TW201221995A - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
TW201221995A
TW201221995A TW99140491A TW99140491A TW201221995A TW 201221995 A TW201221995 A TW 201221995A TW 99140491 A TW99140491 A TW 99140491A TW 99140491 A TW99140491 A TW 99140491A TW 201221995 A TW201221995 A TW 201221995A
Authority
TW
Taiwan
Prior art keywords
lens
lens group
zoom lens
zoom
optical axis
Prior art date
Application number
TW99140491A
Other languages
Chinese (zh)
Inventor
Fang-Ying Peng
Hai-Jo Huang
Sheng-An Wang
Xiao-Na Liu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99140491A priority Critical patent/TW201221995A/en
Publication of TW201221995A publication Critical patent/TW201221995A/en

Links

Landscapes

  • Lenses (AREA)

Abstract

The present invention relates to a zoom lens. The zoom lens includes in an order from an object side to an image side a first lens group with positive refractive power, a second lens group with negative refractive power, a third lens group with positive refractive power, and a fourth lens group with positive refractive power. The first, second, third and fourth lens groups can move along the axis of the zoom lens. The zoom lens satisfies the following formula: 0.15 < |L3|/Lt < 0.25, wherein L3 is a moving vector of the third lens group corresponding to that the zoom lens moves from the wide-angle position to the telephoto position. The moving vector of the third lens group is a positive value when the third lens group moves from the object side to the image side. The moving vector of the third lens group is a negative value when the third lens group moves from the image side to the object side. L3 is the total length of the zoom lens along the optical axis in telephoto position.

Description

201221995 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種變焦鏡頭。 【先前技術】 [0002] 輕薄短小且具有較高的變焦倍率是數碼相機的發展趨勢 。但是現在的高變焦倍率的鏡頭内部需要給各鏡群預留 一定的空間,以供各鏡群移動變焦,因此厚度較大。 【發明内容】 [0003] 有鑒於此,有必要提供一種厚度薄且變焦倍率高的變焦 鏡頭。 [0004] 一種變焦鏡頭,其包括沿其光轴方向從物端到像端依次 排列的一個具有正光焦度的第一透鏡組、一個具有負光 焦度的第二透鏡組、一個具有正光焦度的第三透鏡組、 一個具有正光焦度的第四透鏡組。所述第一透鏡組、第 二透鏡組、第三透鏡組及第四透鏡組在變焦過程中都能 夠沿光軸方向移動,以實現變焦。所述變焦鏡頭滿足以 下條件式: [0005] 0. 15&lt; | L3 | /Lt&lt;0. 25 [0006] 其中,L3為所述變焦鏡頭從廣角端到望遠端的變焦過程 中,所述第三透鏡組在光軸上的移動向量,且所述移動向 量從物端到像端為正值,從像端到物端為負值;Lt為所 述變焦鏡頭在望遠端時沿光軸方向的總長度。 [0007] 相較於先前技術,本發明的變焦鏡頭,不僅可具有較高 的變焦倍率,而且在光軸方向的厚度被大大減小。 099140491 表單編號A0101 第4頁/共39頁 0992070534-0 201221995 【實施方式】 [0008] [0009] 下面將結合附圖,對本發明作進一步的詳細說明。 Ο [0010] 請參閱圖1,其為本發明第一實施方式所提供的變焦鏡頭 1 0 0的結構示意圖。所述變焦鏡頭1 0 0包括沿其光軸方向 從物端到像端依序排列的一個具有正光焦度的第一透鏡 組10、一個具有負光焦度的第二透鏡組20、一個具有正 光焦度的第三透鏡組30、一個具有正光焦度的第四透鏡 組40及一成像面50。取像時,光線經過第一透鏡組1〇、 第二透鏡組2 0、第三透鏡組3 〇、第四透鏡組4 0,而成像 于所述成像面5〇上,而獲得清晰成像。 〇 [0011] 所述第一透鏡组1〇、第二透鏡組20、第三透鏡組30及第 四透鏡組40都能沿所述變焦鏡頭1〇〇的光軸方向移動,以 實現變焦。其中,在所述變焦鏡頭10 0從廣角端到望遠端 的變焦過程中,所述第一透鏡組10與所述第二透鏡組20 的間距增加;所述第二透鏡組2〇與所述第三透鏡組30的 間距減小;所述第四透鏡組移動,用於補償所述變焦鏡 頭100在變焦過程中物距變化所造成的所述成像面50的位 置變化,使得被攝物體能夠清晰的成像在所述成像面5〇 上。 所述第一透鏡組1〇包括從物端到像端依次排列的一個具 有負光焦度的第一透鏡11及一個具有正光焦度的第二透 鏡12。所述第一透鏡11的像端表面與所述第二透鏡12的 物端表面膠合固定。所述第二透鏡組20包括從物端到像 端依次排列的一個具有負光焦度的第三透鏡21、一個具 有負光焦度的第四透鏡22及一個具有正光焦度的第五透 099140491 表單編號Α0101 第5頁/共39頁 0992070534-0 201221995 鏡2 3。所述第三透鏡組3 0包括從物端到像端依次排列的 一個具有正光焦度的第六透鏡31及一個具有負光焦度的 第七透鏡32。所述第四透鏡組40包括從物端到像端依次 排列的一個具有正光焦度的第八透鏡41。 [0012] [0013] [0014] [0015] [⑻ 16] 所述變焦鏡頭1 〇0還包括一個設置於所述第二透鏡組20與 所述第三透鏡組30之間的光闌(Aperture stop)60,以 保證所述變焦鏡頭10 0的整體結構相對於光闌8 〇對稱,有 效地降低慧差的影響;同時限制經過第二透鏡組2〇的光 線進入第三透鏡組30的光通量,並讓經過第三透鏡組3〇 後的光錐更加對稱’使所述變焦鏡頭1〇〇的彗差(c〇ma) 得以修正。 所述變焦鏡頭100還包括一個設置於所述影像感測器的物 側的一個濾光片80。 所述變焦鏡頭100滿足以下條件式 (1)0.15&lt; | L3 | /Lt&lt;0.25 其中’ L3為所述懸鏡頭1I0G從廣仙到望遠端的變隹過 程中’所述第三透鏡《0在光轴上的移動向量,且所述移 動向量從物端到像端為正值,從像端到物端為負值;Lt 為所述變焦鏡頭HO在望遠端時沿先轴方向的總長度。若 此條件式大於G. 25,則所述第二透鏡組2()及所述第三透 鏡組_総㈣Λ ’⑽所述”鏡㈣q在望遠端時 像差過大’需要所《焦鏡則叫望遠端時沿光轴方向 的總長度過長’才能確保所述變焦鏡购Q在望遠端的像 差得到良好的補正’但這樣不能滿足所述變焦鏡頭⑽小 099140491 表單編號A0101 第6頁/共39頁 0992070534-0 201221995 型化的要求。若此條件式小败15,贿述第三透鏡組 30沿光軸方向的移動量過小,使得所述變焦鏡頭⑽在望 遠端時的㈣會劣化,難以修正,影響所述變焦鏡頭1〇〇 L3=-14.394mm 在望遠端的成像品質。在本實施方式中 ,Lt = 60. 〇81mm,丨 L3 丨 /Lt = 〇 24〇。 [0017]㈣地’為了光學性能更好,所述變焦鏡棚㈣滿足以 下條件式: [0018] (2) 0· 15&lt;f3/ft&lt;〇. 2 [G019]其中,f 3為所述第三透鏡組3麟有效焦距;f丨為所述變 焦鏡頭100在望遠端的有效焦距。若此條件式大於〇 2, 則所述第三透鏡組30的焦距過長,為使所述變焦鏡頭ι〇〇 的像差平衡及維持變倍比(即所述變焦鏡頭的望遠端的 焦距與廣角短的焦距的比值),則所述第二透鏡組20需 焦距變長,即所述第二透鏡組2〇的光焦度變小,會導致 所述變焦鏡頭1〇0在廣角蠕時,無法會聚大角度的光線, 〇 ^騎域衫-,組1()科徑,導輯述變焦鏡頭 1〇0的外徑將會過大。若此條件式小於0.2,則所述第三 透鏡組3〇的焦距過短,為了使所述變焦鏡頭⑽的像差平 衡及維持變概,„要㈣第n㈣職距較短 P所述第-透鏡組20的光焦度變大,從而導致所述變 、鏡頭100的橫向色差、輛向色差及球面色差難以補正。 在本實施方式中,f3--l0.U6贿,ft = 57 9〇〇丽, i3/ft=〇.175 。 [0020] 優選地’ I 了使厚度更薄,所述變焦鏡頭1〇〇還需滿足以 099140491 表單編號;A0101 第7頁/共39頁 0992070534-0 201221995 下條件式: [0021] [0022] (3) 7.2&lt;(LwxLt)/(fwxft)&lt;7. 8 其中’ Lw為所述變焦鏡頭100在廣角端時的沿光軸方向的 總長度,f w為所述變焦鏡頭1 00在廣角端的有效焦距。在本實施方式中 ’ Lw=37. 814mm ’ Lt = 60. 081mm, fw=5. 144mm » ft = 57. 900mm j (LwxLt)/(fWx ft)=7.628 。 [0023] [0024] [0025]201221995 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a zoom lens. [Prior Art] [0002] Lightweight, short and high zoom ratio is a trend in digital cameras. However, the current high zoom magnification lens needs to reserve a certain space for each mirror group for each mirror group to move and zoom, so the thickness is large. SUMMARY OF THE INVENTION [0003] In view of the above, it is necessary to provide a zoom lens having a small thickness and a high zoom magnification. [0004] A zoom lens comprising a first lens group having positive refractive power, a second lens group having negative refractive power, and a positive optical lens arranged in order from the object end to the image end in the optical axis direction thereof a third lens group of degrees, a fourth lens group having positive power. The first lens group, the second lens group, the third lens group, and the fourth lens group are movable in the optical axis direction during zooming to achieve zooming. The zoom lens satisfies the following conditional expression: [0005] 0. 15 &lt; | L3 | /Lt &lt; 0. 25 [0006] wherein L3 is the zooming process of the zoom lens from the wide-angle end to the telephoto end, the third a motion vector of the lens group on the optical axis, and the motion vector is a positive value from the object end to the image end, and a negative value from the image end to the object end; Lt is a direction along the optical axis of the zoom lens at the telephoto end Total length. Compared to the prior art, the zoom lens of the present invention can not only have a higher zoom magnification but also a greatly reduced thickness in the optical axis direction. 099140491 Form No. A0101 Page 4 of 39 0992070534-0 201221995 [0008] [0008] [0009] The present invention will be further described in detail below with reference to the accompanying drawings. Please refer to FIG. 1 , which is a schematic structural diagram of a zoom lens 100 according to a first embodiment of the present invention. The zoom lens 100 includes a first lens group 10 having positive refractive power and a second lens group 20 having negative refractive power, which are sequentially arranged from the object end to the image end in the optical axis direction thereof, and one having A third lens group 30 of positive power, a fourth lens group 40 having positive power, and an imaging surface 50. At the time of image capturing, the light passes through the first lens group 1A, the second lens group 20, the third lens group 3, and the fourth lens group 40, and is imaged on the image plane 5, to obtain clear imaging. [0011] The first lens group 1A, the second lens group 20, the third lens group 30, and the fourth lens group 40 are all movable in the optical axis direction of the zoom lens 1A to achieve zooming. Wherein, in the zooming process of the zoom lens 100 from the wide-angle end to the telephoto end, the distance between the first lens group 10 and the second lens group 20 is increased; the second lens group 2〇 and the first The pitch of the three lens groups 30 is reduced; the fourth lens group is moved to compensate for the positional change of the imaging surface 50 caused by the change of the object distance of the zoom lens 100 during the zooming process, so that the object can be clear The image is imaged on the imaging surface 5〇. The first lens group 1 includes a first lens 11 having a negative power and a second lens 12 having a positive power, which are sequentially arranged from the object end to the image end. The image end surface of the first lens 11 is glued and fixed to the object end surface of the second lens 12. The second lens group 20 includes a third lens 21 having a negative refractive power, a fourth lens 22 having a negative refractive power, and a fifth transparent lens having a positive refractive power, which are sequentially arranged from the object end to the image end. 099140491 Form number Α 0101 Page 5 / Total 39 page 0992070534-0 201221995 Mirror 2 3. The third lens group 30 includes a sixth lens 31 having positive refractive power and a seventh lens 32 having negative refractive power, which are sequentially arranged from the object end to the image end. The fourth lens group 40 includes an eighth lens 41 having positive refractive powers arranged in order from the object end to the image end. [0015] [(8) 16] The zoom lens 1 〇0 further includes a diaphragm disposed between the second lens group 20 and the third lens group 30 (Aperture) Stop) 60 to ensure that the overall structure of the zoom lens 100 is symmetrical with respect to the pupil 8 ,, effectively reducing the influence of coma; while limiting the light flux entering the third lens group 30 through the second lens group 2 〇 And let the light cone passing through the third lens group 3 be more symmetrical 'the coma aberration (c〇ma) of the zoom lens 1 得以 is corrected. The zoom lens 100 further includes a filter 80 disposed on the object side of the image sensor. The zoom lens 100 satisfies the following conditional expression (1) 0.15 &lt; | L3 | /Lt &lt; 0.25 where 'L3 is the change from the Guangxian to the telephoto end of the suspension lens 1I0G' a motion vector on the optical axis, and the motion vector is a positive value from the object end to the image end, and a negative value from the image end to the object end; Lt is the total length of the zoom lens HO along the pre-axis direction at the telephoto end . If the conditional expression is greater than G. 25, the second lens group 2 () and the third lens group _ 総 (4) Λ '(10) "mirror (four) q at the telephoto end when the aberration is too large 'requires the focal lens The total length in the direction of the optical axis when looking at the far end is too long 'to ensure that the aberration of the zoom lens Q at the telephoto end is well corrected' but this does not satisfy the zoom lens (10) small 099140491 Form No. A0101 Page 6 / A total of 39 pages 0992070534-0 201221995 requirements of the type. If the conditional expression is 15, the amount of movement of the third lens group 30 in the optical axis direction is too small, so that the (4) of the zoom lens (10) at the telephoto end will deteriorate. It is difficult to correct, affecting the imaging quality of the zoom lens 1 〇〇 L3 = -14.394 mm at the telephoto end. In the present embodiment, Lt = 60. 〇 81 mm, 丨 L3 丨 / Lt = 〇 24 〇 [0017] (4) For the sake of better optical performance, the zoom mirror shed (4) satisfies the following conditional formula: [0018] (2) 0·15 &lt;f3/ft&lt;〇. 2 [G019] wherein f 3 is the third lens group 3 Lin effective focal length; f丨 is the effective focal length of the zoom lens 100 at the telephoto end. If the conditional expression In FIG. 2, the focal length of the third lens group 30 is too long, so that the aberration of the zoom lens is balanced and the zoom ratio is maintained (ie, the focal length of the telephoto end of the zoom lens is shorter than the wide angle) The ratio of the second lens group 20 is such that the focal length of the second lens group 20 becomes longer, that is, the power of the second lens group 2 变 becomes smaller, which causes the zoom lens 1 〇 0 to be in a wide angle and cannot be concentrated. The angle of the light, 〇^骑骑衫-, group 1 () diameter, the outer diameter of the zoom lens 1 〇 0 will be too large. If the conditional formula is less than 0.2, the third lens group 3 〇 If the focal length is too short, in order to balance and maintain the aberration of the zoom lens (10), the power of the first lens group 20 becomes larger, so that the (n) nth (fourth) duty is shorter, thereby causing the change, The lateral chromatic aberration, the chromatic aberration of the vehicle, and the spherical aberration of the lens 100 are difficult to correct. In the present embodiment, f3--l0.U6 bribes, ft = 57 9 brilliant, i3/ft = 〇.175. [0020] Preferably, the thickness is made thinner, the zoom lens 1 〇〇 still needs to meet the form number of 099140491; A0101 page 7 / 39 pages 0992070534-0 201221995 conditional formula: [0021] [0022] (3) 7.2 &lt; (LwxLt) / (fwxft) &lt; 7. 8 where 'Lw is the total length of the zoom lens 100 at the wide-angle end in the optical axis direction, fw is the zoom lens 100 at the wide angle The effective focal length of the end. In the present embodiment, ' Lw = 37. 814 mm ' Lt = 60. 081 mm, fw = 5. 144 mm » ft = 57. 900 mm j (LwxLt) / (fWx ft) = 7.628. [0025] [0025]

以透鏡表面中心為原點,光軸為又軸,透鏡表面的非球面 面型運算式為··Taking the center of the lens surface as the origin and the optical axis as the axis, the aspherical surface of the lens surface is...

[0026] 其中,c為鏡面表面中心的曲率「 ^__為從h=4y2 + z1 光轴到透鏡表面的高度,k是二次曲面儀數,&amp;為第遣 的非球面面型係數。通過將表1至表4(請參閱下文)的資 料代入上述運算式,可獲知透絲面_球面形狀。 所述變焦鏡頭1〇〇的各光學元件滿足表卜4的條件。下列 表(-)巾分別列有由物端到像端依序排列的光學表面 、R為各透鏡的光學表面的曲率半徑、D為對應光學表面 到後-個光學表面的軸上距離(兩個光學表面截得光轴的 長度)、Nd為對應透鏡組則光(波長為587納米)的折射 099140491 表單編號A0101 第8頁/共39頁 0992070534-0 201221995 率’ Vd為d光在對應透鏡組的阿貝數(abbe number),f 為所述變焦鏡頭1 0 0的有效焦距;F number為所述變焦 鏡頭100的光圈數;為所述變焦鏡頭100的視場角。Wherein c is the curvature of the center of the mirror surface "^__ is the height from the h=4y2 + z1 optical axis to the lens surface, k is the number of quadrats, &amp; is the aspherical surface coefficient of the first field By inserting the data of Tables 1 to 4 (see below) into the above expression, the through-plane _ spherical shape can be known. The optical elements of the zoom lens 1满足 satisfy the conditions of Table 4. -) The towel respectively lists the optical surfaces arranged from the object end to the image end, R is the radius of curvature of the optical surface of each lens, and D is the on-axis distance from the optical surface to the rear optical surface (two optical surfaces) The length of the optical axis is cut, and Nd is the refraction of the corresponding lens group (wavelength is 587 nm). 099140491 Form No. A0101 Page 8/Total 39 Page 0992070534-0 201221995 Rate 'Vd is the d-light in the corresponding lens group Abbe number, f is the effective focal length of the zoom lens 100; F number is the aperture number of the zoom lens 100; is the angle of view of the zoom lens 100.

Ο [0027] 表1 [0028] 光學表 面 面型 _— r (mm) D (mm) Nd Vd 第一透 鏡11的 物端表 面 球面 19.48? 0. 842 2. 001 29.134 7 第一透 鏡11的 像端表 面(第 二透鏡 12的物 端表面) 球面 12. ___^ 2. 788 r- -r j j - . if f l 叫;li·,知:!: 1.6968 55. 46 第二透 鏡12的 像端表 面 非球面 ——****· 1633.1 7 D3 第三透 鏡21的 物端表 面 球面 一----- 1068.0 26 0. 536 1. 741 52. 6 第9頁/共39真 表單編號Α0101 0992070534-0 099140491 201221995 第三透 鏡21的 像端表 面 球面 5.482 2. 4 第四透 鏡22的 物端表 面 球面 14.727 0.459 1. 7015 41.149 第四透 鏡22的 像端表 面 球面 34.619 0. 05 第五透 鏡23的 物端表 面 球面 11.072 1.18 2.0027 19.317 第五透 鏡23的 像端表 面 球面 27.746 D9 光闌80 的表面 平面 無窮大 0.22 — — 第六透 鏡31的 物端表 面 非球面 4. 966 2.14 1.592 67.022 7 表單編號A0101 第10頁/共39頁 0992070534-0 099140491 201221995 第六透 鏡31像 端表面 非球面 12.986 0.153 第七透 鏡32的 物端表 面 球面 7. 004 1.138 1.808 22.76 第七透 鏡32的 像端表 面 球面 3. 47 D14 第八透 鏡41的 物端表 面 球面 19. 053 2. 133 1.6034 38. 01 第八透 鏡41的 像端表 面 球面 17. 485 D16 濾光片 60的像 端表面 平面 無窮大 0.8 1.516 64. 1 濾光片 60的物 端表面 平面 無窮大 1.1 成像面 平面 無窮大 — — — 表單編號A0101 第11頁/共39頁 0992070534-0 099140491 201221995 50 表2 [0029] 光學表面 光學表面的非球面面型參數 S3 K=0; A4=l.699225e-005; A6=-2·29685e-006; A8=l.785986e-007; A10=-7.80209e-009; A12=l.930773e-010; A14=-2.52510e-012; A16=l.353609e-014 S11 K=-0.246; A4=-l.34104e-003; A6=3.464040e-005; A8=-2.10306e-005; A10=-8.18039e-006; A12=3.957986e-006; A14=-6.40957e-007; A16=3.555485e-008 S12 K:-21·328; A4=-l.19454e-003; A6=-l.43096e-004; A8=8.356327e-005; A10--3.79679e-005; A12=9.098635e-006; A14=-l.15937e-006; 表單編號A0101 第12頁/共39頁 0992070534-0 099140491 201221995____ A16=5.950946e-008 表3 [0030] D3 廣角端 0.4 望遠端 19.533 表4 D9 12.1256 0. 884 D14 5. 755 22.177 D16 3.6 1. 463 [0031] f F number 2w (度) 廣角端 5.14 2. 95 75 望遠端 57. 9 6.1 7.6 〇 本實施方式的變焦鏡頭100處於廣角端時,其像差、場曲 及畸變分別如圖2到圖4所示。.圖2中,分別為針對F線(波 長為486納米(nm)),d線(波長為588 nm&gt;,C線(波長為 6 56 nm)而觀察到的像差值曲線。總體而言,本實施方式 的變焦鏡頭100對可見光(波長範圍在400 nm-700 nm之 間)產生的像差值控制在(-0.2mm,0.2mm)範圍内。圖3 中’曲線T及S分別為子午場曲(tangential field O curvature)特性曲線及弧矢場曲(sagittai field curvature )特性曲線β可見,子午場曲值和弧矢場曲 值被控制在(0,〇.2mm)範圍内。圖4中,曲線dis為畸變 特性曲線。由圖可知’畸變量被控制在(_2〇%,〇 )範圍 内。由此可見,所述變焦鏡頭1〇〇處於廣角端時的球面像 差、場曲、畸變都能被控制(修正)在較小的範圍内。可 以理解,雖然本實施方式中,所述變焦鏡頭100處於廣角 端時’畸變量在( — 20%,〇)範圍内,但可用影像處理技 術進行修正。 099140491 表單編號A0101 第13頁/共39頁 0992070534-0 201221995 [0032] 本實施方式的變焦鏡頭100處於望遠端時,其像差、場曲 及畸變分別如圖5到圖7所示。圖5中’分別為針對F線(波 長為486納米(nm)) ’ d線(波長為588 nm),C線(波長為 656 nm)而觀察到的像差值曲線。總體而言,本實施方式 的變焦鏡頭100對可見光(波長範圍在4〇〇 nm_7〇〇 nm之 間)產生的像差值控制在(-〇.5mm,0.5mm)範圍内。圖6 中’曲線T及S分別為子午場曲(tangential field curvature)特性曲線及弧矢場曲(sagittai Held curvature )特性曲線。可見,子午場曲值和弧矢場曲 值被控制在(-0. 5 mm,0. 5:mm )..範圍内。圖7中,曲線d i s 為畸變特性曲線。由圖可知,畸變量被控制在(_1%,1%) 範圍内。由此可見,所述變焦鏡頭1〇〇處於望遠端時的球 面像差、場曲、畸變都能被控制(修正)在較小的範圍内 〇 [0033] 請參閱圖8,其為本發明第二實施方式所提供的變焦鏡頭 200的結構示意圖。所述變焦痛;頭么〇〇涪其光軸方向從物 端到像端依序排列的一個具、有正光焦度的第一透鏡組210 、一個具有負光焦度的第二透鏡組220、一個具有正光焦 度的第三透鏡組230、一個具有正光焦度的第四透鏡組 240及一成像面250。所述第一透鏡組210包括從物端到 像端依次排列的一個具有負光焦度的第一透鏡211及一個 具有正光焦度的第二透鏡212。所述第一透鏡211的像端 表面與所述第二透鏡212的物端表面膠合固定。所述第二 透鏡組220包括從物端到像端依次排列的一個具有負光焦 度的第三透鏡221、一個具有負光焦度的第四透鏡222及 099140491 表單編號A0101 第14頁/共39頁 0992070534-0 201221995 [0034] Ο [0035]Ο [0036] 099140491 一個具有正光焦度的第五透鏡223。所述第四透鏡組40包 括從物端到像端依次排列的一個具有正光焦度的第八透 鏡41。所述變焦透鏡200還包括一個設置於所述設置於所 述第二透鏡組2〇與所述第三透鏡組30之間的光闌260及〜 個設置於所述影像感測器的物側的一個濾光片280。 所述變焦鏡頭200與第一實施方式100的主要區別點在於 ,所述第三透鏡組230包括從物端到像端依次排列的〜铜 具有正光焦度的第六透鏡231,一個具有正光焦度的第七 透鏡232及一個具有負光焦度的第九透鏡233,且所述第 七透鏡232的像端表面與所述第九透:鏡2..33的物端表兩膠 合固定。所述變焦鏡頭200還包括一個設i於所述第三遷 鏡組230與所述第四透鏡組240之間的遮光片290,所塊 遮光片290用於擋住從所述第三透鏡組23〇射入所述第四 透鏡組240的大視角的雜光。 在本實施方式中,L3 = -14. D.8gmin,L.t = 59. 889mm,丨 L3 I /Lt-0. 235 » f3 = 9. 935mm * ft = 57. 883min j f3/ft-0. 172 vLw=37. 029inin j fw=5. 137mm * (Lwx Lt)/(fwxft)=7.458 。 所述變焦鏡頭200的各光學元件滿足表5_7的條件。下列 表(一)中分別列有由物端到像端依序排列的光學表面 、R為各透鏡的光學表面的曲率半徑、D為為對應光學表 面到後一個光學表面的軸上距離(兩個光學表面截得光輛 的長度)、Nd為對應透鏡組對(1光(波長為587納米)的_ 射率,Vd為d光在對應透鏡組的阿貝數(abbe nunibe〇 ,α所述變焦鏡頭100的有效焦距;F number為所 表單编號A0101 第15頁/共39頁 〇992〇7〇534、〇 201221995 焦鏡頭100的光圈數;2ω為所述變焦鏡頭100的視場角。 [0037]表 5 光學表 面 面型 R (mm) D (mm) Nd Vd 第一透 鏡211的 物端表 面 球面 17.449 0.3 2.001 29.135 第一透 鏡211的 像端表 面(第 二透鏡 21 2的物 端表面) 球面 12. 26 3. 075 1. 623 58.164 第二透 鏡212的 像端表 面 非球面 263.03 5 D3 第三透 鏡221的 物端表 面 球面 401.45 7 0. 536 1. 788 47. 49 第三透 鏡221的 球面 5.4346 2. 4 一一一 — 表單編號Α0101 第16頁/共39頁 0992070534-0 099140491 201221995 Ο1 [0028] Table 1 [0028] Optical surface profile _-r (mm) D (mm) Nd Vd The object surface of the first lens 11 is spherical 19.48? 0. 842 2. 001 29.134 7 Image of the first lens 11 End surface (object end surface of the second lens 12) Spherical surface 12. ___^ 2. 788 r- -rjj - . if fl is called; li·, know:!: 1.6968 55. 46 The image end surface of the second lens 12 is not Spherical surface - ****· 1633.1 7 D3 Spherical surface of the third lens 21 spherical surface ----- 1068.0 26 0. 536 1. 741 52. 6 Page 9 of 39 True Form No. Α0101 0992070534-0 099140491 201221995 Image end surface spherical surface of the third lens 21 5.482 2. 4 Object end surface spherical surface of the fourth lens 22 14.727 0.459 1. 7015 41.149 Image end surface spherical surface of the fourth lens 22 34.619 0. 05 End of the fifth lens 23 Surface spherical surface 11.072 1.18 2.0027 19.317 Image end surface spherical surface of the fifth lens 23 27.746 D9 Surface plane of the aperture 80 is infinite 0.22 — The object surface aspheric surface of the sixth lens 31 4. 966 2.14 1.592 67.022 7 Form No. A0101 Page 10 / Total 39 pages 0992070534-0 099140491 20122199 5 sixth lens 31 image end surface aspheric surface 12.986 0.153 seventh lens 32 object end surface spherical surface 7. 004 1.138 1.808 22.76 seventh lens 32 image end surface spherical surface 3. 47 D14 eighth lens 41 object end surface spherical surface 19 053 2. 133 1.6034 38. 01 The spherical surface of the image of the eighth lens 41 17. The surface of the image end surface of the 485 D16 filter 60 is infinite 0.8 1.516 64. 1 The surface of the object surface of the filter 60 is infinite 1.1 Imaging surface Plane infinity — — — Form No. A0101 Page 11 / Total 39 Page 0992070534-0 099140491 201221995 50 Table 2 [0029] Aspherical surface parameters of the optical surface optical surface S3 K=0; A4=l.699225e-005; A6 =-2·29685e-006; A8=l.785986e-007; A10=-7.80209e-009; A12=l.930773e-010; A14=-2.52510e-012; A16=l.353609e-014 S11 K= -0.246; A4=-l.34104e-003; A6=3.464040e-005; A8=-2.10306e-005; A10=-8.18039e-006; A12=3.957986e-006; A14=-6.40957e-007; A16=3.555485e-008 S12 K:-21·328; A4=-l.19454e-003; A6=-l.43096e-004; A8=8.356327e-005; A10--3.79679e-005; A12=9.098635 E-006; A14=-l.15937e-006; Form No. A0101 Page 12/39 Page 0992070534-0 099140491 201221995____ A16=5.950946e-008 Table 3 [0030] D3 Wide-angle end 0.4 Telephoto end 19.533 Table 4 D9 12.1256 0. 884 D14 5. 755 22.177 D16 3.6 1. 463 [0031] f F number 2w (degrees) wide-angle end 5.14 2. 95 75 telephoto end 57. 9 6.1 7.6 〇 When the zoom lens 100 of the present embodiment is at the wide-angle end, its aberration, curvature of field and distortion are respectively shown in Fig. 2 Figure 4 shows. In Fig. 2, the aberration curves observed for the F line (wavelength is 486 nanometers (nm)), d line (wavelength is 588 nm), and C line (wavelength is 6 56 nm). The aberration lens 100 of the present embodiment controls the aberration value of visible light (wavelength range between 400 nm and 700 nm) in the range of (-0.2 mm, 0.2 mm). In Fig. 3, the curves T and S are respectively The tangential field O curvature characteristic curve and the sagittai field curvature characteristic curve β are visible, and the meridional field curvature value and the sagittal field curvature value are controlled within the range of (0, 〇. 2 mm). The curve dis is a distortion characteristic curve. It can be seen from the figure that the 'distortion variable is controlled within the range of (_2〇%, 〇). It can be seen that the spherical aberration of the zoom lens 1〇〇 at the wide-angle end, field curvature, The distortion can be controlled (corrected) to a small range. It can be understood that although in the present embodiment, the zoom lens 100 is at the wide-angle end, the distortion is in the range of (-20%, 〇), but the image is available. Processing technology is corrected. 099140491 Form No. A0101 Page 13 / Total 39 pages 0992070534-0 201221995 [0032] When the zoom lens 100 of the present embodiment is at the telephoto end, its aberration, field curvature and distortion are respectively shown in FIG. 5 to FIG. 7. In FIG. 5, 'for the F line (wavelength, respectively) The aberration value curve observed for the 486 nm (nm) 'd line (wavelength 588 nm), C line (wavelength 656 nm). In general, the zoom lens 100 of the present embodiment is for visible light (wavelength range) The aberration value generated between 4〇〇nm_7〇〇nm is controlled within the range of (-〇.5mm, 0.5mm). In Fig. 6, the curves T and S are the tangential field curvature characteristic curves, respectively. And the sagittai Held curvature characteristic curve. It can be seen that the meridional field curvature value and the sagittal field curvature value are controlled within the range of (-0. 5 mm, 0.5: mm). In Fig. 7, the curve dis It is a distortion characteristic curve. It can be seen from the figure that the distortion variable is controlled within the range of (_1%, 1%). It can be seen that the spherical aberration, field curvature and distortion of the zoom lens 1〇〇 at the telephoto end can be Controlled (corrected) in a smaller range [0033] Please refer to FIG. 8, which is a second embodiment of the present invention. A schematic diagram of the structure of the zoom lens 200 provided by the present invention. The zoom lens has a first lens group 210 having a positive refractive power and a first lens group 210 whose optical axis direction is sequentially arranged from the object end to the image end. A second lens group 220 having negative power, a third lens group 230 having positive power, a fourth lens group 240 having positive power, and an imaging surface 250. The first lens group 210 includes a first lens 211 having a negative refractive power and a second lens 212 having a positive refractive power, which are sequentially arranged from the object end to the image end. The image end surface of the first lens 211 is glued to the object end surface of the second lens 212. The second lens group 220 includes a third lens 221 having a negative power, a fourth lens 222 having a negative power, and a 099140491, which are sequentially arranged from the object end to the image end. Form No. A0101 Page 14 / Total 39 pages 0992070534-0 201221995 [0034] 99 [0036] 099140491 A fifth lens 223 having positive power. The fourth lens group 40 includes an eighth lens 41 having positive refractive power arranged in order from the object end to the image end. The zoom lens 200 further includes a diaphragm 260 disposed between the second lens group 2 and the third lens group 30, and an object side disposed on the image sensor. A filter 280. The main difference between the zoom lens 200 and the first embodiment 100 is that the third lens group 230 includes a sixth lens 231 having a positive refractive power, which is arranged in order from the object end to the image end, and one has a positive optical focus. The seventh lens 232 and a ninth lens 233 having a negative refractive power, and the image end surface of the seventh lens 232 and the object end surface of the ninth lens: 2.33 are glued and fixed. The zoom lens 200 further includes a light shielding sheet 290 disposed between the third lens group 230 and the fourth lens group 240, and the light shielding sheet 290 is used to block the third lens group 23 The astigmatism of the large angle of view of the fourth lens group 240 is incident. In the present embodiment, L3 = -14. D.8gmin, Lt = 59. 889mm, 丨L3 I /Lt-0. 235 » f3 = 9. 935mm * ft = 57. 883min j f3/ft-0. 172 vLw=37. 029inin j fw=5. 137mm * (Lwx Lt)/(fwxft)=7.458. The optical elements of the zoom lens 200 satisfy the conditions of Table 5-7. In the following list (1), there are respectively arranged optical surfaces arranged from the object end to the image end, R is the radius of curvature of the optical surface of each lens, and D is the on-axis distance from the corresponding optical surface to the latter optical surface (two The optical surface is the length of the light intercepted vehicle), Nd is the corresponding lens group pair (1 light (wavelength is 587 nm) _ radiance, Vd is the Abbe number of d light in the corresponding lens group (abbe nunibe 〇, α The effective focal length of the zoom lens 100; F number is the number of apertures of the focal lens 100 of the form number A0101, page 15 of 39 pages 〇992〇7〇534, 〇201221995; 2ω is the angle of view of the zoom lens 100 [0037] Table 5 Optical surface profile R (mm) D (mm) Nd Vd Object end surface spherical surface of the first lens 211 17.449 0.3 2.001 29.135 Image end surface of the first lens 211 (object end of the second lens 21 2 Surface) Spherical surface 12.26 3. 075 1. 623 58.164 Image end surface aspheric surface of the second lens 212 263.03 5 D3 Object end surface spherical surface of the third lens 221 401.45 7 0. 536 1. 788 47. 49 Third lens 221 The spherical surface 5.4346 2. 4 one by one - form number Α 0101 16 pages/total 39 pages 0992070534-0 099140491 201221995 Ο

099140491 像端表 面 第四透 鏡222的 物端表 面 球面 16. 331 0.46 1.7015 41.149 第四透 鏡222的 像端表 面 球面 22.363 0.05 第五透 鏡2 2 3的 物端表 面 球面 10.614 1. 153 2.0027 19. 317 第五透 鏡223的 像端表 面 球面 33. 31 D9 光闌280 的表面 平面 無窮大 0. 22 — — 第六透 鏡231的 物端表 面 非球面 5. 727 2.17 1. 531 55. 75 第六透 鏡231像 非球面 11.083 0.153 — — 表單編號Α0101 第17頁/共39頁 0992070534-0 201221995 端表面 第七透 鏡232的 物端表 面 球面 8.822 1. 173 1.9108 35.25 第七透 鏡232的 像端表 面 球面 -8.275 D14 1.7552 27.53 第九透 鏡233的 物端表 面 球面 3. 69 22.324 第九透 鏡233的 像端表 面 球面 15.605 D16 1.497 81. 6 第八透 鏡241的 物端表 面 球面 15.671 0. 959 第八透 鏡241的 像端表 面 球面 無窮大 0.8 1.516 64. 1 濾光片 平面 無窮大 1. 1 — — 表單編號A0101 第18頁/共39頁 0992070534-0 099140491 201221995099140491 The end surface of the fourth lens 222 of the end surface is spherical. 16.331 0.46 1.7015 41.149 The spherical surface of the image of the fourth lens 222 22.363 0.05 The spherical surface of the fifth lens 2 2 3 is 10.614 1. 153 2.0027 19. 317 The surface of the image of the surface of the fifth lens 223 is 33. 31 D9 The surface plane of the aperture 280 is infinitely large. 0. 22 — The aspheric surface of the object surface of the sixth lens 231 5. 727 2.17 1. 531 55. 75 The sixth lens 231 Spherical 11.083 0.153 — — Form No. Α0101 Page 17 of 39 0992070534-0 201221995 End surface of the end surface seventh lens 232 Spherical surface 8.822 1. 173 1.9108 35.25 The image of the end surface of the seventh lens 232 is spherical - 8.275 D14 1.7552 27.53 The object end surface spherical surface of the ninth lens 233 3. 69 22.324 The image end surface spherical surface of the ninth lens 233 15.605 D16 1.497 81. 6 The object end surface spherical surface of the eighth lens 241 15.671 0. 959 The image end surface of the eighth lens 241 is spherical Infinity 0.8 1.516 64. 1 Filter plane infinity 1. 1 — — Form number A0101 Page 18 of 39 099207053 4-0 099140491 201221995

光學表面 光學表面的非球面面型參數 S3 K=15.435; A4=l.664944e-005; A6=-2.08191e-006; A8=l.67494e-007; A10=-T.54675e-009; A12-1.914270e-010; A14=-2.55736e-012; A16=l.398639e-014 S11 K=-0.53; A4=-l.75224e-003; A6=l.212351e-004; A8=-5.17167e-005; A10=-4.73567e-006; A12=3.952987e-006; A14=-6.67538e-007; A16=3.725084e-008 表單編號A0101 第19頁/共39頁 0992070534-0 260的像 端表面 濾光片 260的物 端表面 平面 無窮大 成像面 250 平面 無窮大 —— — — 表6 099140491 201221995 S12 K=-20.9017; A4=-2.26854e-003; A6=-3.81776e-005; A8=7.745020e-005; Al0=-4.14617e-005; A12=9.583939e-006; A14=-l.09424e-006; A16-4.922213e-008 表7 [0040] D3 D9 — D14 D16 廣角端 0.4 Π. 047 5. 876 3. 583 望遠端 19.57 〇. 656 22.324 0. 96 表8 f ~~~ ------ F number 2w (度) 廣角端 5.145 2.96 74. 25 望遠端 57.873 6. 06 7. 6 本實施方式的變焦鏡頭200處於廣烏端時,其像差場曲 及畸變分別如圖9到圖11所示。圖9中,分別為針對F線( 波長為486納米(nm)) ’ d線(波長為588 nm),C線(波長 為656 nm)而觀察到的像差值曲線。總體而言,本實施方 式的變焦鏡頭200對可見光(波長範圍在4〇〇 nm-700 nm 之間)產生的像差值控制在(-0.2mm,0.2mm)範圍内。圖 10令’曲線T及S分別為子午場曲(tangential field curvature)特性曲線及弧矢場曲(sagittal f i eld curvature )特性曲線。可見’子午場曲值和弧矢場曲 099140491 表單編號A0101 第20頁/共39頁 0992070534-0 201221995 [0042] Ο [0043] [0044] 099140491 值被控制在(0,0. 2mm)範圍内。圖11中,曲線dis為崎 變特性曲線。由圖可知,畸變量被控制在(_2〇%,〇)範 圍内。由此可見,所述變焦鏡頭200處於廣角端時的球面 像差、場曲、畸變都能被控制(修正)在較小的範圍内。 可以理解’雖然本實施方式中,所述變焦鏡頭1〇〇處於廣 角端時’畸變量在(-20%,〇)範圍内,但可用影像處理 技術修正。 本實施方式的變焦鏡頭200處於望遠端時,其像差 '場曲 及畸變分別如圖12到圖14所示。圖12中,分別為針對ρ線 (波長為486納米(nm)),d線(波長為588 nm),C線(波 長為656 nm)而觀察到的像差值曲線》總體而言,本實施 方式的變焦鏡頭100對可見光(波長範圍在4〇〇 nm-700 nm之間)產生的像差值控制在(-〇. 5mm,0. 5ηπη)範圍内。 圖13中,曲線Τ及S分別為子午場曲(tangential field curvature)特性曲線及孤矢場曲(sagit1^ai field curvature )特性曲線。可見,子午場曲值和弧矢場曲 值被控制在(-0.5111111,0.5111111)範圍内。圖14中,曲線(^5 為畸變特性曲線。由圖可知,畸變量被控制在(-1 %,丨%) 範圍内。由此可見,所述變焦鏡頭2〇〇處於望遠端時的球 面像差、場曲、畸變都能被控制(修正)在較小的範圍内 相較於先前技術,本發明的變焦鏡頭,不僅可具有較高 的變焦倍率’而且在光轴方向的厚度被大大減小。 另外,本領域技術人員可在本發明精神内做其他變化, 然,凡依據本發明精神實質所做的變化,都應包含在本 表單編號A0101 第21頁/共39頁 0992070534-0 201221995 發明所要求保護的範圍之内。 【圖式簡單說明】 [0045] [0046] [0047] [0048] [0049] [0050] [0051] [0052] [0053] [0054] [0055] [0056] [0057] [0058] [0059] [0060] [0061] 圖1為本發明的第一實施方式的變焦鏡頭的結構示意圖。 圖2為圖1的變焦鏡頭處於廣角端時的球面像差圖。 圖3為圖1的變焦鏡頭處於廣角端時的場曲圖。 圖4為圖1的變焦鏡頭處於廣角端時的畸變圖。 圖5為圖1的變焦鏡頭處於望遠端時的球面像差圖。 圖6為圖1的變焦鏡頭處於望遠端時的場曲圖。 圖7為圖1的變焦鏡頭處於室遠瑞轉的畸變圖。 圖8為本㈣的第二實施方式的變焦鏡頭的结構示意圖。 圖9為圖8的變焦鏡頭處於廣角端時的球面像差圖。 圖10為圖8的變焦鏡頭處於廣角端時的場曲圖。 圖11為圖8的變焦鏡頭處於廣角端時的畸變圖。 圖12為圖8的變焦鏡頭處於望遠端噼的球面像差圖。 圖13為圖8的變焦鏡頭處於望遠端時的場曲圖。 圖14為圖8的變焦鏡頭處於望遠端時的畸變圖。 【主要元件符號說明】 變焦鏡頭 100、£00 第—透鏡組 10、210 第一透鏡 11、211 099140491 表單編號A0101 第22頁/共39頁 0992070534-0 201221995 [0062] 第二透鏡 12、212 [0063] 第二透鏡組 20、220 [0064] 第三透鏡 21 &gt; 221 [0065] 第四透鏡 22 ' 222 [0066] 第五透鏡 23 ' 223 [0067] 第三透鏡組 30、230 [0068] 第六透鏡 31 、 231 ❹ [0069] 第七透鏡 32、232 [0070] 第四透鏡組 40 ' 240 [0071] 第八透鏡 41 ' 241 [0072] 成像面 50 ' 250 [0073] 光闌 60、260 [0074] 濾光片 80、280 ❹ [0075] 第九透鏡 233 [0076] 遮光片 290 0992070534-0 099140491 表單編號A0101 第23頁/共39頁The aspherical surface parameter of the optical surface optical surface S3 K=15.435; A4=l.664944e-005; A6=-2.08191e-006; A8=l.67494e-007; A10=-T.54675e-009; A12- 1.914270e-010; A14=-2.55736e-012; A16=l.398639e-014 S11 K=-0.53; A4=-l.75224e-003; A6=l.212351e-004; A8=-5.17167e-005 A10=-4.73567e-006; A12=3.9.579987e-006; A14=-6.67538e-007; A16=3.725084e-008 Form No. A0101 Page 19 of 39 0992070534-0 260 Image End Surface Filter The surface of the object surface of the sheet 260 is infinitely large. The plane of the image is 250 infinity. — — Table 6 099140491 201221995 S12 K=-20.9017; A4=-2.26854e-003; A6=-3.81776e-005; A8=7.745020e-005; Al0=-4.14617e-005; A12=9.583939e-006; A14=-l.09424e-006; A16-4.922213e-008 Table 7 [0040] D3 D9 — D14 D16 Wide-angle end 0.4 Π. 047 5. 876 3 583 telephoto end 19.57 〇. 656 22.324 0. 96 Table 8 f ~~~ ------ F number 2w (degrees) Wide-angle end 5.145 2.96 74. 25 telephoto end 57.873 6. 06 7. 6 This embodiment When the zoom lens 200 is at the Guangwu end, the aberration field curvature and distortion are as shown in FIGS. 9 to 11, respectively. In Fig. 9, the aberration curves observed for the F line (wavelength of 486 nm (nm)) 'd line (wavelength: 588 nm) and C line (wavelength of 656 nm) are shown. In general, the zoom lens 200 of the present embodiment controls the aberration value of visible light (wavelength ranging from 4 〇〇 nm to 700 nm) in the range of (-0.2 mm, 0.2 mm). Figure 10 Let the curves T and S be the tangential field curvature characteristic curve and the sagittal f i eld curvature characteristic curve, respectively. It can be seen that the value of the meridional field curvature value and the sagittal field curvature 099140491 Form No. A0101 Page 20 of 39 0992070534-0 201221995 [0042] 004 [0044] The value of 099140491 is controlled within the range of (0, 0.2 mm). In Fig. 11, the curve dis is a saturating characteristic curve. As can be seen from the figure, the distortion is controlled within the range of (_2〇%, 〇). It can be seen that the spherical aberration, curvature of field, and distortion of the zoom lens 200 at the wide angle end can be controlled (corrected) to a small range. It can be understood that although in the present embodiment, the zoom lens 1 is at the wide-angle end, the distortion is in the range of (-20%, 〇), but it can be corrected by image processing techniques. When the zoom lens 200 of the present embodiment is at the telephoto end, the aberration 'field curvature and distortion are as shown in Figs. 12 to 14, respectively. In Fig. 12, the aberration curves observed for the ρ line (wavelength of 486 nm (nm)), d line (wavelength of 588 nm), and C line (wavelength of 656 nm), respectively, The aberration lens 100 of the embodiment controls the aberration value of visible light (wavelength ranging from 4 〇〇 nm to 700 nm) in the range of (-〇. 5 mm, 0.5 ηπη). In Fig. 13, the curves Τ and S are the tangential field curvature characteristic curve and the sagit1^ai field curvature characteristic curve, respectively. It can be seen that the meridional curvature value and the sagittal curvature value are controlled within the range of (-0.5111111, 0.5111111). In Fig. 14, the curve (^5 is a distortion characteristic curve. It can be seen from the figure that the distortion variable is controlled within the range of (-1%, 丨%). It can be seen that the zoom lens 2 is spherical at the telephoto end. Aberration, field curvature, and distortion can be controlled (corrected) in a smaller range. Compared to the prior art, the zoom lens of the present invention can not only have a higher zoom magnification but also a large thickness in the optical axis direction. Further, those skilled in the art can make other changes within the spirit of the present invention. However, any changes made in accordance with the spirit of the present invention should be included in the form number A0101, page 21 / 39 pages 0992070534-0 201221995 Within the scope of the invention claimed [Simplified illustration] [0046] [0049] [0054] [0054] [0055] [0055] [0060] FIG. 1 is a schematic structural view of a zoom lens according to a first embodiment of the present invention. FIG. 2 is a spherical aberration of the zoom lens of FIG. Fig. 3 is a field curvature diagram of the zoom lens of Fig. 1 at the wide angle end. Fig. 4 is a variation of Fig. 1. Figure 5 is a spherical aberration diagram of the zoom lens of Figure 1 at the telephoto end. Figure 6 is a field curvature diagram of the zoom lens of Figure 1 at the telephoto end. Figure 7 is a field curvature diagram of the zoom lens of Figure 1 at the telephoto end. Fig. 8 is a schematic view showing the structure of the zoom lens according to the second embodiment of the present invention. Fig. 9 is a view showing the spherical aberration of the zoom lens of Fig. 8 at the wide-angle end. Fig. 11 is a distortion diagram of the zoom lens of Fig. 8 at the wide-angle end. Fig. 12 is a spherical aberration diagram of the zoom lens of Fig. 8 at the telephoto end. Fig. 14 is a field curvature diagram of the zoom lens at the telephoto end. Fig. 14 is a distortion diagram of the zoom lens of Fig. 8 at the telephoto end. [Description of main components] Zoom lens 100, £00 lens group 10, 210 A lens 11, 211 099140491 Form No. A0101 Page 22 / Total 39 Page 0992070534-0 201221995 [0062] Second lens 12, 212 [0063] Second lens group 20, 220 [0064] Third lens 21 &gt; 221 [ 0065] Fourth lens 22 ' 222 [0066] Fifth lens 23 ' 22 Third lens group 30, 230 [0068] Sixth lens 31, 231 第七 [0069] Seventh lens 32, 232 [0070] Fourth lens group 40' 240 [0071] Eighth lens 41 '241 [ 0072] imaging surface 50 '250 [0073] aperture 60, 260 [0074] filter 80, 280 ❹ [0075] ninth lens 233 [0076] visor 290 0992070534-0 099140491 Form number A0101 Page 23 / total 39 pages

Claims (1)

201221995 七、申請專利範圍: 1 · -種變焦鏡頭’其包括沿其光財向從物端到像端依次排 列的-個具有正光焦度的第一透鏡組、—個具有負光焦度 的第二透鏡組、一個具有正光焦度的第三透鏡組、一個具 有正光焦度的第四透鏡組,所述第一透鏡組'第二透鏡組 、第三透鏡組及第四透鏡組在變焦過程中都能夠沿光軸方 向移動以實現變焦,所述變焦鏡頭滿足以下條件式: ο.15&lt; I L3 I /Lt&lt;0.25 其中,L3為所述變焦鏡頭從廣角端到望遠端的變焦過程中 ,所述第三透鏡組在光轴上的移動向量,且所述移動向量 從物端到像端為正值,從像端到物端為負值;^為所述變 焦鏡頭在望遠端時沿光轴方向的總長度。 2 .如申明專利範圍第1項所述的變焦鏡頭,其中,所述變焦 鏡頭還滿足以下條件式: 〇·15&lt;f3/ft&lt;0.2 其中,f3為所述第二透鏡組的有效焦趣;竹為所述變焦 鏡頭在望遠端時的有效焦距。 .如申π專利範圍第2項所述的變焦繞頭,其中,所述變焦 鏡頭滿足以下條件式: 7.2&lt;(LwxLt)/(fwxft)&lt;7. 8 其中,Lw為所述變焦鏡頭在廣角端時的沿光軸方向的總長 度,fw為所述變焦鏡頭在廣角端時的有效焦距。 4.如申請專利範圍第丨項所述的變焦鏡頭,其中,所述第一 透鏡組包括沿光轴方向從物端到像端依次排列的一個具有 負光焦度的第一透鏡及一個具正光焦度的第二透鏡,所述 099140491 表單編號Α0ΗΠ 第24頁Z共39頁 0992070534Ό 201221995 第一透鏡的像端表面與所述第二透鏡的物端表面膠合固定 〇 5 .如申請專利範圍第1項所述的變焦鏡頭,其中,所述第二 透鏡組包括沿光轴方向從物端到像端依次排列的一個具有 負光焦度的第三透鏡、一個具有負光焦度的第四透鏡及一 個具有正光焦度的第五透鏡。 6.如申請專利範圍第1項所述的變焦鏡頭,其中,所述第三 透鏡組包括沿光軸方向從物端到像端依次排列的一個具有 正光焦度的第六透鏡與一個具有負光焦度的第七透鏡。 7 .如申請專利範圍第1項所述的變焦鏡頭,其中,所述第四 透鏡組包括一個具有正光焦度的第八透鏡。 8.如申請專利範圍第1項所述的變焦鏡頭,其中,所述第三 透鏡組包括沿光軸方向從物端到像端依次排列的一個具有 正光焦度的第六透鏡、一個具有正光焦度的第七透鏡及一 個具有負光焦度的第九透鏡。 9 .如申請專利範圍第8項所述的變焦鏡頭,其中,所述變焦 鏡頭還包括一個遮光·片,所述遮光片設置於所述第三透鏡 組與所述第四透鏡組之間。 10 .如申請專利範圍第1項所述的變焦鏡頭,其中,所述變焦 鏡頭還包括一個光闌,所述光闌位於所述第二透鏡組與所 述第三透鏡組之間。 099140491 表單編號A0101 第25頁/共39頁 0992070534-0201221995 VII. Patent application scope: 1 · A kind of zoom lens' includes a first lens group with positive refractive power arranged along its optical direction from the object end to the image end, and a negative optical power a second lens group, a third lens group having positive power, and a fourth lens group having positive power, the first lens group 'the second lens group, the third lens group, and the fourth lens group are zooming In the process, it is possible to move in the optical axis direction to achieve zooming, and the zoom lens satisfies the following conditional formula: ο. 15 &lt; I L3 I / Lt &lt; 0.25 where L3 is the zooming process of the zoom lens from the wide-angle end to the telephoto end a movement vector of the third lens group on the optical axis, and the motion vector is a positive value from the object end to the image end, and a negative value from the image end to the object end; ^ is the zoom lens at the telephoto end The total length along the optical axis. 2. The zoom lens according to claim 1, wherein the zoom lens further satisfies the following conditional formula: 〇·15&lt;f3/ft&lt;0.2, wherein f3 is an effective focus of the second lens group Bamboo is the effective focal length of the zoom lens at the telephoto end. The zooming lens according to the second aspect of the invention, wherein the zoom lens satisfies the following conditional formula: 7.2 &lt; (LwxLt) / (fwxft) &lt; 7. 8 wherein Lw is the zoom lens The total length in the optical axis direction at the wide-angle end, fw is the effective focal length of the zoom lens at the wide-angle end. 4. The zoom lens according to claim 2, wherein the first lens group includes a first lens having a negative refractive power and a member arranged in order from the object end to the image end in the optical axis direction. Second lens of positive power, the 099140491 Form No. ΗΠ0ΗΠ Page 24 Z Total 39 Page 0992070534Ό 201221995 The image end surface of the first lens is glued to the object end surface of the second lens 〇5. As claimed in the patent scope The zoom lens according to Item 1, wherein the second lens group includes a third lens having a negative refractive power and a fourth having a negative refractive power, which are sequentially arranged from the object end to the image end in the optical axis direction. a lens and a fifth lens having positive power. 6. The zoom lens according to claim 1, wherein the third lens group includes a sixth lens having positive refractive power and a negative one arranged in order from the object end to the image end in the optical axis direction. The seventh lens of the power. 7. The zoom lens of claim 1, wherein the fourth lens group comprises an eighth lens having positive power. 8. The zoom lens according to claim 1, wherein the third lens group includes a sixth lens having positive refractive power and a positive light arranged in order from the object end to the image end in the optical axis direction. A seventh lens of power and a ninth lens having negative power. The zoom lens according to claim 8, wherein the zoom lens further includes a light shielding sheet disposed between the third lens group and the fourth lens group. The zoom lens according to claim 1, wherein the zoom lens further includes an aperture, the aperture being located between the second lens group and the third lens group. 099140491 Form No. A0101 Page 25 of 39 0992070534-0
TW99140491A 2010-11-24 2010-11-24 Zoom lens TW201221995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99140491A TW201221995A (en) 2010-11-24 2010-11-24 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99140491A TW201221995A (en) 2010-11-24 2010-11-24 Zoom lens

Publications (1)

Publication Number Publication Date
TW201221995A true TW201221995A (en) 2012-06-01

Family

ID=46725114

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99140491A TW201221995A (en) 2010-11-24 2010-11-24 Zoom lens

Country Status (1)

Country Link
TW (1) TW201221995A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463173B (en) * 2013-07-25 2014-12-01 Young Optics Inc Zoom lens
TWI761059B (en) * 2021-02-03 2022-04-11 大陸商廣州立景創新科技有限公司 Zoom lens module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463173B (en) * 2013-07-25 2014-12-01 Young Optics Inc Zoom lens
TWI761059B (en) * 2021-02-03 2022-04-11 大陸商廣州立景創新科技有限公司 Zoom lens module

Similar Documents

Publication Publication Date Title
KR102385167B1 (en) Zoom lens and image pickup apparatus including same
WO2015146067A1 (en) Zoom-lens system, interchangeable-lens device, and camera system
JP5764510B2 (en) Zoom lens
JP2013015713A (en) Catadioptric lens system and imaging apparatus
US20140055659A1 (en) Zoom lens and image pickup apparatus
JP6314471B2 (en) Zoom lens system
JP5959938B2 (en) Zoom lens and imaging apparatus having the same
WO2013191295A1 (en) Zoom lens, and imaging device equipped with same
JP2013160997A (en) Inner focus type telephotographic zoom lens of large aperture ratio
JP2013228450A (en) Zoom lens and imaging apparatus including the same
JP2013218290A (en) Zoom lens system, interchangeable lens apparatus and camera system
TW201326888A (en) Wide angle focus lens
JP2012103480A (en) Zoom lens and imaging optical system having the same
JP2010277082A (en) Zoom lens
JP2013114262A (en) Zoom lens system
TW201326889A (en) Zoom lens
JP2014056023A (en) Zoom lens system and electronic image capturing device having the same
JP2011221554A (en) Zoom lens and video camera using the same
TWI299408B (en) Zoom lens system
JP2013068926A (en) Zoom lens
JP2010152247A (en) Inner focus type vibration-proof lens
JP2013210604A (en) Close range correction lens system
JP2014202806A (en) Zoom lens and image capturing device having the same
TW201221995A (en) Zoom lens
JP6657008B2 (en) Variable power optical system and imaging device