TW201220278A - Organic light emitting diode displays - Google Patents

Organic light emitting diode displays Download PDF

Info

Publication number
TW201220278A
TW201220278A TW100132716A TW100132716A TW201220278A TW 201220278 A TW201220278 A TW 201220278A TW 100132716 A TW100132716 A TW 100132716A TW 100132716 A TW100132716 A TW 100132716A TW 201220278 A TW201220278 A TW 201220278A
Authority
TW
Taiwan
Prior art keywords
pixel
data
oled
display
pixels
Prior art date
Application number
TW100132716A
Other languages
Chinese (zh)
Inventor
Euan Smith
Original Assignee
Cambridge Display Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cambridge Display Tech Ltd filed Critical Cambridge Display Tech Ltd
Publication of TW201220278A publication Critical patent/TW201220278A/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2014Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2085Special arrangements for addressing the individual elements of the matrix, other than by driving respective rows and columns in combination
    • G09G3/2088Special arrangements for addressing the individual elements of the matrix, other than by driving respective rows and columns in combination with use of a plurality of processors, each processor controlling a number of individual elements of the matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/129Chiplets

Abstract

An organic light emitting diode (OLED) display, the display comprising: a substrate bearing a plurality of OLED pixels, each said pixel having associated control circuitry, wherein said control circuitry includes at least one memory element for storing a value to determine a luminance of an associated OLED pixel, and wherein said control circuitry has a pixel data input to receive and store, using said memory element, luminance data determining said luminance of said associated OLED pixel; wherein said control circuitry is configured to control both a current through a said OLED pixel and a duration for which said current flows through said pixel; and wherein the same luminance data controls both said current and said duration such that said luminance of the associated said OLED pixel has a non-linear response to said luminance data.

Description

201220278 六、發明說明: 【發明所屬之技術領域】 本發明係關於用於有機發光二極體(0LED)顯示器之改 良驅動技術。 【先前技術】 最近數年由於顯示器品質改良、成本下降及顯示器之應 用範圍增廣而使顯示器市場呈現極為巨大的増長。此包括 大面積顯示器,如用於τν或電腦監視器之顯示器,及用 於可攜帶裝置之較小顯示器。 市面上存在之最常見顯示器類型係液晶顯示器及電漿顯 示器,但基於有機發光二極體(0LED)之顯示器憑藉其等 許多優點(包括低功耗、輕重量、廣視角、優異對比度及 用於可撓顯示器之潛力)而正備受矚目。 OLED之基本結構係夾於對有機層注入負電荷載子(電 子)之陰極與對有機層注入正電荷載子(電洞)之陽極之間之 一發光有機層,例如,聚(對伸苯伸乙烯)(ppv)或聚薙膜。 電子與電洞於該有機層中組合產生光子。於w〇 90/13 148 中,有機發光材料係共輛聚合物。於口3 4,539,507中,該 發光材料係由稱為小分子材料(如,(8_羥基喹啉)鋁(Alq3”) 之物質形成。於一實際裝置中,電極中之一者係透明,以 容許光子逸出該裝置。 典型的有機發光裝置(OLED)係在塗覆有透明陽極如氧 化銦錫(ITO)之玻璃或塑膠基板上製造。至少一電致發光 158654.doc 201220278201220278 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a modified driving technique for an organic light emitting diode (OLED) display. [Prior Art] In recent years, the display market has been extremely large due to improvements in display quality, cost reduction, and a wide range of applications for displays. This includes large area displays such as displays for τν or computer monitors, and smaller displays for portable devices. The most common types of displays available on the market are liquid crystal displays and plasma displays, but displays based on organic light-emitting diodes (OLEDs) rely on many other advantages (including low power consumption, light weight, wide viewing angle, excellent contrast ratio, and The potential of flexible displays is well received. The basic structure of the OLED is sandwiched between a cathode that injects a negative charge carrier (electron) into the organic layer and an anode that injects a positive charge carrier (hole) into the organic layer, for example, poly (p-extension) Ethylene) (ppv) or polyfluorene film. Electrons and holes are combined in the organic layer to produce photons. In WO 90/13 148, organic light-emitting materials are co-polymers. In U.S. Patent No. 4,539,507, the luminescent material is formed of a material called a small molecule material (e.g., (8-hydroxyquinoline) aluminum (Alq3"). In an actual device, one of the electrodes is transparent to Allowing photons to escape the device. A typical organic light-emitting device (OLED) is fabricated on a glass or plastic substrate coated with a transparent anode such as indium tin oxide (ITO). At least one electroluminescent 158654.doc 201220278

免混淆,如本文所使用之「 电層中組合以形成激子,激子隨 。該裝置可藉由紅色、綠色及藍 丨匕以提供一全色顯示器。爲了避 「像素」可係指僅發射單色之像 素或包含複數個可組合一起使像素發射一定範圍色彩之可 獨立定址之子像素。 主動矩陣」佈局, 定址OLED顯示器之一方式係使用 其中顯不器之獨立像素元件係藉由一相關薄膜電晶體激 活。於一驅動技術中,採用一類比電流訊號以使主動矩陣 OLED像素之驅動電流程式化,使得通過該像素之電流及 光度與程式化程度成比例。定址〇LEd顯示器之另一方式 係利用所謂之被動矩陣顯示器,其中,不存在與各獨立像 素相關之活性薄膜電晶體(TFT)。被動矩陣〇led顯示器可 藉由時間依存訊號驅動’例如,在顯示器之一列或行上之 經脈衝寬度調節(PWM)之訊號來驅動,以改變一像素之亮 度。何種可稱為混合OLED顯示器驅動技術亦描述於(例 如)US 6,157,356 及 KR 2007/0115467A 中。,467A 文獻描述 脈衝振幅調節(PAM)與脈衝寬度調節(PWM)之組合,其中 將6個位元數位圖像資料分成兩部分,前3個位元用於pwm 驅動而後3位元用於PAM驅動》然而,尤其是當驅動大面 158654.doc 201220278 積平板OLED顯示器時,仍存在大量問題有待解決,如下 文所進一步論述。 以OLED像素驅動TV及相關應用的兩大問題係動態範圍 及在低灰階下之匹配。 自一顯示器像素輸出之所需光並非與灰階訊號線性相 關,反而是存在將灰階關聯至所需光度之一 γ函數。就用 於HDTV(高清晰電視)之ITlJ Rec709標準而言,該γ函數在 最大灰階與最小非零灰階之間獲得1〇〇〇:1之動態範圍,於 此範圍内,灰階係由一 8_位元值指定。就用於一般來自電 腦系統之資料輸出之sRGB標準而言,8•位元灰階產生約 200,000:1之動態範圍要求。 此產生之第一個問題係僅可製造可將電流控制於此大範 圍内之輸H第二個問題係在不同像素驅動電路系統之 間再現性地產生電流。若無法達到sRGB標準,則此第二 個問題將尤其變得極其困難。 4問題將視驅動方法而不同。就所謂之改變電流強度以 控制OLED之電流輸出之「類比」輸出而言,該問題最為 嚴^係因全規模電流(例如,3⑷及最小灰階(就^彻 而口係3 nA,就SRGB而言係15 pA)下均極難以產生完全匹 配輸a出且對於不同輸出範圍-般將產生極巨大的電晶體’ 或可此夕個電晶體(此時單調性將成為__問題)。就藉由一 、:作週』凋節固疋電流參考值之數位驅動方法而言,問 θ ;所祐之時序週期(例如,0.12 MHz至24 MHz之時脈 速度要求)及㈣素之數料存巾之—者。此方法由於使 158654.doc 201220278 〇 L E D經常在全規模電流下驅動故而更快地老化。 【發明内容】 因此根據本發明之第一態樣,提供一種有機發光二極體 (OLED)顯不器’該顯示器包含:承載複數個〇LED像素之 一基板’各該像素具有相關控制電路系統,其中該控制電 路系統包含用於儲存一確定一相關〇LED像素之光度的值 之至少一記憶元件,及其中該控制電路系統具有接收及利 用該記憶元件儲存確定該相關〇LED像素之光度的光度資 料之一像素資料輸入;其中該控制電路系統係經配置以控 制通過該OLED像素之電流及該電流流過該像素之持續時 間兩者;及其中該相同光度資料控制該電流及該持續時間 兩者以使該相關OLED像素之光度對該光度資料具有非線 性反應。 廣義上而。,於上述顯示器之實施例中,藉由使驅動 OLED之驅動位階及時間與光度資料訊號近似成比例,將 動態範圍要求降低至其等原先值t平方根:係因,在實施 例中’驅動電流及時間係與光度資料訊號成實質上線性相 關/成比例,故光度係隨資料訊號之平方變化。此促使提 供大動態範圍,且亦使像素光度在低灰階水平下匹配。實 際上,壓縮驅動訊號會降低資料訊號之動態範圍要求(熟 知本技藝者將瞭解,雖然論述的是灰階值,但亦可將同一 概念應用於彩色顯示器之紅色、綠色及藍色值)。 於顯示器實施例中,光度資料訊號包含具有複數個資料 位兀之數位訊號,且所有此等資料位元中之一或多者控制 158654.doc 201220278 OLED像素驅動之電流及持續時間。雖然一些較佳實施例 採用數位控制技術,然而,光度資料訊號亦可包含類比資 料訊號,此類比資料(例如,電壓或電流)藉由例如與鋸齒 波形比較來設定對OLED像素之電流驅動及使像素發光之 時間。 於較佳實現方式中,該控制電路系統包含各別針對顯示 器之一 OLED像素使電流及發光時間程式化之第一及第二 可程式化電路系統。更特定言之,於實施例中,該電流程 式化電路系統包含耦合至尤其是儲存薄膜電晶體(TFT)之 閘極電壓之一儲存電容器之一像素驅動薄膜電晶體 (TFT),以針對該像素設定一驅動位階。熟知本技術者將 瞭解,視電流是經電流程式化或電壓程式化而定,可存在 一或多個耦合至該TFT/儲存電容器之開關以藉由將電壓儲 存於該電容器上而可設;t所需像素發光功率。於實施例 中’該電流程式化電路系統包含將數位光度資料轉換為類 比輸出之-類比-數位轉換器,及選擇連接此類比輸出以 使所選擇像素之電流驅動位階程式化之-多工器。 从於-些較佳實施例中,持續時間程式化電路系統包含可 精由時序值程式化以界定—對應〇LED像素之發光時間 之一數位暫存器或定時器。當採用暫存器日夺,可將由該暫 f器儲存之值與來自-計數器之遞增(或遞減)值比較以控 制:開關關閉(或打開)對於對應〇咖像素之電流驅動。 於貫施例中’提供一修飾電路系統,例如,複數個開關, 以利用-像素持續時間值使—所選擇暫存器程式化;於實 158654.doc 201220278 施例中,計數器可為複數個(或所有)像素所共享。於其他 佈局中才木用-類比或數位定時器以提供可程式化持續時 :之脈衝來控制電流流向對應qled像素1定時器可包 3例如,一單穩態電路,及可利用類比或數位技術或兩 者來執行。 ▲於-些較佳實現方^,對〇LED顯示器之乡组像素複製 。亥控制電m因此,於實施例中,該控制電路系統可 由在一物理邊界内之一組像素所共享,更特定言之,共享 控制電路系統之共用部分(如數位_類比轉&器及/或計數 裔)同時對該組中之各像素提供個別電流/持續時間儲存 疋件。於實施例中,在安裝於顯示器基板上之「單晶片 (chiplet)」上提供一些或所有控制電路系統,例如,一單 晶片可包含承載用於一組像素之控制電路的共享部分及像 素特異部分兩者之-積體電冑,且可具有用於使該等像素 程式化之一共享輸入光度資料連接,及對各像素根據程式 化資料控制獨立像素之個別連接。因此,於實施例,該顯 不益包含各與顯示器中由兩或更多個像素構成之組相關之 複數個單晶片,以提供用於相關像素之控制電路系統,該 專單a曰片被分配在顯示器基板上且具有一或多個共用串聯 或並聯輸入資料連接。 於實施例中,由於一像素之光度係實質上與光度訊號資 料的平方成比例,故一像素之反應已接近對於符合ITU(國 際通訊聯盟)Recommendation 709(其使高清晰電視(HDTV) 之格式標準化)或sRGB色彩空間標準之要求。然而,於一 158654.doc 201220278 些貫現方式中,可藉由(例如)修改數位_類比(DAC)轉換器 之反應及/或藉由在DAC之類比輸出與控制電路系統之電 流程式化線之間併合電路系統以使此接近更精確。於Rec. 709之情況中,可藉由對電流及持續時間光度因素採用不 同反應,例如,對光度資料提供實質上線性持續時間反 應,但對光度資料提供非線性電流驅動位階,來改良非線 性反應符合標準之精確度。於後者情況中,對光度資料之 電流驅動反應在低光度值下可例如實質上恒定或線性增加 及在較高光度值下依照大於單一性之冪次法則增加(例 如’約1.4)。 於一相關態樣中,本發明提供一種驅動有機發光二極體 (OLED)顯示器之像素之方法,該顯示器包含:承載複數 個OLED像素之一基板,各該像素具有相關控制電路系 統,其中該控制電路系統包含用於儲存一確定一相關 OLED像素之光度的值之至少一記憶元件,及其中該控制 電路系統具有接收及利用該記憶元件儲存確定該相關 OLED像素之光度的光度資料之一像素資料輸入;該方法 包含使用相同光度資料以控制通過該〇LED像素之電流及 該電流流過該像素之持續時間兩者,以使該相關〇led像 素之光度對該光度資料具有非線性反應。 本發明進一步提供一種驅動有機發光二極體(〇led)顯 示器之像素以提供增加之動態範圍之方法,其中該方、、去包 含:將資料寫入至該OLED顯示器之一像素驅動電路;將 一驅動訊號自該像素驅動電路提供至該〇LED像素,其中 158654.doc •10- 201220278 該驅動訊號具有一驅動位階及驅動持續時間;及反應於該 相同資料而控制該驅動位階及該驅動持續時間兩者以使該 像素之光度對該資料展現非線性反應。 當對一輸入資料值範圍例如整個輸入資料範圍取平均之 . 較佳實施例中,該光度係隨資料之冪次方值而改變,其中 - 該冪次等於或大於2,例如2.2或2.4。 於一相關態樣中,本發明提供一種具有複數個像素之 OLED顯示器,該顯示器包含:將資料寫入至該〇led顯示 器之一像素驅動電路之構件;用於將驅動訊號自該像素驅 動電路知:供至該OLED像素之構件,其中該驅動訊號具有 一驅動位階及一驅動持續時間;及用於反應於相同資料以 控制該驅動位階及該驅動持續時間以使該像素之光度對該 資料展現非線性反應之構件。 如上所述,於一些較佳實現方式中’將單晶片(小積體 電路)为配於顯示器基板上以對各組〇LED像素提供控制電 路系統。此有利於控制顯示器個別像素之像素驅動位階及 像素驅動持續時間(此處’ r像素」包括彩色顯示器中之子 像素)。 . 因此,於另一態樣中,本發明提供一種OLED顯示器, 該顯示器包含:承載複數個OLED發光像素之一顯示器基 板文裝於该基板上之複數個單晶片,其中各單晶片係鄰 接°亥等像素之一組安裝且包含承載用於該像素組之控制電 路系統之一單晶片基板;及其中在該單晶片上之該控制電 路系統包含對用於該像素組中之各像素之驅動位階程式化 158654.doc -11 - 201220278 之第一可程式化電路系統及對用於該像素組中各像素之驅 動持續時間程式化之第二可程式化電路系統。 於實施例中’該第一可程式化電路系統包含一儲存電容 器及如上所述之薄膜電晶體,及該第二可程式化電路系統 包含亦如上所述之-數位暫存器及/或定時器。於實施例 中,該第-及第二可程式化電路系統共享一共用資料輸入 線;更特定言之,-數位資料線之相同位元中之一或多者 對各像素之驅動位階及驅動持續時間進行控制/程式化。 依此方式’顯示器之-像素之光度係依輸入程式化資料值 之冪次而變化,其中該冪次等於或大於2。於實施例中, 驅動位階及驅動持續時間程式化電路系統之一或兩者之反 應特徵包括在第-輸入資料值範圍内具有第—特徵及在第 二較高輸人資料值範圍内具有第二不同特徵之分段反應。 因此,例如,在低輸入資料值了,該特徵可實質上恒定或 呈線性,及在較高值下,反應可展現約12紅4之幕次法 貝1j。 上述OLED顯示器之實施例亦可包含一控制器,以藉由 程式化該第-及第二可程式化電路系統選擇單晶片中之一 j多者及以光度資料使所選擇之單晶片程式化,以同時確 定像素驅動位階及持續時間。 【實施方式】 本發月之此荨&其他態樣將藉由僅為舉例,並參照附圖 進行進一步描述。 廣義上而言,吾人將於實施例中描述如何藉由混合類比 i58654.doc 12· 201220278 與數位驅動方法來降低0LED像素驅動電路之動態範圍要 求。更特定言之,吾人將描述使數位光度資料流向一類比 像素驅動位階控制電路及流向數位驅動持續時間控制電路 之技術。藉由採用其令像素驅動訊號包含均與(發光)驅動 #號成比例之時間分割分量及類比電流分量之組合的技 術,可將對於像素之動態範圍要求顯著降低(例如)至約 30:1(對於1^.709)及約450:1(對於31^3)之等級。利用此 等技術,OLED像素不會過度老化且相較於對2〇〇,〇〇〇:1動 態範圍所需之約19位元/像素而言數位儲存要求小。吾人 亦將描述如何引入其他非線性度以進一步降低儲存要求。 轉移曲線 圖1 a顯示輸入灰階資料值相對所需像素光度之一歸納轉 移曲線。於該實例中,假定—8位元灰階值(最大255),但 將瞭解,此僅作為舉例。曲線之非線性度係由一 γ值(近似) 表示’其中光度係與灰階值之γ次冪成比例。例如,就 sRGB而言,γ為約2.4。 就Rec. 709標準而言,該轉移曲線1〇包含在接近零之灰 階值之線性部分及在較高灰階值之以γ為2 4之冪次法則部 分。此做法之作用係,如圖所示,Rec· 709標準曲線1〇3在 低灰階值下不同於SRGB曲線1 〇b,藉此降低降低所需之 HDTV動態範圍。 吾人將描述本發明之實施例如何促進獲得圖1&中所示類 型之轉移曲線。 單晶片 158654.doc 13 201220278 於本發明實施例之一些較佳實現方式中,將單晶片用於 像素驅動電路系統。廣義上,此等單晶片包括小的矽積體 電路’其等係固定於顯示器之玻璃基板上並連接至〇LED 像素及顯示器之外部連接。爲了助於理解本發明之實施 例,現將簡要描述此等單晶片之細節。 取自WO 2010/019185之圖lb顯示一 OLED顯示器裝置中 一組四個像素(20a、20b、20c及20d)元件的佈局視圖。四 個像素中之各者可經配置以發射不同顏色,如紅色、綠 色、藍色及白色(RGBW)。圖lb呈現全彩顯示器之一部 分,其中該全彩顯示器將係由佈置成許多列及行之此等像 素組之陣列構成。例如’新型的電視將係由1920列及1080 行此等像素組構成。 一單晶片120係經配置以控制流向像素2〇a、20b、2〇c& 2〇d之電流。單晶片係分開製造之積體電路,其係安裝及 嵌埋至顯不器裝置中。正如習知之微晶片(或晶片),單晶 片係由一基板製造且含有積體電晶體以及經沈積並隨後在 半導體製造設備中利用光微影方法圖案化之絕緣層及導體 層。於單晶片中之此等電晶體係佈置成電晶體驅動電路以 驅動電流流向顯示器之像素。單晶片較傳統微晶片小,且 不同於傳統微晶片的是無需藉由線接合或覆晶接合來電連 接單晶片。不同的是,在將各單晶片安裝於顯示器基板上 之後,接著進行導電層及絕緣層之沈積及光微影圖案化。 因此’連接可製得甚小,例如,利用2至1 5微米尺寸之通 孔製成。該單晶片及對該單晶片之連接係充分小而可放置 158654.doc •14· 201220278 於一=多個像素之面積内,其尺寸端視顯示器尺寸及解析 率而疋,可介於約50微米至5〇〇微米之範圍内。關於單晶 片及其製造與安裝方法之其他細節可參見w〇,i85。 各像素设有一下部電極’如在像素2〇a中之一下部電極 161a。像素2〇a之發光面積係由形成於下部電極上之一絕 .,緣體中之開G163a界定。該裝置包含形成於-第—導電層 中之夕個導電7L件,其等係經配置以促進提供電訊號至單 晶片之電晶體驅動電路,以使該單晶片能控制流向像素之 電流。單晶片120控制經由一導體13化流向像素心之電 流。例如,導體i33a係經由一通孔143a連接至單晶片12〇 且亦、呈由通孔15 3 a連接至下部電極〗6丨a ^該裝置亦包含 形成於第導電層中且將電訊號自顯示器邊緣傳遞至該單 晶片之一系列訊號線,包括,電源線、資料線及選擇線。 電源線係提供電流源以操作該等有機電致發光元件之訊號 線。資料線係傳遞亮度資訊以調節各像素之亮度之訊號 線選擇線係選擇性地決定以顯示器之哪些列來接收來自 資料線之売度資訊之線《如此,選擇線及資料線係以正交 方式配置。 • 電力係藉由一電源線131提供至單晶片120。設有兩通孔 以於電源線與單晶片120之間連接。於行方向設有一資料 線135以針對像素2〇a及像素2〇b將含有亮度資訊之資料訊 號傳送至單晶片120。類似地,於行方向設有一資料線丨36 以針對像素20b及像素20d將含有亮度資訊之資料訊號傳送 至單晶片120。於另一佈局中,該等資料線135及136及該 158654.doc -15- 201220278 電源線131可僅藉由用於各線之單個通孔連接至該單晶片 120。於列方向設有選擇線片段137a以針對像素20a及像素 20b將一列選擇訊號傳送至單晶片120。該列選擇訊號係用 於指示特定列的像素及係與資料訊號同步以提供亮度資 訊。因此,該列選擇訊號與該資料訊號係設於正交方向。 單晶片120藉由在該積體電路上之一内部貫通連接將來自 選擇線片段137a之列選擇訊號傳送至一選擇線片段137b。 選擇線片段137b隨後將列選擇訊號傳送至佈置於同一列中 之後續單晶片。類似地,於列方向配置一選擇線片段i 38a 以針對像素20c及像素20d將一列選擇訊號傳送至單晶片 120。單晶片12〇藉由在積體電路上之另一内部貫通連接將 來自選擇線片段138a之列選擇訊號傳送至一選擇線片段 138b。選擇線片段!37a及137b—起作用以形成不連續之單 個選擇線。選擇線片段間之連接係藉由單晶片中之貫通連 接提供。雖然僅顯示兩片段,然而,選擇線可含有一系列 多個此等片段。選擇線片段138a及138b類似地一起作用以 形成單個不連續選擇線。所有選擇線片段及資料線均係由 單個金屬層形成。隨後可藉由使列選擇訊號、資料訊號或 兩者配置成通過單晶片上之貫通連接來實現橫跨正交陣列 之傳遞。 主動矩陣像素電路 4田述可用於本發明實施例t之不同類型的類比像素驅動 電路之實例將有助於促進對本發明實施例操作之理解。隨 後’將描述-混合類比/數位驅動電路,&中像素驅動位 158654.doc •16· 201220278 階及像素驅動時間兩者均實質上與光度資料訊號成比例, 及將描述利用電流複製型類比像素驅動電路之此電路實施 例。然而,另可採用其他類型之類比像素驅動電路來提供 可變像素驅動位階至一 OLED像素,包括(但不限於)現將 描述者。 圖2a顯示電壓程式化OLED主動矩陣像素電路250之一實 例。針對顯示器之各像素提供電路250,及設有Vdd 252、 接地254、列選擇224及行資料226匯流條以使像素互連。 因此,各像素具有一電源及接地連接及各列像素具有一共 用列選擇線224及各行像素具有一共用資料線226。 各像素具有一 OLED 252,該OLED係與連接接地線252 與電源線254之間之一驅動電晶體25 8串聯。驅動電晶體 258之一閘極連接259耦合至一儲存電容器220且一控制電 晶體222將閘極連接259耦合至受列選擇線224控制之行資 料線226。電晶體222係一薄膜場效電晶體(TFT)開關,當 驅動列選擇線224時,其將行資料線226連接至閘極連接 259及電容器220。因此,當開關222接通時,可將行資料 線226上之電壓儲存於一電容器220上。此電壓在電容器中 至少保留達訊框更新時間,係因用於驅動電晶體258之閘 極連接及電晶體開關在其「斷開」狀態下具有相對高之阻 抗。驅動電晶體258—般係一 TFT且於電晶體之閘極電壓低 於臨限電壓時流通(汲極-源極)電流。因此,在閘極連接 259之電壓對通過OLED 252之電流進行控制或程式化且因 此對OLED之亮度控制或程式化。 158654.doc -17- 201220278 於圖2a之電壓程式化電路中,OLED光度係視所施加電 壓以非線性方式變化。自OLED之光輸出係與通過其之電 流成比例,及圖2b(其中以相同參考數字表示圖2a中相同 之彼等元件)說明採用電流控制之一像素驅動電路。更特 定言之,在(行)資料線上由電流發生器266設定之電流使通 過薄膜電晶體(TFT)260之電流程式化,進而設定通過 OLED 252之電流,係因當電晶體222a接通(匹配)時,電晶 體260與258形成一電流鏡。 圖2c(取自先前專利申請案WO 03/038790)顯示電流程式 化像素驅動電路之另一實例。於此電路中,通過一 OLED 252之電流係藉由使用電流發生器266(例如,一參考電流 槽)設定OLED驅動電晶體258之汲極-源極電流,及複製/記 憶此汲極-源極電流所需之驅動器電晶體閘極電壓來程式 化。因此,OLED 252之亮度係藉由流入參考電流槽266之 電流ICC3l決定,該電流可依照待定址之像素的需求來調節 及設定。開關電晶體264連接電晶體258與OLED 252之間 以抑制在程式化階段期間OLED光度。一般而言,對各行 資料線提供一電流槽266。爲了複製程式化電流,「封閉」 開關電晶體268及「打開」開關電晶體264因而使程式化電 流流過驅動電晶體258,及亦封閉開關電晶體270以針對經 程式化之電流設定驅動電晶體270上之Vg及將此Vg值儲存 於電容器220上。 組合類比與數位驅動電路 現將描述一像素驅動電路之一實施例,其中將輸入灰階 158654.doc •18- 201220278 值(GS)轉換為資料值(DATA),接著轉換為光度值(l)。於 實施例中No confusion, as used herein, "combination in the electrical layer to form excitons, excitons. The device can be provided with red, green and blue to provide a full-color display. To avoid "pixels" can mean only A single-pixel pixel is emitted or includes a plurality of independently addressable sub-pixels that can be combined to cause a pixel to emit a range of colors. The Active Matrix layout, one of the ways to address an OLED display, uses an individual pixel element in which the display is activated by an associated thin film transistor. In a driving technique, a type of specific current signal is used to program the driving current of the active matrix OLED pixel such that the current and luminosity through the pixel are proportional to the degree of stylization. Another way of addressing the LEd display is to utilize a so-called passive matrix display in which there are no active thin film transistors (TFTs) associated with the individual pixels. The passive matrix 〇led display can be driven by a time dependent signal, for example, by a pulse width modulated (PWM) signal on one of the columns or rows of the display to change the brightness of a pixel. What is known as hybrid OLED display drive technology is also described in, for example, US 6,157,356 and KR 2007/0115467A. The 467A literature describes a combination of pulse amplitude adjustment (PAM) and pulse width adjustment (PWM), in which 6 bit digital image data is divided into two parts, the first 3 bits are used for pwm drive and the last 3 bits are used for PAM. Drivers However, there are still a number of issues to be resolved, especially when driving large-format 158654.doc 201220278 flat panel OLED displays, as discussed further below. The two major problems of driving TV and related applications with OLED pixels are dynamic range and matching at low gray levels. The desired light output from a display pixel is not linearly related to the gray scale signal, but instead has a gray function associated with one of the desired luminosity gamma functions. For the ITlJ Rec709 standard for HDTV (High Definition Television), the gamma function obtains a dynamic range of 1 〇〇〇:1 between the maximum gray level and the minimum non-zero gray level, within this range, the gray level system Specified by an 8_bit value. For the sRGB standard for data output from the computer system, the 8-bit gray scale produces a dynamic range requirement of approximately 200,000:1. The first problem that arises is that only the second problem that can control the current to be controlled within this large range is the reproducible generation of current between different pixel drive circuitry. This second problem will become extremely difficult especially if the sRGB standard is not met. 4 The problem will vary depending on the driving method. In terms of the so-called "analog" output that changes the current intensity to control the current output of the OLED, the problem is most severe due to the full-scale current (for example, 3 (4) and the minimum gray scale (for the sake of the 3 3A, the SRGB) In the case of 15 pA), it is extremely difficult to produce a perfect match, and for a different output range, a very large transistor will be produced or a transistor can be used (in this case, monotonicity will become a problem). In the case of the digital driving method of the reference value of the 』 疋 疋 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , This method is based on the fact that 158654.doc 201220278 〇LED is often driven at full-scale current and thus ages faster. SUMMARY OF THE INVENTION Accordingly, according to a first aspect of the present invention, an organic light-emitting diode is provided ( OLED) The display comprises: a substrate carrying a plurality of 〇LED pixels each having an associated control circuitry, wherein the control circuitry includes means for storing a luminosity determining an associated 〇 LED pixel At least one memory component, and wherein the control circuitry has a pixel data input for receiving and utilizing the memory component to store photometric data determining the luminosity of the associated LED pixel; wherein the control circuitry is configured to control through the OLED The current of the pixel and the duration of the current flowing through the pixel; and wherein the same photometric data controls both the current and the duration such that the luminosity of the associated OLED pixel has a non-linear response to the photometric data. In the embodiment of the above display, by making the driving level and time of driving the OLED approximately proportional to the photometric data signal, the dynamic range requirement is reduced to its original value t square root: the cause, in the embodiment The drive current and time are substantially linearly/proportional to the photometric data signal, so the photometric system varies with the square of the data signal. This promotes a large dynamic range and also allows the pixel luminosity to match at low gray levels. , the compression drive signal will reduce the dynamic range requirements of the data signal (known to those skilled in the art will understand Although the grayscale value is discussed, the same concept can be applied to the red, green, and blue values of the color display. In the display embodiment, the photometric data signal includes a digital signal having a plurality of data bits, and One or more of all of these data bits control the current and duration of the 158654.doc 201220278 OLED pixel drive. Although some preferred embodiments employ digital control techniques, the photometric data signal may also include an analog data signal. Analog data (eg, voltage or current) sets the time for current drive to the OLED pixel and for illuminating the pixel by, for example, comparing with a sawtooth waveform. In a preferred implementation, the control circuitry includes an OLED for each of the displays. The first and second programmable circuitry that the pixels program the current and the illumination time. More specifically, in an embodiment, the current staging circuitry includes a pixel drive thin film transistor (TFT) coupled to one of a gate voltage, in particular a storage film transistor (TFT), for The pixel sets a drive level. Those skilled in the art will appreciate that the apparent current is either current programmed or voltage programmed, and one or more switches coupled to the TFT/storage capacitor may be present to be stored by storing a voltage on the capacitor; t required pixel luminous power. In the embodiment, the current staging circuitry includes an analog-to-digital converter that converts digital photometric data into an analog output, and a multiplexer that selectively couples such a specific output to program the current drive level of the selected pixel. . In accordance with some preferred embodiments, the duration staging circuitry includes a digital register or timer that is programmable by the timing values to define - corresponding to the illumination time of the LED pixels. When the register is used, the value stored by the temporary device can be compared with the increment (or decrement) value from the counter to control: the switch is turned off (or turned on) for the current drive of the corresponding geek pixel. In the embodiment, a modified circuit system is provided, for example, a plurality of switches to program the selected register with a -pixel duration value; in the case of 158654.doc 201220278, the counter can be plural (or all) pixels are shared. Used in other layouts - analog or digital timers to provide programmable duration: pulses to control current flow to the corresponding qled pixel 1 timer can be packaged, for example, a monostable circuit, and analog or digital can be utilized Technology or both. ▲ In some of the better implementations, for the pixel group copy of the LED display. Thus, in an embodiment, the control circuitry can be shared by a group of pixels within a physical boundary, and more specifically, a shared portion of the shared control circuitry (eg, a digital-to-analog converter) / or counting people) Provide individual current/duration storage conditions for each pixel in the group. In an embodiment, some or all of the control circuitry is provided on a "chiplet" mounted on the display substrate. For example, a single wafer may include a shared portion that carries control circuitry for a group of pixels and pixel specificity. Some of the two are integrated, and may have an individual connection for sharing the input photometric data for one of the pixel stylizations and for controlling the individual pixels for each pixel based on the stylized data. Thus, in an embodiment, the display includes a plurality of single wafers each associated with a group of two or more pixels in the display to provide control circuitry for the associated pixels. Distributed on the display substrate and having one or more shared serial or parallel input data connections. In an embodiment, since the luminosity of a pixel is substantially proportional to the square of the photometric signal data, the response of one pixel is close to conforming to the ITU (International Telecommunications Union) Recommendation 709 (which enables the format of High Definition Television (HDTV) Standardization) or sRGB color space standard requirements. However, in some of the modes, the reaction of the digital-to-analog ratio (DAC) converter can be modified, for example, and/or the current-programmed line of the output and control circuitry can be analogized by the DAC. The circuit system is combined to make this approach more precise. In the case of Rec. 709, nonlinear responses can be made by applying different responses to current and duration photometric factors, for example, providing a substantially linear duration response to the photometric data, but providing a non-linear current drive order to the photometric data to improve nonlinearity. The reaction meets the accuracy of the standard. In the latter case, the current-driven response to the photometric data may, for example, be substantially constant or linearly increased at low luminosity values and increased at higher luminosity values according to power laws greater than singularity (e. g., 'about 1.4). In a related aspect, the present invention provides a method of driving a pixel of an organic light emitting diode (OLED) display, the display comprising: a substrate carrying a plurality of OLED pixels, each of the pixels having an associated control circuit system, wherein the The control circuitry includes at least one memory component for storing a value determining a luminosity of an associated OLED pixel, and wherein the control circuitry has a pixel that receives and utilizes the memory component to store photometric data determining the luminosity of the associated OLED pixel Data input; the method includes using the same photometric data to control both the current through the xenon LED pixel and the duration of the current flowing through the pixel such that the luminosity of the correlated 像素led pixel has a non-linear response to the photometric data. The present invention further provides a method of driving pixels of an organic light emitting diode display to provide an increased dynamic range, wherein the method includes: writing data to a pixel driving circuit of the OLED display; a driving signal is supplied from the pixel driving circuit to the LED pixel, wherein the driving signal has a driving level and a driving duration; and the driving level is controlled in response to the same data, and the driving is continued Both of the time are such that the luminosity of the pixel exhibits a non-linear response to the data. When a range of input data values is averaged, for example, the entire range of input data is averaged. In the preferred embodiment, the luminosity varies with the power of the data, where - the power is equal to or greater than two, such as 2.2 or 2.4. In a related aspect, the present invention provides an OLED display having a plurality of pixels, the display comprising: a component for writing data to a pixel driving circuit of the 〇led display; and for driving a driving signal from the pixel driving circuit Knowing: a component for the OLED pixel, wherein the driving signal has a driving level and a driving duration; and is responsive to the same data to control the driving level and the driving duration to make the luminosity of the pixel A component that exhibits a nonlinear response. As described above, in some preferred implementations, a single wafer (small integrated circuit) is provided on the display substrate to provide a control circuit system for each group of LED pixels. This facilitates control of the pixel drive level and pixel drive duration of the individual pixels of the display (where the 'r pixels' include sub-pixels in the color display). Therefore, in another aspect, the present invention provides an OLED display, the display comprising: a plurality of single wafers carrying a plurality of OLED luminescent pixels on a display substrate, wherein each single wafer is adjacent to each other One of the pixels, such as a hai, is mounted and includes a single-wafer substrate carrying one of the control circuitry for the pixel group; and wherein the control circuitry on the single wafer includes driving the pixels for use in the pixel group The first programmable circuit system of the level stylized 158654.doc -11 - 201220278 and a second programmable circuit system for programming the driving duration for each pixel in the pixel group. In the embodiment, the first programmable circuit system includes a storage capacitor and a thin film transistor as described above, and the second programmable circuit system includes a digital register and/or timing as also described above. Device. In an embodiment, the first and second programmable circuit systems share a common data input line; more specifically, one or more of the same bits of the digital data line drive the level and drive of each pixel Duration for control/stylization. In this manner, the luminosity of the display-pixel varies according to the power of the input stylized data value, where the power is equal to or greater than two. In an embodiment, the response characteristic of one or both of the driving level and the driving duration staging circuitry includes having a first feature in the range of the first input data value and a first in the second higher input data value range Two different characteristics of the segmentation reaction. Thus, for example, at low input data values, the feature can be substantially constant or linear, and at higher values, the reaction can exhibit a threshold of about 12 red. The embodiment of the OLED display may further include a controller for programming the first and second programmable circuit systems to select one of the single wafers and to program the selected single wafer with photometric data. To simultaneously determine the pixel drive level and duration. [Embodiment] Other aspects of this month will be further described by way of example only and with reference to the accompanying drawings. Broadly speaking, we will describe in the examples how to reduce the dynamic range requirement of the OLED driving circuit by mixing the analogy with i58654.doc 12·201220278 and the digital driving method. More specifically, we will describe techniques for flowing digital photometric data to an analog pixel drive level control circuit and to a digital drive duration control circuit. By employing a technique that allows the pixel drive signal to include a combination of a time division component and an analog current component that are both proportional to the (lighting) drive # number, the dynamic range requirement for the pixel can be significantly reduced (for example) to about 30:1. (for 1^.709) and about 450:1 (for 31^3). With these techniques, OLED pixels are not over-aged and require less digital storage than the approximately 19 bits/pixel required for the 〇〇:1 dynamic range. We will also describe how to introduce other non-linearities to further reduce storage requirements. Transfer Curve Figure 1a shows the inductive transition curve for one of the input grayscale data values relative to the desired pixel luminosity. In this example, a -8-bit grayscale value (maximum 255) is assumed, but it will be understood that this is by way of example only. The nonlinearity of the curve is represented by a gamma value (approximation) where the luminosity is proportional to the gamma power of the grayscale value. For example, in the case of sRGB, γ is about 2.4. For the Rec. 709 standard, the transfer curve 1〇 contains a linear portion of the grayscale value near zero and a power law portion with a γ of 24 in the higher grayscale value. The effect of this approach is that, as shown, the Rec. 709 standard curve 1〇3 differs from the SRGB curve 1 〇b at low grayscale values, thereby reducing the HDTV dynamic range required for the reduction. We will describe how embodiments of the present invention facilitate the acquisition of transfer curves of the type shown in Figures 1 & Single Chip 158654.doc 13 201220278 In some preferred implementations of embodiments of the present invention, a single wafer is used for the pixel drive circuitry. In a broad sense, such single wafers comprise small slab circuits 'which are attached to the glass substrate of the display and to the external connections of the 〇LED pixels and the display. To assist in understanding embodiments of the invention, details of such single wafers will now be briefly described. Figure lb, taken from WO 2010/019185, shows a layout view of a set of four pixel (20a, 20b, 20c and 20d) elements in an OLED display device. Each of the four pixels can be configured to emit different colors, such as red, green, blue, and white (RGBW). Figure lb presents a portion of a full color display, where the full color display will be comprised of an array of such pixel groups arranged in a plurality of columns and rows. For example, a new type of television would consist of 1920 columns and 1080 lines of such pixel groups. A single wafer 120 is configured to control the current flow to the pixels 2A, 20b, 2〇c & 2〇d. A single wafer is a separately fabricated integrated circuit that is mounted and embedded in a display device. As with conventional microchips (or wafers), a single crystal wafer is fabricated from a substrate and contains an integrated transistor and an insulating layer and a conductor layer that are deposited and subsequently patterned by photolithography in a semiconductor fabrication facility. The electro-optic systems in a single wafer are arranged in a transistor drive circuit to drive current to the pixels of the display. A single wafer is smaller than a conventional microchip, and unlike conventional microchips, there is no need to electrically connect a single wafer by wire bonding or flip chip bonding. The difference is that after the individual wafers are mounted on the display substrate, deposition of the conductive layer and the insulating layer and patterning of the light lithography are performed. Therefore, the connection can be made small, for example, by using a through hole having a size of 2 to 15 μm. The single chip and the connection to the single chip are sufficiently small to be placed in an area of one or more pixels, and the size of the single chip depends on the size and resolution of the display, and may be between about 50. Micron to 5 〇〇 microns. See w〇, i85 for additional details on single crystal wafers and their fabrication and installation methods. Each pixel is provided with a lower electrode ' as a lower electrode 161a in the pixel 2A. The light-emitting area of the pixel 2〇a is defined by one of the openings formed on the lower electrode, and the opening G163a. The device includes a conductive 7L member formed in the -first conductive layer, which is configured to facilitate providing a transistor to the transistor driving circuit of the single chip such that the single wafer can control the current flowing to the pixel. The single wafer 120 controls the current flowing to the pixel center via a conductor 13. For example, the conductor i33a is connected to the single wafer 12 via a through hole 143a and is also connected to the lower electrode by the through hole 15 3 a. The device also includes a conductive layer formed in the conductive layer and the electrical signal from the display. The edge is transmitted to one of the series of signal lines of the single chip, including the power line, the data line and the selection line. The power supply line provides a current source to operate the signal lines of the organic electroluminescent elements. The data line transmits brightness information to adjust the brightness of each pixel. The line selection line selectively determines which columns of the display are used to receive the information from the data line. Thus, the selection line and the data line are orthogonal. Mode configuration. • Power is supplied to the single wafer 120 by a power line 131. Two through holes are provided for connecting between the power supply line and the single wafer 120. A data line 135 is provided in the row direction to transmit a data signal containing luminance information to the single chip 120 for the pixels 2a and 2b. Similarly, a data line 丨 36 is provided in the row direction to transmit a data signal containing luminance information to the single chip 120 for the pixel 20b and the pixel 20d. In another arrangement, the data lines 135 and 136 and the 158654.doc -15-201220278 power line 131 can be connected to the single wafer 120 only by a single via for each line. A select line segment 137a is provided in the column direction to transfer a column of select signals to the single wafer 120 for the pixels 20a and 20b. The column selection signal is used to indicate that the pixels and systems of a particular column are synchronized with the data signal to provide brightness information. Therefore, the column selection signal and the data signal are arranged in an orthogonal direction. The single chip 120 transmits the column select signal from the selected line segment 137a to a select line segment 137b by internally interconnecting one of the integrated circuits. The select line segment 137b then transmits the column select signal to subsequent single wafers arranged in the same column. Similarly, a select line segment i 38a is arranged in the column direction to transfer a column of select signals to the single wafer 120 for the pixel 20c and the pixel 20d. The single chip 12 传送 transmits the column select signal from the select line segment 138a to a select line segment 138b by another internal through connection on the integrated circuit. Select a line clip! 37a and 137b - function to form a single selection line that is discontinuous. The connection between the selected line segments is provided by a through connection in a single wafer. Although only two segments are shown, the selection line can contain a series of multiple such segments. Select line segments 138a and 138b act similarly to form a single discontinuous selection line. All selection line segments and data lines are formed from a single metal layer. The transfer across the orthogonal array can then be accomplished by having the column select signal, data signal, or both configured to pass through the through connections on the single wafer. Active Matrix Pixel Circuitry 4 Examples of different types of analog pixel drive circuits that may be used in embodiments of the present invention will help to facilitate an understanding of the operation of embodiments of the present invention. Subsequent 'will describe-mixed analog/digital driver circuits, & pixel drive bits 158654.doc •16· 201220278 order and pixel drive time are both substantially proportional to the photometric data signal, and will describe the use of current replica analogy This circuit embodiment of the pixel drive circuit. However, other types of analog pixel drive circuits can be used to provide variable pixel drive levels to an OLED pixel, including but not limited to those now described. Figure 2a shows an example of a voltage stylized OLED active matrix pixel circuit 250. A circuit 250 is provided for each pixel of the display, and a Vdd 252, a ground 254, a column selection 224, and a row data 226 bus bar are provided to interconnect the pixels. Therefore, each pixel has a power and ground connection and each column of pixels has a common column select line 224 and each row of pixels has a common data line 226. Each pixel has an OLED 252 in series with a drive transistor 25 8 between the connection ground 252 and the power line 254. A gate connection 259 of the drive transistor 258 is coupled to a storage capacitor 220 and a control transistor 222 couples the gate connection 259 to a row of data lines 226 controlled by the column selection line 224. The transistor 222 is a thin film field effect transistor (TFT) switch that connects the data line 226 to the gate connection 259 and the capacitor 220 when the column select line 224 is driven. Therefore, when the switch 222 is turned on, the voltage on the row data line 226 can be stored on a capacitor 220. This voltage retains at least the frame update time in the capacitor due to the relatively high impedance of the gate connection for driving transistor 258 and the transistor switch in its "off" state. The driving transistor 258 is generally a TFT and circulates (drain-source) current when the gate voltage of the transistor is lower than the threshold voltage. Thus, the voltage at gate connection 259 controls or programs the current through OLED 252 and thus controls or programs the brightness of the OLED. 158654.doc -17- 201220278 In the voltage stylized circuit of Figure 2a, the OLED photometric system varies nonlinearly depending on the applied voltage. The light output from the OLED is proportional to the current through it, and Figure 2b (where the same reference numerals indicate the same elements in Figure 2a) illustrates the use of a current controlled one pixel drive circuit. More specifically, the current set by the current generator 266 on the (row) data line stylizes the current through the thin film transistor (TFT) 260, thereby setting the current through the OLED 252 because the transistor 222a is turned "on" ( When matched), transistors 260 and 258 form a current mirror. Figure 2c (taken from the prior patent application WO 03/038790) shows another example of a current programmed pixel drive circuit. In this circuit, the current through an OLED 252 is set by using a current generator 266 (eg, a reference current sink) to set the drain-source current of the OLED drive transistor 258, and to copy/memorize the drain-source. The driver transistor gate voltage required for the pole current is programmed. Therefore, the brightness of the OLED 252 is determined by the current ICC31 flowing into the reference current slot 266, which can be adjusted and set according to the needs of the pixel to be addressed. Switching transistor 264 is coupled between transistor 258 and OLED 252 to suppress OLED luminosity during the stylization phase. In general, a current slot 266 is provided for each row of data lines. To replicate the programmed current, the "closed" switch transistor 268 and the "open" switch transistor 264 thus cause the programmed current to flow through the drive transistor 258 and also close the switch transistor 270 to set the drive current for the programmed current. Vg on crystal 270 and this Vg value are stored on capacitor 220. Combination Analog and Digital Driver Circuits An embodiment of a pixel drive circuit will now be described in which the input gray scale 158654.doc • 18 - 201220278 value (GS) is converted to a data value (DATA), which is then converted to a photometric value (l). . In the embodiment

Lee (DATA)2 〇) 於實施例中,此式係藉由使像素工作持續時間近似與 DATA成比例及使像素(電流)驅動位階亦近似與data成比 例而獲得。如上所述’所需之轉移曲線具有 乙剩, (2) 其中,對於SRGB且亦對於Rec· 709, γ=24(對於曲線中近 黑區域以外之大部分;若對整個轉移曲線取平均值, 709之γ為約2.2)。可了解,若 DATAoc(GSf2 ⑶ 則可藉由等式(1),連同等式(2)獲得約2 4之丫。 現參照圖3,此圖顯示一像素驅動電路3〇〇 ,其中被驅動 之OLED之光度係與數位輸入資料之平方成比例;該電路 亦可經修改以獲得2.4、2.2之7或逐段實現Rec 7〇9轉移曲 線。於圖3中,以類似參考數字表示與上述彼等物類似之 元件(但熟知本技術者將瞭解,該等功能並非準確對應 廣義上而言,在虛線3 1〇内之電路部分使驅動通過該 〇LED 252之電流可藉由線3 12上之電流訊號程式化(藉由設 定電容器220上之電壓)。此電流訊號係藉由數位_類比轉換 (DAC)314依與參考電流匯入316(與線318上之輸入資料 值相關)成比例之方式產生。於包含8個位元之實施例中, 亦將相同資料經由一可控制開關322提供至一暫存器32〇。 開關322係藉由選擇線324控制,該選擇線亦控制開關 15S654.doc 201220278 268、270。當使像素驅動電路300程式化時,線318上之資 料設定線312上之電流,進而設定儲存於電容器22〇上用於 電晶體258之閘極電壓,且此資料亦被寫入至暫存器32〇 中。於使對OLED 252之電流驅動程式化期間,將開關264 配置成打開。如所示,線3 18包含一並聯資料匯流排,但 另可採用一串聯或準串聯資料連接。 暫存器320將資料輸出提供至一比較器326,該比較器具 有來自一計數器328之第二輸入,且提供輸出33〇以控制開 關264,及因此使對於OLED 252之電流驅動接通及斷開。 於操作中,計數器不斷計數直至達到儲存於暫存器32〇中 之值,此時比較器326控制開關264自封閉位置變換至打開 位置。依此方式,所施加之電流驅動持續時間係與藉由線 3 18上之資料設定並儲存於暫存器2 2 〇中之數位值成比例, 及對於OLED之電流驅動位階亦係藉由線3 2〇上之資料,經 由DAC 3 14設定。 考量其中參考電流Iref=l〇 μΑ(全規模電流)且其中線128 上之DATA具有最大值255中之m之值之實例。隨後,由 下式獲得驅動電流: 127Lee (DATA) 2 〇) In the embodiment, this equation is obtained by making the pixel operation duration approximately proportional to DATA and the pixel (current) driving level approximately proportional to data. As mentioned above, the required transfer curve has a residual, (2) where, for SRGB and also for Rec·709, γ=24 (for most of the near black region of the curve; if the entire transfer curve is averaged) , γ of 709 is about 2.2). It can be understood that if DATAoc (GSf2 (3) can obtain about 2 4 by equation (1), together with equation (2). Referring now to Figure 3, this figure shows a pixel driving circuit 3〇〇, which is driven The luminosity of the OLED is proportional to the square of the digital input data; the circuit can also be modified to obtain a transfer curve of 2.4, 2.2, or a segment by Rec. 9 In Figure 3, the above reference numerals are used to indicate They are similar elements (but those skilled in the art will appreciate that such functions are not exactly corresponding to the broad sense that the portion of the circuit within the dashed line 3 1 使 causes the current to drive through the 〇 LED 252 to be passed through line 3 12 The current signal is programmed (by setting the voltage across capacitor 220). The current signal is converted to reference current 316 (associated with the input data value on line 318) by a digital-to-analog conversion (DAC) 314. The ratio is generated. In the embodiment including 8 bits, the same data is also supplied to a register 32 via a controllable switch 322. The switch 322 is controlled by a selection line 324, which is also controlled. Switch 15S654.doc 201220278 268, 270. When the pixel drive circuit 300 is programmed, the data on line 318 sets the current on line 312, which in turn sets the gate voltage stored in capacitor 22 for transistor 258, and this data is also written to the register. 32. During the programming of the current drive to OLED 252, switch 264 is configured to be turned on. As shown, line 3 18 includes a parallel data bus, but a series or quasi-series data connection can be used. The memory 320 provides the data output to a comparator 326 having a second input from a counter 328 and providing an output 33 〇 to control the switch 264 and thereby causing the current drive to the OLED 252 to be turned "on" and "off". In operation, the counter continues to count until it reaches the value stored in register 32, at which point comparator 326 controls switch 264 to transition from the closed position to the open position. In this manner, the applied current drive duration is It is proportional to the digital value set in the data on the line 3 18 and stored in the register 2 2 ,, and the current driving level for the OLED is also set by the DAC 3 14 by the data on the line 3 2 〇 . Consideration wherein the reference current Iref = l〇 μΑ (full-scale current) and wherein the DATA on line 128 has a maximum value of 255 in the example of the value of m Subsequently, a driving current obtained by the following formula: 127

Ic/^=_xl〇M (4) 將計數器重設為零及隨後在相等時間步驟中向上計數至 255(將瞭解,該計數器亦可向下計數)。假定1〇 ms(i〇〇 Hz 顯示器)訊框時間,然後針對共256個步驟,則在如下獲得 之持續時間内將電流驅動Idrive施加至〇led 252 : 158654.doc •20· 201220278 127Ic/^=_xl〇M (4) Resets the counter to zero and then counts up to 255 in the equal time step (it will be appreciated that the counter can also count down). Assuming 1 〇 ms (i Hz display) frame time, then for a total of 256 steps, the current drive Idrive is applied to 〇led 252 for the duration obtained as follows: 158654.doc •20· 201220278 127

Iduration --xl〇/»,y 256 ' ; 因此’通過OLED像素252之總電荷Qpixel係如下獲得: 1272Iduration --xl〇/»,y 256 ' ; therefore the total charge Qpixel through the OLED pixel 252 is obtained as follows: 1272

Qpbcel= (6) 因此可知’像素光度L係與線318上之DATA之平方成比 例。 熟知本技術者將瞭解,DAC 314之輸出312可包含電壓 或電流’端視該像素驅動電流3 1 〇係經電壓程式化或電流 程式化電路而定β像素驅動持續時間係於圖3之電路實例 中藉由組合一計數器、暫存器及數位比較器來決定,但亦 可採用其他佈局《例如,可採用線3丨8上之資料來設定來 自類比或數位單穩態電路之脈衝持續時間,於此情況之實 施例中’無需暫存器。 圖3之有些電路系統係具像素特異性,特定言之,在虛 線框3 1 〇内之類比驅動電路系統及在特定暫存器、比較 器326及開關264中之數位驅動電路部分。然而,為提高效 率,像素組(包括,例如,DAC 314及計數器328)之間可共 享圖3像素驅動電路系統300之其他部分。 於實施例中,可在如圖4a中所示之一單晶片400上實現 之電路系統,s玄單晶片具有為以單晶片4〇〇驅動之複數 個像素中之各者所專用之電路系統部分4G2,&亦包含如 时述之/、予電路系統404。圖4a示意地顯示在〇LED顯示 °a中像素(或子像素)佈置成4個一組且各組分別由一單 曰曰片4〇〇作肖之—部分。圖4b顯示OLED顯示器450'之另一 158654.doc -21· 201220278 實例佈局’其中各單晶片400'驅動6個像素而非4個,及其 中採用串聯DATA連接318*來菊鍵連接後續的單晶片。於各 情況中,與像素塊/像素選擇線3 24 —起提供Vdd及接地連 接(一般接地連接包含一陰極平面)。於其他佈局中,像素 塊/像素選擇線可包含串聯或並聯位址匯流排。 現參照圖5 ’此圖顯示如上所述之〇LED顯示器450、 450’與用於驅動該顯示器之一控制器500之組合。於所示之 實例中,控制器將一或多個DATA輸出3 1 8/3 1 8'提供至該 OLED顯示器,及將控制訊號5〇2提供至一位移暫存器 504,於實施例中,該位移暫存器5〇4使單一位元圓形旋轉 以將像素塊(或像素)選擇控制訊號提供至該〇LED顯示 器。可藉由將灰階查找表508用於各顏色分量使用所需轉 移曲線,視需要將一RGB(紅、綠、藍)資料輸入5〇6映射至 所需轉移曲線。考慮到電路操作所提供之2.0之固有γ,此 佈局可用於調節顯示器之反應以提供2.2或2.4之平均γ。於 貫施例中,可映射輸入資料以增加位元數,例如,自8位 元增加至9位元’以助於獲得此γ。 更詳細地再次參照圖3,於實施例中,光度變化之時間 分量總是呈實質上線性,但可藉由將非線性度引入至DAC 14及/或引入至DAC 3丨4與類比電流驅動像素電路間之電 路中,使類比驅動位階,更特定言之,電流驅動與資料值 之變化呈現非線性。因此,例如,可在低於臨界資料值 (例如,10)時維持電流驅動恒定,及在高於此臨限值時, 電流驅動可以1 ·4之並行指數增加,以致同時考量與時 158654.doc •22· 201220278 與時間成比例之變化時’在高於此臨限值下獲得2.4之並 行指數。依此方式’可將Rec. 7 09標準内建至像素驅動電 路系統中。此外’或替代地,圖5之灰階查找表5〇8可經配 置以將對共用輸入資料之色彩法則修改提供至類比及數位 . 電流/持續時間像素驅動’例如,將1.2之相同色彩法則指 - 數應用至共用輸入資料以獲得sRGB所需之2.4之冪次法則 指數。 現參照圖6,此圖顯示像素驅動電路系統6〇〇之另一佈 局,其中用於驅動OLED之驅動位階及時間均係與(相同) 輸入資料訊號成比例。同樣,以類似參考數字表示與先前 描述類似之元件》 於圖6之電路中’將一錯齒電壓波形施加至電壓參考線 602及在節點604處藉由具有如電晶體258相同之閘極電壓 之電晶體606,及串聯電阻608提供與像素驅動電流成比例 之電壓。比較器610將對自程式化像素驅動電流獲得之電 壓Vpgm與時間依存性參考電壓相比較,以將像素電流驅 動轉化為對應持續時間Tpgm,當參考電壓超過Vpgm時, 比較器610控制電晶體斷開。 . 熟知本技術者無疑可實施許多其他有效替代。將理解, 本發明不限制於所描述之實施例且涵蓋為熟習本技術者已 知且屬於附屬專利申請範圍内之修改。 【圖式簡單說明】 圖la及lb各別顯示關於Rec 7〇9/sRGB之光度_灰階轉移 曲線’及包含一單晶片積體電路之〇LED顯示器中之一部 158654.doc -23- 201220278 分之示意圖; 圖2a至2c各別顯示在驅動電晶體上設定一閘極電壓,利 用電流鏡及採用電流複製技術之OLED像素驅動電路之實 例; 圖3顯示用於控制本發明一實施例中一或多個OLED像素 之光度的控制電路系統; 圖4a及4b顯示一 OLED顯示器中併入了承載本發明實施 例像素驅動電路之單晶片之部分,其等分別顯示第一及第 二實例實現方式; 圖5顯示本發明一實施例之OLED顯示器與用於該顯示器 之一控制器之組合;及 圖6顯示根據本發明一實施例之一類比像素驅動電路之 一實例。 【主要元件符號說明】 10a Rec. 709標準曲線 10b sRGB標準曲線 10 轉移曲線 20a 像素 20b 像素 20c 像素 20d 像素 120 單晶片 131 電源線 133a 導體 158654.doc -24- 201220278 135 資料線 136 資料線 137a 選擇線片段 137b 選擇線片段 138a 選擇線片段 138b 選擇線片段 143a 通孔 153a 通孔 161a 下部電極 163a 開口 220 儲存電容器 222 控制電晶體 222a 電晶體 224 列選擇匯流條 226 行資料匯流條 250 主動矩陣像素電路 252 接地線 254 接地匯流條 258 驅動電晶體 259 閘連接件 260 薄膜電晶體 264 開關電晶體 266 電流發生器 268 開關電晶體 158654.doc •25- 201220278 270 開關電晶體 300 像素驅動電路 310 虛線 312 線 314 數位-類比轉換器 316 參考電流匯入 318 線 318' 連接件 320 暫存器 322 控制開關 324 選擇線 326 比較器 328 計數器 330 輸出 400 單晶片 400' 單晶片 402 電路系統部分 404 共享電路系統 450 OLED顯示器 450' OLED顯示器 500 控制器 502 控制訊號 504 位移暫存器 506 RGB資料輸入 158654.doc -26- 201220278 508 灰階查找表 600 像素驅動電路系統 602 電壓參考線 604 節點 606 電晶體 608 串聯電阻 610 比較器 158654.doc -27-Qpbcel = (6) Therefore, it can be seen that the pixel luminosity L is proportional to the square of DATA on line 318. It will be understood by those skilled in the art that the output 312 of the DAC 314 can include a voltage or current 'the pixel drive current 3 1 〇 is a voltage programmed or current stylized circuit. The beta pixel drive duration is based on the circuit of FIG. The example is determined by combining a counter, a register and a digital comparator, but other layouts can be used. For example, the data on line 3丨8 can be used to set the pulse duration from an analog or digital monostable circuit. In this embodiment, 'there is no need for a scratchpad. Some of the circuitry of Figure 3 is pixel specific, specifically, the analog driver circuitry within the dashed box 3 1 and the digit drive circuitry portion of the particular register, comparator 326, and switch 264. However, to improve efficiency, other portions of pixel drive circuitry 300 of Figure 3 may be shared between groups of pixels (including, for example, DAC 314 and counter 328). In an embodiment, the circuitry can be implemented on a single wafer 400 as shown in FIG. 4a, and the singular single-chip has circuitry dedicated to each of a plurality of pixels driven by a single wafer. Portions 4G2, & also include /, circuit system 404 as described above. Fig. 4a schematically shows that the pixels (or sub-pixels) are arranged in groups of four in the 〇LED display °a and each group is separately formed by a single cymbal. Figure 4b shows another 158654.doc - 21 · 201220278 example layout of the OLED display 450' in which each single wafer 400' drives 6 pixels instead of 4, and uses a serial DATA connection 318* to daisy-link subsequent subsequent orders Wafer. In each case, Vdd and ground connections are provided along with the pixel block/pixel select line 3 24 (generally the ground connection includes a cathode plane). In other layouts, the pixel block/pixel select line can include a series or parallel address bus. Referring now to Figure 5, this figure shows a combination of the LED display 450, 450' as described above and a controller 500 for driving the display. In the illustrated example, the controller provides one or more DATA outputs 3 1 8/3 1 8 ' to the OLED display, and provides control signals 5 〇 2 to a shift register 504, in an embodiment. The shift register 5〇4 rotates a single bit circularly to provide a pixel block (or pixel) selection control signal to the 〇LED display. An RGB (red, green, blue) data input 5〇6 can be mapped to the desired transfer curve by using the grayscale lookup table 508 for each color component using the desired transition curve. This layout can be used to adjust the response of the display to provide an average gamma of 2.2 or 2.4, taking into account the inherent gamma of 2.0 provided by the circuit operation. In the example, the input data can be mapped to increase the number of bits, e.g., from 8 bits to 9 bits to help obtain this gamma. Referring again in more detail to FIG. 3, in an embodiment, the time component of the photometric change is always substantially linear, but can be introduced by introducing nonlinearity to the DAC 14 and/or to the DAC 3丨4 and analog current drive. In the circuit between the pixel circuits, the analog drive level is made, more specifically, the current drive and the change of the data value are nonlinear. Thus, for example, the current drive can be kept constant below a critical data value (eg, 10), and above this threshold, the current drive can be increased by a parallel index of 1-4, such that the time is considered to be 158,654. Doc •22· 201220278 When changing in proportion to time, 'a parallel index of 2.4 is obtained above this threshold. In this way, the Rec. 7 09 standard can be built into the pixel drive circuit system. Additionally or alternatively, the grayscale lookup table 5〇8 of FIG. 5 can be configured to provide color law modifications to the shared input data to analog and digital. Current/duration pixel drive 'eg, the same color rule of 1.2 The number is applied to the shared input data to obtain the 2.4 power law index required for sRGB. Referring now to Figure 6, there is shown another arrangement of pixel drive circuitry 6 wherein the drive level and time for driving the OLED are proportional to the (same) input data signal. Similarly, elements similar to those previously described are denoted by like reference numerals in the circuit of FIG. 6 'applying a wrong tooth voltage waveform to voltage reference line 602 and at node 604 by having the same gate voltage as transistor 258 The transistor 606, and series resistor 608 provide a voltage proportional to the pixel drive current. The comparator 610 compares the voltage Vpgm obtained by the self-programming pixel driving current with the time-dependent reference voltage to convert the pixel current driving into a corresponding duration Tpgm, and when the reference voltage exceeds Vpgm, the comparator 610 controls the transistor to be broken. open. Those skilled in the art will no doubt be able to implement many other effective alternatives. It is to be understood that the invention is not limited to the described embodiments and is intended to be included within the scope of the appended claims. [Simplified Schematic] Figures la and lb show the luminosity_grey transition curve for Rec 7〇9/sRGB and one of the 〇LED displays containing a single-chip integrated circuit 158654.doc -23- 201220278 is a schematic diagram; FIGS. 2a to 2c each show an example of setting a gate voltage on a driving transistor, using a current mirror and an OLED pixel driving circuit using current replication technology; FIG. 3 shows an embodiment for controlling the present invention. Control circuit system for luminosity of one or more OLED pixels; FIGS. 4a and 4b show a portion of a OLED display incorporating a single chip carrying a pixel driving circuit of an embodiment of the present invention, and the first and second examples are respectively displayed Implementations; FIG. 5 shows a combination of an OLED display according to an embodiment of the present invention and a controller for the display; and FIG. 6 shows an example of an analog pixel driving circuit according to an embodiment of the present invention. [Main component symbol description] 10a Rec. 709 standard curve 10b sRGB standard curve 10 Transfer curve 20a pixel 20b pixel 20c pixel 20d pixel 120 single chip 131 power line 133a conductor 158654.doc -24- 201220278 135 data line 136 data line 137a selection Line segment 137b select line segment 138a select line segment 138b select line segment 143a through hole 153a through hole 161a lower electrode 163a opening 220 storage capacitor 222 control transistor 222a transistor 224 column selection bus bar 226 row data bus bar 250 active matrix pixel circuit 252 Ground wire 254 Ground bus bar 258 Drive transistor 259 Gate connector 260 Thin film transistor 264 Switching transistor 266 Current generator 268 Switching transistor 158654.doc • 25- 201220278 270 Switching transistor 300 Pixel driver circuit 310 Dotted line 312 line 314 Digital-to-Analog Converter 316 Reference Current Import 318 Line 318' Connector 320 Register 322 Control Switch 324 Select Line 326 Comparator 328 Counter 330 Output 400 Single Chip 400' Single Chip 402 Circuit System Section 40 4 shared circuit system 450 OLED display 450 OLED display 500 controller 502 control signal 504 shift register 506 RGB data input 158654.doc -26- 201220278 508 gray scale lookup table 600 pixel drive circuit system 602 voltage reference line 604 node 606 Transistor 608 Series Resistor 610 Comparator 158654.doc -27-

Claims (1)

201220278 七、申請專利範圍: 1. 一種有機發光二極體(OLED)顯示器,該顯示器包含: 承載複數個OLED像素之一基板,各該像素具有相關 控制電路系統’其中s亥控制電路系統包含用於儲存一確 • 定一相關OLED像素之光度的值之至少—記憶元件,及 - 其中該控制電路系統具有接收及利用該記憶元件儲存確 定該相關OLED像素之該光度的光度資料之一像素資料 輸入; 其中該控制電路系統係經配置以控制通過該〇led像 素之電流及該電流流過該像素之持續時間;及 其中該相同光度資料控制該電流及該持續時間兩者, 以使該相關OLED像素之該光度對該光度資料具有非線 性反應。 2·如請求項1之OLED顯*器,其中該光度資料包含具有複 數個資料位元之數位資料,及其中該等資料位元中之一 或多者或全部控制該電流及該持續時間兩者。 3.如請求項1或2之0LED顯示器,其中該控制電路系統包 含使該電流程式化之第一可兹泞 / 弟了程式化電路系統及使該持續 時間程式化之第二可程式化電路系統。 4·如請求項3之0㈣顯示器,其中該第—可程式化電路系 統_合至一儲存電容器以儲存經程式化之電壓值來 使該電流程式化之-像素驅動電晶體,及其中該第二可 程式化電路系統包含提供確定該持續時間之經程式化時 序值之一暫存器或定時器。 I58654.doc 201220278 5. 如請求項4之OLED顯示器,其中該可程式化電路系統包 含接收該光度資料及提供類比輸出之一數位_類比轉換 器,及選擇性地連接該類比輸出以使在該複數個儲存電 谷器中之一者上的該電壓值程式化之一多工器。 6. 如請求項4之OLED顯示器,其中該暫存器或定時器包含 一暫存器,及其中該第二可程式化電路系統進一步包 含:控制通過該OLED像素之該電流之一可控制開關、 一計數器及具有分別耦合至該計數器及該暫存器之第一 及第二輸入且具有經耦合以控制該可控制開關之一輸出 之一比較器。 7·如請求項1或2之0LED顯示器,其中該控制電路系統係 針對各該像素提供,且其中在該控制電路系統中操作以 控制該電流及該持續時間中之一或兩者之一部分係由複 數個該等像素共享。 8. 如請求項1之0LED顯示器,其中該光度資料包含類比資 料訊號。 9. 如請求項1或2之〇LED顯示器,其進一步包含安裝於該 基板上之複數個單晶片(chiplet) ’其中各該單晶.片係鄰 接一組該等像素安裝且包含承載用於該組該等像素之控 制電路系統之一單晶片基板。 1〇·如請求項1或2之0LED顯示器,其中該非線性反應提供 ITU Rec. 7〇9及sRGB標準中之一或兩者之灰階反應。 U. 一種驅動有機發光二極體(OLED)顯示器之像素之方法, S亥顯不器包含:承載複數個OLED像素之一基板,各該 158654.doc 201220278 像素具有相關控制電路系統,其中該控制電路系統包含 用於儲存一確定一相關OLED像素之光度的值之至少一 記憶元件’及其中該控制電路系統具有接收及利用該記 隐元件儲存確定該相關OLED像素之該光度的光度資料 之一像素資料輸入;該方法包含使用該相同光度資料來 控制通過該OLED像素之電流及該電流流過該像素之持 續時間兩者,以使該相關OLED像素之該光度對該光度 資料具有非線性反應。 12. 13. 14. 一種駆動有機發光二極體(OLED)顯示器之像素以提供增 加之動態範圍之方法,其中該方法包含: 將資料寫入至該OLED顯示器之一像素驅動電路; 將來自該像素驅動電路之驅動訊號提供至該〇LEd像 素’其中該驅動訊號具有驅動位階及驅動持續時間;及 回應相同資料控制該驅動位階及該驅動持續時間兩者 以使該像素之光度對該資料展現非線性反應。 如請求項12之方法,其中就在該資料之一範圍内取平均 而言’該光度係隨該資料之冪次方值變化,其中該冪次 具有等於或大於2之值。 一種具有複數個像素之0LED顯示器,該顯示器包含: 用於將資料寫入至該OLED顯示器之一像素驅動電路 之構件; 用於將來自該像素驅動電路之驅動訊號提供至該 OLED像素之構件,其中該驅動訊號具有驅動位階及驅 動持續時間;及 158654.doc 201220278 用於回應於相同資料控制該驅動位階及該驅動持續時 間兩者以使該像素之光度對該資料展現非線性反應之構 件。 15. —種OLED顯示器,該顯示器包含: 承载複數個OLED發光像素之一顯示器基板; 安裝於該基板上之複數個單晶片,其中各該單晶片係 鄰接組該荨像素安裝且包含承載用於該組像素之控制 電路系統之一單晶片基板;及 其中於該單晶片上之該控制電路系統包含將用於該組 5乂荨像素中之各像素之驅動位階程式化之第一可程式化 電路系統,及將用於該組像素中之各像素之驅動持續時 間程式化之第二可程式化電路系統。 16·如印求項152〇LED顯示器,其中該第一可程式化電路 系統包含用於該組中各該像素之儲存該經程式化驅動位 階之一儲存電容器,及耦合至該儲存電容器之一像素驅 動電晶體’及其中該第二可程式化電路系統包含用於該 、’且中之各該像素以提供該經程式化驅動持續時間之一暫 存器或定時器。 «•月求項16之〇LED顯示器,其中該第一可程式化電路 系先進步包含輕合至該儲存電容器以使該儲存電容器 可選擇性程式化之用於該組中各該像素之至少一第一開 關,及其中該第二可程式化電路系統進一步包含經耦合 以控制對各別該像素之驅動以回應於來自與該像素相關 之°亥暫存器或定時器的值而施加該驅動一持續時間之用 158654.doc 201220278 於該組中各該像素之一第二開關。 18. 如請求項17之OLED顯示器,其中該第二可程式化電路 系統進一步包含為該組中之該等像素及用於該組中各該 像素之比較器所共用之一計數器,其中各該比較器具有 . 搞合至該等第二開關中之一者之一輸出及耦合至該共用 • 計數器及該暫存器之輸入。 19. 如請求項16至18中任一項之〇LED顯示器,其中該第一 可程式化電路系統進一步包含一數位_類比轉換器及耦合 於該數位-類比轉換器與該儲存電容器之間以使來自該數 位-類比轉換器的值選擇性地程式化至該單晶片之一所選 擇之該儲存電容器上之多工電路系統。 20. 如請求項15至18中任一項之〇LED顯示器,其中該第一 及第二可程式化電路系統共享一共用資料輸入線。 2 1.如請求項20之OLED顯示器,其中於該共用資料輸入線 上之一共享資料值使該驅動位階及該驅動持續時間程式 化以使一該像素之光度值係依該共享資料值之冪次方變 化’其中該冪次係等於或大於2。 22·如請求項15至18中任一項之OLED顯示器,其中該第— . 及第二可程式化電路系統中之一或兩者對各別使該驅動 . 位階及該驅動持續時間程式化之資料值之反應特徵包含 逐段反應,其中該資料值之第一範圍具有第一反應特徵 及該資料值之第二較高範圍具有第二不同反應特徵。 23.如請求項15至18中任一項之〇leD顯示器,其令該第一 可程式化電路系統包含藉由在該電路系統之—程式化線 I58654.doc 201220278 中流動之電流程式化之電流程式化電略系統。 24. 2請求項15至】8中任一項之〇LED顯示器,其進一步包 3用;選# 6亥單晶片及將資料提供至該所選擇單晶片 :使該第-及第二可程式化電路系統程式化之一控制 158654.doc201220278 VII. Patent application scope: 1. An organic light emitting diode (OLED) display, the display comprising: a substrate carrying a plurality of OLED pixels, each of the pixels having an associated control circuit system, wherein the shai control circuit system comprises Storing at least one of the values of the luminosity of the associated OLED pixel, and - wherein the control circuitry has a pixel data for receiving and utilizing the memory element to store the luminosity data determining the luminosity of the associated OLED pixel Inputting; wherein the control circuitry is configured to control a current through the 像素led pixel and a duration of the current flowing through the pixel; and wherein the same photometric data controls both the current and the duration to correlate the correlation The luminosity of the OLED pixel has a non-linear response to the photometric data. 2. The OLED display of claim 1, wherein the photometric data comprises digital data having a plurality of data bits, and wherein one or more of the data bits control the current and the duration By. 3. The OLED display of claim 1 or 2, wherein the control circuitry comprises a first programmable circuit that stylizes the current and a second programmable circuit that stylizes the duration system. 4. The 0 (4) display of claim 3, wherein the first programmable circuit system is coupled to a storage capacitor to store the programmed voltage value to program the current-pixel drive transistor, and wherein the The second programmable circuit system includes a register or timer that provides a programmed timing value that determines the duration. 5. The OLED display of claim 4, wherein the programmable circuit system includes a digital-to-analog converter that receives the photometric data and provides an analog output, and selectively connects the analog output to enable The voltage value on one of the plurality of stored electric grids is programmed to be one of the multiplexers. 6. The OLED display of claim 4, wherein the register or timer comprises a register, and wherein the second programmable circuit system further comprises: controlling one of the currents through the OLED pixel to control the switch And a counter having a first and a second input coupled to the counter and the register, respectively, and having a comparator coupled to control one of the outputs of the controllable switch. 7. The OLED display of claim 1 or 2, wherein the control circuitry is provided for each of the pixels, and wherein operating in the control circuitry to control the current and one or both of the durations Shared by a plurality of such pixels. 8. The OLED display of claim 1, wherein the photometric data comprises an analog data signal. 9. The LED display of claim 1 or 2, further comprising a plurality of chiplets mounted on the substrate, wherein each of the single crystals is mounted adjacent to a set of the pixels and includes a carrier for The set of one of the control circuitry of the pixels is a single wafer substrate. 1) The OLED display of claim 1 or 2, wherein the non-linear response provides a gray scale response of one or both of the ITU Rec. 7〇9 and sRGB standards. U. A method of driving a pixel of an organic light emitting diode (OLED) display, the device comprising: a substrate carrying a plurality of OLED pixels, each of the 158654.doc 201220278 pixels having an associated control circuit system, wherein the control The circuitry includes at least one memory component for storing a value determining the luminosity of an associated OLED pixel and wherein the control circuitry has one of receiving photometric data for determining and determining the luminosity of the associated OLED pixel using the hidden component Pixel data input; the method includes using the same photometric data to control both the current through the OLED pixel and the duration of the current flowing through the pixel such that the luminosity of the associated OLED pixel has a non-linear response to the photometric data . 12. 13. 14. A method of pulsing pixels of an organic light emitting diode (OLED) display to provide an increased dynamic range, wherein the method comprises: writing data to a pixel drive circuit of the OLED display; a driving signal of the pixel driving circuit is provided to the LED pixel, wherein the driving signal has a driving level and a driving duration; and responding to the same data to control both the driving level and the driving duration to cause the luminosity of the pixel to display the data Nonlinear reaction. The method of claim 12, wherein the luminosity varies with a power of the data, wherein the power has a value equal to or greater than two. An OLED display having a plurality of pixels, the display comprising: means for writing data to a pixel driving circuit of the OLED display; and means for providing a driving signal from the pixel driving circuit to the OLED pixel, Wherein the drive signal has a drive level and a drive duration; and 158654.doc 201220278 is configured to control both the drive level and the drive duration in response to the same data to cause the luminosity of the pixel to exhibit a nonlinear response to the data. 15. An OLED display, the display comprising: a display substrate carrying a plurality of OLED luminescent pixels; a plurality of single wafers mounted on the substrate, wherein each of the single wafers is adjacent to the set of pixels and includes a carrier for a single-wafer substrate of the control circuitry of the set of pixels; and the control circuitry on the single-chip includes a first programmable stylization of driving levels for each of the set of 5 pixels A circuitry, and a second programmable circuit system that will program the drive duration of each pixel in the set of pixels. 16. The 152" LED display of claim 1, wherein the first programmable circuit system includes one of a storage capacitor for storing the programmed drive level for each of the pixels in the set, and is coupled to one of the storage capacitors The pixel drive transistor 'and the second programmable circuit system include one of the registers or timers for the , and each of the pixels to provide the programmed drive duration. «• 求 求 16 16 〇 〇 〇 , , , , , , , , , , , , , , 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 A first switch, and wherein the second programmable circuitry further includes coupling to control driving of the respective pixel in response to a value from a register or timer associated with the pixel Drive a duration with 158654.doc 201220278 for the second switch of one of the pixels in the group. 18. The OLED display of claim 17, wherein the second programmable circuitry further comprises a counter shared by the pixels in the set and the comparators for each of the pixels in the set, wherein each The comparator has an output coupled to one of the second switches and coupled to the common counter and the input of the register. 19. The LED display of any one of claims 16 to 18, wherein the first programmable circuit system further comprises a digital-to-analog converter coupled between the digital-to-analog converter and the storage capacitor The value from the digital-to-analog converter is selectively programmed to a multiplexed circuitry on the storage capacitor selected by one of the single wafers. 20. The LED display of any of claims 15 to 18, wherein the first and second programmable circuit systems share a common data input line. 2. The OLED display of claim 20, wherein sharing the data value on one of the shared data input lines causes the driving level and the driving duration to be programmed such that a photometric value of the pixel is dependent on the shared data value The power of the second is 'where the power is equal to or greater than 2. The OLED display of any one of claims 15 to 18, wherein one or both of the first and second programmable circuit systems respectively enable the drive. The level and the drive duration are stylized The reactive characteristic of the data value comprises a stepwise reaction wherein the first range of the data value has a first response characteristic and the second higher range of the data value has a second different reaction characteristic. 23. The 〇leD display of any one of claims 15 to 18, wherein the first programmable circuit system comprises a program that is programmed by a current flowing in the circuitized line I58654.doc 201220278 Current stylized system. 24. The LED display of any one of clauses 15 to 8, which is further used for package 3; selecting #6海单单片 and providing data to the selected single chip: enabling the first and second programmable One of the stylized circuits of the circuit system 158654.doc
TW100132716A 2010-09-09 2011-09-09 Organic light emitting diode displays TW201220278A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1015003.5A GB2483485A (en) 2010-09-09 2010-09-09 Organic light emitting diode displays

Publications (1)

Publication Number Publication Date
TW201220278A true TW201220278A (en) 2012-05-16

Family

ID=43037563

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100132716A TW201220278A (en) 2010-09-09 2011-09-09 Organic light emitting diode displays

Country Status (3)

Country Link
GB (1) GB2483485A (en)
TW (1) TW201220278A (en)
WO (1) WO2012032282A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107358907A (en) * 2016-05-05 2017-11-17 亿光电子工业股份有限公司 Light emitting display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LV14991B (en) * 2013-10-04 2015-06-20 Palami, Sia Light emitting module and system of modules
JP6966943B2 (en) * 2015-06-10 2021-11-17 アップル インコーポレイテッドApple Inc. Display panel redundancy scheme
KR102222092B1 (en) * 2019-02-11 2021-03-03 (주)실리콘인사이드 Led pixel package
CN113096589B (en) * 2021-04-08 2022-05-06 中国科学院微电子研究所 Pixel circuit, driving method of pixel circuit and display device
CN114038415B (en) * 2021-12-13 2022-08-23 Tcl华星光电技术有限公司 Pixel circuit and display panel

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
GB8909011D0 (en) 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
US6157356A (en) 1996-04-12 2000-12-05 International Business Machines Company Digitally driven gray scale operation of active matrix OLED displays
US6975079B2 (en) * 1997-08-26 2005-12-13 Color Kinetics Incorporated Systems and methods for controlling illumination sources
GB2381643A (en) 2001-10-31 2003-05-07 Cambridge Display Tech Ltd Display drivers
US6639574B2 (en) * 2002-01-09 2003-10-28 Landmark Screens Llc Light-emitting diode display
JP2004004788A (en) * 2002-04-24 2004-01-08 Seiko Epson Corp Method and circuit for controlling electron device, electronic circuit, electro-optical device, driving method for the same, and electronic equipment
JP2004246320A (en) * 2003-01-20 2004-09-02 Sanyo Electric Co Ltd Active matrix drive type display device
KR100846954B1 (en) * 2004-08-30 2008-07-17 삼성에스디아이 주식회사 Light emitting display and driving method thereof
JP4952972B2 (en) * 2005-07-19 2012-06-13 ソニー株式会社 Self-luminous display device, light emission condition optimization device, light emission condition optimization method and program
JP4432920B2 (en) * 2006-03-08 2010-03-17 セイコーエプソン株式会社 Signal transmission method, drive circuit, electro-optical device, and electronic apparatus
KR100797749B1 (en) 2006-06-02 2008-01-24 리디스 테크놀로지 인코포레이티드 Organic Light Emitting Display Device and Driving Circuit Applying Pulse Amplitude ModulationPAM Driving Method and Pulse Width ModulationPWM Driving Method
US7999454B2 (en) 2008-08-14 2011-08-16 Global Oled Technology Llc OLED device with embedded chip driving
US8279145B2 (en) * 2009-02-17 2012-10-02 Global Oled Technology Llc Chiplet driver pairs for two-dimensional display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107358907A (en) * 2016-05-05 2017-11-17 亿光电子工业股份有限公司 Light emitting display device
TWI624779B (en) * 2016-05-05 2018-05-21 億光電子工業股份有限公司 Light emitting diode display apparatus

Also Published As

Publication number Publication date
GB201015003D0 (en) 2010-10-20
WO2012032282A1 (en) 2012-03-15
GB2483485A (en) 2012-03-14

Similar Documents

Publication Publication Date Title
CN113129831B (en) Drive unit and method for operating a drive unit
US7123220B2 (en) Self-luminous display device
JP7066339B2 (en) Pixels and organic electroluminescence display devices using them and their driving methods
US11238783B2 (en) Pixel and display device including the same
TWI601113B (en) Low power digital driving of active matrix displays
CN104282257B (en) Display device, driving method and electronic equipment for display device
JP6248352B2 (en) Organic EL display device and driving method
US11430381B2 (en) Image display device
US9928782B2 (en) Four-primary-color organic light emitting display and driving method thereof
WO2020192734A1 (en) Display driver circuit and driving method therefor, display panel, and display device
KR20070005733A (en) Improved stabilized active matrix emissive display
TW201220278A (en) Organic light emitting diode displays
WO2022083302A1 (en) Display substrate, driving method therefor, and display device
JP4088098B2 (en) EL display panel
WO2021057653A1 (en) Pixel drive circuit and drive method therefor, display panel and display apparatus
CN112908264A (en) Pixel driving circuit, driving method, display panel and display device
WO2021035414A1 (en) Pixel circuit and driving method therefor, and display substrate and driving method therefor, and display device
CN113724640B (en) Pixel driving circuit, driving method thereof, display panel and display device
TW200933571A (en) Image display device
WO2018153096A1 (en) Pixel driver circuit, driving method for pixel driver circuit, and display device
JP4569107B2 (en) Display device and driving method of display device
JP2004004801A (en) Current output type driving device, display device, and television
US20150070377A1 (en) Image signal processing circuit, image signal processing method and display apparatus
KR100620323B1 (en) organic electroluminescence display and driving circuit thereof
JP2007263989A (en) Display device using self-luminous element and driving method of the same