TW201220010A - Parameter learning controller in a machine device and learning method thereof - Google Patents

Parameter learning controller in a machine device and learning method thereof Download PDF

Info

Publication number
TW201220010A
TW201220010A TW099137664A TW99137664A TW201220010A TW 201220010 A TW201220010 A TW 201220010A TW 099137664 A TW099137664 A TW 099137664A TW 99137664 A TW99137664 A TW 99137664A TW 201220010 A TW201220010 A TW 201220010A
Authority
TW
Taiwan
Prior art keywords
unit
fast
quasi
performance indicator
parameter
Prior art date
Application number
TW099137664A
Other languages
Chinese (zh)
Other versions
TWI410767B (en
Inventor
Sheng-An Yang
Chih-Feng Wang
Hung-Chen Chen
Original Assignee
Syntec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syntec Inc filed Critical Syntec Inc
Priority to TW099137664A priority Critical patent/TWI410767B/en
Publication of TW201220010A publication Critical patent/TW201220010A/en
Application granted granted Critical
Publication of TWI410767B publication Critical patent/TWI410767B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Numerical Control (AREA)

Abstract

A parameter learning method of a CNC machine device is designed to modify parameters of the CNC machine device according to fast, accurate, and stable preferences. Weightings of these preferences can be set by user's requirement. This learning method will attend the objective including saving working time, improving workpieces accuracy, or enhancing processing stability.

Description

201220010 六、發明說明: 【發明所屬之技術領域】 [0001]本發明是有關於一種CNC機械裝置中的數值控制器,特別 是有關於一種具有參數學習功能的CNC機械裝置之控制器 及其參數學習的控制方法;可依使用者對於加工特性之 偏好,經過參數學習方法,調變機械裝置之參數達到 縮短加工時間、提升加工精度、改善機械装置加工穩度 之成效。 【先前技術】 〇 [00〇2]首先,請參考第1圖,係一種習知的CNC機械裝置之數值 #制器方塊不意圖。如第1圖所示,數位挺制模組10由路 ’ #規劃單元12、動程規劃單元13與插值單元14等所組成 ;其中路徑規劃單元12,是將使用者編輯之加卫程式u 解譯並規劃出-個加工路獲;接著,動程規劃單元13是 依據數位控制模組1〇所提供之參數18,進—步規劃加工 路徑的運動特性’如速度'加速度等;之後,由插值單 〇 7014將完成動程規劃之具有運動特性的單節資料做插值 運算後’再將命令發送至驅動器T5 ;然後,驅動器15於 接收插值後的命令彳《,再發㈣制信號轉動並控制馬 達16,此外,由各轴向的位置感測元件17,如馬達編碼 器或光學尺’將感測的馬達16位置迴授資料並傳回媒動 器15。 闺在上述的CNC機械裝置操作過程中,於設定數位控制模組 10的各項參數18時’常因機台剛性、馬達特性與各部機 構的不同,需要憑經驗反覆測試,才能設定出一組較適 099137664 表單編號A0101 第3頁/共28頁 0992065649-0 201220010 [0004] [0005] [0006] [0007] 099137664 當的參數1 8。如此會產生諸多不便,例如:設定參數需 要有經驗的調機人員、需要花不少時間反覆測試與驗證 〇 由於先前技術在CNC機械裝置的使用,是使用一組參數來 適用於所有的加工過程,由於使用者對參數了解不深, 而且加工狀況常因不同情況而改變,故使用者往往不能 確定目前參數是否適合正準備要處理的加工檔,會不會 有加工時間過長、機台抖動等問題;面對這些問題,使 用者通常無法自行調整參數來解決’而需機械廠人員協 助才有辦法’造成使用者相當大的困擾與不便。 【發明内容】 為解決先前技術的問題及缺點,本發明之主要目的在於 提供一種在CNC機械裝置中配置具有參數學習功能的數值 控制器,藉由數值控制器之具參數學習功能,使得CNC機 械裝置在調機與參數設定上能更方便。 本發明之另一主要目的在於提翁一種在CNC機械裝置中配 置具有參數學習功能的數值控制器,使得機械廠人員在 對CNC機械裝置進行調機時,能夠開啟參數學習功能並執 行標準測試程式,使得數位控制器記錄快準穩等表現指 標,並經由參數學習演算法自動更新機械裝置之參數, 使传CNC機械裝置在調機與參數設定能夠更準確的達到加 工效果。 本發明之還有一主要目的在於提供一種在CNC機械裝置中 配置具有參數學習功能的數值控制器,使得機械廠人員 在對CNC機械裝置進行調機時,能夠開啟參數學習功能並 表單編號A0101 第4頁/共28頁 0992065649-0 201220010 [0008] Ο [0009] [0010]201220010 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a numerical controller in a CNC mechanical device, and more particularly to a controller of a CNC mechanical device having a parameter learning function and parameters thereof Learning control method; according to the user's preference for processing characteristics, through the parameter learning method, the parameters of the mechanical device can be adjusted to shorten the processing time, improve the processing precision, and improve the processing stability of the mechanical device. [Prior Art] 〇 [00〇2] First, please refer to Fig. 1, which is a numerical value of a conventional CNC mechanism. As shown in FIG. 1, the digital controller module 10 is composed of a road planning unit 12, a motion planning unit 13, and an interpolation unit 14, and the path planning unit 12 is a user-edited program. Interpreting and planning a processing route; then, the motion planning unit 13 further predicts the motion characteristics of the processing path, such as the speed acceleration, according to the parameter 18 provided by the digital control module 1; After the interpolation unit 7014 performs interpolation processing on the single-section data with motion characteristics of the motion planning, the command is sent to the driver T5; then, the driver 15 receives the interpolated command 彳, and then retransmits the signal rotation. The motor 16 is controlled and, in addition, the sensed motor 16 is positionally fed back to the actuator 15 by position sensing elements 17, such as motor encoders or optical scales.闺 During the operation of the above-mentioned CNC mechanical device, when setting the parameters 18 of the digital control module 10, 'often due to the difference between the rigidity of the machine, the characteristics of the motor and the various mechanisms, it is necessary to repeat the test by experience to set a set. More suitable 099137664 Form No. A0101 Page 3 / Total 28 Page 0992065649-0 201220010 [0004] [0005] [0007] [0007] 099137664 When the parameter is 18. This can cause a lot of inconveniences. For example, setting parameters requires experienced tuning personnel, and it takes a lot of time to repeat testing and verification. Due to the use of prior art in CNC machinery, a set of parameters is used to apply to all machining processes. Since the user does not know the parameters deeply, and the processing status often changes due to different situations, the user often cannot determine whether the current parameters are suitable for the processing file that is being prepared for processing, whether there is too long processing time and machine jitter. Such problems; in the face of these problems, users are usually unable to adjust the parameters themselves to solve the problem of 'the need for the assistance of the mechanical plant personnel to have a way' causing considerable trouble and inconvenience to the user. SUMMARY OF THE INVENTION In order to solve the problems and disadvantages of the prior art, the main object of the present invention is to provide a numerical controller having a parameter learning function in a CNC mechanical device, and the CNC mechanical mechanism is provided by a parameter learning function of the numerical controller. The device can be more convenient in tuning and parameter setting. Another main object of the present invention is to provide a numerical controller with a parameter learning function in a CNC mechanical device, so that the mechanical factory personnel can turn on the parameter learning function and execute the standard test program when adjusting the CNC mechanical device. The digital controller records the fast and quasi-stable performance indicators, and automatically updates the parameters of the mechanical device through the parameter learning algorithm, so that the CNC mechanical device can achieve the processing effect more accurately in the tuning and parameter setting. Still another main object of the present invention is to provide a numerical controller having a parameter learning function in a CNC mechanical device, so that the machine factory personnel can turn on the parameter learning function when the CNC mechanical device is adjusted and the form number A0101 is 4 Page / Total 28 pages 0992065649-0 201220010 [0008] 0009 [0009] [0010]

GG

[0011] 執行標準測試程式,使得數位控制器記錄快準穩等表現 指標,並經由參數學習演算法自動更新機械裝置之參數 ,故可依使用者對於加工特性之偏好,經過參數學習方 法,調變機械裝置之參數,達到縮短加工時間、提升加 工精度、改善機械裝置加工穩度之成效。 · 本發明之參數學習的方式,會依照使用者設定快、準、 穩等表現指標的權重,訂出總表現指標,並以追求最佳 總表現指標為參數學習的目標。故本發明之主要優點包 括: 1. 調機時,使用參數學習功能,能確保調整後之參數會 使CNC機械裝置之總表現指標提升至相當好的程度,並可 避免因經驗不足而調不出適當參數或調機時間過久的情 況發生。 2. 過去使用者碰到加工效果不理想的情形,只能改參數 並進行重複加工,非常不容易解決。透過參數學習功能 ,可直接輸入快準穩等指標偏好之權重,而不需自行改 參數,就能將參數學好,提高便利性與解決問題的時效 性。 依據上述之目的及優點,本發明首先提供一種具有參數 學習功能之控制器,包括:一路徑規劃單元,用以接收 一加工程式,並依據加工程式規劃一加工路徑訊息;一 動程規劃單元,其一輸入端與路徑規劃單元連接並接收 加工路徑訊息,其另一輸入端與一數位控制參數連接, 依據加工路徑訊息及數位控制參數規劃加工路徑訊息輸 099137664 表單編號A0101 第5頁/共28頁 0992065649-0 201220010 出運動訊息;一插值單元,與動程規劃單元連接,並將 動程規劃單元所輸出之運動訊息執行插值運算後,再將 一控制命令輸出至馬達驅動器;一快準穩指標計算單元 ,其一輸入端與一位置感測元件連接,並接收位置感測 元件輸入之迴授信號,並依據迴授信號分別計算快表現 指標、準表現指標及穩表現指標,以輸出一快準穩指標 訊息;一學習功能單元,其第一輸入端接收由用者設定 之快準穩權重訊息,其第二輸入端與快準穩指標計算單 元連接並接收快準穩指標訊息,重新計算新的數位控制 參數,並輸出至動程規劃單元。 [0012] 本發明接著提供一種控制器之參數學習方法,包括:提 供一路徑規劃單元,用以接收一加工程式,並依據加工 程式規劃一加工路徑訊息;提供一動程規劃單元,其一 輸入端與路徑規劃單元連接並接收加工路徑訊息,其另 一輸入端與一數位控制參數連接,依據加工路徑訊息及 該數位控制參數規劃加工路徑訊息輸出運動訊息;提供 一插值單元,與動程規劃單元連接,並將動程規劃單元 所輸出之運動訊息執行插值運算後,再將一控制命令輸 出至馬達驅動器;提供一快準穩指標計算單元,其一輸 入端與一位置感測元件連接,並接收位置感測元件輸入 之迴授信號,並依據迴授信號分別計算快表現指標、準 表現指標及穩表現指標,以輸出一快準穩指標訊息;提 供一學習功能單元,其第一輸入端接收由用者設定之快 準穩權重訊息,其第二輸入端與快準穩指標計算單元連 接並接收快準穩指標訊息,重新計算新的數位控制參數 099137664 表單編號AOiOl 第6頁/共28頁 0992065649-0 201220010 [0013] [0014] Ο ο [0015] ,並輸出至該動程規劃單元。 【實施方式】 由於本發明係揭露一種具有參數學習功能之數位控制震 置及其控制方法’使得數位控制裝置可以導入參數學習 功能控制機械裝置,因此,在以下的說明中,將詳細說 明數位控制裝置實施參數學習功能之方法。 首先,請參考第2圖,係之具有學習功能之CNC機械裝置 數值控制檔(NC Fi le)之示意圖。如第2圖所示,G90 G01 Z-5. F2000代表一般的加工單節’其中,G90是代 表絕對指令,G01代表直線切削指令,Z引數設定單節终 點座標,F2000代表設定切削it給率;而G5. 7 PIQnRnKn代表啟動參數學習功能,其中,Pn設定學習到 第η組高速高精參數,而QnRnKn代表設定快(Q)、準( E·)、穩(IL)的權重,例如:P1Q1R1K1是代表學習到第 1組高速高精參數且設定快,、準、穩的權重為1:1:1 ;而 G01. Χ0· ΥΙΟ. /Χ30· Y20.代表具有學習功能的加工單節 ,其中,X、Y引數設定單節終點座標;G5. 5代表結束( 或關閉)參數學習功能;G01.xi2.Y5.代表一般的加工 單節,其中,X ' Y引數設定單節終點座標。 在發明中’當使用者編輯之加工程式的數值控制槽中, 辨識出G 5. 7碼時’即表示開啟學習功能的程式;當辨識 出G5. 5碼時,即表示結束學習功能的程式。當加工程式 執行啟學習功能的程式後,便會記錄快、準、穩等表現 指標,經過參數學習演算法,將得到一組滿足最佳總表 現指標「P」的參數。很明顯地,本發明學習功能是可以 099137664 表單編號A0101 第7頁/共28頁 0992065649-0 201220010 在加工程式的任何時間啟動學習功能或示結束學習功能 ;對此,本發明不加以限制。 [0016] 接著,請參考第3圖,係本發明之數值控制器之功能方塊 示意圖。如第3圖所示,本發明之數值控制器包括數位控 制模組10、位置感測元件17、快準穩指標計算單元20與 學習功能單元30;其中,數位控制模組10由路徑規劃 單元12、動程規劃單元13與插值單元14所組成。位置感 測元件17與馬達16連接,用以讀取迴授信號並將迴授信 號傳入驅動器與數位控制裝置;其中,位置感測元件17 可以是馬達編碼器'光學尺或加速規;而此迴授信號可 以包括馬達16之位置、速度與加速度等。接著,快準穩 計算單元20與位置感測元件17連接,可以依據位置感測 元件17傳入的迴授信號,並將此迴授信號經過快準穩計 算單元20之分別計算後,分別得到快指標訊息25、準指 標訊息26以及穩指標訊息27 ;再將此三個快準穩指標訊 號28輸出並送出至學習功能單元30,供學習功能之用。 [0017] 學習功能單元30與快準穩計算單元20連接,用以提供一 演算法,並可以依據使用者設定的快準穩權重訊息31與 快準穩計算單元20算出之快準穩指標訊號28,透過學習 功能單元30之演算法演算後,得到修正後之數位控制裝 置參數18,供CNC機械裝置之後的加工使用。 [0018] 接著,請參考第4圖,係本發明之快準穩指標計算單元之 方塊示意圖。如第4圖所示,快準穩指標計算單元20與迴 授信號21連接,此迴授信號21可以是馬達或光學尺的迴 授位置與加速規傳回的加速度數值;快指標計算次單元 099137664 表單編號A0101 第8頁/共28頁 0992065649-0 201220010 22在加工程式執行到啟動參數學習功能時,便會開始記 錄各單節加工所需時間,故本發明之快指標(Fast In_ dex)可以設定成 ,a 為快指標常數。準指標計算次單元2 3將[0011] performing a standard test program, so that the digital controller records fast and quasi-stable performance indicators, and automatically updates the parameters of the mechanical device through the parameter learning algorithm, so that the user can adjust the preference according to the processing characteristics through the parameter learning method. The parameters of the mechanical device can reduce the processing time, improve the machining accuracy, and improve the processing stability of the mechanical device. · The method of parameter learning of the present invention sets the total performance index according to the weight of the user's fast, accurate, and stable performance indicators, and pursues the goal of pursuing the best overall performance index as a parameter. Therefore, the main advantages of the present invention include: 1. When adjusting the machine, using the parameter learning function, it can ensure that the adjusted parameters will improve the overall performance index of the CNC mechanical device to a fairly good level, and can avoid being adjusted due to lack of experience. Occurs when the appropriate parameters or tuning time is too long. 2. In the past, when the user encountered an unsatisfactory processing result, the parameters could only be changed and the processing was repeated, which was very difficult to solve. Through the parameter learning function, you can directly input the weight of the index preference such as fast quasi-stable, without having to change the parameters yourself, you can learn the parameters well, improve the convenience and solve the problem timeliness. According to the above objects and advantages, the present invention firstly provides a controller having a parameter learning function, comprising: a path planning unit for receiving a processing program and planning a processing path message according to a processing program; a motion planning unit, An input terminal is connected to the path planning unit and receives the processing path message, and the other input end is connected with a digital control parameter, and the processing path information is planned according to the processing path information and the digital control parameter. 099137664 Form No. A0101 Page 5 of 28 0992065649-0 201220010 The motion message; an interpolation unit is connected with the motion planning unit, and the motion information output by the motion planning unit is interpolated, and then a control command is output to the motor driver; The calculation unit has an input end connected to a position sensing component, and receives a feedback signal input by the position sensing component, and calculates a fast performance indicator, a quasi-performance indicator and a stable performance indicator according to the feedback signal, to output a fast Quasi-stable indicator message; a learning function unit with its first input terminal Set by the wearer fast metastable weight message, a second input terminal of fast metastable index calculation unit connected to and receiving fast quasi-stationary indicator message, the newly calculated digital control parameters, and outputs it to stroke the planning unit. [0012] The present invention further provides a parameter learning method of the controller, comprising: providing a path planning unit for receiving a processing program, and planning a processing path message according to the processing program; providing a motion planning unit, an input end thereof Connected with the path planning unit and received the processing path message, and the other input end is connected with a digital control parameter, and the processing path message is output according to the processing path information and the digital control parameter to output a motion message; and an interpolation unit and a motion planning unit are provided. Connecting, and performing an interpolation operation on the motion message output by the motion planning unit, and then outputting a control command to the motor driver; providing a fast quasi-stable index calculation unit, one input end of which is connected to a position sensing component, and Receiving a feedback signal input by the position sensing component, and calculating a fast performance indicator, a quasi-performance indicator and a stable performance indicator according to the feedback signal to output a fast quasi-stable indicator message; providing a learning function unit, the first input end thereof Receiving a fast quasi-weighted message set by the user, the second input thereof The quasi-stable index calculation unit connects and receives the fast quasi-stable index message, and recalculates the new digit control parameter 099137664 Form number AOiOl Page 6/28 page 0992065649-0 201220010 [0013] [0014] Ο ο [0015] and outputs To the motion planning unit. [Embodiment] Since the present invention discloses a digital control vibration having a parameter learning function and a control method thereof, the digital control device can introduce a parameter learning function control mechanism, and therefore, in the following description, the digital control will be described in detail. A method by which a device implements a parameter learning function. First, please refer to Figure 2, which is a schematic diagram of the CNC mechanical control file (NC Fi le) with learning function. As shown in Figure 2, G90 G01 Z-5. F2000 represents a general machining single section 'where G90 is the absolute command, G01 is the linear cutting command, Z is the single block end point, and F2000 is the set cutting it. G7. 7 PIQnRnKn represents the start parameter learning function, in which Pn sets the n-th set of high-speed and high-precision parameters, and QnRnKn represents the set fast (Q), quasi (E·), and stable (IL) weights. For example: P1Q1R1K1 represents the learning of the first group of high-speed and high-precision parameters and the setting is fast, accurate and stable. The weight is 1:1:1; and G01. Χ0· ΥΙΟ. /Χ30· Y20. represents the processing order with learning function. Section, where X, Y arguments set the single-node end point; G5. 5 represents the end (or close) parameter learning function; G01.xi2.Y5. represents the general processing block, where X ' Y argument list End point coordinates. In the invention, 'when the G 5. 7 code is recognized in the numerical control slot of the processing program edited by the user', the program for starting the learning function is turned on; when the G5. 5 code is recognized, the program for ending the learning function is indicated. . When the processing program executes the program that starts the learning function, it will record the performance indicators such as fast, accurate, and stable. After the parameter learning algorithm, a set of parameters satisfying the best total performance indicator "P" will be obtained. Obviously, the learning function of the present invention is 099137664 Form No. A0101 Page 7 of 28 0992065649-0 201220010 The learning function or the end learning function is activated at any time of the processing program; the present invention is not limited thereto. [0016] Next, please refer to FIG. 3, which is a functional block diagram of the numerical controller of the present invention. As shown in FIG. 3, the numerical controller of the present invention comprises a digital control module 10, a position sensing component 17, a fast quasi-stable index computing unit 20 and a learning function unit 30; wherein the digital control module 10 is composed of a path planning unit 12. The motion planning unit 13 and the interpolation unit 14 are composed. The position sensing component 17 is coupled to the motor 16 for reading the feedback signal and transmitting the feedback signal to the driver and the digital control device; wherein the position sensing component 17 can be a motor encoder 'optical scale or an acceleration gauge; This feedback signal can include the position, velocity and acceleration of the motor 16, and the like. Then, the fast quasi-stationary computing unit 20 is connected to the position sensing component 17, and can be based on the feedback signal sent from the position sensing component 17, and the feedback signal is calculated by the fast quasi-stationary computing unit 20, respectively. The fast indicator message 25, the quasi-indicator message 26, and the stable indicator message 27 are outputted to the learning function unit 30 for learning functions. [0017] The learning function unit 30 is connected to the fast quasi-stationary computing unit 20 for providing an algorithm, and can calculate the fast quasi-stable index signal according to the fast quasi-stationary weight information 31 set by the user and the fast quasi-stationary computing unit 20. 28. After the algorithm of the learning function unit 30 is calculated, the corrected digital control device parameter 18 is obtained for processing after the CNC mechanism. [0018] Next, please refer to FIG. 4, which is a block diagram of the fast quasi-stable index calculation unit of the present invention. As shown in FIG. 4, the fast quasi-stable index calculation unit 20 is connected to the feedback signal 21, which may be the feedback position of the motor or the optical ruler and the acceleration value transmitted by the acceleration gauge; 099137664 Form No. A0101 Page 8 of 28 0992065649-0 201220010 22 When the machining program is executed to start the parameter learning function, the time required for each block processing will be recorded, so the fast index of the present invention (Fast In_ dex) Can be set to, a is a fast indicator constant. The quasi-indicator calculation sub-unit 2 3 will

aF 伺服命令位置與迴授位置信號2丨相減,計算相對軌跡誤 差,故本發明之準指標(precisi〇n Index)可以設成 ,而 為快 = αρThe aF servo command position is subtracted from the feedback position signal 2丨, and the relative trajectory error is calculated. Therefore, the quasi index (precisi〇n Index) of the present invention can be set to be fast = αρ

心仏*數。穩指標計算次單元24由迴授加速度信號2ΐ測 床台或工件在加工中所承受的加速度變化值,或者也可 以從迴授位4信號21經過差分,㈣推估的加速度變化 值,特別要定義此穩指標之目的,是因為加速度的變化 會引發機台的不規律扯紅1 ^ 朴動,故本發明是針對加速度時間 信號’使用小波轉換 将俠UaVeiet Transformation)或是 快速傅立業轉換(Fast p . f〇urior Frequency Transformation) 將時間信號轉換成頻率信號 ,因此可以在 機台容易產生共振的頻率上,監控加速度信號的強度 099137664 (intensity) 表單編號A0101 故本發明之穩指標(Stability Index) 第^ 9 / 只’共 28 頁 0992065649-0 201220010 可以設成 ,其中 為快指標常數, 為在監控 as h 頻率的強度。透過快指標計算次單元22、準指標計算次 單元23及穩指標計算次單元24計算出相對應之快指標訊 息25、準指標訊息26以及穩指標訊息27,並將此三者之 快準穩指標訊息28提供給學習功能模組使用。 [0019] 很明顯地,上述之快指標計算次單元、準指標計算次單 元與穩指標計算次單元係依據迴授信號,分別計算出以 數字衡量之快表現指標、準表現指標與穩表現指標。此 外,也要再一次強調,本發明適用於僅計算其中一至兩 項表現指標也可以達到學習之效果,並不侷限於一定要 計算出快準穩三項表現指標才能達到學習之效果。此外 ,由於穩表現指標與加工表面粗糙度或表面光潔度有關 ,因此,穩表現指標亦可透過表面粗糙度來描述,對此 本發明並不侷限穩表現指標描述方式。 [0020] 請再參考第5圖,係本發明之學習功能單元之方塊示意圖 。請參考第5圖,學習功能單元30是由總表現指標計算次 單元32、學習效果檢驗次單元33、雅可比(Jacobian) 矩陣修正次單元34及參數修正次單元35等串接所形成。 099137664 表單編號A0101 第10頁/共28頁 0992065649=0 201220010 圖中的快準穩權重訊息31是由使用者設定的快準穩表現 指標偏好權重「wi」,其可以在輸入控制命令時,一併 由控制命令中輸入至學習功能模組申;其中,快準穩指 標訊息28為前述之快準穩指標計算單元2〇計算出的快準 穩表現指標。將快準穩指標訊息28定義為時,則 包括快準穩指標訊息「1」及快準穩表現指標偏好權重 「'」之總表現指標計算次單元32依“(〗)求得總表現指 標「P」:Heart 仏 * number. The stability index calculation sub-unit 24 is configured to feedback the acceleration signal 2 to measure the acceleration change value of the bed or the workpiece during processing, or may also pass the difference from the feedback bit signal 21, and (4) estimate the acceleration change value, especially The purpose of defining this stability index is because the change of acceleration will cause the machine to be irregularly red, so the invention is for the acceleration time signal 'using wavelet transform to convert UaVeiet Transformation) or fast Fourier transform ( Fast p . f〇urior Frequency Transformation) Converts the time signal into a frequency signal, so it can monitor the intensity of the acceleration signal at the frequency at which the machine is prone to resonance. 099137664 (intensity) Form No. A0101 Therefore, the stability index of the present invention (Stability Index) ) ^ 9 / only 'total 28 pages 0992065649-0 201220010 can be set to, where is the fast indicator constant, for monitoring the intensity of the as h frequency. The fast indicator calculation sub-unit 22, the quasi-indicator calculation sub-unit 23 and the steady-state calculation sub-unit 24 calculate the corresponding fast indicator message 25, the quasi-indicator message 26 and the stability indicator message 27, and the three are quickly stabilized. Indicator message 28 is provided for use by the learning function module. [0019] Obviously, the above-mentioned fast index calculation sub-unit, quasi-index calculation sub-unit and stable index calculation sub-unit are respectively calculated according to the feedback signal, and the fast performance index, the quasi-performance index and the stable performance index are respectively calculated by numbers. . In addition, it should be emphasized once again that the present invention is applicable to the calculation of only one or two performance indicators, and it is not limited to the calculation of the fast-steady three performance indicators in order to achieve the learning effect. In addition, since the stable performance index is related to the surface roughness or surface finish of the machined surface, the stable performance index can also be described by the surface roughness, and the present invention does not limit the manner in which the performance indicator is described. [0020] Please refer to FIG. 5 again, which is a block diagram of the learning function unit of the present invention. Referring to Fig. 5, the learning function unit 30 is formed by a series connection of the total performance index calculation sub-unit 32, the learning effect check sub-unit 33, the Jacobian matrix correction sub-unit 34, and the parameter correction sub-unit 35. 099137664 Form No. A0101 Page 10 / Total 28 Page 0992065649=0 201220010 The fast quasi-station weight message 31 in the figure is the fast quasi-stable performance index preference weight "wi" set by the user, which can be input when the control command is entered. And inputting to the learning function module by the control command; wherein the fast quasi-stable index message 28 is the fast quasi-stable performance index calculated by the fast quasi-stable index calculation unit 2前述. When the fast quasi-stable indicator message 28 is defined as the time, the total performance indicator sub-unit 32 including the fast quasi-stable indicator message "1" and the fast quasi-stable performance indicator preference weight "'" is obtained by "()). "P":

[0021] ❹[0021] ❹

Eq( 1 ) [0022]將目前的總表現指標「P」代入學習效果檢驗次單元33, 判斷總表現指標「P」是否有變好,有變好代表前次學習 有效,則學習有效次數加1,旗標「L」設丨,並儲存前次 學習的參數修正結果;沒變好代表前次學習無效,則學 習無效次數加1,旗標「L」設0,並放棄前次學習的參數 099137664 表單編號A0101 第11頁/共28頁 0992065649-0 201220010 修正結果。其中’判斷總表現指標「p」是否有變好之方 式,是將此次所計算出的總表現指標「P」與前一次所計 算出的總表現指標「p — 1」相比對;例如,當總表現指標 P」值比總表現4a標「P 1」值小時(或是收敛時), 則判斷總表現指標「P」變好;反之,則判斷總表現指標 「P」變不好。 [0023] [0024] 檢驗學習效果後,進入雅可比(jac〇bian )矩陣修正次 單元34,若旗標「L」為1,則修正雅可比矩陣「κ」;若 旗標「L·」為0,表示前次學習無效,則不修正雅可比矩 陣「K」;其中,雅可比矩陣「κ」的修正方法如下: 由於各項表現指標「q」為各個參數「χ 的函數,因 1 j 此其變化量為: [0025]Eq(1) [0022] Substituting the current total performance indicator "P" into the learning effect test sub-unit 33, judging whether the total performance indicator "P" has improved, and if the good performance means that the previous learning is effective, the effective number of learning is increased. 1. The flag "L" is set to 丨, and the parameter correction result of the previous learning is stored; if it is not good, the previous learning is invalid, the learning invalid number is increased by 1, the flag "L" is set to 0, and the previous learning is abandoned. Parameter 099137664 Form No. A0101 Page 11 / Total 28 Page 0992065649-0 201220010 Corrected the result. The way to determine whether the total performance indicator "p" has improved is to compare the total performance indicator "P" calculated this time with the previous performance indicator "p-1"; for example When the total performance index P" is smaller than the total performance 4a "P 1" value (or convergence), the total performance indicator "P" is judged to be better; otherwise, the total performance indicator "P" is judged to be bad. . [0024] After verifying the learning effect, enter the jac〇bian matrix correction sub-unit 34. If the flag "L" is 1, the Jacobian matrix "κ" is modified; if the flag "L·" If it is 0, it means that the previous learning is invalid, then the Jacobian matrix "K" is not corrected. The correction method of the Jacobian matrix "κ" is as follows: Since each performance index "q" is a function of each parameter "χ, 1 j The amount of change is: [0025]

Eq( 2 ) [0026] 利用Eq(2)計算出預估的表現指標變化量「 099137664 表單編號A0101 第12頁/共28頁 0992065649-0 201220010 [0027]Eq( 2 ) [0026] Calculate the estimated performance indicator change using Eq(2) "099137664 Form No. A0101 Page 12 of 28 0992065649-0 201220010 [0027]

❹ [0028] [0029] Ο❹ [0028] [0029] Ο

Eq( 3 ) 定義雅可比矩陣「KEq( 3 ) defines the Jacobian matrix "K

Eq( 4 ) [0030] 故可用「K」來計算預估的表現指標變化量「 q/ 099137664 表單編號A0101 第13頁/共28頁 0992065649-0 201220010 ,、中「K」初始值是數值控制裝置事先估測好的;實際 表現指標變化量「 \」等於本次量測的指標減前次量 測的指標。由於實際量測之表現指標變化量與預估的表 現指標變化量不同,因此將實際表現指標變化量與預估 表現指標變化量相減,可定義表現指標變化量 預估誤差 e.Eq( 4 ) [0030] Therefore, "K" can be used to calculate the estimated change in performance indicator "q/ 099137664 Form No. A0101 Page 13 / 28 Page 0992065649-0 201220010, the initial value of "K" is numerical control The device is estimated in advance; the actual performance indicator change amount "\" is equal to the index of the current measurement minus the previous measurement. Since the actual measurement's performance indicator change is different from the estimated performance indicator change, the actual performance indicator change amount is subtracted from the estimated performance indicator change, and the performance indicator change amount can be defined.

[0031] V % Ml ei 一 Hi =: _e«_ ^ ... Μ a ··· Ak. 9[0031] V % Ml ei a Hi =: _e«_ ^ ... Μ a ··· Ak. 9

^:^···Λ1:„” -1 X^:^···Λ1:„” -1 X

Eq( 5 ) 099137664 [0032]由Eq( 5)可得雅可比矩陣各元素的修正量 依此更新下次使用之雅可比矩陣: 表單編號A0101 第14頁/共28頁 k 並 0992065649-0 201220010 [0033] (K)r+l = (K)r + ΑΚ ΟEq( 5 ) 099137664 [0032] The correction amount of each element of the Jacobian matrix obtained by Eq(5) is updated with the Jacobian matrix for the next use: Form No. A0101 Page 14 of 28 k and 0992065649-0 201220010 (K)r+l = (K)r + ΑΚ Ο

Eq( 6 ) [0034] 修正雅可比矩陣後,進入參數修正次單元35,若旗標「L 」為0,表示前次總表現指標的目標改善量「 Ρ^」過大 ,導致學習無效,所以先減小目標改善量「 。學 ο 習目標乃是追求總表現指標「P」之極值,當參數調變的 方向平行總表現指標的梯度時,學習效率最高,故以此 推導出Eq(7): 099137664 表單編號A0101 第15頁/共28頁 0992065649-0 201220010 [0035]Eq(6) [0034] After correcting the Jacobian matrix, the parameter correction sub-unit 35 is entered. If the flag "L" is 0, it means that the target improvement amount "Ρ^" of the previous total performance indicator is too large, resulting in invalid learning. First, reduce the target improvement amount. The learning goal is to pursue the extreme value of the total performance indicator "P". When the direction of the parameter modulation is parallel to the gradient of the total performance index, the learning efficiency is the highest, so Eq ( 7): 099137664 Form No. A0101 Page 15 of 28 0992065649-0 201220010 [0035]

ΔΡ=Υ ——ΔΧ.^δχ; JΔΡ=Υ ——ΔΧ.^δχ; J

dP dPdP dP

dP adP a

•C•C

Eq( 7 ) [0036] 其中, [0037]Eq(7) wherein [0037]

099137664 將改善目標量「 ,解未知數「C」 表單編號A0101099137664 will improve the target amount ", solve the unknown number "C" Form No. A0101

p」與雅可比矩陣之元素「k」代入 〇 Jp" is substituted with the element "k" of the Jacobian matrix 〇 J

,與各參數修正量「 xj」 第16頁/共28 I 即得修正 0992065649-0 [0038] 201220010 後參數「X j」, 供下次學習或加工使用 [0039] 〇 ) r+1 — ) r j, and each parameter correction amount "xj" Page 16 / Total 28 I Corrected 0992065649-0 [0038] 201220010 After parameter "X j", for next learning or processing [0039] 〇) r+1 — ) Rj

Eq( 8 ) [0040] 〇 參數學習可設定收斂條件,例如:學習次數之上限或總 表現指標的目標改善量之下限。當收斂條件發生,即參 數學習功能結束,之後執行加工均用學習完成之參數, 而不再更新或學習新的參數。很明顯地,本發明之具有 參數學習功能之控制器及其學習方法可依使用者對於加 工特性之偏好,經過參數學習方法,調變機械裝置之參 數,達到縮短加工時間、提升加工精度、改善機械裝置 加工穩度之成效。 [0041] 以上針對本發明之說明係為闡明之目的,而無意限定本 發明之精確應用形式,由以上之教導而做某種程度修改 是可能的。因此,本發明的技術思想將由以下的申請專 利範圍來決定之。 099137664 表單編號A0101 第17頁/共28頁 0992065649-0 201220010 【圖式簡單說明】 [0042] 第1圖係已知之CNC機械裝置數值控制方塊圖; [0043] 第2圖係加工程式數值控制檔示意圖; [0044] 第3圖係本發明之CNC機械裝置數值控制方塊圖; [0045] 第4圖係本發明之快準穩指標計算模組方塊圖; [0046] 第5圖係本發明之學習功能模組方塊圖。 【主要元件符號說明】 [0047] 10 數位控制模組 [0048] 11 加工程式 [0049] 12 路徑規劃單元 [0050] 13 動程規劃單元 [0051] 14 插值單元 [0052] 15 驅動器 [0053] 16 馬達 [0054] 17 位置感測元件 [0055] 18 數值控制參數 [0056] 20 快準穩指標計算單元 [0057] 22 快指標計算次單元 [0058] 23 準指標計算次單元 [0059] 24 穩指標計算次單元 表單編號A0101 099137664 第18頁/共28頁 0992065649-0 201220010Eq( 8 ) [0040] 〇 Parameter learning sets the convergence condition, for example, the upper limit of the number of learning times or the lower limit of the target improvement amount of the total performance indicator. When the convergence condition occurs, that is, the parameter learning function ends, then the processing is performed using the parameters of the learning completion, and the new parameters are no longer updated or learned. Obviously, the controller with parameter learning function of the invention and the learning method thereof can adjust the parameters of the mechanical device through the parameter learning method according to the user's preference for the processing characteristics, thereby shortening the processing time, improving the processing precision, and improving. The effectiveness of mechanical processing stability. The above description of the present invention is intended to be illustrative, and is not intended to limit the precise application of the invention. Therefore, the technical idea of the present invention will be determined by the following patent application scope. 099137664 Form No. A0101 Page 17 of 28 0992065649-0 201220010 [Simplified Schematic] [0042] Figure 1 is a block diagram of the numerical control of a known CNC machine; [0043] Figure 2 is a numerical control file of the machining program FIG. 3 is a block diagram of a numerical control of a CNC mechanical device of the present invention; [0045] FIG. 4 is a block diagram of a fast quasi-stable index calculation module of the present invention; [0046] FIG. Learning function module block diagram. [Main component symbol description] [0047] 10 Digital control module [0048] 11 Machining program [0049] 12 Path planning unit [0050] 13 Motion planning unit [0051] 14 Interpolation unit [0052] 15 Driver [0053] 16 Motor [0054] 17 Position sensing element [0055] 18 Numerical control parameter [0056] 20 Fast quasi-stable index calculation unit [0057] 22 Fast index calculation sub-unit [0058] 23 Quasi-indicator calculation sub-unit [0059] 24 Stable indicator Calculation subunit form number A0101 099137664 Page 18 of 28 Page 0992065649-0 201220010

[0060] 25 計算出相對應之快指標訊息 [0061] 26 準指標訊息 [0062] 27 穩指標訊息 [0063] 28 快準穩指標訊息 [0064] 30 學習功能單元 [0065] 31 快準穩權重訊息 [0066] 32 總表現指標計算次單元 [0067] 33 學習效果檢驗次單元 [0068] 34 雅可比矩陣修正次單元 [0069] 35 參數修正次單元 [0070] w.: 1 使用者設定之各項表現指標的權 [0071] qi : 各項表現指標; ' 乂 ' [0072] Q .:實際的表現指標變化量;> 1 .---.=· [0073] q.':預估的表現指標變化量; [0074] e : 表現指標變化量之預估誤差; [0075] P : 總表現指標; [0076] P ^:總表現指標的目標改善量; [0077] X .: j 各項參數; [0078] X .:各項參數的修正量; 099137664 表單編號A0101 第19頁/共28頁 0992065649-0 201220010 [0079] [0080] [0081] [0082] [0083] :第r次學習所使用之各項參數; [表現指標與參數的雅可比(Jac〇bian)矩陣; K ·雅可比(jac〇bian)矩陣修正量; (K)r苐1*-人學&所使用之雅可比(jac〇bian)矩陣 :雅可比(Jacobian)矩陣的各個元素。 099137664 表單煸號A0101 第20頁/共28頁[0060] 25 Calculate the corresponding fast indicator message [0061] 26 Quasi-indicator message [0062] 27 Stable indicator message [0063] 28 Fast quasi-stable indicator message [0064] 30 Learning function unit [0065] 31 Fast quasi-weighting weight Message [0066] 32 Total performance indicator calculation sub-unit [0067] 33 Learning effect check sub-unit [0068] 34 Jacobian matrix correction sub-unit [0069] 35 Parameter correction sub-unit [0070] w.: 1 User-defined The weight of the performance indicator [0071] qi : various performance indicators; ' 乂 ' [0072] Q .: actual performance indicator change; > 1 .---.=· [0073] q.': estimate [0074] e : prediction error of performance indicator change; [0075] P: total performance indicator; [0076] P ^: target improvement amount of total performance indicator; [0077] X.: j Various parameters; [0078] X.: correction amount of each parameter; 099137664 Form No. A0101 Page 19/Total 28 Page 0992065649-0 201220010 [0079] [0081] [0083]: r The parameters used in the second study; [Jac〇bian matrix of performance indicators and parameters; K. Jacobian (jac〇bian) moment Correction amount; (K) r 1 * Di - al Science & use of a Jacobian (jac〇bian) matrix: Jacobi (the Jacobian) matrix of individual elements. 099137664 Form nickname A0101 Page 20 of 28

Claims (1)

201220010 七、申請專利範圍: 1 . 一種具有參數學習功能之控制器,包括:一路徑規劃單元 ,用以接收一加工程式並依據該加工程式規劃一加工路徑 訊息;一動程規劃單元,其一輸入端與該路徑規劃單元連 接並接收該加工路徑訊息,其另一輸入端與一數位控制參 數連接,依據該加工路徑訊息及該數位控制參數規劃該加 工路徑訊息並輸出運動訊息;一插值單元,與該動程規劃 單元連接,並將該動程規劃單元所輸出之運動訊息執行插 值運算後,再將一控制命令輸出至一馬達驅動器,用以驅 〇 動一馬達;一快準穩指標計算單元,其一輸入端與一位置 感測元件連接,並接收該位置感測元件輸入之迴授信號, 並依據該迴授信號分別計算一快表現指標、一準表現指標 及一穩表現指標,以輸出一快準穩指標訊息;一學習功能 單元,其一第一輸入端接收由使用者設定之快準穩權重訊 息,其一第二輸入端與該快準穩指標計算單元連接並接收 該快準穩指標訊息,重新計算新的數位控制參數,並輸出 ^ 至該動程規劃單元。 ❹ 2 .如申請專利範圍第1項所述之控制器,其中該加工路徑訊 息輸出運動訊息包括:速度及加速度。 3 .如申請專利範圍第2項所述之控制器,其中該迴授信號包 括馬達之位置、速度與加速度等 4 .如申請專利範圍第3項所述之控制器,其中該快準穩指標 計算單元進一步包括:一快指標計算次單元、一準指標計 算次單元與一穩指標計算次單元,並依據該迴授信號,分 別計算出以數字衡量之該快表現指標、該準表現指標與該 099137664 表單編號A0101 第21頁/共28頁 0992065649-0 201220010 穩表現指標。 ,申,專利範圍第4項所述之控制器,其中該快準穩指構 叶算單元中的該快指標計算次單元係在加4式執行到啟 動參數學習功能時,開始記錄各單節加卫所需時間 ,而該快表現指標(FI)之計算方式 Tt ,而 FI==aF^Ti 為快指標常數。 如申請專利麵第4項所述之控㈣,其中該快準穩指標 計算單元切該準純計算次單元係將—舰命令位置與 該迴授位置信號進行運算,以計算相對軌跡誤差 ,而該準表現指標(Pi)之計算方 Ei 099137664 表單編號A0101 第22頁/共28頁 0992065649-0 201220010 式為 而 ΡΙ^α,/Υ^Ε, 為準指標常數。 Ο 〇ί ρ 7 .如申請專利範圍第4項所述之控制器,其中該快準穩指標 計算單元中的該穩指標計算次單元係將迴授信號之該馬達 加速度值進行差分運算,以得到一加速度變化值。 8 .如申請專利範圍第1項所述控制器,其中該學習功能單元 包括:一總表現指標計算次單元,係依據該快準穩權重訊 ^ 息與該快表現指標、該準表現指標或該穩表現指標之至少 其中之一個表現指標來計算一總表現指標;一學習效果檢 驗次單元,與該總表現指標計算次單元連接,並接收該總 表現指標以進行一判斷;一雅可比矩陣修正次單元,與該 學習效果檢驗次單元連接,並根據該學習效果檢驗次單元 之判斷結果,修正雅可比矩陣中的表現指標對參數;一參 數修正次單元,與該雅可比矩陣修正次單元連接,並設定 一參數學習收敛條件。 9 . 一種控制器參數學習方法,包括:提供一路徑規劃單元, 099137664 表單編號Α0101 第23頁/共28頁 0992065649-0 201220010 用以接收一加工程式並依據該加工程式規劃一加工路徑訊 息;提供一動程規劃單元,其一輸入端與該路徑規劃單元 連接並接收該加工路徑訊息,其另一輸入端與一數位控制 參數連接,依據該加工路徑訊息及該數位控制參數規劃該 加工路徑訊息並輸出運動訊息;提供一插值單元,與該動 程規劃單元連接並將該動程規劃單元所輸出之運動訊息執 行插值運算後,再將一控制命令輸出至馬達驅動器,用以 驅動一馬達;提供一快準穩指標計算單元,其一輸入端與 一位置感測元件連接並接收該位置感測元件輸入之迴授信 號,並依據該迴授信號分別計算一快表現指標、一準表現 指標及一穩表現指標,以輸出一快準穩指標訊息;提供一 學習功能單元,其一第一輸入端接收由使用者設定之快準 穩權重訊息,其一第二輸入端與該快準穩指標計算單元連 接並接收該快準穩指標訊息,重新計算新的數位控制參數 ,並輸出至該動程規劃單元。 10 .如申請專利範圍第9項所述之控制器參數學習方法,其中 該學習功能單元之演算步驟包括:提供一總表現指標計算 次單元,係依據該快準穩權重訊息與該快表現指標、該準 表現指標或該穩表現指標至少其中一個表現指標來計算出 一總表現指標;提供一學習效果檢驗次單元,與總表現指 標計算次單元連接並接收該總表現指標以進行一判斷;提 供一雅可比矩陣修正次單元,與該學習效果檢驗次單元連 接並根據該學習效果檢驗次單元之判斷結果,修正雅可比 矩陣中的表現指標對參數;提供一參數修正次單元,與該 雅可比矩陣修正次單元連接,並設定一參數學習收斂條件 〇 099137664 表單編號A0101 第24頁/共28頁 0992065649-0 201220010 11 .如申請專利範圍第10項所述控制器之參數學習方法,其中 該參數修正次單元之修正參數步驟包括:決定一總表現指 標的目標改善量,若前次學習無效則減小目標改善量,若 有效則不改變目標改善量;決定調變參數的方向,選擇一 平行總表現指標對參數的梯度方向來調變參數;決定修正 後的數值控制裝置參數,依據前兩步驟的結果,得各項參 ' 數的修正量並與目前參數相加,以得出一修正後之參數。 Ο 099137664 表單編號A0101 第25頁/共28頁 0992065649-0201220010 VII. Patent application scope: 1. A controller with parameter learning function, comprising: a path planning unit for receiving a processing program and planning a processing path message according to the processing program; a motion planning unit, an input thereof The end is connected to the path planning unit and receives the processing path message, and the other input end is connected to a digital control parameter, and the processing path message is planned according to the processing path information and the digital control parameter, and a motion message is output; an interpolation unit, Connecting with the motion planning unit, and performing interpolation calculation on the motion information output by the motion planning unit, and then outputting a control command to a motor driver for driving a motor; a fast quasi-stable index calculation The unit has an input end connected to a position sensing component, and receives a feedback signal input by the position sensing component, and calculates a fast performance indicator, a quasi-performance indicator and a stable performance indicator according to the feedback signal. To output a fast quasi-stable indicator message; a learning function unit having a first input terminal Receiving a fast quasi-steady weight message set by the user, a second input end is connected with the fast quasi-stable index calculation unit and receiving the fast quasi-stable indicator message, recalculating the new digit control parameter, and outputting ^ to the movement Planning unit.控制器 2. The controller of claim 1, wherein the processing path information output motion message comprises: speed and acceleration. 3. The controller of claim 2, wherein the feedback signal comprises a position, a speed and an acceleration of the motor, etc. 4. The controller of claim 3, wherein the fast quasi-stable index The calculation unit further includes: a fast indicator calculation sub-unit, a quasi-index calculation sub-unit and a stable index calculation sub-unit, and according to the feedback signal, respectively calculate the fast performance indicator, the quasi-performance indicator and the quasi-performance indicator The 099137664 form number A0101 page 21 / 28 pages 0992065649-0 201220010 stable performance indicators. The controller of claim 4, wherein the fast-precision finger-arranging unit performs the recording of the single-segment in the step of performing the parameter learning function. The required time is added, and the fast performance indicator (FI) is calculated as Tt, and FI==aF^Ti is a fast indicator constant. For example, the control (4) described in claim 4, wherein the fast quasi-stable index calculation unit cuts the quasi-pure calculation sub-unit to calculate the relative trajectory error by calculating the relative command trajectory position and the feedback position signal. The calculation index of the quasi-performance indicator (Pi) Ei 099137664 Form No. A0101 Page 22 of 28 0992065649-0 201220010 The formula is α^α, /Υ^Ε, which is the quasi-indicator constant. The controller of claim 4, wherein the steady index calculation subunit in the fast quasi-stable index calculation unit performs a differential operation on the motor acceleration value of the feedback signal to Obtain an acceleration change value. 8. The controller of claim 1, wherein the learning function unit comprises: a total performance indicator calculation sub-unit, based on the fast-accurate re-scoring information and the fast performance indicator, the quasi-performance indicator or At least one performance indicator of the stable performance indicator is used to calculate a total performance indicator; a learning effect test sub-unit is connected with the total performance indicator calculation sub-unit, and receives the total performance indicator to perform a judgment; a Jacobian matrix Correcting the subunit, connecting with the learning effect inspection subunit, and correcting the performance index pair parameter in the Jacobian matrix according to the learning result inspection sub-unit judgment result; a parameter correction subunit, and the Jacobian matrix correction subunit Connect and set a parameter learning convergence condition. 9. A controller parameter learning method, comprising: providing a path planning unit, 099137664 Form number Α0101, page 23/28 pages 0992065649-0 201220010, for receiving a processing program and planning a processing path message according to the processing program; a motion planning unit, wherein an input terminal is connected to the path planning unit and receives the processing path message, and another input end is connected to a digital control parameter, and the processing path information is planned according to the processing path information and the digital control parameter. Outputting a motion message; providing an interpolation unit, connecting the motion planning unit and performing an interpolation operation on the motion message output by the motion planning unit, and then outputting a control command to the motor driver for driving a motor; a fast quasi-stable index calculation unit, wherein an input end is connected to a position sensing component and receives a feedback signal input by the position sensing component, and respectively calculates a fast performance indicator, a quasi-performance indicator according to the feedback signal A stable performance indicator to output a fast-stabilized indicator message; provide a learning The first input end of the energy unit receives a fast quasi-station weight message set by the user, and a second input end is connected with the fast quasi-stable index calculation unit and receives the fast quasi-stable index message, and recalculates the new digit Control parameters and output to the motion planning unit. 10. The controller parameter learning method according to claim 9, wherein the calculating step of the learning function unit comprises: providing a total performance indicator calculation sub-unit according to the fast quasi-station weight information and the fast performance indicator And the at least one performance indicator of the quasi-performance indicator or the stable performance indicator to calculate a total performance indicator; providing a learning effect test sub-unit, connecting with the total performance indicator calculation sub-unit and receiving the total performance indicator to perform a judgment; Providing a Jacobian matrix correction subunit, connecting with the learning effect inspection subunit and verifying the judgment result of the subunit according to the learning effect, correcting the performance index pair parameter in the Jacobian matrix; providing a parameter correction subunit, and the ya Comparable matrix correction sub-unit connection, and set a parameter learning convergence condition 〇099137664 Form No. A0101 Page 24 / Total 28 Page 0992065649-0 201220010 11 . The parameter learning method of the controller according to claim 10, wherein The parameter modification step of the parameter correction subunit includes: determining a total performance indicator The target improvement amount, if the previous learning is invalid, the target improvement amount is reduced, if it is effective, the target improvement amount is not changed; the direction of the modulation parameter is determined, and a parallel total performance index is selected to adjust the parameter direction gradient direction; After the corrected numerical control device parameters, according to the results of the first two steps, the correction amount of each parameter is obtained and added to the current parameter to obtain a corrected parameter. Ο 099137664 Form No. A0101 Page 25 of 28 0992065649-0
TW099137664A 2010-11-02 2010-11-02 Parameter learning controller in a machine device and learning method thereof TWI410767B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099137664A TWI410767B (en) 2010-11-02 2010-11-02 Parameter learning controller in a machine device and learning method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099137664A TWI410767B (en) 2010-11-02 2010-11-02 Parameter learning controller in a machine device and learning method thereof

Publications (2)

Publication Number Publication Date
TW201220010A true TW201220010A (en) 2012-05-16
TWI410767B TWI410767B (en) 2013-10-01

Family

ID=46553018

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099137664A TWI410767B (en) 2010-11-02 2010-11-02 Parameter learning controller in a machine device and learning method thereof

Country Status (1)

Country Link
TW (1) TWI410767B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI600988B (en) * 2016-11-15 2017-10-01 Machining expert system for CNC machine tool and controller processing parameters generation method
CN114488953A (en) * 2020-11-13 2022-05-13 台达电子工业股份有限公司 Transmission mechanism feed rate planning method based on shaft physical limitation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917726A (en) * 1993-11-18 1999-06-29 Sensor Adaptive Machines, Inc. Intelligent machining and manufacturing
US5465221A (en) * 1993-12-30 1995-11-07 The United States Of America As Represented By The Secretary Of The Air Force Automated process planning for quality control inspection
WO1996015481A2 (en) * 1994-11-09 1996-05-23 Amada Company, Limited Intelligent system for generating and executing a sheet metal bending plan
US7308322B1 (en) * 1998-09-29 2007-12-11 Rockwell Automation Technologies, Inc. Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
US7239991B2 (en) * 2002-02-04 2007-07-03 Tuszynski Steve W Manufacturing design and process analysis and simulation system
TW200830070A (en) * 2007-01-12 2008-07-16 Zhi-Ping Chen Manufacturing method of automatically setting axial processing parameters

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI600988B (en) * 2016-11-15 2017-10-01 Machining expert system for CNC machine tool and controller processing parameters generation method
CN114488953A (en) * 2020-11-13 2022-05-13 台达电子工业股份有限公司 Transmission mechanism feed rate planning method based on shaft physical limitation
TWI766598B (en) * 2020-11-13 2022-06-01 台達電子工業股份有限公司 Method for planning feedrate of transmission mechanism based on physical constraints of joints
CN114488953B (en) * 2020-11-13 2024-02-27 台达电子工业股份有限公司 Transmission mechanism feed rate planning method based on shaft physical limitation

Also Published As

Publication number Publication date
TWI410767B (en) 2013-10-01

Similar Documents

Publication Publication Date Title
JP5331802B2 (en) Measuring instrument and method for correcting measurement error due to dynamic deformation thereof
JP5568005B2 (en) Apparatus and method for correcting thermal displacement of machine tool
US9772619B2 (en) Motor control device
CN101449229B (en) A method and apparatus for controlling a haptic device
CN103345199B (en) Based on numerically-controllmachine machine tool error compensation system and the method for man-machine interface secondary development
US10969221B2 (en) Active damping of a measuring device
CN107861470A (en) Main shaft of numerical control machine tool thermal stretching real-time error compensation method based on PMC controls
JP4803491B2 (en) Position correction device for machine tool
JP7049978B2 (en) Cutting system, machining error measuring method, and machining error measuring device
JP2002059340A (en) Positional error evaluating method of moving device, and moving accuracy improving method based on result of evaluation
CN102467113A (en) Controller of mechanical device with parameter learning and parameter learning method thereof
TW201344149A (en) System and method for compensating temperature
CN103872973A (en) Servo controller for correcting position error when moving member reverses
CN107726982A (en) A kind of laser range sensor error in mounting position scaling method
CN113767341A (en) Method and device for compensating thermally induced position changes on a numerically controlled machine tool
TW201220010A (en) Parameter learning controller in a machine device and learning method thereof
CN107414599B (en) Turning tool bending deformation detection method and system
JP2000148210A (en) Gain calculating device
JP2007015094A (en) Thermal displacement estimating method of machine tool
EP2824524A2 (en) Thermal displacement correction method and thermal displacement correction unit
CN114440866B (en) Sensor data calibration method and calibration system
JP2020148721A (en) Temperature interpolation device
JPH03223907A (en) Method and device for controlling robot hand
CN104500472A (en) Sensor temperature-compensated electro-hydraulic proportional valve controller
CN103886191A (en) Straightness compensation method for machine tool body