was soaked in dilute hydrochloric acid. After hours, no bubbles were found on the surface of the current collector, indicating that the current collector was not corroded. In addition, the current collector of the protective film was tested for electrical conductivity, and it was proved that the current collector still has good conductivity and can meet the requirements of the current collector of the lithium ion battery. (2) Electrode for Lithium Ion Battery Referring to FIG. 4, an embodiment of the present invention provides a lithium ion battery electrode 200 including a lithium ion battery current collector 202, an electrode material layer 204, and a form number A0101. Page 0992070874-0 201222917 Lai 6 placed on the layer of electrode material. Wherein, (4) protective film 2〇6: the composition is Α1χΜγΡ〇4 and Α1χ~(p〇3)3 of the species or the two substances; wherein «the valence state is k, M can be Cr, Zn , a mixture of one or more of Cu, Mg, Ζι·, Mo, V, Nb, and Ta; oqu 〇 <y<l and 3x + ky = 3. The protective film 206 is made of the aforementioned lithium ion battery modifier. [0058]

所述鋰離子電池集流體202的材料可為鋁、銅或鎳等純金 屬或含有鋁、銅或鎳等的合金。所述電極材料層2〇4包括 電極活性材料、導電劑以及黏結劑。所述電極活性材料 可為正極活性材料或負極活性材料,所述正極活性材料 可為未摻雜或摻雜的尖晶石結構的錳酸鋰、層狀猛酸鐘 、鎳酸鋰、鈷酸鋰、磷酸鐵鋰、鋰鎳錳氧化物及鋰鎳鈷 錳氧化物中的一種或複數種。具體地,談尖晶石結構的 猛酸鐘可由化學式LixMn2 yLy〇4表示,該錄酸鐘可由化 學式LixNii-vLv02表示,該姑酸經的化學式可由 LixCoi-yLy〇2表示,該層狀▲酸鐘的化學式可由 LixMni-yL 〇 ,該磷酸鐵鋰的化學式可由Li Fe l PO y L x 1-y y u4 表示,該鋰鎳錳氧化物的化學式可由The material of the lithium ion battery current collector 202 may be a pure metal such as aluminum, copper or nickel or an alloy containing aluminum, copper or nickel. The electrode material layer 2〇4 includes an electrode active material, a conductive agent, and a binder. The electrode active material may be a positive electrode active material or a negative electrode active material, and the positive electrode active material may be undoped or doped spinel structure lithium manganate, layered acid clock, lithium nickelate, cobalt acid One or a plurality of lithium, lithium iron phosphate, lithium nickel manganese oxide, and lithium nickel cobalt manganese oxide. Specifically, the tellurite structure of the acid clock can be represented by the chemical formula LixMn2 yLy 〇 4, the acid clock can be represented by the chemical formula LixNii-vLv02, the chemical formula of the sulphur acid can be represented by LixCoi-yLy 〇 2, the layer ▲ acid The chemical formula of the clock can be represented by LixMni-yL, and the chemical formula of the lithium iron phosphate can be represented by Li Fe l PO y L x 1-yy u4, and the chemical formula of the lithium nickel manganese oxide can be

LixNi0.5 + Z-aMnl.5-z_bLaRb〇4表示,該链錄姑猛氧化物 的化學式可由Li Ni CoHMn Lf09表示,其中0. 1$χ幺Li 。 Li Li 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学

X C Q 6 Γ Z 1· 1 ’ 〇Sy<l,〇Sz<1.5,0Sa-z<0.5,〇Sb + z<1.5 ’ 〇<c<l,〇<d<l,〇<e<l,0SfS0.2,c + d + e + f = i。 L和R選自驗金屬元素、驗土金屬元素、第13族元素、第 14族元素、過渡族元素及稀土元素中的一種或複數種, 優選地,L和R選自 Mn、Ni、Cr、Co、V、Ti、Al、Fe、 099140716 表單編號A0101 第16頁/共40頁 0992070874-0 201222917XCQ 6 Γ Z 1· 1 '〇Sy<l, 〇Sz<1.5,0Sa-z<0.5, 〇Sb + z<1.5 ' 〇<c<l, 〇<d<l, 〇<e< l, 0SfS0.2, c + d + e + f = i. L and R are selected from one or more of a metal element, a soil metal element, a group 13 element, a group 14 element, a transition group element, and a rare earth element. Preferably, L and R are selected from the group consisting of Mn, Ni, and Cr. , Co, V, Ti, Al, Fe, 099140716 Form No. A0101 Page 16 of 40 Page 0992070874-0 201222917

Ga、Nd及Mg中的至少一種。所述負極材料可為鈦酸鋰、 石墨、有機裂解碳及中間相碳微球(MCMB)中的一種或複 數種。具體地’該鈦酸鋰可由化學式Li A Ti 或 (4-g) g 5 12 1^/}11^(5外)〇12表示,其中〇<§$〇.33,且0<^1^0.5; A選自驗金屬元素、驗土金屬元素、第13族元素、第14族 元素、過渡族元素及稀土元素中的一種或複數種,優選 為Mn、Ni、Cr、Co、V、Al、Fe、Ga、Nd、Nb及Mg中的 至少一種。所述導電劑可為石墨、乙炔黑及奈米碳管中 的一種或複數種;所述黏結劑可為PVDF、聚四氟乙烯 〇 (PTFE)及SBR中的一種或複數種。可以理解,該電極活 性材料、導電劑以及黏結劑也可採用其他常用的材料。 所述保護膜206的成分優選為Al Cr P0以及 X , -1 - X 4 Α1χ〇1χ(Ρ〇3)3中的一種或該兩種的混合。 [0059] 上述鋰離子電池電極200可藉由如下步驟來製備: [0060] S31 ’在裡離子電池集流體202表面形成一電極材料層 204 ; 〇 [0061] S32,將該鋰離子電池改性劑塗覆於上述電極材料層2〇4 表面形成一塗覆層,以及 [0062] S33,熱處理該塗覆後的鋰離子電池集流體2〇2,所述蜜 覆層轉化為保護膜206形成於該電極材料層204表面。 剛上述步驟S31可進-步包括:將電極活性材料顆粒、導電 劑以及黏結劑製成漿料,以及將該㈣塗覆於所述銀離 子電池集流體202表面形成電極材料層2〇4 ^此外,町對 該電極材料層204進行熱處理的步驟來使其更好地黏結於 099140716 表單編號A0101 第17頁/共40頁 0992070874-0 201222917 所述鋰離子電池集流體202表面。 [0064] [0065] [0066] [0067] 上述步驟咖中,由於所述改性劑為—澄清的溶液,故易 於在上述電極材料層2Q4表面均勻的塗覆所述塗覆的方 法可為刮塗、刷塗、噴塗、靜電塗覆(electrostatic coating)、黏輥(r〇u c〇ating)或絲網印刷。該塗 覆層不能太厚,太厚會降低該㈣子電池電極_的導電 性。 在上述步驟S33中,所述熱處理—方面可蒸乾該塗覆層中 的溶劑;另一方面可使該蒸乾後的塗覆層轉化為連續的 保護膜206形成於所述電極材料層2〇4表面來保護該電極 材料層204。所述熱處理的溫度為1〇〇。(:至2〇〇。(:,熱處 理的時間優選為1小時至3小時。該保護膜2〇6的厚度可為 10nm至200nm,優選為5〇nm至60nm。由於該保護膜 很薄,故對該鋰離子電池電極2〇0的導電性影響不大。 請參閱圖5,本發明實施例還提供一種鋰離子電池電極複 合材料300,該電極複合材料3〇〇包g電極活性材料顆粒 302以及包覆於該電極活性材,顆粒表面的保護膜3〇6。 該保護膜306的成分為Α1 Μ P0,以及Α1 Μ (P0 )中的一At least one of Ga, Nd, and Mg. The negative electrode material may be one or a plurality of lithium titanate, graphite, organically cracked carbon, and mesocarbon microbeads (MCMB). Specifically, the lithium titanate can be represented by the chemical formula Li A Ti or (4-g) g 5 12 1^/}11^(5 outer) 〇12, wherein 〇<§$〇.33, and 0 <^1 ^0.5; A is selected from one or more of a metal element, a soil metal element, a group 13 element, a group 14 element, a transition group element, and a rare earth element, preferably Mn, Ni, Cr, Co, V, At least one of Al, Fe, Ga, Nd, Nb, and Mg. The conductive agent may be one or more of graphite, acetylene black and carbon nanotubes; the binder may be one or more of PVDF, polytetrafluoroethylene (PTFE) and SBR. It is to be understood that the electrode active material, the conductive agent, and the binder may be other commonly used materials. The composition of the protective film 206 is preferably one of Al Cr P0 and X , -1 - X 4 Α1χ〇1χ(Ρ〇3)3 or a mixture of the two. [0059] The lithium ion battery electrode 200 can be prepared by the following steps: [0060] S31 'forms an electrode material layer 204 on the surface of the inner ion current collector 202; 〇[0061] S32, the lithium ion battery is modified The agent is coated on the surface of the electrode material layer 2〇4 to form a coating layer, and [0062] S33, heat-treating the coated lithium ion battery current collector 2〇2, and the honey coating layer is transformed into the protective film 206. On the surface of the electrode material layer 204. The step S31 may further include: slurrying the electrode active material particles, the conductive agent, and the binder, and applying the (4) to the surface of the silver ion battery current collector 202 to form the electrode material layer 2〇4 ^ In addition, the step of heat-treating the electrode material layer 204 to make it better adhere to the surface of the lithium ion battery current collector 202 described in Form No. A0101, page 17 / page 40, 0992070874-0 201222917. [0067] [0067] In the above steps, since the modifier is a clear solution, the method of uniformly coating the surface of the electrode material layer 2Q4 is easy. Scrape, brush, spray, electrostatic coating, r〇uc〇ating or screen printing. The coating layer should not be too thick, too thick to reduce the conductivity of the (four) subcell electrode. In the above step S33, the heat treatment may evaporate the solvent in the coating layer; on the other hand, the evaporated coating layer may be converted into a continuous protective film 206 formed on the electrode material layer 2 The surface of the electrode material 204 is protected by a surface of 〇4. The temperature of the heat treatment was 1 Torr. (: to 2 〇〇. (: The heat treatment time is preferably from 1 hour to 3 hours. The thickness of the protective film 2〇6 may be from 10 nm to 200 nm, preferably from 5 〇 nm to 60 nm. Since the protective film is thin, Therefore, the conductivity of the lithium ion battery electrode 2 〇 0 is not significant. Referring to FIG. 5 , an embodiment of the present invention further provides a lithium ion battery electrode composite material 300 , which is an electrode composite material 3 g g electrode active material particles And a protective film 3〇6 coated on the surface of the electrode active material, the surface of the protective film 306 is Α1 Μ P0, and one of Α1 Μ (P0)

xy 4 x y 3 3 1 J 種或該兩種物質的混合物;其中,M的價態為k,M為Cr、Xy 4 x y 3 3 1 J or a mixture of the two; wherein, M has a valence of k and M is Cr,

Zn、Cu、Mg、Zr、Mo、V、Nb及Ta中的一種或複數種的 混合;0<χ<1,0<y<l且3x + ky = 3。該保護膜306由前述 鋰離子電池改性劑塗覆於該電極活性材料顆粒3〇2表面並 藉由熱處理製成。 該保護膜306均勻連續地包覆於所述電極活性材料顆粒 099140716 表單編號A0101 第18頁/共40頁 0992070874-0 201222917 302表面,該保護膜306在該電極複合材料300中的質量 百分比優選為0. 至3%,厚度優選為5nm至100nm。所述 電極活性材料顆粒3 0 2的材料可為正極活性材料或負極活 性材料。所述正極活性材料可為未摻雜或摻雜的尖晶石 結構的錳酸鋰、層狀錳酸鋰、鎳酸鋰、鈷酸鋰、磷酸鐵 鋰、鋰鎳錳氧化物及鋰鎳鈷錳氧化物中的一種或複數種 。具體地,該尖晶石結構的錳酸鋰可由化學式 Li Mn。LyOj表示,該鎳酸链可由化學式Li Ni, L 0〇 x 2-y 4 x 1 -y y 2 表示,該銘酸鐘的化學式可由Li Co, L 0。表示,該層 x 1-y y 2 O 狀猛酸裡的化學式可由LixMnl yLy〇2,該磷酸鐵經的化 學式可由Li Fe, L P0,表示,該鋰鎳錳氧化物的化學式 X 1 -y y 4 可由Li Nin Μη 表示,該鐘錄轱猛氧 X 0.5+z-a 1.5-z-b a b 4 化物的化學式可由Li Ni Cojn 表示,其中O.lSx x c d e f 2a mixture of one or more of Zn, Cu, Mg, Zr, Mo, V, Nb, and Ta; 0 < χ < 1, 0 < y < l and 3 x + ky = 3. The protective film 306 is coated on the surface of the electrode active material particles 3〇2 by the aforementioned lithium ion battery modifier and is produced by heat treatment. The protective film 306 is uniformly and continuously coated on the surface of the electrode active material particles 099140716, Form No. A0101, page 18/40 pages 0992070874-0 201222917 302, and the mass percentage of the protective film 306 in the electrode composite 300 is preferably 0 to 3%, the thickness is preferably 5 nm to 100 nm. The material of the electrode active material particles 30 2 may be a positive electrode active material or a negative electrode active material. The positive active material may be undoped or doped spinel structure lithium manganate, layered lithium manganate, lithium nickelate, lithium cobaltate, lithium iron phosphate, lithium nickel manganese oxide and lithium nickel cobalt One or more of manganese oxides. Specifically, the spinel structure lithium manganate may be a chemical formula of Li Mn. LyOj indicates that the nickel acid chain can be represented by the chemical formula Li Ni, L 0〇 x 2-y 4 x 1 -y y 2 , and the chemical formula of the acid clock can be Li Co, L 0 . It is indicated that the chemical formula in the layer x 1-yy 2 O-like acid can be obtained by LixMnl yLy〇2, and the chemical formula of the iron phosphate can be represented by Li Fe, L P0, the chemical formula of the lithium nickel manganese oxide X 1 -yy 4 It can be represented by Li Nin Μη, the chemical formula of the 轱 轱 氧 X 0.5+za 1.5-zb ab 4 compound can be represented by Li Ni Cojn, where O.lSx xcdef 2

Sl.l,0Sy<l,0Sz<1.5,0Sa-z<0.5,OS b+z<1.5,0<c<l,0<d<l,0<e<l,0SfS0.2, c + d + e + f = l。L和R選自驗金屬元素、驗土金屬元素、第 13族元素、第14族元素、過渡族元素及稀土元素中的一 ❹種或複數種,優選地,L和R選自Mn、Ni、Cr ' Co、V、Sl.l,0Sy<l,0Sz<1.5,0Sa-z<0.5, OS b+z<1.5,0<c<l,0<l<l,0<e<l<l,0SfS0.2, c+d + e + f = l. L and R are selected from the group consisting of a metal element, a soil metal element, a group 13 element, a group 14 element, a transition group element, and a rare earth element. Preferably, L and R are selected from the group consisting of Mn and Ni. , Cr ' Co, V,

Ti、A1、Fe、Ga、Nd及Mg中的至少一種。所述負極活性 材料可為鈦酸鋰、石墨、有機裂解碳及中間相碳微球 (MCMB)中的一種或複數種。具體地,該鈦酸鋰可由化學 式LiU_g)AgTi5〇12或Li4AhTi(5_h)012表示’其中0‘ 0. 33,且0〈hSO. 5 ; A選自鹼金屬元素、鹼土金屬元素 、第13族元素、第14族元素、過渡族元素及稀土元素中 的一種或複數種,優選為Mn、Ni、Cr、Co、V ' A1、Fe 、Ga、Nd、Nb及Mg中的至少一種。所述電極活性材料顆 099140716 表單編號A0101 第19頁/共40頁 0992070874-0 201222917 粒302的粒徑優選為100奈米至100微米。可以理解,所 述電極活性材料也可用其他常用的材料。本發明實施例 中採用粒徑為8微米至12微米的石墨粉末作為負極活性材 料顆粒。所述保護膜306的成分為A1 Cr, PO,以及 X 1 -X 4 A1 Cr, (POQ)Q中的一種或該兩種的混合。 X 1 -X 3 3 [0068] 本發明實施例進一步提供一種使用上述鋰離子電池改性 劑來製備該鋰離子電池電極複合材料300的方法,具體包 括以下步驟: [0069] B11,提供上述鋰離子電池改性劑和上述電極活性材料顆 粒30 2 ; [0070] B12,混合該電極活性材料顆粒302和該鋰離子電池改性 劑,形成一混合物,以及 [0071] B13,乾燥並熱處理該混合物。 [0072] 在上述步驟B11中,所述電極活性材料顆粒302的材料可 為正極活性材料或負極活性材料。所述正極活性材料可 為未掺雜或掺雜的尖晶石結構的錳酸鋰、層狀錳酸鋰、 錄酸链、始酸链、填酸鐵裡、裡錄猛氧化物及裡錄姑锰 氧化物中的一種或複數種。具體地,該尖晶石結構的錳 酸鋰可由化學式Li L 0,表示,該鎳酸鋰可由化學 X 2-y y 4 式Li Ni, L 表示,該姑酸裡的化學式可由 X 1 -y y 2At least one of Ti, Al, Fe, Ga, Nd, and Mg. The negative active material may be one or a plurality of lithium titanate, graphite, organic cracked carbon, and mesocarbon microbeads (MCMB). Specifically, the lithium titanate may be represented by the chemical formula LiU_g)AgTi5〇12 or Li4AhTi(5_h)012, wherein '0' 0.33, and 0<hSO. 5 ; A is selected from the group consisting of alkali metal elements, alkaline earth metal elements, and 13th group One or a plurality of the element, the group 14 element, the transition group element, and the rare earth element are preferably at least one of Mn, Ni, Cr, Co, V 'A1, Fe, Ga, Nd, Nb, and Mg. The electrode active material particles 099140716 Form No. A0101 Page 19 of 40 0992070874-0 201222917 The particle size of the particles 302 is preferably from 100 nm to 100 μm. It will be understood that the electrode active material may be made of other commonly used materials. In the embodiment of the present invention, graphite powder having a particle diameter of 8 μm to 12 μm is used as the negative electrode active material particles. The composition of the protective film 306 is one of A1 Cr, PO, and X 1 -X 4 A1 Cr, (POQ) Q or a mixture of the two. X 1 -X 3 3 [0068] The embodiment of the present invention further provides a method for preparing the lithium ion battery electrode composite 300 by using the above lithium ion battery modifier, and specifically includes the following steps: [0069] B11, providing the lithium An ion battery modifier and the above electrode active material particles 30 2; [0070] B12, mixing the electrode active material particles 302 and the lithium ion battery modifier to form a mixture, and [0071] B13, drying and heat treating the mixture . [0072] In the above step B11, the material of the electrode active material particles 302 may be a positive electrode active material or a negative electrode active material. The positive active material may be an undoped or doped spinel structure of lithium manganate, layered lithium manganate, acid-recording chain, acid chain, iron-filled iron, Lie volcanic oxide and Lilu One or more of the manganese oxides. Specifically, the spinel-structured lithium manganate may be represented by the chemical formula Li L 0 , and the lithium nickelate may be represented by a chemical formula X 2-y y 4 , Li Ni, L , and the chemical formula in the succinic acid may be X 1 -y y 2

Li Co, LyC^表示,該層狀猛酸裡的化學式可由 X 1 -y 2Li Co, LyC^ indicates that the chemical formula in the layered acid can be X 1 -y 2

Li Mni-yL ,該墙酸鐵裡的化學式可由Li Fe, L PO, x y 2 x 1-y y 4 表示,該链錄锰氧化物的化學式可由Li Mni-yL, the chemical formula of the iron in the wall can be represented by Li Fe, L PO, x y 2 x 1-y y 4 , and the chemical formula of the manganese oxide can be

Li N i. , Μηι. 5-z-bL 表示,該裡鎳钻锰氧化物 X 0.5+z-a a b 4 099140716 表單編號A0101 第20頁/共40頁 0992070874-0 201222917 的化學式可由LixNicC〇dMneLf02表示,其中〇. 1,1 ’ 0$y&lt;l ’ 0$z&lt;1.5,〇Sa-z&lt;0.5,0gb + z&lt;1.5 ’ 0&lt;c&lt;1 ’ 〇&lt;d&lt;l,〇&lt;e&lt;l,0SfS0.2,c + d + e + f = l。 L和R選自驗金屬元素、驗土金屬元素、第13族元素、第 14私元素、過渡族元素及稀土元素中的一種或複數種, 優選地,L和R選自 Mn、Ni、Cr、Co、V、Ti、Al、Fe、 Ga、Nd及Mg中的至少一種》所述負極活性材料可為鈦酸 鋰、石墨、有機裂解碳及中間相碳微球(MCMB)中的一種 或複數種。具體地,該鈦酸鋰可由化學式 Ll(4-g)AgTi5(h2 或 Li4AhTi(5h)〇12 表示,其中 0.33 ’且0&lt;h$〇 5 ; a選自鹼金屬元素、驗土金屬元素 、第13族元素、第14族元素、過渡族元素及稀土元素中 的一種或複數種,優選為Mn、Ni、Cr、C〇、V ' Al、Fe Ga、Nd、Nb及Mg中的至少一種。所述電極活性材料顆 粒302的粒徑優選為100奈米至100微米。可以理解,所 述電極活性材料顆粒302的材料也可用其他常用的材料。 本發明實施例中採用粒徑為8微米至12微米的石墨粉末作 為負極活性材料顆粒。 [0073]在上述步驟B12中,所述混合為固液混合,該電極活性材 料顆粒302不溶於所述鋰離子電池改性劑。由於所述鋰離 子電池改性劑為一澄清的溶液且具有—定的黏性,故, β亥改性劑易於均勻黏附於所述電極活性材料顆粒3 〇 2表面 形成一層厚度較薄的改性劑層。 [0074] 另外,將該電極活性材料顆粒3〇2與該改性劑混合時,只 需使該改性劑能夠覆蓋該電極活性材料顆粒3 〇 2表面即可 099140716 表單編號Α0101 第21頁/共40頁 0992070874-0 201222917 ,得到的所述混合物成泥漿狀,利於獲得表面包覆較薄 的電極活性材料顆粒3 0 2。 [0075] 在上述步驟B1 2後,可進一步包括過濾的步驟來濾除該混 合物中多餘的裡離子電池改性劑。 [0076] 在上述步驟B13中,所述乾燥處理可為常溫自然晾乾或加 熱烘乾來去除該混合物中的溶劑,所述加熱烘乾的溫度 優選為60°C~100°C。本發明實施例中在80°C下來烘乾該 混合物。所述熱處理可使該乾燥後所述電極活性材料顆 粒302表面的改性劑層轉化為均勻連續的保護膜306更好 地包覆於該電極活性材料顆粒302表面,從而獲得本發明 實施例所述鋰離子電池電極複合材料300。該熱處理的溫 度優選為30(TC〜800°C,熱處理的時間優選為1小時~3小 時。本發明實施例中,該熱處理的溫度為700°C,熱處理 的時間為3小時。所述保護膜306在該電極複合材料300中 的質量百分比優選為0. 5%〇至3%,厚度優選為5nm〜100nm 〇 [0077] 由於本發明實施例中所述鋰離子電池改性劑為一澄清且 具有一定黏性的溶液,可較容易地在所有電極活性材料 顆粒表面均形成保護膜,還能使每個電極活性材料顆粒 表面完全被保護膜包覆,且包覆於電極活性材料顆粒表 面的保護膜厚度較薄且均勻連續,該保護膜可在隔絕鋰 離子電池電解液與電極活性材料顆粒之間的電子遷移的 同時使離子藉由,從而一方面避免了鋰離子電池電極與 電解液之間的副反應,提高了電池的熱穩定性以及電池 容量保持性能,另一方面由於該電極活性材料顆粒表面 099140716 表單編號A0101 第22頁/共40頁 0992070874-0 201222917 的保護膜較薄,不會降低鋰離子電池的電化學性能。 [0078] (3)用於鋰離子電池隔膜 [0079] 本發明實施例還提供一種使用所述鋰離子電池改性劑來 製備鐘離子電池隔膜的方法,包括如下步驟: [0080] B21 ’提供用於鋰離子電池隔膜的多孔膜以及上述鋰離子 電池改性劑; [0〇81] B22,將該改性劑塗覆於該多孔膜表面形成塗覆層,以及 〇 C0082] B23,乾燥塗覆有該改性劑的多孔膜,從而在該多孔膜表 面形成改性劑層。 [0083]在上述步驟B21中,所述多孔膜可為琴知的用於鋰離子電 池的隔膜,如純聚合物隔膜、陶瓷隔膜或含有陶瓷材料 的聚合物隔膜等。該多孔膜的厚度可為5微米〜6〇微米, 優選地,該多孔膜的厚度為丨5微米〜4〇微米。該多孔膜的 孔隙率可為20%〜90%,孔徑可為〇. 〇1微米~8〇微米。優選 地’該孔隙率為40%〜80%,孔徑為〇_ 1微米微米。本 〇 發明實施例採用聚㈣(PP)微孔膜作為所述多孔膜, 遠微孔膜的孔隙率為6〇% ’平均孔徑為7微米。該多孔膜 可藉由習知的炫融拉伸法或熱致相分離法等方法來製備 [0084] 在上述步驟謝,可藉由難、噴塗、靜電塗覆、黏輥 、絲網印刷或独法等方切所述崎 :塗覆於所述多孔膜-個或兩個表面。由於該塗: 為溶液塗覆,所述提拉法可使麵述多孔膜㈣個 099140716 表單編號A0101 第23頁/共4〇頁 0992070874-0 201222917 形成的塗覆層均勻連續,且可較好地控制所述塗覆層的 厚度,故本發明實施例採用提拉法在該多孔膜兩個表面 塗覆所述鋰離子電池改性劑。 [0085] 該提拉法的具體過程包括:將該多孔膜完全浸潤到已配 置好的所述鋰離子電池改性劑中;以及將該浸潤後的多 孔膜提拉出所述改性劑外。在提拉時,可使該多孔膜與 改性劑液面基本垂直。上述浸潤和提拉的步驟可重複複 數次,以控制所述多孔膜表面的塗覆層的厚度以及均句 性。可以理解,上述鋰離子電池改性劑的濃度越小,以 及將該浸潤後的多孔膜提拉出所述改性劑外的速度越快 ,形成的所述塗覆層的厚度越薄。本發明實施例中該改 性劑的濃度為0. 〇lmol/L。 [0086] 在上述步驟B23中,所述乾燥步驟可去除所述鋰離子電池 改性劑中的溶劑並使形成的該改性劑層更好地與所述多 孔膜表面結合。該乾燥的方式可為常溫自然晾乾也可為 加熱烘乾,所述烘乾的溫度不高於70°C。所述改性劑層 的厚度可為10nm~100nm,優選地,所述改性劑層的厚度 為10nm〜40nm。本發明實施例在40°C下烘乾該塗覆後的 多孔膜,使形成的所述改性劑層更好地與所述多孔膜表 面結合。 [0087] 由於所述鋰離子電池改性劑為一澄清的溶液,且形成的 改性劑層厚度較薄,故該改性劑層對所述多孔膜的孔隙 率以及孔徑影響不大,即將該具有改性劑層的多孔膜應 用於鋰離子電池中時,不會影響到該鋰離子電池中的鋰 離子遷移率。 099140716 表單編號A0101 第24頁/共40頁 0992070874-0 201222917 [0088] 請參閱圖6,本發明實施例進一步利用上述方法製備了一 種鋰離子電池隔膜400,該隔膜400包括一多孔膜402以 及設置於該多孔膜402表面的改性劑層404。該改性劑層 404藉由將上述鋰離子電池改性劑塗覆於該多孔膜402表 面形成塗覆層,並乾燥處理該塗覆層後形成。 [0089] Ο Ο [0090] 所述多孔膜402可為習知的用於鋰離子電池的隔膜,如純 聚合物隔膜、陶瓷隔膜或含有陶瓷材料的聚合物隔膜等 。該多孔膜402的厚度可為5微米~60微米,優選地,該多 孔膜的厚度為15微米〜40微米。該多孔膜的孔隙率可為 20%〜90%,孔徑可為0. 01微米~80微米。優選地,該孔隙 率為40%~80%,孔徑為0. 1微米〜10微米。本發明實施例 採用聚丙烯(ΡΡ)微孔膜作為所述多孔膜402,該微孔膜 的孔隙率為60%,平均孔徑為7微米。該多孔膜402可藉由 習知的熔融拉伸法或熱致相分離法等方法來製備。所述 改性劑層404設置所述多孔膜402的兩個表面,該改性劑 層404的厚度可為1〇11111~10〇11111,優選地,^?述改性劑層 的厚度為10nm~40nm。 由於所述鋰離子電池改性劑為一澄清的溶液且具有一定 的黏性,故,該改性劑易於均勻塗覆於所述多孔膜402表 面形成一層厚度較薄的改性劑層4 0 4。由於所述改性劑層 404的厚度較薄,可提高所述隔膜400的機械強度又不會 使所述塗覆後的隔膜400變脆。在鋰離子電池的使用過程 中,當該隔膜400受熱溫度較高時(大於100°C),該改 性劑層404會轉化為一連續的保護膜更好地阻止該隔膜 400的熱收縮,提高了該隔膜400的熱穩定性。該保護膜 099140716 表單編號A0101 第25頁/共40頁 0992070874-0 201222917 的成分為AlxMyP〇4以及AlxMy(P〇3)3中的一種或該兩種物 質的混合物;其中Μ的價態為k,Μ為Cr、Zn、Cu、Mg、Li N i. , Μηι. 5-z-bL indicates that the nickel-nickel manganese oxide X 0.5+za ab 4 099140716 Form No. A0101 Page 20 of 40 0992070874-0 201222917 The chemical formula can be represented by LixNicC〇dMneLf02. Where 〇. 1,1 ' 0$y&lt;l ' 0$z&lt;1.5,〇Sa-z&lt;0.5,0gb + z&lt;1.5 ' 0&lt;c&lt;1 ' 〇&lt;d&lt;l,〇&lt;e&lt; l, 0SfS0.2, c + d + e + f = l. L and R are selected from one or more of a metal element, a soil metal element, a group 13 element, a 14th private element, a transition element, and a rare earth element. Preferably, L and R are selected from the group consisting of Mn, Ni, and Cr. At least one of Co, V, Ti, Al, Fe, Ga, Nd, and Mg. The anode active material may be one of lithium titanate, graphite, organic cracked carbon, and mesocarbon microbeads (MCMB) or Multiple species. Specifically, the lithium titanate may be represented by the chemical formula L1(4-g)AgTi5(h2 or Li4AhTi(5h)〇12, wherein 0.33' and 0 &lt;h$〇5; a is selected from the group consisting of alkali metal elements, soil metal elements, One or more of the Group 13 element, the Group 14 element, the transition group element, and the rare earth element, preferably at least one of Mn, Ni, Cr, C〇, V 'Al, Fe Ga, Nd, Nb, and Mg The particle size of the electrode active material particles 302 is preferably from 100 nm to 100 μm. It is understood that the material of the electrode active material particles 302 can also be used in other commonly used materials. In the embodiment of the present invention, the particle size is 8 μm. The graphite powder to 12 μm is used as the negative electrode active material particles. [0073] In the above step B12, the mixing is solid-liquid mixing, and the electrode active material particles 302 are insoluble in the lithium ion battery modifier. The ion battery modifier is a clear solution and has a certain viscosity. Therefore, the β-coating agent is easy to uniformly adhere to the surface of the electrode active material particles 3 〇 2 to form a thin layer of the modifier layer. [0074] In addition, the electrode active material When the particle 3〇2 is mixed with the modifier, it is only necessary to enable the modifier to cover the surface of the electrode active material particle 3 〇 2 to be 099140716 Form No. 1010101 Page 21 / Total 40 Page 0992070874-0 201222917 The mixture is in the form of a slurry, which is advantageous for obtaining the surface-coated thin electrode active material particles 3 0 2 . [0075] After the above step B12, a filtering step may be further included to filter out the excess ionic battery in the mixture. In the above step B13, the drying treatment may be natural drying or heating and drying at normal temperature to remove the solvent in the mixture, and the temperature of the heating and drying is preferably 60° C. to 100°. C. In the embodiment of the present invention, the mixture is dried at 80 ° C. The heat treatment can convert the modifier layer on the surface of the electrode active material particles 302 to a uniform continuous protective film 306 after the drying. The surface of the electrode active material particle 302 is coated to obtain the lithium ion battery electrode composite material 300 according to the embodiment of the present invention. The temperature of the heat treatment is preferably 30 (TC~800 ° C, and the heat treatment time is preferably 1 hour to 3 hours). 5%至至3%, the mass percentage of the protective film 306 in the electrode composite material 300 is preferably 0.5% 〇 to 3%, in the embodiment of the present invention, the heat treatment is performed at a temperature of 700 ° C, the heat treatment time is 3 hours. The thickness is preferably from 5 nm to 100 nm. [0077] Since the lithium ion battery modifier in the embodiment of the present invention is a clear and viscous solution, a protective film can be formed on the surface of all the electrode active material particles relatively easily. The surface of each electrode active material particle is completely covered by the protective film, and the protective film coated on the surface of the electrode active material particle is thin and uniform, and the protective film can isolate the lithium ion battery electrolyte and the electrode. The electron migration between the active material particles causes the ions to pass, thereby avoiding the side reaction between the lithium ion battery electrode and the electrolyte on the one hand, improving the thermal stability of the battery and the battery capacity retention performance, and on the other hand The electrode active material particle surface 099140716 Form No. A0101 Page 22 / Total 40 page 0992070874-0 201222917 The protective film is thin and does not reduce lithium ion electricity The electrochemical properties. [0078] (3) For Lithium Ion Battery Separator [0079] Embodiments of the present invention also provide a method for preparing a plasma cell separator using the lithium ion battery modifier, comprising the following steps: [0080] B21 'provided a porous film for a lithium ion battery separator and the above lithium ion battery modifier; [0〇81] B22, the modifier is applied to the surface of the porous film to form a coating layer, and 〇C0082] B23, dried and coated The porous film coated with the modifier forms a modifier layer on the surface of the porous film. In the above step B21, the porous film may be a known separator for a lithium ion battery, such as a pure polymer separator, a ceramic separator or a polymer separator containing a ceramic material. The porous film may have a thickness of 5 μm to 6 μm, and preferably, the porous film has a thickness of 5 μm to 4 μm. The porous film may have a porosity of 20% to 90% and a pore diameter of 〇1 μm to 8 μm. Preferably, the porosity is 40% to 80% and the pore diameter is 〇 1 μm. The present invention employs a poly(tetra)(PP) microporous membrane as the porous membrane, and the far microporous membrane has a porosity of 6 〇%' average pore diameter of 7 μm. The porous film can be prepared by a conventional method such as a smear stretching method or a thermally induced phase separation method. [0084] In the above steps, it can be difficult, sprayed, electrostatically coated, bonded, screen printed or The singularity of the porous film is applied to one or both surfaces. Since the coating: coating for the solution, the pulling method can make the coating film formed by the surface porous film (four) 099140716 Form No. A0101 Page 23 / Total 4 page 0992070874-0 201222917 uniform and continuous, and better The thickness of the coating layer is controlled, so that the lithium ion battery modifier is coated on both surfaces of the porous film by a pulling method in the embodiment of the present invention. [0085] The specific process of the pulling method comprises: completely infiltrating the porous membrane into the prepared lithium ion battery modifier; and pulling the infiltrated porous membrane out of the modifier . At the time of pulling, the porous membrane can be made substantially perpendicular to the level of the modifier. The above steps of wetting and pulling may be repeated plural times to control the thickness of the coating layer on the surface of the porous film and the uniformity. It can be understood that the smaller the concentration of the above-mentioned lithium ion battery modifier, and the faster the speed at which the infiltrated porous film is pulled out of the modifier, the thinner the thickness of the coating layer formed. 〇lmol/L。 The concentration of the modifier in the embodiment of the present invention is 0. 〇lmol / L. [0086] In the above step B23, the drying step may remove the solvent in the lithium ion battery modifier and better form the modifier layer to be bonded to the surface of the porous film. The drying method may be naturally dried at room temperature or dried by heating, and the drying temperature is not higher than 70 °C. The modifier layer may have a thickness of 10 nm to 100 nm, and preferably, the modifier layer has a thickness of 10 nm to 40 nm. In the embodiment of the present invention, the coated porous film was dried at 40 ° C to better bond the formed modifier layer to the surface of the porous film. [0087] Since the lithium ion battery modifier is a clear solution and the thickness of the modifier layer formed is relatively thin, the modifier layer has little effect on the porosity and pore diameter of the porous membrane, When the porous film having the modifier layer is applied to a lithium ion battery, the lithium ion mobility in the lithium ion battery is not affected. 099140716 Form No. A0101 Page 24 of 40 0992070874-0 201222917 [0088] Referring to FIG. 6, a lithium ion battery separator 400 is further prepared by the above method, and the diaphragm 400 includes a porous membrane 402 and A modifier layer 404 disposed on the surface of the porous film 402. The modifier layer 404 is formed by applying the above-described lithium ion battery modifier to the surface of the porous film 402 to form a coating layer, and drying the coating layer. [0089] The porous film 402 may be a conventional separator for a lithium ion battery, such as a pure polymer separator, a ceramic separator, or a polymer separator containing a ceramic material. The porous film 402 may have a thickness of 5 μm to 60 μm. Preferably, the porous film has a thickness of 15 μm to 40 μm. 01微米至80微米。 The porous film may have a porosity of from 20% to 90%, a pore size of from 0.01 microns to 80 microns. Preferably, the porosity is 40% to 80%, and the pore diameter is 0.1 μm to 10 μm. In the present invention, a polypropylene (ΡΡ) microporous membrane having a porosity of 60% and an average pore diameter of 7 μm was used. The porous film 402 can be produced by a conventional melt stretching method or a thermally induced phase separation method. The modifier layer 404 is disposed on both surfaces of the porous film 402. The thickness of the modifier layer 404 may be 1〇11111~10〇11111. Preferably, the thickness of the modifier layer is 10 nm. ~40nm. Since the lithium ion battery modifier is a clear solution and has a certain viscosity, the modifier is easily applied uniformly on the surface of the porous film 402 to form a thinner modifier layer 40. 4. Since the thickness of the modifier layer 404 is thin, the mechanical strength of the separator 400 can be increased without making the coated separator 400 brittle. During use of the lithium ion battery, when the separator 400 is heated to a higher temperature (greater than 100 ° C), the modifier layer 404 is converted into a continuous protective film to better prevent heat shrinkage of the separator 400. The thermal stability of the diaphragm 400 is improved. The protective film 099140716 Form No. A0101 Page 25 of 40 0992070874-0 201222917 The composition of AlxMyP〇4 and AlxMy(P〇3)3 or a mixture of the two substances; wherein the valence of Μ is k , Μ is Cr, Zn, Cu, Mg,

Zr、Mo、V、Nb及Ta中的一種或複數種的混合;〇&lt;x&lt;i, 〇&lt;y&lt;l且3x + ky = 3。優選地’該保護膜的成分為 A1xCri-xP04以及Al'rv/POPs中的一種或該兩種的混 合。 [0091] [0092] [0093] [0094] 本發明實施例利用上述方法製備了鐘離子電池隔膜(多 孔膜為聚丙烯),並對該隔膜以及未塗覆該改性劑的聚 丙烯隔膜分別在不同溫度下保溫1小時,來測定其熱收縮 率。由於本發明實施例隔膜以及未塗覆該改性劑的聚丙 烯隔膜在橫向幾乎沒有收縮,故,本發'明實施例中主要 對兩種隔膜縱向的熱收縮率進行了測試。請參閲圖7,從 圖中可看出,與未塗覆該改性劑的聚丙埽隔膜相比,本 發明實施例所述鋰離子電池隔膜的在不同溫度下具有較 好地抗熱收縮性。 此外,本發明實施例將上述兩種隔膜分別組裝到磷酸鐵 鋰電池中測試其電化學性能以道安全性能’發現在該隔 膜表面塗覆所述改性劑應用到鋰離子電池中並未降低該 鋰離子電池的電化學性能,且該鋰離子電池具有較好的 熱穩定性,提高了經離子電池的安全性。 (4)用於鋰離子電池 請參閱圖8,本發明實施例還提供一鋰離子電池5〇〇,該 鋰離子電池500包括正極片5〇2、負極片5〇4、隔膜5〇6、 非水性電解液以及外部封裝結構5〇8。該外部封裝結構 099140716 表單編號A0101 第26頁/共4〇頁 0992070874-0 201222917 ❹ [0095] 508將該正極片502、負極片5〇4、隔膜5〇β以及非水性電 解液封裝其中,該隔膜506設置於所述正極片5〇2與負極 片504之間。所述正極片5〇2包括一正極集流體5 ^ 2及带 成於该正極集流體512表面的正極材料層522 ;所述負極 片504包括一負極集流體514及形成於該負極集流體 表面的負極材料層524。其中,該鋰離子電池5〇〇的正極 集流體512、正極材料層522、負極集流體514、負極材 料層524以及隔膜506中的至少一個元件包括上述鋰離子 電池改性劑的成分或該改性劑在1〇(rc以上受熱反應後生 成物的成分。 該改性劑為所述含_根的磷源、三價魄以及金屬氧 化物在所述液相溶劑中的現合。該改性劑在iq『C以上受 熱反應後生成物的成分為ΑΐχΆ以及a、m⑽)中的 -種或該兩種物質的混合物;其中Μ的價^,^為^、a mixture of one or more of Zr, Mo, V, Nb, and Ta; 〇 &lt;x&lt;i, 〇&lt;y&lt;l and 3x + ky = 3. Preferably, the composition of the protective film is one of A1xCri-xP04 and Al'rv/POPs or a mixture of the two. [0094] In the embodiment of the present invention, the separator of the ion battery (the porous film is polypropylene) is prepared by the above method, and the separator and the polypropylene separator not coated with the modifier are respectively The heat shrinkage rate was measured by holding at different temperatures for 1 hour. Since the separator of the embodiment of the present invention and the polypropylene separator not coated with the modifier have almost no shrinkage in the transverse direction, the longitudinal heat shrinkage ratio of the two separators was mainly tested in the present invention. Referring to FIG. 7, it can be seen from the figure that the lithium ion battery separator of the embodiment of the present invention has better heat shrinkage resistance at different temperatures than the polypropylene buffer without the modifier. Sex. In addition, in the embodiment of the present invention, the above two kinds of separators are respectively assembled into a lithium iron phosphate battery to test the electrochemical performance thereof, and the safety performance is found. It is found that the application of the modifier on the surface of the separator is not reduced in the lithium ion battery. The electrochemical performance of the lithium ion battery, and the lithium ion battery has better thermal stability and improves the safety of the ion battery. (4) For a lithium ion battery, please refer to FIG. 8. The embodiment of the present invention further provides a lithium ion battery, which includes a positive electrode sheet 5, a negative electrode sheet 5〇4, and a separator 5〇6. Non-aqueous electrolyte and external package structure 5〇8. The external package structure 099140716 Form No. A0101 Page 26/Total 4 page 0992070874-0 201222917 508 [0095] 508 The positive electrode sheet 502, the negative electrode sheet 5〇4, the separator 5〇β, and the non-aqueous electrolyte solution are encapsulated therein, The separator 506 is disposed between the positive electrode tab 5〇2 and the negative electrode tab 504. The positive electrode sheet 5〇2 includes a positive current collector 5^2 and a positive electrode material layer 522 formed on the surface of the positive electrode current collector 512. The negative electrode plate 504 includes a negative current collector 514 and a surface formed on the negative current collector. A negative electrode material layer 524. Wherein, at least one of the positive electrode current collector 512, the positive electrode material layer 522, the negative electrode current collector 514, the negative electrode material layer 524, and the separator 506 of the lithium ion battery 5 包括 includes the composition of the lithium ion battery modifier or the modification The agent is a component of the product after being heated by a reaction of rc or more. The modifier is a combination of the phosphorus source containing the root, the trivalent cerium, and the metal oxide in the liquid solvent. The agent is a species of ΑΐχΆ and a, m(10)) or a mixture of the two substances after iq "C or more heat reaction"; wherein the price of ruthenium ^, ^ is ^,

Zn、Cu、Mg、Zr、Mo、V 混合;0&lt;χ&lt;1,0&lt;y&lt;l且3 Ο [0096] 成分為A1 Cr X 種的混合。Zn, Cu, Mg, Zr, Mo, V mixed; 0 &lt; χ &lt; 1, 0 &lt; y &lt; 1 and 3 Ο [0096] The composition is a mixture of A1 Cr X species.

1 -X P04U^AlxCr1 :Nb及Ta中的一種或複數種的 x + ky = 3。優選地,該生成物的 -x(P〇3)3中的一種或該兩 [0097] 該正極片502和/或負極片504可為上述實施例中具有對應 正極材料層和/或負極材料層的鐘離子電池電極綱。該 正極集流體512和/或負極集流體…可為上述實施例中所 述鋰離子電池集流體1QG或雜子電池集流體2〇2。 進-步地’該正極材料層522包括均勻混和的正極活性物 質、導電劑及黏結劑。該負極材料層524包括均勻混合的 099140716 負極活性物質、導電劑及黏結劑。 表單編號A0101 第27頁/共40頁 該正極材料層522包含 0992070874-0 201222917 的正極活性物質可包括上述實施例中所述的具有正極活 性材料顆粒的電極複合材料300,同樣地,該負極材料層 524包含的負極活性物質可包括上述實施例中所述的具有 負極活性材料顆粒的電極複合材料300。該導電劑可為乙 炔黑或碳纖維等,該黏結劑可為聚偏氟乙烯(PVDF)或聚 四氟乙烯(PTFE)等。可以理解,該正極活性物質、負極 活性物質、導電劑及黏結劑也可採用其他常用的材料。 [0098] 該隔膜506可為習知的鋰離子電池隔膜,如純聚合物隔膜 、陶瓷隔膜或含有陶瓷材料的聚合物隔膜等,也可為上 述實施例中所述鋰離子電池隔膜400。 [0099] 所述電解液中的電解質鹽可為六氟磷酸鋰、四氟硼酸鋰 或雙草酸硼酸鋰等,所述電解液中的有機溶劑可為碳酸 乙烯酯、碳酸二乙酯或碳酸二曱酯等。所述外部封裝結 構508可為硬質電池殼或軟封裝袋。此外該鋰離子電池 50 0還包括實現該電池内部與外電路電連接的元件(圖未 示)。 [0100] 將上述鋰離子電池改性劑應用於該鋰離子電池可提高該 鋰離子電池的安全性能。 [0101] 可以理解,該改性劑不僅可用於保護集流體、電極活性 材料以及隔膜,只要鋰離子電池中包括該改性劑或將該 改性劑熱處理後形成保護膜的應用均在本發明保護範圍 内。 [0102] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 099140716 表單編號A0101 第28頁/共40頁 0992070874-0 201222917 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0103] 圖1為本發明實施例提供的鋰離子電池集流體結構側視示 • 意圖。 [0104] 圖2為傳統鋰離子電池集流體的SEM照片。 [0105] 圖3為本發明實施例提供的鋰離子電池集流體的SEM照片 〇 。 [0106] 圖4為本發明實施例提供的鋰離子電池電極結構側視示意 圖。 [0107] 圖5為本發明實施例提供的鋰離子電池電極複合材料結構 示意圖。 [0108] 圖6為本發明實施例提供的鋰離子電池隔膜側視示意圖。 [0109] 圖7為本發明實施例提供的鋰離子電池隔膜與傳統隔膜熱 Ο 收縮性測試圖。 [0110] 圖8為本發明實施例提供的鋰離子電池的結構局部剖視示 意圖。 【主要元件符號說明】 [0111] 鋰離子電池集流體:100,202 [0112] 金屬片:102 [0113] 保護膜:106,206,306 099140716 表單編號A0101 第29頁/共40頁 0992070874-0 201222917 [0114] 鋰離子電池電極:200 [0115] 電極材料層: 204 [0116] 電極複合材料 :300 [0117] 電極活性材料顆粒:302 [0118] 隔膜:400,: 506 [0119] 多孔膜:402 [0120] 改性劑層:4 0 4 [0121] 鋰離子電池: 500 [0122] 正極片:502 [0123] 負極片:504 [0124] 外部封裝結構 :508 [0125] 正極集流體: 512 [0126] 正極材料層: 522 [0127] 負極集流體: 514 [0128] 負極材料層: 524 099140716 表單編號 A0101 第 30 頁/共 40 頁 0992070874-01 -X P04U^AlxCr1 : One or a plurality of N + ky = 3 in Nb and Ta. Preferably, one or both of -x(P〇3)3 of the product [0097] the positive electrode sheet 502 and/or the negative electrode sheet 504 may have a corresponding positive electrode material layer and/or negative electrode material in the above embodiment. Layer of the clock ion battery electrode. The cathode current collector 512 and/or the anode current collector ... may be the lithium ion battery current collector 1QG or the hetero battery current collector 2 〇 2 described in the above embodiment. The positive electrode material layer 522 includes a uniformly mixed positive electrode active material, a conductive agent, and a binder. The negative electrode material layer 524 includes a uniformly mixed 099140716 negative electrode active material, a conductive agent, and a binder. The positive electrode active material of the positive electrode material layer 522 including 0992070874-0 201222917 may include the electrode composite material 300 having the positive electrode active material particles described in the above embodiments, and the negative electrode material is similarly formed. The anode active material contained in the layer 524 may include the electrode composite material 300 having the anode active material particles described in the above embodiments. The conductive agent may be acetylene black or carbon fiber or the like, and the binder may be polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE). It is to be understood that the positive electrode active material, the negative electrode active material, the conductive agent and the binder may be other commonly used materials. The separator 506 may be a conventional lithium ion battery separator, such as a pure polymer separator, a ceramic separator or a polymer membrane containing a ceramic material, or the like, or may be the lithium ion battery separator 400 described in the above embodiment. [0099] The electrolyte salt in the electrolyte may be lithium hexafluorophosphate, lithium tetrafluoroborate or lithium bis(oxalate)borate, and the organic solvent in the electrolyte may be ethylene carbonate, diethyl carbonate or dinonyl carbonate. . The outer package structure 508 can be a rigid battery case or a soft package bag. In addition, the lithium ion battery 50 also includes an element (not shown) that electrically connects the internal and external circuits of the battery. Applying the above lithium ion battery modifier to the lithium ion battery can improve the safety performance of the lithium ion battery. [0101] It can be understood that the modifier can be used not only for protecting the current collector, the electrode active material, and the separator, but the application of the modifier in the lithium ion battery or the heat treatment of the modifier to form a protective film is in the present invention. Within the scope of protection. [0102] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only the preferred embodiment of the present invention. 099140716 Form No. A0101 Page 28 of 40 0992070874-0 201222917, it is not possible to limit the scope of patent application in this case. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0103] FIG. 1 is a side view of a current collector structure of a lithium ion battery according to an embodiment of the present invention. 2 is a SEM photograph of a conventional lithium ion battery current collector. 3 is a SEM photograph of a current collector of a lithium ion battery according to an embodiment of the present invention. 4 is a side view showing the structure of an electrode of a lithium ion battery according to an embodiment of the present invention. 5 is a schematic structural view of a lithium ion battery electrode composite material according to an embodiment of the present invention. 6 is a schematic side view of a lithium ion battery separator according to an embodiment of the present invention. 7 is a heat shrinkage test chart of a lithium ion battery separator and a conventional separator according to an embodiment of the present invention. 8 is a partial cross-sectional view showing the structure of a lithium ion battery according to an embodiment of the present invention. [Description of main component symbols] [0111] Lithium-ion battery current collector: 100, 202 [0112] Metal piece: 102 [0113] Protective film: 106, 206, 306 099140716 Form No. A0101 Page 29/Total 40 Page 0992070874-0 201222917 [0114] Lithium ion battery electrode: 200 [0115] Electrode material layer: 204 [0116] Electrode composite material: 300 [0117] Electrode active material particles: 302 [0118] Separator: 400,: 506 [0119] Porous film: 402 [0120] Modifier layer: 4 0 4 [0121] Lithium ion battery: 500 [0122] Positive electrode sheet: 502 [0123] Negative electrode sheet: 504 [0124] External package structure: 508 [0125] Positive current collector: 512 Positive Electrode Material Layer: 522 [0127] Anode Current Collector: 514 [0128] Anode Material Layer: 524 099140716 Form No. A0101 Page 30 of 40 0992070874-0

Claims (1)

201222917 七、申請專利範圍: ' 1 種鋰離子電池改性劑的使用方法’包括如下步驟: 提供用於裡離子電池隔膜的多孔膜以及鐘離子電池改性劑 ,該改性劑包括含磷酸根的磷源'三價鋁源以及金屬氧化 物在液相溶劑令的混合; • 將該改性劑塗覆於該多孔膜表面形成塗覆層,以及 乾燥該塗覆有該改性劑的多孔膜,從而在該多孔膜表面形 成改性劑層。 2 .如申請專利範圍第1項所述的鋰離子電池改性劑的使用方 0 法’其中,所述磷源為磷酸、磷酸三銨、磷酸鋁、磷酸二 氫銨、磷酸二氫鋁、磷酸一氫銨以及磷酸一氫鋁中的一種 或複數種。 3 .如申請專利範圍第1項所述的鋰離子電池改性劑的使用方 法,其中,所述鋁源為氫氧化鋁、氧化鋁、磷酸鋁、磷酸 二氫鋁以及磷酸一氫鋁中的一種或複數種。 4 .如申請專利範圍第ί項所述的鋰離子電池改性劑的使用方 〕 法,其中,所述磷源輿所述鋁源均為磷酸鋁、磷酸二氫鋁 以及磷酸一氫鋁中的一種或複數種。 5 .如申請專利範圍第1項所述的鋰離子電池改性劑的使用方 法,其中,所述金屬氧化物包括三氧化絡、氧化辞、氧化 銅、氧化鎂、二氧化锆、三氧化鉬、氧 孔—銳、五氧化 二鈮及五氧化二钽中的一種或複數種。 6 .如申請專利範圍第1項所述的鋰離子電池改性劑的使用方 法,其中,所述液相溶劑為水或Ν一甲基吡咯烷綱。 7 .如申請專利範圍第1項所述的鋰離子電池改性劑的使用方 099140716 表單編號Α0101 第31頁/共40頁 0992070874-0 201222917 法,其中,所述磷源、所述鋁源以及所述金屬氧化物的摩 爾比滿足:(A1+M):P = 1 :2· 5至1 :4 ’其中,該A1、M和p 分別為該鋁源中的鋁元素、該金屬氧化物中的金屬元素以 及該磷源中的磷元素的摩爾數。 如申請專利範圍第1項所述的鋰離子電池改性劑的使用方 法,其中,所述磷源的磷酸根、三價鋁源中的鋁元素和金 屬氧化物中的金屬元素的總質量佔所述改性劑總體積的體 積密度為0. 02g/ml 至0. 08g/ml。 如申請專利範圍第1項所述的經離子電池改性劑的使用方 法’其中’所述改性劑寶覆於該多孔膜的兩個表面。 10 . 11 . 12 . 13 . 14 . 15 . 099140716 如申請專利範圍第1項所述的鐘離子電池改性劑的使用方 法’其中,所述乾燥的方式為加熱烘乾。 如申請專利範圍第1 0項所述的链離子電池改性劑的使用方 法’其中,所述烘乾的溫度不高於7〇°c。 種鐘離子電池隔膜,包括一多孔膜,其改良在於,進一 步包括設置於該多孔膜表面的政性劑層,該改性劑層藉由 將含磷酸根的磷源、三價鋁源以攱金屬氡化物在液相溶劑 中混合後塗覆於該多孔膜表面形成塗覆層,並乾燥處理該 塗覆層後形成。 如申请專利範圍第12項所述的鐘離子電池隔膜,其中,所 述該改性劑層設置於該多孔膜的兩個表面。 如申请專利範圍第12項所述的鐘離子電池隔膜,其中,所 述改性劑層的厚度為1 〇奈米〜1 〇 〇奈米。 —種鋰離子電池,包括正極片、負極片、隔膜'非水電解 液以及外部封裝結構,其改良在於,該隔膜為上述申請專 利範圍第12~14項中任一項所述的鐘離子電池隔膜。 0992070874-0 表單編號A0101 第32頁/共40頁201222917 VII. Patent application scope: 'The method of using 1 lithium ion battery modifier' includes the following steps: Providing a porous membrane for a separator of a ionic battery and a modifier of a plasma battery, the modifier comprising a phosphate a phosphorus source 'trivalent aluminum source and a mixture of metal oxides in a liquid phase solvent; • applying the modifier to the surface of the porous film to form a coating layer, and drying the porous layer coated with the modifier A film to form a modifier layer on the surface of the porous film. 2. The method of claim 1, wherein the phosphorus source is phosphoric acid, triammonium phosphate, aluminum phosphate, ammonium dihydrogen phosphate, aluminum dihydrogen phosphate, One or more of ammonium monohydrogen phosphate and aluminum monohydrogen phosphate. 3. The method of using a lithium ion battery modifier according to claim 1, wherein the aluminum source is aluminum hydroxide, aluminum oxide, aluminum phosphate, aluminum dihydrogen phosphate, and aluminum hydrogen phosphate. One or more species. 4. The method of claim 1, wherein the source of the phosphorus source is aluminum phosphate, aluminum dihydrogen phosphate, and aluminum hydrogen phosphate. One or more species. 5. The method of using a lithium ion battery modifier according to claim 1, wherein the metal oxide comprises trioxide, oxidized, copper oxide, magnesium oxide, zirconium dioxide, molybdenum trioxide. One or more of oxygen hole-sharp, tantalum pentoxide, and tantalum pentoxide. 6. The method of using a lithium ion battery modifier according to claim 1, wherein the liquid phase solvent is water or fluorenylmethylpyrrolidine. 7. The method of using a lithium ion battery modifier according to the first aspect of the patent application, which is in the form of a lithium ion battery modifier, 099140716, a form number Α0101, a 31st page, a total of 40 pages 0992070874-0 201222917, wherein the phosphorus source, the aluminum source, and The molar ratio of the metal oxide satisfies: (A1 + M): P = 1 : 2 · 5 to 1: 4 ' wherein A1, M and p are respectively aluminum elements in the aluminum source, the metal oxide The metal element in the metal and the number of moles of the phosphorus element in the phosphorus source. The method for using a lithium ion battery modifier according to claim 1, wherein the phosphate of the phosphorus source, the aluminum element of the trivalent aluminum source, and the total mass of the metal element of the metal oxide account for 02克/毫升。 The total volume of the modifier is 0. 02g / ml to 0. 08g / ml. The method of using an ion battery modifier as described in claim 1 wherein the modifier is coated on both surfaces of the porous film. 10 . 11 . 12 . 13 . 14 . 15 . 099140716 The method of using the ionization battery modifier according to claim 1, wherein the drying method is heat drying. A method of using a chain ion battery modifier according to claim 10, wherein the drying temperature is not higher than 7 °C. The invention relates to a plasma membrane separator comprising a porous membrane, the improvement comprising further comprising a layer of a political agent disposed on the surface of the porous membrane, the modifier layer being formed by using a phosphate source containing phosphoric acid and a source of trivalent aluminum The ruthenium metal halide is mixed in a liquid solvent and applied to the surface of the porous film to form a coating layer, which is formed after drying the coating layer. The bell-ion battery separator according to claim 12, wherein the modifier layer is provided on both surfaces of the porous membrane. The bell-ion battery separator according to claim 12, wherein the modifier layer has a thickness of 1 〇 nanometer to 1 〇 〇 nanometer. A lithium ion battery, comprising a positive electrode sheet, a negative electrode sheet, a separator, a non-aqueous electrolyte, and an external package structure, wherein the separator is the clock ion battery according to any one of the above-mentioned claims 12-14. Diaphragm. 0992070874-0 Form No. A0101 Page 32 of 40
TW099140716A 2010-11-25 2010-11-25 Application method of lithium ion battery modifier, separator of lithium ion battery, and battery TWI566455B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099140716A TWI566455B (en) 2010-11-25 2010-11-25 Application method of lithium ion battery modifier, separator of lithium ion battery, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099140716A TWI566455B (en) 2010-11-25 2010-11-25 Application method of lithium ion battery modifier, separator of lithium ion battery, and battery

Publications (2)

Publication Number Publication Date
TW201222917A true TW201222917A (en) 2012-06-01
TWI566455B TWI566455B (en) 2017-01-11

Family

ID=46725366

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099140716A TWI566455B (en) 2010-11-25 2010-11-25 Application method of lithium ion battery modifier, separator of lithium ion battery, and battery

Country Status (1)

Country Link
TW (1) TWI566455B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1208866C (en) * 2001-11-02 2005-06-29 中国科学院物理研究所 Lithium secondary battery by use of composite material covered with nano surface as active material of positive polar
JP5087383B2 (en) * 2007-12-11 2012-12-05 三星エスディアイ株式会社 Separator for non-aqueous lithium secondary battery

Also Published As

Publication number Publication date
TWI566455B (en) 2017-01-11

Similar Documents

Publication Publication Date Title
CN105164054B (en) Complex Li-Mn-oxide, secondary cell and their manufacturing method
US11362366B2 (en) Secondary battery composite electrolyte, secondary battery, and battery pack
JP6240306B2 (en) Lithium secondary battery
CN106415896B (en) Electrical part
CN102479952B (en) Lithium ion battery electrode composite material and preparation method and battery thereof
JP2011165410A (en) All solid lithium ion secondary battery and method for manufacturing the same
TW201301619A (en) Lithium-ion battery
CN105934847B (en) Electrical part
US11888149B2 (en) Solid state battery system usable at high temperatures and methods of use and manufacture thereof
US11329316B2 (en) Secondary battery composite electrolyte, secondary battery, and battery pack
JP7414702B2 (en) Cathode active material for lithium secondary batteries
JP2020126771A (en) Negative electrode layer and all-solid battery
CN102479932B (en) Using method of lithium ion battery modifying agent, lithium ion battery diaphragm, and battery
JP6578743B2 (en) Electrode manufacturing method
JP5644951B2 (en) Non-sintered laminate for all solid state battery, all solid state battery and method for producing the same
TWI565125B (en) Electrode composite material of lithium ion battery, method for making the same, and battery
JP5548523B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP6674072B1 (en) Current collecting layer for all-solid-state battery, all-solid-state battery, and carbon material
JP2020098710A (en) Solid electrolyte layer and all-solid battery
WO2019017331A1 (en) Electrode, power storage element and method for producing electrode
CN111201638A (en) Electrode plate, electricity storage element, and method for manufacturing electrode plate
TW201222917A (en) Application method of lithium ion battery modifier, separator of lithium ion battery, and battery
JP6252603B2 (en) Electrical device
WO2023181452A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, lithium-ion battery, positive electrode active material for solid-state lithium-ion battery, positive electrode for solid-state lithium-ion battery, solid-state lithium-ion battery, method for manufacturing positive electrode active material for lithium-ion battery, and method for manufacturing positive electrode active material for solid-state lithium-ion battery
EP4012798A1 (en) Electrode