TW201219879A - Compact imaging lens assembly - Google Patents

Compact imaging lens assembly Download PDF

Info

Publication number
TW201219879A
TW201219879A TW99138778A TW99138778A TW201219879A TW 201219879 A TW201219879 A TW 201219879A TW 99138778 A TW99138778 A TW 99138778A TW 99138778 A TW99138778 A TW 99138778A TW 201219879 A TW201219879 A TW 201219879A
Authority
TW
Taiwan
Prior art keywords
lens
thinned
lens group
object side
photographic
Prior art date
Application number
TW99138778A
Other languages
Chinese (zh)
Other versions
TWI442128B (en
Inventor
Dung-Yi Hsieh
Tsung-Han Tsai
Hsin-Hsuan Huang
Original Assignee
Largan Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Largan Precision Co Ltd filed Critical Largan Precision Co Ltd
Priority to TW99138778A priority Critical patent/TWI442128B/en
Priority to CN201110070030.6A priority patent/CN102466868B/en
Priority to CN2011200780931U priority patent/CN202025118U/en
Publication of TW201219879A publication Critical patent/TW201219879A/en
Application granted granted Critical
Publication of TWI442128B publication Critical patent/TWI442128B/en

Links

Landscapes

  • Lenses (AREA)

Abstract

This invention provides a compact imaging lens assembly comprising, in order from an object side to an image side: a first lens element with positive refractive power having a convex object-side surface and a concave image-side surface, at least one of the surfaces thereof being aspheric; a second lens element with negative refractive power having a concave object-side surface and a convex image-side surface, at least one of the surfaces thereof being aspheric; wherein there are two lens elements with refractive power; wherein the compact imaging lens assembly is able to effectively minimize the size of the lens assembly, to correct the aberration of the optical system, and to obtain superior high quality resolution when the following relations are satisfied: 15 < |V1-V2| < 48; -0.43 < f/f2 < 0; -1.50 < R3/f < -0.40; 0.9 < SL/TTL < 1.1.

Description

201219879 六、發明說明: 【發明所屬之技術領域】 本發明係與攝影鏡頭組有關,特別是指一種應用於電 子產品的小型化二片式的薄型化攝影透鏡組。 【先前技術】201219879 VI. Description of the Invention: [Technical Field] The present invention relates to a photographic lens group, and more particularly to a miniaturized two-piece thin photographic lens group applied to an electronic product. [Prior Art]

近年來,隨著薄型化攝影鏡頭的需求日漸提高,且隨著半 導體製程技觸精進’使鮮麵目前科乎採_光麵合元 件(Charge Coupled Device,CCD)或互補性氧化金屬半導體元 #(C〇mplementary Metal-Oxide Semiconductor Sensor, CMOSIn recent years, with the increasing demand for thin photographic lenses, and with the advancement of semiconductor process technology, 'the new face is currently _ Photoelectric Coupled Device (CCD) or complementary oxidized metal semiconductor element# (C〇mplementary Metal-Oxide Semiconductor Sensor, CMOS

St)之感光齡,其畫素尺寸得則、型化,加上現今電子 產品以輕薄短小之外縣發展趨勢,因此,同時具備良好成像 品質與薄型的光學系統職成為目前市場上的主流。 傳統的薄型攝像絲鏡組為考量縣的補正,多採以三片 式透鏡結構駐,其巾最普遍的為正貞正型式,如美 國專利第7’ 145’ 736號。但當鏡頭尺寸不斷往輕薄化縮小時, 系統成像㈣也跟著緊縮,因此使得三片透鏡的置入變得困 難’且在有限的空間裡’鏡片的厚度亦需跟著縮小,將使得塑 膠射出成型製作的鏡片其材質均勻度不良。 b 、’ .碩%長度且兼顧鏡片製作上的良率, 含兩片透鏡讀像_材权方案。㈣了修正像差,一 倾㈣專利第7,436,6G4號提供一 由兩片麵成的_攝像光學鏡組,但其第:透鏡形狀採 201219879 其效果不如新月形透鏡來 雙凹透鏡’對於躲散的修正 的顯著。 提綠—郷程㈣且可有效脑吻總長度及 k供良好成像品質㈣型化攝f彡透鏡組。 【發明内容】 θ為了可以有效縮小鏡麵積、修正系統像差與像散,更能 獲得較高的解像力,本發明提供—種由二片透鏡構成的薄型化 攝影透鏡組,其要旨如下:St)'s sensitivities are characterized by the size and shape of the pixels, and the trend of today's electronic products in terms of lightness, thinness and shortness of the county. Therefore, the optical system with good image quality and thinness has become the mainstream in the market. The traditional thin-type camera wire mirror group is a correction for the county. It is often housed in a three-piece lens structure. The most common type of towel is the positive-positive type, such as US Patent No. 7' 145' 736. However, when the size of the lens is continuously reduced and thinned, the system imaging (4) is also tightened, which makes the placement of the three lenses difficult. And in a limited space, the thickness of the lens needs to be reduced, which will cause plastic injection molding. The manufactured lens has poor material uniformity. b, '. The length of the master and the yield of the lens, including two lens readings. (4) Corrected aberrations, one tilt (four) patent No. 7,436,6G4 provides a two-faceted _ camera optics group, but its: lens shape adopted 201219879, its effect is not as good as a crescent lens to double concave lens The correction of the dispersion is significant. Greening - 郷 (4) and can effectively support the total length of the brain and k for good imaging quality (four) type of f彡 lens group. SUMMARY OF THE INVENTION θ In order to effectively reduce the mirror area, correct system aberrations and astigmatism, and to obtain higher resolution, the present invention provides a thin photographic lens group composed of two lenses, the gist thereof being as follows:

一種薄型化攝影透鏡組,由物侧至像侧依序包含:一具正 屈折力的第-透鏡,其物絲面為凸面、像側表面為凹面該 物侧表面與像侧表面至少一面為非球面;一具負屈折力的第二 透鏡,其物側表面為凹面、像側表面為凸面,該物側表面與像 側表面至少一面為非球面;該薄型化攝影透鏡組中具屈折力 的透鏡為兩片,且該第一透鏡的色散係數為^,該第二透鏡 的色散係數為V2,該薄型化攝影透鏡組的整體焦距為f,該 第二透鏡的焦距為f2,該第二透鏡的物侧表面曲率半徑為 R3 ’此外’該薄型化攝影透鏡組另設置一光圈,該光圈至成 像面於光軸上的距離為SL,該第一透鏡的物侧表面至成像面 於光軸上的距離為TTL,滿足下列關係式:15 &lt; IV1-V2I &lt; 48 ; -0.43 &lt; f/f2 &lt; 〇 ; -1. 50 &lt; R3/f &lt; -〇. 40 ; 0. 9 &lt; SL/TTL &lt; 1.1 ;藉由上述的鏡組配置方式,可以有效縮小鏡頭體積、 修正系統像差與像散,更能獲得較高的解像力。 201219879 其中··當該第一透鏡具正屈折力,則提供系統所需的部分 屈折力’有助於縮短該系統的總長度。 當該第二透鏡具負屈折力,則可有效修正系統像差,有助 於提高成像品質。 當該第-透鏡的物侧表面為凸面、像側表面為凹面,則可 有助於修正系統像散。 當該第二透鏡的物侧表面為凹面、像側表面為凸面,則可 有利於修正系統的高階像差。 當15 &lt; m-V2| &lt; 48,有利於該系統色差的修正;較佳 地,係滿足23 &lt; IV1-V2I &lt; 45 ;最佳地,係滿足3〇 &lt; ! v卜V2| &lt; 42 ° 當-0.43 &lt; f/f2 &lt; 〇 ’則第二透鏡之屈折力較為合適,可 有效修正系統像差;較佳地,係滿足27〈 f/f2 &lt; 〇。 H 50 &lt; R3/f &lt; -〇· 4〇 ’則可加強第二透鏡修正像差的 效果’較佳地,係滿足_丨· 2〇〈 R3/f &lt; _〇 5〇。 胃U &lt; SL/TTL &lt; 1·卜财概該龍化攝影透鏡組 在遠心與廣角特性取得良好的平衡。 本發明_化攝料鏡組巾,該第-透鏡的侧表面與像 侧表面的曲率半徑分職1祕當兩者滿足0儀2 &lt; 〇. 8 關係式時’則可有效修正系_差;較佳地,係滿足0.40 &lt; R1/R2 &lt; 〇. 6〇 〇 本發明_化攝影透鏡組中,該第—透鏡的中心厚度為 201219879 cn ’該第二透鏡的中心厚度為⑽,當兩者滿足〇奶〈 CT1/CT2 &lt; G.95關係式時’職第—、二透鏡厚度大小較為 口適可降低該第-、二透鏡製造與喊上的麵度丨較佳地, 係滿足 0· 40 &lt; CT1/CT2 &lt; 〇. 76。 本發明薄型化攝影透鏡組中,該第一透鏡的折射率為 Ν卜該第二透鏡的折射率為Ν2,當兩者滿足Ν2 &gt; νι關係式 夺該第、一透鑛射率則較為合適,有利於縮短系統總長 • 度且保有良好的成像品質;較佳地,係滿;i G. G4 &lt; N2-N1 &lt; 0.18。 本發明薄型化攝影透鏡組中,該第二透鏡的像側表面至成 像面於光轴上的距離為Bf,該第二透鏡的中心厚度為CT2, 當兩者滿足0.4 &lt; Bf/CT2 &lt; 2.0關係式時,則可讓第 與電子感光元件之财足夠的空·置其他元件;較佳地,= 滿足 0. 95 &lt; Bf/CT2 &lt; 1. 65。 _ 本發㈣型化攝影透鏡财,該第—透鏡的物侧表面至 成像面於光軸上的距離為m,另於該成像面設置一電子感 光疋件,該電子感光元件有效畫素區域對角線長的一半為 ’當兩者滿足TTL/ImgH &lt; 1. 95關係式時,則有利於維持 薄型化攝影透鏡_小·,载於輯可攜式的電子產σ 上。 °° 有關本發明為達成上述目的,所_之技術、手段及其他 之功效,兹舉六較佳可行實施例並配合圖式詳細說明如後。 201219879 【實施方式】 本發明第一實施例所提供的一種薄型化攝影透鏡組,請參 閱第ΙΑ、1B圖,該第1A圖為本發明第一實施例之薄型化 攝影透鏡組配置不意圖’第1B圖為本發明第一實施例像差曲 線圖,第一實施例從物側到像側包含: 一具正屈折力的第一透鏡110,其材質為塑膠,該第一透 鏡110物侧表面111為凸面、該像側表面112為凹面,該第一 透鏡110的物侧表面111與像側表面112皆設為非球面。 一具負屈折力的第二透鏡120,其材質為塑膠,該第二透 鏡120物侧表面121為凹面、該像側表面122為凸面,該第二 透鏡120的物侧表面121與像側表面122皆設為非球面。 一光圈100,其設於被攝物(圖上未示)與該第一透鏡11〇 之間。 -紅外線滤光片(IR-filter) 17(),其設於該第二透鏡 120像側表面122與-成像面19〇之間,該紅外線滤光片17〇 的材質為_且不影__化攝影透鏡組的焦距。 上述之非球面曲線的方程式表示如下: X⑺-(Y /R)/(l+sqrt( i _(1 +k)* (Y/R)2))+ 芩⑽ 其中: ^ 非求面上距離光耗為γ的點,其與相切於非球 面光轴上頂點之切面的相對汽产· 201219879 .泉面曲線上的點與光軸的距離; k :錐面係數;A thinned photographic lens group comprising, in order from the object side to the image side, a first lens having a positive refractive power, wherein the object surface is a convex surface, and the image side surface is a concave surface, the object side surface and the image side surface are at least one side a non-spherical surface; a second lens having a negative refractive power, wherein the object side surface is a concave surface, the image side surface is a convex surface, and the object side surface and the image side surface are at least one aspherical surface; the thinned photographic lens group has a refractive power The lens has two lenses, and the first lens has a dispersion coefficient of ^, the second lens has a dispersion coefficient of V2, the thinned photographic lens group has an overall focal length of f, and the second lens has a focal length of f2. The radius of curvature of the object side surface of the two lenses is R3 'further'. The thinned photographic lens group is further provided with an aperture, the distance from the aperture to the imaging plane on the optical axis is SL, and the object side surface of the first lens to the imaging surface is The distance on the optical axis is TTL, which satisfies the following relationship: 15 &lt; IV1-V2I &lt;48; -0.43 &lt; f/f2 &lt;〇; -1. 50 &lt; R3/f &lt; -〇. 40 ; 0. 9 &lt; SL / TTL &lt;1.1; by the above mirror configuration, can be effectively reduced The volume of the lens, and the aberration correcting astigmatism, better access to the high resolving power. 201219879 Where · when the first lens has a positive refractive power, providing the partial flexing force required by the system helps to shorten the overall length of the system. When the second lens has a negative refractive power, the system aberration can be effectively corrected, which helps to improve the image quality. When the object side surface of the first lens is convex and the image side surface is concave, it helps to correct system astigmatism. When the object side surface of the second lens is concave and the image side surface is convex, it is advantageous to correct the high order aberration of the system. When 15 &lt; m-V2| &lt; 48, it is advantageous for the correction of the chromatic aberration of the system; preferably, it satisfies 23 &lt; IV1 - V2I &lt;45; optimally, it satisfies 3 〇 &lt; ! v bu V2 | &lt; 42 ° When -0.43 &lt; f / f2 &lt; 〇 'The refractive power of the second lens is more suitable, which can effectively correct the system aberration; preferably, it satisfies 27 < f / f2 &lt; H 50 &lt; R3/f &lt; - 〇 · 4 〇 ' enhances the effect of the second lens correcting aberrations'. Preferably, it satisfies _丨· 2〇 < R3/f &lt; _〇 5〇. Stomach U &lt; SL / TTL &lt; 1 · Bu Cai General The Longhua Photography Lens Group achieves a good balance between telecentric and wide-angle characteristics. According to the present invention, the radius of curvature of the side surface and the image side surface of the first lens is divided into two. When both of them satisfy the 0 meter 2 &lt; 〇. 8 relationship, the effective correction system is _ Preferably, it satisfies 0.40 &lt; R1/R2 &lt; 〇〇. 6〇〇 In the invention, the center thickness of the first lens is 201219879 cn 'the center thickness of the second lens is (10) When the two meet the requirements of the CT1/CT2 &lt; G.95 relationship, the thickness of the two lenses is relatively good, which can reduce the manufacturing and shouting of the first and second lenses. , the system meets 0·40 &lt; CT1/CT2 &lt; 〇. 76. In the thinned photographic lens group of the present invention, the refractive index of the first lens is Ν2, and when the two meet the Ν2 &gt; Suitably, it is beneficial to shorten the total length of the system and maintain good image quality; preferably, it is full; i G. G4 &lt; N2-N1 &lt; 0.18. In the thinned photographic lens group of the present invention, the distance from the image side surface of the second lens to the imaging plane on the optical axis is Bf, and the center thickness of the second lens is CT2, when both satisfy 0.4 &lt; Bf / CT2 &lt; In the case of the 2.0 relationship, the first and the electronic photosensitive element are sufficiently empty to set other elements; preferably, = satisfying 0.95 &lt; Bf/CT2 &lt; 1. 65. _ The present invention is characterized in that the distance from the object side surface of the first lens to the imaging surface on the optical axis is m, and an electronic photosensitive element is disposed on the imaging surface, and the effective photosensitive area of the electronic photosensitive element Half of the diagonal length is 'when both meet the TTL/ImgH &lt; 1.95 relationship, it is beneficial to maintain the thinned photographic lens _ small, which is contained in the portable electronic product σ. The invention has been described in detail with respect to the preferred embodiments of the present invention and the accompanying drawings. 201219879 [Embodiment] A thinned photographic lens group according to a first embodiment of the present invention is referred to in the first and second embodiments. FIG. 1A is a schematic view of a thinned photographic lens unit according to a first embodiment of the present invention. FIG. 1B is an aberration diagram of the first embodiment of the present invention. The first embodiment includes: a first lens 110 having a positive refractive power, the material is plastic, and the object side of the first lens 110 is from the object side to the image side. The surface 111 is a convex surface, and the image side surface 112 is a concave surface. The object side surface 111 and the image side surface 112 of the first lens 110 are both aspherical. A second lens 120 having a negative refractive power is made of plastic, the object side surface 121 of the second lens 120 is a concave surface, the image side surface 122 is a convex surface, and the object side surface 121 and the image side surface of the second lens 120 are 122 are set to aspherical. An aperture 100 is disposed between the subject (not shown) and the first lens 11A. An infrared filter (IR-filter) 17 () is disposed between the image side surface 122 of the second lens 120 and the - imaging surface 19, and the material of the infrared filter 17 is _ and does not affect _ _ The focal length of the photographic lens group. The above equation of the aspheric curve is expressed as follows: X(7)-(Y /R)/(l+sqrt( i _(1 +k)* (Y/R)2))+ 芩(10) where: ^ non-surface distance The point at which the light consumption is γ, the relative velocity of the tangent to the apex on the aspherical optical axis, 201219879. The distance between the point on the spring curve and the optical axis; k: the taper coefficient;

Az •第i階非球面係數。 f 例中該薄型化攝影透鏡組的整體焦距為 其關係式為:f = 1.84。 例中該溥型化攝影透鏡組的整體光圈值 )為‘,其關係式為:—。圈值 -半為ηρΠ中’該_化攝影透鏡組的整體最大視角的 丰為膽,其關 第實施例中,該第一透鏡ιι〇的色散係數為^ —的色散係數為V2 ’其關係式為,,丨,5。 、⑷9Λ施例中,該第一透鏡110的折射率為N卜該第二 透鏡120的折射率為Ν2,其難式為:㈣卜請。 -透::!:中’該第’110的中心厚度為cti,該第 -透謂的中心厚度為CT2,其關係式為:cti/ct2u 實包例中該第一透鏡11〇的物側表面⑴與像 面:曲袍相㈣祕編式為麵⑽。 兮笛;#實關巾料型化攝影透鏡組的整體焦距為f, ==⑽的轉自121⑽半輸3,細式為: 第一實施例中,該薄型化攝影透鏡 該第二透㈣的焦距為f2,__:f/f2=:^, 201219879 第一實施例中’該第二透鏡120的像側表面122至成像面 190於光軸150上的距離為Bf ’該第二透鏡12〇的中心厚度 為CT2’其關係式為:Bf/CT2=1.21。 第一實施例中’該光圈1〇〇至成像面190於光軸150上的 靼離為SL,該第一透鏡no的物侧表面hi至成像面上9〇 於光軸150上的距離為ttl,其關係式為:sl/TTL=0. 94。 第一實施例中’該第一透鏡11〇的物側表面U1至成像 面190於光軸150上的距離為m,該薄型化攝影透鏡組另 设置一電子感光元件(圖上未示)於該成像面19〇,該電 子感光兀件有效晝素區域對角線長的—半為ImgH,其關 係式為:TTL/ImgH=l. 71。 第一實施例詳細的結構數據如同表-所示,其非球面數據 如同表二所示,其中’曲率半徑、厚度及焦距的單位為公厘 (mm)。 本發明第二實施例所提供的—種_化攝影透鏡組,請參 閱第2A、2B圖’該第2A圖為本發明第二實施例之薄型化 攝影透鏡組配置示意圖,第2B圖為本發明第二實施例像差曲 線圖,第二實施例從物侧到像侧包含: -具正屈折力的第-透鏡21〇,其材質為塑膠,該第一透 鏡210物侧表面211為凸面、該像側表面212為凹面,該第一 透鏡21G的物側表面211與像側表面212皆設為非球面。 一具負屈折力的第二透鏡220,其材質為塑膠,該第二透 201219879 鏡220物侧表面221為凹面、該像側表面挪為凸面,該第二 透鏡220的物側表面221與像側表面⑽皆設為非球面。 一光圈200 ’其設於被攝物(圖上未示)與該第-透鏡210 之間。 紅外線濾M 27G,其設於該第二透鏡 220像側表面222與一鱗面29〇之間該紅外線滤光片27〇 的材質為朗且獨__化攝料鏡組的焦距。Az • The i-th order aspheric coefficient. In the f example, the overall focal length of the thinned photographic lens group is such that the relationship is f = 1.84. In the example, the overall aperture value of the photographic lens group is ‘, and the relationship is: −. The circle value - half is ηρΠ', the overall maximum viewing angle of the photographic lens group is abundance, and in the second embodiment, the dispersion coefficient of the first lens ιι is ^2, and the dispersion coefficient is V2' The formula is, 丨, 5. In the embodiment of (4)9, the refractive index of the first lens 110 is N, and the refractive index of the second lens 120 is Ν2, and the difficulty is: (4). -透::!: The center thickness of the '110' is the cti, and the center thickness of the first-period is CT2, and the relationship is: cti/ct2u. The object side of the first lens 11〇 in the case of cti/ct2u Surface (1) and image surface: the curved robe phase (4) is the secret type (10).兮 ;;# The actual focal length of the photographic lens group is f, ==(10) is transferred from 121(10) half-transmission 3, and the thin form is: in the first embodiment, the thinned photographic lens is the second transparent (four) The focal length is f2, __: f / f2 =: ^, 201219879 In the first embodiment, the distance from the image side surface 122 of the second lens 120 to the imaging surface 190 on the optical axis 150 is Bf 'the second lens 12 〇 The center thickness is CT2' and its relationship is: Bf/CT2=1.21. In the first embodiment, the distance from the aperture 1 to the imaging surface 190 on the optical axis 150 is SL, and the distance from the object side surface hi of the first lens no to the imaging surface 9 on the optical axis 150 is Ttl, the relationship is: sl / TTL = 0.9. In the first embodiment, the distance from the object side surface U1 of the first lens 11 至 to the imaging surface 190 on the optical axis 150 is m, and the thinned photographic lens group is further provided with an electronic photosensitive element (not shown). The imaging surface 19〇, the electron photoreceptor element is effective in the diagonal area of the halogen region—half ImgH, and the relationship is: TTL/ImgH=1.71. The detailed structural data of the first embodiment is shown in Table--, and the aspherical data is as shown in Table 2, wherein the unit of curvature radius, thickness, and focal length is mm (mm). The second embodiment of the present invention provides a configuration of a thinned photographic lens group according to a second embodiment of the present invention, and FIG. 2B is a schematic view of a second embodiment of the present invention. According to a second embodiment of the present invention, the second embodiment includes: a first lens 21 having a positive refractive power, a material of which is plastic, and an object side surface 211 of the first lens 210 is convex. The image side surface 212 is a concave surface, and the object side surface 211 and the image side surface 212 of the first lens 21G are both aspherical. A second lens 220 having a negative refractive power is made of plastic. The second transparent surface of the lens 210 221 is a concave surface, the image side surface is convex, and the object side surface 221 and the image of the second lens 220 are The side surfaces (10) are all aspherical. An aperture 200' is disposed between the subject (not shown) and the first lens 210. The infrared filter M 27G is disposed between the image side surface 222 of the second lens 220 and a scale surface 29A. The material of the infrared filter 27A is a rectangular and unique focal length of the lens group.

第-實施例非球面曲線方程式的表示式如同第一 實施例的型式。 第二實施财,該_化攝影透鏡_整體鱗為f, 其關係式為:f = l. 。 第二實施例中’該薄型化攝影透鏡組的整體光圈值 (f-number)為 Fn。,其關係式為:Fn〇n 一、μ實施例卜該薄型化攝影透鏡組的整體最大視角的 一+為HFOV,其關錢為:卿ν峨〇。 施例中’該第一透鏡210的色散係數為V卜該第 -透散係數純,其關係式為μ·. 透鏡==例中’該第—透鏡210的折射率為Νΐ,該第二 、射率為Ν2 ’其關係式為:Ν2-Ν1=〇.〇9。 二透鏡种H透鏡21G的中心厚度為CT1,該第 一第二:的中心厚度為CT2,其關係式為:cti/ct2==〇5卜 例中該第一透鏡210的物側表面211與像側表 11 201219879 面则曲率半徑分別為RmR2,其關係式為糧㈣惠 第實施例中’該薄型化攝影透鏡組的整體焦距為卜 該第二透鏡220的物側表面221曲率半經為防,其 R3/f = -0.6 卜 第二實施例中’該薄型化攝影透鏡組的整體焦距為f, 該第二透鏡220的焦距為f2,其關係式為:f/f2=_〇 272。 第-實施例中’該第二透鏡22{)的像侧表面怨至成像面 290於光軸250上的距離為Bf,該第二透鏡22〇的中心厚度馨 為CT2 ’其關係式為:Bf/CT2 = 1.11。 第二實施例中,該光圈2⑼至成像面290於光軸250上的 距離為SL’該第-透鏡21G的物侧表面211至成像面29〇 於光轴250上的距離為TTL,其關係式為:SL/TTL=〇. 94。 第二實施例中,該第一透鏡21〇的物侧表面211至成像 面290於光軸250上的距離為TTL,該薄型化攝影透鏡組另 設置一電子感光元件(圖上未示)於該成像面29〇,該電# 子感光元件有效畫素區域對角線長的一半為ImgH,其關 係式為:TTL/ImgH=l. 75。 第一實施例洋細的結構數據如同表三所示,其非球面數據 如同表四所示,其中,曲率半徑、厚度及焦距的單位為公厘 (mm)。 本發明第三實施例所提供的一種薄型化攝影透鏡組,請參 閱第3A、3B圖’該第3A圖為本發明第三實施例之薄型化 12 201219879 攝影透鏡組配置示意圖,第3B圖為本發明第三實施例像差曲 線圖’第三實施例從物侧到像側包含: 一具正屈折力的第一透鏡310,其材質為塑膠,該第一透 鏡310物側表面311為凸面、該像侧表面312為凹面,該第一 透鏡310的物侧表面311與像侧表面312皆設為非球面。The expression of the aspheric curve equation of the first embodiment is the same as that of the first embodiment. In the second implementation, the _ photographic lens _ overall scale is f, and the relationship is: f = l. In the second embodiment, the overall aperture value (f-number) of the thinned photographic lens group is Fn. The relationship is: Fn〇n I. μ embodiment The one of the overall maximum viewing angles of the thinned photographic lens group is HFOV, and the money is: qing 峨〇. In the embodiment, the dispersion coefficient of the first lens 210 is V, and the first-permeability coefficient is pure, and the relational expression is μ·. Lens== In the example, the refractive index of the first lens 210 is Νΐ, the second The rate of incidence is Ν2' and its relationship is: Ν2-Ν1=〇.〇9. The center thickness of the second lens type H lens 21G is CT1, and the center thickness of the first second: is CT2, and the relational expression is: cti/ct2==〇5, in the example, the object side surface 211 of the first lens 210 is The radius of curvature of the surface of the surface of the surface of the surface of the second lens 220 is the same as that of the surface of the second lens 220. The curvature of the surface is RmR2, and the relationship is the grain (four). In the embodiment, the overall focal length of the thinned photographic lens group is the curvature of the object side surface 221 of the second lens 220. Prevention, R3/f = -0.6 In the second embodiment, the overall focal length of the thinned photographic lens group is f, and the focal length of the second lens 220 is f2, and the relationship is: f/f2=_〇272 . In the first embodiment, the image side surface of the 'the second lens 22{) complains that the distance of the imaging surface 290 on the optical axis 250 is Bf, and the center thickness of the second lens 22〇 is CT2'. The relationship is: Bf/CT2 = 1.11. In the second embodiment, the distance from the aperture 2 (9) to the imaging surface 290 on the optical axis 250 is SL'. The distance from the object side surface 211 of the first lens 21G to the imaging surface 29 on the optical axis 250 is TTL. The formula is: SL / TTL = 〇. 94. In the second embodiment, the distance from the object side surface 211 of the first lens 21 to the imaging surface 290 on the optical axis 250 is TTL, and the thinned photographic lens group is further provided with an electronic photosensitive element (not shown). The imaging surface 29〇, the half of the diagonal length of the effective pixel area of the electric photosensitive element is ImgH, and the relationship is: TTL/ImgH=1.75. The structure data of the first embodiment is as shown in Table 3. The aspherical data is as shown in Table 4, wherein the unit of curvature radius, thickness and focal length is in mm (mm). A thinned photographic lens group according to a third embodiment of the present invention, please refer to FIGS. 3A and 3B. FIG. 3A is a schematic view showing a configuration of a thin lens 12 201219879 photographic lens group according to a third embodiment of the present invention, and FIG. 3B is a diagram The third embodiment of the present invention includes a first lens 310 having a positive refractive power and a plastic material, and the object side surface 311 of the first lens 310 is convex. The image side surface 312 is a concave surface, and the object side surface 311 and the image side surface 312 of the first lens 310 are both aspherical.

一具負屈折力的第二透鏡320,其材質為塑膠,該第二透 鏡320物側表面321為凹面、該像侧表面犯2為凸面,該第二 透鏡320的物側表面321與像侧表面322皆設為非球面。 一光圈300,其設於被攝物(圖上未示)與該第一透鏡_ υ六5又於孩第二透鏡 32〇像側表面322與-成像面咖之間,該紅外線據光請 的材質為_且不影響該_化攝影透鏡組的焦距。 第三實施例非球面曲線方程式的表示式如同第一 實施例的型式。 乐 其關=施:列中’該薄型化攝影透鏡組的整體焦距為f, 其關係式為:f = 1. 89。 第三實施财’該薄魏攝影透鏡 (ί—η_㈦為恤,其關係式為^=3.00。先圈值 實施例中該薄型化攝影透鏡組的整體 一半為贿,娜^卿㈣』。 大視角的 第三實施例中,該第—透鏡31〇的色散係數為^,該第 201219879 二透鏡32G的色散係數為V2,其關係式為:m-V2卜25 6 第三實施例中,該第—透鏡31G的折射率為M,該第二 透鏡320的折射率為N2,其關係式為:n2_ni = 〇. 。 第一實施例巾’該第—透鏡则的中心厚度為⑶,該第 二透鏡娜的中心厚度為CT2,其關係式為:C·㈣息 第二實施例中,該第—透鏡31G的物側表面311與像侧表 面312的曲率半徑分別為R1與R2,其關係式為種㈣惠 第三實施例中,該薄型化攝影透鏡組的整體焦距為f, 該第二透鏡320的物側表面321曲率半徑為即,其關係式為: R3/f = -0.60。 第三實施例中,該薄型化攝影透鏡組的整體焦距為f, 該第二透鏡320的焦距為f2,其關係式為:f/f2= 〇. ιι〇。 第一實施例中’該第二透鏡32()的像側表面至成像面 390於光轴350上的距離為Bf,該第二透鏡32〇的中心厚度 為CT2,其關係式為:Bf/CT2=1. 〇5。 第三實施例中’該光圈_至成像面39()於光轴35〇上的 距離為SL,該第-透鏡31〇的物侧表自311至成像面39〇 於光軸350上的距離為ttl,其關係式為:SL/TTL=〇. 95。 第二實施例中,該第一透鏡31〇的物侧表面311至成像 面390於光軸350上的距離為TTL,該薄型化攝影透鏡組另 設置一電子感光元件(圖上未示)於該成像面39〇,該電 子感光元件有效畫素區域對角線長的一半^ ImgH,其關 201219879 係式為:TTL/ImgH=i. 75。 第三實施例詳細的結構數據如同表五所示,其非球面數據 如同表六所示,其巾,曲率半徑、厚度及驗的單位為公厘 (mm) 〇 本發明第四實補所提供的—種_化_透鏡組,請參 閱第4A、4B®,該$ 4A圖為本發明第四實施例之薄型化 攝影透鏡組配置示意圖,第4B圖為本發明第四實施例像差曲 線圖,第四實施例從物侧到像側包含: 一具正屈折力的第一透鏡41〇,其材質為塑膠,該第一透 鏡410物側表面411為凸面、該像侧表面412為凹面,該第一 透鏡410的物側表面411與像侧表面412皆設為非球面。 一具負屈折力的第二透鏡420,其材質為塑膠,該第二透 鏡420物側表面421為凹面、該像側表面422為凸面,該第二 透鏡420的物側表面421與像侧表面422皆設為非球面。 光圈400,其設於被攝物(圖上未示)與該第一透鏡41〇 之間。 一紅外線濾光片(IR_filter) 47〇,其設於該第二透鏡 420像側表面422與一成像面490之間,該紅外線濾光片47〇 的材質為玻璃且不影響該薄型化攝影透鏡組的焦距。 第四實施例非球面曲線方程式的表示式如同第一 實施例的型式。 第四實施例中,該薄型化攝影透鏡組的整體焦距為f, 15 201219879 其關係式為:f=1.89。 第^施射,_魏攝料鏡 (卜副為Fno,其關係式為:Fn〇=26〇。體先圈值 第四實施例中,該薄型化 一半為_,娜_:跡^.9。咖最大視角的 :四實施例中’該第一透鏡41〇的色 二透鏡的色,编式為:丨V1•^第 第四實施例中,該第—透鏡的折射率為N1,今第二 透鏡的折射率為N2,其關係式為:㈣1=0.12。— 第實施例中’該第一透鏡410的中心厚度為CH,該第 二透鏡420的中心厚度為CT2,其關係式為:⑽。 第四實施例中,該第一透鏡的物側表面411與像側表 面412的曲率半徑分別為R1與R2,其關係式為彻2==〇45。 第四實施彳种’該薄型化攝影透鏡組的整體焦距 該第二透鏡420的物側表面421曲率半徑為R3,其關係式 R3/f=-0.59。 第四實施例巾’卿型化攝影透鏡組的整體焦距為于, 該第二透鏡420的焦距為f2,其關係式為:f/f2=_〇. i67。 第四實施例中’該第二透鏡的像側表面422至成像面 490於光軸450上的距離為Bf,該第二透鏡42〇的中心厚度 為CT2 ’其關係式為:Bf/CT2=1.23。 第四實施例中’該光圈400至成像面490於光軸450上的 201219879 距離為SL,該第一透鏡410的物侧表面411至成像面490 於光軸450上的距離為TTL’其關係式為:sl/ttl=0.94。 第四實施例中,該第一透鏡41〇的物侧表面411至成像 面490於光轴450上的距離為TTL ’該薄型化攝影透鏡組另 設置一電子感光元件(圖上未示)於該成像面49〇,該電 子感光元件有效晝素區域對角線長的一半為ImgH,其關 係式為:TTL/ImgH=l. 75。 • 第四實施例詳細的結構數據如同表七所示,其非球面數據 如同表八所示’其中’曲率半徑、厚度及焦距的單位為公厘 (mm) 〇 本發明第五實麵所提供的—闕^倾影透鏡組,請參 閱第5A、5B ,該帛5A圖為本發明第五實施例之薄型化 攝影透鏡組配置示意圖,第5B圖為本發明第五實施例像差曲 線圖’第五實施例從物侧到像侧包含: 籲-具正屈折力的第一透鏡51Q,其材f為塑膠,該第一透 鏡510物侧表面511為凸面、該像側表面512 A凹面,該第一 透鏡510的物侧表面511與像侧表面512皆設為非球面。 一具負屈折力的第二透鏡52〇,其材質為轉,該第二透 鏡52〇物侧表面521為凹面、該像侧表面522為凸面,該第二 透鏡520的物侧表面521與像侧表面奶皆設為非球面7 一 -光圈500,其設於該第—透鏡⑽與該第二透鏡52 間。 201219879 一紅外_光片(㈣llter)57G,其設霞第二透鏡 爾侧表讀與-成像面59〇之間,該紅外線滤光片57〇 的材質為麵且不影響該薄型化攝影透鏡組的焦距。 第五實施例非球面曲線方程式的表示式如同第一 實施例的型式。 甘 實關中,該_化攝影透鏡_整體焦距為f, 其關係式為:f = 2. 98。 實丫']中1¾薄型化攝影透鏡組的整體光圈值 (f-number)為 Fno,其關係式為:Fn〇=2·奶。 第五實施射’簡魏攝料餘㈣體最大視角的 半為HF0V,其關係式為:HF0V=26 1。 第五實施例中’該第—透鏡51G的色散係數為Η,該第 二透鏡520的色散係數為V2,其關係式為:丨vim卜 第五實施例中,該第一透鏡51〇的折射率為M,該第二 透鏡520的折射率為N2,其關係式為:N2_m 第五實施例中該第一透鏡51〇的中心厚度為m,該第 二透鏡520的中心厚度為CT2,其關係式為:cti/ct2 = 〇76。 第五實施射,該第-透鏡51G的物側表面5ΐι與像側表 面512的曲率半徑分別為R1㈣,其關係式為剔2=0 44。 第五實施例中,該薄型化攝影透鏡組的整體焦距為卜 該第二透鏡520的物侧表面521曲率 : R3/f = -〇.65〇 &amp;為时關係式為: 201219879 帛五實施例巾’該薄型化攝影透餘的整體焦距為f, 該第二透鏡520的焦距為f2,其關係式為 :Pf2 = -0.390。 第五實施例中’該第二透鏡52()的像侧表面522至成像面 590於光軸550上的距離為Bf,該第二透鏡52〇的中心厚度 為CT2 ’其關係式為:Bf/cT2 = 〇 π。 第五實施例中’該光圈_至成像面590於光轴550上的 距離為SL該第-透鏡51〇的物側表面511至成像面剛 • 於光軸550上的距離為™,其關係式為:SL/TTL=〇. 75。 第五實施例中,該第一透鏡510的物侧表® 511至成像 面590於光轴550上的距離為TTL,該薄型化攝景多透鏡組另 »又置電子感光疋件(圖上未示)於該成像面59〇,該電 子感光το件有效晝素區域對角線長的—半為邮,其關 係式為:TTL/ImgH=2.13。 第五實施例詳細的結構數據如同表九所示,其非球面數據 春如同表十穌’其_,曲率半#、厚度及焦距的單位為公厘 (mm)。 本發明第六實施例所提供的-種薄型化攝影透鏡組,請參 閱第6A、6B圖,該第6A圖為本發明第六實施例之薄型化 攝影透鏡組配置示意圖,第6B圖為本發明第六實施例像差曲 線圖’第六實施例從物側到像侧包含: 具正屈折力的第一透鏡610,其材質為塑膠,該第一透 鏡610物側表面611為凸面、該像側表面612為凹面,該第一 201219879 透鏡⑽的_編11與像絲罐妓為非球面。 一具負屈折力的第二透鏡620,其材質為塑膠,該第二透 鏡⑽物侧表面621為凹面、該像側表面622為凸面,該第二 透鏡620的物侧表面621與像侧表面_設為非球面。 間 光圈_,其設於該第—透鏡⑽與該第二透鏡62〇之 一紅外線濾光片(射ilter)㈣,其設於該第二透鏡 表峨與-雜帽⑽,物卜雜光片_ 的材質為玻璃且不影響該薄型化攝影透鏡組的隹距。 第六實施例非球面曲線方程式的表示式如同第一 實施例的型式。 第六實施财,該薄型化攝影透鏡組的整體焦距為f, 其關係式為:f=2. 97。 參 第實施例中1^薄型化攝影透鏡組的整體光圈值 (f-nimber)為 Fno ’ 其關係式為:Fn〇=3』〇。 第六實施例中,該薄型化攝影透鏡組的整體最大視角的 一半為腑,其難式為:_=26.〇。 第'、實施财’該第—透鏡_的色散缝為V卜該第 二透鏡620的色散係數為V2,其關係式為:m-V2卜35」。 第六實施例中,該第一透鏡610的折射率為N1,該第二 透鏡620的折射率為N2,其關係式為:㈣㈣… 實施例中該第一透鏡610的中心厚度為CH,該第 20 201219879 一透鏡62G的中〜厚度為CT2,其關係式為:GTi/cT2 = n 第’、實施例中’ δ亥第_透鏡61〇的物侧表面與像側表 面612的曲率半徑分別為R1與R2,其關係式為 :R1/R2 = 0.53° 第六實施例中’該薄型化攝影透鏡組的整體焦距為f, 該第二透鏡620的物側表面62i曲率半徑為即,其關係式為: R3/f=_〇.69。 第六實施射,該_化_透鏡_整體焦距為f, • 該第二透鏡620的焦距為泛,其關係式為:f/f2 = _〇.225。 第六實施例中’該第二透鏡62〇的像侧表面622至成像面 690於光轴650上的距離為Bf,該第二透鏡62〇的中心厚度 為CT2,其關係式為:Bf/CT2=〇. 96。 第六實施例中,該光圈600至成像面690於光轴650上的 距離為SL,該第一透鏡61〇的物側表面61丨至成像面69〇 於光轴650上的距離為TTL,其關係式為:SL/TTL=0. 74。 Φ 第六實施例中’該第一透鏡610的物侧表面611至成像 面690於光軸650上的距離為TTL,該薄型化攝影透鏡組另 設置一電子感光元件(圖上未示)於該成像面69〇,該電 子感光元件有效畫素區域對角線長的一半為imgH,其關 係式為:TTL/ImgH=2.16。 第六實施例洋細的結構數據如同表十一所示,其非球面數 據如同表十二所示’其中,曲率半徑、厚度及焦距的單位為公 厘(mm)。 21 201219879 值得說明的是,矣_E 士 表至表十二所示為本發明的薄型化 叙鏡組各實施例的不同數值變化表,然:本發明各實施 變化㈣實驗所得,即使使料隨值,相同結 2=品仍屬於本發明的保護射。表十三為各實施例中 各關係式的對應表。 本發明薄型化攝影透鏡組中,各透鏡的材質可為玻璃 二/右各透鏡的材質為玻璃,則可以增加該薄型化 。透鏡組屈折力配置的自由度若各透鏡材質為塑籲 J可以有效降低生產成本。此外,可於鏡面上設置 非球面,非球面可以容易製作成球面以外的形狀,獲得 ^多的控制變數,用以消減像差,進而縮減透鏡使用的 因此可叫崎低本發明薄攝料雜的總· 長度。 本發明薄型化攝影透鏡組中,若透鏡表面係為凸面, 表示該透鏡表面於近軸處為凸面;若透鏡表面係為凹籲 面,則表示該透鏡表面於近軸處為凹面。 I本發明薄型化攝影透鏡組中,可至少設置一光搁以減 少雜散光,有助於提昇影像品質。 【圖式簡單說明】 第1Α圖係本發明第一實施例之光學示意圖。 第1Β圖係本發明第一實施例像差曲線圖。 第2Α圖係本發明第二實施例之光學示意圖。 22 201219879 第2B圖係本發明第二實施例像差曲線圖。 第3A圖係本發明第三實施例之光學示意圖。 第3B圖係本發明第三實施例像差曲線圖。 第4A圖係本發明第四實施例之光學示意圖。 第4B圖係本發明第四實施例像差曲線圖。 第5A圖係本發明第五實施例之光學示意圖。 第5B圖係本發明第五實施例像差曲線圖。 • 第6A圖係本發明第六實施例之光學示意圖。 第6B圖係本發明第六實施例像差曲線圖。 【表簡單說明】 表一第一實施例光學數據。 , 表二 第一實施例非球面數據。 - 表三 第二實施例光學數據。 表四 第二實施例非球面數據。 • 表五 第三實施例光學數據。 表六 第三實施例非球面數據。 表七 第四實施例光學數據。 表八 第四實施例非球面數據。 表九 第五實施例光學數據。 表十 第五實施例非球面數據。 表十一第六實施例光學數據。 表十二第六實施例非球面數據。 23 201219879 表十三本發明相關關係式的數值資料。 【主要元件符號說明】 第一透鏡 110、210、310、410、510、610 物側表面 111、211、311、411、511、611 像側表面 112、212、312、412、512、612 第二透鏡 120、220、320、420、520、620 物側表面 121、221、321、421、521、621 像側表面 122、222、322、421、521、621 _ 光圈 100、200、300、400、500、600 光軸 150、250、350、450、550、650 紅外線濾光片(IR Filter)170、270、370、470、570、670 成像面 190、290、390、490、590、690 CT1 :第一透鏡的中心厚度 CT2 :第二透鏡的中心厚度 f:光學攝影系統的整體焦距 :第二透鏡的焦距 電子感光聽有效晝素區域以線㈣-半 *第一透鏡的物側表面曲率半徑 :第一透鏡的像側表面曲率半役 R3 :第二透鏡的物側表面曲率半後 SL .光圈至成像面於光軸上的距離 TTL :第一透鏡的物側表面至成像 如於光軸上的距離 24 201219879 vi:第一透鏡的色散係數 V2 :第二透鏡的色散係數 N1 :第一透鏡的折射率 N2 :第二透鏡的折射率A second lens 320 having a negative refractive power is made of plastic. The object side surface 321 of the second lens 320 is a concave surface, and the image side surface 2 is a convex surface. The object side surface 321 and the image side of the second lens 320 are The surface 322 is set to be aspherical. An aperture 300 is disposed between the object (not shown) and the first lens _ υ 5 5 5 又 又 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 成像 成像 成像 成像 成像 成像The material is _ and does not affect the focal length of the photographic lens group. The expression of the aspheric curve equation of the third embodiment is the same as that of the first embodiment.乐其关=施: In the column, the overall focal length of the thinned photographic lens group is f, and the relationship is: f = 1.89. The third implementation of the thin Wei photographic lens (ί-η_ (seven) for the shirt, the relationship is ^ = 3.00. In the first circle value embodiment, the thin half of the thin lens group is a bribe, Na ^ Qing (four)". In the third embodiment of the viewing angle, the chromatic dispersion coefficient of the first lens 31 为 is ^, and the dispersion coefficient of the second lens 32G of the 201219879 is V2, and the relational expression is: m-V2 卜 25 6 In the third embodiment, The refractive index of the first lens 31G is M, and the refractive index of the second lens 320 is N2, and the relationship is: n2_ni = 〇. The thickness of the center of the first lens is (3), the first The center thickness of the two lens Na is CT2, and the relationship is: C·(4). In the second embodiment, the radius of curvature of the object side surface 311 and the image side surface 312 of the first lens 31G are R1 and R2, respectively. In the third embodiment, the overall focal length of the thinned photographic lens group is f, and the radius of curvature of the object side surface 321 of the second lens 320 is, that is, R3/f = -0.60. In the third embodiment, the overall focal length of the thinned photographic lens group is f, and the focal length of the second lens 320 is f2. The relationship is: f/f2 = 〇. ιι〇. In the first embodiment, the distance from the image side surface of the second lens 32() to the imaging surface 390 on the optical axis 350 is Bf, and the second lens 32 The center thickness of the crucible is CT2, and the relationship is: Bf/CT2=1. 〇5. In the third embodiment, the distance from the aperture _ to the imaging surface 39() on the optical axis 35〇 is SL, which is - The distance from the 311 to the imaging surface 39 of the lens 31〇 on the optical axis 350 is ttl, and the relation is: SL/TTL=〇. 95. In the second embodiment, the first lens 31 is The distance from the object side surface 311 to the imaging surface 390 on the optical axis 350 is TTL. The thinned photographic lens unit is further provided with an electronic photosensitive element (not shown) on the imaging surface 39, the effective photosensitive element of the electronic photosensitive element. Half of the diagonal length of the area ^ ImgH, which is closed 201219879 is: TTL / ImgH = i. 75. The detailed structural data of the third embodiment is shown in Table 5, and its aspherical data is as shown in Table 6. The towel, the radius of curvature, the thickness and the unit of inspection are in millimeters (mm). For the _ _ lens group provided by the fourth embodiment of the present invention, please refer to the 4A, 4B®, 4A is a schematic view showing a configuration of a thinned photographic lens group according to a fourth embodiment of the present invention, and FIG. 4B is a diagram showing aberrations according to a fourth embodiment of the present invention. The fourth embodiment includes: a positive inflection from the object side to the image side The first lens 41 is made of a plastic material, the object side surface 411 of the first lens 410 is a convex surface, and the image side surface 412 is a concave surface. The object side surface 411 and the image side surface 412 of the first lens 410 are both provided. A second lens 420 having a negative refractive power is made of plastic, the object side surface 421 of the second lens 420 is a concave surface, the image side surface 422 is a convex surface, and the object side surface 421 of the second lens 420 is a convex surface. Both the image side surface 422 and the image side surface are set to be aspherical. The aperture 400 is disposed between the subject (not shown) and the first lens 41A. An infrared filter (IR_filter) 47 is disposed between the image side surface 422 of the second lens 420 and an imaging surface 490. The infrared filter 47 is made of glass and does not affect the thinned photographic lens. The focal length of the group. The expression of the aspheric curve equation of the fourth embodiment is the same as that of the first embodiment. In the fourth embodiment, the overall focal length of the thinned photographic lens group is f, 15 201219879, and the relationship is f = 1.89. The first ^ shot, _ Wei shooting mirror (Bu is Fno, the relationship is: Fn 〇 = 26 〇. Body first circle value in the fourth embodiment, the thinning half is _, Na _: trace ^. 9. The maximum viewing angle of the coffee: in the fourth embodiment, the color of the color lens of the first lens 41〇 is: 丨V1•^ In the fourth embodiment, the refractive index of the first lens is N1. The refractive index of the second lens is now N2, and the relationship is: (4) 1 = 0.12. - In the first embodiment, the center thickness of the first lens 410 is CH, and the center thickness of the second lens 420 is CT2, and the relationship is In the fourth embodiment, the radius of curvature of the object side surface 411 and the image side surface 412 of the first lens are R1 and R2, respectively, and the relationship is the same as 2==〇45. The overall focal length of the thinned photographic lens group is the radius of curvature of the object side surface 421 of the second lens 420 R3, and the relationship is R3/f=-0.59. The overall focal length of the fourth embodiment of the holographic lens group is The focal length of the second lens 420 is f2, and the relationship is: f/f2=_〇. i67. In the fourth embodiment, the image side surface 422 to the imaging surface of the second lens The distance 490 on the optical axis 450 is Bf, and the center thickness of the second lens 42 is CT2'. The relationship is: Bf/CT2=1.23. In the fourth embodiment, the aperture 400 to the imaging surface 490 are on the optical axis. The distance of 201219879 on 450 is SL, and the distance from the object side surface 411 of the first lens 410 to the imaging surface 490 on the optical axis 450 is TTL', and the relation is: sl/ttl=0.94. In the fourth embodiment, The distance from the object side surface 411 of the first lens 41〇 to the imaging surface 490 on the optical axis 450 is TTL'. The thinned photographic lens group is further provided with an electronic photosensitive element (not shown) on the imaging surface 49〇. The half of the diagonal length of the effective pixel region of the electronic photosensitive element is ImgH, and the relationship is: TTL/ImgH=l. 75. • The detailed structural data of the fourth embodiment is as shown in Table 7, and the aspherical data is like a table. The unit of 'curvature radius, thickness and focal length shown in VIII is mm (mm) 〇 provided in the fifth solid surface of the present invention - 阙 ^ 倾 倾 lens group, please refer to 5A, 5B, the 帛 5A picture is A schematic diagram of a configuration of a thinned photographic lens group according to a fifth embodiment of the present invention, and FIG. 5B is a fifth embodiment of the present invention. The fifth embodiment of the present invention includes: a first lens 51Q having a positive refractive power, a material f being a plastic, and an object side surface 511 of the first lens 510 being a convex surface. The object side surface 511 and the image side surface 512 of the first lens 510 are both aspherical. The second lens 52A having a negative refractive power is made of a turn, and the second lens 52 is 52. The object side surface 521 is a concave surface, and the image side surface 522 is a convex surface. The object side surface 521 and the image side surface milk of the second lens 520 are both set to be aspherical surfaces 7-apertures 500, and are disposed on the first lens (10). Between the second lens 52 and the second lens 52. 201219879 An infrared _ light sheet ((4) llter) 57G, which is disposed between the second lens side reading and the imaging surface 59 ,, the material of the infrared filter 57 为 is a surface and does not affect the thin photographic lens group The focal length. The expression of the aspheric curve equation of the fifth embodiment is the same as that of the first embodiment. In Ganshiguanzhong, the _ photographic lens _ overall focal length is f, and its relationship is: f = 2. 98. In the actual '', the overall aperture value (f-number) of the 13⁄4 thin photographic lens group is Fno, and the relationship is: Fn〇=2·milk. In the fifth implementation, the half of the maximum viewing angle of the (four) body is the HF0V, and the relationship is: HF0V=26 1. In the fifth embodiment, the dispersion coefficient of the first lens 51G is Η, and the dispersion coefficient of the second lens 520 is V2, and the relationship is: 丨vim. In the fifth embodiment, the refraction of the first lens 51〇 The rate of the second lens 520 is N2, and the relationship is: N2_m. In the fifth embodiment, the center thickness of the first lens 51A is m, and the center thickness of the second lens 520 is CT2. The relationship is: cti/ct2 = 〇76. In the fifth embodiment, the radius of curvature of the object side surface 5ΐ and the image side surface 512 of the first lens 51G is R1 (four), respectively, and the relational expression is t2 = 0 44. In the fifth embodiment, the overall focal length of the thinned photographic lens group is the curvature of the object side surface 521 of the second lens 520: R3/f = -〇.65〇&amp; The time relationship is: 201219879 The overall focal length of the thinned photographic aperture is f, and the focal length of the second lens 520 is f2, and the relational expression is: Pf2 = -0.390. In the fifth embodiment, the distance from the image side surface 522 to the imaging surface 590 of the second lens 52 to the optical axis 550 is Bf, and the center thickness of the second lens 52 is CT2'. The relationship is: Bf /cT2 = 〇π. In the fifth embodiment, the distance from the aperture _ to the imaging surface 590 on the optical axis 550 is SL, and the distance from the object side surface 511 of the first lens 51 至 to the imaging surface just on the optical axis 550 is TM. The formula is: SL / TTL = 〇. 75. In the fifth embodiment, the distance between the object side surface 511 of the first lens 510 and the imaging surface 590 on the optical axis 550 is TTL, and the thinned multi-lens group is further equipped with an electronic photosensitive element (on the image) Not shown in the image plane 59, the electron-sensing τ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο The detailed structural data of the fifth embodiment is as shown in Table 9, and the aspherical data is as shown in Table _, the curvature half, the thickness and the focal length are in mm (mm). For a thinned photographic lens group according to a sixth embodiment of the present invention, please refer to FIGS. 6A and 6B. FIG. 6A is a schematic view showing a configuration of a thinned photographic lens group according to a sixth embodiment of the present invention, and FIG. 6B is a view The sixth embodiment of the present invention includes: a first lens 610 having a positive refractive power, a material of which is plastic, and an object side surface 611 of the first lens 610 is convex, The image side surface 612 is a concave surface, and the first 201219879 lens (10) is aspherical with the image can. A second lens 620 having a negative refractive power is made of plastic, the object side surface 621 of the second lens (10) is a concave surface, the image side surface 622 is a convex surface, and the object side surface 621 and the image side surface of the second lens 620 are _ is set to aspherical. An aperture _, which is disposed on the first lens (10) and the second lens 62 红外线 an infrared filter (radiator) (four), which is disposed on the second lens surface and the miscellaneous cap (10), the object is stray light The material of the sheet _ is glass and does not affect the lay length of the thin photographic lens group. The expression of the aspheric curve equation of the sixth embodiment is the same as that of the first embodiment. In the sixth implementation, the overall focal length of the thinned photographic lens group is f, and the relationship is f=2.17. In the first embodiment, the overall aperture value (f-nimber) of the thinned photographic lens group is Fno ’, and the relational expression is Fn 〇 = 3 〇. In the sixth embodiment, half of the overall maximum viewing angle of the thinned photographic lens group is 腑, and the difficulty is _=26. In the first embodiment, the dispersion slit of the first lens is V, and the dispersion coefficient of the second lens 620 is V2, and the relational expression is m-V2b 35". In the sixth embodiment, the refractive index of the first lens 610 is N1, and the refractive index of the second lens 620 is N2, and the relationship is: (4) (4). In the embodiment, the center thickness of the first lens 610 is CH, 20th 201219879 The medium-thickness of a lens 62G is CT2, and the relational expression is: GTi/cT2 = n, respectively, in the embodiment, the radius of curvature of the object side surface and the image side surface 612 of the δ hai _ lens 61 分别 respectively R1 and R2, the relationship is: R1/R2 = 0.53°. In the sixth embodiment, the overall focal length of the thinned photographic lens group is f, and the radius of curvature of the object side surface 62i of the second lens 620 is The relationship is: R3/f=_〇.69. In the sixth implementation, the overall focal length of the lens is f, and the focal length of the second lens 620 is abundance, and the relationship is f/f2 = _〇.225. In the sixth embodiment, the distance from the image side surface 622 of the second lens 62A to the imaging surface 690 on the optical axis 650 is Bf, and the center thickness of the second lens 62〇 is CT2, and the relationship is: Bf/ CT2=〇. 96. In the sixth embodiment, the distance from the aperture 600 to the imaging surface 690 on the optical axis 650 is SL, and the distance from the object side surface 61丨 of the first lens 61〇 to the imaging surface 69 on the optical axis 650 is TTL. The relationship is: SL / TTL = 0.74. Φ In the sixth embodiment, the distance from the object side surface 611 of the first lens 610 to the imaging surface 690 on the optical axis 650 is TTL, and the thinned photographic lens group is further provided with an electronic photosensitive element (not shown). The imaging surface 69〇, half of the diagonal length of the effective pixel area of the electronic photosensitive element is imgH, and the relationship is: TTL/ImgH=2.16. The structure data of the fineness of the sixth embodiment is as shown in Table 11, and the aspherical data is as shown in Table 12, wherein the unit of the radius of curvature, the thickness, and the focal length are in mm (mm). 21 201219879 It is worth noting that 矣_E 士 至 to Table 12 shows the different numerical value change tables of the embodiments of the thinned mirror group of the present invention. However, the implementation variations of the present invention (4) experimental results, even if With the value, the same knot 2 = product still belongs to the protection shot of the present invention. Table 13 is a correspondence table of the respective relational expressions in the respective embodiments. In the thinned photographic lens unit of the present invention, the material of each lens can be such that the glass of the glass/right lens is glass, and the thickness can be increased. The degree of freedom of the lens group's refractive power configuration can effectively reduce the production cost if the lens material is plastic. In addition, an aspherical surface can be provided on the mirror surface, and the aspherical surface can be easily formed into a shape other than the spherical surface, and a plurality of control variables can be obtained to reduce the aberration, thereby reducing the use of the lens, so that the thin film of the present invention can be called low. Total length. In the thinned photographic lens group of the present invention, if the surface of the lens is convex, it indicates that the surface of the lens is convex at the paraxial; if the surface of the lens is concave, it indicates that the surface of the lens is concave at the paraxial. In the thin photographic lens group of the present invention, at least one light can be placed to reduce stray light, which contributes to image quality improvement. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an optical schematic view of a first embodiment of the present invention. Fig. 1 is a diagram showing aberrations of the first embodiment of the present invention. Figure 2 is an optical schematic view of a second embodiment of the present invention. 22 201219879 2B is a diagram showing aberrations of the second embodiment of the present invention. Fig. 3A is an optical schematic view of a third embodiment of the present invention. Fig. 3B is a diagram showing aberrations of the third embodiment of the present invention. Fig. 4A is an optical schematic view of a fourth embodiment of the present invention. Fig. 4B is a diagram showing aberrations of the fourth embodiment of the present invention. Fig. 5A is an optical schematic view of a fifth embodiment of the present invention. Fig. 5B is a diagram showing aberrations of the fifth embodiment of the present invention. • Fig. 6A is an optical schematic view of a sixth embodiment of the present invention. Fig. 6B is a diagram showing aberrations of the sixth embodiment of the present invention. [Table Description] Table 1 shows optical data of the first embodiment. Table 2 The first embodiment aspherical data. - Table 3 Second embodiment optical data. Table 4 The second embodiment aspherical data. • Table 5 Optical data of the third embodiment. Table 6 The third embodiment is aspherical data. Table 7 The optical data of the fourth embodiment. Table 8 The fourth embodiment aspherical data. Table 9 Optical data of the fifth embodiment. Table 10 Fifth embodiment aspherical data. Table 11 shows the optical data of the sixth embodiment. Table 12 shows the aspherical data of the sixth embodiment. 23 201219879 Table 13 Numerical data on the correlation of the invention. [Major component symbol description] First lens 110, 210, 310, 410, 510, 610 object side surface 111, 211, 311, 411, 511, 611 image side surface 112, 212, 312, 412, 512, 612 second Lens 120, 220, 320, 420, 520, 620 object side surfaces 121, 221, 321, 421, 521, 621 image side surfaces 122, 222, 322, 421, 521, 621 _ apertures 100, 200, 300, 400, 500, 600 optical axis 150, 250, 350, 450, 550, 650 IR filter 170, 270, 370, 470, 570, 670 imaging surface 190, 290, 390, 490, 590, 690 CT1: The center thickness CT2 of the first lens: the center thickness of the second lens f: the overall focal length of the optical imaging system: the focal length of the second lens, the electronic sensation, the effective pixel region, the line (four)-half*, the radius of curvature of the object side surface of the first lens : curvature of the image side surface of the first lens: R3: curvature of the object side surface of the second lens half SL. Distance of the aperture to the imaging plane on the optical axis TTL: object side surface of the first lens to image as in the optical axis The distance on the 24 201219879 vi: the dispersion coefficient V2 of the first lens: the dispersion coefficient N1 of the second lens: the first Index lens N2: refractive index of the second lens

Bf :第二透鏡的像侧表面至成像面於光軸上的距離Bf : distance from the image side surface of the second lens to the imaging surface on the optical axis

2525

Claims (1)

201219879 七、申請專利範圍: •種薄型化攝影透鏡組’由物側至像側依序包含: 一具正屈折力的第-透鏡,其物侧表面為凸面、像侧表面為 凹面該物側表面與像側表面至少一面為非球面; -負屈折力的第二透鏡,其物側表面為凹面、像側表面為 凸面’該物側表面與像側表面至少-面為非球面; 該薄型化攝影透鏡組中具屈折力的透鏡為兩片,且該第一 透鏡的色散絲為W,該第二透鏡的色散絲為v2,該薄型化 攝影透鏡組的整體焦距為f,該第二透鏡的焦距為f2,該第二 j鏡的物側表面曲率半徑為R3,此外,該薄型化攝影透鏡組另 投置一光圈,該光圈至成像面於光秘上的距離為SL,該第-透 鏡的物側表面至成像面於光軸上的距離為m,滿足下列關係 式: 15 &lt; |V1~V2| &lt; 48 I '〇. 43 &lt; f/f2 &lt; 〇 ; '1.50 &lt; R3/f &lt; -〇&lt;4〇 ; 〇· 9 &lt; SL/TTL &lt; 1.1 〇 2·如申請專利細第!項所述之薄型化攝影透鏡組,其令 該第-透鏡的材質為塑膠’且其物側表面與像側表面皆為非球 =,該第二透鏡的材料歸,且其物織面與像織面皆 球面。 Ρ 3·如申請專利範圍第2項所述之薄型化攝影透鏡組,其中 26 201219879 該第一透鏡的物侧表面與像側表面的曲率半徑分別為則與敗, 兩者滿足下列關係式:〇&lt;R1/R2&lt;()8。 4. 如申請專利範圍第3項所述之薄型化攝影透鏡組,其中 該第透鏡的色散係數為V卜該第二透鏡的色散係數為V2,兩 者滿足下列關係式:23 &lt; |V1_V2|〈 45。 5. 如申請專利範圍第4項所述之薄型化攝影透鏡組,其中 該第透鏡的色散係數為乂卜該第二透鏡的色散係數為兩 • 者滿足下列關係式:30 &lt; |vi-V2| &lt; 42。 /如申請專利範圍第3項所述之薄型化攝影透鏡組,其中 該薄型化攝影透鏡_整體焦距為f,該第二透鏡的焦距為 f2 ’兩者献下列_式:-0.27 &lt; f/f2〈 〇。 7.如申請專利範圍第3項所述之薄型化攝影透鏡組其中 該薄型化攝影透鏡組的整齡距為f,該第二透鏡的物側表面 曲率半徑為R3,兩者滿足下列關係式:一h 2〇〈斯〈_〇· 5〇。 _ 8.如申請翻範圍第3項所述之薄型化攝影透鏡組,其中 sx第透鏡的中〜厚度為CT1,該第二透鏡的中心厚度為ct2, 兩者滿足下列關係式:0 25〈 CT1/CT2〈 〇 95。 9.如申請專利範圍第8項所述之薄型化攝影透鏡組,其中 該第透鏡的中〜厚度為CT1,該第二透鏡的中心厚度為ςτ2, 兩者滿足下列關係式:〇.4〇 &lt; CT1/CT2 &lt; 〇· 76。 10·如申請專利範圍第3項所述之薄型化攝影透鏡組,其中 該第-透鏡的折射率為m,該第二透鏡的折射率為N2,兩者滿 27 201219879 足下列關係式:0. 04 &lt; N2-N1 &lt; 〇. 18。 11. 如申請專利範圍第3項所述之薄型化攝影透鏡組,其中 該第二透鏡的像侧表面至成像面於光軸上的距離為,該第一 透鏡的中心厚度為CT2,兩者滿足下列關係式:〇. 95 &lt; Bf/a2〈 1.65。 12. 如申請專利範圍第3項所述之薄型化攝影透鏡組,其十 該第-透鏡的物侧表面與像側表面的曲率半徑分別為R1與敗, 兩者滿足下列關係式:0.40 &lt; ri/r2 &lt; 0.60。 13·如申請專利範圍第3項所述之薄型化攝影透鏡組,其中 該第-透鏡的物側表面至成像面於光軸上的距離為m,另於 該成像面設置-電子感光元件’該電子感光元件有效晝素區域對 角線長的-半為ImgH,兩者滿足下列關係式:m/ImgH〈 ^ %。 14. 一種薄型化攝影透鏡組,由物側至像侧依序包含: -具正屈折力的第—透鏡,其物侧表面為凸面、像侧表面為 凹面’該物側表面與像側表面皆為非球面,該第—透鏡為歸; 一具負屈折力的第二透鏡,其物侧表面為凹面、像側表面為 凸面’該物側表面與侧表面皆為非球面,該第二透鏡為塑膠; 該薄型化攝影透鏡組中具屈折力的透鏡為兩片,且該第一 透鏡的色散魏為VI,該第二透鏡的色散魏為v2,該薄型化 攝影透鏡_整難、距為f,該第二透鏡_、距為f2,該第一 透鏡的折射率為N卜第二透鏡的折射率為N2,該第二透鏡的像 侧表面至成像面於光軸上的距離為Bf,該第二透鏡的中心厚度 28 201219879 為CT2 ’滿足下列關係式: 15 &lt; IV1-V2I &lt; 48 ; -0. 43 &lt; f/f2 &lt; 〇 ; N2 &gt; N1 ; 0. 4 &lt; Bf/CT2 &lt; 2201219879 VII. Patent application scope: • A thinned photographic lens group consists of: from the object side to the image side: a first lens with positive refractive power, the object side surface is convex, and the image side surface is concave. At least one surface of the surface and the image side surface is aspherical; a second lens having a negative refractive power, the object side surface is a concave surface, and the image side surface is a convex surface. The object side surface and the image side surface are at least-surface aspherical; The lens having refractive power in the photographic lens group is two, and the dispersion yarn of the first lens is W, the dispersion yarn of the second lens is v2, and the overall focal length of the thinned photographic lens group is f, the second The focal length of the lens is f2, and the radius of curvature of the object side surface of the second j mirror is R3. In addition, the thinned photographic lens group is additionally placed with an aperture, and the distance from the aperture to the optical surface of the imaging surface is SL. - the distance from the object side surface of the lens to the imaging surface on the optical axis is m, satisfying the following relationship: 15 &lt; |V1~V2| &lt; 48 I '〇. 43 &lt; f/f2 &lt;〇; '1.50 &lt; R3/f &lt;-〇&lt;4〇; 〇· 9 &lt; SL/TTL &lt; 1.1 〇2· Such as applying for a patent fine! The thinned photographic lens assembly of the present invention, wherein the material of the first lens is made of plastic and the object side surface and the image side surface are both aspherical = the material of the second lens is returned, and the material of the second lens is Like the weave is spherical.薄 3. The thinned photographic lens group according to claim 2, wherein 26 201219879 the radius of curvature of the object side surface and the image side surface of the first lens are respectively equal and unsuccessful, and both satisfy the following relationship: 〇&lt;R1/R2&lt;()8. 4. The thinned photographic lens group according to claim 3, wherein the chromatic dispersion coefficient of the first lens is V and the chromatic dispersion coefficient of the second lens is V2, and both satisfy the following relationship: 23 &lt; |V1_V2 | < 45. 5. The thinned photographic lens group according to claim 4, wherein the chromatic dispersion coefficient of the first lens is 乂, the chromatic dispersion coefficient of the second lens is two, and the following relationship is satisfied: 30 &lt; |vi- V2| &lt; 42. The thinned photographic lens group according to claim 3, wherein the thinned photographic lens _ has an overall focal length of f, and the focal length of the second lens is f2 'both the following _ formula: -0.27 &lt; f /f2< 〇. 7. The thinned photographic lens group according to claim 3, wherein the thinned photographic lens group has an entire age of f, and the second lens has an object side surface radius of curvature R3, and both satisfy the following relationship : 一h 2〇 <斯〈_〇· 5〇. 8. The thinned photographic lens group of claim 3, wherein the middle thickness of the sx lens is CT1, and the center thickness of the second lens is ct2, the two satisfy the following relationship: 0 25 CT1/CT2<〇95. 9. The thinned photographic lens group according to claim 8, wherein a middle thickness of the first lens is CT1, and a center thickness of the second lens is ςτ2, both of which satisfy the following relationship: 〇.4〇 &lt; CT1/CT2 &lt; 〇· 76. 10. The thinned photographic lens group of claim 3, wherein the refractive index of the first lens is m, and the refractive index of the second lens is N2, both of which are 27 201219879, the following relationship: 0 . 04 &lt; N2-N1 &lt; 〇. 18. 11. The thinned photographic lens assembly of claim 3, wherein a distance from an image side surface of the second lens to an imaging surface on an optical axis is a center thickness of the first lens is CT2, both The following relationship is satisfied: &. 95 &lt; Bf/a2 < 1.65. 12. The thinned photographic lens group according to claim 3, wherein the radius of curvature of the object side surface and the image side surface of the first lens is R1 and F, respectively, and both satisfy the following relationship: 0.40 &lt;; ri/r2 &lt; 0.60. The thinned photographic lens group according to claim 3, wherein a distance from the object side surface of the first lens to the imaging surface on the optical axis is m, and the image forming surface is provided with an -electronic photosensitive element. The electron photosensitive element is effective in the diagonal length of the halogen region - half is ImgH, and both satisfy the following relationship: m / ImgH < ^ %. 14. A thinned photographic lens group comprising: from the object side to the image side: - a lens having a positive refractive power, the object side surface being a convex surface, and the image side surface being a concave surface 'the object side surface and the image side surface All of the aspherical surfaces, the first lens is a return; a second lens having a negative refractive power, the object side surface is a concave surface, the image side surface is a convex surface, and the object side surface and the side surface are both aspherical surfaces, the second The lens is a plastic; the lens having a refractive power in the thinned photographic lens group is two, and the dispersion of the first lens is VI, and the dispersion of the second lens is v2, and the thinned photographic lens is difficult. The distance is f, the second lens _, the distance is f2, the refractive index of the first lens is N, the refractive index of the second lens is N2, and the distance from the image side surface of the second lens to the imaging surface on the optical axis For Bf, the center thickness of the second lens 28 201219879 is CT2 'satisfying the following relationship: 15 &lt; IV1-V2I &lt;48; -0. 43 &lt; f/f2 &lt;〇; N2 &gt;N1; 4 &lt; Bf/CT2 &lt; 2 15.如申請專利範圍第14項所述之薄型化攝影透鏡組,其 中該薄型化攝影透鏡_整體焦距為f,該第二透鏡的物側表 面曲率半徑為R3,兩者滿足下_係式:].50 &lt; R3/f &lt; _〇 40。 16.如申請專利範圍第15項所述之薄型化攝影透鏡組,其 中該第-透鏡的折射率為N1,該第二透鏡的折射率為呢,兩者 滿足下列關係式:〇· 04 &lt; N2-N1 &lt; 〇 18。 17.如申請專利範圍第15項所述之薄型化攝影透鏡組其 中該第二透鏡的像側表面至成像面於絲上的距離為扮,該第 二透鏡的中心厚度為CT2,兩者滿足下列關係式:〇 95&lt;Bf/CT2 &lt; 1. 65。 18. 如申請專利範圍第17項所述之薄型化攝影透鏡組,其 中該薄型化攝影透鏡組另設置一光圈,該光圈至成像面於光轴 上的距離為SL,該第一透鏡的物侧表面至成像面於光軸上的距 離為TTL,滿足下列關係式:〇. 9 &lt; SL/TTL &lt; 1.1。 19. 如申請專利範圍第18項所述之薄型化攝影透鏡組,其 中該第一透鏡的色散係數為VI ’該第二透鏡的色散係數為乂2, 兩者滿足下列關係式:30 &lt; IV1-V2I &lt; 42。 29 201219879 肌如申請專利範圍第17項所述之薄型化攝影透鏡組,其 中該薄型化攝影透鏡組的整體焦距為f,該第二透鏡的焦距為 f2,兩者滿足下列關係式:_〇. 27〈 f/f2〈 〇。 21. 如申請專利範圍第17項所述之薄型化攝影透鏡組,其 中該薄型化攝影透鏡組的整體焦距為f,該第二透鏡的物侧表 面曲率半徑為R3,兩者滿足下列關係式:].2〇 &lt; R3/f &lt; _〇. 5〇。 22. 如申請專利範圍第17項所述之薄型化攝影透鏡組,其 中該第-透鏡的中心厚度為⑺,該第二透_中心厚度為 CT2 ’兩者滿足下列關係式:〇 4〇 &lt; CT1/CT2 &lt; 〇 76。 23. 如申請專利範圍第17項所述之薄型化攝影透鏡組,其 中該第-透鏡的物侧表面與像側表面的曲率半徑分別為則與 R2,兩者滿足下列關係式:〇. 4〇〈 Ri/敗&lt; 〇 6〇。15. The thinned photographic lens group according to claim 14, wherein the thinned photographic lens _ has an overall focal length of f, and the second lens has an object side surface radius of curvature of R3, both of which satisfy the lower _ series :].50 &lt; R3/f &lt; _〇40. 16. The thinned photographic lens group according to claim 15, wherein the refractive index of the first lens is N1, and the refractive index of the second lens is such that the two relations satisfy the following relationship: 〇·04 &lt;; N2-N1 &lt; 〇 18. 17. The thinned photographic lens group according to claim 15, wherein a distance from an image side surface of the second lens to an image surface on the wire is a thickness, and a center thickness of the second lens is CT2, both of which satisfy The following relationship: 〇 95 &lt; Bf / CT2 &lt; 1. 65. 18. The thinned photographic lens assembly of claim 17, wherein the thinned photographic lens group is further provided with an aperture, the distance from the aperture to the imaging surface on the optical axis is SL, the first lens The distance from the side surface to the imaging surface on the optical axis is TTL, which satisfies the following relationship: &. 9 &lt; SL/TTL &lt; 1.1. 19. The thinned photographic lens group of claim 18, wherein the first lens has a chromatic dispersion coefficient of VI 'the second lens has a chromatic dispersion coefficient of 乂2, and both satisfy the following relationship: 30 &lt; IV1-V2I &lt; 42. 29 201219879 The thinned photographic lens group of claim 17, wherein the thinned photographic lens group has an overall focal length of f and the second lens has a focal length of f2, and both satisfy the following relationship: _〇 . 27 < f/f2 < 〇. 21. The thinned photographic lens group according to claim 17, wherein the thinned photographic lens group has an overall focal length of f, and the second lens has an object side surface having a radius of curvature of R3, and both satisfy the following relationship :].2〇&lt; R3/f &lt; _〇. 5〇. 22. The thinned photographic lens group according to claim 17, wherein the center-thickness of the first lens is (7), and the thickness of the second transparent center is CT2', both of which satisfy the following relationship: 〇4〇&lt;; CT1/CT2 &lt; 〇76. 23. The thinned photographic lens group according to claim 17, wherein the radius of curvature of the object side surface and the image side surface of the first lens is respectively R2, and both satisfy the following relationship: 〇. 4 〇 < Ri / defeat &lt; 〇 6 〇.
TW99138778A 2010-11-11 2010-11-11 Compact imaging lens assembly TWI442128B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW99138778A TWI442128B (en) 2010-11-11 2010-11-11 Compact imaging lens assembly
CN201110070030.6A CN102466868B (en) 2010-11-11 2011-03-23 Thin photographic lens group
CN2011200780931U CN202025118U (en) 2010-11-11 2011-03-23 Thin photographic lens group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99138778A TWI442128B (en) 2010-11-11 2010-11-11 Compact imaging lens assembly

Publications (2)

Publication Number Publication Date
TW201219879A true TW201219879A (en) 2012-05-16
TWI442128B TWI442128B (en) 2014-06-21

Family

ID=44850063

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99138778A TWI442128B (en) 2010-11-11 2010-11-11 Compact imaging lens assembly

Country Status (2)

Country Link
CN (2) CN202025118U (en)
TW (1) TWI442128B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI820692B (en) * 2022-04-29 2023-11-01 大立光電股份有限公司 Projection lens system, projection apparatus and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI442128B (en) * 2010-11-11 2014-06-21 Largan Precision Co Ltd Compact imaging lens assembly
TWI452377B (en) * 2012-03-20 2014-09-11 Largan Precision Co Ltd Optical lens assembly

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753183B1 (en) * 2004-10-19 2006-03-08 株式会社エンプラス Imaging lens
CN101393317B (en) * 2007-09-21 2010-08-18 大立光电股份有限公司 Double-piece photographic lens
JP5413738B2 (en) * 2009-06-26 2014-02-12 コニカミノルタ株式会社 Imaging lens, imaging device, and portable terminal
TWI442128B (en) * 2010-11-11 2014-06-21 Largan Precision Co Ltd Compact imaging lens assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI820692B (en) * 2022-04-29 2023-11-01 大立光電股份有限公司 Projection lens system, projection apparatus and electronic device

Also Published As

Publication number Publication date
TWI442128B (en) 2014-06-21
CN202025118U (en) 2011-11-02
CN102466868B (en) 2014-06-11
CN102466868A (en) 2012-05-23

Similar Documents

Publication Publication Date Title
US20200041770A1 (en) Optical lens assembly, image capturing apparatus and electronic device
TWI435135B (en) Optical lens system
WO2020001066A1 (en) Camera lens
TWI434096B (en) Optical imaging lens system
TWI432822B (en) Optical lens assembly for image photographing
TWI437311B (en) Optical lens assembly for image taking
TWI510806B (en) Optical image capturing system
TWI472826B (en) Optical image lens system
TWI435136B (en) Optical imaging lens assembly
TWI401485B (en) Imaging optical lens assembly
TWI406027B (en) Imaging lens assembly
TWI421562B (en) Optical lens assembly for image taking
TWI410693B (en) Image pick-up optical lens assembly
TWI408409B (en) Imaging lens assembly
TWI418841B (en) Photographing optical system
TWI409496B (en) Photographing optical lens assembly
TW201326956A (en) Image capturing lens system
TW201314254A (en) Imaging lens system
TWI437309B (en) Optical lens for image pickup
TW201100854A (en) Optical lens system for taking image
TW201137430A (en) Photographing optical lens assembly
TW201227043A (en) Photographing optical lens assembly
TW201312199A (en) Image lens system
TWI410670B (en) Imaging lens system
TWI429945B (en) Image capturing lens system