201221656 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種鋰基合金及其製造方法,特別疋 有關於一種鋰純度較高之鋰基合金及其製造方法。 【先前技術】201221656 VI. Description of the Invention: [Technical Field] The present invention relates to a lithium-based alloy and a method for producing the same, and more particularly to a lithium-based alloy having a high purity of lithium and a method for producing the same. [Prior Art]
鋰基合金(lithium (Li)-based alloy)係指以鋰為主之輕 量化合金材料,由於鋰的密度相當低(0 534 g/cm3),因此鏍 基合金之密度亦低於其他種類的合金,近年來成為輕量化 結構元件設計之候選材料》 將熔點較低之鋰元素先行熔融,再升至高溫並添加 一般而言’鋰基合金係利用真空感應熔煉法進行熔 煉,其中真二感應炼煉法又可概分為順向加料溶煉法以及 逆向加料熔煉法。順向加料熔煉法係先將真空感應熔煉爐 之腔體抽至高真空清潔後,注入氬氣,在氬氣的環境下, 熔點較 高之合金元素,以熔煉出鋰基合金。反之,逆向加料 法則是先將真空感應熔煉爐之腔體抽至高真空清潔後炫煉 入氬氣,在氬氣的環境下,將熔點較高之合金元素注 融後,再添加熔點較低之鋰元素,以熔煉出鋰基合金仃熔 除此之外,鋰基合金亦可利用機械合金法進行人 其係將鋰元素與鋁元素經長時間球磨後,合成β 二成, 錄健合金)。 目^合 上述合金熔煉或合成的過程中,無法避免長時 的情形。然而鋰的熔點與密度均較低,鋰的特性亦較過朝 潑,因此密度較低的鋰在熔融後會漂浮於鋁湯表’為廷 ,而上 201221656 述習知製程產生的高溫 雜質等。如此一來,不槐:致鋰極易揮發、生成氧化物气 且製得之鐘基合金的之製程的困難度灰 有鑑於此,亟需提二同、各易生成氧化物或雜質。 期能克服習知順向加料炫;及其製造方法,以 金法會有鐘元素揮發及生成氧化或機械合 【發明内容] 因此’本發明之—能 造方法,其係利用炫點ΐ於Ξ的:及其製 用多階段熱處理進杆八的隹屬咱包覆鋰金屬,並利 分布較均勻之鋰基合0金\、'煉,以製得鋰純度較高、合金 間,大幅降低鋰元幸σ撞袼广於上述方法縮短整體製程時 s金法會有鐘元素揮發及生成氧化物或雜質=或機械 本發明的另一態樣則是在提供一種 用上述方法製得鋰純度較高、人鋁曰金,其係利 金’以應用於輕結構元件(例如運動器材之::1: ^:合 之外殼)或複一氫材料。 之材㈣軍事武器 法。:據月上述態樣,提出一種鋰基合金之製造方 屬,金 高於裡金屬炫點之高㈣金屬。 金屬伯之熔點為 接著,分別加熱一原料與上述之包覆 度。在一例示中,此原料之材料與上述之金屬二: 201221656 高熔點金屬,且第一溫度可介於金屬箔與鋰金屬之熔點間。 然後,在第一溫度下,混合上述之包覆鋰金屬與原料, 形成金屬混合物後,加熱此金屬混合物至第二溫度,其中 第二溫度高於高熔點金屬之熔點,以形成合金熔湯。之後, 在第二溫度下,均勻混合上述之合金熔湯。 而後’冷卻合金溶湯*以形成鐘基合金*其中链基合 金為/3相鋰基合金,且鋰金屬之重量的損耗率為等於或低 於1百分比。 • 依據本發明一實施例,上述之高熔點金屬可包括但不 限於铭、鎮、锰、錯·、鋅、鈦、銃、紀、銅、銀或上述之 任意組合。 依據本發明一實施例,上述之原料更包含一非金屬材 料,且此非金屬材料可包括矽。 依據本發明一實施例,上述之原料更可包含另一金 屬,且另一金屬之材料與高熔點金屬材料不同。在一例示 中,第一溫度可介於鋰金屬、高熔點金屬及另一金屬中之 參 最低二熔點間。在另一例示中,第二溫度可大於鋰金屬、 高炫點金屬及另一金屬中之最高熔點。 根據本發明之另一態樣,提出一種相m呂合金(/3-鐘 鋁合金)。在一實施例中,此jS-鋰鋁合金係利用上述揭示之 任一方法所製得。在另一實施例中,上述之jS-裡銘合金可 用於輕結構元件或複合儲氫材料。 應用本發明之鋰基合金及其製造方法,其係利用熔點 高於鋰之的金屬箔包覆鋰金屬,並利用多階段熱處理進行 合金熔煉,以製得鋰純度較高、組成分布較均勻之鋰基合 201221656 金。由於上述方法縮短整體製程時間,大幅降低鋰元素揮 發及生成氧化物或雜質的機率,故可有效克服習知順向加 料熔煉法、逆向加料熔煉法或機械合金法會有鋰元素揮發 及生成氧化物或雜質等問題,進而應用於輕結構元件(例如 運動器材之材料或軍事武器之外殼)或複合儲氳材料。 【實施方式】 承前所述,本發明提供一種鋰基合金及其製造方法, Φ 其係將熔點高於鋰的高熔點金屬製成金屬箔之後,以高熔 點金屬製成之金屬箔(以下簡稱「高熔點金屬箔」)包覆低 熔點之鋰金屬。再利用多階段熱處理進行合金熔煉,以製 得具有較高鋰純度且組成分布較均勻之鋰基合金。 在此說明的是,此處所稱之「鋰基合金」係指以鋰金 屬為主之輕量化合金材料,且上述之「金屬箔」可包括但 不限於金屬膜、金屬薄片以及其他結構上相當或可置換者。 φ 鋰基合金的組成 在一實施方式中,鋰基合金可只由兩種金屬材料所構 成,一種為鋰金屬,另一種為高熔點金屬。上述之高熔點 金屬的熔點比鋰金屬的熔點高,例如可為但不限於鋁、鎂、 錳、锆、鋅、鈦、銃、釔、銅或銀,而與鋰金屬形成鋰鋁 合金、鋰鎂合金、鋰錳合金、鋰锆合金、鋰鋅合金、鋰鈦 合金、链銃合金、經纪合金、链銅合金或裡銀合金。在一 例示中,裡基合金例如可為裡I呂合金。在又一例示中,裡 201221656 基合金例如可為/3相鋰基合金(/?-鋰基合金)。 在另一實施方式中,可在上述之由兩種金屬材料構成 之鋰基合金中加入至少一種第三種材料,以形成含有至少 三種成分之鋰基合金。第三種材料可為金屬材料或非金屬 材料。若第三種材料為金屬材料時,可為與上述兩種金屬 材料相異之高熔點金屬或其他金屬材料。若第三種材料為 非金屬材料時,例如可為矽。 •鋰基合金之製造方法 由於鋰金屬的熔點較低(約180.54°C),受熱時極易氧 化及揮發,因此本發明之鋰基合金之製造方法係利用熔點 高於鋰之高熔點金屬箔包覆鋰金屬,以縮短鋰金屬被氧化 及揮發的時間。 請參閱第1圖,其係繪示根據本發明一實施例之鋰基 合金之製造方法流程圖。此方法100可包括但不限於以下 • 述之多階段熱處理進行合金熔煉,在此先以合成兩種成分 之鋰基合金為例來進行解說。 首先,在步驟i〇i中,使用金屬箔包覆鋰金屬,以形 成一包覆鋰金屬。在一例示中,金屬箔之材料為熔點高於 鐘金屬之高炼點金屬,如上述所舉。 接著,在步驟103中,分別加熱一原料與上述之包覆 链金屬至第一溫度。在一例示中,此原料之材料可以是高 熔點金屬,且第一溫度可介於金屬箔與鋰金屬之熔點間。 其次,第一溫度需讓鋰金屬已經融化,但是高熔點金屬只[s] 7 201221656 是均勻受熱至接近熔融狀態,讓高熔點金屬箔可以保護熔 融的鐘金屬,使其不易揮發及被氧化。因此,在一例示中, 上述第一溫度可高於鋰金屬之熔點,但小於高熔點金屬的 炫點。 在另一例示中,當高熔點金屬為鋁金屬時,由於鋁的 熔點為約660°C,因此第一溫度例如可為約200°C至小於約 660°C,或約 630°C 至約 650°C,亦或約 640°C。 為了減少鋰金屬被氧化的機會,在步驟103中,可讓 φ 反應室充滿保護氣體甚或抽真空。在一例示中,當上述反 應室充滿保護氣體時,上述的保護氣體例如可為氬氣或其 他鈍氣,且其内部壓力例如可為大於一大氣壓力。在另一 例示中,當上述反應室抽真空時,其内部壓力例如可為小 於約 l(T2Torr (即約 1.33 帕(Pa))。 為了縮短鋰金屬後續被氧化及揮發的時間,步驟103 可於上述條件中進行約1小時。 接著,在步驟105中,在第一溫度下混合上述之包覆 φ 鐘金屬與原料,以形成金屬混合物。在一例示中,可將已 預熱之高熔點金屬加入已預熱之包覆鋰金屬中,形成金屬 混合物。然徭,扃舟驟1 07中,加埶,i:h合屬混合物5篦二 溫度,其中第二溫度高於高熔點金屬之熔點,以形成合金 熔湯。由於要讓高熔點金屬與鋰金屬在第二溫度中熔融為 合金熔湯,因此第二溫度需大於高熔點金屬之熔點。依據 一實施例,第二溫度可高於高熔點金屬熔點,約高出80°C 至 100°C。 然後,在步驟109中,在第二溫度下,均勻攪拌前述 201221656 之合金熔湯。之後,在步驟111中,冷卻前述之合金熔湯, 以形成裡基合金。在一例示中,合金熔湯係自然冷卻至0 °C 至 50°c。 由於本發明利用高熔點金屬箔包覆熔點較低的鋰金 屬,並利用多階段熱處理進行合金熔煉,因此可於較短的 製程時間(約4小時至5小時)内,製得大量、組成分布均 勻且鋰純度較高之鋰基合金,其中鋰基合金為/3相鋰基合 金,且鋰金屬之重量的損耗率可等於或低於1百分比。 φ 值得一提的是,相較於習知製程需由室溫直接升溫至 第二溫度,上述方法使鋰金屬在尚未與保護氣體接觸前, 即與接近熔融狀態之高熔點金屬接觸,縮小步驟107由第 一溫度升溫至第二溫度之溫差。故此,可大幅降低鋰金屬 因與保護氣體中的不純物接觸而產生雜質的可能性,更可 縮短鋰金屬因高熱而揮發的時間。 再者,在製造至少三成分的鋰基合金時,此至少三成 分的鋰基合金可包括但不限於鋰金屬、高熔點金屬與第三 φ 種材料,其中第三種材料可為另一金屬或一種非金屬材料。 其次,此至少三成分的鋰基合金亦可參照上述揭示之 方法進行。舉例而言,在步驟101中,使用金屬箔包覆鋰 金屬以形成一包覆裡金屬時,金屬箔之材料可為高熔點金 屬。 在步驟103中,分別加熱由上述之高熔點金屬與第三 種材料所組成之一原料與上述之包覆鋰金屬至第一溫度, 其中第一溫度可為介於上述製備鋰基金屬所用原料之最低 二熔點間。 201221656 在步驟107中,第二溫度可大於上述製備鋰基金屬所 用原料中之最高熔點,或第二溫度可比上述製備鋰基金屬 所用原料中之最高熔點高出80°C至l〇〇°C。 另補充說明的是,若要製造前述之至少具有三種成分 之鋰基合金時,只有鋰金屬需要用高熔點金屬包覆起來, 第三種材料則不需要包覆。 鋰基合金之反應系統 在一實施例中,上述鋰基合金之製造方法可於習知的 反應系統或於第2圖之反應系統200中進行之。下面以第 2圖之反應系統200為例來說明之。 請參閱第2圖,其係繪示根據本發明一實施例之反應 系統示意圖。在一實施例中,第2圖之反應系統200例如 可為階段式氣氛熔煉爐,而上述步驟101中之二反應室可 分別為反應系統200之預熱坩鍋211及連接於預熱坩鍋211 • 一側之主坩鍋212。 預熱坩鍋211用於置入高熔點金屬218(例如鋁金屬或 至少二種不同的高熔點金屬),且預熱坩鍋211外侧設有加 熱元件223,以進行前述之第一升溫步驟,使預熱坩鍋211 内之高熔點金屬218均勻預熱至第一溫度。主坩鍋212用 於置入包覆高熔點金屬箔219的鋰金屬220,主坩鍋212 外側亦設有加熱元件203,以進行多階段熱處理步驟,例 如第一升溫步驟、第二升溫步驟、持溫攪拌步驟、冷卻步 驟等。 201221656 由於鋰金屬220之熔點遠低於高熔點金屬218之熔 點:而且高熔點金屬218通常需要較久的加熱時間來升溫 至第-溫度。所以,當高熔點金屬218在預熱掛銷2ιι中 先心ϋ溫步料,其產生之輻射财熔_金屬22〇 之虞。因此在-實施例中,反應系統2⑻之預熱掛銷2ιι 與主掛銷212之間,可設有一熱隔絕材料,例如第2圖的 絕熱板215。此絕熱板215可利用例如耐火纖維製成,藉 以避免預熱坩鍋211之熱輻射至主坩鍋212,進而有效避 φ免鋰金屬220之過早熔融。此外,此絕熱板215於攪拌棒 214降下之相對位置可選擇性設有一開口 215&,以利於攪 拌棒214於後續步驟中,伸入主坩鍋212)中而攪拌合金熔 湯0 當主坩鍋212内之包覆高熔點金屬箔219之鋰金屬22〇 利用加熱70件203升溫至第一溫度時,使高熔點金屬 均勻受熱至接近熔融狀態後,可利用推料桿213沿著例如 箭頭231之方向,將預熱之高熔點金屬218加入主坩鍋Μ] 的包覆高炫點金屬羯319之鐘金屬32〇中,並持續利用加 熱元件203加熱至第二溫度,使高溶點金屬218與 熔點金屬箔219之鋰金屬220二者熔融為合金熔湯。冋 之後,授拌棒2M可穿過絕熱板215之2 主掛鋼2Π中並沿著例如箭頭233之方向’在^伸: 中均句㈣前述之合錄湯,使組成分布較為均勻^ =中矣授拌棒214可利用耐熱材料製成,例如以不錄鋼 二成’表面可塗佈一層耐火材料。在另 -可設於主_212之上方,並以〇型環固定密== 201221656 應系統200之一側,在不影響真空度或保護氣體之環境 下’沿著上、下、順時針或逆時針方向作動,以均勻攪拌 合金溶湯340。 在進行冷卻步驟時,前述之合金熔湯可在主坩鍋212 中自然冷卻,以形成鋰基合金。 請再參閱第2圖,在一實施例中,進行上述多階段熱 處理步驟時’反應系統200之後侧可設有至少一個氣體入 口 216以及氣體出口 217,以提供真空度較高或充滿保護 φ 氣體的環境。在一例示中,氣體入口 216之位置可隨溶煉 狀況而作調整,並可連接氣瓶並將保護氣體從開口 205導 入反應系統2〇〇中。在此例示中,氣體入口 216與反應系 統200之連接處設有球閥(圖未繪示),以控制保護氣體之 輸送。在另一例示中’氣體出口 217可連接機械幫浦 (mechanical pump ;圖未繪示)以從開口 207將反應系統2〇〇 之腔體(例如預熱坩鍋211以及主坩鍋212)抽至真空或真空 度較高的狀態。在此例示中,氣體出口 217與反應系統2〇〇 之連接處亦設有球閥(圖未繪示),以控制真空度之狀態。 由於本發明之方法係利用熔點高於鋰的金屬箔包 金屬,並利用多階段熱處理進行合金熔煉,可有致縮短 體製程時間,大幅降低經元素揮發及生成氧化物或' 暂整 機率,故可有效克服習知順向加料炫煉法、逆向加料^的 法或機械合金法中會核7°素揮發及生成氧化物或雜陆練 問題。其次,由於本發明製得之鋰基合金的鐘純度#古等 組成分布較均勻,可應用於輕結構元件(例如運動器^向、 料或軍事武器之外殼)或複合儲氫材料。 之枒 12 201221656 以下利用實施方式以說明本發明之應用,然其並非用 以限定本發明,本發明技術領域中具有通常知識者,在不 脫離本發明之精神和範圍内,當可作各種之更動與潤飾。 實施例:製備相鋰鋁合金 此實施例係製備/5相鋰鋁合金,其可利用第2圖之反 應系統200進行。首先,提供鋁金屬以及鋰金屬,其中鋁 金屬以及鋰金屬依5: 1之重量比秤重。鋁金屬均勻預熱至 φ 第一溫度,其中第一溫度可為約200°C至約660°C,或約 630°C至約650°C,亦或約640°C。同時,使預熱坩鍋211 内之包覆高熔點金屬箔219之鋰金屬220亦均勻預熱至第 一溫度。 之後,將預熱之鋁金屬加入主坩鍋212中。而後,進 行第二升溫步驟,加熱至第二溫度,例如約640°C至約660 t:、約630°C至約650°C、亦或約640°C,使鋁金屬與鋁箔 包覆之鋰金屬二者熔融為合金熔湯。 φ 由於鋰金屬在尚未與保護氣體接觸前,即與鋁湯接觸 並快速化合成合金熔湯,故可大幅降低鋰金屬因與保護氣 體中的不純物接觸而產生雜質的可能性。其次,鋁金屬在 熔融前已先行預熱,不僅有效縮短主坩鍋212加熱的時 間,更可縮短鋰金屬因高熱而揮發的時間。 之後,進行持溫攪拌步驟,以均句攪拌前述之合金熔 湯約10分鐘。 而後,進行冷卻步驟’使前述之合金炫湯自然冷卻至 0°C至50°c,以形成/3相鋰鋁合金,其中熔煉製程時間僅 r r. ί t a j 13 201221656 約4小時至5小時。 上述製得之/3相鋰鋁合金利用市售可得之感應耦合電 漿-原子發射光譜分析儀(inductively coupled plasma-atomic emission spectrometer ; ICP-AES) 進行成分分析 ,其 結果如第1表之所示。由第1表之結果可知,溶配出之沒 相链鋁合金與理論值相當接近,且熔煉製程時間僅約4小 時至5小時。 第1表 元素成分分析(wt.%) 鋰(Li) IS(A1) 鐵(Fe) 缝(Μη) 鉻(Cr) 氧(0) 19.8 80.01 0.10 0.02 0.03 0.04 值得一提的是,由於本發明利用熔點較高的鋁箔包覆 熔點較低的鐘金屬,並利用多階段熱處理進行合金炫煉, 因此可於較短的製程時間(約4小時至5小時)内,製得大 •量、組成分布均勻且鋰純度較高之鋰鋁合金,其中鋰之重 量的損耗率可等於或低於i百分比。故此,本發明揭示之 製造方法確實有效克服習知順向加料熔煉法、逆向加料熔 煉法或機械合金法會有經元素揮發及生成氧化物或 問題。 、 上述所得之链基合金可廣泛應用於各種形式的輕結構 元件或複合儲氫材料,其形式可包括但不限於運動器材之 材料、軍事武器之外殼或複合儲氫材料,此處不再詳述。 另需補充的是’本發明雖以特定種類或比例之金屬、製程 201221656 條件、設備、及其分析法等技術細節為心,以獲得上述 鐘基合金,惟本發明並不限於此,亦非所有實施例皆需要 上述技術細Ip。本發明所屬技術領域中任何通常知識 之精神和範圍内,亦可使用其他種類 :====:他分析法,以獲得上 技術r中任何具有通常;:識者所熟知的所f堇 以示意的方式呈現於圖式中。 〜、、。構或兀件,僅 造=上較t::鍾基合金及其製 的鐘金屬,並利用,/溶點較π的金屬羯包覆炼點較低 純度較高、組成分熱處理進行合金轉,以製得鐘 製造方法能勻之鋰基合金。上粒基合金之 成氧化物或雜質^時間,大幅降低鐘元素揮發及生 材之材料或軍事,率,可應用於輕結構元件(例如運動 雖然本發明已裔之外殼)或複合儲氫材料。 定本發明,在本H實施方式揭露如上,然其並非用以限 者,在不脫離本發明所屬技術領域中任何具有通常知識 與潤飾,因此本發日之精神和範圍内,當可作各種之更動 所界定者為準。明之保護範圍當視後附之申請專利範圍 【圖式簡單說明】 為讓本發明 能更明顯易憧 述和其他目的、特徵、優點與實施例 第1二附圖式之說明如下: 术 圃為綠+ 4日 /、根據本發明一實施例之鋰基合金之製造 15 201221656 方法流程圖。 第2圖為繪示根據本發明一實施例之反應系統示意 圖。 【主要元件符號說明】 100 :方法 ΗΠ、103、105、107、109、 200 :反應系統 203/223 :加熱元件 205/207/215a :開口 211 :預熱坩鍋 212 :主坩鍋 213 :推料桿 214 :攪拌棒 111 :步驟 215 :絕熱板 216 :氣體入口 217 :氣體出口 218 :高熔點金屬 219 :金屬箔 220 :鋰金屬 231/233 :箭頭Lithium (Li)-based alloy refers to a lithium-based lightweight alloy material. Due to the relatively low density of lithium (0 534 g/cm3), the density of bismuth-based alloys is lower than other types. Alloy, in recent years, has become a candidate material for lightweight structural component design. The lithium element with lower melting point is first melted, then raised to high temperature and added. Generally, the lithium-based alloy is smelted by vacuum induction melting method. The refining method can be further divided into a forward feeding smelting method and a reverse feeding smelting method. The forward feeding smelting method firstly extracts the cavity of the vacuum induction melting furnace to a high vacuum cleaning, and then injects argon gas to melt the lithium-based alloy in an argon atmosphere with an alloy element having a relatively high melting point. On the contrary, the reverse feeding method is to first pump the cavity of the vacuum induction melting furnace to high vacuum cleaning and then smelt the argon gas. Under the argon atmosphere, the alloy element with higher melting point is melted, and then the melting point is lower. Lithium element is melted by melting lithium-based alloy. In addition, the lithium-based alloy can also be synthesized by mechanical alloying method. After the long-term ball milling of lithium and aluminum elements, β-series is synthesized. . In the process of smelting or synthesizing the above alloys, long-term conditions cannot be avoided. However, the melting point and density of lithium are both low, and the characteristics of lithium are also relatively high. Therefore, the lithium with lower density floats on the aluminum soup table after melting, and the high temperature impurities generated by the conventional process are described in 201221656. . In this way, it is not difficult to: the difficulty of the process of causing lithium to be extremely volatile, generating oxide gas and producing the bell-based alloy. In view of this, it is necessary to mention the same, each easily forming oxides or impurities. Can overcome the conventional knowledge of the addition of materials; and its manufacturing method, the gold method will have the clock element volatilization and the formation of oxidation or mechanical integration [invention] Therefore, the invention can be made by using the bright point : and its multi-stage heat treatment into the rod of the genus 咱 咱 咱 咱 锂 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 咱 锂 锂 锂 锂 锂Yuan Xing σ 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼 袼, human aluminum sheet metal, which is used for the application of light structural components (such as sports equipment: 1: 1: ^ shell) or complex hydrogen materials. Material (4) Military Weapons Law. According to the above-mentioned aspects of the month, a manufacturing method of a lithium-based alloy is proposed, and the gold is higher than the metal of the metal (4). The melting point of the metal is followed by heating a raw material and the above-mentioned coating degree, respectively. In one example, the material of the raw material and the above-mentioned metal two: 201221656 high melting point metal, and the first temperature may be between the melting point of the metal foil and the lithium metal. Then, at the first temperature, the above-mentioned coated lithium metal and the raw material are mixed to form a metal mixture, and then the metal mixture is heated to a second temperature, wherein the second temperature is higher than the melting point of the high melting point metal to form an alloy melt. Thereafter, the above alloy melt is uniformly mixed at the second temperature. Then, the alloy is dissolved to form a bell base alloy* wherein the chain base alloy is a /3 phase lithium-based alloy, and the loss rate of the weight of the lithium metal is equal to or lower than 1%. • According to an embodiment of the invention, the above high melting point metal may include, but is not limited to, Ming, Zhen, Manganese, Zinc, Zinc, Titanium, Tantalum, Copper, Silver or any combination thereof. According to an embodiment of the invention, the raw material further comprises a non-metallic material, and the non-metallic material may comprise niobium. According to an embodiment of the invention, the above-mentioned raw material may further comprise another metal, and the material of the other metal is different from the high melting point metal material. In one example, the first temperature can be between the lithium metal, the high melting point metal, and the lowest melting point of the other metal. In another illustration, the second temperature may be greater than the highest melting point of the lithium metal, the high point metal, and the other metal. According to another aspect of the present invention, a phase mlu alloy (/3-ring aluminum alloy) is proposed. In one embodiment, the jS-lithium aluminum alloy is produced by any of the methods disclosed above. In another embodiment, the above-described jS-Liming alloy can be used for light structural components or composite hydrogen storage materials. The lithium-based alloy of the present invention and a manufacturing method thereof are characterized in that a lithium metal is coated with a metal foil having a melting point higher than that of lithium, and the alloy is smelted by a multi-stage heat treatment to obtain a lithium having a high purity and a uniform composition distribution. Lithium base 201221656 gold. Since the above method shortens the overall process time and greatly reduces the probability of lithium element volatilization and the formation of oxides or impurities, it can effectively overcome the conventional forward feed smelting method, reverse feed smelting method or mechanical alloy method to have lithium element volatilization and oxide formation or Problems such as impurities are applied to light structural components (such as materials for sports equipment or housings for military weapons) or composite storage materials. [Embodiment] As described above, the present invention provides a lithium-based alloy and a method for producing the same, which is a metal foil made of a high melting point metal after a high melting point metal having a melting point higher than that of lithium is formed into a metal foil (hereinafter referred to as "High melting point metal foil" is coated with a low melting point lithium metal. The alloy is smelted by a multi-stage heat treatment to obtain a lithium-based alloy having a high lithium purity and a uniform composition distribution. Here, the term "lithium-based alloy" as used herein refers to a lightweight alloy material mainly composed of lithium metal, and the above-mentioned "metal foil" may include, but is not limited to, a metal film, a metal foil, and other structural equivalents. Or replaceable. Composition of φ Lithium-Based Alloy In one embodiment, the lithium-based alloy may be composed of only two metal materials, one being lithium metal and the other being a high melting point metal. The melting point of the high melting point metal is higher than the melting point of the lithium metal, and may be, for example but not limited to, aluminum, magnesium, manganese, zirconium, zinc, titanium, lanthanum, cerium, copper or silver, and forms lithium aluminum alloy and lithium with lithium metal. Magnesium alloy, lithium manganese alloy, lithium zirconium alloy, lithium zinc alloy, lithium titanium alloy, chain niobium alloy, broker alloy, chain copper alloy or silver alloy. In an illustration, the rim alloy may be, for example, a ruthenium alloy. In still another example, the 201221656 base alloy may be, for example, a /3 phase lithium base alloy (/?-lithium based alloy). In another embodiment, at least one third material may be added to the above lithium-based alloy composed of two metal materials to form a lithium-based alloy containing at least three components. The third material may be a metallic material or a non-metallic material. If the third material is a metal material, it may be a high melting point metal or other metal material different from the above two metal materials. If the third material is a non-metallic material, for example, it may be ruthenium. Lithium-based alloy manufacturing method Because lithium metal has a low melting point (about 180.54 ° C), it is easily oxidized and volatilized when heated. Therefore, the lithium-based alloy of the present invention is manufactured by using a high melting point metal foil having a melting point higher than that of lithium. Lithium metal is coated to shorten the time during which the lithium metal is oxidized and volatilized. Referring to Figure 1, there is shown a flow chart of a method of manufacturing a lithium-based alloy according to an embodiment of the present invention. The method 100 may include, but is not limited to, the multi-stage heat treatment described below for alloy smelting, which is exemplified by a lithium-based alloy in which two components are synthesized. First, in step i〇i, lithium metal is coated with a metal foil to form a clad lithium metal. In one example, the material of the metal foil is a high-point metal having a melting point higher than that of the bell metal, as described above. Next, in step 103, a raw material and the above-mentioned coated chain metal are separately heated to a first temperature. In one example, the material of the material may be a high melting point metal and the first temperature may be between the melting point of the metal foil and the lithium metal. Secondly, the first temperature needs to allow the lithium metal to melt, but the high melting point metal only [s] 7 201221656 is uniformly heated to near molten state, allowing the high melting point metal foil to protect the molten clock metal, making it less volatile and oxidized. Therefore, in one example, the first temperature may be higher than the melting point of the lithium metal, but less than the bright point of the high melting point metal. In another illustration, when the high melting point metal is aluminum metal, since the melting point of aluminum is about 660 ° C, the first temperature may be, for example, from about 200 ° C to less than about 660 ° C, or from about 630 ° C to about 650 ° C, or about 640 ° C. In order to reduce the chance of lithium metal being oxidized, in step 103, the φ reaction chamber may be filled with a protective gas or even a vacuum. In one example, when the reaction chamber is filled with a shielding gas, the shielding gas may be, for example, argon or other inert gas, and the internal pressure thereof may be, for example, greater than one atmospheric pressure. In another illustration, when the reaction chamber is evacuated, the internal pressure thereof may be, for example, less than about 1 (T2 Torr (ie, about 1.33 Pa). In order to shorten the time during which the lithium metal is subsequently oxidized and volatilized, step 103 may be And performing the above conditions for about 1 hour. Next, in step 105, the above-mentioned coated φ 钟 metal and the raw material are mixed at a first temperature to form a metal mixture. In an example, the preheated high melting point can be obtained. The metal is added to the pre-heated coated lithium metal to form a metal mixture. Then, in the boat, in step 107, the enthalpy, i:h is a mixture of 5 篦 2 temperature, wherein the second temperature is higher than the high melting point metal Melting point to form an alloy melt. Since the high melting point metal and the lithium metal are melted into an alloy melt at a second temperature, the second temperature needs to be greater than the melting point of the high melting point metal. According to an embodiment, the second temperature can be high. The melting point of the high melting point metal is about 80 ° C to 100 ° C. Then, in step 109, the alloy melting of the aforementioned 201221656 is uniformly stirred at the second temperature. Thereafter, in step 111, the alloy is cooled. Melt soup To form a ruthenium alloy. In an example, the alloy melt is naturally cooled to 0 ° C to 50 ° C. Since the present invention utilizes a high melting point metal foil to coat a lower melting point of lithium metal, and uses a multi-stage heat treatment Alloy smelting, so that a large number of lithium-based alloys with uniform composition and high purity of lithium can be obtained in a short process time (about 4 hours to 5 hours), wherein the lithium-based alloy is a /3 phase lithium-based alloy. And the loss rate of the weight of lithium metal can be equal to or lower than 1%. φ It is worth mentioning that compared with the conventional process, the temperature is directly raised from room temperature to the second temperature, and the above method makes the lithium metal not yet with the shielding gas. Before the contact, that is, the contact with the high melting point metal in the near molten state, the temperature difference between the first temperature and the second temperature is reduced in the step 107. Therefore, the possibility of the lithium metal being contaminated by the contact with the impurity in the shielding gas can be greatly reduced. Further, the time for the lithium metal to volatilize due to high heat can be shortened. Further, when manufacturing a lithium-based alloy of at least three components, the at least three-component lithium-based alloy may include, but is not limited to, lithium metal. The high melting point metal and the third φ material, wherein the third material may be another metal or a non-metal material. Secondly, the at least three-component lithium-based alloy may also be carried out by referring to the method disclosed above. For example, In step 101, when the lithium metal is coated with a metal foil to form a cladding metal, the material of the metal foil may be a high melting point metal. In step 103, heating is respectively performed by the above-mentioned high melting point metal and the third material. And a first temperature may be between the lowest two melting points of the raw material used for preparing the lithium-based metal. 201221656 In step 107, the second temperature may be greater than the above-mentioned preparation of lithium. The highest melting point of the raw material used for the base metal, or the second temperature, may be 80 ° C to 10 ° C higher than the highest melting point of the raw material used for the preparation of the lithium-based metal. It is additionally noted that in order to manufacture the aforementioned lithium-based alloy having at least three components, only the lithium metal needs to be coated with the high melting point metal, and the third material does not need to be coated. Reaction System of Lithium-Based Alloy In one embodiment, the above-described method of producing a lithium-based alloy can be carried out in a conventional reaction system or in the reaction system 200 of Fig. 2. The reaction system 200 of Fig. 2 will be described below as an example. Referring to Figure 2, there is shown a schematic diagram of a reaction system in accordance with an embodiment of the present invention. In one embodiment, the reaction system 200 of FIG. 2 can be, for example, a stage atmosphere melting furnace, and the two reaction chambers in the above step 101 can be the preheating crucible 211 of the reaction system 200 and the preheating crucible. 211 • One side main crucible 212. The preheating crucible 211 is used for placing a high melting point metal 218 (for example, aluminum metal or at least two different high melting point metals), and a heating element 223 is disposed outside the preheating crucible 211 to perform the first heating step described above. The high melting point metal 218 in the preheating crucible 211 is uniformly preheated to the first temperature. The main crucible 212 is used for inserting the lithium metal 220 coated with the high melting point metal foil 219, and the heating element 203 is also disposed outside the main crucible 212 for performing a multi-stage heat treatment step, such as a first heating step, a second heating step, Hold a temperature stirring step, a cooling step, and the like. 201221656 Since the melting point of lithium metal 220 is much lower than the melting point of high melting point metal 218: and high melting point metal 218 typically requires a longer heating time to warm up to the first temperature. Therefore, when the high melting point metal 218 is warmed up in the preheating pin 2 ιι, the resulting radiant fused metal 〇 22 〇. Therefore, in the embodiment, between the preheating pin 2102 of the reaction system 2 (8) and the main mounting pin 212, a heat insulating material such as the heat insulating plate 215 of Fig. 2 may be provided. The heat insulating plate 215 can be made of, for example, refractory fibers to avoid preheating the heat of the crucible 211 to the main crucible 212, thereby effectively preventing premature melting of the lithium-free metal 220. In addition, the insulating plate 215 can be selectively provided with an opening 215 & in the relative position of the stirring rod 214 to facilitate the stirring rod 214 to extend into the main crucible 212) and stir the alloy melting material in the subsequent step. The lithium metal 22 coated with the high melting point metal foil 219 in the pot 212 is heated to a first temperature by heating 70 pieces 203, and after the high melting point metal is uniformly heated to a near molten state, the push rod 213 can be used along the arrow, for example. In the direction of 231, the preheated high melting point metal 218 is added to the metal crucible of the high melting point metal 319 of the main crucible, and is continuously heated to the second temperature by the heating element 203 to make the high melting point Both the metal 218 and the lithium metal 220 of the melting point metal foil 219 are melted into an alloy melt. After the crucible, the mixing rod 2M can pass through the main hanging steel 2 of the insulating plate 215 and along the direction of the arrow 233, in the direction of the extension: the middle of the sentence (four) of the above-mentioned combined soup, so that the composition distribution is more uniform ^ = The medium-sized mixing rod 214 can be made of a heat-resistant material, for example, a non-recording steel can be coated with a layer of refractory material. Alternatively - it can be placed above the main _212 and fixed with a 〇-ring ring == 201221656 Should be on one side of the system 200, along the up, down, clockwise or in an environment that does not affect the vacuum or shielding gas Operate counterclockwise to uniformly stir the alloy solution 340. When the cooling step is performed, the aforementioned alloy melt can be naturally cooled in the main crucible 212 to form a lithium-based alloy. Referring to FIG. 2 again, in an embodiment, when the multi-stage heat treatment step is performed, 'the reaction system 200 may be provided with at least one gas inlet 216 and a gas outlet 217 on the rear side to provide a higher degree of vacuum or full of protection φ gas. environment of. In one example, the position of the gas inlet 216 can be adjusted with the smelting condition and the gas cylinder can be connected and the shielding gas can be introduced into the reaction system 2 from the opening 205. In this illustration, a ball valve (not shown) is provided at the junction of the gas inlet 216 and the reaction system 200 to control the delivery of the shielding gas. In another illustration, the 'gas outlet 217 can be coupled to a mechanical pump (not shown) to pump the chamber of the reaction system 2 (eg, the preheated crucible 211 and the main crucible 212) from the opening 207. To a vacuum or a high degree of vacuum. In this illustration, a ball valve (not shown) is also provided at the junction of the gas outlet 217 and the reaction system 2A to control the state of the vacuum. Since the method of the present invention utilizes a metal foil with a melting point higher than that of lithium and utilizes a multi-stage heat treatment for alloy smelting, the system time can be shortened, and the element volatilization and oxide formation or the temporary probability are greatly reduced. Effectively overcome the conventional forward feeding method, the reverse feeding method or the mechanical alloying method, the nuclear 7° volatilization and the formation of oxides or heterogeneous problems. Secondly, since the lithium-based alloy prepared by the present invention has a relatively uniform composition of the clock purity and the like, it can be applied to a light structural member (for example, an outer casing of an armor, a material or a military weapon) or a composite hydrogen storage material. The following embodiments are used to illustrate the application of the present invention, but are not intended to limit the present invention, and those skilled in the art can make various kinds without departing from the spirit and scope of the present invention. Change and retouch. EXAMPLES: Preparation of Phase Lithium Aluminum Alloys This example is a preparation of a/5 phase lithium aluminum alloy which can be carried out using the reaction system 200 of Fig. 2. First, aluminum metal and lithium metal are provided, wherein aluminum metal and lithium metal are weighed according to a weight ratio of 5:1. The aluminum metal is uniformly preheated to a first temperature of φ, wherein the first temperature may range from about 200 ° C to about 660 ° C, or from about 630 ° C to about 650 ° C, or about 640 ° C. At the same time, the lithium metal 220 coated with the high melting point metal foil 219 in the preheating crucible 211 is also uniformly preheated to the first temperature. Thereafter, the preheated aluminum metal is added to the main crucible 212. Then, a second temperature increasing step is performed, heating to a second temperature, for example, about 640 ° C to about 660 t:, about 630 ° C to about 650 ° C, or about 640 ° C, to coat the aluminum metal with the aluminum foil. Both lithium metal melts into an alloy melt. φ Since lithium metal is in contact with aluminum soup before it is in contact with the protective gas and rapidly synthesizes the alloy melt, the possibility of lithium metal being contaminated by contact with impurities in the shielding gas is greatly reduced. Secondly, the aluminum metal is preheated before melting, which not only effectively shortens the heating time of the main crucible 212, but also shortens the time during which the lithium metal volatilizes due to high heat. Thereafter, a temperature stirring step was carried out, and the alloy melt was stirred for about 10 minutes in a uniform manner. Then, the cooling step is performed to cool the aforementioned alloy broth to 0° C. to 50° C. to form a 3-phase lithium aluminum alloy, wherein the smelting process time is only r r. ί taj 13 201221656 about 4 hours to 5 hours . The above-prepared/3-phase lithium aluminum alloy is subjected to component analysis by using a commercially available inductively coupled plasma-atomic emission spectrometer (ICP-AES), and the results are as shown in Table 1. Shown. From the results of the first table, it is known that the mismatched aluminum alloy is quite close to the theoretical value, and the smelting process time is only about 4 hours to 5 hours. Elemental composition analysis (wt.%) Lithium (Li) IS (A1) Iron (Fe) Seam (Μη) Chromium (Cr) Oxygen (0) 19.8 80.01 0.10 0.02 0.03 0.04 It is worth mentioning that, due to the present invention The alloy metal with a lower melting point is coated with an aluminum foil having a higher melting point, and the alloy is smelted by a multi-stage heat treatment, so that a large amount of time can be obtained in a short process time (about 4 hours to 5 hours). A lithium aluminum alloy having a uniform distribution and a high lithium purity, wherein the loss rate of lithium weight may be equal to or lower than the i percentage. Therefore, the manufacturing method disclosed by the present invention is effective in overcoming the conventional forward feeding smelting method, the reverse feeding smelting method or the mechanical alloying method, which may cause elemental volatilization and formation of oxides or problems. The chain-based alloys obtained above can be widely applied to various forms of light structural components or composite hydrogen storage materials, and the forms thereof may include, but are not limited to, materials of sports equipment, outer casings of military weapons or composite hydrogen storage materials, which are not detailed herein. Said. In addition, the invention is based on the technical details of the specific type or proportion of the metal, the process 201221656 condition, the equipment, and the analysis method thereof, to obtain the above-mentioned clock base alloy, but the invention is not limited thereto, nor is it All of the embodiments require the above-described technical details. Within the spirit and scope of any general knowledge in the technical field to which the present invention pertains, other types can also be used: ====: his analysis method to obtain any of the above techniques r; The way is presented in the schema. ~,,. Structure or element, only made = more than t:: Zhongji alloy and its made clock metal, and use, / melting point than π metal 羯 coated refining point, higher purity, composition heat treatment for alloy transfer In order to obtain a lithium-based alloy which can be made by the clock manufacturing method. The oxide or impurity of the granule-based alloy can greatly reduce the volatilization of the element and the material or military rate of the raw material, and can be applied to light structural components (such as sports although the shell of the present invention has been used) or composite hydrogen storage materials. . The present invention is disclosed in the above-mentioned embodiments, and it is not intended to be exhaustive, and it is not limited to the ordinary knowledge and the refinement in the technical field of the present invention. The definition of the change shall prevail. The scope of the invention is defined by the appended claims. [Brief Description of the Drawings] In order to make the invention more obvious and easy to describe and other objects, features, advantages and embodiments, the description of the first two drawings is as follows: Green + 4 days/, manufacture of a lithium-based alloy according to an embodiment of the invention 15 201221656 Method flow chart. Fig. 2 is a schematic view showing a reaction system according to an embodiment of the present invention. [Description of main component symbols] 100: Method ΗΠ, 103, 105, 107, 109, 200: Reaction system 203/223: Heating element 205/207/215a: Opening 211: Preheating crucible 212: Main crucible 213: Push Rod 214: Stirring rod 111: Step 215: Insulation plate 216: Gas inlet 217: Gas outlet 218: High melting point metal 219: Metal foil 220: Lithium metal 231/233: Arrow