TW201219877A - composed of two lens groups to achieve variable focus with small volume and high optical efficiency - Google Patents

composed of two lens groups to achieve variable focus with small volume and high optical efficiency Download PDF

Info

Publication number
TW201219877A
TW201219877A TW99138574A TW99138574A TW201219877A TW 201219877 A TW201219877 A TW 201219877A TW 99138574 A TW99138574 A TW 99138574A TW 99138574 A TW99138574 A TW 99138574A TW 201219877 A TW201219877 A TW 201219877A
Authority
TW
Taiwan
Prior art keywords
lens
projection lens
zoom projection
zoom
mirror group
Prior art date
Application number
TW99138574A
Other languages
Chinese (zh)
Other versions
TWI480620B (en
Inventor
Yuan-Fang Liang
Original Assignee
Asia Optical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Optical Co Inc filed Critical Asia Optical Co Inc
Priority to TW099138574A priority Critical patent/TWI480620B/en
Publication of TW201219877A publication Critical patent/TW201219877A/en
Application granted granted Critical
Publication of TWI480620B publication Critical patent/TWI480620B/en

Links

Landscapes

  • Lenses (AREA)

Abstract

The present invention discloses a variable-focus projection lens, which comprises a first lens group and a second lens group sequentially arranged from an imaging side to an image source side along an optical axis. In which, the first lens group has a negative diopter, and the first three lenses in the first lens group counting from the imaging side to the image source side have sequentially negative, positive and negative diopter; the second lens group has a positive diopter, and the last lens in the second lens group counting from the imaging side to the image source side has a positive diopter, and has at least one surface being an aspherical surface. Additionally, the first lens group may be moved between the imaging side and the second lens group along the optical axis, so as to achieve the objects of variable focus and miniaturization.

Description

201219877 六、發明說明: 【發明所屬之技術領域】 一種變焦投t彡 本發明係與投影鏡頭有關,更詳而言之是指 鏡頭。 【先前技術】 近年來,隨著影像科技的進步,利用投影機進行簡報、視 訊、會議或是觀編之人越來越多。而為使投影機能適用於 各種設置魏(如客廳、會議室或射),投影機之鏡頭大多具 備改變焦距之功能,_可使投影出來之畫面可依不同設置環 境改變大小。另外’為使投影魏肢_帶與使用,鏡頭的 體積也將被大幅地縮小,以滿足人們所期望的小型化及輕量化 之需求,再者,除了小型化與輕量化外,也要能夠具有更高的 光學效能’才能使達成高解析度和高對比之影像展現。因此, # +型化和高光學效能,是變焦投影鏡頭不可缺兩項要件。 然而’目m投影機所狀變焦投影鏡頭,為達高光學效 %不外乎使用了上之鏡群,而無法達到真正的小型化 絲量化。亦或是為_使麵小型化之目的,祕使用數片 透鏡’卻使得其光學校能無法有效得到提升。 【發明内容】 有4α於此’本發明之主要目的在於提供一種變焦投影鏡 201219877 頭’由兩組鏡群所組成’不僅體積小,且具有高光學效能。 緣以達成上述目的’本發明所提供之變焦投影鏡頭沿一光 軸且由-成像侧至—像_依序排·置之—第—鏡群以及 -第二鏡群;其中,該第—鏡群具有負屈光力;該第一鏡群中 由該成像酿該像_算起之前以鏡狀料力依序為 負、正、負,該第二鏡群具有正屈光力;該第二鏡群中由該成 像側至該像源㈣起最後—片鏡片具有正屈光力,且至少—面 為非球面表面;另外’該第—鏡群可於該成賴與該第二鏡群 間沿該光轴移動。 藉此’利用移動該第一鏡群,以達到改變鏡頭焦距之目的。 【實施方式】 為能更清楚地說明本發明,茲舉較佳實施例並配合圖示詳 細說明如後。201219877 VI. Description of the invention: [Technical field to which the invention pertains] A zoom projection is related to a projection lens, and more specifically to a lens. [Prior Art] In recent years, with the advancement of imaging technology, more and more people use projectors for briefing, video, conferences or viewing. In order to make the projector suitable for various settings (such as living room, conference room or shooting), the lens of the projector has the function of changing the focal length. _ The projected image can be changed according to different setting environments. In addition, in order to make the projection of the limbs and the use of the lens, the volume of the lens will be greatly reduced to meet the demand for miniaturization and weight reduction, and in addition to miniaturization and weight reduction, With higher optical performance', it can achieve high resolution and high contrast image display. Therefore, # + type and high optical performance are two essential elements for zoom projection lenses. However, the zoom projection lens of the projector is not only the use of the upper mirror group, but also the real miniaturization of the silk. Or for the purpose of miniaturizing the surface, the secret use of several lenses has made it impossible for its school to be effectively improved. SUMMARY OF THE INVENTION The main object of the present invention is to provide a zoom projection lens. The 201219877 head is composed of two groups of mirrors, which are not only small in size but also have high optical performance. In order to achieve the above object, the zoom projection lens provided by the present invention along an optical axis and from the - imaging side to the image sequence is arranged in a sequence of - a mirror group and a second mirror group; wherein the first The mirror group has a negative refractive power; the first mirror group is negative, positive and negative in the form of a mirror-like force before the image is calculated by the image, and the second mirror group has a positive refractive power; the second mirror group From the imaging side to the image source (4), the last lens has a positive refractive power, and at least the surface is an aspherical surface; and the 'the first mirror group can be along the light between the pair and the second mirror group The axis moves. Thereby, the first mirror group is moved to achieve the purpose of changing the focal length of the lens. [Embodiment] In order to explain the present invention more clearly, the preferred embodiment will be described in detail with reference to the accompanying drawings.

請參閱圖1,為本發明第一較佳實施例變焦投影鏡頭j之 鏡片配置圖’其包含有沿光軸z且由絲側至像賴依序排列 β又置且由玻璃製成之一第一鏡群G1與一第二鏡群G2。另外, 該第一鏡群G1可於成像側與該第二鏡群G2間,沿光軸z進 行移動,以達到改變鏡頭焦距之目的,使該變焦投影鏡頭i可 依該第一鏡群G1之位置區分為廣角狀態、中間 (middle)狀態與遠距投影(teleph〇t〇)狀態。再者,依使用上的需 求’在第二鏡群G2與像源側之間更可設置一玻璃覆蓋CG 201219877 (CoverGlass),係一平板玻璃。其中: 該第-鏡群G1具有負屈光力,且包含有一第一鏡片u、 第一鏡片L2、一第二鏡片L3、-第四鏡片L4以及-第五 鏡片L5。該第—鏡以丨為―具有負屈光力之新月型透鏡,且 其凸面R1朝向成像側。該第二鏡片L2為—具有正 之 雙凸透鏡。該第三鏡月L3為一具有負屈光力之新月型透鏡, 且其凸面R5朝向成像侧。該第四鏡片w為_具有負屈光力 # 之雙凹透鏡。該第五鏡片L5為一具有正屈光力之單凸透鏡, 且其凸面R9朝向成像側。 該第—鏡群G2具有正屈光力,且包含有—第六鏡片. 第鏡片L7、一第八鏡丨L8、-第九鏡片L9、-第十鏡片 第十—鏡片Ul。該第六透鏡“為—具有正屈光 單凸透鏡’且其凸面R11朝向成像側。該第七透鏡π為 —具有負屈光力之雙凹透鏡。該第人鏡片u為—具有正屈光 力之雙凸魏,且彡辆1之細ST設於該第八透 ,之表面R16上。該第九鏡片L9為—具有正屈光力之新 月型透鏡,且其凸面R17朝向成像側。該第十鏡片L⑴為一 . f負屈光力之雙凹透鏡。該第十-鏡片⑶為-具有正屈光 之雙凸透鏡,且其表面奶、R22皆為非球面表面。 為能使該魏縣鏡頭1能有效地輯鏡職長並可修正 像差,該魏投影鏡頭1敲下列條件: ^ 0) -0.87 < β/f!《〇 76 (2) -2.09 < f!/fw < _185 201219877 (3)1.59^^/fw<1 64 ⑷ 0.70 < fW/bf < 0.71 (5) 6.66 tt/fw < 6.7 (6) 4.7 <tt/bf< 4.74 、卜 ^ ί'Ί 、 1為該第一鏡群G1之有效焦距;f2為該第二鏡群 G2之有欵隹 *、、、矩;fw為該變焦投影鏡頭1於廣角(wide-angle) 狀下之有致麵;bf為該變焦投影鏡頭1之後焦長度;tt為 彡,1之總長度。 為使該變焦投影鏡頭1能有效地縮減鏡頭總長並增 加後焦長度’該變焦投影鏡頭1更滿足下列條件: ⑺-1.31 c ex/bf < 心 24 (8) 0.787 < lt/tt < 0.789 (9) 1.31 <私〜<22 其中ex為該變焦投影鏡頭1之出曈位置(exit pupil position); It為該變焦投影鏡頭i之第一個表面幻至最後一個 表面R24間之長度;fg為該第十一鏡片U1之有效焦距。 本發明第—實施例之變焦投影鏡頭1的焦距F (Focus Length)、數值孔徑FN〇 (F_number)、各個鏡片表面的光轴z 通過處的曲率半徑R ( radius of curvature )、各鏡片於光軸z上 之厚度 T (thickness )、各鏡片之折射率 Nd (refractive index ) 及各鏡片之阿貝係數Vd (Abbenumber),如表一所示: 表一 F=21.75(W)~28.2488(M)~34.077(T) FNO=2.398fW1 ~2.70iMV-2.98m 表面 R(mm) T(mm) Nd Vd 備註 R1 79 2.2 1.846660 23.8 第一鏡片 LI R2 43.48 6 201219877 R3 1 83481 42.7 R4 -572 βρ Γ\ L2 R5 70.4 1.497 81.6 R6 22.8 12.64 第三鏡片 L3 R7 -69.2 1.2 1.741 第四鏡片 L4 52.7 R8 40.671 is a lens arrangement diagram of a zoom projection lens j according to a first preferred embodiment of the present invention, which includes one side of the optical axis z and arranged by the side of the wire to the image, and is made of glass. The first mirror group G1 and a second mirror group G2. In addition, the first mirror group G1 can be moved along the optical axis z between the imaging side and the second mirror group G2 to achieve the purpose of changing the focal length of the lens, so that the zoom projection lens i can be according to the first mirror group G1. The position is divided into a wide-angle state, a middle state, and a telephoto (teleph〇t〇) state. Further, a glass cover CG 201219877 (CoverGlass) may be disposed between the second mirror group G2 and the image source side in accordance with the demand for use, which is a flat glass. Wherein: the first mirror group G1 has a negative refractive power and includes a first lens u, a first lens L2, a second lens L3, a fourth lens L4, and a fifth lens L5. The first mirror is a crescent-shaped lens having a negative refractive power, and its convex surface R1 faces the imaging side. The second lens L2 has a positive lenticular lens. The third mirror month L3 is a crescent lens having a negative refractive power, and its convex surface R5 faces the image forming side. The fourth lens w is a biconcave lens having a negative refractive power #. The fifth lens L5 is a single convex lens having a positive refractive power, and its convex surface R9 faces the image forming side. The first mirror group G2 has a positive refractive power and includes a sixth lens. The first lens L7, an eighth lens L8, a ninth lens L9, a tenth lens, and a tenth lens U1. The sixth lens is “having a positive refractive single convex lens” and its convex surface R11 faces the imaging side. The seventh lens π is a biconcave lens having a negative refractive power. The first human lens u is a double convex with positive refractive power. And the thin ST of the vehicle 1 is disposed on the surface R16 of the eighth through. The ninth lens L9 is a crescent lens having a positive refractive power, and the convex surface R17 faces the imaging side. The tenth lens L(1) is A f-concave lens with a negative refractive power. The tenth-lens (3) is a lenticular lens with positive refractive power, and the surface milk and R22 are aspherical surfaces, so that the Weixian lens 1 can effectively mirror The post can correct the aberrations. The Wei projection lens 1 knocks the following conditions: ^ 0) -0.87 < β/f! 《〇76 (2) -2.09 < f!/fw < _185 201219877 (3)1.59^ ^/fw<1 64 (4) 0.70 < fW/bf < 0.71 (5) 6.66 tt/fw < 6.7 (6) 4.7 <tt/bf< 4.74 , Bu ^ ί'Ί , 1 is the first mirror The effective focal length of the group G1; f2 is the 欵隹*, , and moment of the second mirror group G2; fw is the surface of the zoom projection lens 1 in the wide-angle state; bf is the zooming projection The focal length of the lens 1; tt is 彡, the total length of 1. In order to make the zoom projection lens 1 effectively reduce the total length of the lens and increase the back focus length, the zoom projection lens 1 satisfies the following conditions: (7)-1.31 c ex/ Bf < heart 24 (8) 0.787 < lt / tt < 0.789 (9) 1.31 < private ~ < 22 where ex is the exit pupil position of the zoom projection lens 1; It is the zoom The length between the first surface of the projection lens i and the last surface R24; fg is the effective focal length of the eleventh lens U1. The focal length F (value) of the zoom projection lens 1 of the first embodiment of the present invention The aperture FN〇(F_number), the radius of curvature R of the optical axis z of each lens surface, the thickness T of each lens on the optical axis z, and the refractive index of each lens Nd (refractive index) And the Abbe number Vd (Abbenumber) of each lens, as shown in Table 1: Table 1 F=21.75(W)~28.2488(M)~34.077(T) FNO=2.398fW1 ~2.70iMV-2.98m Surface R(mm ) T(mm) Nd Vd Remarks R1 79 2.2 1.846660 23.8 First lens LI R2 43.48 6 201219877 R3 1 83481 42.7 R 4 -572 βρ Γ\ L2 R5 70.4 1.497 81.6 R6 22.8 12.64 Third lens L3 R7 -69.2 1.2 1.741 Fourth lens L4 52.7 R8 40.67

R11 35.7 R12 3.97 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 -59.3 27.95 17.76 -127 20.9 39.3 -34.4 28.5 26.54 -100 1.788 第六鏡片 L6R11 35.7 R12 3.97 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 -59.3 27.95 17.76 -127 20.9 39.3 -34.4 28.5 26.54 -100 1.788 Sixth Lens L6

1.5927 6.1 1.37 6.5 2.2 0.6 0.33 3.1 26 1.7985(W)~6.964(M)~ 11.6386(T) 1.497 81.6 第八鏡片 L81.5927 6.1 1.37 6.5 2.2 0.6 0.33 3.1 26 1.7985(W)~6.964(M)~ 11.6386(T) 1.497 81.6 Eighth Lens L8

1.497 81.6 第九鏡片 L9 1-62004 第十鏡片 L101.497 81.6 Ninth Lens L9 1-62004 Tenth Lens L10

1.739 49.04 第十一鏡片 L11 1.487491.739 49.04 eleventh lens L11 1.48749

玻^覆蓋 CG 表一之厚度Τ中,(W)是指該變焦投影 (wide-angle)狀態時,於光軸Ζ上之間距;(Μ)是指該變焦投影 鏡頭1在中間(middle)狀態時,於光軸Z上之間距;(τ)是指該 變焦投影鏡頭1在長距投影(telephoto)狀態時’於光軸Z上之 間距The glass cover CG table 1 has a thickness Τ, (W) refers to the distance between the optical axis 该 in the wide-angle state; (Μ) means the zoom projection lens 1 is in the middle (middle) In the state, the distance between the optical axes Z; (τ) refers to the distance between the zoom projection lens 1 on the optical axis Z in the telephoto state

C 7 201219877 另外’本實施例之第十一鏡片L11之#球面表面 之表面凹陷度D由下列公式所得到: 其中: D:非球面表面之凹陷度; C:曲率半徑之倒數; Η:表面之孔徑半徑; Κ:圓錐係數; Ε4〜Em :表面之孔徑半徑h的各階係數。 在本實施例中’各個非球面表面的圓錐係數K (conic constant)及表面孔徑半徑η的各階係數E4〜Em如表二所示:C 7 201219877 Further, the surface depression degree D of the #spherical surface of the eleventh lens L11 of the present embodiment is obtained by the following formula: wherein: D: the degree of depression of the aspherical surface; C: the reciprocal of the radius of curvature; Aperture radius; Κ: conic coefficient; Ε4~Em: various order coefficients of the aperture radius h of the surface. In the present embodiment, the coefficient coefficients K4 to Em of the conic constant K and the surface aperture radius η of each aspherical surface are as shown in Table 2:

藉由上述的鏡片與光圈之配置,使得本實施例之變焦投影 鏡頭1不但可有效縮小體積以滿足輕量化之需求,該變焦投影 鏡頭1在廣角(wide-angle)狀態時,其成像品質上也可達到要 求’這可從圖2A至圖2D看出。 圖2A所示的,是本實施例之變焦投影鏡頭1的縱向色差 圖;圖2B所示的’是本實施例之變焦投影鏡頭1的橫向色差 201219877 圖;圖2C所示的,是本實施例之變焦投影鏡頭丨的場曲圖及 畸變圖;圖2D所示的,是本實施例之變焦投影鏡頭丨的空間 頻率調制傳遞函數圖(Spatial Frequency MTF )。從圖2 A及圖 2B可看出,本實施例變焦投影鏡頭1之縱向色差最大不超過 0.07mm和-0.03mm ’橫向色差最大不超過4μη^σ_1μιη。從圖 2C可看出,本實施例變焦投影鏡頭丨之最大場曲不超過 0.10mm與-0.04mm,且畸變量不超過2%。從圖2〇可看出, • 本實施例變焦投影鏡頭1在60 lP/mm的時候,其調制光學傳 遞函數值仍維持在50%以上。 另外,該變焦投影鏡頭1在中間(middie)狀態時,其成像 品質上也可達到要求,這可從圖3A至圖3d看出。從圖3a 及圖3B可看出,本實施例變焦投影鏡頭丨之縱向色差最大不 超過0.07mm和-0.05mm,橫向色差最大不超過4μιη和_2μιη。 從圖3 C可看出,本實施例變紐影辆丨之最大場曲不超過 鲁 0.10mm與__mm,且畸變量不超過〇8%。從圖扣可看出, 本實施例變f、投f鐵頭丨在6G lp/mm的時候,其調制光學傳 遞函數值仍維持在4〇%以上。 . 再者,該變焦投影鏡頭1在長距投影(telephoto)狀態時, 其成像扣質上也可達到要求,這可從圖4A至圖看出。從 圖4及圖4B可看出,本實施例變焦投影鏡頭1之縱向色差 最大不超過〇.〇8mm和·〇 〇8讓’橫向色差最大不超過恤和 ·4μιη。從圖4 c可看出,本實施例變焦投影鏡頭1之最大場曲 201219877With the above arrangement of the lens and the aperture, the zoom projection lens 1 of the present embodiment can effectively reduce the volume to meet the demand for light weight, and the zoom projection lens 1 has an image quality in a wide-angle state. The requirements can also be met 'this can be seen from Figure 2A to Figure 2D. 2A is a longitudinal chromatic aberration diagram of the zoom projection lens 1 of the present embodiment; FIG. 2B is a lateral chromatic aberration 201219877 diagram of the zoom projection lens 1 of the present embodiment; and FIG. 2C is the present embodiment. For example, the field curvature map and the distortion map of the zoom projection lens ;; FIG. 2D shows the spatial frequency modulation transfer function map (Spatial Frequency MTF) of the zoom projection lens 本 of the embodiment. As can be seen from Fig. 2A and Fig. 2B, the longitudinal chromatic aberration of the zoom projection lens 1 of the present embodiment does not exceed 0.07 mm and -0.03 mm ′ at the maximum, and the lateral chromatic aberration does not exceed 4 μη σ_1 μm. As can be seen from Fig. 2C, the maximum field curvature of the zoom projection lens of this embodiment does not exceed 0.10 mm and -0.04 mm, and the distortion variable does not exceed 2%. As can be seen from Fig. 2, the zoom optical projection function of the present embodiment has a modulation optical transfer function value of 50% or more at 60 lP/mm. In addition, the zoom projection lens 1 can also meet the imaging quality in the middie state, as can be seen from Figs. 3A to 3d. As can be seen from Fig. 3a and Fig. 3B, the longitudinal chromatic aberration of the zoom projection lens of the present embodiment does not exceed 0.07 mm and -0.05 mm at the maximum, and the lateral chromatic aberration does not exceed 4 μm and _2 μm at the maximum. It can be seen from Fig. 3C that the maximum field curvature of the 纽 影 本 本 不 不 不 不 不 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 As can be seen from the figure, in the present embodiment, when the f-head is at 6G lp/mm, the value of the modulation optical transfer function is maintained above 4%. Moreover, the zoom projection lens 1 can also meet the requirements on the imaging buckle when in the telephoto state, which can be seen from FIG. 4A to FIG. As can be seen from Figs. 4 and 4B, the longitudinal chromatic aberration of the zoom projection lens 1 of the present embodiment does not exceed 〇. 〇 8 mm and 〇 让 8 so that the lateral chromatic aberration does not exceed the maximum of the shirt and the frame. As can be seen from FIG. 4c, the maximum field curvature of the zoom projection lens 1 of the present embodiment 201219877

不超過0.12mm與-〇.12mm,且畸變量不超過0.4%。從圖4D 可看出,本實施例變焦投影鏡頭1在60 lp/mm的時候,其調 制光學傳遞函數值仍維持在40%以上,顯見本實施例之變焦投 影鏡頭1的解析度不管是在是廣角(wide-angie)狀態、中間 (middle)狀態或是長距投影(teieph〇t〇)狀態時,都是符合標準 的0 以上所述的,是本發明第一實施例的變焦投影鏡頭丨;依 據本發明的技術,以下配合圖5說明本發明的第二實施例。 本實施例之變焦投影鏡頭2包含有沿光轴Z且由成像側至 像源側依序排列設置並由玻璃製成之一第一鏡群〇1與一第二 鏡群G2。另外,該第一鏡群G1同樣可於成像側與該第二鏡 群G2間,沿光軸z進行移動,以改變鏡頭之焦距,使該變焦 投影鏡頭可依該第-鏡群G1德置區分為廣肖(wide angle) 狀態、中間(middle)狀態與遠距投影(teieph〇t〇)狀態。再者,該 第一鏡群G2與像源側之間同樣設置有-玻璃覆蓋CG ( Cover Glass)。 s亥第一鏡群G1具有負屈光力,其包含有一第一鏡片Li、 第一鏡片L2、-第二鏡片L3、-第四鏡片L4以及-第五 鏡片L5。該第-鏡片L1為一具有負屈光力之新月型鏡片,其 凸面R1朝向成像側。該第二鏡片L2為一具有正屈光力之雙 凸透鏡。該第三鏡片L3為一具有負屈光力之新月型透鏡,且 201219877 其凸面R5朝向成像侧。該第四鏡片L4為—具有負屈光力之 雙凹透鏡。該第五鏡片L5為—具有正屈光力之單凸透鏡,且 其凸面R9朝向成像側。Not more than 0.12mm and -〇.12mm, and the distortion variable does not exceed 0.4%. As can be seen from FIG. 4D, when the zoom projection lens 1 of the present embodiment is at 60 lp/mm, the modulation optical transfer function value is maintained at 40% or more. It is apparent that the resolution of the zoom projection lens 1 of the present embodiment is When it is a wide-angle state, a middle state, or a long-range projection (teieph〇t〇) state, it is all in accordance with the standard 0, and is the zoom projection lens of the first embodiment of the present invention.丨; according to the technology of the present invention, a second embodiment of the present invention will be described below with reference to FIG. The zoom projection lens 2 of the present embodiment includes a first mirror group 〇1 and a second mirror group G2 which are arranged along the optical axis Z and are arranged in order from the imaging side to the image source side and are made of glass. In addition, the first mirror group G1 can also move along the optical axis z between the imaging side and the second mirror group G2 to change the focal length of the lens, so that the zoom projection lens can be set according to the first mirror group G1. It is divided into a wide angle state, a middle state, and a tele projection (teieph〇t〇) state. Further, a glass cover CG (cover glass) is provided between the first mirror group G2 and the image source side. The first mirror group G1 has a negative refractive power and includes a first lens Li, a first lens L2, a second lens L3, a fourth lens L4, and a fifth lens L5. The first lens L1 is a crescent lens having a negative refractive power, and the convex surface R1 faces the image forming side. The second lens L2 is a lenticular lens having a positive refractive power. The third lens L3 is a crescent lens having a negative refractive power, and 201219877 has a convex surface R5 facing the imaging side. The fourth lens L4 is a biconcave lens having a negative refractive power. The fifth lens L5 is a single convex lens having a positive refractive power, and its convex surface R9 faces the image forming side.

該第二鏡群G2具有正屈光力,且包含有—第六鏡片L6、 兄片L7、一第八鏡片、一第九鏡片L9、一第十鏡片 第十-鏡片L11以及一第十二鏡片L12。該第六鏡片 L6為具有正屈光力之雙凸透鏡。該第七鏡片L7 $一具有正 屈光力之新月型透鏡,且其凸面⑽朝向成像侧。該第八鏡 片L8為具有負屈光力之單凹透鏡,且其凹面Rls朝向成像 側該第九鏡片L9為-具有負屈光力之新月型透鏡,且其凹 面R17朝向成像側。該第十鏡片L10為-具有正屈光力之雙 凸透鏡,且該變焦投影鏡頭2之光UST設於該第十鏡片L10 之表面R19上。該第十—鏡片U1為_具負屈光力雙凹透鏡。 該第十一鏡片L12為-具有正屈光力之雙凸透鏡,且其表面 R23、R24皆為非球面表面。 為能使該魏投影麵2能械地纖鏡頭總長 、修正像 差及增加後焦長度,該變焦投影鏡頭2滿足下列條件: (1) -0.87 < f2/fl < .〇>76 (3) 1.59 < f2/fw < 1.64 (5) 6.66 <tt/fw < 6.7 (7) -1.31 <ex/bf<-i.24 (9) 1.31 < fg/fw < 2.2 (2) -2.09 < fl/fw < -1.85 (4) 0.70 < fw/bf < 0.71 (6)4.7<tt/bf<4.74 (8) 0.787 < lt/tt < 0.789 11 201219877 其中’ fi為該第一鏡群G1之有效焦距;β為該第二鏡群 G2之有效焦距;⑺為該魏投影鏡頭2於廣角(wide_angle) 狀態下之有效焦距;bf為該魏投影麵2之後焦長度;杜為 該變寒、投影鏡頭2之總長度;ex為該變焦投影鏡頭 2之出瞳 位置(exitpupil position) ; It為該變焦投影鏡頭2之第一個表面 R1至最後個表面R26間之長度;龟為該第十二鏡片L12之 有效焦距。 本發明第二實施例之變焦投影鏡頭2的焦距F (F〇cusThe second mirror group G2 has a positive refractive power, and includes a sixth lens L6, a brother L7, an eighth lens, a ninth lens L9, a tenth lens tenth lens L11, and a twelfth lens L12. . The sixth lens L6 is a lenticular lens having positive refractive power. The seventh lens L7 $ has a crescent-shaped crescent lens and its convex surface (10) faces the image forming side. The eighth lens L8 is a single concave lens having a negative refractive power, and its concave surface Rls faces the imaging side, the ninth lens L9 is a crescent lens having a negative refractive power, and its concave surface R17 faces the image forming side. The tenth lens L10 is a lenticular lens having a positive refractive power, and the light UST of the zoom projection lens 2 is disposed on the surface R19 of the tenth lens L10. The tenth-lens U1 is a negative refractive power biconcave lens. The eleventh lens L12 is a lenticular lens having a positive refractive power, and the surfaces R23 and R24 are aspherical surfaces. In order to enable the Wei projection surface 2 to mechanically fix the total length of the lens, correct the aberration, and increase the back focus length, the zoom projection lens 2 satisfies the following conditions: (1) -0.87 < f2/fl <.〇>76 (3) 1.59 < f2/fw < 1.64 (5) 6.66 <tt/fw < 6.7 (7) -1.31 <ex/bf<-i.24 (9) 1.31 < fg/fw < 2.2 (2) -2.09 < fl/fw < -1.85 (4) 0.70 < fw/bf < 0.71 (6)4.7 <tt/bf<4.74 (8) 0.787 < lt/tt < 0.789 11 201219877 where ' fi is the effective focal length of the first mirror group G1; β is the effective focal length of the second mirror group G2; (7) is the effective focal length of the Wei projection lens 2 in the wide angle (wide_angle) state; bf is the Wei The focal length of the projection surface 2; Du is the cold, the total length of the projection lens 2; ex is the exit pupil position of the zoom projection lens 2; It is the first surface R1 of the zoom projection lens 2 to The length between the last surface R26; the turtle is the effective focal length of the twelfth lens L12. Focal length F of the zoom projection lens 2 of the second embodiment of the present invention (F〇cus

Length)、數值孔徑FNO (F-number)、各個鏡片表面的光軸Z 通過處的曲率半徑R ( radius of curvature )、各鏡片於光轴Z上 之厚度 T (thickness)、各鏡片之折射率 Nd (refractive index) 及各鏡片之阿貝係數Vd (Abbenumber),如表三所示: 表三 F=5 n.65(W) 、28· 0696(M)~34. 0994(T) FN0=2.4CW)~2. 754rMV3. 096(Τ) 表面 R(mm) T(mm) Nd Vd 備註 R1 77.48 2 1.846660 23.8 第一鏡片LI R2 42.5 7. 91 R3 105 7.3 1.83481 42.7 第二鏡片L2 R4 -281 0.2 R5 71 2.8 1.497 81.6 第三鏡片L3 R6 23.2 13 R7 -62.7 1.2 1.72916 54.7 第四鏡片L4 R8 42.64 5.4 R9 49.67 7 1.76182 26.5 第五鏡片L5 R10 〇〇 26.846804(W)~11.41521(M)~2. 212906(T) R11 26.2 8.2 1.497 81.6 第六鏡片L6 R12 -376 1.4 R13 38.2 7 1.788 47.4 第七鏡片L7 12 201219877 R14 51.4 4.7 R15 -54.5 2.3 1.5927 35.3 第八鏡片L8 R16 〇〇 1.87 R17 -29 0.6 1.5927 35.3 第九鏡片L9 R18 -112.8 0.2 R19 22.9 3.7 1.72916 54.7 第十鏡片L10 光圈ST R20 -43 0. 25 R21 -78.3 2.7 1.72825 28.5 第十一鏡片 L11 R22 25 0.8 R23 30.64 7 1.80191 40.89 第十二鏡片 L12 R24 -100 26 R25 〇〇 3 1.487490 70.2 玻璃覆蓋CG R26 〇〇 1. 59989(W)~7. 281418(M)~12. 668896(T) 表三之厚度T中,(W)是指該變焦投影鏡頭2在廣角 (wide-angle)狀態時,於光軸Z上之間距;(M)是指該變焦投影 鏡頭2在中間(middle)狀態時,於光軸Z上之間距;⑺是指該 變焦投影鏡頭2在長距投影(telephoto)狀態時,於光軸z上之 間距。 另外’本實施例之第十二鏡片Π2之非球面表面 之表面凹陷度D由下列公式所得到: Z)=Length), numerical aperture FNO (F-number), radius of curvature R of the optical axis Z of each lens surface, thickness T of each lens on the optical axis Z, refractive index of each lens Nd (refractive index) and the Abbe number Vd (Abbenumber) of each lens are shown in Table 3: Table 3 F=5 n.65(W), 28·0696(M)~34. 0994(T) FN0= 2.4CW)~2. 754rMV3. 096(Τ) Surface R(mm) T(mm) Nd Vd Remarks R1 77.48 2 1.846660 23.8 First lens LI R2 42.5 7. 91 R3 105 7.3 1.83481 42.7 Second lens L2 R4 -281 0.2 R5 71 2.8 1.497 81.6 Third lens L3 R6 23.2 13 R7 -62.7 1.2 1.72916 54.7 Fourth lens L4 R8 42.64 5.4 R9 49.67 7 1.76182 26.5 Fifth lens L5 R10 〇〇26.846804(W)~11.41521(M)~2. 212906(T) R11 26.2 8.2 1.497 81.6 Sixth lens L6 R12 -376 1.4 R13 38.2 7 1.788 47.4 Seventh lens L7 12 201219877 R14 51.4 4.7 R15 -54.5 2.3 1.5927 35.3 Eighth lens L8 R16 〇〇1.87 R17 -29 0.6 1.5927 35.3 Nine lens L9 R18 -112.8 0.2 R19 22.9 3.7 1.72916 54.7 Tenth lens L10 light ST R20 -43 0. 25 R21 -78.3 2.7 1.72825 28.5 Eleventh lens L11 R22 25 0.8 R23 30.64 7 1.80191 40.89 Twelfth lens L12 R24 -100 26 R25 〇〇3 1.487490 70.2 Glass cover CG R26 〇〇 1. 59989 (W)~7. 281418(M)~12. 668896(T) In the thickness T of Table 3, (W) refers to the zoom projection lens 2 on the optical axis Z in the wide-angle state. (M) refers to the distance between the zoom projection lens 2 on the optical axis Z in the middle state; (7) refers to the zoom projection lens 2 in the telephoto state, on the optical axis z The distance between the tops. Further, the surface depression degree D of the aspherical surface of the twelfth lens unit 2 of the present embodiment is obtained by the following formula: Z) =

CH ^^^K).c2 .ΗΎ + Ε4·Η +E6'H6 +Es'Hi +Ειο·Η'° +Ε12·Η'2 +eu.H1 其中: D:非球面表面之凹陷度; C:曲率半徑之倒數; Η:表面之孔徑半徑; Κ:圓錐係數; 13 201219877 E4〜Eh :表面之孔徑半徑H的各階係數。 在本實施例中’各個非球面表面的圓錐係數κ (conic constant)及表面孔徑半徑η的各階係數^〜仏4如表四所示: 表四 表面 K E4 E6 E8 E10 E12 E14 R23 7. 775393 -6.942e-05 -3. 025e-07 -2.059e-09 1.125e-ll -2.813e-13 〇 R24 0.3816114 5.208e-06 -1. 799e-〇7 2.479e-09 -3.482e-ll 1.723e-13 0 藉由上述的鏡片與光圈之配置,使得本實施例之變焦投影 鏡頭2不但可有效縮小體積以滿足輕量化之需求,該變焦投影 鏡頭2在廣角(Wide-angie)狀態時,其成像品質上也可達到要 求,這可從圖6A至圖6D看出。圖6A所示的,是本實施例 之變焦投影鏡頭2的縱向色差圖;圖6B所示的,是本實施例 之變焦投影鏡頭2的橫向色差圖;圖6(:所示的,是本實施例 之變焦投影鏡頭2的場曲圖及畸變圖;圖6D所示的,是本實 施例之變焦投影鏡頭2的空間頻率調制傳遞函數圖(Spatial Frequency MTF )。從圖6 a及圖6 B可看出,本實施例變焦投 影鏡頭2之縱向色差最大不超過〇 〇8mm和_〇 〇4mm,橫向色 差最大不超過了哗和·…!!!。從圖6 C可看出,本實施例變焦 才又衫鏡頭2之最大場曲不超過〇 i6mm與-〇.〇4mm,且畸變量 不超過2%。從圖6 D可看出,本實施例變焦投影鏡頭2在6〇 lp/mm的時候’其調制光學傳遞函數值仍維持在4〇%以上。 另外’該變焦投影鏡頭2在中間(middle)狀態時,其成像 201219877 品質上也可達到要求,這可從圖7A至圖7D看出。從圖7A 及圖7B可看出,本倾觸焦投纖頭2之縱向色差最大不 超過0.08mm和-〇.〇3mm,橫向色差最大不超過4μιη *_1μιη。 從圖7C可看出’本實施例變焦投影鏡頭2之最大場曲不超過 0.12mm與-0.04mm ’且畸變量不超過16%。從圖7〇可看出, 本實施例變焦投影鏡頭2在60 lp/mm的時候,其調制光學傳 遞函數值仍維持在50%以上。 再者,該變焦投影鏡頭2在長距投影(telephoto)狀態時, 其成像品質上也可達到要求,這可從圖8A至圖8D看出。從 圖8A及圖8B可看出,本實施例變焦投影鏡頭2之縱向色差 最大不超過0.12mm和-〇.〇5mm,橫向色差最大不超過5μπι和 -3μιη。從圖8 C可看出,本實施例變焦投影鏡頭2之最大場曲 不超過0.16mm與-0.12mm,且畸變量不超過〇·4%。從圖8D 可看出,本實施例變焦投影鏡頭2在6〇 ip/mm的時候,其調 制光學傳遞函數值仍維持在40%以上。藉此,顯見本實施例之 變焦投影鏡頭2的解析度不管是在是廣角狀態、中 間(middle)狀態或是長距投影(teieph0t0)狀態時,都是符合標準 的。 請參閱圖9,為本發明第三較佳實施例變焦投影鏡頭3之 鏡片配置圖,其包含有沿光軸Z且由成像侧至像源侧依序排列 設置且由玻璃製成之一第一鏡群G1與一第二鏡群G2。該第 15 201219877 -鏡群G1可於成像侧與該第二鏡群G2間,沿光袖z進行移 動’⑽變鏡頭焦距’使該變焦投影鏡頭3可依該第一鏡群 G1之位置區分為廣角狀態、中間_㈣狀態與遠 距投影(telephoto)狀態。另外,在該第二鏡群阳與像源側間同 樣設有一玻璃覆蓋CG (C0ver Glass)。其中: 該第-鏡群G1具有負屈光力,其包含有一第一鏡片u、 一第二鏡片L2、-第三鏡片L3、—第四鏡片u以及一第五 鏡片L5。該第—鏡片L1為―具有負屈光力之新月型鏡片,其 凸面R1朝向成像侧。該第二鏡片L2為一具有正屈光力之雙 凸透鏡。該第二鏡片L3為一具有負屈光力之新月型透鏡,且 其凸面R5朝向成像側。該第四鏡片L4為一具有負屈光力之 雙凹透鏡。該第五鏡片L5為-具有正屈光力之新月型透鏡, 且其凸面R9朝向成像侧。 該第二鏡群G2具有正屈光力,且包含有—第六鏡片L6、 第七鏡片L7、-第人鏡# L8、-第九鏡片L9、—第十鏡片 L10、-第十—鏡片U1以及—第十二鏡片⑴。該第六鏡片 L6為-具有正屈光力之雙凸透鏡。該紅鏡片u為一具有正 屈光力之新月型透鏡’且其凸面R13朝向成像側。該第八鏡 為—具有負屈光力之新月型透鏡,且其凸面R15朝向成 像侧。該第九鏡片L9為一具有負屈光力之膠合透鏡,係由一 雙凸透鏡L91與-雙凹透鏡L92膠合而成,且該雙凸透鏡⑼ 較該雙凹透鏡L92接近成像側。該第十鏡片L10為-具有正 201219877 屈光力之雙凸透鏡,且該變焦投影鏡頭3之光圈st設置於該 第十鏡片L10之表面R2G上。該第十-鏡片Lu為一具有負 屈光力之雙凹透鏡。該第十二鏡片L12為一具有正屈光力之單 凸透鏡,其凸面R24朝向成像侧且為非球面表面。 為能使該變焦投影鏡頭3能有效地縮減鏡頭總長、修正像 差及增加後焦長度,該變焦投影鏡頭3滿足下列條件: (l)-0.87<f2/fl <-0.76 (2) -2.09 < fl/fw < .1.85CH ^^^K).c2 .ΗΎ + Ε4·Η +E6'H6 +Es'Hi +Ειο·Η'° +Ε12·Η'2 +eu.H1 where: D: the aspheric surface of the depression; C : reciprocal of radius of curvature; Η: aperture radius of the surface; Κ: conic coefficient; 13 201219877 E4~Eh: various order coefficients of the aperture radius H of the surface. In the present embodiment, the coefficients of the conic coefficient κ (conic constant) and the surface aperture radius η of each aspherical surface are shown in Table 4: Table 4 Surface K E4 E6 E8 E10 E12 E14 R23 7. 775393 -6.942e-05 -3. 025e-07 -2.059e-09 1.125e-ll -2.813e-13 〇R24 0.3816114 5.208e-06 -1. 799e-〇7 2.479e-09 -3.482e-ll 1.723e By the arrangement of the lens and the aperture described above, the zoom projection lens 2 of the present embodiment can effectively reduce the volume to meet the demand for light weight, and the zoom projection lens 2 is in the Wide-angie state. The imaging quality can also be achieved, as can be seen from Figures 6A to 6D. FIG. 6A is a longitudinal chromatic aberration diagram of the zoom projection lens 2 of the present embodiment; FIG. 6B is a lateral chromatic aberration diagram of the zoom projection lens 2 of the present embodiment; FIG. 6: The field curvature map and the distortion map of the zoom projection lens 2 of the embodiment; FIG. 6D shows the spatial frequency modulation transfer function diagram (Spatial Frequency MTF) of the zoom projection lens 2 of the present embodiment. From FIG. 6 a and FIG. 6 B can be seen that the longitudinal chromatic aberration of the zoom projection lens 2 of the present embodiment does not exceed 〇〇8 mm and _〇〇4 mm at the maximum, and the lateral chromatic aberration does not exceed 哗 and ....!!! As can be seen from Fig. 6C, The maximum field curvature of the zoom lens 2 of the embodiment is not more than 〇i6mm and -〇.〇4mm, and the distortion variable does not exceed 2%. As can be seen from Fig. 6D, the zoom projection lens 2 of the embodiment is at 6〇lp At /mm, the value of the modulation optical transfer function is maintained above 4%. In addition, when the zoom projection lens 2 is in the middle state, its imaging 201219877 can also meet the quality requirements, which can be seen from Figure 7A. As can be seen from Fig. 7A and Fig. 7B, the longitudinal chromatic aberration of the present tilting lens 2 is the most It is not more than 0.08mm and -〇.〇3mm, and the lateral chromatic aberration is not more than 4μιη *_1μηη. It can be seen from Fig. 7C that the maximum field curvature of the zoom projection lens 2 of the present embodiment does not exceed 0.12mm and -0.04mm' and is distorted. The amount does not exceed 16%. As can be seen from Fig. 7〇, the zoom optical projection function of the zoom projection lens 2 of this embodiment is maintained at 50% or more at 60 lp/mm. Furthermore, the zoom projection lens 2 In the telephoto state, the imaging quality can also meet the requirements, which can be seen from Fig. 8A to Fig. 8D. As can be seen from Fig. 8A and Fig. 8B, the longitudinal chromatic aberration of the zoom projection lens 2 of this embodiment can be seen. The maximum field curvature of the zoom projection lens 2 of the present embodiment does not exceed 0.16 mm and -0.12 mm, and the maximum lateral curvature of the zoom projection lens 2 of the present embodiment is not more than 0.12 mm and -〇.〇5 mm, and the lateral chromatic aberration is not more than 5 μm and -3 μm. And the distortion variable does not exceed 〇·4%. As can be seen from Fig. 8D, when the zoom projection lens 2 of the embodiment is 6 〇 ip/mm, the modulation optical transfer function value is maintained at 40% or more. The resolution of the zoom projection lens 2 of the present embodiment is in a wide-angle state, In the middle state or the long-range projection (teieph0t0) state, it is in accordance with the standard. Please refer to FIG. 9 , which is a lens configuration diagram of the zoom projection lens 3 according to the third preferred embodiment of the present invention, which includes an optical axis along the optical axis. Z and a first mirror group G1 and a second mirror group G2 are arranged in order from the imaging side to the image source side. The 15th 201219877 - mirror group G1 can be on the imaging side and the second mirror Between groups G2, moving along the light sleeve z '(10) variable lens focal length' allows the zoom projection lens 3 to be classified into a wide-angle state, an intermediate_(four) state, and a telephoto state according to the position of the first mirror group G1. Further, a glass cover CG (C0ver Glass) is provided between the second mirror group anode and the image source side. Wherein: the first mirror group G1 has a negative refractive power, and includes a first lens u, a second lens L2, a third lens L3, a fourth lens u, and a fifth lens L5. The first lens L1 is a crescent lens having a negative refractive power, and the convex surface R1 faces the image forming side. The second lens L2 is a lenticular lens having a positive refractive power. The second lens L3 is a crescent lens having a negative refractive power, and its convex surface R5 faces the image forming side. The fourth lens L4 is a biconcave lens having a negative refractive power. The fifth lens L5 is a crescent lens having a positive refractive power, and its convex surface R9 faces the image forming side. The second mirror group G2 has a positive refractive power and includes a sixth lens L6, a seventh lens L7, a first lens # L8, a ninth lens L9, a tenth lens L10, a tenth lens U1, and - Twelfth lens (1). The sixth lens L6 is a lenticular lens having positive refractive power. The red lens u is a crescent lens having a positive refractive power and its convex surface R13 faces the image forming side. The eighth mirror is a crescent lens having a negative refractive power, and its convex surface R15 faces the imaging side. The ninth lens L9 is a cemented lens having a negative refractive power, which is formed by gluing a lenticular lens L91 and a double concave lens L92, and the lenticular lens (9) is closer to the image side than the double concave lens L92. The tenth lens L10 is a lenticular lens having a refractive power of 201219877, and the aperture st of the zoom projection lens 3 is disposed on the surface R2G of the tenth lens L10. The tenth-lens Lu is a biconcave lens having a negative refractive power. The twelfth lens L12 is a single convex lens having a positive refractive power, and its convex surface R24 faces the image forming side and is an aspherical surface. In order to enable the zoom projection lens 3 to effectively reduce the total length of the lens, correct the aberration, and increase the back focus length, the zoom projection lens 3 satisfies the following conditions: (l) -0.87 <f2/fl <-0.76 (2) -2.09 < fl/fw < .1.85

(3) 1.59 <f2/fw< 1.64 (4) 0.70 < fw/bf < 0.71 (5) 6.66 < tt/fw < 6.7 ⑹ 4.7 < tt/bf < 4.74 ⑺-1.31 < ex/bf < -1.24 (8) 0.787 < lt/tt < 0.789 (9)1.31<fg/fw<2.2 其中’ fl為該第一鏡群G1之有效焦距;f2為該第二鏡群 G2之有效焦距;fW為該變焦投影鏡頭3於廣角 狀態下之有效焦距;bf為該變焦投影鏡頭3之後焦長度;枕為 該變焦投影鏡頭3之總長度;ex為該變焦投影鏡頭3之出瞳 位置(exit pupil position) ; It為該變焦投影鏡頭3之第一個表面 R1至最後一個表面R27間之長度;fg為該第十二鏡片[12之 有效焦距。 本發明第三實施例之變焦投影鏡頭3的焦距F (Focus Length)、數值孔徑FNO (F-number)、各個鏡片表面的光轴z 通過處的曲率半徑R ( radius of curvature )、各鏡片於光軸z上 之厚度 T (thickness)、各鏡片之折射率 Nd (refractive index) 17 201219877 及各鏡片之阿貝係數Vd (Abbenumber),如表五所示: 表五 F=21. 65(W)~28. 07(M)~34. 083(T)_FN0=2. 398(W)~2. 75(M)~3. 085(T) 表面 R(mm) T(mm) Nd Vd 備註 R1 82.4291 2 1.846660 23.8 第一鏡片LI R2 44.11047 6.216592 R3 82.28001 7. 565857 1.83481 42.7 第二鏡片L2 R4 -411.5318 0.2 R5 —一 72.60838 2 1.497 81.6 第三鏡片L3 R6 ^ 22. 34692 13.09526 R7 -71.09074 1.2 1.6779-1 55.3 第四鏡片L4 」8 34. 69418 5. 324649 R9 — 41.52028 7 1.76182 26.5 第五鏡片L5 < R10 222.2834 29. 819856(W)~15.147117(M)~6.417403(T) R11 76. 38432 3.150969 1.72916 54.7 第六鏡片L6 R12 —-— 〇〇 0.2 R13 35. 29524 3.118074 1.804 46.6 第七鏡片L7 R14 64.01861 2.179643 R15 ----- 25. 0905 6.297454 1. 7552 27.5 第八鏡片L8 R16 15.97385 1.179039 R17 -—__ 18.34847 7. 258963 1.497 81.6 第九鏡片L9 R18 -16.19557 1 1. 8044 39.6 R19 28.81485 1.885365 R20 36.49471 4.017563 1.83481 42.7 第十鏡片Ll(^ 光圈ST 4 R21 -23.95636 0.2 R22 -76. 69749 1.513695 1.6668 33.0 第十一鏡片 L11 R23 26. 37816 0.977022 R24 38.36803 7 ---- 1-801910 40.89 第十二鏡片 L12 R25 〇〇 26 R26 oo 3.0 !· 487490 70.21 玻璃覆蓋CG R27 L~ _ oo 1. 599738(W)~7. 291842(M)~12. 6931KT) 表五之厚度T中,(w)是指該變焦投影鏡頭3在廣角 (wide-angle)狀態時,於光軸Z上之間距;(Μ)是指該變焦投影 18 201219877 鏡頭3在中間(middle)狀態時’於光轴Z上之間距;⑺是指該 變焦投影鏡頭3在長距投影(telephoto)狀態時,於光軸z上之 間距。 另外’本實施例之第十二鏡片L12之非球面表面幻4之表 面凹陷度D由下列公式所得到: + Ε, +Εα -η* +Ε6·Η6 +£ι〇 .ff'° +ει2 - η'2 CH2 l + yll-{l + k)-c2 ·η: 其中Z D : 非球面表面之凹陷度; C : 曲率半徑之倒數; Η : 表面之孔徑半徑; Κ : 圓錐係數; Ε4〜Εΐ4 :表面之孔徑半徑Η的各階係數。 在本實施例中,各個非球面表面的圓錐係數κ (c〇nic constant)及表面孔徑半徑Η的各階係數E4〜Ei4如表六所示: 表六 表面 Κ Λ “ - Ε4 E6 E8 E10 E12 E14 R24 -1.288715 -8. 357e-06 7. 205e-08 -2.594e-〇9 3.614e-ll -1.926e-13 0~~~~~ 藉由上述的鏡片與光圈之配置,使得本實施例之變焦投影 鏡頭3不但可有效縮小體積以滿足輕量化之需求,該變焦投影 鏡頭3在廣角(wide_angle)狀態時,其成像品質上也可達到要 求,這可從圖10A至圖l〇D看出。圖1〇A所示的,是本實施 201219877 例之變焦投影鏡頭3的縱向色差圖;目所示的,是本實 施例之變焦投影鏡頭3的橫向色差圖;目1QC所示的,是本 實施例之變焦投影鏡頭3的場曲圖及畸變圖;圖1〇D所示的, 疋本實施例之變焦投影鏡頭3的空間頻率調制傳遞函數圖 (Spatial Frequency MTF)。從圖 10A 及圖 1〇B 可看出,本實 施例變紐影翻3之軸&差最衫超過_麵和 0.04mm &向色差最大不超過。從圖i〇c可看 出,本實施例變焦投影鏡頭3之最大場曲不超過㈣晒與 -0.08mm ’且畸變量不超過2%。從圖動可看出,本實施例 變焦投影鋼3在60 lp/mm的軸,其卿光學傳遞函數值 仍維持在40%以上。 另外’該變;#、投影鏡碩3在巾間(middle)狀態時,其成像 品質上也可達到要求,這可從圖UA至圖llD看出。從圖Μ 及圖11B可看出,本實施例變焦投影鏡頭3之縱向色差最大不 超過_mm和德職,橫向色差最大不超過—和加。 從圖11C可看出,本實施例變焦投影鏡頭3之最大場曲不超過 0.10mm與-0.08mm,且畸變量不超過12%。從圖皿可看出, 本實施例變焦投影鏡頭3在60 Ip/mm的時候,其調制光學傳 遞函數值仍維持在50%以上。 再者,該變紐賴頭3在_«彡__雜態時, f成像品質上也可達到要求,這可從圖至圖⑽看出。 從圖1M及圖〗2B可看出,本實施例變焦投影鏡頭3之縱向 20 201219877 色差最大不超過〇.〇7mm和-〇.〇6mm,橫向色差最大不超過2μπι 和-2μιη。從圖12C可看出,本實施例變焦投影鏡頭3之最大 場曲不超過0.04mm與,且畸變量不超過〇.4%。從圖 UD可看出,本實施例變焦投影鏡頭3在60 lp/mm的時候, 其調制光學舰函數值仍轉在4〇%社。藉此,顯見本實施 例之變焦投影鏡頭3的解析度不管是在是廣角 態、中間(middle)狀態或是長距投影(teleph〇t〇)狀態時,都是符 • 合標準的。 請參閱圖13 ’為本發明第四較佳實施例變焦投影鏡頭4 之鏡片配置圖,其包含有由玻璃製成且沿光轴z且由成像侧至 像源侧依序排列設置之一第一鏡群G1與一第二鏡群G2。該 第一鏡群G1可於成像侧與該第二鏡群G2間,沿光軸Z進行 移動,以改變鏡頭焦距’使該變焦投影鏡頭4可依該第一鏡群 G1之位置區分為廣角(Wide_angle)狀態、中間(middle)狀態與遠 距投影(telephoto)狀態。另外,在該第二鏡群G2與像源側間同 樣設有一玻璃覆蓋CG ( Cover Glass )。其中: 該第一鏡群G1具有負屈光力,其包含有一第一鏡片l卜 一第二鏡片L2、一第三鏡片[3、一第四鏡片L4、一第五鏡片 L5以及一第六鏡片L6。該第一鏡片L1為一具有負屈光力之 新月型鏡片,其凸面R1朝向成像側。該第二鏡片L2為一具 有正屈光力之雙凸透鏡。該第三鏡片L3為一具有負屈光力之 21 201219877 且有負朝向成像側。該第四鏡片L4為一 :=透鏡。該第五_為-具有正屈光力 雙透鏡。該第六鏡片L6為一具有負展光力之新月 鏡,且其凹面R11朝向成像側。 該第二鏡群G2具有正屈光力,且包含有-第七鏡片L7、 一第八鏡片L8、-第九鏡片L9、—第十鏡片ug、_第十一 鏡片L11以及-第十二鏡片U2。該第七鏡片L7為一具有正 屈光力之雙凸透鏡。該第八鏡片L8為―具有貞屈光力之雙凹 透鏡。該第九鏡片L9為-具有正屈光力之單凸透鏡,且其凸 面R17朝向成像側。該第十鏡片L10為一具有正屈光力之新 月型透鏡’且其凸面R20朝向成像側。該第十一鏡片Ui為 一具有負屈光力之雙凹透鏡。該第十二鏡片L12為一具有正屈 光力之雙凸透鏡,且其表面R24、R25皆為非球面表面。另外, 該變焦投影鏡頭4之光圈ST係設置於該第九鏡片L9與該第 十鏡片L10之間。 為能使該變焦投影鏡頭4能有效地縮減鏡頭總長、修正像 差及增加後焦長度,該變焦投影鏡頭4滿足下列條件: (1) -0.87 < f2/fl < -0.76 (2) -2.09 < fl/fw < -1.85 (3)1.59<f2/fw<1.64 (5) 6.66 < tt/fw < 6.7 (7) -1.31 < ex/bf<-i.24 (9) 1.31 <fg/fw<2.2 (4) 0.70 <fw/bf< 0.71 (6)4.7<tt/bf<4.74 (8) 0.787 < lt/tt < 0.789 22 201219877 其中,fl為該第一鏡群G1之有效焦距;£2為該第二鏡群 G2之有效焦距;fW為該麵、投影_ 4於廣肖(wide_angie) 狀態下之有效焦距;bf為該變焦投影鏡頭4之後焦長度;竹為 該變焦投影鏡頭4之總長度;ex為該變焦投影鏡頭4之出瞳 位置(exitpupilpositi〇n); it為該變焦投影鏡頭4之第一個表面 R1至最後一個表面勝間之長度;fg為該第十二鏡片m之 有效焦距。 本發明第四實施例之變焦投影鏡頭4的焦距F (F〇cus Length)、數值孔徑FNO (F-number)、各個鏡片表面的光轴z 通過處的曲率半徑R ( radius of curvature )、各鏡片於光轴z上 之厚度T (thickness)、各鏡片之折射率Nd (她此加Μεχ) 及各鏡片之阿貝係數Vd (Abbenumber),如表七所示: 表七 F= 21.65(W)~28 0698(M)~34.0989(T) FNO=1.997(W)~2.2507CM)~2.4928m 表面 R(mm) l(min) Nd Vd 備註 R1 70.37629 0.8 1.836312 24. 3768 第一鏡片LI R2 43.79806 6. 930353 R3 88.89598 7.111371 1.834807 42. 7237 第二鏡片L2 R4 -550.4502 0.1 R5 81. 96677 1.46034 1.727362 54.7956 第三鏡片L3 R6 26. 52786 12.97328 R7 -75.75273 0.8 1.730645 53.8585 第四鏡片L4 R8 46.84376 3.196082 R9 — - 49.21537 8. 954779 1.84297 27. 5644 第五鏡片L5 R10 -84.9628 4.769462 23 201219877 R11 -51.17976 0.8 1. 709783 27.8892 第六鏡片L6 R12 -189.9925 28.111294(W)~11. 901811(M)~2. 236538(T) R13 39.02144 5.426094 1.735485 53.6775 第七鏡片L7 R14 -1158.693 5.793676 R15 -60.49845 0.9488204 1.59296 35. 2751 第八鏡片L8 R16 36.22194 0.8 R17 20.31188 6.777882 1.514567 77.5129 第九鏡片L9 R18 799. 3534 4.444998 R19 〇〇 0.1 光圈ST R20 22.85002 5. 504274 1.758507 50.3822 第十鏡片 L10 R21 39. 64877 2. 795098 ( R22 -61.06559 0.8 1.686187 28.947 第十一鏡片 L11 R23 30.56569 0.4025781 R24 29.45151 4.599618 1.834381 42. 7567 第十二鏡片 L12 R25 -184.1319 26 R26 〇〇 3 1.487490 70.2 玻璃覆蓋CG R27 〇〇 1. 6(ff)~6. 773346(M)~11. 691575(T) 表七之厚度T中’(W)是指該變焦投影鏡頭4在廣角 (wide-angle)狀態時,於光軸Z上之間距;(M)是指該變焦投影 籲 鏡頭4在中間(middle)狀態時,於光轴Z上之間距;(T)是指該 變焦投影鏡頭4在長距投影(telephoto)狀態時,於光軸z上之 間距。 另外,本實施例之第十二鏡片L12之非球面表面R24、R25 之表面凹陷度D由下列公式所得到: 24 201219877 其中: D:非球面表面之凹陷度; C:曲率半徑之倒數; Η:表面之孔徑半徑; κ:圓錐係數; Ε4〜Em :表面之孔徑半徑Η的各階係數。 在本實施例中’各個非球面表面的圓錐係數K ( conic constant)及表面孔徑半徑Η的各階係數E4〜El4如表八所示: 表八 表面 K E4 E6 E8 E10 E12 E14 R24 2. 296673 -3.835e-05 -1.764e-07 -5.592e-l〇 -3.214e-12 -6.871e-14 0 — R25 55.50933 1·525e-05 -2. 232e-07 2. 275e-09 '3.343e-ll 9. 828e-14 0 藉由上述的鏡片與光圈之配置,使得本實施例之變焦投影 鏡頭4不但可有效縮小體積以滿足輕量化之需求,該變焦投影 鏡頭4在廣角(Wide_angle)狀態時,其成像品質上也可達到要 求’這可從圖14A至圖14D看出。圖14A所示的,是本實施 例之變焦投影鏡頭4的縱向色差圖;圖14B所示的,是本實 施例之變焦技影鏡頭4的橫向色差圖;圖14C所示的,是本 實施例之變焦投影鏡頭4的場曲圖及畸變圖;圖14D所示的, 是本實施例之變焦投影鏡頭4的空間頻率調制傳遞函數圖 (Spatial Frequency MTF)。從圖 14A 及圖 14B 可看出,本實 施例變焦投影鏡頭4之縱向色差最大不超過〇〇8mm和 25 201219877 撕丽,橫向色差最大不超過仏m和。從圖MC可 看出,本實施例變焦投影鏡頭4之最大場曲不超過〇1〇麵鱼 德麵,且畴變量不超過1.2%。從圖HD可看出,本實施 例變焦投影綱Q6(Mp/mm的日推,其_林傳遞函數 值仍維持在50%以上。 另外’該變焦投影鏡頭4在中間(middle)狀態時,其成像 品質上也可達到要求,這可從圖15A至圖15D看出。從圖Μ(3) 1.59 <f2/fw< 1.64 (4) 0.70 < fw/bf < 0.71 (5) 6.66 < tt/fw < 6.7 (6) 4.7 < tt/bf < 4.74 (7)-1.31 < Ex/bf < -1.24 (8) 0.787 < lt/tt < 0.789 (9) 1.31 <fg/fw<2.2 where ' fl is the effective focal length of the first mirror group G1; f2 is the second mirror The effective focal length of the group G2; fW is the effective focal length of the zoom projection lens 3 in the wide-angle state; bf is the focal length of the zoom projection lens 3; the pillow is the total length of the zoom projection lens 3; ex is the zoom projection lens 3 The exit pupil position; It is the length between the first surface R1 of the zoom projection lens 3 and the last surface R27; fg is the effective focal length of the twelfth lens [12]. The focal length F (Focus Length), the numerical aperture FNO (F-number) of the zoom projection lens 3 of the third embodiment of the present invention, the radius of curvature R of the optical axis z of each lens surface, and the respective lenses are The thickness T on the optical axis z, the refractive index Nd (refractive index) of each lens 17 201219877 and the Abbe number Vd (Abbenumber) of each lens are shown in Table 5: Table V F = 21. 65 (W )~28. 07(M)~34. 083(T)_FN0=2. 398(W)~2. 75(M)~3. 085(T) Surface R(mm) T(mm) Nd Vd Remark R1 82.4291 2 1.846660 23.8 First lens LI R2 44.11047 6.216592 R3 82.28001 7. 565857 1.83481 42.7 Second lens L2 R4 -411.5318 0.2 R5 - one 72.60838 2 1.497 81.6 Third lens L3 R6 ^ 22. 34692 13.09526 R7 -71.09074 1.2 1.6779-1 55.3 Fourth lens L4 ”8 34. 69418 5. 324649 R9 — 41.52028 7 1.76182 26.5 Fifth lens L5 < R10 222.2834 29. 819856(W)~15.147117(M)~6.417403(T) R11 76. 38432 3.150969 1.72916 54.7 Sixth lens L6 R12 —-— 〇〇0.2 R13 35. 29524 3.118074 1.804 46.6 Seventh lens L7 R14 64.01 861 2.179643 R15 ----- 25. 0905 6.297454 1. 7552 27.5 Eighth lens L8 R16 15.97385 1.179039 R17 -___ 18.34847 7. 258963 1.497 81.6 Ninth lens L9 R18 -16.19557 1 1. 8044 39.6 R19 28.81485 1.885365 R20 36.49471 4.017563 1.83481 42.7 Tenth lens Ll (^ Aperture ST 4 R21 -23.95636 0.2 R22 -76. 69749 1.513695 1.6668 33.0 Eleventh lens L11 R23 26. 37816 0.977022 R24 38.36803 7 ---- 1-801910 40.89 Twelfth lens L12 R25 〇〇26 R26 oo 3.0 !· 487490 70.21 Glass cover CG R27 L~ _ oo 1. 599738(W)~7. 291842(M)~12. 6931KT) In the thickness T of Table 5, (w) means The zoom projection lens 3 is spaced apart from the optical axis Z in the wide-angle state; (Μ) refers to the zoom projection 18 201219877 when the lens 3 is in the middle state, the distance between the optical axes Z; (7) refers to the distance between the zoom projection lens 3 on the optical axis z in the telephoto state. Further, the surface depression degree D of the aspherical surface of the twelfth lens L12 of the present embodiment is obtained by the following formula: + Ε, +Εα -η* +Ε6·Η6 +£ι〇.ff'° +ει2 - η'2 CH2 l + yll-{l + k)-c2 · η: where ZD : the degree of depression of the aspheric surface; C : the reciprocal of the radius of curvature; Η : the aperture radius of the surface; Κ : the conic coefficient; Ε 4~ Εΐ4: The order factor of the aperture radius Η of the surface. In the present embodiment, the conical coefficients κ (c〇nic constant) of each aspherical surface and the respective order coefficients E4 to Ei4 of the surface aperture radius 如 are as shown in Table 6: Table 6 Surface Κ Λ " - Ε4 E6 E8 E10 E12 E14 R24 -1.288715 -8. 357e-06 7. 205e-08 -2.594e-〇9 3.614e-ll -1.926e-13 0~~~~~ By the configuration of the above lens and aperture, the embodiment is The zoom projection lens 3 can not only effectively reduce the volume to meet the demand for light weight, and the zoom projection lens 3 can also meet the requirements in image quality in the wide-angle state, which can be seen from FIG. 10A to FIG. Fig. 1A shows the longitudinal chromatic aberration diagram of the zoom projection lens 3 of the embodiment of the present embodiment. The visual chromatic aberration diagram of the zoom projection lens 3 of the present embodiment is shown in Fig. 1QC. The field curvature map and the distortion map of the zoom projection lens 3 of the present embodiment; the spatial frequency modulation transfer function map (Spatial Frequency MTF) of the zoom projection lens 3 of the present embodiment shown in FIG. As can be seen from Fig. 1B, in this embodiment, the axis of the new image is turned over and the difference is the most And 0.04mm & color difference is not more than the maximum. As can be seen from Figure i〇c, the maximum field curvature of the zoom projection lens 3 of this embodiment does not exceed (4) and -0.08mm ' and the distortion variable does not exceed 2%. It can be seen that the zoom projection steel 3 of this embodiment has an optical transmission function value of 40% or more on the axis of 60 lp/mm. In addition, the change is made; #, the projection lens 3 is in the middle of the towel. In the state, the imaging quality can also meet the requirements, which can be seen from Fig. UA to Fig. 11D. As can be seen from Fig. 11B and Fig. 11B, the longitudinal chromatic aberration of the zoom projection lens 3 of the present embodiment does not exceed _mm and The maximum lateral chromatic aberration does not exceed - and plus. As can be seen from Fig. 11C, the maximum field curvature of the zoom projection lens 3 of the present embodiment does not exceed 0.10 mm and -0.08 mm, and the distortion variable does not exceed 12%. It can be seen that the value of the modulation optical transfer function of the zoom projection lens 3 of this embodiment is maintained at 50% or more at 60 Ip/mm. Furthermore, the change head 3 is in the _«彡__ hybrid state. f imaging quality can also meet the requirements, which can be seen from the figure to Figure (10). As can be seen from Figure 1M and Figure 2B, the zoom projection of this embodiment The longitudinal direction of the lens 3 201220127 The maximum color difference does not exceed 〇.〇7mm and -〇.〇6mm, the lateral chromatic aberration does not exceed 2μπι and -2μιη maximum. As can be seen from Fig. 12C, the maximum field curvature of the zoom projection lens 3 of this embodiment is not More than 0.04mm and the distortion does not exceed 〇.4%. As can be seen from the figure UD, when the zoom projection lens 3 of the present embodiment is at 60 lp/mm, the value of the modulated optical ship function is still transferred to 4%. Thereby, it is apparent that the resolution of the zoom projection lens 3 of the present embodiment is standard regardless of whether it is in a wide-angle state, a middle state, or a long-range projection (teleph〇t〇) state. 13 is a lens configuration diagram of a zoom projection lens 4 according to a fourth preferred embodiment of the present invention, which includes a glass made of glass and arranged along the optical axis z and sequentially arranged from the imaging side to the image source side. A mirror group G1 and a second mirror group G2. The first mirror group G1 can be moved along the optical axis Z between the imaging side and the second mirror group G2 to change the focal length of the lens. The zoom projection lens 4 can be divided into wide angles according to the position of the first mirror group G1. (Wide_angle) state, middle state, and telephoto state. Further, a glass cover CG (cover glass) is provided between the second mirror group G2 and the image source side. Wherein: the first mirror group G1 has a negative refractive power, and includes a first lens, a second lens L2, a third lens [3, a fourth lens L4, a fifth lens L5, and a sixth lens L6. . The first lens L1 is a crescent lens having a negative refractive power, and its convex surface R1 faces the image forming side. The second lens L2 is a lenticular lens having a positive refractive power. The third lens L3 is a negative refractive power 21 201219877 and has a negative orientation toward the imaging side. The fourth lens L4 is a := lens. The fifth _ is a positive lens with a double lens. The sixth lens L6 is a crescent mirror having a negative developing power, and its concave surface R11 faces the image forming side. The second mirror group G2 has a positive refractive power and includes a seventh lens L7, an eighth lens L8, a ninth lens L9, a tenth lens ug, an eleventh lens L11, and a twelfth lens U2. . The seventh lens L7 is a lenticular lens having a positive refractive power. The eighth lens L8 is a biconcave lens having a refractive power of 贞. The ninth lens L9 is a single convex lens having a positive refractive power, and its convex surface R17 faces the image forming side. The tenth lens L10 is a crescent lens having a positive refractive power and its convex surface R20 faces the image forming side. The eleventh lens Ui is a biconcave lens having a negative refractive power. The twelfth lens L12 is a lenticular lens having a positive refractive power, and the surfaces R24 and R25 are aspherical surfaces. Further, the aperture ST of the zoom projection lens 4 is disposed between the ninth lens L9 and the tenth lens L10. In order to enable the zoom projection lens 4 to effectively reduce the total length of the lens, correct the aberration, and increase the back focus length, the zoom projection lens 4 satisfies the following conditions: (1) -0.87 < f2/fl < -0.76 (2) -2.09 < fl/fw < -1.85 (3)1.59<f2/fw<1.64 (5) 6.66 < tt/fw < 6.7 (7) -1.31 <ex/bf<-i.24 ( 9) 1.31 <fg/fw<2.2 (4) 0.70 <fw/bf<0.71 (6)4.7<tt/bf<4.74 (8) 0.787 < lt/tt < 0.789 22 201219877 where fl is The effective focal length of the first mirror group G1; £2 is the effective focal length of the second mirror group G2; fW is the effective focal length of the plane, the projection _4 in the wide_angie state; bf is the zoom projection lens 4 After the focal length; bamboo is the total length of the zoom projection lens 4; ex is the exit position of the zoom projection lens 4 (exitpupilpositi〇n); it is the first surface R1 to the last surface of the zoom projection lens 4 The length; fg is the effective focal length of the twelfth lens m. The focal length F (F〇cus Length), the numerical aperture FNO (F-number) of the zoom projection lens 4 of the fourth embodiment of the present invention, and the radius of curvature R of the optical axis z of each lens surface, The thickness T of the lens on the optical axis z, the refractive index Nd of each lens (here plus Μεχ) and the Abbe number Vd (Abbenumber) of each lens are shown in Table 7: Table 7 F = 21.65 (W )~28 0698(M)~34.0989(T) FNO=1.997(W)~2.2507CM)~2.4928m Surface R(mm) l(min) Nd Vd Remarks R1 70.37629 0.8 1.836312 24. 3768 First lens LI R2 43.79806 6. 930353 R3 88.89598 7.111371 1.834807 42. 7237 Second lens L2 R4 -550.4502 0.1 R5 81. 96677 1.46034 1.727362 54.7956 Third lens L3 R6 26. 52786 12.97328 R7 -75.75273 0.8 1.730645 53.8585 Fourth lens L4 R8 46.84376 3.196082 R9 — - 49.21537 8. 954779 1.84297 27. 5644 Fifth lens L5 R10 -84.9628 4.769462 23 201219877 R11 -51.17976 0.8 1. 709783 27.8892 Sixth lens L6 R12 -189.9925 28.111294(W)~11. 901811(M)~2. 236538(T ) R13 39.02144 5.426094 1.735485 53.6775 Seven lenses L7 R14 -1158.693 5.793676 R15 -60.49845 0.9488204 1.59296 35. 2751 Eighth lens L8 R16 36.22194 0.8 R17 20.31188 6.777882 1.514567 77.5129 Ninth lens L9 R18 799. 3534 4.444998 R19 〇〇0.1 Aperture ST R20 22.85002 5. 504274 1.758507 50.3822 Ten lens L10 R21 39. 64877 2. 795098 ( R22 -61.06559 0.8 1.686187 28.947 Eleventh lens L11 R23 30.56569 0.4025781 R24 29.45151 4.599618 1.834381 42. 7567 Twelfth lens L12 R25 -184.1319 26 R26 〇〇3 1.487490 70.2 Glass overlay CG R27 〇〇1. 6(ff)~6. 773346(M)~11. 691575(T) The thickness T of Table 7 '(W) means that the zoom projection lens 4 is in the wide-angle state. (M) refers to the distance between the zoom projection lens 4 in the middle state on the optical axis Z; (T) refers to the zoom projection lens 4 in the long-distance projection ( In the state of telephoto), the distance between the optical axes z. Further, the surface depression degree D of the aspherical surfaces R24, R25 of the twelfth lens L12 of the present embodiment is obtained by the following formula: 24 201219877 wherein: D: the degree of depression of the aspherical surface; C: the reciprocal of the radius of curvature; : aperture radius of the surface; κ: conic coefficient; Ε4~Em: various order coefficients of the aperture radius Η of the surface. In the present embodiment, the conic coefficients K and the surface aperture radius 各个 of the respective aspherical surfaces are as shown in Table 8: Table 8 Surface K E4 E6 E8 E10 E12 E14 R24 2. 296673 - 3.835e-05 -1.764e-07 -5.592el〇-3.214e-12 -6.871e-14 0 — R25 55.50933 1·525e-05 -2. 232e-07 2. 275e-09 '3.343e-ll 9. 828e-14 0 The lens projection lens 4 of the present embodiment can effectively reduce the volume to meet the requirement of light weight by the configuration of the lens and the aperture described above. The zoom projection lens 4 is imaged in the Wide_angle state. The quality can also meet the requirements'. This can be seen from Figure 14A to Figure 14D. 14A is a longitudinal chromatic aberration diagram of the zoom projection lens 4 of the present embodiment; FIG. 14B is a lateral chromatic aberration diagram of the zoom technical lens 4 of the present embodiment; and FIG. 14C is the embodiment. The field curvature map and the distortion map of the zoom projection lens 4 of the example; FIG. 14D shows the spatial frequency modulation transfer function map (Spatial Frequency MTF) of the zoom projection lens 4 of the present embodiment. As can be seen from Figs. 14A and 14B, the longitudinal chromatic aberration of the zoom projection lens 4 of the present embodiment does not exceed 〇〇8 mm and 25 201219877, and the lateral chromatic aberration does not exceed 仏m sum. As can be seen from the graph MC, the maximum field curvature of the zoom projection lens 4 of the present embodiment does not exceed 〇1〇面面面, and the domain variable does not exceed 1.2%. As can be seen from the graph HD, the zoom projection Q6 of the present embodiment (the daily push of Mp/mm, the value of the _forest transfer function is still maintained at 50% or more. In addition, when the zoom projection lens 4 is in the middle state, The imaging quality can also meet the requirements, which can be seen from Figure 15A to Figure 15D.

及圖15B可看出’本實施例變焦投影綱4之縱向色差最大 不超過0.07mm和-〇.〇6mm,橫向色差最大不超過2難和_2 /zm從圖ISC可看出,本實施例變焦投影鏡頭&之最大場曲 不超過0.04mm與-O.iemm,且畸變量不超過〇 4%。從圖15D 了看出本實施例變焦投影鏡頭4在60 lp/mm的時候,其調 制光學傳遞函數值仍維持在40%以上。 再者該變焦投影鏡頭4在長距投影(teieph〇t〇)狀態時, 其成像品質上也可達到要求,這可從圖16A至圖16D看出。 從圖16A及目ι6Β可看出,本實施例變焦投影鏡頭4之縱向 色差最大不超過〇.〇8mm和_〇 〇3mm,橫向色差最大不超過4 //m和_2//m。從圖16c可看出,本實施例變焦投影鏡頭4之 最大場曲不超過O.Wmm與-〇.〇8mm,且畸變量不超過2°/。。從 圖16D可看出’本實施例變焦投影鏡頭4在6〇 lp/mm的時候, 其調制光學傳遞函數值仍維持在40%以上。藉此,顯見本實施 例之變焦投影鏡頭4的解析度不管是在是廣角狀 26 201219877 態、中間(middle)狀態或是長距投影⑽eph〇t〇)狀態時,都是符 合標準的。 綜合以上所述可得知,本發明之變焦投影鏡頭僅須利用兩 組鏡即可達到變焦之目的’且不僅體積小,更具有高光學效能。 以上所述僅為本發明較佳可行實施例而已,舉凡應用本發 ‘變化,理 明說明書及申請專利範圍所為之等效結構及製作方法丨 應包含在本發明之專利範圍内。 卜And FIG. 15B, it can be seen that the longitudinal chromatic aberration of the zoom projection 4 of the present embodiment does not exceed 0.07 mm and -〇.〇6 mm at the maximum, and the lateral chromatic aberration does not exceed 2 and _2 /zm. For example, the maximum field curvature of the zoom projection lens & does not exceed 0.04mm and -O.iemm, and the distortion variable does not exceed 〇4%. It is seen from Fig. 15D that the modulation optical transfer function value of the zoom projection lens 4 of the present embodiment is maintained at 40% or more at 60 lp/mm. Furthermore, the zoom projection lens 4 can also meet the imaging quality in the long-range projection (teieph〇t〇) state, which can be seen from FIG. 16A to FIG. 16D. As can be seen from Fig. 16A and Fig. 6, the longitudinal chromatic aberration of the zoom projection lens 4 of the present embodiment does not exceed 〇.〇8 mm and _〇 〇3 mm at the maximum, and the lateral chromatic aberration does not exceed 4 //m and _2//m at the maximum. As can be seen from Fig. 16c, the maximum field curvature of the zoom projection lens 4 of the present embodiment does not exceed O.Wmm and -〇.〇8 mm, and the distortion does not exceed 2°/. . As can be seen from Fig. 16D, when the zoom projection lens 4 of the present embodiment is at 6 〇 lp/mm, the modulation optical transfer function value is maintained at 40% or more. Thereby, it is apparent that the resolution of the zoom projection lens 4 of the present embodiment conforms to the standard regardless of whether it is a wide-angle 26 201219877 state, a middle state, or a long-distance projection (10) eph〇t〇 state. In summary, it can be seen that the zoom projection lens of the present invention can achieve the purpose of zooming only by using two sets of mirrors' and is not only small in size but also high in optical efficiency. The above description is only for the preferred embodiment of the present invention, and the equivalent structure and manufacturing method of the present invention are intended to be included in the scope of the present invention. Bu

27 201219877 【圖式簡單說明】 圖1為本發明第—較佳實施例之鏡片配置圖。 圖2A為第—較佳實施例在廣角狀態時之縱向色差圖。 圖2B為第—較佳實施例在廣緣態時之橫向色差圖。 圖2C為第—較佳實施例在廣角狀態時之場曲圖及崎變圖。 圖2D為第—較佳實施例在廣嫌態時之膽圖。 圖3A為第—較佳實施例在中間狀態時之縱向色差圖。 圖3B為第—較佳實施例在中間狀態時之橫向色差圖。 圖3C為第—較佳實施例在中間狀態時之場曲圖及畸變圖。 圖3D為第—較佳實施例在中間狀騎之驗圖。 圖4A為第—較佳實施例在遠距投影狀態時之縱向色差圖。 圖4B為第—較佳實施例在遠織餘態時之橫向色差圖。 圖4C為第—較佳實施例在遠距投影狀態時之場曲圖及畸變圖。 圖4D為第—較佳實_丨在遠距投雜騎之MTF圖。 圖5為本翻第二較佳實施例之鏡纽置圖。 圖6A為第二較佳實施例在廣角狀態時之縱向色差圖。 圖6B為第二較佳實關在廣肖狀態時之橫向色差圖。 圖6C為第二較佳實施例在廣角狀態時之場曲圖及畸變圖。 圖6D為第二較佳實施例在廣角狀態時之mtf圖。 圖7A為第二較佳實施例在中間狀態時之縱向色差圖。 圖7B為第二較佳實施例在中間狀態時之橫向色差圖。 圖7C為第二較佳實施例在中間狀態時之場曲圖及畸變圖。 28 201219877 圖7D為第—較佳實施例在巾間狀態時之mTF圖。 目8 4第__較佳實施例在遠距投影狀態時之縱向色差圖。 ®8B為第二較佳實關在遠距投雜_之橫向色差圖。 圖8C為第二較佳實施例在遠距投影狀態時之場曲圖及崎變圖。 圖8為第—較佳實施例在遠距投影狀態時之MTF圖。 圖9為本發明第三較佳實施例之鏡片配置圖。 圖10A為第二較佳實施例在廣角狀態時之縱向色差圖。 籲ffi 10B為第二較佳實施例在廣角狀態時之橫向色差圖。 圖10C為第二較佳實施例在廣角狀態時之場曲圖及崎變圖。 圖10D為第二較佳實施例在廣角狀態時之祖F圖。 圖11Α為第二較佳實施例在中間狀態時之縱向色差圖。 圖11Β為第三較佳實施例在中間狀態時之橫向色差圖。 圖11C為第二較佳實施例在中間狀態時之場曲圖及畸變圖。 圖11D為第三較佳實施例在中間狀態時之MTF圖。 鲁目12Α為第二較佳實施例在遠距投影狀態時之縱向色差圖。 圖12Β為第二較佳實施例在遠距投影狀態時之橫向色差圖。 圖12C為第二較佳實施例在遠距投影狀態時之場曲圖及畸變圖。 圖12D為第二較佳實施例在遠距投影狀態時之MTF圖。 圖13為本發明第四較佳實施例之鏡片配置圖。 圖14Α為第四較佳實施例在廣角狀態時之縱向色差圖。 圖MB為第四較佳實施例在廣角狀態時之橫向色差圖。 圖14c為第四較佳實施例在廣角狀態時之場曲圖及畸變圖。 29 201219877 圖14D為第四較佳實施例在廣角狀態時之MTF圖。 圖15A為第四較佳實施例在中間狀態時之縱向色差圖。 圖15B為第四較佳實施例在中間狀態時之橫向色差圖。 圖15C為第四較佳實施例在切狀態時之場賴及崎變圖。 圖UD為第四較佳實施例在中間狀態時之歷圖。 圖皿為第四健實酬在遠職做糾之縱向色差圖。 圖脱為第四較佳實施例在遠距投影狀態時之横向色差圖。 圖16C為第四較佳實施例在遠距投影狀態時之場曲圖及崎變圖 圖為第四較佳實施例在遠距投影狀態時之勝圖。 201219877 【主要元件符號說明】 1變焦投影鏡頭 G1第一鏡群 L1第一鏡片 L2第二鏡片 L3第三鏡片 L4第四鏡片 L5第五鏡片 G2第二鏡群 L6第六鏡片 L7第七鏡片 L8第八鏡片 L9第九鏡片 L10第十鏡片 L11第十一鏡片 CG玻璃遮蓋 ST光圈 R1〜R24表面 Z光軸 2變焦投影鏡頭 G1第一鏡群 L1第一鏡片 L2第二鏡片 L3第三鏡片 L4第四鏡片 L5第五鏡片 第二鏡群 L6第六鏡片 L7第七鏡片 L8第八鏡片 L9第九鏡片 L10第十鏡片 L11第十一鏡片 L12第十二鏡片 CG玻璃遮蓋 ST光圈 R1〜R26表面 Z光軸 31 201219877 3變焦投影鏡頭 G1第一鏡群 L1第—鏡片 L4第四鏡片 第二鏡群 L6第六鏡片 L9第九鏡片 L10第十鏡片 CG玻璃遮蓋 Z光轴 4變焦投影鏡頭 G1第一鏡群 L1第一鏡片 L4第四鏡片 第二鏡群 L7第七鏡片 L10第十鏡片 CG玻璃遮蓋 Z光軸 L2第二鏡片 L5第五鏡片 L7第七鏡片 L91雙凸透鏡 L11第十一鏡片 ST光圈 L2第二鏡片 L5第五鏡片 L8第八鏡片 L11第十一鏡片 ST光圈 L3第三鏡片 L8第八鏡片 L92雙凹透鏡 L12第十二鏡片 R1〜R27表面 L3第三鏡片 L6第六鏡片 L9第九鏡片 L12第十二鏡片 R1〜R27表面27 201219877 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a lens configuration diagram of a first preferred embodiment of the present invention. Fig. 2A is a longitudinal chromatic aberration diagram of the first preferred embodiment in a wide-angle state. Fig. 2B is a lateral chromatic aberration diagram of the first preferred embodiment in the wide margin state. Fig. 2C is a field curvature diagram and a saturation diagram of the first preferred embodiment in a wide-angle state. Figure 2D is a biliary diagram of the first preferred embodiment in the broad sense. Fig. 3A is a longitudinal chromatic aberration diagram of the first preferred embodiment in an intermediate state. Fig. 3B is a lateral chromatic aberration diagram of the first preferred embodiment in the intermediate state. Fig. 3C is a field curvature diagram and a distortion diagram of the first preferred embodiment in an intermediate state. Figure 3D is an illustration of the first preferred embodiment in an intermediate ride. Figure 4A is a longitudinal chromatic aberration diagram of the first preferred embodiment in the telephoto state. Fig. 4B is a lateral chromatic aberration diagram of the first preferred embodiment in the far weave state. FIG. 4C is a field curvature diagram and a distortion diagram of the first preferred embodiment in a remote projection state. FIG. 4D is an MTF diagram of the first best _ 丨 in the long-distance riding. Fig. 5 is a view showing the mirror of the second preferred embodiment. Fig. 6A is a longitudinal chromatic aberration diagram of the second preferred embodiment in a wide-angle state. FIG. 6B is a lateral chromatic aberration diagram of the second preferred real-off state in the wide-axis state. Fig. 6C is a field curvature diagram and a distortion diagram of the second preferred embodiment in a wide-angle state. Figure 6D is a mtf diagram of the second preferred embodiment in a wide-angle state. Fig. 7A is a longitudinal chromatic aberration diagram of the second preferred embodiment in an intermediate state. Fig. 7B is a lateral chromatic aberration diagram of the second preferred embodiment in an intermediate state. Fig. 7C is a field curvature diagram and a distortion diagram of the second preferred embodiment in an intermediate state. 28 201219877 Figure 7D is an illustration of the mTF of the first preferred embodiment in the state of the towel. The longitudinal chromatic aberration diagram of the preferred embodiment in the telephoto state. ® 8B is the second best practice for the lateral chromatic aberration diagram of the long-range doping. FIG. 8C is a field curvature diagram and a sagittal diagram of the second preferred embodiment in a telephoto state. Figure 8 is a diagram showing the MTF of the first preferred embodiment in the telephoto state. Figure 9 is a perspective view of a lens arrangement in accordance with a third preferred embodiment of the present invention. Fig. 10A is a longitudinal chromatic aberration diagram of the second preferred embodiment in a wide-angle state. The ffi 10B is a lateral chromatic aberration diagram of the second preferred embodiment in the wide-angle state. Fig. 10C is a field curvature diagram and a saturation diagram of the second preferred embodiment in a wide-angle state. Fig. 10D is a front view of the second preferred embodiment in the wide-angle state. Figure 11 is a longitudinal chromatic aberration diagram of the second preferred embodiment in an intermediate state. Figure 11 is a lateral chromatic aberration diagram of the third preferred embodiment in an intermediate state. Figure 11C is a field curvature diagram and a distortion diagram of the second preferred embodiment in an intermediate state. Figure 11D is an MTF diagram of the third preferred embodiment in an intermediate state. Lumen 12Α is a longitudinal chromatic aberration diagram of the second preferred embodiment in the telephoto state. Figure 12 is a lateral chromatic aberration diagram of the second preferred embodiment in the telephoto state. Fig. 12C is a field curvature diagram and a distortion diagram of the second preferred embodiment in a telephoto state. Figure 12D is an MTF diagram of the second preferred embodiment in a telephoto state. Figure 13 is a perspective view of a lens configuration according to a fourth preferred embodiment of the present invention. Figure 14 is a longitudinal chromatic aberration diagram of the fourth preferred embodiment in a wide-angle state. Figure MB is a lateral chromatic aberration diagram of the fourth preferred embodiment in the wide-angle state. Fig. 14c is a field curvature diagram and a distortion diagram of the fourth preferred embodiment in a wide-angle state. 29 201219877 FIG. 14D is an MTF diagram of the fourth preferred embodiment in a wide-angle state. Fig. 15A is a longitudinal chromatic aberration diagram of the fourth preferred embodiment in an intermediate state. Figure 15B is a lateral chromatic aberration diagram of the fourth preferred embodiment in an intermediate state. Fig. 15C is a view showing the field dependence and the saturation of the fourth preferred embodiment in the cut state. Figure UD is a calendar diagram of the fourth preferred embodiment in an intermediate state. The figure is the longitudinal chromatic aberration diagram of the fourth healthy reward in the distant position. Figure 4 is a lateral chromatic aberration diagram of the fourth preferred embodiment in the telephoto state. Fig. 16C is a field curvature diagram and a saturation diagram of the fourth preferred embodiment in the telephoto state. The figure is a winning diagram of the fourth preferred embodiment in the telephoto state. 201219877 [Description of main component symbols] 1 zoom projection lens G1 first mirror group L1 first lens L2 second lens L3 third lens L4 fourth lens L5 fifth lens G2 second mirror group L6 sixth lens L7 seventh lens L8 Eighth lens L9 Nine lens L10 Tenth lens L11 Eleventh lens CG glass cover ST aperture R1 R24 surface Z-axis 2 Zoom projection lens G1 First mirror group L1 First lens L2 Second lens L3 Third lens L4 Fourth lens L5 fifth lens second mirror group L6 sixth lens L7 seventh lens L8 eighth lens L9 ninth lens L10 tenth lens L11 eleventh lens L12 twelfth lens CG glass cover ST aperture R1 ~ R26 surface Z optical axis 31 201219877 3 zoom projection lens G1 first mirror group L1 first lens L4 fourth lens second mirror group L6 sixth lens L9 ninth lens L10 tenth lens CG glass cover Z optical axis 4 zoom projection lens G1 One mirror group L1 first lens L4 fourth lens second mirror group L7 seventh lens L10 tenth lens CG glass cover Z optical axis L2 second lens L5 fifth lens L7 seventh lens L91 lenticular lens L11 eleventh lens ST Aperture L2 second Lens L5 fifth lens L8 eighth lens L11 eleventh lens ST aperture L3 third lens L8 eighth lens L92 biconcave lens L12 twelfth lens R1 ~ R27 surface L3 third lens L6 sixth lens L9 ninth lens L12 Twelve lenses R1 to R27 surface

3232

Claims (1)

201219877 七、申請專利範圍: 、1、-種變焦投影鏡頭,包含有沿一光軸且由一成像側至一像 源侧依序排列設置之—第—鏡群以及—第二鏡群;其中,該第一 =群具有負屈光力;該第—鏡群中由該成像側至該像源側=起之 前三片鏡片之屈光力依序為負、正、負;該第二鏡群具有正屈光 力’該第二鏡群中由該成像似該像關算起最後—片鏡片具有 正屈光力,且至少一面為非球面表面;另外,該第一鏡群可於該 •成像侧與該第二鏡群間沿該光軸移動。 2、 如請求項i所述之變焦投影鏡頭’更包含一光圈,設於該 第二鏡群内。 人 3、 如請求項1所述之變鎌影鏡頭,其中該第—鏡群包含有 由該成像侧至該像源側依序排列設置之一第一鏡片、一第二鏡 片、一第三鏡片、—第四鏡片以及—第五鏡片;該等鏡片皆由玻 璃製成,且其屈光力依序為負、正、負、負、正。 % 4、如請求項1所述之變焦投影鏡頭,其中該第二鏡群由該成 像側至該像源側算起第一片鏡片為一個具有正屈光力之玻璃鏡 5、如請求項1所述之魏投影鏡頭,更滿足下列條件: -0.87<£2/ί!<·〇.76,其中,為該第—鏡群之有效焦距;β為該第 一鏡群之有效焦距。 6如凊求項1所述之變焦投影鏡頭,更滿足下列條件: •2.09<fl/fW<-1.85 ’其中,fi為該第一鏡群之有效焦距;加為該 33 201219877 變焦投影鏡頭於廣角(wide-angle)狀態下之有效焦距。 7、 如請求項1所述之變焦投影鏡頭,更滿足下列條件: 1·59<ί2/ί\ν<1·64 ’其中,β為該第二鏡群之有效焦距;為該變 焦投影鏡頭於廣角(wide_angle)狀態下之有效焦距。 8、 如請求項1所述之變焦投影鏡頭,更滿足下列條件: 0/70<fW/bf<0,71 ’其中,加為該變焦投影鏡頭於廣角(wide_angle) 狀態下之有效焦距;bf為該變焦投影鏡頭之後焦長度。 9、 如請求項1所述之變焦投影鏡頭,更滿足下列條件: 6‘66<tt/fw<6·7 ’其中,fW為該變焦投影鏡頭於廣角(Wide-angle)狀 態下之有效焦距;tt為該變焦投影鏡頭之總長度。 10、 如請求項1所述之變焦投影鏡頭,更滿足下列條件: 4·7<Μ)ί*<4·74,其中,bf為該變焦投影鏡頭之後焦長度;廿為該變 焦投影鏡頭之總長度。 11、 如請求項1所述之變焦投影鏡頭,更滿足下列條件: •Ul<ex/bf<_U4,其中,bf為該變焦投影鏡頭之後焦長度;饮為 該變焦投影鏡頭之出瞳位置(exit pupil p〇siti〇n)。 12、 如請求項1所述之變焦投影鏡頭,更滿足下列條件: 0.787<lt/tt<G.789 ’其中,tt為該變焦投影鏡頭之總長度;lt為該變 焦投影綱之第-個表面至最後一個表面間之長度。 13、 如凊求項1所述之變焦投影鏡頭,更滿足下列條件: U1<fg/fW<2.2,其中’加為該變焦投影鏡頭於廣角(wide-angle) 狀態下之有效; fg為該帛二鏡群&該祕舰雜源侧算起 34 201219877 最後一片鏡片之有效焦距。201219877 VII. Patent application scope: 1. A zoom lens projection lens comprising a first-mirror group and a second mirror group arranged along an optical axis and arranged from an imaging side to an image source side; The first group has a negative refractive power; the refractive power of the three lenses in the first mirror group from the imaging side to the image source side is negative, positive, and negative sequentially; the second mirror group has positive refractive power. 'In the second mirror group, the image is like the last image - the last lens has a positive refractive power, and at least one side is an aspherical surface; in addition, the first mirror group can be on the imaging side and the second mirror The group moves along the optical axis. 2. The zoom projection lens as described in claim i further comprises an aperture disposed in the second mirror group. The variable lens of claim 1, wherein the first lens group comprises a first lens, a second lens, and a third arranged in sequence from the imaging side to the image source side. The lens, the fourth lens and the fifth lens; all of the lenses are made of glass, and their refractive powers are negative, positive, negative, negative, and positive. The zoom projection lens of claim 1, wherein the second lens group is a glass mirror having a positive refractive power from the imaging side to the image source side, as claimed in claim 1. The Wei projection lens satisfies the following conditions: -0.87 <£2/ί!<·〇.76, where is the effective focal length of the first mirror group; β is the effective focal length of the first mirror group. 6 The zoom projection lens of claim 1 further satisfies the following conditions: • 2.09 <fl/fW<-1.85 'where fi is the effective focal length of the first mirror group; added as the 33 201219877 zoom projection lens The effective focal length in the wide-angle state. 7. The zoom projection lens according to claim 1 further satisfies the following conditions: 1·59<ί2/ί\ν<1·64 'where β is the effective focal length of the second mirror group; for the zoom projection lens The effective focal length in the wide_angle state. 8. The zoom projection lens according to claim 1 further satisfies the following conditions: 0/70<fW/bf<0,71 'where, the effective focal length of the zoom projection lens in the wide_angle state is added; bf The focal length of the projection lens for this zoom. 9. The zoom projection lens of claim 1 further satisfies the following conditions: 6'66<tt/fw<6·7 'where fW is the effective focal length of the zoom projection lens in the Wide-angle state ;tt is the total length of the zoom projection lens. 10. The zoom projection lens according to claim 1 further satisfies the following conditions: 4·7<Μ)ί*<4·74, wherein bf is the focal length of the zoom projection lens; 廿 is the zoom projection lens The total length. 11. The zoom projection lens of claim 1 further satisfies the following conditions: • Ul <ex/bf<_U4, wherein bf is the focal length of the zoom projection lens; and drinking is the exit position of the zoom projection lens ( Exit pupil p〇siti〇n). 12. The zoom projection lens of claim 1 further satisfies the following conditions: 0.787 <lt/tt<G.789 'where tt is the total length of the zoom projection lens; lt is the first of the zoom projections - The length from the surface to the last surface. 13. The zoom projection lens of claim 1 further satisfies the following condition: U1 <fg/fW<2.2, wherein 'additionally the zoom projection lens is effective in a wide-angle state; fg is the帛二镜群 & The secret source of the miscellaneous source counts 34 201219877 The effective focal length of the last lens. 3535
TW099138574A 2010-11-09 2010-11-09 Zoom projection lens TWI480620B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099138574A TWI480620B (en) 2010-11-09 2010-11-09 Zoom projection lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099138574A TWI480620B (en) 2010-11-09 2010-11-09 Zoom projection lens

Publications (2)

Publication Number Publication Date
TW201219877A true TW201219877A (en) 2012-05-16
TWI480620B TWI480620B (en) 2015-04-11

Family

ID=46552997

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099138574A TWI480620B (en) 2010-11-09 2010-11-09 Zoom projection lens

Country Status (1)

Country Link
TW (1) TWI480620B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454728B (en) * 2013-03-27 2014-10-01 Young Optics Inc Projection lens
CN110376715A (en) * 2019-07-18 2019-10-25 广东奥普特科技股份有限公司 A kind of high-res tight shot

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4107109B2 (en) * 2003-03-06 2008-06-25 カシオ計算機株式会社 Projection lens
CN2857048Y (en) * 2005-08-01 2007-01-10 中强光电股份有限公司 Zoom lens
TWI355507B (en) * 2007-07-27 2012-01-01 Young Optics Inc Fixed-focus lens
TWI410671B (en) * 2008-08-08 2013-10-01 Young Optics Inc Projection lens
TWI410673B (en) * 2009-01-22 2013-10-01 Young Optics Inc Zoom lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454728B (en) * 2013-03-27 2014-10-01 Young Optics Inc Projection lens
CN110376715A (en) * 2019-07-18 2019-10-25 广东奥普特科技股份有限公司 A kind of high-res tight shot
CN110376715B (en) * 2019-07-18 2024-03-26 广东奥普特科技股份有限公司 High-resolution prime lens

Also Published As

Publication number Publication date
TWI480620B (en) 2015-04-11

Similar Documents

Publication Publication Date Title
JP6530538B1 (en) Imaging lens
TWI317819B (en) Zoom lens
TWI416162B (en) Image taking optical system
JP5630235B2 (en) Zoom lens, camera, and portable information terminal device
TW201031946A (en) Small-sized zoom lens and image pickup device with the same
KR101431548B1 (en) Lens optical system
KR101844509B1 (en) Zoon lens and photographing apparatus
KR101932722B1 (en) Zoom lens and photographing apparatus having the same
TWI242654B (en) Zoom lens and imaging device
JP2018059969A (en) Imaging optical system
TW201205113A (en) Zoom lens
CN108490592A (en) Varifocal optical system
JPWO2011024657A1 (en) Variable magnification lens system
TWI330720B (en) Zoom lens
TW200946952A (en) Zoom lens
TWI259910B (en) Miniature zoom lens
JP2015203734A (en) Super wide angle zoom lens
TW201221994A (en) Lens module
TW201502571A (en) Imaging optical system
TWM482749U (en) Imaging lens and imaging apparatus including the imaging lens
TWI299408B (en) Zoom lens system
KR20160107805A (en) Zoom lens and photographing lens having the same
TW200907407A (en) Zoom lens and imaging apparatus
TWI436123B (en) Miniature zoom lens
TW200944834A (en) Zoom lens

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees