TW201222455A - Method, computer program product and computer-readable recordable medium for selecting investment target - Google Patents

Method, computer program product and computer-readable recordable medium for selecting investment target Download PDF

Info

Publication number
TW201222455A
TW201222455A TW99140798A TW99140798A TW201222455A TW 201222455 A TW201222455 A TW 201222455A TW 99140798 A TW99140798 A TW 99140798A TW 99140798 A TW99140798 A TW 99140798A TW 201222455 A TW201222455 A TW 201222455A
Authority
TW
Taiwan
Prior art keywords
stocks
stock
probability
risk
remuneration
Prior art date
Application number
TW99140798A
Other languages
Chinese (zh)
Other versions
TWI457850B (en
Inventor
Hui-Xi Li
Sheng-Shi Zheng
Original Assignee
Hui-Xi Li
Sheng-Shi Zheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hui-Xi Li, Sheng-Shi Zheng filed Critical Hui-Xi Li
Priority to TW99140798A priority Critical patent/TW201222455A/en
Publication of TW201222455A publication Critical patent/TW201222455A/en
Application granted granted Critical
Publication of TWI457850B publication Critical patent/TWI457850B/zh

Links

Landscapes

  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

The invention relates to a method, a computer program product and a computer-readable recordable medium for selecting an investment target. The method includes grouping all investment targets within a first time slot based on whether the performance of the industry of the investment targets beats the performance of index, whether the performance of any individual investment target beats the performance of the industry belonged thereto and whether the performance of any individual investment target beats the performance of the index within the first time slot. The method further includes estimating a pattern within a historical time slot and calculating the odd of going up and the average gain, the odd of going down and the average loss and the odd of being flat based on the specific grouping pattern of some specific investment targets within a second time slot.

Description

201222455 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種投資潠Ηπ_ 士 仅負選驭方法、電腦程式產品及 電腦可讀取記錄媒體,特別是如 ^ ^ J疋扎—種標竿投資選股方法、 電腦程式產品及電腦可讀取記錄媒體。 【先前技術】 證券或金融投資業的範圍作+ _ 把圍很大,1從事證券投資的人 口比例也相當高’但受過專業投資知識訓練的投資者卻不 多。而受過專#知識訓練者,或所謂的資訊仲介(包含投作 、投顧或股市名嘴)是否基於專業良知而站在投資者的角^ ’以謀取投資者的最大獲利或報酬為出發點而將務實的 企業經營或市場資訊傳達給投資大眾,則不得而知丨而且 ’目前並無法及時檢驗m訊仲介所提供資訊的正確性 ,或是利用科學的方法來㈣其推薦的股票之_精確度 |故往往使u多個別投資者成為f本市場μ大的輸家 再者,雖然市場投資人或如分析師等專業投資者習以 :常地將個股相對於產業或大盤的資訊去做比較,然而目 刚並無相關技術將此三種資訊同時納入以進行選股。另外 ’在評估股票選股效益時’即便投資人選擇優於產業的個 股,其可能表現不優於大盤,或是優於大盤的個股可能不 優於產業。甚至’縱算是基於三種市場考量條件下最優者 來杈=貝,仍無法保證穩賺不賠。因此,有必要尋求解決方 201222455 【發明内容】 因此’本發明之目的’即在提供一種標竿投資選股方 法 於是’本發明標竿投資選股方法供一投資者用以選擇 至少一適當投資標的。該標竿投資選股方法包含下列步驟 :(A)根據一股市價格資料庫,運算一包括一最近時間之歷 史時間區間内所有第一時間區間之所有個股之歷史報酬資 料、大盤歷史報酬資料,以及各產業分類之歷史報酬資料 ;(B)根據該歷史時間區間内,所有第一時間區間之個股所 屬產業之歷史報酬是否大於大盤歷史報酬、個股之歷史報 酬是否大於個股所屬產業之歷史報酬,以及個股之歷史報 酬是否大於大盤之歷史報酬,將所有個股於所有第一時間 區間進行分組,以產生所有個股於所有第一時間區間之所 屬組別^及⑹根據-特錢股在—包括該最近時間區間 之第二時間區間内之所屬㈣之料分群模式,運算該歷 史時間區間内出現相同特定分群模式且其後—個第一時二 ^為域之上漲機率與上涨平均報酬,該歷史時間㈣ 内出現相同特定分群模式且其後-個第-時間區間為下跌 之下跌機率與下跌平均報酬,該歷史時間區間内出現 特定分链i替4·’ α # νζ» ® I才目同 …. 個第一時間區間為平盤之平盤機率 八该上漲機率、下跌機率以及平盤機 -、 上漲機率及下跌機率供該投資者用以 為卜且該 個股。 决疋疋否貝賣該特定 本發明之另-目的,即在提供一種電腦程式產品。 201222455 經由電腦載入該程式執 於是,本發明電腦程式產品 行上述標竿投資選股方法。 本發明之再一目的 體。 即在提供一#電腦可讀取記錄媒 於是,本發明電腦可讀取記錄媒體記錄有—可受— 腦控制之程式碼,該程式碼包含如上述標竿投資選股電 之執行步驟。 &法201222455 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an investment 潠Ηπ_ 士 only negative selection method, a computer program product, and a computer readable recording medium, in particular, such as ^^J疋扎Standardized investment stock selection methods, computer program products and computer readable recording media. [Prior Art] The scope of the securities or financial investment industry is + _, and the proportion of people engaged in securities investment is also quite high. However, there are not many investors trained in professional investment knowledge. And those who have been trained by the # knowledge, or the so-called information intermediary (including investment, investment or stock market name) are based on professional conscience and stand in the corner of the investor ^ 'to seek the maximum profit or reward of investors as the starting point And to convey pragmatic business operations or market information to the investing public, it is not known and 'it is not timely to verify the correctness of the information provided by MXC, or to use scientific methods to (4) its recommended stocks_ Accuracy|usually makes u many investors become the losers of this market, although market investors or professional investors such as analysts are used to: often do the stocks relative to the industry or the market information In comparison, however, there is no related technology to incorporate this three kinds of information for stock selection. In addition, when evaluating the stock stock selection benefits, even if investors choose to sell better than the industry, they may not be better than the broader market, or the stocks that are better than the broader market may not be better than the industry. Even the squatting is based on the best of the three market considerations, and there is still no guarantee that it will not be guaranteed. Therefore, it is necessary to seek a solution 201222455 [Summary of the Invention] Therefore, 'the purpose of the present invention' is to provide a standard investment stock selection method, so that the invention standard stock investment stock selection method for an investor to select at least one suitable investment Subject. The standard investment stock selection method comprises the following steps: (A) according to a stock market price database, calculating historical reward data and historical historical reward data of all stocks in all first time intervals including a historical time interval of a recent time, And the historical remuneration data of each industry classification; (B) According to the historical time interval, whether the historical remuneration of the stocks of the stocks in all the first time intervals is greater than the historical remuneration of the large-capital stocks, and whether the historical remuneration of the individual stocks is greater than the historical remuneration of the industries to which the individual stocks belong, And whether the historical remuneration of individual stocks is greater than the historical remuneration of the market, all the stocks are grouped in all the first time intervals to generate the group of all the stocks in all the first time intervals ^ and (6) according to the - special stocks in - including the In the second time interval of the most recent time interval, the material grouping mode belongs to (4), and the same specific grouping mode appears in the historical time interval, and then the first one time is the rising probability and the rising average salary of the domain, the history The same specific clustering mode occurs within time (4) and the subsequent - first-time interval is falling The probability of falling and the average return of falling, the specific sub-chain in the historical time interval is the same as 4·' α # νζ» ® I. The first time interval is the flat disk probability of the flat eight. Probability and flat-panel -, rising probability and falling probability for the investor to use for the stock. It is a further object of the present invention to provide a computer program product. 201222455 The program is loaded via a computer. Thus, the computer program product of the present invention performs the above-mentioned standard investment stock selection method. A further object of the invention. That is, a computer readable recording medium is provided. Thus, the computer readable recording medium of the present invention records a code which can be controlled by the brain, and the code includes the execution steps of the above-mentioned standard investment stock selection. & method

本發明之功效在於,將證交所所公佈的初級資訊加以 深入的探勘,利用兩兩報酬比較的結果,逐步做分類,r 使市場表現類似者歸為一類,再利用先驗的資訊,將同= 別的股票之歷史表現再細分,逐步縮小選股範圍,繼而求 出未來股票漲跌的機率以及期望的償付值’因而可提供投 資者非常有價值且寶貴的資訊。 & 【實施方式】 有關本發明之前述及其他技術内容'特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中將可 清楚的呈現。 在本發明被詳細描述之前,要注意的是,在以下的說 明内容中’類似的元件是以相同的編號來表示。 參閱圖1,本發明標竿投資選股方法之較佳實施例係以 載置於一系統端伺服器1之軟體形式之標竿投資選股系統 10來實施。該標竿投資選股系統1〇供一投資者用以選擇至 少一適當投資標的(如上市櫃股票或投資組合等),且包含一 股市報酬資料運算模組11、一分組模組12、—分群模組J 3 201222455 機率及平均報酬運算模組14、一風險期望報酬運算模 組15、一判定及篩選模組16及一迴歸運算模組17。 該股市報酬資料運算模組丨丨用以根據網際網路9另一 端之股市價格資料庫8(如台灣證交所所提供之股市價格資 料)’運算包括一最近時間區間之歷史時間區間内所有第一 時間區間之所有個股之歷史報酬資料、大盤歷史報酬資料 ,以及各產業分類之歷史報酬資料。 在本發明較佳實施例中,該歷史時間區間係為1971年 1月1曰至2010年3月1曰,該第一時間區間為一曰,且 該最近時間區間為2010年3月!曰(或稱當日亦即,在 以下本較佳實施例中,係以1971年1月1曰至2010年3 月1日的台灣上市櫃股票的日資料為例來進行說明。然而 ,在本發明其他實施例中,該第一時間區間不限於一曰, 而是可以是較大或較小的時間單位,例如1小時或5分鐘 等。 該分組模組12用以根據該歷史時間區間内,所有第一 時間區間之個股所屬產業之歷史報酬是否大於大盤歷史報 酬、個股之歷史報酬是否大於個股所屬產業之歷史報酬, 以及個股之歷史報酬是否大於大盤之歷史報酬,將所有個 如於所有第一時間區間進行分組,以產生所有個股於所有 第一時間區間之所屬組別。亦即,該分組模組12是在以產 業及大盤為標竿的基礎下,將所有個股於所有第一時間區 間進行分組’以產生8個組別,如以下表1所示,任何上 市榧股票在某一時點的表現均可歸為互斥的八個組別之_ 201222455 ’其中組別1可稱為強勢股,組別8可稱為弱勢股 表1 產業 >大盤 個股 >產業 ----— 個股 >大盤 組別1 ---— Η 是 是 是 組別2 是 是 否 組別3 是 否 是 組別4 是 否 否 組別5 否 是 -------^ 是 組別6 否 是 否 組別7 否 否 ---___、 是 組別8 否 否 否 ---J η τ所明上帀櫃公司的產業分類,包含廣 義的上 '中、下游垂直或水平次產業、關係企業、概念股 集團股各不同成份股(如ETF)、存託憑證(如ADR、 R * TDR)、營收創新高,或任何可以將股票以—共同性 ,,歸::分類,以形成產業的類型。在本較佳實施例中 疋以°灣證交所與櫃買中心所提供的類股(即證交所產举 分類)作為產業分類。 乂所產業 列模:根據分群模式是組合分群模式或是排 。所謂組合分群時間區間之歷史報酬分群 之第二時間區間内Γ二 股在包括最近時間區間 最近時間區間内所屬組別二中之:特定組別之次數及在 之歷史報酬資料進行分。亥特疋個股在歷史時間區間 订刀群’其十該第二時間區間例如可為5 201222455 日。所謂排列分群,是指根據該特定個股在該包括最近時 間區間之第二時間區間中之該等連續第—時間區間之紐別 排列方式,對該特定個股在歷史時間區間之歷史報酬資料 進行分群。本說明書中稍後在描述方法實施例時將針對本 發明中的組合及排列兩種分群模式進行更料細的說明。 該機率及平均報酬運算触14心根㈣定個股在該 第二時間區間内之所屬組別之特定分群模式,運算該歷史 時間區間内出現相同特定分群模式且其後—個第—時間區 間為上漲之上漲機率與上漲平均報酬、為下跌之下跌機率 與下跌平均報酬,以及為平盤之平盤機率,其中該上漲機 率、下跌機率以及平盤機率之和為1。 該風險期望報酬運算模組15用以運算所有個股之翠位 風險期望報酬以及單位期望報酬承擔風險,以形成風險期 望報酬列表140或140a。 該判定及篩選模組16用以篩選出所有個股中符合一預 疋篩選準則之個股,並將該等篩選出的個股以該單位風險 期望報酬攔位由大到小排序,或者以該單位期望報酬承擔 風險欄位由小到大排序,以獲得一投資組合列表16〇或 16〇a,供該投資者用以決定是否買賣該投資組合列表16〇或 160a中的個股。 該迴歸運算模組17係利用一複迴歸模型來運算個股曰 報酬。 參閱圖1、2、6、7,本發明標竿投資選股方法在組合 分群模式下之較佳實施例之初始步驟30係由該股市報酬資 201222455 料運算模組11自動根據台灣上市櫃股票之股市報酬資料庫 8中1971年1月1日至2〇1〇年3月i日的歷史日資料運 算所有個股、大盤以及各產業分類之歷史報酬資料。 接著,如步驟31所示,該分組模組12根據1971年j 月1曰至2010年3月i曰之歷史時間區間内,每一股市營 業曰個股所屬產業之歷史報酬是否大於大盤歷史報酬、個 股之歷史報酬是否大於個股所屬產業之歷史報酬,以及個 參 股之歷史報酬是否大於大盤之歷史報酬,將所有個股進行 分組’以產生所有個股於每一日之所屬組別。 接者,如步驟32所示,該分群模組13根據特定個股 在包括最近時間區間之第二時間區間内為八個組別中之一 特定組別(例如組別υ之次數及在最近時間區間内所屬組別 ,對該特定個股在歷史時間區間之歷史報酬資料進行組合 分群。需特別提出的是,圖2中的步驟32、33、36係針對 某一特定個股所依序進行之步驟。例如,在本較佳實施例 • 巾,由於是根據公司代號之順序對所有個股-一進行步驟 32、33、36,故分群模,组13首先針對台泥(公司代號為 no”之股票’以組合分群模式對步驟31所產生的台泥股票 之、且別:貝進心群’而形成圖6所示之台泥公司風險期 望報酬列表140中的攔位1411、1412及144。 #圖6風險期望報酬列表⑽所示,其列出了利用本 發明所產生的2_年2月6日至卿^们日共㈣ 歷史營業日之相關資訊。攔位1412為各歷史營業日之當日 所屬組別’例如3月1日之所屬組別為組別4。攔位1411 201222455 為各歷史營業日當日加上前4日(即共5日)中屬於組別丄之 日數,例如以3月i日來說,由於3月1日、2月%日、2 月25日、24日、2月23日共5個連續歷史營業日中 為組別1之營業日為2月24日及2月23日共2日,故3 月1日之組別1日數攔位1411值即為2。欄位144即為歷 史時間區間中屬於同組合分群模式之日數,例如在整個 971年1月1日至2010年3月1日歷史時間區間内,與 2_年3月1日具有同樣組合分群模式(即當日加上前4日 之”且另J 1日數為2日且當日組別為組別4)之日數即為214 曰° 接著,如步驟33所示,該機率及平均報酬運算模組14 運算1971年1月1曰至2010年3月i曰歷史時間區間内 台泥公司股票出現相同組合分群模式且各當日之後一曰為 上服之上㈣率(攔位145)與上料均_(触142)、為下 跌之下跌機率(欄位H6)與下跌平均報酬(欄位143),以及為 平盤之平盤機率(圖6中未緣示平盤機率棚位),其中該上涨 機率、下跌機率以及平盤機率之和為丄,且該上漲機率及下 跌機率供該投f者用以決定是否買賣該特定個股。如圖i 所不’投資者可操作其投f者端裝置2(如個人電腦,其包 括處理益21、5己憶體22及顯示器23)之記憶體22中的選股 系統操作"面程式22G連接至系統端伺服器〗,以將標竿投 :身選股系統H)所產生的風險期望報酬列表14〇顯示於顯示 器23之選股系統操作介面23〇之操作畫面上。 上述圖6風險期望報酬列表14〇之較佳實施例中,係 10 201222455 採用不連續的機率密度 屬於相同組合分群模式之股二上各 相對次數來計算。亦即,在本較佳實=上…數的The effect of the invention lies in that the primary information published by the stock exchange is deeply explored, and the results of the comparison of the two and two rewards are used to gradually classify, and the market performance is similarly classified, and then the prior information is used. The historical performance of the same stocks is further subdivided, gradually narrowing the range of stock selection, and then finding the probability of future stocks rising and falling and the expected repayment value' thus providing investors with valuable and valuable information. [Embodiment] The above and other technical features of the present invention will be apparent from the following detailed description of the preferred embodiments. Before the present invention is described in detail, it is to be noted that in the following description, similar elements are denoted by the same reference numerals. Referring to Fig. 1, a preferred embodiment of the standard stock investment method of the present invention is implemented by a standard stock investment stock selection system 10 placed in the form of a software of a system side server 1. The standard investment stock selection system 1 is for an investor to select at least one suitable investment target (such as a listed stock or a portfolio), and includes a stock market compensation data computing module 11, a grouping module 12, The grouping module J 3 201222455 is a probability and average reward computing module 14, a risk expectation reward computing module 15, a decision and screening module 16 and a regression computing module 17. The stock market compensation data calculation module is used to calculate the stock price database 8 at the other end of the Internet 9 (such as the stock price data provided by the Taiwan Stock Exchange), including all the historical time intervals of a recent time interval. Historical remuneration data for all stocks in the first time interval, historical remuneration data for large-cap stocks, and historical remuneration materials for each industry classification. In a preferred embodiment of the present invention, the historical time interval is from January 1, 1971 to March 1, 2010, the first time interval is one, and the most recent time interval is March 2010!曰 (or the same day, in the following preferred embodiment, the daily data of Taiwan listed counter stocks from January 1, 1971 to March 1, 2010 is taken as an example. However, in this In other embodiments of the invention, the first time interval is not limited to one, but may be a larger or smaller time unit, such as 1 hour or 5 minutes, etc. The grouping module 12 is configured to be within the historical time interval. Whether the historical remuneration of the industry in which all stocks in the first time interval belong is greater than the historical remuneration of the market, whether the historical remuneration of individual stocks is greater than the historical remuneration of the stocks in which the stocks belong, and whether the historical remuneration of individual stocks is greater than the historical remuneration of the stocks, and all of them will be The first time interval is grouped to generate the belonging groups of all the stocks in all the first time intervals. That is, the group module 12 is based on the industry and the market, and all the stocks are all first. The time interval is grouped to generate 8 groups. As shown in Table 1 below, the performance of any listed stock at a certain point can be classified as mutually exclusive eight groups. 55 'Group 1 can be called a strong stock, group 8 can be called a weak stock table 1 industry> Large stocks> Industry----- stocks> Large group 1 --- Η Yes Yes Group 2 is whether group 3 is group 4 or not group 5 no yes -------^ is group 6 no group 7 no no---___, yes group 8 no No---J η τ clarifies the industry classification of Shangyu Cabinet Company, including the broadly divided 'middle and downstream vertical or horizontal sub-industries, related companies, concept stocks, group stocks (such as ETFs), depositary receipts (such as ADR, R * TDR), high revenues, or any type of stock that can be classified as common, to form an industry. In the preferred embodiment, the Bay Stock Exchange The stocks provided by the counter buying center (ie the stock exchange classification) are classified as industrial classifications. The industry model: according to the grouping mode, the grouping mode or the row. The so-called grouping time interval is the historical reward group. In the two time interval, the two shares belong to the group within the most recent time interval including the most recent time interval. Second: the number of specific groups and the historical reward data are divided. Hite 疋 individual stocks in the historical time interval set the knife group 'the ten second time interval can be, for example, 5 201222455 days. The so-called array grouping means The historical reward data of the specific individual stocks in the historical time interval is grouped according to the specific arrangement of the specific individual stocks in the consecutive time-time intervals in the second time interval including the most recent time interval. In the description of the method embodiment, the combination and arrangement of the two grouping modes in the present invention will be described in more detail. The probability and the average reward operation touch 14 cores (4) the group of the individual shares in the second time interval In a specific clustering mode, the same specific clustering mode occurs in the historical time interval, and the subsequent - first time interval is the rising probability of rising and the average rising salary, the falling probability of falling and the average falling return, and the flattening The probability of the disk, in which the sum of the probability of rise, the probability of falling, and the probability of flatness is 1. The risk expectation reward calculation module 15 is configured to calculate the position risk expectation reward and the unit expected reward risk of all stocks to form a risk expectation reward list 140 or 140a. The determining and screening module 16 is configured to filter out stocks of all the stocks that meet a predetermined screening criterion, and sort the selected stocks by the unit risk expectation rewards from large to small, or expect the unit to be The remuneration risk field is sorted from small to large to obtain a portfolio list of 16 or 16〇a for the investor to decide whether to buy or sell the stocks in the portfolio list 16〇 or 160a. The regression module 17 uses a complex regression model to calculate individual stock returns. Referring to Figures 1, 2, 6, and 7, the initial step 30 of the preferred embodiment of the standard stock picking method of the present invention in the combined grouping mode is automatically based on the stock market compensation module 201222455. The stock market remuneration database 8 calculates the historical remuneration data of all stocks, the market and the classification of each industry from January 1, 1971 to March 1st. Then, as shown in step 31, the grouping module 12 according to the historical time interval of the period from January 1, 1971 to March 2010, whether the historical reward of the industry in which each stock market is operated is greater than the historical reward of the market. Whether the historical remuneration of individual stocks is greater than the historical remuneration of the individual stocks, and whether the historical remuneration of individual stocks is greater than the historical remuneration of the broader market, all stocks are grouped to generate all the stocks in each group. As shown in step 32, the grouping module 13 is a specific group of eight groups according to a specific stock in a second time interval including the most recent time interval (for example, the number of groups and the latest time) The group within the interval, the historical reward data of the specific individual stocks in the historical time interval is combined and grouped. It is particularly pointed out that steps 32, 33, and 36 in Figure 2 are sequentially performed for a specific stock. For example, in the preferred embodiment, since the steps 32, 33, and 36 are performed for all the stocks in the order of the company code, the group mode 13 is first directed to the stock of the company (company code no). The traps 1411, 1412, and 144 in the platform company risk expectation remuneration list 140 shown in FIG. 6 are formed in the combined grouping mode for the counter mud stocks generated in step 31 and the other: Beinjin group. Figure 6 shows the risk expectation remuneration list (10), which lists the relevant information of the historical business day from February 6 to February 2 of the 2nd year of the use of the present invention. The block 1412 is the historical business day. Group of the day 'for example, March 1 The group to which it belongs is group 4. The block 1411 201222455 is the number of days belonging to the group in the first 4 days (that is, 5 days in total) for each historical business day, for example, in the case of March i, due to 3 On the 1st of February, February, February, February 25th, February 24th, and February 23rd, the business days of Group 1 for the five consecutive historical business days are February 24 and February 23 for 2 days. Therefore, the number of 1411 for the 1st day of the group on March 1 is 2. The field 144 is the number of days in the historical time interval that belong to the same grouping mode, for example, from January 1, 971 to 2010. In the historical time interval of the 1st of the month, it has the same combined grouping mode as the March 1st of 2_ years (that is, the day plus the first 4 days) and the other J 1 days is 2 days and the day group is the group 4) The number of days is 214 曰 ° Next, as shown in step 33, the probability and average reward calculation module 14 operates the same combination grouping of the stocks of the company in the historical time interval from January 1, 1971 to March 2010. The pattern and each day after the day is the upper (4) rate (block 145) and the loading _ (touch 142), the falling probability (field H6) and the falling average reward (field 143), In order to flatten the probability of flatness (not shown in Figure 6), the sum of the probability of rise, the probability of falling, and the probability of flatness are 丄, and the probability of rise and the probability of falling are for the voter. In order to determine whether to buy or sell the particular stock. As shown in Figure i, the investor can operate the memory device 22 of the client device 2 (such as a personal computer including the processing benefit 21, 5 memory 22 and display 23). The stock picking system operation "face program 22G is connected to the system side server〗 to display the risk expected reward list 14〇 generated by the standard stock selection system H) on the display system 23 of the display system 23 of the display 23 On the operation screen. In the preferred embodiment of the risk expectation remuneration list 14 of Figure 6, the system 10 201222455 uses discontinuous probability densities to calculate the relative number of shares on the second share of the same combined grouping mode. That is, in the present preferred = upper...

2酬運料組14在計算台泥股票在3月i日的下一個營 f ^ 2日之上涨機率之過㈣,係先運算214個歷史 :日十母-個歷史當日之後—日為上漲之上漲日數,再計 鼻3月2日之上滿機率等於該上漲日數除以總日數(即叫 個同群曰數)。同理,該機率及平均報酬運算模組Μ在計算 台泥股票在3 β 1日的下一個營業日3月2日之下跌機率 之過程中,係先運算214個歷史當日中每一個歷史當曰之 後一日為下跌之下跌日數,再計算3月2曰之下跌機率等 於該下跌日數除以總日數(即214個同群日數)。 此外’在本發明另一實施例中,該機率及平均報酬運 算模組14也可採用屬於歷史報酬資料之連續型的機率密度 函數(Probability Density Function,PDF)來計算上涨機率及 下跌機率。也就是說,針對同組合分群模式的個股歷史報 酬資料之機率分配,係假設為常態分配,則同組合分群模 式之個股在最近歷史時間區間(如圖6中的3月1曰)之下— 個營業日之股票報酬JC為某一設定值c的機率值為 Prob(x>=c),且jc的PDF如以下公式(1)所示: /0) = ^ϊπσ2 Remuneration Group 14 is calculating the probability of the rise of the platform mud stock in the next camp on the second day of March i. (4), the first calculation of 214 history: the day ten mother - after the history of the day - the day is rising The number of days of the rise, and then the full rate on the 2nd of March is equal to the number of days of the increase divided by the total number of days (that is, the number of the same group). In the same way, the probability and average reward calculation module is in the process of calculating the falling probability of the platform mud stock on the next business day of March 2, the second business day, the first time in the history of 214 historical days. The day after the fall is the number of days of decline, and the probability of a fall of March 2 is equal to the number of days of the fall divided by the total number of days (ie 214 days in the same group). Further, in another embodiment of the present invention, the probability and average reward operation module 14 may also use a continuous Probability Density Function (PDF) belonging to historical reward data to calculate the probability of rise and fall. That is to say, for the probability distribution of historical stocks of individual stocks in the same grouping mode, the hypothesis is normal allocation, and the stocks in the same grouping mode are in the recent historical time interval (such as March 1 in Figure 6)— The probability of stock return JC for a business day is Prob (x>=c), and the PDF of jc is as shown in the following formula (1): /0) = ^ϊπσ

⑴ 其中μ為jc的平均數,σ為JC的標準差。此外’若X為實務 上常見的lognormal分配,則其PDF如以下公式(2)所示: 11 201222455(1) where μ is the average of jc and σ is the standard deviation of JC. In addition, if X is a common lognormal assignment in practice, its PDF is as shown in the following formula (2): 11 201222455

jc>〇 太路BH Μ ^⑹的平均數’ 口為llU的標準差。再者,在 又^施例中’該機率及平均報酬運算模組14也可 ^件機率來計算上_率及下跌機率。所謂條件機率 疋♦曰在已知事件E發生的條件下,事件。發生的機率為 p(g\e)=^J2^1 P(E) (3) P(E)>〇 右G與E互為獨立’則尸阶幻:⑽*⑽故尸(啡)=⑽。鲁 ^另外,在本發明再一實施例中,該機率及平均報酬運. 算模組14也可採用貝式決策法則(Bayers’ Decision Rule)來 计异上涨機率及下跌機率。所謂貝式決策法則,係假設可 以將樣本二間分割為Gi至Gr等r個互斥事件,已知事前機 率p(Gj),j=l...n,在事件ε的考慮下,先求出機率ρ(Ε), 如公式,再依貝氏定理,求得事後機率P(Gj|E),如公式 (5)。 P(E)=P(E n G,)+ P(E n G2)+.....+P(EnGn) =PiG^PiElG^ P(G2)*P(E\G2)+.. =tp(G^*p(E\Gk) k=! P(n\F} = ^.JnE^ Ρ^ΤΡ{Ε\0}) J 1 J pi ρ\ n yP(GkrP(E\Gk) + P(Gn)*/>(£ IGJ (4) (5) 接著,如步驟36所示,該風險期望報酬運算模組15 運算特定個股之單位風險期望報酬。在本較佳實施例中, 此步驟36之詳細過程為,先運算特定個股之期望報酬(列表 12 201222455 刚中的欄们48)=上漲機率父上漲平均報酬+下跌機率χ下跌 平均報酬’再運算特定個股之單位風險期望報酬(列表14〇 的攔位149)-期望報酬除以風險值,其中該風險值之計算 方式可以是以標準差(如圖6列表14〇之攔位147)表示之總 風險、系統風險,或風險值(Value Ai㈣,var)。此外, 該風險期望報酬運算模組15也可進—步運算特定個股之單Jc> 〇 Tailu BH Μ ^(6) The average number of ports is the standard deviation of llU. Furthermore, in the embodiment, the probability and average reward calculation module 14 can also calculate the upper _ rate and the falling probability. The so-called conditional probability 疋 曰 事件 under the condition that the known event E occurs, the event. The probability of occurrence is p(g\e)=^J2^1 P(E) (3) P(E)> 〇G and E are independent of each other' corpse illusion: (10)*(10) corpse (brown) = (10). In addition, in still another embodiment of the present invention, the probability and average reward operation module 14 can also use the Bayers' Decision Rule to account for the probability of falling and the probability of falling. The so-called shell-like decision rule assumes that the sample two can be divided into r mutually exclusive events such as Gi to Gr, and the pre-existing probability p(Gj), j=l...n is known. Under the consideration of event ε, Find the probability ρ(Ε), such as the formula, and then according to Bayes' theorem, find the probability P(Gj|E) afterwards, as in formula (5). P(E)=P(E n G,)+ P(E n G2)+.....+P(EnGn) =PiG^PiElG^ P(G2)*P(E\G2)+.. = Tp(G^*p(E\Gk) k=! P(n\F} = ^.JnE^ Ρ^ΤΡ{Ε\0}) J 1 J pi ρ\ n yP(GkrP(E\Gk) + P(Gn)*/> (£ IGJ (4) (5) Next, as shown in step 36, the risk expectation reward calculation module 15 calculates the unit risk expected reward for a particular stock. In the preferred embodiment, The detailed process of this step 36 is to calculate the expected remuneration of a particular stock first (list 12 in 201222455). = rising probability, parent rising average return + falling probability, falling average remuneration, and then calculating the unit risk expectation of a particular stock. (Listing 149 of Listing 14) - Expected compensation divided by risk value, where the risk value can be calculated as the total risk, system risk, or standard risk, as shown by the standard deviation (Figure 147, stop 147) Risk value (Value Ai (4), var). In addition, the risk expectation compensation operation module 15 can also step into a specific stock list.

位期望報酬承擔風險=1/單位風險期望報酬,而形成單位期 望報酬承擔風險欄位150。 然後’如步驟37所示,該判定及筛選模組16判定是 否已獲得所有個股之上漲機率、單位風險期望報酬、及單 位期望報酬承擔風險。若判定結果為否,則如步驟%所示 ,標竿投資選股系統1G將運算對象轉移至下—個特定個股 ,並接著再次依序進行步驟32、33、36,直到獲得了所有 個股之上漲機率、單位風險期望報酬、及單位期望報酬承 擔風險。因此,當步驟37之判定結果為是時,接著如步驟 39所示,該判定及篩選模組16根據—組包括多個_參考 數據之狀篩選準則,筛選出所有個股中符合該組預定篩 選準則之個股。而該組涉及篩選參考輯之篩選準則可以 設定為期望報酬為正做多(或期望報酬為負做空)、上漲機率 大於-預定機率門檻值〇.5做多(或上漲機率小於一預定機 率門檻值0·”故空)、標準差小於一預定機率門檀值,與基 二如表2所示)’與以價為基礎的技術指標或以 里為指標(如表3所示)、每筆平均張、融資券 、三大法人庫存與進出等籌碼面狀況等。如以下表2以及 13 201222455 表3所示,其分別列示出完整的基本面財務比率指標以及 各類技術指標,可供運用於本發明之實施例中。 表2 信 用 方 面 財 務 財務結構 比率(註1) 固定資產對總資產比(固定資^ 值比率、銀行借款對淨值比、長期負債對 淨值比、長期銀行借款對淨值比、固定資 產對淨值比(固定比率)、固定資產對長期 資金比率(固定長期適合率)、負債對淨值 比(槓桿比率) 比 償債能力( 流動比率、速動比率(酸性測 率 註1) 銀行借款對流動資產 倍數分析( 利息保障倍數、利息保障倍數(加回 註1) 折耗+攤銷)、營業活動之淨現金流量對利 息費用比率、營業活動之淨現金流量對負 債總額比率、自由支配之淨現金流量對負 債總額比率、營業活動之淨現金流量對短 期銀行借款比率、營業活動之淨現金流量 對資本支出比率、資本支出對折舊+折耗+ 攤銷比率 現金流量 _________ ______ 現金流量比率、現金再投資比率 --------- 14 201222455 分析(註l) 其他現金 流量 見金机夏允當比率、營業活動之淨現金流 量對利息費用比率、營業活動之淨現金流 * ^ 率、營業活動之淨現金流 里對期銀行借款比率、營業活動之淨現 金流量對資本支出比率、自由支配之淨現 金流量 其他長短 期償債能 力(註2 ) 金涵蓋比率、長期負債對股東權益比 利息保障倍數π錢為利息倍數、盈餘為 疋支出倍數(固定支出保障倍數)、現金 利息保障倍數或現金涵蓋比率、付現固定 支出保障倍數、到期債務本息受償比率、 長期債務餘烛比率、股東權益對總資產比 率(權益比率)、長期負債對總資產比率、 長期資金對固定資產比率、負債對權益比 、負債對資本比、長期資本投資報酬率、 短期涵蓋比率或短期防護比率、淨非資金 項目比率、流動資產對總資產比率、流動 動資產週轉率、流 15 201222455 在么 /*···» · " 一 -------- 、債對存貨比率、流動負債對淨值比率 、流動性指數、備抵呆帳率 '清償比率、 流動負債對總負債比、基金及長期投資對 總資產比、固定費用保障倍數、資本週轉 率、淨值報酬率、長期銀行借款對淨值比 、雙重槓桿比率、或有負債對淨值比、長 期資金適合率'借款依存度、備抵呆帳對 放款 營 資產負債 折售+折耗比率對折舊資產毛額比率、累積 業 分析(註1) 折舊對固定資產毛額比率、資本支出對固 表 定資產毛額比率、資本支出對固定資產淨 現 額比率 方 經營效能( 應付帳項週轉率、應收帳款週轉率、存貨 面 註1) 週轉率、固定資產週轉率、總資產週轉率 財 、淨值週轉率、淨營運資金週轉率 務 營運效率( 存貨週轉天數、平均收現期間、應付帳款 比 資產運用/ 付款天數、存^轉換期間、現金循環週轉 率 週轉率) 率、現金循環平均天數、營業週期、淨營 (註2) 業週期、備抵呆帳率、總資產成長率、固 16 201222455 疋貪產成長率、淨值對資產、土地對淨值 、固定資產對淨值 獲利能力( 毛利率、營業利益率、營業利益率(減利息 註1) 費用)、純益率(稅前)、純益率(稅後)、淨 值報酬率(稅别)、淨值報酬率(稅後)、總 貝產報酬率(稅前、未加回利息費用)、總 • 貢產報酬率(稅後、未加回利息費用)、總 - 資產報酬率(稅前、加回利息費用)、總資 - 產報酬率(稅後、加回利息費用)、折舊+折 耗+攤銷對營諸人㈣、利息費用對營業 收入比率 其他獲利 存貨對 • 能力 潤邊際、淨利率、銷貨退回及折讓比率、 方面財務 銷貨折扣比率、鎖貨成本比率、營業比率 I 比率 、營業費用對銷貨淨額比率、折舊對銷貨 淨額比率、壞帳對賒銷收入比率、銷貨(營 業)收入對現金比率、銷貨(營業)收入對應 - 收帳款項比率、銷貨(營業)收入對存貨比 產比率、銷 17 201222455 貨(營業)收入對流動資產比率 )收入對總資產比率、銷t(營業)收入對營 運資金比率、銷貨收入對存貨比率、鎖貨 收入對營運資金比率、銷貨以對淨值、 銷貨收入對淨利、淨利占銷貨收入比率、 淨利對營運資金比率、淨利占淨值比率、 稅前資產報酬率、稅後資產報酬率、總資 產報酬率'投入資本報酬率、收益成長率 、營業淨利率、純益成長率、淨利成長率 、稅前淨㈣、稅後淨㈣、營業外收支 率、已實現銷貨成長率、營業毛利成長率 、常續淨利成長率、營業利益對實收資本 比、稅前純益對實收資本比 投資相關 比率 每股盈餘、每股營業利益'每股稅前淨利 、本益比或益本比、股利收益率、市價對 帳面價值比、盈餘殖利率、盈餘價值指數 、本利比、股利殖利率、股利價值指數、 母股淨值、股價對淨值比率、股利支付或 發放率、盈餘保留率、股利成長率、市價 18 201222455The expected salary is assumed to bear the risk = 1 / unit risk expected salary, and the unit expects the compensation risk field 150. Then, as shown in step 37, the decision and screening module 16 determines whether the rising probability, the unit risk expected reward, and the unit expected remuneration risk of all stocks have been obtained. If the determination result is no, as shown in step %, the standard investment stock selection system 1G transfers the operation object to the next specific stock, and then proceeds to steps 32, 33, 36 again, until all the stocks are obtained. The probability of rising, the expected return of unit risk, and the risk of the expected return of the unit. Therefore, when the result of the determination in step 37 is YES, then as shown in step 39, the determination and screening module 16 selects the screening criteria according to the group including the plurality of _reference data, and selects all the stocks that meet the predetermined screening of the group. Individual stocks of the Code. The screening criteria of the group related to the screening reference series can be set as the expected remuneration is positive (or the expected remuneration is negative short), the rising probability is greater than - the predetermined probability threshold 〇.5 long (or the rising probability is less than a predetermined probability threshold) The value is 0·", so the standard deviation is less than a predetermined probability gate value, and the base 2 is as shown in Table 2) 'The price-based technical indicators or the internal indicators (as shown in Table 3), each The pen averages, financing bills, stocks of the three major corporate entities, and the status of the chips, etc. As shown in Table 2 below and Table 3 of 201222455, they respectively show the complete fundamental financial ratio indicators and various technical indicators. It is used in the embodiment of the present invention. Table 2 Financial and financial structure ratio of credit (Note 1) Fixed assets to total assets ratio (fixed ratio, bank loan to net ratio, long-term debt to net ratio, long-term bank loans) Net worth ratio, fixed asset to net worth ratio (fixed ratio), fixed asset to long-term capital ratio (fixed long-term suitability ratio), debt-to-net ratio (leverage ratio), solvency (flow) Ratio, quick ratio (acid rate note 1) Bank loan analysis of current assets multiples (interest guarantee multiple, interest guarantee multiple (plus refill 1) depletion + amortization), net cash flow to interest expense ratio of business activities, Net cash flow to total debt ratio of operating activities, net cash flow to total debt ratio of discretion, net cash flow from operating activities to short-term bank borrowing ratio, net cash flow to capital expenditure ratio of operating activities, depreciation of capital expenditure + Debt + Amortization Ratio Cash Flow _________ ______ Cash Flow Ratio, Cash Reinvestment Ratio --------- 14 201222455 Analysis (Note l) Other cash flows see the gold machine summer allowance ratio, net cash flow from operating activities Ratio of interest expense, net cash flow of operating activities*, rate of bank borrowings in net cash flow from operating activities, net cash flow to capital expenditure ratio of operating activities, net cash flow from discretion, other long-term and short-term debt Capability (Note 2) Gold Coverage Ratio, Long-Term Liabilities to Shareholders' Equity The interest multiplier, the surplus is the expenditure multiple (fixed expenditure guarantee multiple), the cash interest coverage or cash coverage ratio, the fixed expenditure guarantee multiple, the debt principal and interest compensation ratio, the long-term debt residual ratio, the shareholders' equity to the total assets Ratio (equity ratio), long-term debt to total assets ratio, long-term capital to fixed asset ratio, debt-to-equity ratio, debt-to-capital ratio, long-term capital investment return rate, short-term coverage ratio or short-term protection ratio, net non-funded project ratio, Current assets to total assets ratio, current assets turnover rate, flow 15 201222455 What is /*···» · " I--------, debt-to-inventory ratio, current liabilities-to-net ratio, liquidity Index, allowance for bad debt rate, settlement ratio, current liabilities to total debt ratio, fund and long-term investment to total assets ratio, fixed cost guarantee multiple, capital turnover rate, net return rate, long-term bank loan to net worth ratio, double leverage ratio Contingent-to-net ratio, long-term capital suitability rate, borrowing dependency, allowance for bad debts, lending assets Debt discount + depletion ratio on gross depreciation ratio, cumulative industry analysis (Note 1) Depreciation on gross assets ratio, capital expenditure on fixed assets, gross ratio, capital expenditure on fixed assets net ratio Performance (Accounts Payable Turnover, Accounts Receivable Turnover, Inventory Note 1) Turnover Rate, Fixed Asset Turnover, Total Asset Turnover, Net Value Turnover, Net Working Capital Turnover Operating Efficiency (Stock Turnover Days) , average cash withdrawal period, accounts payable than asset utilization / payment days, deposit and conversion period, cash cycle turnover rate turnover rate, average cash cycle days, business cycle, net camp (Note 2) industry cycle, allowance Account rate, total asset growth rate, solid 16 201222455 疋 greedy growth rate, net value to assets, land to net value, fixed assets to net profitability (gross profit margin, operating profit margin, operating profit margin (deduction of interest note 1) fee ), net profit rate (before tax), net profit rate (after tax), net rate of return (tax), net rate of return (after tax), total Return rate of shell products (pre-tax, unpaid interest expense), total • rate of return on tributary (after tax, unpaid interest expense), total - return on assets (before tax, plus interest expense), total capital - Return on production (after tax, plus interest expense), depreciation + depletion + amortization to the people (four), interest expense to operating income ratio, other profitable inventory pairs • ability to run margin, net interest rate, sales return and discount Ratio, aspect financial sales discount ratio, lock cost ratio, operating ratio I ratio, operating expenses to net sales ratio, depreciation to net sales ratio, bad debt to credit sales ratio, sales (business) income pair Cash ratio, sales (business) income corresponding - collection ratio, sales (business) income to inventory ratio, sales 17 201222455 goods (business) income to current assets ratio) income to total assets ratio, sales t ( Business) income to working capital ratio, sales revenue to inventory ratio, lock-in revenue to working capital ratio, sales to net worth, sales revenue to net profit, net Proportion of sales revenue, net profit to working capital ratio, net profit to net worth ratio, pre-tax return on assets, after-tax return on assets, return on total assets, return on invested capital, income growth rate, net profit margin, net profit growth rate Net profit growth rate, pre-tax net (four), post-tax net (four), non-operating income and expenditure ratio, realized sales growth rate, operating margin growth rate, continuous net profit growth rate, operating profit to paid-in capital ratio, pre-tax net profit Earnings per share compared to investment-related ratios earnings per share, earnings per share 'per-tax net profit per share, cost-benefit ratio or equity ratio, dividend yield, market-to-book value ratio, earnings yield, surplus value index, principal Libby, dividend yield, dividend value index, net share value of parent stock, share price to net worth ratio, dividend payment or release rate, earnings retention rate, dividend growth rate, market price 18 201222455

Ί------ ... 對現金流量比率、股價對每股現金流量比 、現金股利保障倍數、每股現金流量、淨 值成長率、普通股股東權益報酬率、維持 成長率持續性權益成長率、普通股股東 盈餘再投資報酬率、稅前股東權益報酬率 、稅前普通股股東權益報酬率、稅後股東 權益報酬率、稅後普通股股東權益報酬率 、長期資本投資報酬率、權益成 、 五 ύ<τ ^ -h 队食刀 總貝本稅後純益率、總資本稅前純益率、 力 股東權益稅前純益率、稅後純益率、稅前 分 純益率、毛利率 '邊際貢獻率 析 活動力 貝本週轉率、股東 (註 3) )、固定資產週轉率、營運設備週轉率、存 貨週轉率、應收帳款週轉率 安定力 淨值對固定資產比)、内部保留率、償債能 力保障倍數、償付長期借款利息能力 '自 籌資金對資本支出比率、 千負債比率、淨利 息負擔率、企業血壓 _ 19 201222455 生產力 附加價值率、每人附加價值、資本分配率 、固定資產生產力、設備投資效率、每人 營業額、每人邊際貢獻、人力生產力、資 本生產力、薪資邊際收益生產力 成長力 金融機構特殊 觀念與比率 其他財務觀念 與比率 註 註 營收成長率、附加價值成長率、股東權益 成長率(淨值成長率)、稅前純益成長率、 稅後純益成長率、固定資產成長率 利差、平均放款利率、平均存款利率、問 題資產、資本適足率、流動準備率、逾放 比、催收比、覆蓋率、呆帳比率、存放比 率、非利息收入佔營業收入比率 經濟附加價值、自由現金流量、區別值(Z-Score)、加權資金成本、營業槓桿度、財 務槓桿度、綜合槓桿度、財務槓桿乘數、 自財團法人金融聯合徵信中心共4 5項財務比率 自其他來源 註3 :為能完整呈現五力分析,而保留與其他來源相同之比 率 f. 3____ 類技術指標種類 20 201222455Ί------ ... The ratio of cash flow, share price to cash flow per share, cash dividend protection multiple, cash flow per share, net worth growth rate, common stock return on equity, sustained growth rate Growth rate, re-return rate of earnings of common stockholders, return on pre-tax shareholders' equity, return on equity of pre-tax ordinary shareholders, return on equity after-tax, return on equity after-tax ordinary shareholders, return on long-term capital investment, Equity, Wuyi<τ ^ -h team knives total beben after-tax net profit rate, total capital pre-tax net profit rate, force shareholders' equity pre-tax net profit rate, after-tax net profit ratio, pre-tax net profit margin, gross profit margin' Marginal contribution rate analysis activity force Beben turnover rate, shareholders (Note 3), fixed assets turnover rate, operating equipment turnover rate, inventory turnover rate, accounts receivable turnover rate, net worth of fixed assets to fixed assets ratio), internal retention rate , solvency guarantee multiples, ability to repay long-term borrowing interest 'self-funding to capital expenditure ratio, thousand debt ratio, net interest burden rate, corporate blood pressure _ 19 20122245 5 Productivity added value, per capita added value, capital allocation rate, fixed asset productivity, equipment investment efficiency, per capita turnover, marginal contribution per person, human productivity, capital productivity, salary marginal revenue productivity growth financial institution special concept and Ratio Other financial concepts and ratios Note revenue growth rate, value-added growth rate, shareholder equity growth rate (net growth rate), pre-tax net profit growth rate, post-tax net profit growth rate, fixed asset growth rate spread, average lending rate , average deposit interest rate, problem assets, capital adequacy ratio, liquidity readiness ratio, overdue ratio, collection ratio, coverage ratio, bad debt ratio, storage ratio, non-interest income, operating income ratio, economic added value, free cash flow, difference Value (Z-Score), weighted capital cost, operating leverage, financial leverage, comprehensive leverage, financial leverage multiplier, a total of 45 financial ratios from the Financial Joint Credit Information Center of the Financial Corporation from other sources Note 3: Fully presenting a five-force analysis while retaining the same ratio as other sources f. 3____ Technical indicators species 20201222455

別 價 的 技 術 指 標 移動平均收斂發散指標或指數平滑異同移動平均線 (Moving Average Convergence-Divergence,MACD) 、趨向指標(Directional Movement Index,MI ) 、停損點轉向指標。(Stop And Reverse,SAR )、相 對強弱指標。(Relative Strength Indicator ’ RSI )、乖離率(BIAS )、威廉指標(Williams’ %R, WMS%R)、動量指標(Momentum,MTM )、動態動量指 標(Dynamic Momentum Index)、振盪指標( Osi 1 lator,OSC )、擺動指標(Swing Index)、量化 陰陽線(Quantative Candle Stick,Qstick) ' 商品 通道指數(Commodity Channel Index,CCI)、買賣 氣勢指標或開盤價比率(AR)、買賣意願指標或收盤 價比率(BR)、三重指數平滑移動平均指標(Triple Exponentially Smoothed Average,TRIX)、逆勢操 作系統(CDP)、隨機指標或KD指標(Stochastic Oscillator,KD)、隨機動量指標(Stochastic Momentum Index)、隨機相對強度指標。(Stoch Relative Strength Index,Stoch RSI)' 相對波動 21 201222455 指標(Relative Volatility Index)、變動率指標 (Rate of Change,ROC)、心理線(Psychological Line,PSY)、布林線(Bollinger Band)、肯特納通 道(Keltner Channel)、絕對幅度指標(Absolute Breadth Index)、累積 / 派發線(AccumulationInvaluable technical indicators: Moving Average Convergence Divergence Indicators or Moving Average Convergence-Divergence (MACD), Directional Movement Index (MI), Stop Loss Point Steering Indicators. (Stop And Reverse, SAR), relative strength indicator. (Relative Strength Indicator ' RSI ), Deviation Rate (BIAS), William Index (Williams' %R, WMS%R), Momentum (MTM), Dynamic Momentum Index, Oscillator (Osi 1 lator) , OSC), Swing Index, Quantative Candle Stick (Qstick) 'Commodity Channel Index (CCI), trading momentum indicator or opening price ratio (AR), buying and selling willingness indicator or closing price Ratio (BR), Triple Exponentially Smoothed Average (TRIX), Contrarian Operating System (CDP), Stochastic Oscillator (KD), Stochastic Momentum Index, Random Relative strength indicator. (Stoch Relative Strength Index, Stoch RSI)' Relative Fluctuation 21 201222455 Index (Relative Volatility Index), Rate of Change (ROC), Psychological Line (PSY), Bollinger Band, Kent Keltner Channel, Absolute Breadth Index, Accumulation / Accumulation

Distribution line)、累積擺動指標(Accumulation Swing Index) 、 Williams’ s 累積 / 派發線 (Williams’ s Accumulation/Distribution)、上漲 /下跌線(Advance/Decline Line)、上漲/下跌比率 (Advance/Decline Ratio)、中間價格指標(Median Price)、價格通道(Price Channel)、拋物線狀的止 損與反轉或拋物轉向指標(Parabolic SAR) 量能潮(On Balance Volume,OBV)、累積發散線 的(Accumulation/Distribution Line,A/DL)、資金 技 術 指 標 流向指標(Money Flow Index,MFI )、成交量比率或 量強弱指標(Volume Ratio,VR)、漲:跌線(騰落指標 )(Advance Decl ine Line,ADL)、平均成交量(MQ) 、調量移動平均線(Volume Adjusted Moving Average,VAMA)、波動難易度(Ease of Movement, 22 201222455 EQM)、勁道指數(Force Index,FI)、每一加權股價 指數成交值(Total Amount Per Weighted Stock Price,TAPI)、蔡金擺動指標or柴京震盪指標 (Chaikin Osci 1 lator,CHKO)、錢德動量擺動指標 (Chande Momentum Oscillator)、資金流量相對強 弱指數(Money Flow Relative Strength Index , MFRSI)、阿姆斯指數(Arms Index,AI)、TRIN 短線 交易指數(Short Term Trading Index, TRIN),或 者稱交易者指標(Trader’ s Index)、股市驅動指標 (Stock Market Thrust , MT)、驅動震盪(Thrust Oscillator,TO)、McClellan 震盈指標(McClellan Oscillator , McClellan) 、 McClellan 和指標 (McCLELLAN Summation Index)、週轉率(Turnover ratio)、聚焦量(MC)、成交量指標(Volume)、成交 量擺動指標(Volume Osci 1 lator)、成交量變動率 (Volume Rate-Of-Change)、正量指標(Positive Volume Index)、負量指標(Negative Volume Index)、等成交量(Equivolume)、價格上漲、價格 下跌和價格不變的證券成交量(Advancing, 23 201222455Distribution line), Accumulation Swing Index, Williams' s Accumulation/Distribution, Advance/Decline Line, Advance/Decline Ratio , Median Price, Price Channel, Parabolic Stop and Reversal or Parabolic SAR, On Balance Volume (OBV), Cumulative Diffusion (Accumulation/ Distribution Line, A/DL), Money Flow Index (MFI), Volume Ratio or Volume Ratio (VR), Up: Falling Line (Advance Decl ine Line) (ADL) ), Average Volume (MQ), Volume Adjusted Moving Average (VAMA), Easiness of Movement (Ease of Movement, 22 201222455 EQM), Force Index (FI), each weighted share price Total Amount Per Weighted Stock Price (TAPI), Cai Jin Swing Indicator or Chaikin Osci 1 lator (CHKO) Chand Momentum Oscillator, Money Flow Relative Strength Index (MFRSI), Arms Index (AI), TRIN Short Term Trading Index (TRIN), Or Trader's Index, Stock Market Thrust (MT), Thrust Oscillator (TO), McClellan Oscillator (McClellan), McClellan, and Indicators (McCLELLAN Summation Index) ), Turnover ratio, Focus amount (MC), Volume indicator (Volume), Volume Osci 1 lator, Volume Rate-Of-Change, Positive indicator ( Positive Volume Index, Negative Volume Index, Equivolume, Price Increase, Price Fall and Price Constant Securities Volume (Advancing, 23 201222455

Dec 1 ining,Unchanged Volume)、上漲 / 下跌量比 (Upside/Downside Ratio)、上旅 / 下跌量指標 (Upside/Downside Volume)、價量趨勢指標(price and Volume Trend)、成交量移動平均線 其 (上涨或下跌股票家數的)满跌比率(Advance 他 Decline Ratio,ADR)、超買超賣指標(〇ver 技 Bought/Over Sold,0B0S)、逆時鐘曲線(Counter- 術 clockerwise)、阿姆斯指數(ARMS Index)、股市趨 指 勢指標(Stock Market Thrust,MT )、融資餘額、 標 融券餘額、股市週期循環、電腦輔助易每五分鐘委 託成交筆數、張數及成交值、當日沖銷比例。 如圖7所示’以每單位風險之報酬最大做多為目標函 數’在本較佳實施例中,當該預定篩選準則為期望報酬(欄 位166)為正、上漲機率(欄位165)大於一預定機率門檻值 0.5、標準差(欄位168)的數值小於4、近月的營收(欄位 162)為正成長、且8日RSI(欄位163)數值介於15至60之 間時’該判定及篩選模組16便會產生如圖7所示投資組合 列表160 ’其中列表160中大部分欄位之定義與圖6中所定 義者相同’例如攔位164指的是最近歷史營業日(2〇1〇年3 月1日)加上前4日(即共5日)中屬於組別1之日數。此圖7 中的投資組合列表16〇係以單位風險期望報酬欄位167來 24 201222455 排序並顯示於投資者裝置2之顯示器23之選股㈣操作介 面230上,因而投資者可根據搁位167(或排序搁位 選取2〇10年3月2日想買賣的個股,例如買進具有最高單 位風險期望報酬〇·628的柏騰公司股票。 參閱圖1 3 8、9 ’在本發明方法之其他實施例中, 亦可採用另—㈣然不同的分群模式排列,來對特定個股 在歷史時間區間之歷史報酬資料進行分群。如圖3所干, f即繪示本發明其他方法實施例中採用排列分群模式對特 疋個股在歷史時間區間之歷史報酬資料進行分群之實施能 樣。由於此圖3中的步驟僅步驟34、35與圖2中的步们2 33不同,其餘步驟則完全相同,因此此處僅會對步驟% 、35進行詳述,至於圖3中的步驟30、3】、36_39,則可參 考上述有關圖2中相同步驟3〇、31、36 39之說明。 如步驟34所示,該分群模組13根據特定個股在包括 =近時間區間之第二時間區間中之該等連續第一時間區間 =組別排列方式,對該特定個股或所有公司在歷史時間區 曰之歷史報酬資料進行排列分群。需特別提出的是,圖3 的v驟34、35、36係針對某-特定個股所依序進行之步 =例如’在本較佳實施例中,由於是根據公司代號之順 對所有個股——進行步驟34、35、%,故分群模組η首 驟針對台泥(公司代號為11〇1)之股票,以排列分群模式對步 驟31所產生的所有公司股票之組別資訊進行分群,而形成 8所示之台泥公司風險期望報酬列表140a令的欄位141 及 144a。 25 201222455 如圖8風險期望報酬列表!術所示,其列出了利用本 發明所產生的綱年2月6日至獅年3月i日共⑴固 歷史營業日之相關資訊。攔位1412為各較營業日之當日 所屬組別,例如U i曰之所屬組別為組別心攔位⑷為 各歷史營業日當日加上前4日(即共5日)之每 例如由於…曰、2月24曰、2月25曰、2月26曰、3 月1日共5個連續歷史營業日之每日所屬組別分別為組別1 、組別^組別8、組別5、組別4,因此對應的攔位141 之值即為11854之排列形式。櫊位糾即為歷史時間區間 十所有公司同排列分群模式之次數,例如在整個i97i年i 月1日至2010年3月!日歷史時間區間内,與聊年3 月1日具有同樣排列分群模式11854之次數即為1783。此 外’需特別提㈣是’在圖8本發㈣則㈣分群模式所 產生的列表140a中的欄位14如之同群次數是根據所有公司 具有相同五日組別排列形式攔位141而得,然而如前所述 ’本發明採賴列分群模式所產生的列表丨術中的搁位 144a之同群次數襴位144a也可僅根據該特定個股之資料而 得0 接著,如步驟35所示,該機率及平均報酬運算模組14 運算1971年1月1日至2_年3月】日歷史時間區間内 出現相同排列分群模式且各當日之後一曰為上漲之上潘機 率(攔位M5a)與上漲平均報酬(搁位142a)、為下跌之下跌機 率(攔位H6a)與下跌平均報酬(欄位143a),以及為平盤之平 盤機率(圖8中未繪示平盤機率欄位),其中該上漲機率、下 26 201222455 跌機率以及平盤機率之和為卜且該上漲機率及下跌機率可 供ό亥技負者用以決定是否買賣該特定個股。 然後,標竿投資選股系統1g接著進行後續步驟36·39 ,因而可獲得圖8列表1術中的襴位148a、149a# 15〇a 以及圖9中的投資組合列表16〇&,其中單位期望報酬承 擔風險=1/單位風險期望報酬。 如圖9所示,以每單位期望報酬承擔之風險最大做空 為目k函數’在本較佳實施例中,當該預定纟帛選準則為期 望報酬(欄位166a)為負、上服機率(欄位165a)小於預定機率 門檻值0.5、標準差_立祕)的數值小於4、近月的營收 成長(欄位162a)小於20%、且8日RSI(欄位163幻數值大於 85時,該判定及篩選模組16便會產生如圖9所示列表16如 八中攔位169、的是各歷史營業日當曰加上前4日(即共 5曰)之每日所屬組別。此圖9中的投資組合列表工術係以 單位期望報酬承擔風險欄位167a來排序並顯示於投資者裝 置2之顯示器23之選股系統操作介面23〇上,因而投資者 可根據欄位167a(或排序欄位i61a)來選取2〇1〇年3月2曰 想貝賣的個股,例如賣出具有最低單位期望報酬承擔風險― 74.823的方土相公司股票。 參閲圖4、1 〇 ’在本發明其他實施例中,在圖2本發明 採用組合分群模式之步驟33完成後’可以CApM(CapitalDec 1 ining, Unchanged Volume), Upside/Downside Ratio, Upside/Downside Volume, Price and Volume Trend, Volume Moving Average (Advance Decline Ratio, ADR), Oversold Oversold (Bever/Over Sold, 0B0S), Counter-Clock (Counter-clockerwise), Eminem Stocks Index (ARMS Index), Stock Market Thrust (MT), financing balance, balance of securities and securities, balance of stock market cycle, computer-assisted transactions, number of transactions per five minutes, number of sheets and transaction value, the current day Reversal ratio. As shown in FIG. 7, 'the maximum reward for each unit of risk is the objective function'. In the preferred embodiment, when the predetermined screening criterion is the expected reward (field 166) is positive, the probability of rising (field 165) The value greater than a predetermined probability threshold of 0.5, the standard deviation (field 168) is less than 4, the revenue of the recent month (field 162) is positive growth, and the value of the 8th RSI (field 163) is between 15 and 60. The decision and screening module 16 will generate a portfolio list 160 as shown in Figure 7 wherein the definition of most of the fields in the list 160 is the same as that defined in Figure 6, for example, the block 164 refers to the nearest The historical business day (March 1 of March 1st) plus the number of days belonging to Group 1 in the previous 4 days (ie 5 days in total). The portfolio list 16 in this Figure 7 is sorted by the unit risk expectation reward field 167 to 24 201222455 and displayed on the stock picking (4) operation interface 230 of the display 23 of the investor device 2, so that the investor can be based on the shelf 167. (Or sorting the seats to select stocks that you want to buy and sell on March 2, 2010, such as buying the Berteng stock with the highest unit risk expectation 〇 628. See Figure 1 3 8 , 9 ' in the method of the invention In other embodiments, another (4) different grouping mode arrangement may be used to group the historical reward data of a particular stock in the historical time interval. As shown in FIG. 3, f is shown in other method embodiments of the present invention. Using the permutation grouping mode to implement the grouping of the historical remuneration data of the special stocks in the historical time interval. Since the steps in Fig. 3 are only steps 34 and 35 are different from the steps 2 and 33 in Fig. 2, the remaining steps are completely The same, so only steps %, 35 will be described in detail here. For steps 30, 3, and 36_39 in Fig. 3, reference may be made to the above description of the same steps 3, 31, and 36 39 in Fig. 2. Step 34 As shown, the grouping module 13 aligns the particular individual stock or all companies in the historical time zone according to the consecutive first time interval=group arrangement of the specific stocks in the second time interval including the = near time interval. The historical reward data is arranged and grouped. It is particularly mentioned that the steps 34, 35, and 36 of FIG. 3 are sequentially performed for a certain specific stock = for example, in the preferred embodiment, The code is for all stocks - step 34, 35, %, so the cluster module η first for the stock of Taimu (company code is 11〇1), in order to group all the company stocks generated in step 31 The group information is grouped to form fields 141 and 144a of the platform company risk expectation remuneration list 140a order shown in Fig. 8. 25 201222455 As shown in Fig. 8, the risk expectation reward list! The relevant information of the historical business day is from February 6th to March 1st of the Lion Year. The block 1412 is the group of the day on which the business day is, for example, the group belonging to U i曰 is a group. Don't mind blocking (4) for each calendar On the day of the business day plus each of the first 4 days (that is, a total of 5 days), for example, due to ... 曰, February 24, February 25, February 26, March 1, a total of 5 consecutive historical business days The group to which the day belongs is group 1 , group ^ group 8, group 5, group 4, so the value of the corresponding block 141 is the arrangement of 11854. The position correction is the historical time interval ten. The number of times the company arranges the grouping mode, for example, in the entire i97i year from January 1 to March 2010! In the historical time interval, the number of times the grouping pattern 11854 is the same as that of the March 1st of the year of the year is 1783. It should be noted that (4) is that the field 14 in the list 140a generated by the grouping mode in FIG. 8 is the same as that of all companies having the same five-day group arrangement. As described above, the same group number of positions 144a of the position 144a in the list generated by the clustering mode of the present invention may also be obtained from the data of the specific individual stock only. Next, as shown in step 35, Probability and Average Reward Calculation Module 14 Operation January 1, 1971 to February 2, March] Day Historical Time Zone The same permutation grouping pattern appears in the room, and after each day, the above is the rising probability (the block M5a) and the rising average compensation (settlement 142a), the falling probability of falling (block H6a) and the falling average reward (column) Bit 143a), and the flat disk probability (the flat disk probability field is not shown in Figure 8), wherein the rising probability, the lower 26 201222455 falling rate and the flat probability are the sum and the rising probability and falling The probability is available to the decision makers to decide whether to buy or sell the particular stock. Then, the standard investment stock selection system 1g is followed by the subsequent step 36·39, so that the list 148a, 149a# 15〇a in the list 1 of FIG. 8 and the portfolio list 16〇& in FIG. 9 can be obtained. Expected remuneration risk = 1 / unit risk expected remuneration. As shown in FIG. 9, the maximum risk of taking the risk per unit of expected remuneration is the function of the objective k. In the preferred embodiment, when the predetermined selection criterion is the expected remuneration (field 166a) is negative, the upper service rate (Field 165a) is less than the predetermined probability threshold of 0.5, the standard deviation _ _ secret) is less than 4, the recent month's revenue growth (field 162a) is less than 20%, and the 8th RSI (field 163 magic value is greater than 85) At this time, the decision and screening module 16 will generate a list 16 as shown in FIG. 9 such as the eighth block 169, which is the daily business group plus the first 4 days (ie 5 miles in total). The portfolio list engineering in this Figure 9 is sorted by the unit expected salary commitment risk field 167a and displayed on the stock picking system operation interface 23 of the display device 23 of the investor device 2, so that the investor can Bit 167a (or sorting field i61a) to select the stocks that are sold by March 2, 2, and 2, for example, to sell the stock of the company with the lowest unit expected return risk - 74.823. See Figure 4. 1 〇' In other embodiments of the present invention, the present invention adopts a combined grouping mode in FIG. After step 33 is completed, then CApM (Capital)

Asset Price Model)或證券市場線(security Market Line, SML)為理論依據’建立單因子模型(single index Model) 或以套利疋 1貝理論(Arbitrage Pricing Therory ’ APT) 〆*> 27 201222455 為依據,建立多因子模型(Multifact〇r M〇dels)。實證上 可利用指數與已實現報酬(相對於無風險報酬)超額報酬之 才曰數模型(Index Model),或加上其它如政府公債超額報酬 總經因子等多因子建立可預測模擬之迴歸模型。利用迴歸 運算模組17建立可預測模擬之複迴歸模型,並以模型預測 能力之檢驗方法進行誤差之檢測。以指數模型之證券特性 線(Security Characteristic Une)的一般式為例,建立 迴歸式(6):Asset Price Model) or the Securities Market Line (SML) is based on the theory of 'single index model' or arbitrage Pricing Therory 'APT' 〆*> 27 201222455 , establish a multi-factor model (Multifact〇r M〇dels). Empirically, the index model can be used to establish the predictive model of the regression model by using the index model and the reward model of the excess reward (relative to the risk-free compensation), or by adding other factors such as the government public debt excess compensation total factor. . A regression model of predictive simulation is established by the regression operation module 17, and the error is detected by the test method of the model prediction ability. Taking the general form of the Security Characteristic Une as an example, establish a regression equation (6):

Yt=f(Xt)+et (6) 八中Yt為個股日報酬;Xt為加權指數曰報酬。以投資 選股法找出的股票型態做為控制變&,則其一般式可改為 複迴歸模型如下: «(xt ;控制變數)+et ⑺ 或者W投資選股法找出的股票型態(不同的控制變數)區別 不同屬性之公司報酬資料’再根據⑻建立數條迴歸式以兹 比較。此外’模型預測能力之檢驗方法包含以下數個: (1) 均方根誤差(RMS error) = V ^ f=l 其中>7為广的模擬值或預測值;Γ是實際值;τ是模擬 期間數。 (2) 均方根百分比誤差(RMS percent Err〇 = 201222455 ⑶平均模擬誤差(Mean Simulation e叫:丄七^) (4) ^ ^ ^ tb ^ ^ (Mean Percent Error) = 1 ^ YtYt=f(Xt)+et (6) Yt is the daily remuneration of individual stocks; Xt is the weighted index 曰 remuneration. The stock type found by the investment stock selection method is used as the control variable &, then its general formula can be changed to the complex regression model as follows: «(xt; control variable) +et (7) or W stock selection method The type (different control variables) distinguishes the company's compensation data of different attributes' and then establishes several regression equations based on (8) for comparison. In addition, the test method for model prediction capability includes the following: (1) RMS error = V ^ f = l where >7 is a wide analog or predicted value; Γ is the actual value; τ is The number of simulation periods. (2) Root mean square error (RMS percent Err〇 = 201222455 (3) Mean simulation error (Mean Simulation e: 丄7^) (4) ^ ^ ^ tb ^ ^ (Mean Percent Error) = 1 ^ Yt

(5) Theil不等式係數,簡稱υ值:(5) Theil inequality coefficient, referred to as the υ value:

》’圖1G迴歸結果17G是以台泥股票為例對習知 刀組情況進行迴歸分析,且以本發明方法針對台泥公司 五曰内為組別1之曰數且當曰分別為組別卜3、4、5、6》'Fig. 1G Regression Results 17G is a regression analysis of the case of the conventional knife group by taking the Taimu stock as an example, and the method of the present invention is directed to the number of the group 1 in the five muds of the Taimu company and the group is the group respectively. Bu 3, 4, 5, 6

之組合分群模式的歷史報酬資料進行迴歸分析,並以含 == 且別虛擬變數’據以計算出預測誤差作為實施的 _ ^圖Π)迴歸結果可看出,由統計學的觀點來看由 於口泥f知模型之迴歸結果的調整R平方數值G.4616小於 匕本發月模型之迴歸結果的調整R平方數值0.7749,故 可證明本發明利用產業及大盤作為標竿將股市歷史資料分 =為八大組別後再以複迴歸模型解釋個股日報酬之變異的 ,力顯然優於未以產業及大盤為標竿分组之習知情況。於 ^车該迴歸運算模組17接著便可利關1G迴歸結果Π0 部之台泥本發明模型相關數據,配合預测的加權股價 ^數日報酬’運算出預測之台泥個股日報酬。 ㈣圖5’在本發明其他實施例中,在圖2本發明採用 排心群模式之步驟34完錢,同樣可以抑如上所述複 29 201222455 屯歸模型’針對以排列模式分群之歷史報酬資料,運算出 特定個股之預測個股日報酬。 综上所述’本發明標竿投資選股方法係以產業以及大 盤為&竿’將證交所所公佈的初級資訊加以深入的探勘, 利用兩兩報酬比較的結果,逐步做分類,以使市場表現類 似者歸為一類’再利用先驗的資訊將同類別的股票之歷 史表現再細分,逐步縮小選股範圍,繼而以相對次數或貝 氏推疋等機率計算方式求出未來股票漲跌的機率以及期望 的償付值,因而可提供投資者非常有價值且寶貴的資訊, 故確貫能達成本發明之目的。 准以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發对請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一系統架構圖,說明用來實施本發明標竿投資 選股方法之較佳實施例之標竿投f選股_軟體、 格資料庫以及投資者端裝置; 只 圖2是-流程圖,說明本發明標竿投資選股方法 =群模式對特定個股之歷史報_料進行分群之: 選股方法中採 進行分群之較 圖3是一流程圖,說明本發明標竿投資 用排列分群模式對冑定個股之歷史報酬資料 佳實施例; 30 201222455 用二二說明本發明標竿投資選股方法中採 而利用複迴_型運算固股之歷史報酬資料進行分群且繼 模1運#個股日報酬之較佳實施例; 用排=八5是Γ流程圖’說明本發明標竿投資選股方法中採 而利用刀料式對特定個股之歷史報㈣料進行分群且繼 用複迴歸模型運算個股日報酬之較佳實施例;、,The historical reward data of the combined grouping model is subjected to regression analysis, and the regression result is calculated by using the == and other virtual variables to calculate the prediction error as the implementation. From the statistical point of view, The adjustment of the regression result of the mouth mud know model is lower than the adjusted R square value of 0.7749, which can prove that the invention uses the industry and the market as the standard to divide the stock market history data. For the eight major groups, the complex regression model is used to explain the variation of daily stock returns. The force is obviously better than the conventional situation that is not grouped by industry and the market. In the vehicle, the regression calculation module 17 can then calculate the relevant data of the model of the invention of the 1G regression result ,0, and calculate the predicted daily reward of the platform mud with the predicted weighted stock price. (4) FIG. 5' In other embodiments of the present invention, in FIG. 2, the present invention adopts the step 34 of the core group mode to complete the payment, and the same can be repeated as described above. 29 201222455 The model of returning to the historical reward data for grouping by arrangement pattern Calculate the predicted daily stock returns for a particular stock. In summary, the invention of the standard stock investment selection method is to conduct in-depth exploration of the primary information published by the stock exchange by the industry and the market for the market, and to use the results of the comparison between the two and the two to gradually classify Classify similar market performances as 'reuse of prior information. Subdivide the historical performance of stocks of the same category, gradually narrow the range of stock selection, and then use the relative number of times or Bayesian to calculate the future stocks. The probability of falling and the expected reimbursement value provide valuable and valuable information to investors, so that the purpose of the invention can be achieved. The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent change and modification of the patent scope and the description of the invention according to the present invention. All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system architecture diagram illustrating a preferred embodiment of the standard stock investment stock selection method of the present invention, which is a standard, a stock, a database, and an investor device; Only Figure 2 is a flow chart illustrating the standard stock investment method of the present invention = group mode for grouping historical stocks of specific stocks: The method of grouping in the stock picking method is compared with Figure 3, which is a flow chart illustrating the present The invention uses the permutation grouping model to determine the historical remuneration data of the individual stocks; 30 201222455 Describes the historical remuneration data of the re-entry _ type of real stocks A preferred embodiment of grouping and relaying the daily stocks of the model 1; using the row=8 is the flow chart' to illustrate the standard stock investment method of the invention, and using the knife type to record the history of the specific stocks (four) A preferred embodiment for performing grouping and following a complex regression model to calculate individual stock returns;

之顯^上是—操作介面示意圖,說明顯示在投資者端裝置 面中㈣了 ΪΪ股系統操作介面’其令該選股系統操作介 望法湘組合分群模式所產生的風險期 1報酬列表之實施例; ^ 夕翻圖。。7是一操作介面示意圖’說明顯示在投資者端裝置 士不盗上之選股系統操作介面’其中該選股系統操作介 八顯示了本發明方法利用組合分群模式所產生的投資电 a列表之較佳實施例; 圖8是-操作介面示意圖,說明顯示在投資者端裝置 之顯不β上之選股系統操作介面,其中該選股系統操作介 中頦不了本發明方法利用排列分群模式所產生的風險期 望報酬列表之實施例; 圆9是一操作介面示意圖,說明顯示在投資者端裝置 之顯不器上之選股系統操作介面,其中該選股系統操作介 ’.·>頁示了本發明方法利用排列分群模式所產生的投資組 合列表之較佳實施例;以及 圖10是一迴歸結果示意表,說明以習知迴歸模型以及 、本發明方法中的複迴歸模型針對台泥公司之組合分群模 31 201222455 式歷史報酬資料進行迴歸分析,所得之迴歸結果。The display is a schematic diagram of the operation interface, which is shown in the investor-side device. (4) The operation system of the stock system, which allows the stock selection system to operate the risk-based period 1 Embodiment; ^ 夕翻图. . 7 is an operation interface diagram 'Description of the stock selection system operation interface displayed on the investor device device', wherein the stock selection system operation interface 8 shows the investment power a list generated by the method of the present invention using the combined grouping mode. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Figure 8 is a schematic diagram of an operation interface showing the operation of the stock selection system on the display device of the investor device, wherein the method of the stock selection system does not utilize the method of the present invention. An embodiment of the generated risk expectation reward list; circle 9 is an operation interface diagram illustrating the stock selection system operation interface displayed on the display of the investor device, wherein the stock selection system operation interface is '.·> A preferred embodiment of a portfolio list generated by the method of the present invention using an aligned clustering mode; and FIG. 10 is a schematic representation of a regression model illustrating a conventional regression model and a complex regression model in the method of the present invention for a platform mud The company's portfolio grouping model 31 201222455 type historical compensation data for regression analysis, the resulting regression results.

32 20122245532 201222455

【主要元件符號說明】 I ..........系統端伺服器 10.........標竿投資選股系 統 II .........股市報酬資料運 算模組 12 .........分組模組 13 .........分群模組 14 .........機率及平均報酬 運算模組 140.......風險期望報酬列 表 14〇a......風險期望報酬列 表 1411-1412 欄位 141-149.欄位 142a-149a 棚位 15 .........風險期望報酬運 算模組 150-150a 欄位 16......... 判定及篩選模組 160....... 投資組合列表 160a...... 才又^組合列表 161 a-167a 攔位 161-169· 欄位 17......... 迴歸運算模組 170....... 迴歸結果 2 .......... 投資者端裴置 21......... 處理器 22......... 記憶體 220 ....... 選如·系統操作介 面程式 23......... •顯示器 230 ....... 選股系統操作介 面 30-39 … •步驟 40......... 步驟 8 .......... ,股市價格資料庫 9 .......... •網際網路 33[Description of main component symbols] I ..........System-side server 10.........Standard investment stock selection system II .........Stock stock information The computing module 12 ... ... grouping module 13 ... ... grouping module 14 ... ... probability and average reward computing module 140... .... Risk Expected Remuneration List 14〇a... Risk Expected Remuneration List 1411-1412 Fields 141-149. Fields 142a-149a Shed 15 ......... Risk Expected Remuneration Operation module 150-150a Field 16......... Decision and screening module 160....... Portfolio list 160a... Only combination list 161 a-167a Block 161-169· Field 17......... Regression Module 170....... Regression Result 2 .......... Investor Side Set 21. ........ Processor 22......... Memory 220....... Select System System Interface Program 23.... ....... stock picking system operation interface 30-39 ... • step 40......... step 8 .........., stock price database 9 .... ... • Internet 33

Claims (1)

201222455 七、申請專利範圍: 1. -種標竿投資選股方法’供一投資者用以選擇至少一適 當投資標的’該標竿投資選股方法包含下列步驟: (A) 根據一股市價格資料庫,運算一包括一最近時間 區間之歷史時間區間内所有第—時間區間之所有個股之 歷史報酬資料 '大盤歷史報酬資料,以及各產業分類之 歷史報酬資料; (B) 根據該歷史時間區間内,所有第-時間區間之個 股所屬產業之歷報酬是否大於大盤歷史報酬、個股之 歷史報酬是否大於個股所屬產業之歷史報酬,以及個股 之歷史報酬是否大於大盤之歷史報酬,將所有個股於所 有第-時間區間進行分組,以產生所有個股於所有第一 時間區間之所屬組別;以及 (C)根據-特定個股在—包括該最近時間區間之第二 =二之所屬組別之特定分群模式,運算該歷史時 内出現相同Μ分群模式且其後—個第-時間區 4 $之上漲機率與上漲平均㈣ 跌内出現相同特定分群模式且其後-個第-時 相同特定分群模式且其後一個第一時間 ^ 為〗 機率、下跌機率以及平盤機率之和 為,且該上漲機率及下跌機率 否買賣該特定個股。 W心決定是 2.根據申請專利範圍帛1項所述之標竿投資選股方法,其 34 201222455 中在該(B)步驟中進行分組後係產生八個組別 步驟中,該特定分群楹4人、~ 6哀(c) 定個股在該包括最近時間區間之第象; 八個組別中之-特定組別之次數以及在該最近時= 内所屬組別’對料定個股在該較時間區 酬資料進行組合分群。 3_ :據申請專利範圍第1項所述之標竿投資選股方法,1 (c)步驟中,該特定分群模式為排列分群模式,係 根據該特定個股在該包括最近時間區間之第二時間區門 中之該等連續第一時間區間之組別排列方式,對該J 個股以及所有個股二者擇—在該歷史時間區間之歷史報 酬資料進行排列分群。 4. 根據申請專利範圍第1項所述之標竿投資選股方法,1 中⑽驟還包括根據該特定個股在該第二時間區間: 之所屬組狀特定分群模式,運算職史㈣區間内出 =同特定分群模式且其後-㈣-㈣區間該特定個 上漲之上漲-人數、為下跌之下跌次數、為平 盤次心及-總次數’其中該總次數等於該域次數、 人數二及千盤次數之和,且該上服機率等於該 該總次數。 財專於该下跌次數除以 5. 根射請專利範圍第1項所述之標竿投資選股方法,其 =在該(C)步驟中’係利用屬於料歷史報酬資料 达、度函數來運算該上寐機率以及下跌機率。 35 201222455 根據申β專利I圍第丨項所述之標竿投資選股方法其 中在„亥(C)步驟中,係利用條件機率來運算該上漲機 及下跌機率。 根據U利㈣第丨項所述之標竿投資選股方法,其 中在該(C)步驟t,係利用貝式決策法則來運算該上漲機 率以及下跌機率。 8·根據申請專利範圍第1項所述之標竿投資選股方法,在 該(c)步驟之後,該標竿投資選股方法還包含下列步驟: (D)運算該特定個股之一期望報酬=該上漲機率x該上 漲平均報酬+該下跌機率χ該下跌平均報酬,· (Ε)運算该特定個股之一單位風險期望報酬=該期望 報酬除以風險,其中該風險之計算方式係選自於由以標 準差表不之總風險、系統風險以及風險值所組成之一族 群; ' (F) 針對每—個股,進行該等(C)至(Ε)步驟,以獲得 所有個股之上漲機率以及單位風險期望報酬;以及 (G) 根據一組包括多個篩選參考數據之預定篩選準則 ’筛選出所有個股中符合該組預定篩選準則之個股,並 將該等篩選出的個股以該單位風險期望報酬攔位由大到 小排序,以獲得一投資組合列表,供該投資者用以決定 是否買賣該投資組合列表中的個股。 9.根據申請專利範圍第1項所述之標竿投資選股方法,在 該(C)步驟之後’該標竿投資選股方法還包含下列步驟: (H) 運鼻該特定個股之一期望報酬=該上漲機率X該上 36 201222455 漲平均報酬+該下跌機率x該下跌平均報酬; ⑴運算該特定個股之一單位風險期望報酬=該期望 報酬除以風險’且-單位期望報酬承擔風險=1/該單位風 險期望報酬’其中該風險之計算方式係選自於由以標準 差表示之總風險、系統風險以及風險所組成之一族群; 、⑺針對每一個股,進行該等(C)、(H)及⑴步驟,以 獲知所有個股之上漲機率以及單位期望報酬承擔風險; 以及 (K)根據一組包括多個篩選參考數據之預定篩選準則 ,師選出所有個股中符合該組預定篩選準則之個股並 將該等篩選出的個股以該單位期望報酬 大排序,以獲得一投資組合列表,供該投資二: 決定是否買賣該投資組合列表中的個股。 10.根據申請專利範圍第8項或第9項所述之標竿投資選股 方法,其中該等篩選參考數據係選自於由期望報酬、上 服機率、標準差數值、基本面的資料、以價為基礎的技 術指標,以及以量為基礎的技術指標所組成之一族群。 u.根據申請專利範圍第i項所述之標竿投資選股方法在 該(C)步驟之後,該標竿投資選股方法還包含,利用一複 迴歸模型來運算該特定個股之個股日報酬預測值。 12·種電腦程式產品,經由電腦載入該程式執行如上述申 請專利範圍第1~11項中任一項所述之標竿投資選股方法 〇 13·—種電腦可讀取記錄媒體,其記錄有一可受一電腦控制 37 201222455 之程式碼,該程式碼包含如上述申請專利範圍第1 ~ 11項 中任一項所述之標竿投資選股方法之執行步驟。201222455 VII. Scope of application for patents: 1. - Standard method for investment stock selection 'for an investor to choose at least one suitable investment target' The standard investment stock selection method includes the following steps: (A) According to a stock price data The calculation of a historical remuneration data of all stocks in all the first-time intervals in the historical time interval of the most recent time interval, and the historical remuneration data of each industry classification; (B) according to the historical time interval Whether the remuneration of the industry in which all stocks in the first-time interval belong is greater than the historical remuneration of the market, whether the historical remuneration of individual stocks is greater than the historical remuneration of the stocks in which the stocks belong, and whether the historical remuneration of individual stocks is greater than the historical remuneration of the stocks, and all stocks in all - time intervals are grouped to generate groups of all stocks in all first time intervals; and (C) according to a particular grouping pattern of - the particular stocks in the group including the second = two of the most recent time interval, The same Μ group mode appears in the operation of the history and the following - the first time zone 4 The rising probability and the rising average (4) The same specific grouping mode occurs within the same period, and the subsequent specific grouping mode is the same as the first time-time and the first time is the sum of the probability, the falling probability and the flat probability. And the chance of a rise and the chance of a fall are the sale and purchase of that particular stock. The decision of W is 2. According to the method of stock selection and stock selection described in the scope of patent application ,1, in the process of grouping (B) in 34 201222455, the group is generated in eight steps, the specific group 楹4 people, ~ 6 mourning (c) The number of stocks in the range including the most recent time interval; the number of the eight groups - the specific group and the group in the recent time = the corresponding stocks in the comparison The time zone reward data is combined and grouped. 3_: According to the standard investment stock selection method described in item 1 of the patent application scope, in step 1 (c), the specific clustering mode is a permutation grouping mode, according to the specific time of the specific stock in the second time including the most recent time interval The group arrangement of the consecutive first time intervals in the district gate, the J stocks and all the stocks are selected - the historical reward data in the historical time interval is arranged and grouped. 4. According to the standard stock investment selection method described in item 1 of the patent application scope, 1 (10) further includes the group-specific grouping mode according to the specific individual stock in the second time interval: Out = the same group mode and then - (four) - (four) interval the specific increase in the number - the number of people, the number of declines in the fall, the number of times of the fall and the total number of times - the total number of times equals the number of times, the number of people The sum of the number of second and thousand times, and the probability of the upper service is equal to the total number of times. The amount of the decline is divided by the number of declines. 5. The target investment method of stock selection mentioned in item 1 of the patent scope is: in the step (C), the system uses the historical reward data and the degree function. Calculate the chance of the captain and the chance of falling. 35 201222455 According to the method of stock selection and stock selection described in the second paragraph of Shen β Patent I, in the “Hai (C) step, the conditional probability is used to calculate the rising machine and the falling probability. According to the U (4) item The standard investment selection method, wherein in the step (c), the Bayesian decision rule is used to calculate the rising probability and the falling probability. 8. According to the patent application scope, the standard investment selection The stock method, after the step (c), the standard stock picking method further comprises the following steps: (D) calculating one of the specific stocks expected salary = the rising probability x the rising average return + the falling probability χ the falling Average remuneration, (Ε) Operation of one of the specific stocks Unit risk expected return = the expected return divided by the risk, where the risk is calculated from the total risk, system risk and risk value One of the groups; '(F) for each stock, perform these (C) to (Ε) steps to obtain the probability of rising all units and the expected risk of unit risk; and (G) The predetermined screening criteria for screening reference data 'screen out the stocks of all the stocks that meet the predetermined screening criteria of the group, and sort the selected stocks by the unit risk expectation rewards from large to small to obtain a portfolio. a list for the investor to decide whether to buy or sell individual stocks in the portfolio list. 9. According to the standard stock selection method described in item 1 of the patent application scope, after the step (C), the label investment The stock picking method also includes the following steps: (H) Run nose one of the specific stocks expected salary = the probability of rising X on the 36 201222455 rising average return + the probability of falling x the average return of the fall; (1) computing one unit of the particular stock Risk Expected Remuneration = the expected remuneration divided by the risk 'and - the unit expected remuneration risk = 1 / the unit risk expected remuneration' where the risk is calculated from the total risk, system risk and risk expressed by standard deviation One of the groups; (7) for each share, carry out the steps (C), (H) and (1) to know the probability of rise of all stocks and The unit expects the remuneration to bear the risk; and (K) based on a set of predetermined screening criteria including a plurality of screening reference data, the division selects the stocks of all the stocks that meet the predetermined screening criteria of the group and treats the selected stocks as the unit's expected remuneration Large sorting to obtain a portfolio list for the investment two: Decide whether to buy or sell individual stocks in the portfolio list. 10. According to the standard stock investment stock selection method described in item 8 or 9 of the patent application scope, The screening reference data is selected from the group consisting of expected rewards, attendance, standard deviation values, fundamental data, price-based technical indicators, and quantity-based technical indicators. According to the standard stock investment stock selection method described in item i of the patent application scope, after the step (C), the standard stock investment stock selection method further comprises: using a complex regression model to calculate a daily stock return forecast value of the specific stock. . 12. A computer program product, wherein the program is loaded by a computer, and the method for selecting a stock selection method according to any one of the above-mentioned claims, wherein the computer-readable recording medium is There is recorded a code that can be controlled by a computer, and the program code includes the execution steps of the standard stock selection method as described in any one of the above-mentioned claims. 3838
TW99140798A 2010-11-25 2010-11-25 Method, computer program product and computer-readable recordable medium for selecting investment target TW201222455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99140798A TW201222455A (en) 2010-11-25 2010-11-25 Method, computer program product and computer-readable recordable medium for selecting investment target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99140798A TW201222455A (en) 2010-11-25 2010-11-25 Method, computer program product and computer-readable recordable medium for selecting investment target

Publications (2)

Publication Number Publication Date
TW201222455A true TW201222455A (en) 2012-06-01
TWI457850B TWI457850B (en) 2014-10-21

Family

ID=46725252

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99140798A TW201222455A (en) 2010-11-25 2010-11-25 Method, computer program product and computer-readable recordable medium for selecting investment target

Country Status (1)

Country Link
TW (1) TW201222455A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488138B (en) * 2012-10-12 2015-06-11 Mitake Information Corp Device and method of providing automatic technical analysis of stock market
TWI496100B (en) * 2013-01-09 2015-08-11 Mitake Information Corp Device and method for displaying the multi stock comparison view synchronously in a stock quoting software
CN109766348A (en) * 2018-11-26 2019-05-17 武汉谱数科技有限公司 The synchronization graphic display system and method for multi items Object of Transaction
TWI705408B (en) * 2019-05-06 2020-09-21 元大證券投資信託股份有限公司 Prediction method for price trend of financial product and prediction system using thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7797207B1 (en) * 2000-07-24 2010-09-14 Cashedge, Inc. Method and apparatus for analyzing financial data
TW200525404A (en) * 2005-04-14 2005-08-01 Ting-Cheng Chang Method for dynamic prediction and development of investment portfolio target
TW200636533A (en) * 2006-06-20 2006-10-16 Jin Chiun Technology Co Ltd Automatic analysis system of financial statement for company on market

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488138B (en) * 2012-10-12 2015-06-11 Mitake Information Corp Device and method of providing automatic technical analysis of stock market
TWI496100B (en) * 2013-01-09 2015-08-11 Mitake Information Corp Device and method for displaying the multi stock comparison view synchronously in a stock quoting software
CN109766348A (en) * 2018-11-26 2019-05-17 武汉谱数科技有限公司 The synchronization graphic display system and method for multi items Object of Transaction
TWI705408B (en) * 2019-05-06 2020-09-21 元大證券投資信託股份有限公司 Prediction method for price trend of financial product and prediction system using thereof

Also Published As

Publication number Publication date
TWI457850B (en) 2014-10-21

Similar Documents

Publication Publication Date Title
Wilson et al. The equity gap and knowledge-based firms
Chronopoulos et al. The dynamics of US bank profitability
Hasan et al. Social capital and trade credit
Kick et al. Bank risk and competition: Evidence from regional banking markets
Anderson et al. Corporate liquidity and capital structure
Bao et al. Bond illiquidity and excess volatility
Koetter et al. The identification of technology regimes in banking: Implications for the market power-fragility nexus
Thornton et al. Out-of-sample predictions of bond excess returns and forward rates: An asset allocation perspective
Gropp et al. Competition, risk-shifting, and public bail-out policies
Sufian Determinants of bank profitability in a developing economy: empirical evidence from the China banking sector
Inkmann et al. How deep is the annuity market participation puzzle?
Sharpe A simplified model for portfolio analysis
Karapetyan et al. Information sharing and information acquisition in credit markets
Pál et al. Financing constraints and firms’ cash policy in the euro area
Ostergaard et al. Social capital and the viability of stakeholder-oriented firms: Evidence from savings banks
Dorosh et al. Agglomeration, growth and regional equity: An analysis of agriculture-versus urban-led development in Uganda
Danbolt et al. Abnormal returns from takeover prediction modelling: challenges and suggested investment strategies
Butrica et al. What the 2008 stock market crash means for retirement security
Neuhierl et al. Data snooping and market-timing rule performance
Cooney Jr et al. Underwriter certification and Japanese seasoned equity issues
Coakley et al. P2P lending and outside entrepreneurial finance
Mazzocchetti et al. Securitization and business cycle: an agent-based perspective
Berg et al. Funding versus real economy shock: The impact of the 2007–09 crisis on small firms’ credit availability
Hainz et al. The interest rate spreads in the Czech Republic: Different loans, different determinants?
Reddy et al. Profit efficiency and its determinants: Evidence from Indian commercial banks

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees