TW201222011A - A method to fabricate microlens arrays - Google Patents

A method to fabricate microlens arrays Download PDF

Info

Publication number
TW201222011A
TW201222011A TW99139957A TW99139957A TW201222011A TW 201222011 A TW201222011 A TW 201222011A TW 99139957 A TW99139957 A TW 99139957A TW 99139957 A TW99139957 A TW 99139957A TW 201222011 A TW201222011 A TW 201222011A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
microlens
microsphere
microspheres
Prior art date
Application number
TW99139957A
Other languages
Chinese (zh)
Other versions
TWI425250B (en
Inventor
Pu-Wei Wu
Yi-Jui Huang
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW99139957A priority Critical patent/TWI425250B/en
Publication of TW201222011A publication Critical patent/TW201222011A/en
Application granted granted Critical
Publication of TWI425250B publication Critical patent/TWI425250B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

This invention provides a method to fabricate microlens arrays on the surface of an optical device, including (a) forming a micorsphere-layer which were constructing by a plurality of microspheres on the surface of a substrate, (b) forming a depositing-film between said microspheres and said substrate through bottom-up process control and the height of said depositing-film was lower then the radius of said micorspheres.

Description

201222011 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種光學透鏡的製作方法,特別是指 一種用於半導體光電元件之微透鏡的製作方法。 【先前技術】 半導體光電元件,例如LED元件的光電效率高低,通 常是以外部量子效率(External Quantum Efficiency; 0 ext)表 示。所謂外部量子效率為每秒由半導體元件内部射出的光 子數量除以每秒流進半導體元件的電子數目。而外部量子 效率又可為内部量子效率(Internal Quantum 々 int)與光萃取效率(Extracti〇n Efficiency; π以的如的)的乘 積,即77 ext = ο int x π extracti〇n,其中,内部量子效率為 該半導體元件的作動層(Active Layer)每秒發射的光子量除 以每秒流入半導體光電元件的電子數目,而光萃取效率則 為》亥半導體光電元件作動層的光子產生量與成功離開半導 體光電元件内部之光子量的比值。 内部量子效率與半導體光電元件作動層的磊晶品質息 息相^ ;而光萃取效率’由斯埋爾定律(Snell,s Law)得 =·當光由具有高折射率的半導體材料射人低折射率的空 孔介質時’會文到臨界角度的影響而形成光的全反射現 _ 、 元件作動層常用的GaN類半導體材料為例而 的折射率⑷約為2.5 ’空氣為卜經計算後得知其 全反射Κ»界角為23。,因此當由作動層產生之光在接觸該作 〃氣的介面時,大部分的會因為全反射的結果而無 201222011 法向外發出,使得該led元件實際的光逃脫量只有4%,所 以如何有效知升半導體光電元件的光萃取效率,以提升半 導體光電元件整體的外部量子效率,已為目前業界努力研 九的重要課題之一。201222011 VI. Description of the Invention: [Technical Field] The present invention relates to a method of fabricating an optical lens, and more particularly to a method of fabricating a microlens for a semiconductor photovoltaic element. [Prior Art] The photoelectric efficiency of a semiconductor photovoltaic element, such as an LED element, is usually expressed by external quantum efficiency (0 ext). The external quantum efficiency is the number of photons emitted from the inside of the semiconductor element per second divided by the number of electrons flowing into the semiconductor element per second. The external quantum efficiency can be the product of the internal quantum efficiency (Internal Quantum 々int) and the light extraction efficiency (Extracti〇n Efficiency; π is as), ie 77 ext = ο int x π extracti〇n, where the internal The quantum efficiency is the number of photons emitted per second by the active layer of the semiconductor device divided by the number of electrons flowing into the semiconductor optoelectronic device per second, and the light extraction efficiency is the photon generation and success of the operating layer of the semiconductor device. The ratio of the amount of photons leaving the interior of the semiconductor optoelectronic component. The internal quantum efficiency is closely related to the epitaxial quality of the semiconductor optoelectronic component actuating layer; and the optical extraction efficiency is obtained by Snell's law (Snell, s Law) = when the light is shot by a semiconductor material with a high refractive index In the case of a porous medium of refractive index, the total reflection of light is formed by the influence of the critical angle. The refractive index (4) of the GaN-based semiconductor material commonly used in the element active layer is about 2.5 '. It is known that its total reflection Κ» boundary angle is 23. Therefore, when the light generated by the actuation layer is in contact with the interface for the helium gas, most of the light will be emitted outwards due to the result of total reflection, so that the actual light escape amount of the LED element is only 4%, so How to effectively improve the light extraction efficiency of semiconductor optoelectronic components to improve the external quantum efficiency of semiconductor optoelectronic components as a whole has been one of the important topics in the industry.

目前常用來提升LED元件光萃取效率的方法,大都是 以蝕刻方式在LED元件形成規則或不規則形狀的粗化結 構,藉由改變作動層出光面的結構,而改變光子與該作動 _ 層出光面的接觸角度,減少光的全反射作用,以提升LEDAt present, the methods commonly used to improve the light extraction efficiency of LED components are mostly to form a regular or irregularly shaped roughened structure in the LED element by etching, and to change the photon and the actuating layer by changing the structure of the light emitting surface of the actuating layer. The contact angle of the surface reduces the total reflection of light to enhance the LED

元件的光萃取效率。然而,以蝕刻方式對LED元件表面進 行粗化後製得的LED元件,其電性的表現會有較為顯著的 不良影響,而表面粗化製程的另一缺點為LED表面不規則 的奈米結構會有出光亮度不均勻的問題產生;而利用在 LED元件的頂面製作2D光子晶體結構來增加LED的光萃 取效率的方式,如Yik-Kh〇on等人(Yik_Kh〇〇n以,R〇naid AThe light extraction efficiency of the component. However, the LED element obtained by roughening the surface of the LED element by etching has a significant adverse effect on the electrical performance, and another disadvantage of the surface roughening process is the irregular nanostructure of the LED surface. There is a problem that the brightness of the light is not uniform; and a method of making a 2D photonic crystal structure on the top surface of the LED element to increase the light extraction efficiency of the LED, such as Yik-Kh〇on et al. (Yik_Kh〇〇n, R〇) Naid A

Arif,ans Nelson Tansu,APPLIED PHYSICS LETTERS 91, 鲁 221107, 2007)提出,利用在LED元件的半導體表面先依序 形成一由複數聚苯乙烯(n=1.58)微球構成的第一微球層及 一由複數二氧化矽(n:=1.46)微球所構成的第二微球層,利用 聚苯乙烯在高溫會融熔的特性,將該LED元件加熱到不小 於140 C,令該第一微球層的聚苯乙烯微球熔融而於該 LED元件表面形成一由該些二氧化石夕微球構成的半球形微 結構。前述方式雖然可以解決出光均句性的問題,而利用 具有不同性質的微球排列成雙層結構後再加以熔融,形成 由二氧化矽微球構成的半球形微結構,則因受限於材料的 201222011 選擇,而無法靈活的運用各種材料於此製程方法中。另一 方面以光子晶體於LED的製程方式而言,一般為採用電子 束微影技術、奈米印微影技術,或全像微影技術,而這些 技術不僅使用的設備昂貴且製程速率緩慢,因此並不適合 使用於低成本考量的LED產業。 因此如何發展一製程簡便,且可有效提升半導體元 件的光萃取效率的方法,以提升半導體元件整體的外部量 子效率,已成為目前業界努力研究的重要課題之一。 【發明内容】 因此,本發明之目的,即在提供一種製程簡便,用以 製作微透鏡的方法。 於是,本發明一種微透鏡的製作方法,包含: (a) 於一基材表面形成一由複數微球構成並具有長程有 序規則堆積結構的微球層。 (b) 以由下而上(bottom-up)的沉積方式,自該基材表面 向上形成-帛覆該些奈米微球之間間隙,&將該微球層固 定於該基材的透明鍍膜層。 本發明之功效在於:利用於基材表面形成一具有單層 長程有序規則排列結構的微球層,並藉由製程控制形成一 填覆該些微球間隙並同時將該些微球固定在該基材表面的 鍍膜層’不僅製程簡便且構成材料不受限制,因此可靈活 的運用各種材料於此製程方法中,而具有更廣泛的用途。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 201222011 、 σ參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 _要說明的疋’本發明_種微透鏡的製作方法的是在光 電兀件表面製作微透鏡結構’而用以改變光線的行進方 向,特別是可應用在一般需要破壞光線的全反射作用之半 導體光電s件’例如LED;或光由低折射率介f進入高折射 率材料的漸變折射率設計如太陽能電池表面的透鏡結構製 作’於本實施例中是以在水平式led光電元件表面製作微 透鏡結構為例作說明。 參閱圖1、圖2,本發明一種微透鏡的製作方法是可 用以製作如圖1所示之具有微透鏡的lED光電元件。 該LED光電元件具有一基材丨,及一微透鏡2。 該基材1具有一基板u、一形成在該基板u上並具 有一作動層121的半導體元件12,及一形成在該半導體2 件12上的電極13。由於該基板u、半導體元件12,及該 電極13的材料選擇為本技術領域者所週知且非為本發明= 重點,因此,不再多加贅述。於本實施例中,該基板11是 可由藍寶石、Si-wafer或其他可乘載之載體所構成。 該微透鏡2具有一微球層21,及一鍍膜層22,該微球 層21是由複數微球211構成並具有長程有序規則堆積的單 層結構,該些微球211的粒徑介於400〜80〇nm之間,粒和 分佈範圍介於±10%,且實質具有單一粒徑分布,可選自聚 苯乙烯、二氧化矽、聚壓克力等透光材料構成;該鑛膜層 22可選自導電或不導電的透明材料構成,為填覆該些微球 201222011 211之間的間隙並具有複數與該每一微球211形狀相對應之 曲面。要說明的是,當該鍍膜層22的高度與該些微球211 的半徑相差過大時,會造成漸變性的有效折射率不連續而 影響光的取出率,因此,較佳地,該鍍膜層22的最大高度 不大於該些微球211的半徑’更佳地,該鍍膜層22的最大 雨度與該些微球211的半徑實質相同;此外,當該鍍膜層 22為由導電材料構成時,該鍍膜層22也可同時成為該光電 元件之電極。 較佳地,該微透鏡2的折射率為介於該半導體元件12 及低介質材料,如空氣,或封裝材料(例如環氧樹脂⑺㈧”)) 之間,更佳地,該鍍膜層22的折射率大於該微球層21的 折射率且小於該半導體元件12,如此可藉由折射率漸變的 連續性改變,有效降低入射光線的反射現象,而有助於 LED内部光萃取效率。於本實施中該些複數微球2ΐι是由 聚苯乙稀(ps)構成且粒徑介於75G〜78Gnm之間該鑛膜層 22是由氧化鋅為材料構成,且高度與該些微球Hi的半徑 相當。 由Mohammadi提出的有效折射率的公式可知球體(ps 微球)區間體積與介質材料(空氣鍵膜層)之間的有效折射 率(effective reflective index,《你)為· neff - nc +Φ(ηρ!1 - nc)£HL£ «c=氧化鋅折射率 PS微球 201222011 〆=體積因子 λ =真空 x=^a^nd_ (△ «=( «c-W/7j),ps 微球半徑 ^ 中光波長,常數)Arif, ans Nelson Tansu, APPLIED PHYSICS LETTERS 91, Lu 221107, 2007) proposes to first form a first microsphere layer composed of a plurality of polystyrene (n=1.58) microspheres on the semiconductor surface of the LED element. a second microsphere layer composed of a plurality of cerium oxide (n:=1.46) microspheres, which is heated by a polystyrene at a high temperature to heat the LED element to not less than 140 C, so that the first A microsphere layer of polystyrene microspheres is melted to form a hemispherical microstructure composed of the silica dioxide microspheres on the surface of the LED element. Although the foregoing method can solve the problem of uniformity of light, the microspheres having different properties are arranged in a two-layer structure and then melted to form a hemispherical microstructure composed of ceria microspheres, which is limited by the material. The choice of 201222011, but can not flexibly use a variety of materials in this process method. On the other hand, in the process of photonic crystals in LEDs, electron beam lithography, nano-lithography, or lithography are generally used, and these technologies not only use expensive equipment, but also have a slow process rate. Therefore, it is not suitable for the LED industry with low cost considerations. Therefore, how to develop a method with simple process and effective improvement of the light extraction efficiency of the semiconductor element to improve the external quantum efficiency of the semiconductor device has become one of the important research topics in the industry. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method for making a microlens that is simple in process. Thus, a method of fabricating a microlens according to the present invention comprises: (a) forming a microsphere layer composed of a plurality of microspheres and having a long-range ordered regular packing structure on a surface of a substrate. (b) forming a bottom-up from the surface of the substrate in a bottom-up deposition manner to cover a gap between the nanospheres, & fixing the microsphere layer to the substrate Transparent coating layer. The invention has the advantages of: forming a microsphere layer having a single layer long-range ordered regular arrangement structure on the surface of the substrate, and forming a filling gap of the microspheres by process control and simultaneously fixing the microspheres on the base The coating layer on the surface of the material is not only simple in process, but also has no limitation on the constituent materials. Therefore, it is possible to flexibly use various materials in the process method, and has a wider range of uses. [Embodiment] The foregoing and other technical contents, features and effects of the present invention will be apparent from the detailed description of a preferred embodiment of the present invention. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A semiconductor optoelectronic s piece such as an LED; or a graded index design in which light enters a high refractive index material from a low refractive index f, such as a lens structure of a solar cell surface, is fabricated in the surface of a horizontal led photovoltaic device in this embodiment. The microlens structure is exemplified. Referring to Figures 1 and 2, a method of fabricating a microlens of the present invention can be used to fabricate a lED photovoltaic element having a microlens as shown in Figure 1. The LED optoelectronic component has a substrate 丨 and a microlens 2. The substrate 1 has a substrate u, a semiconductor element 12 formed on the substrate u and having an active layer 121, and an electrode 13 formed on the semiconductor 2 member 12. Since the substrate u, the semiconductor element 12, and the material selection of the electrode 13 are well known to those skilled in the art and are not the focus of the present invention, they will not be described again. In the present embodiment, the substrate 11 is made of sapphire, Si-wafer or other carrier that can be carried. The microlens 2 has a microsphere layer 21 and a coating layer 22, which is a single layer structure composed of a plurality of microspheres 211 and having long-range ordered regular stacking, and the particle diameter of the microspheres 211 is between Between 400 and 80 〇 nm, the particle and distribution range is ±10%, and substantially has a single particle size distribution, and may be selected from polycrystalline materials such as polystyrene, cerium oxide, and polyacrylic acid; The layer 22 may be selected from a conductive or non-conductive transparent material to fill the gap between the microspheres 201222011 211 and have a plurality of curved surfaces corresponding to the shape of each of the microspheres 211. It should be noted that when the height of the coating layer 22 is too different from the radius of the microspheres 211, the gradual effective refractive index discontinuity affects the light extraction rate. Therefore, preferably, the coating layer 22 is formed. The maximum height is not greater than the radius of the microspheres 211. More preferably, the maximum rain of the coating layer 22 is substantially the same as the radius of the microspheres 211; moreover, when the coating layer 22 is composed of a conductive material, the coating is Layer 22 can also be the electrode of the photovoltaic element at the same time. Preferably, the refractive index of the microlens 2 is between the semiconductor element 12 and a low dielectric material such as air, or an encapsulating material (for example, epoxy resin (7) (8))), and more preferably, the coating layer 22 The refractive index is greater than the refractive index of the microsphere layer 21 and smaller than the semiconductor element 12, so that the continuity of the gradient of the refractive index can be changed, thereby effectively reducing the reflection phenomenon of the incident light, and contributing to the internal light extraction efficiency of the LED. In the implementation, the plurality of microspheres 2ΐ1 is composed of polystyrene (ps) and the particle diameter is between 75G and 78Gnm. The mineral film layer 22 is composed of zinc oxide and has a height and a radius of the microspheres Hi. The formula for the effective refractive index proposed by Mohammadi shows that the effective refractive index ("you" is · neff - nc + Φ) between the volume of the sphere (ps microsphere) and the dielectric material (air bond layer) (ηρ!1 - nc)£HL£ «c=Zinc oxide refractive index PS microsphere 201222011 〆=volume factorλ=vacuum x=^a^nd_ (△ «=( «cW/7j), ps microsphere radius ^ Medium wavelength, constant)

而由前述有效折射率公式運算結果可知,本發明該微 透鏡2隨著微球211與ΖηΟ鍍膜層21體積或米微球211與 Air體積之比例變化,會呈現出一如圖3所示的連續折射率 關係,圖3即為說明本發明形成在該半導體元件〗2上之微 透鏡2在不同鍍膜層(空氣)體積及微球半徑的折射率變化; 因此’當該半導體元件12在接受電能而轉換成光能後,光 子由該半導體元件12往空氣方向發出時,即可令該向外發 出之光在接觸該半導體元件12與微透鏡2的界面時,經由 該微透鏡2之微球層21,及鍍膜層22之間的體積比例而 影響有效折射率的值,形成漸變的有效折射率材料並藉 著折射率連續性的改變連結半導體與空氣,有效降低該半 導體元件12與空氣界面因為折射率大小的差異所造成的全 反射現象,而有助於LED内部光萃取的機會;此外,藉由 該微透鏡2的幾何形狀變化,將使法線方向隨幾何形^變 化進而影響光的入射角度永遠小於臨界角度而可更進一 步提升LED元件的光萃取效率。上述該具有微透鏡之㈣ 光電元件,在配合以下微透鏡的製作方法的該較佳實施例 說明後當可更佳清楚明白。 本發明該微透鏡的製作方法的該較佳實施例包含以下 兩個步驟。 配合參閱圖4、圖5,首先進行步驟31,準備一基材 201222011 1,於該基材1表面形成一由複數微球211構成並具有單層 長程有序規則堆積結構的微球層21。 該基材1具有一基板11、一具有一作動層121的半導 體元件12,及一電極13。由於該基材u、該半導體元件 12, 及該電極13的製作方法及相關材料選擇為本技術領域 者所週知且非為本發明之重點,因此,不再多加贅述。於 本實施例中,該基板u是可由藍寶石、Si_wafer或任何可 乘載之載體所構成。 接著將該基材1置入一含有複數微球211的溶液中,利鲁 用電泳法、重力沉降法、旋轉塗佈法,或浸潰等方式於該 半導體元件12上形成一由複數微球211構成的微球層21, 於本實施例中該步驟31是以電泳法為例做說明。 具體的說’該步驟31是先以光阻材料1〇〇覆蓋該電極 13, 接著將該覆蓋光阻材料1〇〇的基材丨放入一含有聚苯 乙烯(以下簡稱PS)微球211的電泳溶液中,以電泳法進行 PS微球211的自組裝’利用電泳自組裝技術令ps微球211 以長程有序規則堆積的方式單層排列於該半導體元件12表鲁 面。圖6即為該微球層21的掃描式電子顯微鏡(以下簡稱 SEM)圖片。 接著進行步驟32,以由下而上(b〇tt〇m_up)的沉積方 式自該半導體元件12表面向上形成一填覆該些微球21 之間間隙,並將該微球層21固定於該半導體元件12表面 的透明鍍膜層22。 該鑛膜層22可選自導電或不導電的透明材料構成,並 10 201222011 利用電鍍法、溶膠-凝膠法、化學氣相沉積法,或電泳法等 錢膜方式製得,適用於本發明該較佳實施例的㈣㈣層 22 材料是選自 Zn0、AZ0、AGZ〇、加2、ιτ〇、㈣、As can be seen from the results of the foregoing effective refractive index formula, the microlens 2 of the present invention exhibits a ratio of the volume of the microspheres 211 to the ΖηΟ coating layer 21 or the ratio of the microspheres 211 to the volume of the air, and exhibits a ratio as shown in FIG. The continuous refractive index relationship, FIG. 3 is a refractive index change of the microlens 2 formed on the semiconductor element 2 in different coating layer (air) volume and microsphere radius; thus, when the semiconductor component 12 is accepted After the electric energy is converted into light energy, when the photon is emitted from the semiconductor element 12 in the air direction, the outwardly emitted light can be passed through the microlens 2 when contacting the interface between the semiconductor element 12 and the microlens 2 The volume ratio between the spherical layer 21 and the coating layer 22 affects the value of the effective refractive index, forms a graded effective refractive index material, and connects the semiconductor and the air by a change in the continuity of the refractive index, effectively reducing the semiconductor element 12 and the air. The interface is responsible for the total reflection caused by the difference in the refractive index, which contributes to the opportunity of internal light extraction of the LED; in addition, by the geometrical change of the microlens 2, ^ With the geometric line direction changes thereby affecting the light incident angle is always less than the critical angle may be more further improve the light extraction efficiency of the LED element. The above (4) photovoltaic element having a microlens can be more clearly understood after the description of the preferred embodiment of the fabrication method of the following microlens. The preferred embodiment of the method of fabricating the microlens of the present invention comprises the following two steps. Referring to FIG. 4 and FIG. 5, first, step 31 is performed to prepare a substrate 201222011, and a microsphere layer 21 composed of a plurality of microspheres 211 and having a single-layer long-range ordered regular stacking structure is formed on the surface of the substrate 1. The substrate 1 has a substrate 11, a semiconductor element 12 having an actuation layer 121, and an electrode 13. Since the substrate u, the semiconductor device 12, and the method of fabricating the electrode 13 and related materials are well known to those skilled in the art and are not the focus of the present invention, they will not be described again. In this embodiment, the substrate u is composed of sapphire, Si_wafer or any carrier that can be carried. Then, the substrate 1 is placed in a solution containing a plurality of microspheres 211, and a plurality of microspheres are formed on the semiconductor element 12 by electrophoresis, gravity sedimentation, spin coating, or dipping. In the embodiment, the step 31 of the microsphere layer 21 is exemplified by an electrophoresis method. Specifically, in the step 31, the electrode 13 is first covered with a photoresist material 1 , and then the substrate 覆盖 covering the photoresist material 1 丨 is placed in a polystyrene (hereinafter referred to as PS) microsphere 211. In the electrophoresis solution, the self-assembly of the PS microspheres 211 is performed by electrophoresis. The ps microspheres 211 are arranged in a single layer on the surface of the semiconductor element 12 by means of electrophoretic self-assembly techniques. Fig. 6 is a scanning electron microscope (hereinafter referred to as SEM) picture of the microsphere layer 21. Next, step 32 is performed to form a gap between the microspheres 21 from the surface of the semiconductor device 12 in a deposition manner from bottom to top (b〇tt〇m_up), and fix the microsphere layer 21 to the semiconductor. A transparent coating layer 22 on the surface of the component 12. The mineral film layer 22 may be selected from a transparent material that is conductive or non-conductive, and is prepared by the method of electroplating, sol-gel method, chemical vapor deposition method, or electrophoresis method, and is suitable for use in the present invention. The material of the (four) (four) layer 22 of the preferred embodiment is selected from the group consisting of Zn0, AZ0, AGZ〇, plus 2, ιτ〇, (d),

脱〇或PMMA、PC #透明高分子材料,要說明的是當該 鍍膜層22是選自導電的透明材料,則該鍍膜層22也可同 時成為該光電元件之電流擴散電極。要特別說明的是,由 於該鍍膜層22的鍍膜過程是控制由該半導體元件a表面 向上沉積,即bottom-up的製程控制’因此,一開始會由該 半導體70件12表面堆積,進而填覆該些微球211之間的間 隙並將該微球層21固定於該半導體元件12表面。於本實 施例中’是以電鍵方式形成以氧化鋅為材料構成的該錄膜 層22為例作說明。圖7所示即為該微透鏡2的SEM圖片。 此外,要說明的是,本發明該微透鏡的製作方法的該 較佳實施例亦可在一般垂直型LED光電元件上製作微透鏡 結構,而得到如圖8所示之LED光電元件。 參閱圖9,圖9是由本發明該較佳實施例製得之該具有 微透鏡的LED光電元件(L-1)、僅具有微球層21之LED光 電元件(L-2) ’及傳統LED光電元件(L-3)的光激發光光譜 (以下簡稱PL)圖。由結果可知,本發明該鍍膜層22所使用 的ΖηΟ (η=1·9)由於其折射率高於si〇2(n=i.46)或 PS(n=l.58),因此由圖3可以得到由本發明製作出來的該微 透鏡2的有效折射率呈現出一連續且漸變型折射率變化, 且由PL光譜結果可知本發明具有微透鏡之led光電元件 的PL光強度約為傳統式LED光電元件PL光強度的3.2 11 201222011 倍。 综上所述’本發明該微透鏡的製作方法,先藉由物理 吸附方式在該半導體元件12表面形成一具有有序微結構的 微球層21,接著再利用b〇tt〇m_up鍍膜製程控制形成一填覆 該些複數微球211之間間隙並將該微球層21固定於該半導 體作動層12表面的透明鑛膜層22,不僅不需破壞半導體層 結構,且比一般製備光子晶體微結構的製程更為簡便,而 可更有效降低製程成本,此外,由於該微球層21及該鑛膜 層22的構成材料並無限制,因此,可靈活的搭配運用各種鲁 材料於此製程方法中,而可具有更廣泛的用途。 惟以上所述者,僅為本發明之較佳實施例與具體例而 已,當不能以此限定本發明實施之範透光,即大凡依本發 明申請專利範圍及發明說明内容所作之簡單的等效變化與 修飾,皆仍屬本發明專利涵蓋之範透光内。 【圖式簡單說明】 圖1是一示意圖,說明由本發明較佳實施例製得之具 有微透鏡的水平式LED光電元件結構; 鲁 圖2是一局部放大圖,說明圖}的微透鏡結構; 圖3是一折射率圖,說明本發明該微透鏡的微球與鍍 膜層體積及與Air體積在不同比例之折射率關係圖; 圖4是一流程圖,說明本發明該微透鏡的製作方法的 較佳實施例; 圖5疋一流程示意圖,辅助說明圖4的步驟31 ; 圖6是一 SEM圖,為該步驟31製得的微球層結構之 12 201222011 SEM照片; 圖7是一 SEM圖,為該較佳實施例製得的微透鏡結構 之SEM照片; 圖8是一示意圖,說明由本發明該較佳實施例製得之 具有微透鏡的垂直式LED光電元件;及 圖9是光激發光光譜圖,說明圖1與傳統LED光電元 件的光激發光光譜圖比較。For the decarburization or PMMA, PC #transparent polymer material, it is to be noted that when the plating layer 22 is selected from a conductive transparent material, the plating layer 22 may simultaneously become a current diffusion electrode of the photovoltaic element. It should be particularly noted that since the coating process of the coating layer 22 is to control the deposition of the surface of the semiconductor element a upward, that is, the process control of the bottom-up, therefore, the surface of the semiconductor 70 is initially stacked and then filled. The gap between the microspheres 211 and the microsphere layer 21 are fixed to the surface of the semiconductor element 12. In the present embodiment, the recording film layer 22 which is formed by using a zinc oxide as a material is described as an example. Fig. 7 shows an SEM picture of the microlens 2. In addition, it should be noted that the preferred embodiment of the method for fabricating the microlens of the present invention can also fabricate a microlens structure on a generally vertical LED optoelectronic component to obtain an LED optoelectronic component as shown in FIG. Referring to FIG. 9, FIG. 9 shows the LED optoelectronic device (L-1) having the microlens, the LED optoelectronic component (L-2) having only the microsphere layer 21, and the conventional LED obtained by the preferred embodiment of the present invention. Photoexcitation light spectrum (hereinafter abbreviated as PL) of the photovoltaic element (L-3). It can be seen from the results that the ΖηΟ (η=1·9) used in the coating layer 22 of the present invention has a refractive index higher than that of si〇2 (n=i.46) or PS(n=l.58). 3, the effective refractive index of the microlens 2 produced by the present invention exhibits a continuous and gradual refractive index change, and the PL light intensity of the led photo-electric component having the microlens of the present invention is about the conventional one. The LED light element PL light intensity is 3.2 11 201222011 times. In summary, the method for fabricating the microlens of the present invention first forms a microsphere layer 21 having an ordered microstructure on the surface of the semiconductor device 12 by physical adsorption, and then uses the b〇tt〇m_up coating process control. Forming a transparent mineral film layer 22 covering the gap between the plurality of microspheres 211 and fixing the microsphere layer 21 to the surface of the semiconductor operating layer 12, not only does not need to destroy the semiconductor layer structure, but also prepares a photonic crystal micro The process of the structure is simpler, and the process cost can be more effectively reduced. Moreover, since the constituent materials of the microsphere layer 21 and the mineral film layer 22 are not limited, the flexible materials can be flexibly combined with the process method. Medium, but can have a wider range of uses. However, the above description is only for the preferred embodiments and specific examples of the present invention, and is not intended to limit the light transmission of the present invention, that is, the simple scope of the invention and the description of the invention. Both effect changes and modifications are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a horizontal LED photoelectric element structure having a microlens prepared by a preferred embodiment of the present invention; and FIG. 2 is a partially enlarged view showing the microlens structure of FIG. 3 is a refractive index diagram illustrating the relationship between the microspheres of the microlens and the coating layer volume and the refractive index of the air volume at different ratios; FIG. 4 is a flow chart illustrating the manufacturing method of the microlens of the present invention; The preferred embodiment of the invention; FIG. 5 is a schematic flow diagram of the step 31 of FIG. 4; FIG. 6 is an SEM image of the 12 201222011 SEM photograph of the microsphere layer structure obtained in the step 31; Figure SEM photograph of the microlens structure prepared in the preferred embodiment; Figure 8 is a schematic view showing a vertical LED optoelectronic component having microlenses prepared by the preferred embodiment of the present invention; and Figure 9 is light Excitation light spectrum, illustrating the comparison of the photoexcitation spectra of Figure 1 with conventional LED optoelectronic components.

13 201222011 【主要元件符號說明】 100 光阻材料 2 微透鏡 1 基材 21 微球層 11 基板 211 微球 12 半導體元件 22 鍍膜層 121 作動層 31 步驟 13 電極 32 步驟13 201222011 [Description of main component symbols] 100 photoresist material 2 microlens 1 substrate 21 microsphere layer 11 substrate 211 microsphere 12 semiconductor component 22 coating layer 121 actuation layer 31 step 13 electrode 32 steps

1414

Claims (1)

201222011 七、申請專利範圍: 1. 一種微透鏡的製作方法,包含: (a) 於一基材表面形成一由複數微球構成並具有長程 有序規則堆積結構的微球層;及 (b) 以由下而上的沉積方式,自該基材表面向上形成 一填覆該些奈米微球之間間隙,並將該微球層固定於該 基材的透明鍍膜層。 2. 依據申請專利範圍第1項所述之微透鏡的製作方法,其 中,6亥鑛膜層的最大尚度不大於該些微球的半徑。 3. 依據申請專利範圍第1項所述之微透鏡的製作方法,還 包含一實施於該步驟(b)之前的步驟(c),將該表面形成 微球層的基材在微球的Tg溫度+/· 1〇cC條件下進行熱 處理。 4. 依據申清專利範圍第1項所述之微透鏡的製作方法,還 包含一實施於該步驟(b)之後的步驟(d),將該微球層移 除。 5. 依據申明專利範圍第1項所述之微透鏡的製作方法,其 中,該些微球粒徑介於400〜8〇〇nm之間,為選自聚苯 乙烯、二氧化矽、聚壓克力等透光材料,且粒徑分佈範 圍介於±10%之間。 6·依據申請專利範圍第1項所述之微透鏡的製作方法,其 中亥基材具有一基板及一自該基板表面向上形成的半 導體元件,該微球層是形成在該半導體元件表面。 7.依據申請專利範圍第1項所述之微透鏡的製作方法,直 15 201222011 中,該鍍膜層是選自透明導電材料,且折射率介於該半 導體元件及該些奈米微球之間。 8.依據申請專利範圍第1項所述之微透鏡的製作方法,其 中’該微球層;I:以電泳法、重力沉降法、旋轉塗佈法, 或浸潰法製得。 ’ 9·依據申請專利範圍帛1帛所述之微透鏡的製作方法 中,該鍍膜層是以電鍍法、溶膠凝膠法、 其 積法,或電泳方式製得。 匕予氣相沉201222011 VII. Patent application scope: 1. A method for manufacturing a microlens, comprising: (a) forming a microsphere layer composed of a plurality of microspheres and having a long-range ordered regular stacking structure on a surface of a substrate; and (b) In a bottom-up deposition manner, a gap is formed from the surface of the substrate to fill the gap between the nanospheres, and the microsphere layer is fixed to the transparent coating layer of the substrate. 2. The method for fabricating a microlens according to claim 1, wherein the maximum extent of the 6-week mineral layer is not greater than the radius of the microspheres. 3. The method for fabricating a microlens according to claim 1, further comprising a step (c) performed before the step (b), forming a surface of the microsphere layer on the surface of the microsphere. The heat treatment was carried out under the conditions of temperature +/· 1 〇 cC. 4. The method for fabricating a microlens according to claim 1, further comprising the step (d) of the step (b), wherein the microsphere layer is removed. 5. The method for fabricating a microlens according to claim 1, wherein the microspheres have a particle diameter of between 400 and 8 nm, and are selected from the group consisting of polystyrene, cerium oxide, and polyacrylic acid. A light-transmitting material such as a force, and the particle size distribution range is between ±10%. The method for fabricating a microlens according to claim 1, wherein the substrate has a substrate and a semiconductor element formed upward from the surface of the substrate, the microsphere layer being formed on the surface of the semiconductor element. 7. The method according to claim 1, wherein the coating layer is selected from a transparent conductive material and has a refractive index between the semiconductor element and the nanospheres. . 8. The method for producing a microlens according to claim 1, wherein the microsphere layer; I: is obtained by an electrophoresis method, a gravity sedimentation method, a spin coating method, or an impregnation method. The coating layer is produced by a plating method, a sol-gel method, a product method, or an electrophoresis method according to the method for producing a microlens according to the scope of the patent application. Gas phase deposition 1616
TW99139957A 2010-11-19 2010-11-19 A method to fabricate microlens arrays TWI425250B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99139957A TWI425250B (en) 2010-11-19 2010-11-19 A method to fabricate microlens arrays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99139957A TWI425250B (en) 2010-11-19 2010-11-19 A method to fabricate microlens arrays

Publications (2)

Publication Number Publication Date
TW201222011A true TW201222011A (en) 2012-06-01
TWI425250B TWI425250B (en) 2014-02-01

Family

ID=46725119

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99139957A TWI425250B (en) 2010-11-19 2010-11-19 A method to fabricate microlens arrays

Country Status (1)

Country Link
TW (1) TWI425250B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4340199B2 (en) * 2004-07-09 2009-10-07 セイコーエプソン株式会社 Method for manufacturing organic electroluminescence device
US8076667B2 (en) * 2006-12-24 2011-12-13 Lehigh University Efficient light extraction method and device
TWI395979B (en) * 2008-07-04 2013-05-11 A microlens and a mold manufacturing method thereof, and a light emitting device

Also Published As

Publication number Publication date
TWI425250B (en) 2014-02-01

Similar Documents

Publication Publication Date Title
US8183759B2 (en) Light emitting diode device and manufacturing method thereof
JP5546480B2 (en) Organic electroluminescent device and manufacturing method thereof
TWI395979B (en) A microlens and a mold manufacturing method thereof, and a light emitting device
US20200152899A1 (en) Organic thin-film solar cell and organic thin-film solar cell manufacturing method
Mao et al. Extraction of light trapped due to total internal reflection using porous high refractive index nanoparticle films
Tan et al. Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells
KR101233768B1 (en) Nano imprint mold manufacturing method, light emitting diode manufacturing method and light emitting diode using the nano imprint mold manufactured by the method
Kim et al. Fabrication of a microball lens array for OLEDs fabricated using a monolayer microsphere template
JP5781766B2 (en) Radiation emitter and method for producing the same
TW201440263A (en) Optical device and method for manufacturing the same
CN109192836B (en) Preparation method of LED structure with graded-refractive-index nano structure combined with nano lens
Deul Ryu et al. Enhanced light output power of GaN-based light-emitting diodes by nano-rough indium tin oxide film using ZnO nanoparticles
Chen et al. Enhancing light extraction of GaN-based blue light-emitting diodes by a tuned nanopillar array
TW201222011A (en) A method to fabricate microlens arrays
JP6210511B2 (en) Organic thin film solar cell, substrate for organic thin film solar cell, method for manufacturing organic thin film solar cell, and method for manufacturing substrate for organic thin film solar cell
US8455900B2 (en) Semiconductor light-emitting device having an optical member, and method of manufacturing the same
KR101844871B1 (en) Light emitting diodes of enhanced light efficiency and manufacturing method of the same
Wang et al. Si-based packaging platform for LED module using electroplating method
KR101221075B1 (en) Method of manufacturing gallium nitride based light emitting diodes using nano imprinting and light emitting diode element using the same
US20190019995A1 (en) Method of patterning multi-layer structure
US10539730B2 (en) Light source with diffractive outcoupling
Wang et al. Enhanced light output from light emitting diodes with two-dimensional cone-shape nanostructured surface
WO2008114894A1 (en) Light emitting diode with microlens
Wang et al. Enhancement in light extraction of white leds using micro-cone patterned phosphor-in-glass
Yu et al. Improvement of light extraction efficiency of white LEDs using microstructure array on phosphor silicone layer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees