TW201222090A - Edge type backlight module - Google Patents

Edge type backlight module Download PDF

Info

Publication number
TW201222090A
TW201222090A TW99139349A TW99139349A TW201222090A TW 201222090 A TW201222090 A TW 201222090A TW 99139349 A TW99139349 A TW 99139349A TW 99139349 A TW99139349 A TW 99139349A TW 201222090 A TW201222090 A TW 201222090A
Authority
TW
Taiwan
Prior art keywords
light
plate
microstructured optical
backlight module
optical plate
Prior art date
Application number
TW99139349A
Other languages
Chinese (zh)
Inventor
xin-hong Chen
ming-ji Cai
Original Assignee
Chi Mei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Corp filed Critical Chi Mei Corp
Priority to TW99139349A priority Critical patent/TW201222090A/en
Priority to CN2010106237756A priority patent/CN102466177A/en
Publication of TW201222090A publication Critical patent/TW201222090A/en

Links

Abstract

An edge type backlight module includes a micro-structured optical plate, a reflecting plate and a light emitting element. The micro-structured optical plate includes a light outgoing surface and a light incoming surface which is opposite to the light outgoing surface. The space between reflecting plate and light incoming surface has an air layer. The light emitting element is positioned between the micro-structured optical plate and the reflecting plate, and being positioned aside or multi-side the air layer. Thus, to simplified the optical design of backlight module and improving the luminance of backlight module.

Description

201222090 六、發明說明: 【發明所屬之技術領域】 本發明是有關於-種背光模組,特別是指一種可簡化 微料光學板之光學設計,並可提高背光模組的正向輝度 的尚效率側光式背光模組。 【先前技術】 背光模組依光源之配置位置可分為直下式,及侧光式 兩種結構。其中’側光式結構因其發光源係配置於側邊的 入光設計可符合料市場巾對於輕量、薄型的需求導向,籲 因此廣泛地被應用成為中小尺寸背光模組的架構。已知的 側光式光源結構係在導光板之平行單側或雙側邊設置一 發光源,例如:冷陰極螢光燈(CCFL)或發光二極體(led)。 該導光板的作用在於導引光線使其從導光板内部傳遞至, 所需之出光面上,並使該冷陰極螢光燈、或發光二極體發. 出的一維線形、或點光源轉變為二維度的面光源。 一般而言,導光板是由高穿透率的樹脂材料所製成, 而光線從導光板之側面進入後會在其内部歷經多次的反⑩ 射及折射後才從出光面射出,此時光線的使用效率已大幅 降低、除使背光模組的輝度不佳外,光線在傳遞的過程亦 會損耗。 一般,為了提高光源使用效率,會在導光板之背面以 網點印刷方式製作網點圖案層(Dot pattern)來破壞導光板 内部的全反射條件,以及在該導光板下方設置一反射板 (Reflector)’將光源或由導光板下方發散的光線重新反射 201222090 回導光板内、增加光線自導光板之出光面射出的機會。 影響背光模組輝度的因素有許多種,其中,如何提昇 導光板之出光亮度為重要的關鍵之一。已知在導光板出光 面或入光面上設置稜鏡微結構可使光線往正面視野方向 凝聚、避免光線在較大的折射角度出射以提高導光板之正 面亮度。對於導光板之微結構之設計,目前常利用光學模 擬軟體進行微結構最佳化之分析,之後再嘗試導入實際製 私’對於微結構設計有許多種主題,例如:探討v型溝槽 籲 (V-cut)導光板搭配逆梭鏡片,可減少高單價的光學膜片 (例如.稜鏡片或增光膜)使用量,並提升亮度。另外改變 微結構及網點之外觀型態或疏密分布對於導光板出光亮 度的影響;或者在導光板之入、出光面同時或分別設置印 刷網點、微結構等其中之一,並經光學模擬以找出最佳之 微結構設計組合。 然而’雖然過去對於微結構之最佳化設計已累積有許 多心得,但實際上導光板之出光亮度及光利用效率上仍有 ® 很大的改善空間,且導光板之光學設計愈繁複,將其實際 導入生產製程時亦增加許多困難度。因此,如何有效提昇 光源使用效率、簡化背光模組之光學設計,並同時產生較 佳的出光亮度,提高該背光模組的正向輝度的效果,為接 續本發明所要闡述的内容。 【發明内容】 因此,本發明之目的,即在提供一種可簡化光學設計 並容易達到增光效果,以及提高背光模組的正向輝度的高 201222090 效率側光式背光模組。 為達成上述目的,本發明之高效率側光式背光模組包 含:微結構光學板、一反射板,以及一發光裝置。該微結 構光學板包括一出光面,以及一位於該出光面相對位置的 入光面。該反射板包括至少一個反射面,該反射板與微結 構光學板之間共同界定出一空氣層,該發光裝置設置介於 微結構光學板及反射板之間,並且置於空氣層的一側或多 側該發光裝置用以產生光線,並使光線經空氣層後投射 到該反射板之反射面。 微、,、。構光學板可為導光板,而組成該微結構光學板 的材料為具備高透光度的透明樹脂,其種類並無限制,具 體例為(曱基)丙烯酸酯樹酯(例如PMMA樹脂)、聚碳酸酯 =脂(pc樹脂)、笨乙烯樹脂(ps樹脂)、甲基丙烯酸甲酯_ 苯乙烯共聚合物⑽肖脂)、丙烯腈-苯乙烯共聚合物(As 樹脂)、環狀稀烴聚合物(coc樹脂)、聚對苯二甲酸乙二心 (PETG樹脂)等。 曰 本發明之微結構光學板上的微結構的位置並不限制, 可設置於微結構光學板的出光面及/或入光面,另外,除了 設置微結構外,該出光面及/或入光面還可搭配設置其他結· 構’包括網點陣列結構(D〇t _y)或由擴散微粒子形成的 擴散層等,上述各種結構的設計可視微結構光學板的不同 應用領域而採取不同的設計,亦即,在微結構光學板的出 =入光面的位置同時存在,也可在微結構光學板的出201222090 VI. Description of the Invention: [Technical Field] The present invention relates to a backlight module, and more particularly to an optical design that can simplify the micro-optical optical plate and improve the forward luminance of the backlight module. Efficiency edge-lit backlight module. [Prior Art] The backlight module can be divided into a direct type and a side light type depending on the position of the light source. Among them, the side-light structure is designed to be light-weight and thin-oriented because of its light-emitting source system disposed on the side. Therefore, it is widely used as a structure for small and medium-sized backlight modules. Known side-light source structures are provided with a light source, such as a cold cathode fluorescent lamp (CCFL) or a light emitting diode (LED), on one or both sides of the parallel side of the light guide plate. The light guide plate functions to guide the light from the inside of the light guide plate to the desired light-emitting surface, and to make the cold cathode fluorescent lamp or the light-emitting diode emit a one-dimensional line shape or a point light source. Transformed into a two-dimensional surface light source. In general, the light guide plate is made of a resin material having a high transmittance, and the light enters from the side of the light guide plate and is then ejected from the light exit surface after repeated inversion and refraction in the interior thereof. The use efficiency of light has been greatly reduced. In addition to the poor brightness of the backlight module, the light is lost during the transfer process. Generally, in order to improve the efficiency of light source use, a dot pattern layer is formed on the back side of the light guide plate by dot printing to destroy the total reflection condition inside the light guide plate, and a reflector is disposed under the light guide plate. Re-reflecting the light source or the light diverging from under the light guide plate into the 201222090 light guide plate to increase the chance of light coming out from the light exit surface of the light guide plate. There are many factors that affect the brightness of the backlight module. Among them, how to improve the brightness of the light guide plate is one of the important keys. It is known that a micro-structure is arranged on the light-emitting surface or the light-incident surface of the light guide plate to condense the light toward the front field of view, and to prevent the light from being emitted at a large refractive angle to improve the front surface brightness of the light guide plate. For the design of the microstructure of the light guide plate, the optical simulation software is often used to analyze the microstructure optimization, and then try to introduce the actual manufacturing. There are many topics for the microstructure design, for example, to explore the v-shaped groove call ( V-cut) Light guide plate with reverse shuttle lens reduces the use of high-priced optical film (such as enamel or brightness enhancement film) and enhances brightness. In addition, the influence of the appearance or density distribution of the microstructure and the dot on the light-emitting brightness of the light guide plate is changed; or one of the printed dots, the microstructure, and the like is simultaneously or separately set in the light-in and light-emitting surfaces of the light guide plate, and optically simulated Find the best combination of microstructure design. However, although in the past, there has been a lot of experience in optimizing the design of microstructures, in fact, there is still a lot of room for improvement in the brightness and light utilization efficiency of the light guide plate, and the optical design of the light guide plate becomes more complicated. It also adds a lot of difficulty when it is actually introduced into the production process. Therefore, how to effectively improve the efficiency of the light source, simplify the optical design of the backlight module, and at the same time produce better light-emitting brightness and improve the forward luminance of the backlight module, in order to continue the contents of the present invention. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a high 201222090 efficiency edge-lit backlight module that simplifies optical design and easily achieves a brightness enhancement effect and improves the forward luminance of the backlight module. To achieve the above object, the high efficiency edge-lit backlight module of the present invention comprises: a microstructured optical plate, a reflective plate, and a light-emitting device. The microstructured optical plate includes a light exiting surface and a light incident surface located at a relative position of the light exiting surface. The reflector comprises at least one reflective surface, the reflector and the microstructured optical plate jointly defining an air layer disposed between the microstructured optical plate and the reflector and placed on one side of the air layer Or the illuminating device is used to generate light, and the light is projected through the air layer to the reflecting surface of the reflecting plate. micro,,,. The optical plate may be a light guide plate, and the material constituting the microstructured optical plate is a transparent resin having high transparency, and the type thereof is not limited, and specific examples thereof are (fluorenyl) acrylate resin (for example, PMMA resin). Polycarbonate = fat (pc resin), stupid vinyl resin (ps resin), methyl methacrylate _ styrene copolymer (10) sulphur), acrylonitrile-styrene copolymer (As resin), ring thin Hydrocarbon polymer (coc resin), polyethylene terephthalate (PETG resin), and the like. The position of the microstructure on the microstructured optical plate of the present invention is not limited, and may be disposed on the light-emitting surface and/or the light-incident surface of the microstructured optical plate, and in addition to providing the microstructure, the light-emitting surface and/or the entrance The smooth surface can also be combined with other junction structures including a dot array structure (D〇t _y) or a diffusion layer formed of diffused microparticles. The design of the above various structures can be differently designed according to different application fields of the microstructured optical plate. , that is, at the same time as the position of the light-emitting surface of the microstructured optical plate, or in the micro-structured optical plate

Si::面不同的位置存在。例如,微結構光學板的出 "又 結構,而其入光面為網點陣列結構;或者,微 結構光學板的入光面設置微結構,並且出光面為擴L:: 201222090 子形成的擴散層等等設計。上述微結構形狀較佳為三角形 透鏡(Prismlens)'半圓形透鏡(Lenticular lens)等;而網點 陣列結構中網點圖案的設計以能夠順應光學設計的需求進 行Φ度變化的調整,亦同時讓網點的位置保持隨機分佈的 特性。而形成擴散層的擴散微粒子的具體例為無機微粒子 及有機微粒子;無機微粒子例如:硫酸鋇(BaS〇4)、二氧化 鈦(Ti〇2)荨微粒子,而有機微粒子例如:聚苯乙浠樹脂、(甲 基)丙烯酸樹脂、有機矽氧烷樹脂微粒子等。 本發明中反射板的作用係將底面漏出的光反射回導光 板中,防止光源外漏以增加光的使用效率。為了得到較佳 的正面輝度,該反射板之反射面較佳地呈傾斜狀,上述反 射面較佳地為由兩側向中間並且向上凸起傾斜或者僅單獨 向其中一側傾斜的設計,該等反射面之傾斜角度較佳小於 3〇 ,更佳小於20。,最佳小於〗。該反射板較佳是選自 霧面式反射板或全像技術之反射板。霧面式反射板是在反 射板的反射面上作霧化處理,而全像技術之反射板則可利 用雷射或壓印式全像片圖案製成。 本發明之發光裝置較佳地包括二相對設置且位於該空 氣層周側之發光單TL,每一發光單元都具有數個發光二極 體(Light Emitting Diode,LED),並且其方向可正面朝向該 空氣層,或朝向鄰近該反射板之方向傾斜,傾斜角度則視 光線路徑而定;該發光單元較佳是以雙側入光的方式分別 嵌置於該微結構光學板之入光面與反射板之間。本發明的 微結構光學板的厚度較佳為〇,2〜1〇公厘,更佳為〇 3〜8公 厘,若單面微結構光學板的厚度係指微結構最高點至另一 不具微結構面的垂直距離;若雙面微結構光學板的厚度係 201222090 指兩上、下微結構最高點的距離。 本發明之功效在於:發光裝置所發出的光線會經由 反射板之反射或擴散作用後向上進入空氣層,之後,光線 繼續向上折射進入微結構光學板之入光面時,透過空氣層 與微結構光學板兩者折射㈣差異,光線將在微結構光^ 板内產生初步之集光效果,如此是有利於微結構光學板進 行再次的集光作用。因此,微結構光學板本身不需複雜之 光學結構設計,便可達成較佳的增光效果,並提高該背光 模組的正向輝度。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之三個較佳實施例的詳細說明中,將可 清楚的呈現。 在本發明被詳細描述之前,要注意的是,在以下的說 明内容中’類似的元件是以相同的編號來表示。 參閱圖1、2、3,本發明高效率側光式背光模組之第 一較佳實施例包含一微結構光學板丨、一反射板2、一發 光裝置4,以及一擴散膜5。該微結構光學板丨由透明的 甲基丙烯酸甲酯樹酯(PMMA樹脂)所組成,並包括一個出 光面111,以及一個位於該出光面n丨相反側的入光面 121 ’在本貫施例中’所述微結構光學板1可為業界熟知 的導光板。一般,為了限制光線自該微結構光學板1的出 光面111出射的角度分布、以提昇視角範圍内的光亮度, 所述微結構光學板1的微結構幾何型態可製作為具V型溝 201222090 槽(V-cut)之稜鏡(prism)結構。 1互相間隔設置,在本Si:: There are different positions on the face. For example, the microstructure of the microstructured optical plate is "structured, and its light entrance surface is a dot array structure; or, the microstructure of the microstructured optical plate is provided with a microstructure, and the light exit surface is expanded by L:: 201222090 Layers and so on. The shape of the microstructure is preferably a triangular lens (Lenticular lens), etc.; and the dot pattern in the dot array structure is designed to be able to adjust the Φ degree according to the requirements of the optical design, and at the same time let the dots The position remains randomly distributed. Specific examples of the diffusion fine particles forming the diffusion layer are inorganic fine particles and organic fine particles; inorganic fine particles such as barium sulfate (BaS〇4) and titanium dioxide (Ti〇2) fine particles, and organic fine particles such as polystyrene resin, Methyl)acrylic resin, organic siloxane oxide fine particles, and the like. In the present invention, the function of the reflecting plate is to reflect the light leaked from the bottom surface back into the light guide plate to prevent the light source from leaking out to increase the light use efficiency. In order to obtain a preferred front luminance, the reflecting surface of the reflecting plate is preferably inclined, and the reflecting surface is preferably designed to be inclined from both sides toward the center and upwardly inclined or only inclined to one side thereof. The angle of inclination of the iso-reflecting surface is preferably less than 3 〇, more preferably less than 20. , the best is less than 〗. The reflector is preferably a reflector selected from the group consisting of a matte reflector or a holographic technique. The matte reflector is atomized on the reflective surface of the reflector, while the holographic reflector is made from a laser or embossed full image. The illuminating device of the present invention preferably includes two illuminating single TLs disposed opposite to each other on the circumferential side of the air layer, each of the illuminating units having a plurality of light emitting diodes (LEDs), and the direction thereof can be frontally oriented The air layer is inclined toward a direction adjacent to the reflector, and the angle of inclination is determined by a light path; the light-emitting unit is preferably embedded in the light-incident surface of the microstructured optical plate in a manner of double-sided light input. Between the reflectors. The thickness of the microstructured optical plate of the present invention is preferably 〇2 to 1 mm, more preferably 〜3 to 8 mm, if the thickness of the single-sided microstructured optical plate refers to the highest point of the microstructure to the other The vertical distance of the microstructured surface; if the thickness of the double-sided microstructured optical plate is 201222090, the distance between the highest points of the two upper and lower microstructures. The effect of the invention is that the light emitted by the illuminating device enters the air layer upwards after being reflected or diffused by the reflecting plate, and then the light continually refracts upward into the light incident surface of the microstructured optical plate, through the air layer and the microstructure. The optical plate refracts (4) the difference, and the light will produce a preliminary light collecting effect in the microstructured light plate, which is beneficial to the light collecting effect of the microstructured optical plate again. Therefore, the microstructured optical plate itself does not require a complicated optical structure design, thereby achieving a better brightness enhancement effect and improving the forward luminance of the backlight module. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the drawings. Before the present invention is described in detail, it is to be noted that in the following description, similar elements are denoted by the same reference numerals. Referring to Figures 1, 2 and 3, a first preferred embodiment of the high efficiency edge-lit backlight module of the present invention comprises a microstructured optical plate, a reflector 2, a light-emitting device 4, and a diffusion film 5. The microstructured optical plate is composed of transparent methyl methacrylate resin (PMMA resin) and includes a light-emitting surface 111, and a light-incident surface 121' on the opposite side of the light-emitting surface n丨. In the example, the microstructured optical plate 1 can be a light guide plate well known in the art. Generally, in order to limit the angular distribution of light emitted from the light-emitting surface 111 of the microstructured optical plate 1 to enhance the brightness in the range of viewing angle, the microstructure geometry of the microstructured optical plate 1 can be made into a V-shaped groove. 201222090 V-cut structure (prism). 1 interval setting, in this

置發光裝置的距離而定,介於〇。〜1〇。門。 該反射板2是與微結構光學板 實施例中,所述反射板2具有兩個 -尤板興反射板2間可放 10°間。所述反射板2為 霧面式反射板,因此,可提供光反射及光擴散的效果並藉 此將照射到該等反射面21 Λ的光線導引至該微結構光學 板1之入光面12卜另外,亦可直接於該等反射面21上以 鍍銀、或鋁金屬材料的方式、製作為具鏡面式反射效果之 金屬鍍層(圖未示)以提高光線反射效率。 另外,所述反射板的反射面21與微結構光學板丨之 入光面121間共同界定出一空氣層3 ’在本實例中,即是 由該反射板2之反射面21與其互相間隔之微結構光學板j 之入光面121所界定出來的空間。 該發光裝置4包括二相對設置且位於該空氣層3之兩 側之發光單元41,其中,每一發光單元41是由數個平行 排列的發光二極體412所組合而成,即是形成如同LED燈 條(LED light bar)之態樣。要特別說明的是,在本實施例 中’配合兩個傾斜且向上凸起的反射板2的反射面21、該 等發光單元41是以雙側入光的方式分別嵌置於該微結構 光學板1之入光面121與反射板2之間,亦即如圖1所示 設置於該空氣層3的左右兩側且位於微結構光學板丨之下 201222090 方母發光單元41都具有一個朝向該空氣層3,且同時 朝向該反射板2之該等反射面21的其中之一的發光端面 411。該等發光單元41之發光二極體412具有尺寸小可符 合薄型化要求之優點,且藉由該等發光二極體412其光源 指向性較佳的特徵,也使得由該發光端面411所發射出來 的光線可充分指向該反射板2之反射面21上,而使所述 led燈條所發出概似線型之光源產生漫反射向上並轉化 為面型光源,且反射後的光線先經該空氣層3後才從微結 構光學板1之入光面121進入微結構光學板卜 癱 該擴散膜5是置於微結構光學板1之出光面ηι上 方,使由該微結構光學板丨出射之光線能夠進一步地擴散 均勻化。在本貫施例中,可依據從微結構光學板丨出射之 光源特徵,而選擇使用不同光擴散效果的上擴散膜或下擴 散膜。 參閱圖4,本發明之第二較佳實施例之側光式背光模 組的構造與第一較佳實施例大致相同,所不同處在於:該 反射板2包括一個向一邊傾斜狀之反射面21,以及一個頂 · 抵於該微結構光學板i之入光面丨21之一側之頂邊緣22, 所述反射板2亦為提供擴散性反射效果之霧面式反射板。 再者,依前述反射板2之設計,本第二較佳實施例之空氣 層3是由反射板2之反射面21與其互相間隔之微結構光 學板1之入光面121所共同界定出來。此外,該發光裝置 4亦包括一位於該空氣層之一侧的發光單元41,該發光單 元41具有數個平行排列的發光二極體412,即是形成一個 10 201222090 LED燈條之態樣’並以單側入光的模式使該等發光二極體 412朝向該反射板2之反射面21發射光線。所述發光單元 41是嵌置介於該微結構光學板1之入光面121與反射板2 之間’並都具有一個發光端面411,使光線投射到該反射 板2之反射面21上後,經空氣層3進入該微結構光學板卜 參閱圖5,本發明之第三較佳實施例的構造與第一較 佳實施例大致相同,不同處在於:該反射板2為無傾斜面 之平整態樣,並具有一反射面21。要注意的是,該發光裝 置4之該等發光單元41是以雙側入光(圖5中僅示一側) 的方式分別嵌置於該微結構光學板丨之入光面121與反射 板2之間,且每一發光單元41往鄰近該反射板2之方向 稍微傾斜約3。之角度,使光線可充分指向該反射板2之反 射面21。如前面所述,該反射面21上可形成霧面或其他 任何可提高反射效率或所需反射態樣的表面結構,或例如 亦可貼覆市售之全像圖,以利用全像技術的設計控制偏光 或均光的分佈。Depending on the distance of the illuminator, it is between 〇. ~1〇. door. In the embodiment of the reflecting plate 2 and the microstructured optical plate, the reflecting plate 2 has two - especially between the plates 3. The reflecting plate 2 is a matte reflecting plate, so that the effects of light reflection and light diffusion can be provided and thereby the light irradiated to the reflecting surfaces 21 导引 is guided to the light incident surface of the microstructured optical plate 1 . In addition, a metal plating layer (not shown) having a specular reflection effect may be directly formed on the reflecting surfaces 21 by silver plating or aluminum metal material to improve light reflection efficiency. In addition, the reflective surface 21 of the reflector and the light incident surface 121 of the microstructured optical plate define an air layer 3'. In this example, the reflective surface 21 of the reflector 2 is spaced apart from each other. The space defined by the light incident surface 121 of the microstructured optical plate j. The illuminating device 4 includes two illuminating units 41 disposed opposite to each other on both sides of the air layer 3, wherein each of the illuminating units 41 is composed of a plurality of parallel-arranged illuminating diodes 412, that is, formed like The aspect of the LED light bar. It should be particularly noted that, in the present embodiment, the reflecting surface 21 of the two inclined and upwardly convex reflecting plates 2 is fitted, and the light emitting units 41 are respectively embedded in the microstructure optical in a manner of double-sided light entering. The light-incident surface 121 of the board 1 and the reflector 2 are disposed on the left and right sides of the air layer 3 as shown in FIG. 1 and are located under the microstructured optical plate. 201222090 The square-emitting unit 41 has an orientation. The air layer 3 faces the light-emitting end surface 411 of one of the reflecting surfaces 21 of the reflecting plate 2 at the same time. The light-emitting diodes 412 of the light-emitting units 41 have the advantages of being small in size and conforming to the requirements of thinning, and the light-emitting diodes 412 are also characterized by better directivity of the light source, and are also emitted by the light-emitting end faces 411. The light coming out can be directed to the reflective surface 21 of the reflector 2, and the light source of the LED strip is diffused and reflected into a surface light source, and the reflected light passes through the air. After layer 3, the light-emitting surface 121 of the microstructured optical plate 1 enters the microstructured optical plate. The diffusion film 5 is placed above the light-emitting surface η of the microstructured optical plate 1 so that the microstructured optical plate is ejected. The light can be further diffused and homogenized. In the present embodiment, an upper diffusion film or a lower diffusion film using different light diffusion effects may be selected depending on the characteristics of the light source emitted from the microstructured optical plate. Referring to FIG. 4, the structure of the edge-lit backlight module of the second preferred embodiment of the present invention is substantially the same as that of the first preferred embodiment, except that the reflector 2 includes a reflective surface that is inclined to one side. 21, and a top edge 22 corresponding to one side of the entrance surface 21 of the microstructured optical plate i, the reflective plate 2 is also a matte reflective plate providing a diffusive reflection effect. Further, according to the design of the reflecting plate 2, the air layer 3 of the second preferred embodiment is defined by the reflecting surface 21 of the reflecting plate 2 and the light incident surface 121 of the microstructured optical plate 1 spaced apart from each other. In addition, the light-emitting device 4 also includes a light-emitting unit 41 on one side of the air layer, and the light-emitting unit 41 has a plurality of light-emitting diodes 412 arranged in parallel, that is, a form of forming a 10 201222090 LED light bar. The light-emitting diodes 412 are caused to emit light toward the reflecting surface 21 of the reflecting plate 2 in a single-side light entering mode. The light-emitting unit 41 is embedded between the light-incident surface 121 of the microstructured optical plate 1 and the reflective plate 2 and has a light-emitting end surface 411 for projecting light onto the reflective surface 21 of the reflective plate 2 Referring to FIG. 5 through the air layer 3, the configuration of the third preferred embodiment of the present invention is substantially the same as that of the first preferred embodiment, except that the reflecting plate 2 has no inclined surface. It is flat and has a reflecting surface 21. It should be noted that the light-emitting units 41 of the light-emitting device 4 are respectively embedded in the light-incident surface 121 and the reflective plate of the microstructured optical plate in a manner of double-side light input (only one side is shown in FIG. 5). Between 2, and each of the light-emitting units 41 is slightly inclined by about 3 in the direction adjacent to the reflecting plate 2. The angle allows the light to be directed toward the reflecting surface 21 of the reflecting plate 2. As described above, the reflective surface 21 may form a matte surface or any other surface structure that may improve the reflection efficiency or the desired reflection state, or may, for example, be attached to a commercially available hologram to utilize the holographic technique. Designed to control the distribution of polarized or uniform light.

句捉幵琢微結構光學板〗之集光效果’可同時或分別 在所述微結構光學板1之出光面ill或人光面121上製作 =構4以下即將說明之圖式中,主要說明數種微結構 L可製作於上述各實施例之微結構光學板t i。參 2示該微結構光學板1之出光面⑴是製作為具半圓形 、兄結構,而該微結構光學板丨之人光面121為平整面。 參閱圖顯示該微結構光學板,之出光面⑴是 具半圓形透鏡結構,且微結構光學板^人光面丨; 201222090 ^溝槽之逆稜鏡結構。參閱圖8,該微結構光學板1之出 光面πι是平整面,而入光面121為ν型溝槽之逆稜鏡結 構參閱圖9’該微結構光學板丨之出光面lu是平整面, 而微結構光學板丨之入光面121具有網點陣列結構,其 中,該等網.點122彳利用印刷技術將具有全反射功能的金 屬網點轉印在微結構光學板1的入光面⑵上,使來自反 射板2的光線投射到網點122時不會穿透過去,而是以全 反射的模式反射,因此光線純然經過該空氣層3後直接進 入微結構光學板i的人光面121且可減少不必要的擴散光 線。當然,本發明之微結構光學板1也不以前述之微結構 設計組合為限制。再附帶說明的是,在微結構光學板!較 薄的情況下’ ® 1的頂邊緣22可兼具支柱的功效;至於 圖4或圖5的實施例,則可視情況在空氣層3加設支柱。 再參閱圖3,以本發明之第一較佳實施例為例,進一 步詳細說明本發明在運作時,光線從該發光單丨Μ出射 後、經過不同組件間的光學角度分佈變化。由於所述發光 單元之發光端㈣】是設置在空氣層3之周側並朝向該 反射板2之該等反射面21丨,因此,光線通過空氣層3 後可直接照射到反射板2上,由於所述反射板2之反射面 21具備擴散性反射效果,因此,光線產生漫反射並導引往 微結構光學板1之入光面121上。之後,當光線傳遞經由 空氣層3、並入射進人微結構光學板κ人光面⑵時, 依據折射定律之闡述:光線傳遞經過折射率不同的介質會 產生折射現象,該空氣層3的折射率為卜而該微結構光 12 201222090 學板1,例如:甲基丙烯酸甲酯樹酯,折射率為丨.49,因 此,當光線由該空氣層3(折射率較低之光疏介質)入射進 入微結構光學板1(折射率較高之光密介質)時,折射後之 光線除了會在該微結構光學板丨内部形成一概呈倒錐型之 光源分佈外,其分佈之最大光錐角度範圍將被限縮在90 度角以内;具體而言,以甲基丙烯酸甲酯樹酯製成之微結 構光學板1為例,其最大發光角度範圍經計算後約為84.3 度角以内。換句話說,光線由空氣折射進入微結構光學板 • 1内便會產生初步的集光效果。前述之結果將有利於當光 線繼續向上穿過該微結構光學板丨時,由於該微結構光學 板1亦具備有集光效果之微結構,因此光線將再進一步被 導引聚集。本實施例中,從微結構光學板1出射之較佳視 ^分佈在45〜5G°以内;若設置霧度較弱之上擴散膜於微 結構光學板丨上,較佳視野角分佈可達到45 ^以内。因此, 藉由該空氣層3之設置,光線在空氣中傳遞、並入射進入 該微結構光學板1内部時,因折射而獲得較為向上聚集的 籲 《源分布。接續’當光線預備自微結構光學板1之出光面 U1導出時,將有利於微結構光學板丨之聚光微結構進行 更進一步的集光,因此,本實施例之結構有更容易達成增 光政果的優點,如此,可提高視角範圍内的光亮度、減少 了光源從視角範圍外折射出去的浪費。 &上所述’相較於習知之側光式背光模組,為了達到 破壞導光板内部的全反射條件,以及提高正面輝度的目 的,通常在導光板之出光面與底面進行複雜的光學結構設 13 201222090 計’然而,習知導光板為側邊入光的設計,其缺點在於. 光線於導光板内部會歷經較多次折射與反射才能導出出 光面外、光線不斷地傳遞容易導致光能量的損耗,因此習 知導光板的光利用效率較低,再者,光線亦較難以在導光 板先行集光,因此縱使進行複雜的聚光微結構設計,習知 導光板對於嘗試提升光亮度的努力只是事倍功半的效 果。而本發明利用該反射板2的調光,使光線由下而上進 入導光板内部,並利用光線由空氣折射進入折射率較高的 微結構光學板1時,可獲得較往中間聚集的光角度分布,鲁 一方面,絕大部分的光線可直接向上往微結構光學板之出 光面折射出去、光線不需在導光板内部進行多次的傳遞、 光屨歷的長度減少,也使光使用效率提高;另外,在微結 構光學板1内部先行限縮的光線角度,當光線再經過其上. 具備再次集光效果之微結構後,出光的角度範圍便可再次 限縮,因此,也提高了視角範圍内的光亮度。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利❿ 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一側視參考示意圖,顯示本發明側光模組的第 —較佳實施例; 圖2是一俯視示意圖,顯示數個發光二極體平行排列 並分佈於一微結構光學板兩側之態樣; 14 201222090 圖3疋圖1之局部放大圖’及光線出光之模式; 圖4是類似圖1的示意圖,顯示本發明側光模組的第 二較佳實施例; 圖5是-局部放大圖,顯示本發明側光模組的第三 佳實施例; 之一 圖6是-剖視圖,獨立顯示本發明之一微結構光學板 出光面可製作為半球面之微透鏡結構; 構, 構; 圖7是一剖視圖,猫☆ a 圃獨立顯不該出光面為半 且該微結構光學板之一 八光面為V型溝槽 圓形透鏡結 之逆稜鏡結 顯示該微結構光學;A止I 製作為V型溝槽之逆棱鏡結構;及 予板之入先面 圖9是一剖視圖,獨立 製作為全反射性網點陣列結構〜微結構光學板之入光面 15 201222090 【主要元件符號說明】 1 ....... •…微結構光學板 3…… •…空氣層 111 ··· —出光面 4…… •…發光裝置 121… —入光面 41 ·.··· •…發光單元 122… •…網點 411… •…發光端面 2 ....... •…反射板 412… …·發光二極體 21 .…反射面 5…… •…擴散膜 22···.. •…頂邊緣 ❿ 16The light collecting effect of the sentence-acquisition micro-structured optical plate can be simultaneously or separately formed on the light-emitting surface ill or the human-light surface 121 of the microstructured optical plate 1 in the following description. A plurality of microstructures L can be fabricated in the microstructured optical plate ti of each of the above embodiments. Referring to Fig. 2, the light-emitting surface (1) of the microstructured optical plate 1 is formed into a semi-circular, brother-like structure, and the human optical surface 121 of the microstructured optical plate is a flat surface. Referring to the figure, the microstructured optical plate is shown, and the light-emitting surface (1) is a semi-circular lens structure, and the microstructured optical plate is a light-emitting surface; 201222090^The reverse structure of the groove. Referring to FIG. 8, the light-emitting surface of the microstructured optical plate 1 is a flat surface, and the light-incident surface 121 is a reverse-shaped structure of the ν-shaped groove. Referring to FIG. 9', the light-emitting surface of the microstructured optical plate is a flat surface. The light incident surface 121 of the microstructured optical plate has a dot array structure, wherein the mesh dots 122 transfer the metal dot having the total reflection function to the light incident surface of the microstructured optical plate 1 by using a printing technique (2) In the above, the light from the reflecting plate 2 is not penetrated into the mesh point 122, but is reflected in the total reflection mode, so that the light passes through the air layer 3 and directly enters the human light surface 121 of the microstructured optical plate i. And can reduce unnecessary diffused light. Of course, the microstructured optical sheet 1 of the present invention is also not limited by the aforementioned combination of microstructure design. Also attached is the micro-structured optical board! In the thinner case, the top edge 22 of the ® 1 can have the effect of a pillar; as in the embodiment of Figure 4 or Figure 5, a pillar can be added to the air layer 3 as appropriate. Referring to Fig. 3, the first preferred embodiment of the present invention is taken as an example to further explain the optical angle distribution of light rays passing through the different components after the light is emitted from the light emitting unit in operation. Since the light emitting end (four) of the light emitting unit is disposed on the circumferential side of the air layer 3 and facing the reflecting surface 21 of the reflecting plate 2, the light passes through the air layer 3 and can be directly irradiated onto the reflecting plate 2, Since the reflecting surface 21 of the reflecting plate 2 has a diffusive reflection effect, the light is diffusely reflected and guided to the light incident surface 121 of the microstructured optical plate 1. Thereafter, when the light is transmitted through the air layer 3 and incident on the human optical plate κ human light surface (2), according to the law of refraction: the light is transmitted through a medium having a different refractive index to cause a refraction phenomenon, and the refraction of the air layer 3 The micro-structured light 12 201222090 board 1, for example: methyl methacrylate resin, has a refractive index of 丨.49, therefore, when the light is from the air layer 3 (lower refractive index medium) When incident into the microstructured optical plate 1 (high-density optically dense medium), the refracted light will not only form a substantially inverted cone-shaped light source distribution inside the microstructured optical plate, but also the maximum light cone angle range of the distribution. It will be limited to a 90 degree angle; specifically, the microstructured optical plate 1 made of methyl methacrylate resin has a maximum illuminating angle range of about 84.3 degrees. In other words, the light is refracted by the air into the microstructured optical plate • 1 will produce a preliminary light collection effect. The foregoing results will be advantageous when the light line continues to pass upward through the microstructured optical plate, since the microstructured optical plate 1 also has a microstructure with a light collecting effect, the light will be further guided and gathered. In this embodiment, the preferred viewing angle from the microstructured optical plate 1 is within 45~5 G°; if the diffusing film is disposed on the microstructured optical plate 较, the preferred viewing angle distribution can be achieved. Within 45 ^. Therefore, by the arrangement of the air layer 3, when the light is transmitted through the air and incident into the interior of the microstructured optical plate 1, a relatively concentrated collection of source distribution is obtained due to the refraction. When the light is prepared from the light-emitting surface U1 of the microstructured optical plate 1, the concentrating microstructure of the microstructured optical plate is further concentrated, and therefore, the structure of the embodiment is more easily colored. The advantages of the political fruit, in this way, can increase the brightness of the light in the range of the viewing angle and reduce the waste of the light source refracting out of the viewing angle range. Compared with the conventional edge-lit backlight module, in order to achieve the purpose of destroying the total reflection inside the light guide plate and improving the front luminance, a complicated optical structure is usually performed on the light-emitting surface and the bottom surface of the light guide plate. 13 201222090 计 ' However, the conventional light guide plate is the design of the side light, the shortcoming is that the light inside the light guide plate will undergo a lot of refraction and reflection to be exported out of the light surface, the light is continuously transmitted easily lead to light energy Therefore, the light utilization efficiency of the light guide plate is low, and light is also difficult to collect light first in the light guide plate. Therefore, even if a complicated concentrating microstructure design is performed, the conventional light guide plate is used for attempting to increase the brightness. Efforts are just half the effort. The present invention utilizes the dimming of the reflecting plate 2 to allow light to enter the inside of the light guiding plate from bottom to top, and when the light is refracted by the air into the microstructured optical plate 1 having a relatively high refractive index, light collected in the middle can be obtained. The angular distribution, on the one hand, most of the light can be directly refracted upwards toward the light-emitting surface of the microstructured optical plate, the light does not need to be transmitted multiple times inside the light guide plate, the length of the optical calendar is reduced, and the light is used. The efficiency is improved; in addition, the angle of the light which is firstly confined inside the microstructured optical plate 1 is passed over the light. After the microstructure with the light collecting effect again, the angle range of the light output can be limited again, and therefore, it is also improved. The brightness of the range of viewing angles. However, the above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention. All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevational view showing a first preferred embodiment of the side light module of the present invention; FIG. 2 is a top plan view showing a plurality of light emitting diodes arranged in parallel and distributed in one 14 201222090 FIG. 3 is a partially enlarged view of FIG. 1 and a mode of light exiting; FIG. 4 is a schematic view similar to FIG. 1 showing a second preferred embodiment of the side light module of the present invention. FIG. 5 is a partial enlarged view showing a third preferred embodiment of the side light module of the present invention; and FIG. 6 is a cross-sectional view showing independently that the light-emitting surface of the microstructured optical plate of the present invention can be made into a hemispherical surface. Microlens structure; structure, structure; Fig. 7 is a cross-sectional view, the cat ☆ a 圃 independently shows that the light exit surface is half and one of the microstructured optical plates is a V-shaped grooved circular lens knot The junction shows the microstructured optics; A is made of a V-shaped trench reverse prism structure; and the front panel of the pre-plate is a cross-sectional view, independently fabricated as a fully reflective dot array structure ~ micro-structured optical plate Glossy 15 201222090 [The main component symbol says明] 1 ....... •...Microstructured optical plate 3... •...air layer 111 ··· —lighting surface 4... •...lighting device 121...——lighting surface 41 ·.··· ...lighting unit 122... •...spot 411... •...lighting end face 2..................reflecting plate 412...light emitting diode 21 ....reflecting surface 5...•...diffusion film 22··· .. •... top edge ❿ 16

Claims (1)

201222090 七、申請專利範圍: 1. 一種侧光式背光模組,包含: 一微結構光學板,包括一出光面,以及一位於該出光 面相對位置的入光面; 一反射板’包括至少一個反射面’該微結構光學板之 入光面與反射板之反射面之間共同界定出一空氣層;及 一發光裝置’設置介於該微結構光學板及反射板之 間’並且置於空氣層的一側。 _ 2·依據申請專利範圍第1項所述之側光式背光模組,其中, 該微結構光學板的出光面具有微結構。 3. 依據申晴專利範圍第丨項所述之側光式背光模組,其中, 該微結構光學板的入光面具有微結構。 4. 依據申請專利範圍第2項或第3項所述之側光式背光模 • 、、且其中’該微結構形狀為三角形透鏡、半圓形透鏡。 5 ·依據申請專利範圍第丨項所述之側光式背光模組,其中, 該微結構光學板的入光面具有網點陣列結構。 6. 依據申請專利範圍第丨項所述之側光式背光模組,其中, 籲 該微結構光學板的出光面具有網點陣列結構。 7. 依據申請專利範圍第丨項所述之側光式背光模組,其中, 該微結構光學板的出光面具有擴散微粒子形成的擴散層。 8. 依據申請專利範圍第丨項所述之側光式背光模組,其中, 該反射板之反射面呈傾斜狀。 9. 依據申請專利範圍第丨項所述之側光式背光模組,其中, 該反射板是選自:霧面式反射板、全像技術之反射板。 -H)·依據申請專利範圍第i項所述之側光式背光模組,其中, s亥發光裝置朝向鄰近反射板之方向傾斜。 17 201222090 11.依據申請專利範圍第1項所述之側光式背光模組,其中, 該發光裝置包括二相對設置且位於該空氣層周側之發光 單元,每一發光單元都具有數個發光二極體。201222090 VII. Patent application scope: 1. An edge-lit backlight module comprising: a microstructured optical plate comprising a light-emitting surface and a light-incident surface at a relative position of the light-emitting surface; a reflector plate comprising at least one The reflective surface 'the light incident surface of the microstructured optical plate and the reflective surface of the reflective plate together define an air layer; and a light emitting device 'provides between the microstructured optical plate and the reflective plate' and is placed in the air One side of the layer. The edge-lit backlight module of claim 1, wherein the light-emitting surface of the microstructured optical plate has a microstructure. 3. The edge-lit backlight module of claim 1, wherein the light-incident surface of the microstructured optical plate has a microstructure. 4. The edge-lit backlight module according to claim 2 or 3, wherein the microstructure is a triangular lens or a semi-circular lens. The edge-lit backlight module of claim 1, wherein the light-incident surface of the microstructured optical plate has a dot array structure. 6. The edge-lit backlight module of claim 1, wherein the light-emitting surface of the microstructured optical plate has a dot array structure. 7. The edge-lit backlight module of claim 1, wherein the light-emitting surface of the microstructured optical plate has a diffusion layer formed by diffusing fine particles. 8. The edge-lit backlight module of claim 1, wherein the reflective surface of the reflector is inclined. 9. The edge-lit backlight module according to claim 2, wherein the reflector is a reflector selected from the group consisting of a matte reflector and a holographic technique. -H) The edge-lit backlight module of claim 1, wherein the s-light emitting device is inclined toward a direction adjacent to the reflecting plate. The illuminating device includes two illuminating units disposed opposite to each other on the circumferential side of the air layer, each of the illuminating units having a plurality of illuminating units. Diode. ❿ 18❿ 18
TW99139349A 2010-11-16 2010-11-16 Edge type backlight module TW201222090A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99139349A TW201222090A (en) 2010-11-16 2010-11-16 Edge type backlight module
CN2010106237756A CN102466177A (en) 2010-11-16 2010-12-31 Side light type backlight module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99139349A TW201222090A (en) 2010-11-16 2010-11-16 Edge type backlight module

Publications (1)

Publication Number Publication Date
TW201222090A true TW201222090A (en) 2012-06-01

Family

ID=46070128

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99139349A TW201222090A (en) 2010-11-16 2010-11-16 Edge type backlight module

Country Status (2)

Country Link
CN (1) CN102466177A (en)
TW (1) TW201222090A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487150A (en) * 2016-01-06 2016-04-13 利亚德光电股份有限公司 Reflecting mask and LED display device with same
CN110207405B (en) * 2019-05-10 2021-06-22 江苏锐精光电研究院有限公司 Light collecting hole array plate for light collector
CN113933927B (en) * 2021-10-20 2023-10-10 福州大学 Spliced light-adjusting interlayer light-transmitting plate for building
CN115083260A (en) * 2022-07-25 2022-09-20 深圳市兆驰光元科技有限公司 Light-gathering film, backlight module and display panel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347873B1 (en) * 1999-07-08 2002-02-19 Physical Optics Corporation Backlight assembly with a light pipe having an integral surface diffuser
CN100386680C (en) * 2005-02-23 2008-05-07 友达光电股份有限公司 Back light module
CN101435948B (en) * 2007-11-14 2012-12-26 奇美电子股份有限公司 Backlight module and LCD device including the same
CN101440935A (en) * 2007-11-20 2009-05-27 财团法人工业技术研究院 Light guide board and illuminating device thereof
CN101701693B (en) * 2009-11-25 2011-09-28 友达光电股份有限公司 Light-emitting device

Also Published As

Publication number Publication date
CN102466177A (en) 2012-05-23

Similar Documents

Publication Publication Date Title
TWI471504B (en) Flat light source module
TWI490608B (en) Edge type backlight module and light guide plate
TWI328702B (en) Backlight system
TW200916905A (en) Light guiding film
JP2009187904A (en) Light source unit, back light unit, and display
TWI255356B (en) Light guide plate and plane light source using the same
TW200944840A (en) A compound type diffuser plate structure, backlight module, and liquid crystal display
WO2013033936A1 (en) Led backlight module and liquid crystal display device
TW201222090A (en) Edge type backlight module
CN204494198U (en) Light source module and light guide plate
TW201245631A (en) An illuminating device without a light guide board
TW201133040A (en) Light concentrating device and backlight module
TW200921149A (en) Light guide diffusion device and light source thereof
TWM315842U (en) Light guide plate and backlight module and liquid crystal display device
TWM276217U (en) Backlight module and liquid crystal display
TWM619556U (en) Backlight module and display apparatus
TW201500817A (en) Curved back light module
CN102213398B (en) Light guide plate and light source module
TW200925664A (en) Prism sheet, backlight module and liquid crystal display device using the same
TW201020638A (en) Display apparatus and light emitting module thereof
TWI274944B (en) Light guide plate and backlight module using the same
TWI265354B (en) A backlight module with a holographic diffuser
TWI283305B (en) A backlight module and a light guide plate thereof
JPH10253807A (en) Prism array film and edge light type surface light source
TW201003223A (en) Light-guiding structrure, light guide plate and backlight module having the same