TW201220937A - Power conversion and control systems and methods for solid-state lighting - Google Patents

Power conversion and control systems and methods for solid-state lighting Download PDF

Info

Publication number
TW201220937A
TW201220937A TW100135764A TW100135764A TW201220937A TW 201220937 A TW201220937 A TW 201220937A TW 100135764 A TW100135764 A TW 100135764A TW 100135764 A TW100135764 A TW 100135764A TW 201220937 A TW201220937 A TW 201220937A
Authority
TW
Taiwan
Prior art keywords
dimming
illumination
direct current
converter
power
Prior art date
Application number
TW100135764A
Other languages
Chinese (zh)
Inventor
Jr Earl W Mccune
Original Assignee
Mobius Power Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/897,066 external-priority patent/US8760078B2/en
Priority claimed from US12/897,094 external-priority patent/US9024534B2/en
Priority claimed from US12/897,081 external-priority patent/US8446099B2/en
Application filed by Mobius Power Llc filed Critical Mobius Power Llc
Publication of TW201220937A publication Critical patent/TW201220937A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/185Controlling the light source by remote control via power line carrier transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A solid-state lighting system comprises a plurality of light-emitting devices (e.g., light-emitting diodes) and an alternating current to direct current (AC-DC) converter that converts AC power to DC power for powering the plurality of light-emitting devices. The AC-DC converter is configured to perform AC-DC conversion directly, without the need for or use of a bridge rectifier or step-down transformer. According to one aspect of the invention, the light-emitting devices of the solid-state lighting system are autonomous and individually powered by a plurality of DC power supplies generated from the DC power produced by the AC-DC converter. According to another aspect, a plurality of phase-offset dimmer control signals are generated based on waveform distortions in a dimming signal produced by a conventional dimmer switch. The phase-offset dimmer control signals are used to individually control the dimming of the light-emitting devices.

Description

201220937 六、發明說明: L發明所屬之技術領域3 發明領域 本發明大體上有關於電力轉換及控制方法和系&,i 特別是有關於用於固態照明,諸如,舉例而言,發& 體(LED)照明的電力轉換及控制方法和系統。 t 】 發明背景 由於發光二極體(LED)的高效率及耐用性,它們是提供 住宅、辦公室及其他環境一般照明的理想候選者。胃 白熾燈的效率僅約為3%,而LED的效率為30%或更高。led 的壽命也比白熾燈長2〇倍以上且比節能燈長5倍以上 雖然LED之照明性能特性優於較習知的照明技術,{曰 是LED照明的廣泛採用已放慢。延緩的主要原因是严 泡價高。實際上,目前LED燈泡的成本約比類似光輸出之 白織燈泡貴10-25倍。 LED燈泡的高價格受製造所涉及之成本,特別是製造 供電LED燈泡所需之電力轉換電路所涉及之成本的顯著影 響。白熾燈泡直接從交流幹線接收電力。然而,LED燈泡 是由直流供電的。因此,若來自交流幹線的電力將被使用, 則一LED燈泡必須配備有電力轉換電路,以將交流幹線電 力轉換成直流電。 第1圖是一先前技術LED燈泡100的一圖式,繪示來自 交流幹線之交流電如何被轉換成現有LED燈泡中的直流。 201220937 首先,一橋式整流器(即二極體橋)1〇2將來自交流幹線的交 流輸入電壓整流成直流。整流後之電壓接著由—平流電 路來遽波,該平流電路的最簡單的形式包含被搞合至橋式 整流器102之輸出的一平流電容器1〇4。最後,一直流對直 流轉換器106將整流且濾波後的電壓降壓至供電—LED串 108中之LED所需的適當的直流輸出電壓Vout。直流輸出電 壓Vout是基於LED串108中LED的數目而設置的,該數目在 设计期間依LED燈泡100所需的光輸出水平(即流明)而確 疋。貫際上,LED串108之LED被配置成一串群且被擴散片 透鏡圍繞’該等擴散片透鏡使LED發出的光散開。 LED燈泡100之電力轉換電路存在的一個習知的問題 疋橋式整流器102及平流電容器1 〇4向交流幹線造成一非線 性負載。此非線性致使來自交流幹線的輸入電流以一系 列窄電流脈衝的形式被提取,如第2圖中所示者。該等窄電 流脈衝有很多_諧波及為具有—低功率因數之電力轉換 器的特性。功率因數是〇與1之間的一無因次數,描述一電 力轉換器從-交流電源轉移實際功率到—負載的有效程 度。-低功率因數是很不理想的,由於其導致轉換效率減 少、交流幹線產生器及分配系統發熱及可能干擾其他設備 性能的雜訊。 爲了避免與一低功率因數相關聯之問題,實際的交流 對直流電力轉換器典型地在橋式整流器1G2之輸出與直流 對直流轉換器106之輸人之間利用一功率因數校正(pFC)預 調節器302,如第3圖中所示者。PFC預調節器3〇2作用以迫 201220937 使輪入電流更加正弦化且與交流輸入電壓厂_相從而 增大功率因數。遺憾地是,PFC預調節器3〇2的引入降低了 月匕里效率,增加了零件數及製造成本,且難以以一小形狀 因數封裝LED燈泡300。此外,pFC預調節器3〇2通常包含產 生阿電壓的一升壓轉換器。這些高電壓易於對LED燈泡3〇〇 之零件造成應力’導致可靠性問題。該等高電壓還造成安 全問題。 現有LED燈泡存在的另一問題與它們本身不能受習知 的調光器開關的控制有關。許多住宅及辦公室具有被設計 成控制白熾燈泡之調光的調光器開關。理想的是能夠使用 這些預安裝的調光器開關來控制LED燈泡之調光。 第4圖是繪示一習知的調光器開關4〇〇的一電路圖。調 光器開關400包含一可變電阻器402、一電容器404、一 DIAC(交流二極體)406,及一 TRIAC(交流三極體)408。 TRIAC 408在電容器404兩端之電壓超過DIAC 406之崩潰 電壓時被觸發。該電壓依據交流輸入電壓之循環而增大 及減小’且,TRIAC 408之觸發視可變電阻器402及電容器 404所造成的RC延遲而定延遲每一正及負半週期。因此, 導通延遲512導致具有一較低的平均功率的一失真調光波 形,如第5B圖中所示者。用角度來說,導通延遲512在業内 被稱作「觸發角」(180°-θ),其中Θ被稱作「導電角」。藉由 調整可變電阻器402能夠控制觸發角,從而能夠控制輸出至 白熾燈泡410之平均功率,且因此能夠控制白熾燈泡410之 調光。 5 201220937 TRIACs周光器開關400適於控制白熾燈泡之調光。遺憾 地是,其並未提供現有的LED燈泡,像第丨及3圖中的先前 技術LED燈泡100及300s周光的一可接受解決方案。白織燈 泡在交流輸入波形週期之所有部分期間呈現一電阻性負 載。然而,LED是非線性裝置且比白熾燈泡提取的電流顯 著為少。特別是在增大調暗(即低光輸出水平)下,現有LED 燈泡之LED所提取的電流可能太小,以至於電流降至 丁111八0 408之保持電流以下。在這些條件下,丁尺1八匸4〇8可 再觸發或截止’導致惱人的LED閃爍,或LED燈泡在達到 所欲調光準位之前過早地截止。交流電源與LED之間存在 交流對直流電力轉換電路還可能干擾TRIAc調光器開關 400控制LED之調光的能力。 考量現有LED燈泡之上述缺點及限制,理想的是獲得 節省能源、製造低廉、緊密、使用安全、可靠的led燈泡 的電力轉換及控制方法與設備,且提供在一大調光範圍内 使用習知的調光器開關來控制LED燈泡之LED之調光的能 力。 【發明内容3 發明概要 為此揭露固態照明系統和電力轉換及控制方法。一示 範性固態照明系統包含複數發光裝置(例如發光二極體)及 一交流對直流(AC-DC)轉換器,該交流對直流(AC-DC)轉換 器將交流電轉換成直流電用以供電該複數發光裝置。該 AC-DC轉換器被配置成直接執行AC-DC轉換,而無需或不201220937 VI. OBJECTS OF THE INVENTION: FIELD OF THE INVENTION The present invention relates generally to power conversion and control methods and systems, and in particular to solid state lighting, such as, for example, hair & Method and system for power conversion and control of body (LED) lighting. t] Background of the Invention Due to the high efficiency and durability of light-emitting diodes (LEDs), they are ideal candidates for general illumination in residential, office and other environments. The efficiency of an incandescent lamp is only about 3%, while the efficiency of an LED is 30% or higher. The life of led is also 2 times longer than incandescent lamps and more than 5 times longer than energy-saving lamps. Although the lighting performance of LEDs is better than the conventional lighting technology, {曰 is the widespread adoption of LED lighting has slowed down. The main reason for the delay is the high price of the foam. In fact, the current cost of LED bulbs is about 10-25 times more expensive than white-light bulbs like light output. The high price of LED bulbs is significantly affected by the cost involved in manufacturing, particularly the cost involved in manufacturing power conversion circuits required to power LED bulbs. Incandescent bulbs receive power directly from the AC mains. However, LED bulbs are powered by DC. Therefore, if power from the AC mains will be used, an LED bulb must be equipped with a power conversion circuit to convert the AC mains power to DC. Figure 1 is a diagram of a prior art LED bulb 100 showing how AC power from an AC mains is converted to DC in an existing LED bulb. 201220937 First, a bridge rectifier (ie, a diode bridge) 1〇2 rectifies the AC input voltage from the AC mains to DC. The rectified voltage is then chopped by a smoothing circuit, the simplest form of which includes a smoothing capacitor 1〇4 that is coupled to the output of the bridge rectifier 102. Finally, the current-to-DC converter 106 steps down the rectified and filtered voltage to the appropriate DC output voltage Vout required to power the LEDs in the LED string 108. The DC output voltage Vout is set based on the number of LEDs in the LED string 108, which is determined during design by the desired light output level (i.e., lumens) of the LED bulb 100. In contrast, the LEDs of the LED string 108 are arranged in a series and surrounded by a diffuser lens. The diffuser lenses spread the light emitted by the LEDs. A conventional problem with the power conversion circuit of the LED bulb 100 is that the bridge rectifier 102 and the smoothing capacitor 1 〇4 cause a non-linear load to the AC mains. This non-linearity causes the input current from the AC mains to be extracted in the form of a series of narrow current pulses, as shown in Figure 2. These narrow current pulses have many _ harmonics and are characteristic of a power converter having a low power factor. The power factor is a factor of no difference between 〇 and 1, describing how efficiently a power converter transfers actual power from the AC power source to the load. - Low power factor is highly undesirable due to reduced conversion efficiency, heat generation in the AC mains generator and distribution system, and noise that may interfere with the performance of other devices. In order to avoid the problems associated with a low power factor, the actual AC-to-DC power converter typically utilizes a power factor correction (pFC) between the output of the bridge rectifier 1G2 and the input of the DC-to-DC converter 106. Regulator 302, as shown in Figure 3. The PFC pre-regulator 3〇2 acts to force the wheel-in current to be more sinusoidal and to phase with the AC input voltage to increase the power factor. Unfortunately, the introduction of the PFC pre-regulator 3〇2 reduces the efficiency in the moon, increases the number of parts and manufacturing costs, and makes it difficult to package the LED bulb 300 with a small form factor. In addition, the pFC pre-regulator 3〇2 typically includes a boost converter that generates an A-voltage. These high voltages tend to stress the parts of the LED bulbs, resulting in reliability problems. This high voltage also creates safety issues. Another problem with existing LED bulbs is related to their own inability to be controlled by conventional dimmer switches. Many homes and offices have dimmer switches designed to control the dimming of incandescent bulbs. It is desirable to be able to use these pre-installed dimmer switches to control the dimming of the LED bulbs. Figure 4 is a circuit diagram showing a conventional dimmer switch 4A. The dimmer switch 400 includes a variable resistor 402, a capacitor 404, a DIAC (AC diode) 406, and a TRIAC (AC triode) 408. TRIAC 408 is triggered when the voltage across capacitor 404 exceeds the breakdown voltage of DIAC 406. The voltage is increased and decreased depending on the cycle of the AC input voltage' and the triggering of TRIAC 408 is delayed by each positive and negative half cycle depending on the RC delay caused by variable resistor 402 and capacitor 404. Thus, the turn-on delay 512 results in a distortion dimming waveform having a lower average power, as shown in Figure 5B. In terms of angle, the conduction delay 512 is referred to in the industry as a "trigger angle" (180°-θ), where Θ is referred to as a "conducting angle." The firing angle can be controlled by adjusting the variable resistor 402 so that the average power output to the incandescent bulb 410 can be controlled, and thus the dimming of the incandescent bulb 410 can be controlled. 5 201220937 The TRIACs illuminator switch 400 is suitable for controlling the dimming of incandescent bulbs. Unfortunately, it does not provide an acceptable solution for existing LED bulbs, such as the prior art LED bulbs 100 and 300s of the light in Figures 1-3. The white weave bulb exhibits a resistive load during all parts of the AC input waveform period. However, LEDs are non-linear devices and are significantly less current drawn by incandescent bulbs. Especially when the dimming is increased (ie, the low light output level), the current drawn by the LED of the existing LED bulb may be too small, so that the current is reduced below the holding current of D1,111,0408. Under these conditions, the squat 1 匸 4 〇 8 can be re-triggered or cut off 'causing an annoying LED flash, or the LED bulb is prematurely turned off before reaching the desired dimming level. There is an AC-to-DC power conversion circuit between the AC power source and the LED that may also interfere with the ability of the TRIAc dimmer switch 400 to control the dimming of the LED. Considering the above-mentioned shortcomings and limitations of existing LED bulbs, it is desirable to obtain power conversion and control methods and devices for energy saving, low cost, compact, safe and reliable LED bulbs, and to provide use in a large dimming range. The dimmer switch controls the dimming capability of the LEDs of the LED bulb. SUMMARY OF THE INVENTION Summary of the Invention A solid state lighting system and a power conversion and control method are disclosed. An exemplary solid state lighting system includes a plurality of light emitting devices (eg, light emitting diodes) and an alternating current to direct current (AC-DC) converter that converts alternating current into direct current to power the A plurality of light-emitting devices. The AC-DC converter is configured to perform AC-DC conversion directly without or without

S 6 201220937 使用一橋式整流器或降壓變壓器。依據本發明之一層面, 該固態照明系統之發光裝置是自律的且由產生自由該交流 對直流轉換器產生之直流電的複數直流電源單獨供電。依 據另一層面,複數相位偏移調光器控制信號是基於由一習 知的調光器開關所產生之一調光信號的波形失真而產生 的。該等相位偏移調光器控制信號用以控制該複數發光裝 置之調光。 本發明之固態照明系統及方法提供許多相較於先前技 術固態照明系統及方法的優勢。首先,本發明之固態照明 系統具有一較低的零件數且製造成本比先前技術固態照明 系統低。使用所揭露的交流對直流轉換器消除了對橋式整 流器、降壓變壓器及功率因數校正預調節器電路的需求, 即使不是所有的固態照明系統組件適合被形成一或多個積 體電路(1C)晶片。減少的零件數及在一或多個1C晶片中形成 固態照明系統組件的能力降低了製造成本且有足夠的能力 去實現規模經濟。其次,交流對直流轉換器、減少的零件 數,及在一或多個1C晶片中形成一些或全部電力轉換及控 制組件的可能性皆促成製造比先前技術固態照明系統更節 能的一種固態照明系統的可能性。第三,本發明之固態照 明系統比先前技術固態照明系統更可靠且壽命更長。使用 單獨的電源來供電本發明之固態照明系統之發光裝置結果 是可靠性增加,且將該等發光裝置配置成是自律的且可單 獨調光允許本發明之固態照明系統壽命更長,這是因為若 僅一或少數幾個發光裝置失效,整個系統將不會完全失 201220937 效。最後,本發明之固態照明系統提供的非常理想優勢在 於可響應於習知的調光器開關來調光,甚至調到非常低的 亮度,且無閃爍或過早光截止。 本發明之其他特徵及優勢,包括本發明之上文總結以 及其他示範性實施例的結構及操作之說明,現在將相關於 附圖詳細描述,其中相同的參考數字用以表示實質上相同 或功能類似的元件。 圖式簡單說明 第1圖是一先前技術LED燈泡的一圖式; 第2圖是對於第1圖中之先前技術LED施加的一輸入線 電壓W«及提取自交流幹線之輸入線電流的一信號圖; 第3圖是配備有一功率因數校正(pFC)預調節器的一先 前技術LED燈泡之圖式; 第4圖是一習知的相位控制(即TRI a c (交流三極體))調 光器開關之電路圖; 第5A及5B圖是與第4圖中之TRIAC調光器開關相關聯 之線電壓Fk及調光波形; 第6圖是依據本發明之一實施例的一 led燈泡的一圖 式; 第7圖是第6圖中之LED燈泡的一圖式,繪示LED燈泡 之LED如何被包圍在一透明或半透明的外殼中且LED燈泡 之電氣組件如何被耦合至一標準的愛迪生螺紋燈座; 第8圖是用以實施第6圖中之LED燈泡之AC-DC轉換器 的一交流對直流(AC-DC)轉換器的一電路圖; 201220937 第9圖是供應第8圖中之AC-DC轉換器的交流輸入電壓 ,及其與於AC-DC轉換器之輸出產生的直流電壓Vdc及 其反相-Vdc之關係的一信號圖; 第10圖是繪示第8圖中之AC-DC轉換器之開關如何依 賴交流輸入電壓之瞬時值與於第8圖中之AC-DC轉換器 之輸出產生之直流電壓Vdc及其反相-Vdc的比較來切換及 驅動的一表格; 第11A圖是繪示在F/«> Vdc時交流輸入波形之正半週 時間,第8圖中之AC-DC轉換器如何化為且作用為一降壓轉 換器的一電路圖; 第11B圖是繪示在Fz>2<-Vdc時交流輸入波形之負半週 時間,第8圖中之AC-DC轉換器如何化為且作用為一反向降 壓轉換器的一電路圖; 第12圖是可用以實施第6圖中之LED燈泡中之分壓器 的一電荷泵分壓器的一電路圖; 第13A圖是當第12圖中之電荷泵分壓器被配置成處於 一「充電」狀態時該電荷泵分壓器的一簡化等效電路圖; 第13B圖是當第12圖中之電荷泵分壓器被配置成處於 一「負載」狀態時該電荷泵分壓器的一簡化等效電路圖; 第14圖是繪示第6圖中之LED燈泡之LED之調光如何 可由一習知的TRIAC調光器開關控制的一圖式; 第15A-D圖是當第14圖中之TRIAC調光器開關在未作 用時與第6圖中之LED燈泡之運作相關聯之信號圖; 第16A-D圖是當第14圖中之TRIAC調光器開關在作用 201220937 時與第6圖中之LED燈泡之運作相關聯之信號圖; 第17圖是比較第14圖中之TRIAC調光器開關之調光器 波形與AC-DC轉換器輸出的直流電壓的一比較電路; 第18圖是可用以將來自第17圖中之比較電路的邏輯信 號S中的工作週期資訊轉換成一較高頻率的一變頻器的一 電路圖; 第19A及19B圖是繪示由第18圖中之變頻器所產生之 DIM信號如何具有最小調光的一高工作週期(第19A圖)及 最大調光的一低工作週期(第19B圖)的信號圖; 第2 0圖是可用以產生複數不同相位的調光控制信號來 控制第6圖中之LED燈泡之複數LED之調光的一相位產生 器的一電路圖; 第21圖是用在第20圖中之相位產生器中的同步相頻檢 測器(S-PFD)之一的一電路圖;及 第22圖是依據本發明之一替代實施例的一LED燈泡的 一圖式,其中該LED燈泡之LED並聯連接。 I:實施方式3 詳細說明 下文櫚述的本發明示範性實施例在固態照明,特別是 用於LED照明的電力轉換及控制方法和系統的環境中被描 述及說明。然而,應強調並理解的是,本發明之電力轉換 及控制方法並不限於LED照明應用;它們適用於利用其他 類型之負載的其他照明及非照明應用,包括LED以外的固 態(或非固態)照明裝置,及不發光但是執行某些其他有用功 10 201220937 能的裝置。 參照第6圖,圖中繪示依據本發明之一實施例的一發光 二極體(LED)燈泡600。LED燈泡600包含電力轉換及控制電 路601,電力轉換及控制電路6〇 1包括一交流對直流(AC_DC) 轉換器602、一分壓器604,及一LED控制器60ό ;及LED 608-1,608-2,·.·,608-η,其中《是一整數,表示[ED可包含一 或複數LED。如將在下文中詳細說明者,AC_DC轉換器6〇2 直接將諸如可由交流幹線提供之交流電轉換成直流電。分 壓器604將由AC-DC轉換器602產生之直流電之直流電壓 Vdc除以一因數m,從而產生一或複數w個單獨的電源,用 以供電《個LED 608-1,608-2,_.·,608-η。因數m是一整數,且 在一實施例中’是與《的值相同的一整數。LED控制器606 包含一或多個受控電流源,用以控制經過LED 608-1,608-2,..·,608-η的電流,且任選地,進一步包括能使 用一習知的調光器開關來控制LED 608-1,608-2,...,608-η之 調光的電路。 在本發明之一實施例中,電力轉換及控制電路601之各 種組件中的一些或全部組件包含一單一積體電路(1C)晶 片。在另一實施例中,電力轉換及控制電路601之各種組件 中的一些或全部組件包含且被分配在二或更多個1C晶片 中。然而,熟於此技者將容易瞭解且理解的是,任何數目 的1C晶片、混合電路或分立裝置及其組合可用以實施LED 燈泡600之電力轉換及控制電路601。 LED燈泡 600之LED 608-1,608-2,…,608-n被配置在一 201220937 透明或半透明的外殼内,且AC-DC轉換器602、分壓器604 及LED控制器606被整合在或連接到一與標準化插座 (receptacle)或插座(socket)相容的一燈座中。例如,在一實 施例中,透明或半透明的外殼包含一玻璃燈泡702,且 AC-DC轉換器602、分壓器604,及LED控制器606被連接到 或整合在一愛迪生螺紋燈座704内,如第7圖中所示者。熟 於此技者將瞭解的是,其他類型的透明或半透明的外殼(標 準化或非標準化)及其他燈座類型(標準化或非標準化)可被 使用。因此,出於此揭露的目的,「LED燈泡」一詞指且其 意義包含具有任一類型之外殼及任一類型之燈座的一LED 照明設備。 第8圖是用以實施依據本發明之一實施例的第6圖中之 LED燈泡600之AC-DC轉換器602的一 AC-DC轉換器800的 一電路圖。AC-DC轉換器800類似於在名稱為「JC/ZX: 尸」之共同審查中且 共同擁有之美國專利申請案第12/841,608號案中所揭露的 AC-DC轉換器,其以引用方式併入此揭露。 如第8圖中所示者,AC-DC轉換器800包含第一、第二、 第三及第四開關802、804、806及808、一電感器810、一平 流電容器812,及一開關控制器814。第一開關802被耦合在 交流輸入之一端子與電感器810之第一端子之間;第二開關 804被耦合在電感器810之第一端子與交流輸入之相反極性 端子之間;第三開關806被耦合在交流輸入與電感器810之 第二端子之間;且第四開關808被耦合在電感器810之第二S 6 201220937 uses a bridge rectifier or step-down transformer. In accordance with one aspect of the invention, the illumination device of the solid state lighting system is self-regulating and is separately powered by a plurality of DC power sources that generate direct current that is free of the AC to DC converter. According to another aspect, the complex phase shift dimmer control signal is based on waveform distortion of a dimming signal produced by a conventional dimmer switch. The phase shift dimmer control signals are used to control dimming of the plurality of illumination devices. The solid state lighting system and method of the present invention provides a number of advantages over prior art solid state lighting systems and methods. First, the solid state lighting system of the present invention has a lower part count and is less expensive to manufacture than prior art solid state lighting systems. The use of the disclosed AC-to-DC converter eliminates the need for bridge rectifiers, step-down transformers, and power factor correction pre-regulator circuits, even if not all solid-state lighting system components are suitable for forming one or more integrated circuits (1C) ) wafer. The reduced number of parts and the ability to form solid state lighting system components in one or more 1C wafers reduces manufacturing costs and has the ability to achieve economies of scale. Second, the possibility of AC-to-DC converters, reduced parts counts, and the formation of some or all of the power conversion and control components in one or more 1C wafers has resulted in a solid-state lighting system that is more energy efficient than prior art solid state lighting systems. The possibility. Third, the solid state lighting system of the present invention is more reliable and has a longer life than prior art solid state lighting systems. The use of a separate power source to power the illuminating devices of the solid state lighting system of the present invention results in increased reliability, and the illuminating devices are configured to be self-disciplined and individually dimmable to allow the solid state lighting system of the present invention to last longer, which is Because if only one or a few illuminators fail, the entire system will not completely lose 201220937. Finally, the solid state lighting system of the present invention provides the very advantageous advantage of being dimmable in response to conventional dimmer switches, even to very low brightness, and without flicker or premature light cutoff. Other features and advantages of the present invention, including the above summary of the present invention and the description of the structure and operation of the exemplary embodiments, will now be described in detail with reference to the accompanying drawings Similar components. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram of a prior art LED bulb; FIG. 2 is an input line voltage W« applied to the prior art LED of FIG. 1 and an input line current extracted from the AC mains. Signal diagram; Figure 3 is a diagram of a prior art LED bulb equipped with a power factor correction (pFC) pre-regulator; Figure 4 is a conventional phase control (ie TRI ac (AC Triode)) modulation Circuit diagram of the optical switch; FIGS. 5A and 5B are line voltage Fk and dimming waveform associated with the TRIAC dimmer switch of FIG. 4; FIG. 6 is a diagram of a led bulb according to an embodiment of the present invention Figure 7 is a diagram of the LED bulb of Figure 6, showing how the LED of the LED bulb is enclosed in a transparent or translucent housing and how the electrical components of the LED bulb are coupled to a standard Edison threaded socket; Figure 8 is a circuit diagram of an AC-DC converter for implementing the AC-DC converter of the LED bulb of Figure 6; 201220937 Figure 9 is the eighth supply The AC input voltage of the AC-DC converter in the figure, and its input to the AC-DC converter A signal diagram of the relationship between the generated DC voltage Vdc and its inverse-Vdc; FIG. 10 is a diagram showing how the switching of the AC-DC converter in FIG. 8 depends on the instantaneous value of the AC input voltage and FIG. A table for switching and driving the comparison of the DC voltage Vdc and its inversion-Vdc generated by the output of the AC-DC converter; FIG. 11A is a diagram showing the positive half of the AC input waveform at F/«> Vdc During the week, how does the AC-DC converter in Figure 8 become and act as a circuit diagram of a buck converter; Figure 11B shows the negative half-cycle time of the AC input waveform at Fz > 2 < -Vdc How the AC-DC converter in Figure 8 is implemented as a circuit diagram of an inverting buck converter; Figure 12 is a charge that can be used to implement the voltage divider in the LED bulb of Figure 6. A circuit diagram of the pump divider; Figure 13A is a simplified equivalent circuit diagram of the charge pump voltage divider when the charge pump voltage divider of Figure 12 is configured to be in a "charged" state; Figure 13B is When the charge pump voltage divider of Figure 12 is configured to be in a "load" state, one of the charge pump voltage dividers Simplified equivalent circuit diagram; Fig. 14 is a diagram showing how the dimming of the LED of the LED bulb in Fig. 6 can be controlled by a conventional TRIAC dimmer switch; Fig. 15A-D is when Fig. 14 The signal diagram associated with the operation of the LED bulb in Figure 6 when the TRIAC dimmer switch is inactive; Figure 16A-D is when the TRIAC dimmer switch in Figure 14 is in effect 201220937 and 6 is a signal diagram associated with the operation of the LED bulb; Figure 17 is a comparison circuit comparing the dimmer waveform of the TRIAC dimmer switch of FIG. 14 with the DC voltage output by the AC-DC converter; Figure 18 is a circuit diagram of a frequency converter that can be used to convert duty cycle information in the logic signal S from the comparison circuit in Figure 17 to a higher frequency; Figures 19A and 19B are diagrams shown in Figure 18 How the DIM signal generated by the inverter has a high duty cycle of minimum dimming (Fig. 19A) and a low duty cycle of the maximum dimming (Fig. 19B); Fig. 20 is available to generate complex numbers Phase dimming control signal to control the plurality of LEDs of the LED bulb in FIG. a circuit diagram of a phase generator of the dimming; FIG. 21 is a circuit diagram of one of the synchronous phase frequency detectors (S-PFD) used in the phase generator of FIG. 20; and FIG. 22 is based on A diagram of an LED light bulb in accordance with an alternative embodiment of the present invention, wherein the LEDs of the LED bulb are connected in parallel. I: Embodiment 3 Detailed Description The exemplary embodiments of the present invention described below are described and illustrated in the context of solid state lighting, particularly power conversion and control methods and systems for LED lighting. However, it should be emphasized and understood that the power conversion and control methods of the present invention are not limited to LED lighting applications; they are suitable for other lighting and non-lighting applications that utilize other types of loads, including solid state (or non-solid) other than LEDs. Illumination device, and device that does not emit light but performs some other useful work 10 201220937. Referring to Figure 6, a light emitting diode (LED) bulb 600 in accordance with one embodiment of the present invention is illustrated. The LED bulb 600 includes a power conversion and control circuit 601. The power conversion and control circuit 6.1 includes an AC-to-DC converter (AC_DC) converter 602, a voltage divider 604, and an LED controller 60A; and an LED 608-1, 608-2,·.., 608-η, where "is an integer, indicating that [ED can include one or a plurality of LEDs. As will be explained in detail below, the AC_DC converter 6〇2 directly converts alternating current, such as that may be provided by an AC mains, to direct current. The voltage divider 604 divides the DC voltage Vdc of the DC power generated by the AC-DC converter 602 by a factor m, thereby generating one or a plurality of w separate power sources for supplying "LED 608-1, 608-2, _ .., 608-η. The factor m is an integer, and in one embodiment 'is an integer equal to the value of ". LED controller 606 includes one or more controlled current sources for controlling current through LEDs 608-1, 608-2, .., 608-n, and optionally, further including the use of a conventional A dimmer switch to control the dimming circuitry of LEDs 608-1, 608-2, ..., 608-n. In one embodiment of the invention, some or all of the various components of power conversion and control circuit 601 include a single integrated circuit (1C) wafer. In another embodiment, some or all of the various components of power conversion and control circuit 601 are included and distributed among two or more 1C wafers. However, it will be readily apparent to those skilled in the art that any number of 1C wafers, hybrid or discrete devices, and combinations thereof, can be used to implement the power conversion and control circuit 601 of the LED light bulb 600. The LEDs 608-1, 608-2, ..., 608-n of the LED bulb 600 are disposed in a transparent or translucent housing of 201220937, and the AC-DC converter 602, the voltage divider 604 and the LED controller 606 are integrated. At or connected to a socket that is compatible with a standardized receptacle or socket. For example, in one embodiment, the transparent or translucent outer casing includes a glass bulb 702, and the AC-DC converter 602, voltage divider 604, and LED controller 606 are coupled or integrated into an Edison threaded socket 704. Inside, as shown in Figure 7. It will be appreciated by those skilled in the art that other types of transparent or translucent outer casings (standardized or non-standardized) and other lampholder types (normalized or non-standardized) can be used. Thus, for the purposes of this disclosure, the term "LED bulb" means and encompasses an LED illumination device having either a housing of any type and a socket of either type. Figure 8 is a circuit diagram of an AC-DC converter 800 for implementing an AC-DC converter 602 of the LED bulb 600 of Figure 6 in accordance with an embodiment of the present invention. AC-DC converter 800 is similar to the AC-DC converter disclosed in U.S. Patent Application Serial No. 12/841,608, the disclosure of which is incorporated herein by reference in its entirety in Incorporate this disclosure. As shown in FIG. 8, the AC-DC converter 800 includes first, second, third, and fourth switches 802, 804, 806, and 808, an inductor 810, a smoothing capacitor 812, and a switch control. 814. The first switch 802 is coupled between one of the terminals of the AC input and the first terminal of the inductor 810; the second switch 804 is coupled between the first terminal of the inductor 810 and the opposite polarity terminal of the AC input; 806 is coupled between the AC input and the second terminal of the inductor 810; and the fourth switch 808 is coupled to the second of the inductor 810

S 12 201220937 端子與正直流輸出端子之間。取決於瞬時交流輸入電壓版 與直流輸出電壓的比較,開關控制器814產生用以來控制第 、第一、第二及第四開關802、804、806及808之切換的 開關驅動信號’在下文中有更加詳細的說明。 在本發明之-實施例中,第一、第二、第三及第四開 關802、8G4、8%及8G8包含依據—標準的半導體製程製造 的一積體電路(1C)晶片之矽基底電晶體(例如金屬氧化物半 導體%效應電晶體(MOSFET)或雙極型接面電晶體(bjt))。 電感器810及電容器812還可被整合在一或多個〗〇晶片中, 或這些裝置中的任一者或二者可以是耦合至該一或多個IC 晶片之外部接腳的分立裝置。當然,其他類型的切換裝置 及半導體製程可被使用。例如,習知的開關、二極體、中 繼器或其他半導體基或非半導體基的切換裝置可被使用, 或化合物半導體基電晶體裝置,諸如高電子遷移率電晶體 (HEMT)或異質接面雙極性電晶體(HBT),可用以實施第 一、第二、第三及第四開關802、8〇4、8〇6及808開關,而 非矽基底MOSFET或BJT。出於此揭露的目的’「開關j 一 詞以其最廣泛的意思來使用以包括所有這些類型的開關及 任何其他適合的切換裝置。 AC-DC轉換器800運作以將一交流輸入電壓W«,諸如 可由交流幹線提供,轉換成一直流輸出電壓Vdc,無需一橋 式整流器(即二極體橋)。直接的交流對直流轉換藉由使用開 關控制器814來控制第一、第二、第三及第四開關802、804、 806及808之導通-截止狀態完成。開關802、804、806及808 13 201220937 之導通(閉合)、截止(斷開)由工作週期為D之一開關驅動信 號來驅動,或由工作週期為(丨-D)的一互補的開關驅動信號 來驅動,依瞬時交流輸入電壓W«與直流輸出電壓Vdc之比 較而定。該開關驅動信號及互補的開關驅動信號由開關控 制器814產生,且在一實施例中,具有一共同、固定的切換 (即「截波」)頻率/=1/T,其中T是切換週期。爲了避免對實 體大且昂貴的電容器的需求’該開關控制器之截波頻率/被 設置在約為1MHz或更高的一高頻。 如第9圖中之信號圖所示及第1 〇圖中之切換表格中所 示者,當Vdc時,第一開關802由開關驅動信號以一工 作週期tON/T=D被驅動,第二開關804由互補的開關驅動信 號以一工作週期(T-t0N)/T=(l-D)被驅動,第三開關806截 止,且第四開關808導通。當< -Vdc時,第一開關802截 止’第二開關804導通’第三開關806由開關驅動信號以一 工作週期D被驅動,且第四開關由互補的開關驅動信號以一 工作週期(1-D)被驅動。最後,當打《大於-Vdc但小於Vdc時, 即當< Vdc時,第一、第二、第三及第四開關802、804、 8〇6及808均截止。 藉由觀察AC-DC轉換器800實際上包含—整合的(即聯 合的)降壓轉換器及反向降壓轉換器可認識到,AC-DC轉換 器800產生一直流輸出電壓vdc=D。當% > Vdc時在交 流輸入波形之正半週時,第三開關806截止,第四開關8〇8 導通’且AC-DC轉換器800化為且作用為一降壓轉換器 800A ’如第11A圖中所示者。在此配置中,第一及第二開S 12 201220937 Between the terminal and the positive DC output terminal. Depending on the comparison of the instantaneous AC input voltage version to the DC output voltage, the switch controller 814 generates a switch drive signal that controls the switching of the first, first, second and fourth switches 802, 804, 806 and 808 since use. More detailed instructions. In the embodiment of the present invention, the first, second, third, and fourth switches 802, 8G4, 8%, and 8G8 comprise an integrated circuit (1C) wafer based on a standard semiconductor process. A crystal (such as a metal oxide semiconductor % effect transistor (MOSFET) or a bipolar junction transistor (bjt)). Inductor 810 and capacitor 812 may also be integrated into one or more wafers, or either or both of these devices may be discrete devices coupled to external pins of the one or more IC wafers. Of course, other types of switching devices and semiconductor processes can be used. For example, conventional switches, diodes, repeaters or other semiconductor-based or non-semiconductor-based switching devices can be used, or compound semiconductor-based transistor devices, such as high electron mobility transistors (HEMT) or heterojunctions. A bipolar transistor (HBT) can be used to implement the first, second, third, and fourth switches 802, 8〇4, 8〇6, and 808 switches instead of the germanium MOSFET or BJT. For the purposes of this disclosure, the term "switch j" is used in its broadest sense to include all of these types of switches and any other suitable switching device. AC-DC converter 800 operates to convert an AC input voltage W« , such as can be provided by an AC mains, converted to a DC output voltage Vdc, without a bridge rectifier (ie, a diode bridge). Direct AC-to-DC conversion uses the switch controller 814 to control the first, second, and third The on-off states of the fourth switches 802, 804, 806, and 808 are completed. The switches 802, 804, 806, and 808 13 201220937 are turned on (closed), turned off (off) by a duty cycle of one of the D switch drive signals. Or driven by a complementary switch drive signal with a duty cycle of (丨-D), depending on the instantaneous AC input voltage W« compared to the DC output voltage Vdc. The switch drive signal and the complementary switch drive signal are switched by Controller 814 generates, and in one embodiment, has a common, fixed switching (i.e., "chopper") frequency / = 1 / T, where T is the switching period. In order to avoid the need for a large and expensive capacitor, the cutoff frequency of the switch controller is set to a high frequency of about 1 MHz or higher. As shown in the signal diagram in FIG. 9 and the switching table in FIG. 1 , when Vdc, the first switch 802 is driven by the switch drive signal with a duty cycle tON/T=D, and second. Switch 804 is driven by a complementary switch drive signal for one duty cycle (T-t0N) / T = (1D), third switch 806 is turned off, and fourth switch 808 is turned "on". When < -Vdc, the first switch 802 is turned off, the 'second switch 804 is turned on', the third switch 806 is driven by the switch drive signal by one duty cycle D, and the fourth switch is driven by the complementary switch by a duty cycle ( 1-D) is driven. Finally, when "greater than -Vdc but less than Vdc", that is, when < Vdc, the first, second, third, and fourth switches 802, 804, 8〇6, and 808 are all turned off. It can be appreciated by observing that the AC-DC converter 800 actually includes an integrated (i.e., coupled) buck converter and an inverting buck converter that the AC-DC converter 800 produces a DC output voltage vdc = D. When % > Vdc is in the positive half cycle of the AC input waveform, the third switch 806 is turned off, the fourth switch 8〇8 is turned on 'and the AC-DC converter 800 is turned into and acts as a buck converter 800A ' The one shown in Fig. 11A. In this configuration, the first and second open

14 201220937 關802及804分別作用為降壓轉換器之高端及低端開關且分 別由開關驅動信號以工作週期D及互補的開關驅動信號以 一工作週期(1-D)被驅動。因此,第一及第二開關802及804 在> Vdc時交流輸入電壓之正半週中將電感器810交替 配置成儲存能量或供應電流,且直流輸出電壓Vdc=DFi>i。 在W«<-Vdc時交流輸入波形之負半週中,第一開關 802截止’第二開關8〇4導通,且AC_DC轉換器8〇〇化為且作 用如同所稱之「反向」降壓轉換器8〇〇B,如第iiB圖中所 示者。在此配置中,第三及第四開關806及808分別由開關 驅動信號D及互補的開關驅動信號(1_D)驅動。在Kk<_Vdc 時交流輸入電壓之負半週中,反向降壓轉換器8〇〇B轉換負 輸入電壓^^,藉由第三及第四開關806及808之切換動作來 將電感器810交替配置成儲存能量或供應電流,以產生等於 Dh_»|的一輸出電壓Vdc。因此,就正及負半週期而論, AC-DC轉換器800產生一直流輸出電壓vdc=D |版|。 在上述不範性實施例中,開關控制電路814依據第1〇圖 中之切換表格來控制開關8〇2、804、806及808在所有負載 條件下之斷開及閉合。在另一實施例中,開關控制器814被 配置成使開關808在輕負載條件下保持_開,且剩餘的開關 802、804及806被配置成依據第1〇圖中之切換表格來運作 (或被配置成完全不切換因此,在此替代實施例中,電容 器812在輕負載條件下作用為直流電源。 使用AC-DC轉換器8〇〇的一重要優勢在於其直接執行 AC-DC轉換’而無需或不使用—橋式整流器或降壓變壓 15 201220937 器。這排除了對功率因數校正預調節器電路用以補償橋式 整流器所造成之非線性的需求。此優勢導致一具有較低零 件數的一LED燈泡600,其造價較便宜且能夠被設計成具有 一遠小於先前技術LED燈泡的實體大小(即較小的形狀因 數)。其亦導致更節能、更可靠且使用安全的一LED燈泡600。 依據本發明之一實施例,本發明之LED燈泡之LED中 的每一者是自律的且由一單獨的電源個別供電。在第6圖中 所示之示範性實施例中,本發明之此層面藉由將分壓器6〇4 配置成產生且提供複數m個單獨的Vdc/m電壓的電源以供 電LED燈泡600之《個LED 608-1,608-2,.·.,608-η來實現。擁 有自律且獨立供電的LED 608-1,608-2,..·,608-η允許LED燈 泡600柔性降級,由於若LED 608-1,608-2,·..,608-η其中之一 失效’其他LED仍可發光。 第12圖是可用以產生由分壓器604所提供的讲個電源的 一電荷泵分壓器1200的一電路圖。出於此一說明的目的, 假定LED燈泡600包含四個LED(即《=4) ’且四個電荷系分壓 器1200對應地用以產生w=w=4個單獨的電源,每一電源具 有一電壓Vdc/4。當然,熟於此技者將理解的是,這僅是一 範例且LED燈泡600並不限於具有四個LED,且電荷泵分壓 器1200可被修改成產生其他數目w個電源。 如第12圖中所示者,電荷泵分壓器12〇〇包含第一組開 關 1202-卜 1202-2、1202-3、1202-4 ;電容器 1204-1、1204-2、 1204-3、1204-4 ;第二組開關 1206-1、1206_2、12〇6-3、 1206-4 ;及一振盪器1208。電荷泵分壓器12〇〇被配置成向14 201220937 The switches 802 and 804 act as high-side and low-side switches of the buck converter, respectively, and are driven by the switch drive signal with a duty cycle D and a complementary switch drive signal at a duty cycle (1-D). Therefore, the first and second switches 802 and 804 alternately configure the inductor 810 to store energy or supply current during the positive half cycle of the AC input voltage of > Vdc, and the DC output voltage Vdc = DFi > i. In the negative half cycle of the AC input waveform at W«<-Vdc, the first switch 802 is turned off, the second switch 8〇4 is turned on, and the AC_DC converter 8 is degenerated and acts as the so-called "reverse". The buck converter 8〇〇B is as shown in Figure iiB. In this configuration, the third and fourth switches 806 and 808 are respectively driven by the switch drive signal D and the complementary switch drive signal (1_D). In the negative half cycle of the AC input voltage at Kk<_Vdc, the inverting buck converter 8〇〇B converts the negative input voltage ^^, and the inductor 810 is switched by the switching action of the third and fourth switches 806 and 808. Alternately configured to store energy or supply current to produce an output voltage Vdc equal to Dh_»|. Therefore, in terms of positive and negative half cycles, the AC-DC converter 800 generates a DC output voltage vdc = D | In the above non-limiting embodiment, switch control circuit 814 controls the opening and closing of switches 8〇2, 804, 806, and 808 under all load conditions in accordance with the switching table in FIG. In another embodiment, the switch controller 814 is configured to cause the switch 808 to remain on under light load conditions, and the remaining switches 802, 804, and 806 are configured to operate in accordance with the switching table in FIG. Or configured to not switch at all. Thus, in this alternative embodiment, capacitor 812 acts as a DC power source under light load conditions. An important advantage of using AC-DC converter 8 is that it directly performs AC-DC conversion' With or without the use of a bridge rectifier or step-down transformer 15 201220937. This eliminates the need for a power factor correction pre-regulator circuit to compensate for the nonlinearity caused by the bridge rectifier. This advantage results in a lower An LED bulb 600 of the number of parts is relatively inexpensive to manufacture and can be designed to have a physical size (ie, a smaller form factor) that is much smaller than prior art LED bulbs. It also results in a more energy efficient, more reliable, and safer one. LED Bulb 600. In accordance with an embodiment of the present invention, each of the LEDs of the LED bulb of the present invention is self-disciplined and individually powered by a separate power source. The demonstration shown in Figure 6 In an embodiment, the layer of the present invention supplies LED bulbs 608-1, 608-2 by powering LEDs 600 by configuring voltage dividers 6〇4 to generate and provide a plurality of m separate Vdc/m voltages. ,.·.,608-η. The self-disciplined and independently powered LEDs 608-1, 608-2, .., 608-η allow the LED bulb 600 to be softly degraded, as if the LED 608-1, 608-2 One of the 608-n failures 'other LEDs still illuminate. Figure 12 is a circuit diagram of a charge pump voltage divider 1200 that can be used to generate a power supply provided by voltage divider 604. For the purposes of this description, assume that LED bulb 600 contains four LEDs (ie, "=4"' and four charge-based voltage dividers 1200 are correspondingly used to generate w=w=4 separate power supplies, each having A voltage Vdc/4. Of course, it will be understood by those skilled in the art that this is merely an example and that the LED bulb 600 is not limited to having four LEDs, and the charge pump voltage divider 1200 can be modified to produce other numbers w a power supply. As shown in Fig. 12, the charge pump voltage divider 12A includes a first set of switches 1202-b 1202-2, 1202-3, 1202-4; capacitors 1204-1, 1 204-2, 1204-3, 1204-4; a second set of switches 1206-1, 1206_2, 12〇6-3, 1206-4; and an oscillator 1208. The charge pump voltage divider 12〇〇 is configured to

16 201220937 LED 608-1供電’ LED 608-1由一受控電流源1210來驅動, 受控電流源1210依據一調光器信號DIM而被賦能及去能, 這將在下文中更加詳細地討論。實質上相同的電荷泵分壓 器被利用來發電並向剩餘的LED 608-2,_..,608-«供電。第一 組開關 1202-1、1202-2、1202-3 ' 1202-4 及第二組開關 1206-1、1206-2、1206-3、1206-4響應於由振盪器 1208所提 供之週期切換(即充電狀態)控制信號CS及Θ將電容器 1204-1、1204-2、1204-3、1204-4交替配置成處於一「充電」 狀態及一「負載」狀態。當處於充電狀態時,第一組開關 1202-卜1202-2、1202-3、1202-4之開關均閉合且第二組開 關之開關均斷開,導致電容器1204-1、12〇4_2、1204-3、 1204-4串聯耦合,如第13A圖中之充電狀態等效電路中所示 者。電容器1204-1、1204-2、1204-3、1204-4均具有相同的 電容。因此,直流電壓Vdc在串聯連接的電容器1204-1、 1204-2、1204-3、1204-4之間均勻地劃分及分配(Vdc/4)。在 電容器1204-1、1204-2、1204-3、1204-4已充電之後,開關 控制信號CS及茂致使第一組開關丨2〇2·卜1202-2、12〇2_3、 1202-4斷開且第二組開關 1206-1 ' 1206-2、1206-3、1206-4 閉合,將電荷泵分壓器1200配置成處於負載狀態,如第13B 圖中之負載狀態等效電路中所示者。在負載狀態中,充電、 並聯連接之電容器1204-1、1204-2、1204-3、1204-4共同向 LED 608-1供電。 依據第14圖中所示之本發明之一實施例,本發明之 LED燈泡600可使用一習知的TRIAC(交流三極體)調光器開 17 201220937 關1402來調光。TRIAC調光器開關1402由一虛線框來繪 示,以強調在此示範性實施例中,其與LED燈泡600是分開 的。然而,在另一實施例中,TRIAC調光器開關14〇2(或其 他類似的調光器開關)包含LED燈泡600的一部分。 如參照上文第4及5圖在上文中所說明者,一 triac調 光器使交流輸入波形失真’使得輸出至該燈泡之平均功率 減少。TRIAC s周光器開關本身並不能單獨提供用以控制本 發明之LED燈泡之調光的一可接受的解決方案。然而,其 產生的失真電壓波形(即修改後的輸入電壓Kk,)包含可用 以控制調光的資訊。如第15 A圖中所示者,在調光未在作用 中的情況下’由TRIAC調光器開關1402所提供之修改後輸 入電壓實質上與由交流幹線所提供之交流輸入電壓 相同。在此條件下,第15B及15C圖繪示大於Vdc或小於 -Vdc交流循環週期之顯著部分,且第15D圖繪示|細彳僅在很 短的時期tl比Vdc小。然而,當調光在作用中且TRIAC調光 器開關1402作用而波形失真時(參見第16A圖),修改後的輸 入電壓’仍大於Vdc或小於- Vdc交流循環週期之較短的 部分(參見第16B及16C圖)且|FW|在較長的持續時間t2保持 小於Vdc,即t2>tl(參見第16D圖)。 爲了 在控制LED燈泡600之LED 608-1,608-2,...,608-« 之調光上利用此脈衝-寬度對調光準位相依性,LED燈泡600 之LED控制器606包括第17圖中所示之一比較電路1700,其 作用產生一邏輯信號51表示< Vdc的時間。比較電路1700 包含第一及第二比較器1702及1704、一反向放大器1706、 8 18 201220937 一包括電阻器1708及1710(或,可選擇地,電容器)的第一分 壓器、一包括電阻器1712及1714(或,可選擇地,電容器) 的第二分壓器,及一邏輯NOR閘1716。第一及第二分壓写 可能不必要取決於各種放大器的可接受輸入電壓範圍。然 而,若修改後的交流輸入電壓KiV不在可接受的輸入範圍 内’則其使用第一及第二分壓器來縮小。具體而言,第一 分壓器使修改後的輸入電壓縮小至一調整、修改的交流 輸入電壓’’使得該電壓在第一及第二比較器1702及 1704可接受的輸入電壓範圍限度内,且第二分壓器使 AC-DC轉換器602之直流輸出電壓Vdc調整相同的量以產生 一調整後的直流輸出電壓aVdc。第一比較器1702比較依比 例調整、修改後的交流輸入電壓αΚ»’與調整後的直流輸出 電壓aVdc,當朽《’>Vdc時產生一高輸出電壓且當 Vdc時產生一低輸出電壓。反向放大器1706使調整後的直流 輸出電壓aVdc反相以產生一調整後、反相的直流輸出電壓 -aVdc。第二比較器1704比較調整後、反相的直流輸出電壓 -aVdc與調整、修改後的交流輸入電壓aPV,當Wn’<-Vdc 時產生一高輸出電壓,且當朽沪>_Vdc時產生一低輸出電 壓。最後,NOR閘產生所欲邏輯信號51’每當卜’|< Vdc時其 具有一邏輯高(「1」)且在其他時候具有一邏輯低(「〇」)。16 201220937 LED 608-1 Power Supply 'LED 608-1 is driven by a controlled current source 1210. The controlled current source 1210 is energized and de-energized according to a dimmer signal DIM, which will be discussed in more detail below. . Substantially the same charge pump divider is utilized to generate electricity and supply power to the remaining LEDs 608-2, _.., 608-«. The first set of switches 1202-1, 1202-2, 1202-3' 1202-4 and the second set of switches 1206-1, 1206-2, 1206-3, 1206-4 are responsive to the periodic switching provided by the oscillator 1208 (i.e., state of charge) control signals CS and 交替 alternately configure capacitors 1204-1, 1204-2, 1204-3, and 1204-4 to be in a "charged" state and a "loaded" state. When in the charging state, the switches of the first group of switches 1202-b 1202-2, 1202-3, 1202-4 are all closed and the switches of the second group of switches are all disconnected, resulting in capacitors 1204-1, 12〇4_2, 1204 -3, 1204-4 are coupled in series, as shown in the charge state equivalent circuit in Figure 13A. Capacitors 1204-1, 1204-2, 1204-3, 1204-4 all have the same capacitance. Therefore, the DC voltage Vdc is evenly divided and distributed (Vdc/4) between the capacitors 1204-1, 1204-2, 1204-3, and 1204-4 connected in series. After the capacitors 1204-1, 1204-2, 1204-3, 1204-4 have been charged, the switch control signal CS and the laser cause the first group of switches 丨2〇2·Bu 1202-2, 12〇2_3, 1202-4 The second set of switches 1206-1' 1206-2, 1206-3, 1206-4 are closed, and the charge pump voltage divider 1200 is configured to be in a loaded state, as shown in the load state equivalent circuit of Figure 13B. By. In the load state, the charged, parallel-connected capacitors 1204-1, 1204-2, 1204-3, 1204-4 collectively supply power to the LED 608-1. In accordance with an embodiment of the invention illustrated in Figure 14, the LED bulb 600 of the present invention can be dimmed using a conventional TRIAC dimmer dimmer 17 201220937. The TRIAC dimmer switch 1402 is illustrated by a dashed box to emphasize that it is separate from the LED bulb 600 in this exemplary embodiment. However, in another embodiment, the TRIAC dimmer switch 14〇2 (or other similar dimmer switch) includes a portion of the LED light bulb 600. As explained above with reference to Figures 4 and 5 above, a triac dimmer distorts the AC input waveform' so that the average power output to the bulb is reduced. The TRIAC s illuminator switch itself does not provide an acceptable solution for controlling the dimming of the LED bulb of the present invention. However, the resulting distorted voltage waveform (i.e., the modified input voltage Kk) contains information that can be used to control dimming. As shown in Figure 15A, the modified input voltage provided by the TRIAC dimmer switch 1402 is substantially the same as the AC input voltage provided by the AC mains when dimming is not active. Under this condition, the 15B and 15C plots show a significant portion of the AC cycle period greater than Vdc or less than -Vdc, and the 15D plot shows that the fineness is less than Vdc only for a short period of time t1. However, when dimming is active and the TRIAC dimmer switch 1402 is acting and the waveform is distorted (see Figure 16A), the modified input voltage 'is still greater than Vdc or less than the shorter part of the -Vdc AC cycle (see Figures 16B and 16C) and |FW| remain less than Vdc for a longer duration t2, i.e., t2 > tl (see Figure 16D). In order to utilize this pulse-width versus dimming level dependence on the dimming of LEDs 608-1, 608-2, ..., 608-« controlling LED bulb 600, LED controller 606 of LED bulb 600 includes One of the comparison circuits 1700 shown in Figure 17 produces a logic signal 51 representing the time of < Vdc. The comparison circuit 1700 includes first and second comparators 1702 and 1704, an inverting amplifier 1706, 8 18 201220937, a first voltage divider including resistors 1708 and 1710 (or, optionally, a capacitor), and a resistor including A second voltage divider of transistors 1712 and 1714 (or, optionally, a capacitor), and a logic NOR gate 1716. The first and second voltage division writes may not necessarily depend on the acceptable input voltage range of the various amplifiers. However, if the modified AC input voltage KiV is not within the acceptable input range, then the first and second voltage dividers are used to reduce. Specifically, the first voltage divider reduces the modified input voltage to an adjusted, modified AC input voltage '' such that the voltage is within an acceptable input voltage range of the first and second comparators 1702 and 1704, And the second voltage divider adjusts the DC output voltage Vdc of the AC-DC converter 602 by the same amount to generate an adjusted DC output voltage aVdc. The first comparator 1702 compares the scaled, modified AC input voltage αΚ»' with the adjusted DC output voltage aVdc, generates a high output voltage when '>Vdc, and generates a low output voltage when Vdc . Inverting amplifier 1706 inverts the adjusted DC output voltage aVdc to produce an adjusted, inverted DC output voltage -aVdc. The second comparator 1704 compares the adjusted, inverted DC output voltage -aVdc with the adjusted, modified AC input voltage aPV, generates a high output voltage when Wn'<-Vdc, and when ***>_Vdc Produces a low output voltage. Finally, the NOR gate produces the desired logic signal 51' which has a logic high ("1") whenever it is '| < Vdc and has a logic low ("〇") at other times.

邏輯信號51具有一可變工作週期,該可變工作週期依 TRIAC調光器開關1402之調光設置而定。依據本發明之一 實施例,此相依性用以控制LED燈泡600之LED 608-l,608-2,...,608-n之調光,具體而言是藉由對LED 19 201220937 608-l,608-2,…,6〇8-n之導通-截止比作工作週期控制。然 而,因為邏輯信號具有僅等於線頻(在美國為6〇Hz)的一低 頻,其首先被升頻以避免任何LED閃爍的可感知性,這將 在下文中詳細說明。雖然邏輯信號51在此示範性實施例中是 基於比較電路1700碟定|f叫<vdc時而產生的,但是應指出 的是,邏輯信號^可以選擇地基於失真波形朽w,的其他信號 特性,諸如,舉例而言,失真波形,之觸發角或導電角而 產生。 第18圖是用以將邏輯信號s中的工作週期資訊轉換成 一較高頻率的一示範性變頻器1800的一電路圖。在一實施 例中’其包括在LED燈泡600之LED控制器606内且包含第 一及第二數位計數器1802及1804、一鎖存器18〇6,及一數 位大小比較器1808«來自比較電路17〇〇的邏輯信號沿皮耦合 至第一數位計數器1802之賦能(εν)輸入,當該邏輯信號是 一邏輯高時,即當|F〜|<Vdc時,第一數位計數器18〇2開始 以27 X 60Hz的速率從零計數。第一數位計數器18〇2計數直 到邏輯信號*S降至一邏輯低為止,此時數位計數被鎖存到鎖 存器1806中且耦合至數位大小比較器18〇8之輸入Ββ第二數 位計數器1804是一自由計數器,被配置成連續且重複地從〇 到127計數,但是速率遠高於6〇Hz的線速率,允許邏輯信號 中的工作週期資訊被轉換成一較高的頻率fLED<>fLED在設計 期間被設定且在一實施例中等於10MHz。當第二數位計數 器1804計數時,數位比較器1808比較其計數與鎖存器18〇6 的計數。最終,該計數超過鎖存器1806的計數,導致數位 20 201220937 比較器1808之A>B輸出改變成一邏輯高。該A>B輸出維持 在一邏輯南直到第二數位計數器18〇4計數到其限度(27 -1 = 127)為止。其接著降低且第二數位計數器18〇4重置為零 以重新開始計數。 數位比較器1808之A> B輸出信號具有一固定的高頻 fLED及依賴於丁RIAC調光器開關14〇2之調光準位設定的一 可變的工作週期。對於一最小的調光設定,a>b信號之工 作週期(t0N/t0FF)為高,如第19A圖中所示者,且對於一最大 的調光設定,該工作週期為低,如第19B圖中所示者。因此, 該A>B信號可用以藉由對LED 608-1,608-2,·..,608-«之導 通-截止比做簡單的工作週期控制在一大調光範圍内控制 LED燈泡600之調光。依據一實施例,該a >B信號用作 「DIM(調光)」信號以賦能及去能驅動LED 608-1,608-2,…,608-«的一或多個受控電流源,類似於第12 圖中所示者’其中LED 608-1之受控電流源1210響應於該 DIM信號且依據該DIM信號之工作週期而被賦能及去能。 依LED燈泡600中所使用的LED的數目而定,藉由同一 DIM信號來將LED 608-1,608-2,…,608-«同時切換成開與關 可導致負載過大。爲了避免此一問題,在本發明之一實施 例中’彼此相位不同的《個調光控制信號么產生且用 以單獨支配π個LED 608-1,608-2,...,608-«之導通-截止比之 工作週期控制。第20圖是可用以產生《個調光控制信號 為,么,…,么的一示範性相位產生器2000的一電路圖。在本發明 之一實施例中’相位產生器2000包含LED燈泡600之LED控 21 201220937 制器606之一部分’且包括主從環式振盪器2〇〇2及2〇〇4(或 其他類型的多相振盪器)及„個同步相頻檢測器 (S-PFD)2006-1、2006-2,...,2006-«。第—S-PFD 2006-1 的一 更詳細的電路圖被繪示於第21圖中,剩餘的s pFD 2006-2,...,2〇06-«實質上是相同的。 主環式振盪:器2002被配置在一鎖相迴路2008中,其運 作以將主環式振盪器2〇〇2之輸出頻率鎖定至虼印且提供主 相位基準以供與從屬環式振盪器2〇〇4之相位比較。來自變 頻器1800(第18圖)之數位大小比較器丨808的A〉8信號被使 用作為使從屬環式振盪器2004之相位相對於主環式振盪器 2〇〇2之相位移動的一相位旋轉命令。s_pFE) 2006]、 2006-2,…,2006-«產生„個調光控制信號私為”冰,其中每一 調光控制信號具有與主從環式振盪器2〇〇2之相位的相位差 成比例的脈衝寬度。一XOR閘2〇1〇比較S-PFD之一(在此範 例中為S-PFD 2006-1)之脈衝寬度與A> B信號中的脈衝寬 度。當比較的脈衝寬度未能匹配時,X〇r閘2〇1〇產生一擾 動脈衝。隨著時間的推移,這些擾動脈衝被濾、波器2平 均化,以產生一擾動信號,用以改變從屬振盪器2〇〇4之電 力供應。修改該從屬振盪器電力供應影響從屬環式振盪器 2004中的反相器之延遲,且因此影響從屬環式振盪器2〇〇4 之相位相對於主環式振盛器2002之相位的相位關係。以此 方式,S-PFD 2006-1,2006-2,...,2006-«之輸出的„個調光控 制信號九&,…冰中的脈衝寬度響應於修改後的電力供應而 改變,迫使”個調光控制信號H·.,么中的每一者之工作週 22 201220937 期適應於且追縱A>B信號之工作週期變化。 在上述本發明之示範性實施例中,LED燈泡600之LED 608-1,608-2,…,608-«由分壓器604所提供之w個單獨的電源 單獨供電。在一替代實施例中,LED 608-1,608-2,...,608-« 並聯連接且由一單一的電源供電,如同第22圖中所示之 LED燈泡2200中一般。AC-DC轉換器602運作類似於上文所 述’ LED 608-1,608-2,_..,608-«並聯連接以容許柔性降級, 相似於LED燈泡600。一 DC-DC轉換器2202將直流輸出電壓 Vdcl降轉換成一較低的直流電壓vdc2,用於LED 608-1,608-2,…,608-”。可選擇地,若AC-DC轉換器602在低 輸出電壓未被工作週期限制,則其可能被配置成將交流輸 入電壓Fm直接轉換成Vdc2,即無需中間的DC-DC轉換器 2202之輔助。類似於上述LED控制器6〇6,LED控制器22〇4 包括用以共同或單獨控制LED 608-1,608-2,···,608-«之調光 的電路,包括響應於習知的TRIAC調光器開關來控制調光 之支援電路。 雖然本發明之多種實施例已被描述,但它們是以舉例 方式提出而非限制。在相關技藝巾具有通常知識者將清楚 的是,在示範性實施例中可做成形式上及細節上之各種不 同的變化而不背離本發明之真正的精神及範圍。因此,本 發明之範圍不應党示範性實施例之細節的限制。而是,本 發明之範圍應由後附杨專利範圍,包括如此㈣=專利 範圍有權享有的均等物全部範圍決定。 【圖式簡單說明】 23 201220937 第1圖是一先前技術LED燈泡的一圖式; 第2圖是對於第1圖中之先前技術LED施加的一輸入線 電壓F/«及提取自交流幹線之輸入線電流/ί>ζ的一信號圖; 第3圖是配備有一功率因數校正(PFC)預調節器的一先 前技術LED燈泡之圖式; 第4圖是一習知的相位控制(即TRIac(交流三極體))調 光器開關之電路圖; 第5A及5B圖是與第4圖中之TRIAC調光器開關相關聯 之線電壓及調光波形; 第6圖是依據本發明之一實施例的一 LED燈泡的一圖 式; 第7圖是第6圖中之LED燈泡的一圖式,繪示LED燈泡 之LED如何被包圍在一透明或半透明的外殼中且LED燈泡 之電氣組件如何被耦合至一標準的愛迪生螺紋燈座; 第8圖是用以實施第6圖中之LED燈泡之AC-DC轉換器 的一交流對直流(AC-DC)轉換器的一電路圖; 第9圖是供應第8圖中之AC-DC轉換器的交流輸入電壓 «,及其與於AC-DC轉換器之輸出產生的直流電壓VdcA 其反相-Vdc之關係的一信號圖; 第10圖是繪示第8圖中之AC-DC轉換器之開關如何依 賴交流輸入電壓W«之瞬時值與於第8圖中之AC-DC轉換器 之輸出產生之直流電壓Vdc及其反相-Vdc的比較來切換及 驅動的一表格; 第11A圖是繪示在Κζ·«> Vdc時交流輸入波形之正半週 24 201220937 時間’第8圖中之AC-DC轉換器如何化為且作用為一降壓轉 換器的一電路圖; 第11B圖是繪示在< - Vdc時交流輸入波形之負半週 時間’第8圖中之AC-DC轉換器如何化為且作用為一反向降 壓轉換器的一電路圖; 第12圖是可用以實施第6圖中之LED燈泡中之分壓器 的一電荷泵分壓器的一電路圖; 第13A圖是當第12圖中之電荷泵分壓器被配置成處於 一「充電」狀態時該電荷泵分壓器的一簡化等效電路圖; 第13B圖是當第12圖中之電荷泵分壓器被配置成處於 一「負載」狀態時該電荷泵分壓器的一簡化等效電路圖; 第14圖是繪示第6圖中之LED燈泡之LED之調光如何 可由一習知的TRIAC調光器開關控制的一圖式; 第15A-D圖是當第14圖中之TRIAC調光器開關在未作 用時與第6圖中之LED燈泡之運作相關聯之信號圖; 第16A-D圖是當第14圖中之TRIAC調光器開關在作用 時與第6圖中之LED燈泡之運作相關聯之信號圖; 第17圖是比較第14圖中之trjac調光器開關之調光器 波形與AC-DC轉換器輸出的直流電壓的一比較電路; 第18圖是可用以將來自第17圖中之比較電路的邏輯信 號中的工作週期資訊轉換成一較高頻率的一變頻器的一 電路圖; 第19A及19B圖是繪示由第18圖中之變頻器所產生之 DIM信號如何具有最小調光的一高工作週期(第19A圖)及 25 201220937 最大調光的一低工作週期(第19B圖)的信號圖; 第20圖是可用以產生複數不同相位的調光控制信號來 控制第6圖中之LED燈泡之複數LED之調光的一相位產生 器的一電路圖; 第21圖是用在第20圖中之相位產生器中的同步相頻檢 測器(S-PFD)之一的一電路圖;及 第22圖是依據本發明之一替代實施例的一 LED燈泡的 一圖式,其中該LED燈泡之LED並聯連接。 【主要元件符號說明】 100.. .先前技術LED燈泡/LED燈泡 102.. .橋式整流器 104…平流電容器 106.. .直流對直流轉換器 108…LED串 3 00..丄ED燈泡/先前技術LED燈泡 302.. .功率因數校正(PFC)預調節器/PFC預調節器 400.. .習知的調光器開關/TRIAC調光器開關 402.. .可變電阻器 404.. .電容器 406.. .DIAC(交流二極體) 408.. .TRIAC(交流三極體) 410.. .白熾燈泡 512.. .導通延遲 600…發光二極體(LED)燈泡/LED燈泡 26 201220937 601.. .電力轉換及控制電路 602.. .交流對直流(AC-DC)轉換器/AC-DC轉換器 604.. .分壓器Logic signal 51 has a variable duty cycle that is dictated by the dimming setting of TRIAC dimmer switch 1402. According to an embodiment of the invention, the dependency is used to control the dimming of the LEDs 608-1, 608-2, ..., 608-n of the LED bulb 600, in particular by the pair of LEDs 19 201220937 608- The on-off ratio of l, 608-2, ..., 6〇8-n is compared to duty cycle control. However, because the logic signal has a low frequency that is only equal to the line frequency (6 Hz in the US), it is first upconverted to avoid any perceived discretion of the LEDs, as will be explained in more detail below. Although the logic signal 51 is generated in this exemplary embodiment based on the comparison circuit 1700 |f called <vdc, it should be noted that the logic signal ^ can be selectively based on the distortion waveform, other signals. Features such as, for example, a distorted waveform, a firing angle or a conductive angle are produced. Figure 18 is a circuit diagram of an exemplary frequency converter 1800 for converting duty cycle information in a logic signal s to a higher frequency. In an embodiment, it is included in the LED controller 606 of the LED bulb 600 and includes first and second digit counters 1802 and 1804, a latch 18〇6, and a digit size comparator 1808 «from the comparison circuit The 17-inch logic signal is coupled to the enable (εν) input of the first digital counter 1802. When the logic signal is a logic high, that is, when |F~|<Vdc, the first digital counter 18〇 2 starts counting from zero at a rate of 27 X 60 Hz. The first digit counter 18〇2 counts until the logic signal *S falls to a logic low, at which point the digit count is latched into the latch 1806 and coupled to the input Ββ second digit counter of the digital size comparator 18〇8 1804 is a free counter configured to continuously and repeatedly count from 〇 to 127, but at a rate much higher than the line rate of 6 Hz, allowing duty cycle information in the logic signal to be converted to a higher frequency fLED<> The fLED is set during design and is equal to 10 MHz in one embodiment. When the second digit counter 1804 counts, the digit comparator 1808 compares its count with the count of the latch 18〇6. Eventually, the count exceeds the count of latch 1806, causing the A>B output of digit 20 201220937 comparator 1808 to change to a logic high. The A>B output is maintained at a logic south until the second digit counter 18〇4 counts to its limit (27 -1 = 127). It then decreases and the second digit counter 18〇4 is reset to zero to restart counting. The A> B output signal of the digital comparator 1808 has a fixed high frequency fLED and a variable duty cycle that is dependent on the dimming level setting of the DIRAC dimmer switch 14〇2. For a minimum dimming setting, the duty cycle (t0N/t0FF) of the a>b signal is high, as shown in Figure 19A, and for a maximum dimming setting, the duty cycle is low, as in 19B The one shown in the figure. Therefore, the A>B signal can be used to control the adjustment of the LED bulb 600 in a large dimming range by simply controlling the on-off ratio of the LEDs 608-1, 608-2, . . ., 608-«. Light. According to an embodiment, the a > B signal is used as a "DIM (dimming)" signal to enable and disable one or more controlled currents of the LEDs 608-1, 608-2, ..., 608-« The source, similar to that shown in Figure 12, wherein the controlled current source 1210 of LED 608-1 is enabled and deactivated in response to the DIM signal and in accordance with the duty cycle of the DIM signal. Depending on the number of LEDs used in the LED bulb 600, switching the LEDs 608-1, 608-2, ..., 608-« simultaneously to on and off by the same DIM signal can result in an excessive load. In order to avoid this problem, in one embodiment of the present invention, "a dimming control signal having a different phase from each other is generated and used to individually control the conduction of π LEDs 608-1, 608-2, ..., 608-". - Cut-off ratio duty cycle control. Figure 20 is a circuit diagram of an exemplary phase generator 2000 that can be used to generate a dimming control signal. In one embodiment of the invention, 'phase generator 2000 includes a portion of LED control 21 201220937 controller 606 of LED bulb 600' and includes master-slave ring oscillators 2〇〇2 and 2〇〇4 (or other types of Multiphase oscillators and „Synchronous phase-frequency detectors (S-PFD) 2006-1, 2006-2,...,2006-«. A more detailed circuit diagram of the first-S-PFD 2006-1 is painted As shown in Fig. 21, the remaining s pFD 2006-2,...,2〇06-« are substantially the same. The main ring oscillator: the device 2002 is configured in a phase-locked loop 2008, which operates The output frequency of the main ring oscillator 2〇〇2 is locked to the print and the main phase reference is provided for phase comparison with the slave ring oscillator 2〇〇4. The digit size from the inverter 1800 (Fig. 18) The A>8 signal of the comparator 808 is used as a phase rotation command for shifting the phase of the slave ring oscillator 2004 with respect to the phase of the main ring oscillator 2〇〇2. s_pFE) 2006], 2006-2, ..., 2006-«Generate „dimming control signals privately” ice, wherein each dimming control signal has a phase with the phase of the master-slave ring oscillator 2〇〇2 The difference is proportional to the pulse width. An XOR gate 2〇1〇 compares the pulse width of one of the S-PFDs (S-PFD 2006-1 in this example) with the pulse width of the A> B signal. When the width fails to match, the X〇r gate 2〇1〇 generates a disturbance pulse. Over time, these disturbance pulses are averaged by the filter and the waver 2 to generate a disturbance signal for changing the slave oscillator 2电力4 power supply. Modifying the slave oscillator power supply affects the delay of the inverter in the slave ring oscillator 2004, and thus affects the phase of the slave ring oscillator 2〇〇4 relative to the main ring oscillator The phase relationship of the phase of 2002. In this way, the output of the S-PFD 2006-1, 2006-2, ..., 2006-« „dimming control signals 九&,... the pulse width in the ice responds to The modified power supply is changed, forcing "the dimming control signal H·., each of the working weeks 22 201220937 to adapt to and track the change in the duty cycle of the A > B signal. In an exemplary embodiment, the LEDs 680-1, 608-2, ..., 608-« of the LED bulb 600 are comprised of The w separate power supplies provided by voltage divider 604 are separately powered. In an alternate embodiment, LEDs 608-1, 608-2, ..., 608-« are connected in parallel and powered by a single power supply, as in the first 22 is generally shown in the LED bulb 2200. The AC-DC converter 602 operates similarly to the above described 'LED 608-1, 608-2, _.., 608-« parallel connection to allow for flexible degradation, similar For LED bulbs 600. A DC-DC converter 2202 converts the DC output voltage Vdcl into a lower DC voltage vdc2 for LEDs 608-1, 608-2, ..., 608-". Alternatively, if the AC-DC converter 602 is low The output voltage is not limited by the duty cycle, which may be configured to convert the AC input voltage Fm directly to Vdc2, ie without the aid of an intermediate DC-DC converter 2202. Similar to the LED controller 6〇6 above, the LED controller 22〇4 includes circuitry for collectively or individually controlling dimming of LEDs 608-1, 608-2, . . . , 608-«, including support circuitry for controlling dimming in response to conventional TRIAC dimmer switches Although various embodiments of the invention have been described, the invention has been described by way of example and not limitation. The scope of the present invention should not be limited by the details of the exemplary embodiments of the present invention. Including such (four) = patent scope The equal scope of the rights is determined. [Simplified illustration] 23 201220937 Figure 1 is a diagram of a prior art LED bulb; Figure 2 is an input line voltage applied to the prior art LED of Figure 1. F/« and a signal diagram of the input line current /ί>ζ extracted from the AC mains; Figure 3 is a diagram of a prior art LED bulb equipped with a power factor correction (PFC) pre-regulator; Figure 4 A circuit diagram of a conventional phase control (ie, a TRIac dimmer switch); FIGS. 5A and 5B are line voltage and dimming waveforms associated with the TRIAC dimmer switch of FIG. 4; Figure 6 is a diagram of an LED bulb according to an embodiment of the present invention; Figure 7 is a diagram of the LED bulb of Figure 6, showing how the LED of the LED bulb is surrounded by a transparent or a half How the electrical components of the LED bulb are coupled to a standard Edison threaded socket in a transparent housing; Figure 8 is an AC-to-DC (AC-) for implementing the AC-DC converter of the LED bulb of Figure 6. a circuit diagram of the DC converter; Figure 9 is the supply of the AC-DC conversion in Figure 8. The AC input voltage «, and a signal diagram of its relationship with the DC voltage VdcA generated by the output of the AC-DC converter, inverting -Vdc; Figure 10 is a diagram showing the AC-DC conversion in Figure 8. A table of how the switch of the device switches and drives depending on the instantaneous value of the AC input voltage W« and the DC voltage Vdc generated by the output of the AC-DC converter in FIG. 8 and its inversion-Vdc; The figure is a circuit diagram showing how the AC-DC converter in Figure 8 is converted to a buck converter in the positive half cycle of the AC input waveform at Κζ·«> Vdc 24 201220937 time; The figure shows a circuit diagram of how the AC-DC converter in Fig. 8 is turned into and acts as an inverting buck converter in the negative half cycle time of the AC input waveform at < - Vdc; A circuit diagram of a charge pump voltage divider that can be used to implement a voltage divider in the LED bulb of FIG. 6; FIG. 13A is a diagram of the charge pump voltage divider of FIG. 12 being configured to be in a "charged" state A simplified equivalent circuit diagram of the charge pump voltage divider; Figure 13B is the charge pump of Figure 12 A simplified equivalent circuit diagram of the charge pump divider when configured in a "load" state; Figure 14 is a diagram showing how the dimming of the LED of the LED bulb in Figure 6 can be adjusted by a conventional TRIAC A diagram of the light switch control; Figure 15A-D is a signal diagram associated with the operation of the LED bulb of Figure 6 when the TRIAC dimmer switch of Figure 14 is inactive; 16A-D Figure is a signal diagram associated with the operation of the LED bulb in Figure 6 when the TRIAC dimmer switch in Figure 14 is active; Figure 17 is a comparison of the dimming of the trjac dimmer switch in Figure 14 a comparison circuit between the waveform and the DC voltage output by the AC-DC converter; Figure 18 is a frequency converter that can be used to convert the duty cycle information in the logic signal from the comparison circuit in FIG. 17 to a higher frequency. A circuit diagram; 19A and 19B are diagrams showing how a DIM signal generated by the frequency converter of Fig. 18 has a minimum duty cycle (Fig. 19A) and 25 201220937 a minimum duty cycle of maximum dimming (Fig. 19B) signal diagram; Fig. 20 is available to generate complex numbers A circuit diagram of a phase generator of the same phase dimming control signal for controlling the dimming of the plurality of LEDs of the LED bulb in FIG. 6; FIG. 21 is a synchronous phase frequency used in the phase generator of FIG. A circuit diagram of one of the detectors (S-PFD); and FIG. 22 is a diagram of an LED bulb in accordance with an alternative embodiment of the present invention, wherein the LEDs of the LED bulb are connected in parallel. [Main component symbol description] 100.. . Prior art LED bulb / LED bulb 102.. Bridge rectifier 104... Straddle capacitor 106.. DC to DC converter 108...LED string 3 00..丄ED bulb/previous Technical LED Bulb 302.. Power Factor Correction (PFC) Pre-Regulator / PFC Pre-Regulator 400.. Known Dimmer Switch / TRIAC Dimmer Switch 402.. Variable Resistor 404.. . Capacitor 406.. .DIAC (AC Diode) 408.. .TRIAC (AC Triode) 410.. . Incandescent Bulb 512.. . Conduction Delay 600...Light Emitting Diode (LED) Bulb / LED Bulb 26 201220937 601.. Power conversion and control circuit 602.. AC to DC converter (AC-DC) converter / AC-DC converter 604.. . Voltage divider

606.. 丄ED控制器 608-1 〜608-n."LED 702.. .玻璃燈泡 704.. .愛迪生螺紋燈座 800.. .AC-DC 轉換器 800A...降壓轉換器 800B...「反向」降壓轉換器 802…第一開關/開關 804.. .第二開關/開關 806.. .第三開關/開關 808…第四開關/開關 810.. .電感器 812.. .平流電容器/電容器 814.. .開關控制器/開關控制電路 1200.. .電荷泵分壓器 1202-1 〜1202-4...第一組開關 1204-1 〜1204-4...電容器 1206-1〜1206-4...第二組開關 1208.. .振盪器 1210.. .受控電流源 1402.. .習知的TRIAC(交流三極體)調光器開關/TRIAC調光器開關 27 201220937 1700…比較電路 1702…第一比較器 1704…第二比較器 1706.. .反向放大器 1708、1710、1712、1714···電阻器 1716.. .邏輯 NOR 閘 1800.. .示範性變頻器/變頻器 1802.. .第一數位計數器 1804…第二數位計數器 1806.. .鎖存器 1808.. .數位大小比較器/數位比較器 2000.. .示範性相位產生器 2002…主從環式振盪器606.. 丄 ED controller 608-1 ~ 608-n. " LED 702.. . glass bulb 704.. Edison threaded socket 800.. . AC-DC converter 800A... buck converter 800B ... "reverse" buck converter 802... first switch / switch 804.. second switch / switch 806.. third switch / switch 808 ... fourth switch / switch 810.. inductor 812 .. . Straddle capacitor / capacitor 814.. Switch controller / switch control circuit 1200.. Charge pump divider 1202-1 ~ 1202-4... The first group of switches 1204-1 ~ 1204-4.. Capacitors 1206-1~1206-4...Second Group Switch 1208.. Oscillator 1210.. Controlled Current Source 1402.. Known TRIAC (AC Triode) Dimmer Switch / TRIAC Dimmer switch 27 201220937 1700... comparison circuit 1702... first comparator 1704... second comparator 1706.. reverse amplifier 1708, 1710, 1712, 1714 ... resistor 1716.. logical NOR gate 1800. . Exemplary Inverter/Inverter 1802.. First Digit Counter 1804... Second Digit Counter 1806.. Latch 1808.. Digit Size Comparator/Digital Comparator 2000.. Exemplary Phase Generation 2002... master-slave ring vibration Device

2004.. .從屬環式振盪器/從屬振盪器 2006-1〜2006-n...同步相頻檢測器(S-PFD) 2006-1…同步相頻檢測器(S-PFD)/第一 S-PFD 2008.. .鎖相迴路 2010.. .XOR 閘 2012.. .濾波器 2200.. 丄ED燈泡 2202.. . DC-DC 轉換器 2204…LED控制器 282004.. Subordinate Ring Oscillator/Slave Oscillator 2006-1~2006-n...Synchronous Phase Frequency Detector (S-PFD) 2006-1...Synchronous Phase Frequency Detector (S-PFD)/First S-PFD 2008.. . phase-locked loop 2010.. .XOR gate 2012.. filter 2200.. 丄ED bulb 2202.. DC-DC converter 2204...LED controller 28

Claims (1)

201220937 七、申請專利範圍: 1· 一種照明系統,其包含: 一或多個發光裝置;及 一交流對直流(AC-DC)轉換器,被配置成毋需使用 一橋式整流器而直接將來自一交流電源的交流電轉換 成直流電,該直流電用以供電該一或多個發光裝置。 2·如申請專利範圍第1項所述之照明系統,其中該AC-DC 轉換器包含複數開關。 3·如申請專利範圍第1或2項所述之照明系統,其中該 AC-DC轉換器被配置成毋需使用一降壓變壓器而直接 將交流電轉換成直流電。 4. 如申請專利範圍第1-3項所述之照明系統,進一步包含 被配置成自該直流電產生複數直流電源之電路,該複數 直流電源被配置成向該一或多個發光裝置供電。 5. 如申請專利範圍第1項所述之照明系統,進一步包含被 配置成產生用以控制該一或多個發光裝置之調光的一 或多個調光控制信號的一控制電路。 6_如申請專利範圍第5項所述之照明系統,其中該控制電 路被配置成在控制該一或多個發光裝置之調光之時改 變該一或多個調光控制信號之工作週期。 7. 如申請專利範圍第6項所述之照明系統,其中該控制電 路被配置成響應於由一外部調光器開關提供的一調光 信號來改變該一或多個調光控制信號之工作週期。 8. 如申請專利範圍第7項所述之照明系統,其中該控制電 29 201220937 路包括被配置成在產生該一或多個調光控制信號之時 比較該調光信號之一電壓與該直流電之一電壓之比較 電路。 9. 如申請專利範圍第5項所述之照明系統,其中該一或多 個發光裝置包含複數發光裝置且該控制電路被配置成 產生用以控制該複數發光裝置之調光的複數調光控制 信號。 10. —種用於一電負載之電力轉換及控制系統,其包含: 一交流對直流(AC-DC)轉換器,被配置成將來自一 交流電源的交流電轉換成直流電; 用以將來自該AC-DC轉換器的直流電供應給一電 負載之裝置;及 用以對通過該電負載之電流作工作週期控制之裝 置。 11. 如申請專利範圍第10項所述之電力轉換及控制系統,其 中該AC-DC轉換器被配置成毋需使用一橋式整流器或 降壓變壓器而直接將來自該交流電源的交流電轉換成 直流電。 12. 如申請專利範圍第10項所述之電力轉換及控制系統,其 中該電負載包含一或多個發光裝置,且該用以對電流作 工作週期控制之裝置包括響應於由一外部調光器開關 所提供的一調光信號對通過該一或多個發光裝置之電 流作工作週期控制之裝置。 13. 如申請專利範圍第12項所述之電力轉換及控制系統,其 30 201220937 中該一或多個發光裝置包含複數發光裝置,且該用以對 電流作工作週期控制之裝置包括用以產生控制該複數 發光裝置之調光的複數調光控制信號之裝置。 14. 一種照明方法,其包含以下步驟: 使用複數開關而毋需使用一橋式整流器或降壓變 壓器直接將交流(AC)電轉換成直流(DC)電;及 使用該直接轉換的直流電來供電給一或多個發光 裝置。 15. 如申請專利範圍第14項所述之照明方法,其中使用該直 接轉換的直流電供電給該一或多個發光裝置包含以下 步驟: 由該直接轉換的直流電產生複數單獨的直流電 源;及 使用該複數單獨的直流電源來向該一或多個發光 裝置供電。 16. 如申請專利範圍第14項所述之照明方法,進一步包含控 制該一或多個發光裝置之調光。 17. 如申請專利範圍第16項所述之照明方法,其中該一或多 個發光裝置包含複數發光裝置,且控制該複數發光裝置 之調光包含產生用以控制該複數發光裝置之調光的複 數調光控制信號。 18. 如申請專利範圍第17項所述之照明方法,其中產生該複 數調光控制信號包含產生複數相位偏移調光控制信號。 19. 如申請專利範圍第16項所述之照明方法,其中控制該一 31 201220937 或多個發光裝置之調光響應於由一外部調光器開關所 提供的一調光信號而被執行。 20. —種照明系統,其包含: 複數發光裝置; 一交流對直流(AC-DC)轉換器,被配置成從由一交 流電源所提供之交流電產生直流電;及 一分壓器,被配置成由該AC-DC轉換器所產生之該 直流電產生複數直流電源,該複數直流電源被配置成向 該複數發光裝置供電。 21. 如申請專利範圍第20項所述之照明系統,其中該AC-DC 轉換器被配置成毋需使用一橋式整流器而直接將交流 電轉換成直流電。 22. 如申請專利範圍第20項所述之照明系統,其中該AC-DC 轉換器包含: 一電感器; 一電容器;及 複數開關,被配置成在將該交流電轉換成直流電之 時選擇性地使該電容器與該電感器耦合及解耦。 23. 如申請專利範圍第22項所述之照明系統,其中該電感 器、電容器,及開關在該交流電源之一電壓大於一直流 電壓Vdc時被配置成一降壓轉換器。 24. 如申請專利範圍第23項所述之照明系統,其中該電感 器、電容器,及開關在該交流電源之一電壓小於-Vdc時 被配置成一反向降壓轉換器。 32 201220937 25. 如申請專利範圍第20項所述之照明系統,進一步包含被 配置成產生用以控制該複數發光裝置之調光的一或多 個調光控制信號的一控制電路。 26. 如申請專利範圍第25項所述之照明系統,其中該控制電 路被配置成在控制該複數發光裝置的調光之時改變該 一或多個調光控制信號之工作週期。 27. 如申請專利範圍第26項所述之照明系統,其中該控制電 路被配置成響應於由一外部調光器開關所提供的一調 光信號來改變該一或多個調光控制信號之工作週期。 28. 如申請專利範圍第27項所述之照明系統,其中該控制電 路包括被配置成在產生該一或多個調光控制信號之時 比較該調光信號之一電壓與該直流電之一直流電壓之 比較電路。 29. 如申請專利範圍第25項所述之照明系統,其中該一或多 個調光控制信號包含複數調光控制信號,且該控制電路 被配置成使用該複數調光控制信號來控制該複數發光 裝置之調光。 30. —種用於具有複數發光裝置的一發光負載的電力轉換 及控制系統,其包含: 一交流對直流(AC-DC)轉換器,被配置成從由一交 流電源所提供之交流電產生直流電;及 一分壓器,被配置成由該以AC-DC轉換器所產生之 直流電產生複數直流電源,該複數直流電源被配置成向 複數發光裝置供電。 33 201220937 31. 如申請專利範圍第30項所述之電力轉換及控制系統,其 中該AC-DC轉換器被配置成毋需使用一橋式整流器而 直接將交流電轉換成直流電。 32. 如申請專利範圍第30項所述之電力轉換及控制系統,其 中該AC-DC轉換器包含: 一電感器; 一電容器;及 複數開關,被配置成在將交流電轉換成直流電之時 選擇性地使該電容器與該電感器耦合及解耦。 33. 如申請專利範圍第32項所述之電力轉換及控制系統,其 中該電感、電容Is ’及開關在該交流電源之' 一電壓大 於一直流電壓Vdc時被配置成一降壓轉換器。 34. 如申請專利範圍第33項所述之電力轉換及控制系統,其 中該電感器、電容器,及開關在該交流電源之一電壓小 於-Vdc時被配置成一反向降壓轉換器。 35. 如申請專利範圍第30項所述之電力轉換及控制系統,進 一步包含被配置成產生用以控制該複數發光裝置之調 光的複數調光控制信號的一控制電路。 36. 如申請專利範圍第35項所述之電力轉換及控制系統,其 中該控制電路被配置成在控制該複數發光裝置的調光 之時改變該等調光控制信號之工作週期。 37. 如申請專利範圍第36項所述之電力轉換及控制系統,其 中該控制電路被配置成響應於由一外部調光器開關所 提供的一調光信號來改變該等調光控制信號之工作週 34 201220937 期。 38. 如申請專利範圍第37項所述之電力轉換及控制系統,其 中該控制電路包括被配置成在產生該複數調光控制信 號之時比較該調光信號之一電壓與該直流電之一直流 電壓之比較電路。 39. 如申請專利範圍第35項所述之電力轉換及控制系統,其 中該控制電路被進一步配置成產生該複數調光控制信 號,使得該等調光控制信號彼此具有不同的相位。 40. —種照明方法,其包含以下步驟: 將交流(AC)電轉換成直流(DC)電; 由該直流電產生複數直流電源;及 由該複數直流電源向複數發光裝置供電。 41. 如申請專利範圍第40項所述之照明方法,其中將交流電 轉換成直流電包含使用複數開關且毋需使用一橋式整 流器或降壓變壓器直接將該交流電轉換成直流電。 42. 如申請專利範圍第40項所述之照明方法,進一步包含產 生用以控制該複數發光裝置之調光的複數調光控制信 號。 43. 如申請專利範圍第42項所述之照明方法,進一步包含響 應於由一外部調光器開關所提供的一調光信號來改變 該等調光控制信號之工作週期。 44. 如申請專利範圍第42項所述之照明方法,進一步包含在 產生該複數調光控制信號之時比較該調光信號之一電 壓與由該AC-DC轉換所產生的該直流電之一直流電壓。 35 201220937 45. 如申請專利範圍第42項所述之照明方法,其中產生該複 數調光控制信號被執行,使得該等調光控制信號彼此具 有不同的相位。 46. —種照明系統,其包含: 複數發光裝置; 一交流對直流(AC-DC)轉換器,被配置成從由一交 流電源所提供的交流電產生直流電;及 一分壓器,被配置成從由該AC-DC轉換器所產生之 該直流電產生複數直流電源,該複數直流電源被配置成 向該複數發光裝置供電。 47. 如申請專利範圍第46項所述之照明系統,其中該AC-DC 轉換器被配置成毋需使用一橋式整流器而直接將交流 電轉換成直流電。 48. 如申請專利範圍第46項所述之照明系統,其中該AC-DC 轉換器包含: 一電感器; 一電容器;及 複數開關,被配置成在將該交流電轉換成直流電之 時選擇性地使該電容器與該電感器耦合及解耦。 49. 如申請專利範圍第48項所述之照明系統,其中該電感 器、電容器,及開關在該交流電源之一電壓大於一直流 電壓Vdc時被配置成一降壓轉換器。 50. 如申請專利範圍第49項所述之照明系統,其中該電感 器、電容器,及開關在該交流電源之一電壓小於-Vdc時 36 201220937 被配置成一反向降壓轉換器。 51. 如申請專利範圍第46項所述之照明系統,進一步包含被 配置成產生用以控制該複數發光裝置之調光的一或多 個調光控制信號的一控制電路。 52. 如申請專利範圍第51項所述之照明系統,其中該控制電 路被配置成在控制該複數發光裝置的調光之時改變該 一或多個調光控制信號之工作週期。 53. 如申請專利範圍第52項所述之照明系統,其中該控制電 路被配置成響應於由一外部調光器開關所提供的一調 光信號來改變該一或多個調光控制信號之工作週期。 5 4.如申請專利範圍第5 3項所述之照明系統,其中該控制電 路包括被配置成在產生該一或多個調光控制信號之時 比較該調光信號之一電壓與該直流電之一直流電壓的 比較電路。 5 5.如申請專利範圍第51項所述之照明系統,其中該一或多 個調光控制信號包含複數調光控制信號,且該控制電路 被配置成使用該複數調光控制信號來控制該複數發光 裝置之調光。 56. —種用於具有複數發光裝置的一發光負載的電力轉換 及控制系統,其包含: 一交流對直流(AC-DC)轉換器,被配置成從由一交 流電源所提供之交流電產生直流電;及 一分壓器,被配置成從由該AC-DC轉換器所產生之 該直流電產生複數直流電源,該複數直流電源被配置成 37 201220937 向複數發光裝置供電。 57. 如申請專利範圍第56項所述之電力轉換及控制系統,其 中該AC-DC轉換器被配置成毋需使用一橋式整流器而 直接將交流電轉換成直流電。 58. 如申請專利範圍第56項所述之電力轉換及控制系統,其 中該AC-DC轉換器包含: 一電感器; 一電容器;及 複數開關,被配置成在將交流電轉換成直流電之時 選擇性地使該電容器與該電感器耦合及解耦。 59. 如申請專利範圍第58項所述之電力轉換及控制系統,其 中該電感器、電容器,及開關在該交流電源之一電壓大 於一直流電壓Vdc時被配置成一降壓轉換器。 60. 如申請專利範圍第59項所述之電力轉換及控制系統,其 中該電感器、電容器,及開關在該交流電源之一電壓小 於-Vdc時被配置成一反向降壓轉換器。 61. 如申請專利範圍第56項所述之電力轉換及控制系統,進 一步包含被配置成產生用以控制該複數發光裝置之調 光的複數調光控制信號的一控制電路。 62. 如申請專利範圍第61項所述之電力轉換及控制系統,其 中該控制電路被配置成在控制該複數發光裝置的調光 之時改變該等調光控制信號之工作週期。 63. 如申請專利範圍第62項所述之電力轉換及控制系統,其 中該控制電路被配置成響應於由一外部調光器開關所 38 201220937 提供的一調光信號來改變該等調光控制信號之工作週 期。 64. 如申請專利範圍第63項所述之電力轉換及控制系統,其 中該控制電路包括被配置成在產生該複數調光控制信 號之時比較該調光信號之一電壓與該直流電之一直流 電壓的比較電路。 65. 如申請專利範圍第61項所述之電力轉換及控制系統,其 中該控制電路被進一步配置成產生該複數調光控制信 號,使得該等調光控制信號彼此具有不同的相位。 66. —種照明方法,其包含以下步驟: 將交流(AC)電轉換成直流(DC)電; 由該直流電產生複數直流電源;及 由該複數直流電源向複數發光裝置供電。 67. 如申請專利範圍第66項所述之照明方法,其中將交流電 轉換成直流電包含使用複數開關且毋需使用一橋式整 流器或降壓變壓器而直接將該交流電轉換成直流電。 68. 如申請專利範圍第66項所述之照明方法,進一步包含產 生用以控制該複數發光裝置之調光的複數調光控制信 號。 69. 如申請專利範圍第23項所述之照明方法,進一步包含響 應於由一外部調光器開關所提供的一調光信號來改變 該等調光控制信號之工作週期。 70. 如申請專利範圍第68項所述之照明方法,進一步包含在 產生該複數調光控制信號之時比較該調光信號之一電 39 201220937 壓與由該AC-DC轉換所產生的該直流電之一直流電壓。 71.如申請專利範圍第68項所述之照明方法,其中產生該複 數調光控制信號被執行,使得該等調光控制信號彼此具 有不同的相位。 40201220937 VII. Patent application scope: 1. An illumination system comprising: one or more illumination devices; and an AC-to-DC converter configured to directly use a bridge rectifier The alternating current of the alternating current source is converted to direct current, which is used to power the one or more lighting devices. 2. The illumination system of claim 1, wherein the AC-DC converter comprises a plurality of switches. 3. The illumination system of claim 1 or 2, wherein the AC-DC converter is configured to directly convert the alternating current to direct current using a step-down transformer. 4. The illumination system of claim 1-3, further comprising circuitry configured to generate a plurality of DC power sources from the DC power, the plurality of DC power sources configured to supply power to the one or more illumination devices. 5. The illumination system of claim 1, further comprising a control circuit configured to generate one or more dimming control signals for controlling dimming of the one or more illumination devices. The illumination system of claim 5, wherein the control circuit is configured to change a duty cycle of the one or more dimming control signals while controlling dimming of the one or more illumination devices. 7. The illumination system of claim 6, wherein the control circuit is configured to change the operation of the one or more dimming control signals in response to a dimming signal provided by an external dimmer switch cycle. 8. The illumination system of claim 7, wherein the control circuit 29 201220937 includes a channel configured to compare a voltage of the dimming signal with the DC current when the one or more dimming control signals are generated One of the voltage comparison circuits. 9. The illumination system of claim 5, wherein the one or more illumination devices comprise a plurality of illumination devices and the control circuit is configured to generate a plurality of dimming controls for controlling dimming of the plurality of illumination devices signal. 10. A power conversion and control system for an electrical load, comprising: an alternating current to direct current (AC-DC) converter configured to convert alternating current from an alternating current source to direct current; A device in which a direct current of an AC-DC converter is supplied to an electrical load; and a device for duty cycle control of a current passing through the electrical load. 11. The power conversion and control system of claim 10, wherein the AC-DC converter is configured to directly convert an alternating current from the alternating current source to a direct current using a bridge rectifier or a step-down transformer. . 12. The power conversion and control system of claim 10, wherein the electrical load comprises one or more illumination devices, and wherein the means for duty cycle control comprises responding to an external dimming A dimming signal provided by the switch is used to control the current through the one or more illumination devices. 13. The power conversion and control system of claim 12, wherein the one or more illuminating devices in the 201220937 comprise a plurality of illuminating devices, and the device for controlling the current duty cycle comprises generating Means for controlling the dimming of the plurality of dimming control signals of the plurality of illumination devices. 14. A method of illumination comprising the steps of: using a plurality of switches without the need to directly convert alternating current (AC) electricity into direct current (DC) power using a bridge rectifier or step-down transformer; and using the directly converted direct current to supply power to One or more light emitting devices. 15. The illumination method of claim 14, wherein the direct conversion of the direct current power to the one or more illumination devices comprises the steps of: generating a plurality of separate DC power sources from the directly converted direct current; and using The plurality of separate DC power sources supply power to the one or more lighting devices. 16. The method of illumination of claim 14, further comprising controlling dimming of the one or more illumination devices. 17. The illumination method of claim 16, wherein the one or more illumination devices comprise a plurality of illumination devices, and controlling dimming of the plurality of illumination devices comprises generating dimming for controlling the plurality of illumination devices. Complex dimming control signals. 18. The illumination method of claim 17, wherein generating the complex dimming control signal comprises generating a complex phase offset dimming control signal. 19. The illumination method of claim 16, wherein the dimming controlling the one of the 31 201220937 or the plurality of illumination devices is performed in response to a dimming signal provided by an external dimmer switch. 20. An illumination system comprising: a plurality of illumination devices; an alternating current to direct current (AC-DC) converter configured to generate direct current from an alternating current supplied by an alternating current source; and a voltage divider configured to The direct current generated by the AC-DC converter generates a plurality of direct current power sources configured to supply power to the plurality of light emitting devices. 21. The illumination system of claim 20, wherein the AC-DC converter is configured to directly convert alternating current to direct current using a bridge rectifier. 22. The illumination system of claim 20, wherein the AC-DC converter comprises: an inductor; a capacitor; and a plurality of switches configured to selectively convert the alternating current to direct current The capacitor is coupled and decoupled from the inductor. 23. The illumination system of claim 22, wherein the inductor, capacitor, and switch are configured as a buck converter when one of the AC power sources has a voltage greater than the DC voltage Vdc. 24. The illumination system of claim 23, wherein the inductor, capacitor, and switch are configured as a reverse buck converter when one of the AC power sources has a voltage less than -Vdc. The illumination system of claim 20, further comprising a control circuit configured to generate one or more dimming control signals for controlling dimming of the plurality of illumination devices. 26. The illumination system of claim 25, wherein the control circuit is configured to change a duty cycle of the one or more dimming control signals while controlling dimming of the plurality of illumination devices. 27. The illumination system of claim 26, wherein the control circuit is configured to change the one or more dimming control signals in response to a dimming signal provided by an external dimmer switch Working period. 28. The illumination system of claim 27, wherein the control circuit comprises: configured to compare a voltage of the dimming signal with a DC of the direct current when the one or more dimming control signals are generated Voltage comparison circuit. 29. The illumination system of claim 25, wherein the one or more dimming control signals comprise a plurality of dimming control signals, and the control circuit is configured to control the plurality of dimming control signals using the plurality of dimming control signals Dimming of the illuminating device. 30. A power conversion and control system for a lighting load having a plurality of lighting devices, comprising: an alternating current to direct current (AC-DC) converter configured to generate direct current from an alternating current provided by an alternating current source And a voltage divider configured to generate a plurality of direct current power sources by the direct current generated by the AC-DC converter, the plurality of direct current power sources being configured to supply power to the plurality of light emitting devices. The power conversion and control system of claim 30, wherein the AC-DC converter is configured to directly convert the alternating current into direct current using a bridge rectifier. 32. The power conversion and control system of claim 30, wherein the AC-DC converter comprises: an inductor; a capacitor; and a plurality of switches configured to convert alternating current to direct current The capacitor is coupled and decoupled from the inductor. 33. The power conversion and control system of claim 32, wherein the inductor, the capacitor Is', and the switch are configured as a buck converter when a voltage of the AC power source is greater than the DC voltage Vdc. 34. The power conversion and control system of claim 33, wherein the inductor, capacitor, and switch are configured as a reverse buck converter when one of the AC power sources has a voltage less than -Vdc. 35. The power conversion and control system of claim 30, further comprising a control circuit configured to generate a plurality of dimming control signals for controlling dimming of the plurality of illumination devices. 36. The power conversion and control system of claim 35, wherein the control circuit is configured to change a duty cycle of the dimming control signals while controlling dimming of the plurality of illumination devices. 37. The power conversion and control system of claim 36, wherein the control circuit is configured to change the dimming control signal in response to a dimming signal provided by an external dimmer switch Work week 34 201220937 period. 38. The power conversion and control system of claim 37, wherein the control circuit comprises: configured to compare a voltage of the dimming signal with a DC of the direct current when the complex dimming control signal is generated Voltage comparison circuit. 39. The power conversion and control system of claim 35, wherein the control circuit is further configured to generate the plurality of dimming control signals such that the dimming control signals have different phases from each other. 40. A method of illumination comprising the steps of: converting alternating current (AC) power to direct current (DC) power; generating a plurality of direct current power sources from the direct current; and supplying power to the plurality of light emitting devices from the plurality of direct current power sources. 41. The method of illumination of claim 40, wherein converting the alternating current to direct current comprises using a plurality of switches and directly converting the alternating current to direct current using a bridge rectifier or step-down transformer. 42. The illumination method of claim 40, further comprising generating a plurality of dimming control signals for controlling dimming of the plurality of illumination devices. 43. The method of illumination of claim 42, further comprising changing a duty cycle of the dimming control signals in response to a dimming signal provided by an external dimmer switch. 44. The illumination method of claim 42, further comprising comparing a voltage of the dimming signal with a DC of the DC generated by the AC-DC conversion when the complex dimming control signal is generated Voltage. The illumination method of claim 42, wherein the generating the plurality of dimming control signals is performed such that the dimming control signals have different phases from each other. 46. An illumination system comprising: a plurality of illumination devices; an alternating current to direct current (AC-DC) converter configured to generate direct current from an alternating current provided by an alternating current source; and a voltage divider configured to The DC power generated from the AC-DC converter generates a plurality of DC power sources configured to supply power to the plurality of light emitting devices. 47. The illumination system of claim 46, wherein the AC-DC converter is configured to directly convert alternating current to direct current using a bridge rectifier. 48. The illumination system of claim 46, wherein the AC-DC converter comprises: an inductor; a capacitor; and a plurality of switches configured to selectively convert the alternating current to direct current The capacitor is coupled and decoupled from the inductor. 49. The illumination system of claim 48, wherein the inductor, capacitor, and switch are configured as a buck converter when one of the AC power sources has a voltage greater than the DC voltage Vdc. 50. The illumination system of claim 49, wherein the inductor, capacitor, and switch are configured as an inverting buck converter when one of the alternating current sources has a voltage less than -Vdc 36 201220937. 51. The illumination system of claim 46, further comprising a control circuit configured to generate one or more dimming control signals for controlling dimming of the plurality of illumination devices. The illumination system of claim 51, wherein the control circuit is configured to change a duty cycle of the one or more dimming control signals while controlling dimming of the plurality of illumination devices. 53. The illumination system of claim 52, wherein the control circuit is configured to change the one or more dimming control signals in response to a dimming signal provided by an external dimmer switch Working period. 5. The illumination system of claim 5, wherein the control circuit comprises: configured to compare a voltage of the dimming signal with the DC current when the one or more dimming control signals are generated A DC voltage comparison circuit. 5. The illumination system of claim 51, wherein the one or more dimming control signals comprise a plurality of dimming control signals, and the control circuit is configured to control the using the plurality of dimming control signals Dimming of a plurality of illuminating devices. 56. A power conversion and control system for an illumination load having a plurality of illumination devices, comprising: an alternating current to direct current (AC-DC) converter configured to generate direct current from an alternating current provided by an alternating current source And a voltage divider configured to generate a plurality of DC power sources from the DC power generated by the AC-DC converter, the plurality of DC power sources being configured to supply power to the plurality of illumination devices at 201220937. 57. The power conversion and control system of claim 56, wherein the AC-DC converter is configured to directly convert alternating current to direct current using a bridge rectifier. 58. The power conversion and control system of claim 56, wherein the AC-DC converter comprises: an inductor; a capacitor; and a plurality of switches configured to convert alternating current to direct current The capacitor is coupled and decoupled from the inductor. 59. The power conversion and control system of claim 58 wherein the inductor, capacitor, and switch are configured as a buck converter when one of the AC power sources is greater than the DC voltage Vdc. 60. The power conversion and control system of claim 59, wherein the inductor, capacitor, and switch are configured as a reverse buck converter when one of the AC power sources has a voltage less than -Vdc. 61. The power conversion and control system of claim 56, further comprising a control circuit configured to generate a plurality of dimming control signals for controlling dimming of the plurality of illumination devices. 62. The power conversion and control system of claim 61, wherein the control circuit is configured to change a duty cycle of the dimming control signals while controlling dimming of the plurality of illumination devices. 63. The power conversion and control system of claim 62, wherein the control circuit is configured to change the dimming control in response to a dimming signal provided by an external dimmer switch 38 201220937 The duty cycle of the signal. 64. The power conversion and control system of claim 63, wherein the control circuit comprises: configured to compare a voltage of the dimming signal with a DC of the direct current when the complex dimming control signal is generated Voltage comparison circuit. 65. The power conversion and control system of claim 61, wherein the control circuit is further configured to generate the plurality of dimming control signals such that the dimming control signals have different phases from each other. 66. A method of illumination comprising the steps of: converting alternating current (AC) power to direct current (DC) power; generating a plurality of direct current power sources from the direct current; and supplying power to the plurality of light emitting devices from the plurality of direct current power sources. 67. The method of illumination of claim 66, wherein converting the alternating current to direct current comprises converting the alternating current to direct current using a plurality of switches and using a bridge rectifier or step-down transformer. 68. The illumination method of claim 66, further comprising generating a plurality of dimming control signals for controlling dimming of the plurality of illumination devices. 69. The illumination method of claim 23, further comprising changing a duty cycle of the dimming control signals in response to a dimming signal provided by an external dimmer switch. 70. The illumination method of claim 68, further comprising comparing one of the dimming signals to a voltage when the complex dimming control signal is generated 39 201220937 and the DC generated by the AC-DC conversion One of the DC voltages. The illumination method of claim 68, wherein generating the complex dimming control signal is performed such that the dimming control signals have different phases from each other. 40
TW100135764A 2010-10-04 2011-10-03 Power conversion and control systems and methods for solid-state lighting TW201220937A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/897,066 US8760078B2 (en) 2010-10-04 2010-10-04 Power conversion and control systems and methods for solid-state lighting
US12/897,094 US9024534B2 (en) 2010-10-04 2010-10-04 Power conversion and control systems and methods for solid-state lighting
US12/897,081 US8446099B2 (en) 2010-10-04 2010-10-04 Power conversion and control systems and methods for solid-state lighting

Publications (1)

Publication Number Publication Date
TW201220937A true TW201220937A (en) 2012-05-16

Family

ID=45928344

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100135764A TW201220937A (en) 2010-10-04 2011-10-03 Power conversion and control systems and methods for solid-state lighting

Country Status (2)

Country Link
TW (1) TW201220937A (en)
WO (1) WO2012047766A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20163827A1 (en) * 2016-05-26 2017-11-26 Franco Bertuzzi SYSTEM AND METHOD FOR THE CONTROL OF MULTIMODAL ELECTRICAL EQUIPMENT.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344985B1 (en) * 2000-12-05 2002-02-05 Heart Transverter S.A. Multiple port bi-directional power converter
US7023187B2 (en) * 2001-08-16 2006-04-04 Intersil Americas Inc. Integrated circuit for generating a plurality of direct current (DC) output voltages
EP1538881A4 (en) * 2002-09-12 2005-11-02 Matsushita Electric Ind Co Ltd Lighting device of electrodeless discharge lamp, bulb type electrodeless fluorescent lamp and lighting device of discharge lamp
US7656103B2 (en) * 2006-01-20 2010-02-02 Exclara, Inc. Impedance matching circuit for current regulation of solid state lighting
US7723926B2 (en) * 2006-05-15 2010-05-25 Supertex, Inc. Shunting type PWM dimming circuit for individually controlling brightness of series connected LEDS operated at constant current and method therefor
EP3032922B1 (en) * 2008-11-17 2018-09-19 Express Imaging Systems, LLC Electronic control to regulate power for solid-state lighting and methods thereof

Also Published As

Publication number Publication date
WO2012047766A2 (en) 2012-04-12
WO2012047766A3 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
US8760078B2 (en) Power conversion and control systems and methods for solid-state lighting
US10298014B2 (en) System and method for controlling solid state lamps
RU2638958C2 (en) Circuit device and led lamp, containing this circuit device
JP6048943B2 (en) Drive circuit, illumination light source, and illumination device
US9326336B2 (en) Dual switcher flyback structure for LED driver
US9101010B2 (en) High-efficiency lighting devices having dimmer and/or load condition measurement
CN104868703A (en) High voltage converter without auxiliary winding
CA2867826C (en) Driver circuit for solid state light sources
CN102412709A (en) Switching power supply device and adjustable power supply system including the same
TW201141302A (en) Selectively activated rapid start/bleeder circuit for solid state lighting system
Liu et al. Flicker-free single-switch quadratic boost LED driver compatible with electronic transformers
US8981655B2 (en) Power conversion and control systems and methods for solid-state lighting
US10362659B2 (en) Illumination control system, lighting system, illumination system, non-transitory recording medium, and illumination control method
US9265105B2 (en) Power conversion and control systems and methods for solid-state lighting
Shin et al. Sine-reference band (SRB)-controlled average current technique for phase-cut dimmable AC–DC buck LED lighting driver without electrolytic capacitor
TWI477045B (en) Power converter for low power illumination device, control circuit and method thereof
US9024534B2 (en) Power conversion and control systems and methods for solid-state lighting
US8111015B2 (en) Brightness-adjustable illumination driving system
TW201220937A (en) Power conversion and control systems and methods for solid-state lighting
CN210124030U (en) Circuit arrangement for operating a lamp and dimming circuit for a light-emitting diode
CN111246619B (en) LED driver for phase-cut dimmer
JP7133787B2 (en) Lighting systems, lighting control systems and luminaires
JP6299364B2 (en) LED driving device and LED lighting device
TWI477193B (en) Power converter for low power illumination device, control circuit and method thereof
JP2020077503A (en) Lighting system, illumination control system and luminaire